【配套K12】高中数学第三章函数的应用3.1函数与方程3.1.1方程的根与函数的零点优化练习

合集下载

【配套K12】2018-2019学年高中数学人教版A版必修一学案:第三单元 3.1.1 方程的根与函

【配套K12】2018-2019学年高中数学人教版A版必修一学案:第三单元 3.1.1 方程的根与函

§3.1 函数与方程3.1.1 方程的根与函数的零点学习目标 1.理解函数零点的定义,会求某些函数的零点(重点).2.掌握函数零点的判定方法(重、难点).3.了解函数的零点与方程的根的联系(重点).预习教材P86-P88,完成下面问题: 知识点1 函数的零点(1)概念:函数f (x )的零点是使f (x )=0的实数x .(2)函数的零点与函数的图象与x 轴的交点、对应方程的根的关系:【预习评价】(1)函数f (x )=x 2-4x 的零点是________.(2)若2是函数f (x )=a ·2x -log 2x 的零点,则a =________.解析 (1)令f (x )=0,即x 2-4x =0,解得x =0或x =4,所以f (x )的零点是0和4.(2)由f (2)=4a -1=0得a =14.答案 (1)0和4 (2)14知识点2 函数零点的判断(1)条件:①函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线;②f (a )·f (b )<0. (2)结论:函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.【预习评价】 (正确的打“√”,错误的打“×”)(1)设f (x )=1x ,由于f (-1)f (1)<0,所以f (x )=1x 在(-1,1)内有零点( )(2)若函数f(x)在(a,b)内有零点,则f(a)f(b)<0.()(3)若函数f(x)的图象在区间[a,b]上是一条连续不断的曲线,且f(a)·f(b)<0,则f(x)在(a,b)内只有一个零点.()提示(1)×由于f(x)=1x的图象在[-1,1]上不是连续不断的曲线,所以不能得出其有零的结论.(2)×反例:f(x)=x2-2x,区间为(-1,3),则f(-1)·f(3)>0.(3)×反例:f(x)=x(x-1)(x-2),区间为(-1,3),满足条件,但f(x)在(-1,3)内有0,1,2三个零点.题型一函数零点的概念及求法【例1】(1)函数y=1+1x的零点是()A.(-1,0) B.x=-1C.x=1D.x=0(2)设函数f(x)=21-x-4,g(x)=1-log2(x+3),则函数f(x)的零点与g(x)的零点之和为________.(3)若3是函数f(x)=x2-mx的一个零点,则m=________.解析(1)令1+1x=0,解得x=-1,故选B.(2)令f(x)=21-x-4=0解得x=-1,即f(x)的零点为-1,令g(x)=1-log2(x+3)=0,解得x=-1,所以函数f(x)的零点与g(x)的零点之和为-2.(3)由f(3)=32-3m=0解得m=3.答案(1)B(2)-2(3)3规律方法函数零点的两种求法(1)代数法:求方程f(x)=0的实数根,若存在实数根,则函数存在零点,否则函数不存在零点.(2)几何法:与函数y=f(x)的图象联系起来,图象与x轴的交点的横坐标即为函数的零点.【训练1】函数f(x)=ax+b有一个零点是2,那么函数g(x)=bx2-ax的零点是________.解析∵函数f(x)=ax+b有一个零点是2,∴2a+b=0⇒b=-2a,∴g(x)=bx2-ax=-2ax 2-ax =-ax (2x +1),∵-ax (2x +1)=0⇒x =0,x =-12,∴函数g (x )=bx 2-ax 的零点是0,-12. 答案 0,-12题型二 确定函数零点的个数 【例2】 判断下列函数零点的个数. (1)f (x )=x 2-34x +58;(2)f (x )=ln x +x 2-3.解 (1)由f (x )=0,即x 2-34x +58=0,得Δ=⎝⎛⎭⎫-342-4×58=-3116<0, 所以方程x 2-34x +58=0没有实数根,即f (x )零点的个数为0.(2)法一 函数对应的方程为ln x +x 2-3=0,所以原函数零点的个数即为函数y =ln x 与y =3-x 2的图象交点个数.在同一直角坐标系下,作出两函数的图象(如图).由图象知,函数y =3-x 2与y =ln x 的图象只有一个交点.从而方程ln x +x 2-3=0有一个根,即函数y =ln x +x 2-3有一个零点. 法二 由于f (1)=ln 1+12-3=-2<0, f (2)=ln 2+22-3=ln 2+1>0, 所以f (1)·f (2)<0,又f (x )=ln x +x 2-3的图象在(1,2)上是不间断的, 所以f (x )在(1,2)上必有零点,又f (x )在(0,+∞)上是递增的,所以零点只有一个. 规律方法 判断函数零点个数的四种常用方法(1)利用方程根,转化为解方程,有几个不同的实数根就有几个零点.(2)画出函数y =f (x )的图象,判定它与x 轴的交点个数,从而判定零点的个数. (3)结合单调性,利用零点存在性定理,可判定y =f (x )在(a ,b )上零点的个数. (4)转化成两个函数图象的交点问题. 【训练2】 函数f (x )=ln x -1x -1的零点的个数是( ) A .0B .1C .2D .3解析 如图画出y =ln x 与y =1x -1的图象,由图知y =ln x 与y =1x -1(x >0,且x ≠1)的图象有两个交点.故函数f (x )=ln x -1x -1的零点有2个.答案 C题型三 判断函数零点所在的区间【例3】 (1)二次函数f (x )=ax 2+bx +c 的部分对应值如下表:不求a ,A .(-3,-1)和(2,4) B .(-3,-1)和(-1,1) C .(-1,1)和(1,2)D .(-∞,-3)和(4,+∞)(2)已知函数f (x )=6x -log 2x ,在下列区间中,包含f (x )零点的区间是( ) A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)解析 (1)易知f (x )=ax 2+bx +c 的图象是一条连续不断的曲线,又f (-3)f (-1)=6×(-4)=-24<0,所以f (x )在(-3,-1)内有零点,即方程ax 2+bx +c =0在(-3,-1)内有根,同理方程ax 2+bx +c =0在(2,4)内有根.故选A .(2)∵f (x )=6x -log 2x ,∴f (x )为(0,+∞)上的减函数,且f (1)=6>0,f (2)=3-log 22=2>0,f (4)=32-2=-12<0,由零点存在性定理,可知包含f (x )零点的区间是(2,4).答案 (1)A (2)C规律方法 确定函数f (x )零点所在区间的常用方法(1)解方程法:当对应方程f (x )=0易解时,可先解方程,再看求得的根是否落在给定区间上.(2)利用函数零点存在性定理:首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若f (a )·f (b )<0,则函数y =f (x )在区间(a ,b )内必有零点.(3)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断. 【训练3】 (1)函数f (x )=e x +x -2的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0)C .(0,1)D .(1,2)(2)若方程x lg(x +2)=1的实根在区间(k ,k +1)(k ∈Z)上,则k 等于( ) A .-2B .1C .-2或1D .0解析 (1)∵f (0)=e 0+0-2=-1<0, f (1)=e 1+1-2=e -1>0,∴f (0)·f (1)<0, ∴f (x )在(0,1)内有零点.(2)由题意知,x ≠0,则原方程即为lg(x +2)=1x ,在同一平面直角坐标系中作出函数y =lg(x +2)与y =1x 的图象,如图所示,由图象可知,原方程有两个根,一个在区间(-2,-1)上,一个在区间(1,2)上,所以k =-2或k =1.故选C .答案 (1)C (2)C课堂达标1.函数f (x )=2x 2-4x -3的零点有( ) A .0个B .1个C .2个D .不能确定解析 由f (x )=0,即2x 2-4x -3=0,因为Δ=(-4)2-4×2×(-3)=40>0.所以方程2x 2-4x -3=0有两个根,即f (x )有两个零点.答案 C2.函数f (x )=4x -2x -2的零点是( ) A .(1,0)B .1C .12D .-1解析 由f (x )=4x -2x -2=(2x -2)(2x +1)=0得2x =2,解得x =1. 答案 B3.函数f (x )=2x -1x 的零点所在的区间是( ) A .(1,+∞) B .⎝⎛⎭⎫12,1C .⎝⎛⎭⎫13,12 D .⎝⎛⎭⎫14,13解析 f (1)=2-1=1,f ⎝⎛⎭⎫12=212 -2=2-2<0,即f ⎝⎛⎭⎫12f (1)<0,且f (x )的图象在⎝⎛⎭⎫12,1内是一条连续不断的曲线,故f (x )的零点所在的区间是⎝⎛⎭⎫12,1.答案 B4.函数f (x )=x 2-2x 在R 上的零点个数是________.解析 由题意可知,函数f (x )=x 2-2x 的零点个数,等价于函数y =2x ,y =x 2的图象交点个数.如图,画出函数y =2x ,y =x 2的大致图象.由图象可知有3个交点,即f (x )=x 2-2x 有3个零点. 答案 35.若32是函数f (x )=2x 2-ax +3的一个零点,求f (x )的零点.解 由f ⎝⎛⎭⎫32=2×94-32a +3=0得a =5,则f (x )=2x 2-5x +3,令f (x )=0,即2x 2-5x +3=0,解得x 1=32,x 2=1,所以f (x )的零点是32和1.课堂小结1.在函数零点存在性定理中,要注意三点:(1)函数是连续的;(2)定理不可逆;(3)至少存在一个零点.2.方程f (x )=g (x )的根是函数f (x )与g (x )的图象交点的横坐标,也是函数y =f (x )-g (x )的图象与x 轴交点的横坐标.3.函数与方程有着密切的联系,有些方程问题可以转化为函数问题求解,同样,函数问题有时可以转化为方程问题,这正是函数与方程思想的基础.。

[配套K12]2017-2018学年高中数学 第三章 函数的应用 3.1.1 方程的根与函数的零点课

[配套K12]2017-2018学年高中数学 第三章 函数的应用 3.1.1 方程的根与函数的零点课

方程的根与函数的零点(45分钟70分)一、选择题(每小题5分,共40分)1.(2017·烟台高一检测)函数f(x)=log5(x-1)的零点是( )A.0B.1C.2D.3【解析】选C.令log5(x-1)=0,得x=2,所以函数f(x)=log5(x-1)的零点是2.2.(2017·开封高一检测)二次函数y=x2-kx-1(k∈R)的图象与x轴交点的个数是( )A.0B.1C.2D.无法确定【解析】选C.二次函数y=f(x)的图象与x轴交点的个数与对应的一元二次方程f(x)=0的实根个数有关,由于Δ=b2-4ac=(-k)2-4×1×(-1)=k2+4,无论k为何实数,Δ>0恒成立,即方程x2-kx-1=0有两个不相等的实数根,所以二次函数y=x2-kx-1的图象与x轴应有两个交点.3.(2017·聊城高一检测)函数f(x)=ax2+2ax+c(a≠0)的一个零点是-3,则它的另一个零点是( )A.-1B.1C.-2D.2【解析】选B.设另一个零点是x,由根与系数的关系得-3+x=-=-2,所以x=1.即另一个零点是1.4.(2017·吉安高一检测)已知函数f(x)=-log2x,若实数x0是方程f(x)=0的解,且0<x1<x0,则f(x1) ( )A.恒为负值B.等于0C.恒为正值D.不大于0【解析】选C.由实数x0是方程f(x)=0的解,得=log2x0,分别作出函数y=,y=log2x 的图象,由图象可知,当0<x1<x0时,>log2x1,所以f(x1)=-log2x1>0.【一题多解】因为函数y=是单调减函数,y=log2x在(0,+∞)上是增函数,所以根据函数单调性的性质可知,函数f(x)=-log2x在(0,+∞)上是减函数.因为0<x1<x0,所以f(x1)>f(x0)=0.5.(2017·黄冈高一检测)若函数f(x)在定义域{x|x∈R,且x≠0}上是偶函数,且在(0,+∞)上是减函数,f(2)=0,则函数f(x)的零点有( )A.一个B.两个C.至少两个D.无法判断【解析】选B.因为f(x)在(0,+∞)上是减函数,且f(2)=0,所以在(0,+∞)上有且仅有一个零点2,又因为f(x)是偶函数,所以f(x)在(-∞,0)上有且仅有一个零点-2,所以函数f(x)的零点有两个.6.(2017·郑州高一检测)已知实数a,b满足2a=3,3b=2,则函数f(x)=a x+x-b的零点所在区间是( )A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)【解析】选B.由2a=3,3b=2,得a=log23,b=log32,ab=1,f(-1)=a-1-1-b=-1<0,f(0)=1-b=1-log32>0.所以零点所在区间是(-1,0).7.函数g(x)=x2+a存在零点,则a的取值范围是( )A.a>0B.a≤0C.a≥0D.a<0【解析】选B.函数g(x)=x2+a存在零点,则x2=-a有解,所以a≤0.【延伸探究】若本题中条件“存在零点”换为“有两个零点”,其结论又如何呢?【解析】选D.函数g(x)=x2+a有两个零点,则x2=-a有两个实数解,所以a<0,故选D.【补偿训练】函数f(x)=|x|-ax-1仅有一个负零点,则a的取值范围是( )A.(-∞,1)B.(-∞,1]C.(1,+∞)D.[1,+∞)【解析】选D.在平面直角坐标系中作出函数y=|x|-1和y=ax的图象如图,结合图象可以看出:当a≥1时,两函数的图象只有一个交点,且交点横坐标小于0,即函数f(x)=|x|-ax-1仅有一个负零点.故应选D.8.已知函数f(x)=x--1,g(x)=x+2x,h(x)=x+lnx的零点分别为x1,x2,x3,则( )A.x2<x1<x3B.x2<x3<x1C.x3<x1<x2D.x1<x2<x3【解析】选 B.f(x)=x--1=0⇔x-1=,根据图象可得两个函数图象的交点x1>1,g(x)=x+2x=0⇔2x=-x,根据两个函数图象的交点可知x2<0,h(x)=x+lnx=0⇔lnx=-x,根据两个函数图象的交点可知0<x3<1,所以x2<x3<x1.【一题多解】选B.三个函数图象y=--1,y=2x,y=lnx与y=-x的交点横坐标比较大小,这样画在同一坐标系下也清楚交点的大小.由图可知x2<x3<x1.【补偿训练】(2017·德州高一检测)若函数f(x)的图象在R上连续不断,且满足f(0)<0,f(1)>0,f(2)>0,则下列说法正确的是( )A.f(x)在区间(0,1)上一定有零点,在区间(1,2)上一定没有零点B.f(x)在区间(0,1)上一定没有零点,在区间(1,2)上一定有零点C.f(x)在区间(0,1)上一定有零点,在区间(1,2)上可能有零点D.f(x)在区间(0,1)上可能有零点,在区间(1,2)上一定有零点【解析】选C.因为f(0)·f(1)<0,故f(x)在(0,1)内一定有零点.尽管f(1)·f(2)>0,f(x)在(1,2)内也可能有零点,如图,故C正确.二、填空题(每小题5分,共10分)9.(2017·嘉兴高一检测)已知函数f(x)=则函数f(x)的零点为________.【解析】当x≤1时,令2x-1=0,得x=0.当x>1时,令1+log2x=0,得x=,此时无解.综上所述,函数零点为0.答案:010.已知函数f(x)=x2+x+a在区间(0,1)上有零点,则实数a的取值范围为________.【解析】易知函数f(x)=x2+x+a的图象开口向上,且对称轴为直线x=-.若函数f(x)在区间(0,1)上有零点,则只需满足f(0)·f(1)<0,即a(a+2)<0,解得-2<a<0.答案:-2<a<0【补偿训练】已知对于任意实数x,函数f(x)满足f(-x)=f(x).若f(x)有2015个零点,则这2015个零点之和为________.【解析】设x0为其中一根,即f(x0)=0,因为函数f(x)满足f(-x)=f(x),所以f(-x0)=f(x0)=0,即-x0也为方程一根,又因为方程f(x)=0有2015个实数解,所以其中必有一根x1,满足x1=-x1,即x1=0,所以这2015个零点之和为0.答案:0三、解答题(每小题10分,共20分)11.判断函数f(x)=lnx-在区间[1,3]内是否存在零点.【解析】因为函数f(x)=lnx-的图象在[1,3]上是连续不断的一条曲线,且f(1)=-1<0,f(3)=ln3->0,从而由零点存在性定理知,函数在[1,3]内存在零点.12.(2017·大同高一检测)已知函数f(x)=2a·4x-2x-1.(1)当a=1时,求函数f(x)的零点.(2)若f(x)有零点,求a的取值范围.【解析】(1)当a=1时,f(x)=2·4x-2x-1.令f(x)=0,即2·(2x)2-2x-1=0,解得2x=1或2x=-(舍去),所以x=0,所以函数f(x)的零点为0.(2)若f(x)有零点,则方程2a·4x-2x-1=0有解.于是2a==+=-,因为>0,所以2a>-=0,即a>0.【补偿训练】已知函数f(x)=x2-bx+3.(1)若f(0)=f(4),求函数f(x)的零点.(2)若函数f(x)的一个零点大于1,另一个零点小于1,求b的范围.【解题指南】第(2)问将函数的零点转化为函数图象与x轴交点的横坐标,利用图象找出关于b的不等式,然后解不等式即可.【解析】(1)因为f(0)=f(4),所以3=16-4b+3,即b=4,所以f(x)=x2-4x+3,令f(x)=0即x2-4x+3=0得x1=3,x2=1.所以f(x)的零点是1和3.(2)因为f(x)的零点一个大于1,另一个小于1,如图.需f(1)<0,即1-b+3<0,所以b>4.【能力挑战题】已知函数f(x)=2(m+1)x2+4mx+2m-1.求当m为何值时,函数f(x)有两个零点.【解析】函数f(x)有两个零点,即方程2(m+1)x2+4mx+2m-1=0有两个不相等的实根,所以解得m<1且m≠-1,所以当m<1且m≠-1时,函数f(x)有两个零点.。

高一数学新人教A版必修1课件:第3章函数的应用3.1.1方程的根与函数的零点

高一数学新人教A版必修1课件:第3章函数的应用3.1.1方程的根与函数的零点

阅读教材 P86~P87“探究”以上部分,完成下列问题. 1.二次函数 y=ax2+bx+c(a>0)的图象与根的关系
Δ>0
Δ=0
二次函数y=ax2 +bx+c(a>0)的 图象
与x轴的交点
(x1,0),(x2,0)
(x1,0)
Δ<0 无交点
2.函数的零点
对于函数 y=f(x),把使 f(x)=0的实数 x 叫做函数 y=f(x)的零点.
法二 由x2-1x=0,得x2=1x. 令h(x)=x2(x≠0),g(x)=1x. 在同一坐标系中分别画出h(x)和g(x)的图象,如图所示.可知两函数图象只有 一个交点,故函数f(x)=x2-1x只有一个零点.
判断函数存在零点的 3 种方法 1.方程法:若方程 f(x)=0 的解可求或能判断解的个数,可通过方程的解来判
函数零点个数的判断
判断下列函数零点的个数. (1)f(x)=x2-7x+12;(2)f(x)=x2-1x. 【精彩点拨】 (1)中f(x)为二次函数,解答本题可判断对应的一元二次方程 的根的个数;(2)中函数零点可用解方程法或转化为两个熟知的基本初等函数y= x2与y=1x的图象交点的个数.
【自主解答】 (1)由f(x)=0,即x2-7x+12=0,得Δ=49-4×12=1>0, ∴方程x2-7x+12=0有两个不相等的实数根3,4.∴函数f(x)有两个零点. (2)法一 令f(x)=0,即x2-1x=0. ∵x≠0,∴x3-1=0.∴(x-1)(x2+x+1)=0. ∴x=1或x2+x+1=0. ∵方程x2+x+1=0的根的判别式Δ=12-4=-3<0, ∴方程x2+x+1=0无实数根. ∴函数f(x)只有一个零点.
【答案】 B

高中数学 第三章 函数的应用 3.1.1 方程的根与函数的

高中数学 第三章 函数的应用 3.1.1 方程的根与函数的

由图可知函数y=ln x与y=-x+3的图象只有一个交点,即函数f(x)=x-3+ln
x只有一个零点.
2
(方法二)因为f(3)=ln 3>0,f(2)=-1+ln 2=ln e <0,
所以f(3)·f(2)<0,说明函数f(x)=x-3+ln x在区间(2,3)内有零点.
又f(x)=x-3+ln x在区间(0,+∞)上是增函数,所以原函数只有一个零点.
h(x)与g(x)的图象如图所示.
由图象知g(x)=lg(x+1)和h(x)=2-2x的图象有且只有一个交点, 即f(x)=2x+lg(x+1)-2有且只有一个零点.
探究一
探究二
探究三
思想方法
探究一
探究二
探究三
思想方法
变式训练2 判断函数f(x)=x-3+ln x的零点个数. 解:(方法一)令f(x)=x-3+ln x=0,则ln x=3-x. 在同一平面直角坐标系中分别画出函数y=ln x与y=-x+3的图象,如 图所示.
解得 ������ = -2, ������ = 2.
所以函数 y=logn(mx+1)的解析式为 y=log2(-2x+1). 令 log2(-2x+1)=0,得 x=0. 所以函数 y=log2(-2x+1)的零点为 0.
探究一
探究二
探究三
思想方法
探究二判断函数零点的个数
【例 2】求函数 f(x)=2x+lg(x+1)-2 的零点个数.
探究一
探究二
探究三
思想方法
探究三判断函数的零点所在的大致区间

高中数学 第三章《函数的应用》3.1.1方程的根与函数的零点教学设计 新人教版必修1-新人教版高一必

高中数学 第三章《函数的应用》3.1.1方程的根与函数的零点教学设计 新人教版必修1-新人教版高一必

方程的根与函数的零点教学设计课题:3.1.1方程的根与函数的零点教材:普通高中课程标准实验教科书数学必修1(人民教育A版)第三章函数的应用一、教学目标二、教学重点与难点三、教学的方法与手段四、教学过程【环节一:揭示意义,明确目标】揭示本章意义,指明课节目标教师活动:用屏幕显示第三章 函数的应用3.1.1方程的根与函数的零点教师活动:这节课我们来学习第三章函数的应用。

通过第二章的学习,我们已经认识了指数函数、对数函数、幂函数、分段函数等函数的图象和性质,而这一章我们就要运用函数思想,建立函数模型,去解决现实生活中的一些简单问题。

为此,我们还要做一些基本的知识储备。

方程的根,我们在初中已经学习过了,而我们在初中研究的“方程的根”只是侧重“数”的一面来研究,那么,我们这节课就主要从“形”的角度去研究“方程的根与函数零点的关系”。

教师活动:板书标题(方程的根与函数的零点)。

【环节二:巧设疑云,轻松渗透】设置问题情境,渗透数学思想教师活动:请同学们思考这个问题。

用屏幕显示判断下列方程是否有实根,有几个实根?(1)2230x x --=;(2)062ln =-+x x .学生活动:回答,思考解法。

教师活动:第二个方程我们不会解怎么办?你是如何思考的?有什么想法?我们可以考虑将复杂问题简单化,将未知问题已知化,通过对第一个问题的研究,进而来解决第二个问题。

对于第一个问题大家都习惯性地用代数的方法去解决,我们应该打破思维定势,走出自己给自己画定的牢笼!这样我们先把所依赖的拐杖丢掉,假如第一个方程你不会解,也不会应用判别式,你要怎样判断其实根个数呢?学生活动:思考作答。

教师活动:用屏幕显示函数223y x x =--的图象。

学生活动:观察图像,思考作答。

教师活动:我们来认真地对比一下。

用屏幕显示表格,让学生填写2230x x --=的实数根和函数图象与x 轴的交点。

学生活动:得到方程的实数根应该是函数图象与x 轴交点的横坐标的结论。

高中数学第三章函数的应用3.1函数与方程3.1.1方程的根

高中数学第三章函数的应用3.1函数与方程3.1.1方程的根

函数零点的求法: (1)代数法:求方程 f(x)=0 的实数根. (2)几何法:与函数 y=f(x)的图象联系起来,图象与 x 轴的交点的横坐标即为函数 的零点.
1.已知函数 f(x)=loga(2-x). (1)求函数 f(x)的定义域. (2)求函数 f(x)的零点. 解析:(1)要使函数有意义,∴2-x>0,解得 x<2, ∴函数定义域为(-∞,2). (2)令 f(x)=loga(2-x)=0,∴2-x=1 解得 x=1. ∵1∈(-∞,2),∴函数 f(x)的零点为 1.
为 0 也可能不为 0,所以零点个数可能是 2 也可能是 3.
答案:C
探究四 一元二次方程根的分布 [典例 4] 关于 x 的方程 ax2-2(a+1)x+a-1=0,求 a 为何值时: (1)方程有一根;(2)方程有两正根;(3)方程有一正一负根. [解析] (1)当 a=0 时,方程变为-2x-1=0 即 x=-12,符合题意. 当 a≠0 时,方程为一元二次方程,因为方程有一根,所以 Δ=4(a+1)2-4a(a-1)= 12a+4=0 解得 a=-13.综上所述,当 a=0 或 a=-13时,方程有一根.
3.已知函数 y=f(x)是定义在 R 上的偶函数,当 x>0 时,f(x)=ln x,那么函数 y
=f(x)的零点个数为( )
A.一定是 2
B.一定是 3
C.可能是 2 也可能是 3
D.可能是 0
解析:x>0 时,f(x)=ln x,根据对数函数的性质知 f(x)在(0,+∞)上有一个零点,
因为 f(x)是定义在 R 上的偶函数,所以在(-∞,0)上也有一个零点,而 f(0)可能
3.函数 f(x)=lg x+12的零点为________.

高中数学第三章函数的应用3.1.1方程的根与函数的零点课件新人教A版必修1

高中数学第三章函数的应用3.1.1方程的根与函数的零点课件新人教A版必修1
【正解】函数 f(x)的定义域为{x|x≠0},当 x>0 时,f(x)>0; 当 x<0 时,f(x)<0,所以函数没有零点,故选 A.
【警示】零点存在性定理成立的条件有两个:一是函数 y = f(x) 在 区 间 [a , b] 上 的 图 象 是 连 续 不 断 的 一 条 曲 线 ; 二 是 f(a)·f(b)<0.这两个条件缺一不可,如果其中一个条件不成立,那 么就不能使用该定理.如本例 f(x)=x+1x在[-1,1]上不连续,故 不能在区间[-1,1]上直接使用零点存在性定理.
1.判一判(正确的打“√”,错误的打“×”) (1)函数的零点就是函数的图象与x轴的交点坐标.( ) (2)函数y=f(x)的零点即为对应方程f(x)=0的根.( ) (3)若函数y=f(x)在区间(a,b)内满足f(a)·f(b)>0,则该函 数在区间(a,b)内可能没有零点.( ) 【答案】(1)× (2)√ (3)√
【方法规律】求函数零点的两种方法:(1)代数法:求方程 f(x)=0的实数根;(2)几何法:对于不能用求根公式的方程,可 以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出 零点.
1.判断下列说法是否正确. (1)函数f(x)=x2-2x的零点为(0,0),(2,0); (2)函数f(x)=x-1(2≤x≤5)的零点为x=1. 【解析】(1)函数的零点是使函数值为0的自变量的值,所 以函数f(x)=x2-2x的零点为0和2,故(1)错. (2)虽然f(1)=0,但1∉[2,5],即1不在函数f(x)=x-1的定义 域内,所以函数在定义域[2,5]内无零点,故(2)错.
两个函数的图象有两个不同的交点,
所以函数f(x)=log2x-x+2有两个零点.

高中数学第三章函数的应用3.1.1方程的根与函数的零点课件新人教A版必修1

高中数学第三章函数的应用3.1.1方程的根与函数的零点课件新人教A版必修1
数的图象与x轴交点的横坐标。
思考(完成下表):一元二次方程的根与相应二次函数的图 象关系?
△ =b2-4ac
△>0
△= 0
△< 0
ax2 +bx+c=0 (a>0)的根
两个不相等 实数根 x1, x2
y
y= ax2 +bx+c (a>0)的图象 x1 0 x2
x
两个相等 实数根 x1= x2
y
0 x1 x
看图填空
在区间(a,b)上
y
___(有/无)零点;
a
f(a)·f(b) ___ 0
b x (“<”或
“>”).
函数零点存在性定理
如果函数y=f(x)在区间[a,b]上
的图象是连续不断的一条曲线,
并且有f(a)·f(b)<0,
那么,函数y=f(x)在区间(a,b) 内有零点,
即存c∈(a,b),使得f(c)=0,这个c也
解法2(估算):估计f(x)在各
整数处的函数值的正负,可得 如下表格:
x
1234
f(x) - - + +
解法3(函数交点法)
将函数f(x)=lnx+2x-6的零点个数转 化为函数g(x)=lnx与h(x)=-2x+6的
图象交点的个数。
y
6
h(x)=-2x+6
1
0
1 23
g(x)=lnx x
练一练:
没有实数根 y
0
x
函数的图象 与点 x 轴的交
(x1,0) , (x2,0)
(x1,0)
没有交点
探究归纳
规律:
方程如果有实数根,那么方程
的实数根就是函数的图象与x轴交

2019-2020高中数学第三章函数的应用3.1函数与方程3.1.1方程的根与函数的零点课件新人教A版必修1

2019-2020高中数学第三章函数的应用3.1函数与方程3.1.1方程的根与函数的零点课件新人教A版必修1

解:(1)令-x2-4x-4=0,解得 x=-2.所以函数的零点为 x=-2.
(2)令x-1xx-2-34x+3=0,解得 x=1.所以函数的零点为 x =1.
(3)令 4x+5=0,则 4x=-5<0,而 4x>0,所以方程 4x+5 =0 无实数根.所以函数不存在零点.
(4)令 log3(x+1)=0,解得 x=0.所以函数的零点为 x=0.
1.方程f(x)=g(x)的根是函数f(x)与g(x)的图象交点的横坐 标,也是函数y=f(x)-g(x)的图象与x轴交点的横坐标.
2.在函数零点存在性定理中,要注意三点: (1)函数是连续的; (2)定理不可逆; (3)至少存在一个零点.
3.解决函数的零点存在性问题常用的办法有三种: (1)用定理; (2)解方程; (3)用图象. 4.函数与方程有着密切的联系,有些方程问题可以转化 为函数问题求解,同样,函数问题有时化为方程问题,这正是 函数与方程思想的基础.
1.函数的零点是一个实数,当自变量取该值时,其函数 值等于零.
2.根据函数零点定义可知,函数f(x)的零点就是方程f(x)= 0的根,因此判断一个函数是否有零点,有几个零点,就是判 断方程f(x)=0是否有实根,有几个实根.即函数y=f(x)的零点 ⇔方程f(x)=0的实根⇔函数y=f(x)的图象与x轴交点的横坐标.
(2)令 x2+2x+4=0, 由于 Δ=22-4×1×4=-12<0, 所以方程 x2+2x+4=0 无实数根. 所以函数 f(x)=x2+2x+4 不存在零点. (3)令 2x-3=0,解得 x=log23. 所以函数 f(x)=2x-3 的零点是 x=log23. (4)令 1-log3x=0,解得 x=3,所以函数 f(x)=1-log3x 的 零点是 x=3.

高中数学 第三章 函数的应用 3.1.1 方程的根与函数的

高中数学 第三章 函数的应用 3.1.1 方程的根与函数的
答案:0,-1 解析:∵函数 f(x)=ax-b 的一个零点是 3, ∴3a-b=0,即 b=3a, ∴函数 g(x)=bx2+3ax=bx2+bx=bx(x+1), 令 g(x)=0,解得 x=0 或 x=-1.
类型 2 确定函数零点的个数 [要点点击] 1.判断函数零点个数的主要方法: (1)方程法:利用方程根,转化为解方程,有几个根就有几个 零点;(2)图象法:画出函数 y=f(x)的图象,判断其与 x 轴的交点 个数(或转化为两个函数交点个数),即函数 y=f(x)的零点个数; (3)定理法:利用零点存在性定理并结合函数单调性来判断. 2.判断函数零点所在区间的方法:将区间端点代入函数求 出函数值,进行符号判断即可得出结论.
[典例 1] 求下列函数的零点. (1)f(x)=x3-7x+6;(2)f(x)=x2-x-6; (3)f(x)=12x-4;(4)f(x)=log3x-1. [思路点拨] 分别令各个解析式等于 0,根据方程的根来确 定函数的零点.
[解析] (1)令 f(x)=0,得 x3-7x+6=0, 即(x3-x)-(6x-6)=0, ∴x(x-1)(x+1)-6(x-1)=(x-1)(x2+x-6) =(x-1)(x-2)(x+3)=0. 解得 x1=1,x2=2,x3=-3. ∴函数 f(x)=x3-7x+6 的零点是 1,2,-3.
答案:连续不断 f(a)·f(b)<0 f(c)=0
பைடு நூலகம்
[想一想] 1.函数 y=f(x)的零点是点吗?为什么?
答案:不是.函数的零点的本质是方程 f(x)=0 的实数根,因 此,函数的零点不是点,而是一个实数,当函数的自变量取这个 实数时,函数值为零.
2.任何函数都有零点吗? 答案:并非所有的函数都有零点,如函数 f(x)=1x无零点,因 为方程1x=0 无实根.

教育最新K12数学第三章函数的应用3.1函数与方程3.1.1方程的根与函数的零点教案新人教A版必修1

教育最新K12数学第三章函数的应用3.1函数与方程3.1.1方程的根与函数的零点教案新人教A版必修1

§3.1.1方程的根与函数的零点一、 教学目标1. 知识与技能①理解函数(结合二次函数)零点的概念,领会函数零点与相应方程要的关系,掌握零点存在的判定条件.②培养学生的观察能力.③培养学生的抽象概括能力.2. 过程与方法①通过观察二次函数图象,并计算函数在区间端点上的函数值之积的特点,找到连续函数在某个区间上存在零点的判断方法.②让学生归纳整理本节所学知识.3. 情感、态度与价值观 在函数与方程的联系中体验数学中的转化思想的意义和价值.二、教学重难点1、教学重点:零点的概念及存在性的判定.2、教学难点:零点的确定.三、教学准备1. 学法:学生在老师的引导下,通过阅读教材,自主学习、思考、交流、讨论和概括,从而完成本节课的教学目标。

2. 教学用具:投影仪。

四、教学设想(一)创设情景,揭示课题1、提出问题:一元二次方程 ax 2+bx+c=0 (a ≠0)的根与二次函数y=ax 2+bx+c(a ≠0)的图象有什么关系?2.先来观察几个具体的一元二次方程的根及其相应的二次函数的图象:(用投影仪给出)①方程0322=--x x 与函数322--=x x y ②方程0122=+-x x 与函数122+-=x x y ③方程0322=+-x x 与函数322+-=x x y1.师:引导学生解方程,画函数图象,分析方程的根与图象和x 轴交点坐标的关系,引出零点的概念.生:独立思考完成解答,观察、思考、总结、概括得出结论,并进行交流.师:上述结论推广到一般的一元二次方程和二次函数又怎样?(二) 互动交流 研讨新知函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点. 函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标. 即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点. 函数零点的求法:求函数)(x f y =的零点:①(代数法)求方程0)(=x f 的实数根;②(几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点.1.师:引导学生仔细体会左边的这段文字,感悟其中的思想方法. 生:认真理解函数零点的意义,并根据函数零点的意义探索其求法:①代数法;②几何法.2.根据函数零点的意义探索研究二次函数的零点情况,并进行交流,总结概括形成结论. 二次函数的零点:二次函数)0(2≠++=a c bx ax y .(1)△>0,方程02=++c bx ax 有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点.(2)△=0,方程02=++c bx ax 有两相等实根(二重根),二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△<0,方程02=++c bx ax 无实根,二次函数的图象与x 轴无交点,二次函数无零点.3.零点存在性的探索:(Ⅰ)观察二次函数32)(2--=x x x f 的图象:① 在区间]1,2[-上有零点______; =-)2(f _______,=)1(f _______,)2(-f ·)1(f _____0(<或>=).② 在区间]4,2[上有零点______;)2(f ·)4(f ____0(<或>=).(Ⅱ)观察下面函数)(x f y =的图象① 在区间],[b a 上______(有/无)零点;)(a f ·)(b f _____0(<或>=).② 在区间],[c b 上______(有/无)零点;)(b f ·)(c f _____0(<或>=).③ 在区间],[d c 上______(有/无)零点;)(c f ·)(d f _____0(<或>=).由以上两步探索,你可以得出什么样的结论?怎样利用函数零点存在性定理,断定函数在某给定区间上是否存在零点?4.生:分析函数,按提示探索,完成解答,并认真思考. 师:引导学生结合函数图象,分析函数在区间端点上的函数值的符号情况,与函数零点是否存在之间的关系.生:结合函数图象,思考、讨论、总结归纳得出函数零点存在的条件,并进行交流、评析. 师:引导学生理解函数零点存在定理,分析其中各条件的作用.(三)、巩固深化,发展思维1.学生在教师指导下完成下列例题例1. 求函数f(x)=㏑x +2x -6的零点个数。

2018-2019学年高中数学 第三章 函数的应用 3.1 函数与方程 3.1.1 方程的根与函

2018-2019学年高中数学 第三章 函数的应用 3.1 函数与方程 3.1.1 方程的根与函

第三章 3.1 3.1.1 方程的根与函数的零点1.函数y =2x -1的图象与x 轴的交点坐标及其零点分别是( )A.12,12B .⎝ ⎛⎭⎪⎫12,0,12C .-12,-12D .⎝ ⎛⎭⎪⎫-12,0,-12 解析:由y =2x -1=0,得x =12,故交点坐标为⎝ ⎛⎭⎪⎫12,0,零点是12. 答案:B2.函数f (x )=2x+3x 的零点所在的一个区间是( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2) 解析:因为f (-1)=12-3<0,f (0)=1>0,所以f (x )在区间(-1,0)上存在零点. 答案:B3.若函数f (x )=x 2+2x +a 没有零点,则实数a 的取值范围是( )A .a <1B .a >1C .a ≤1D .a ≥1 解析:由题意知,Δ=4-4a <0,∴a >1.答案:B4.二次函数y =ax 2+bx +c 中,a ·c <0,则函数零点的个数是________.解析:∵a ·c <0,∴Δ=b 2-4ac >0.∴二次函数y =ax 2+bx +c 的图象与x 轴有两个交点,则函数有两个零点.答案:25.函数f (x )=ax 2+2ax +c (a ≠0)的一个零点为1,则它的另一个零点是________. 解析:∵a ≠0,∴此函数为二次函数.设另一个零点为x 2,由根与系数的关系,得1+x 2=-2a a=-2.∴x 2=-3. 答案:-36.已知函数f (x )=x 2+3(m +1)x +n 的零点是1和2,求函数y =log n (mx +1)的零点. 解:由题可知,f (x )=x 2+3(m +1)x +n 的两个零点为1和2.则1和2是方程x 2+3(m +1)x +n =0的两根.可得⎩⎪⎨⎪⎧ 1+2=-m +,1×2=n ,解得⎩⎪⎨⎪⎧ m =-2,n =2.所以函数y =log n (mx +1)的解析式为y =log 2(-2x +1).要求其零点,令log 2(-2x +1)=0,解得x=0.所以函数y=log2(-2x+1)的零点为0.。

配套K122018年秋高中数学 第三章 函数的应用 3.1 函数与方程 3.1.1 方程的根与函数的

配套K122018年秋高中数学 第三章 函数的应用 3.1 函数与方程 3.1.1 方程的根与函数的

3.1.1 方程的根与函数的零点学习目标:1.理解函数零点的概念以及函数零点与方程根的关系.(易混点)2.会求函数的零点.(重点)3.掌握函数零点的存在性定理并会判断函数零点的个数.(难点)[自 主 预 习·探 新 知]1.函数的零点对于函数y =f (x ),把使f (x )=0的实数x 叫做函数y =f (x )的零点. 思考1:函数的零点是函数与x 轴的交点吗?[提示] 不是.函数的零点不是个点,而是一个数,该数是函数图象与x 轴交点的横坐标. 2.方程、函数、函数图象之间的关系方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点. 3.函数零点的存在性定理如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0.那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.思考2:该定理具备哪些条件?[提示] 定理要求具备两条:①函数在区间[a ,b ]上的图象是连续不断的一条曲线;②f (a )·f (b )<0.[基础自测]1.思考辨析(1)所有的函数都有零点.( )(2)若方程f (x )=0有两个不等实根x 1,x 2,则函数y =f (x )的零点为(x 1,0)(x 2,0).( ) (3)若函数y =f (x )在区间(a ,b )上有零点,则一定有f (a )·f (b )<0.( ) [答案] (1)× (2)× (3)× 2.函数y =2x -1的零点是( ) A.12B.⎝ ⎛⎭⎪⎫12,0 C.⎝ ⎛⎭⎪⎫0,12 D .2A [由2x -1=0得x =12.]3.函数f (x )=3x-4的零点所在区间为( )【导学号:37102345】A .(0,1)B .(-1,0)C .(2,3)D .(1,2)D [由f (1)=3-4=-1<0,f (2)=9-4=5>0得f (x )的零点所在区间为(1,2).] 4.二次函数y =ax 2+bx +c 中,a ·c <0,则函数有________个零点. 两 [由Δ=b 2-4ac >0得二次函数y =ax 2+bx +c 有两个零点.][合 作 探 究·攻 重 难]求函数的零点(1)求函数f (x )=⎩⎪⎨⎪⎧x 2+2x -3,x ≤0,-2+ln x ,x >0的零点;(2)已知函数f (x )=ax -b (a ≠0)的零点为3,求函数g (x )=bx 2+ax 的零点.【导学号:37102346】[解] (1)当x ≤0时,令x 2+2x -3=0,解得x =-3; 当x >0时,令-2+ln x =0,解得x =e 2.所以函数f (x )=⎩⎪⎨⎪⎧x 2+2x -3,x ≤0-2+ln x ,x >0的零点为-3和e 2.(2)由已知得f (3)=0即3a -b =0,即b =3a . 故g (x )=3ax 2+ax =ax (3x +1). 令g (x )=0,即ax (3x +1)=0, 解得x =0或x =-13.所以函数g (x )的零点为0和-13.代数法:求方程x =几何法:对于不能用求根公式的方程x =x 的图象联系起来图象与轴的交点的横坐标即为函数的零点[跟踪训练]1.判断下列函数是否存在零点,如果存在,请求出;否则,请说明理由. (1)f (x )=x 2+7x +6; (2)f (x )=1-log 2(x +3); (3)f (x )=2x -1-3;(4)f (x )=x 2+4x -12x -2.[解] (1)解方程f (x )=x 2+7x +6=0, 得x =-1或x =-6, 所以函数的零点是-1,-6.(2)解方程f (x )=1-log 2(x +3)=0,得x =-1,所以函数的零点是-1. (3)解方程f (x )=2x -1-3=0,得x =log 26,所以函数的零点是log 26.(4)解方程f (x )=x 2+4x -12x -2=0,得x =-6,所以函数的零点为-6.判断函数零点所在的区间(1)函数f (x )=ln(x +1)-2x的零点所在的大致区间是( )A .(3,4)B .(2,e)C .(1,2)D .(0,1)(2)根据表格内的数据,可以断定方程e x-x -3=0的一个根所在区间是( )【导学号:37102347】C .(1,2)D .(2,3)(1)C (2)C [(1)因为f (1)=ln 2-21<0,f (2)=ln 3-1>0,且函数f (x )在(0,+∞)上单调递增,所以函数的零点所在区间为(1,2).故选C.(2)构造函数f (x )=e x-x -3,由上表可得f (-1)=0.37-2=-1.63<0,f (0)=1-3=-2<0, f (1)=2.72-4=-1.28<0, f (2)=7.39-5=2.39>0, f (3)=20.08-6=14.08>0,f (1)·f (2)<0,所以方程的一个根所在区间为(1,2),故选C.]代入:将区间端点值代入函数求出函数的值 判断:把所得的函数值相乘,并进行符号判断结论:若符号为正且函数在该区间内是单调函数,则在该区间内无零点,若符号为负且函数连续,则在该区间内至少有一个零点[跟踪训练]2.若函数f (x )=x +a x(a ∈R )在区间(1,2)上有零点,则a 的值可能是( ) A .-2 B .0 C .1 D .3A [f (x )=x +a x(a ∈R )的图象在(1,2)上是连续不断的,逐个选项代入验证,当a =-2时,f (1)=1-2=-1<0,f (2)=2-1=1>0.故f (x )在区间(1,2)上有零点,同理,其他选项不符合,选A.]函数零点的个数 [探究问题]1.方程f (x )=a 的根的个数与函数y =f (x )及y =a 的图象交点个数什么关系? 提示:相等.2.若函数f (x )=x 2-2x +a 有零点,如何求实数a 的取值范围?提示:法一:若函数f (x )=x 2-2x +a 有零点,则方程x 2-2x +a =0有根.故Δ=(-2)2-4a ≥0,故a ≤1.法二:由f (x )=0有解可知a =-x 2+2x =-(x -1)2+1≤1,即a 的范围为a ≤1.法三:在同一坐标系中分别画出y =a 及y =-x 2+2x 的图象,数形结合得a 的范围为a ≤1.已知0<a <1,则函数y =a |x |-|log a x |的零点的个数为( ) A .1 B .2 C .3 D .4 思路探究:构造函数f x =a |x |a 与g x =|log a xa→画出f x 与g x 的图象→观察图象得零点的个数B [函数y =a |x |-|log a x |(0<a <1)的零点的个数即方程a |x |=|log a x |(0<a <1)的根的个数,也就是函数f (x )=a |x |(0<a <1)与g (x )=|log a x |(0<a <1)的图象的交点的个数. 画出函数f (x )=a |x |(0<a <1)与g (x )=|log a x |(0<a <1)的图象,如图所示,观察可得函数f (x )=a |x |(0<a <1)与g (x )=|log a x |(0<a <1)的图象的交点的个数为2,从而函数y =a |x |-|log a x |的零点的个数为2.]时,两函数图象有两个交点,从而函数f (x )=|2[当 堂 达 标·固 双 基]1.函数f (x )=2x 2-3x +1的零点个数是( )【导学号:37102348】A .0B .1C .2D .3C [由f (x )=0得2x 2-3x +1=0,∴x =12或x =1,所以函数f (x )有2个零点.]2.函数f (x )=2x-3的零点所在的区间是( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)B [∵f (1)=2-3=-1<0,f (2)=4-3=1>0, ∴f (1)·f (2)<0,即f (x )的零点所在的区间为(1,2).] 3.对于函数f (x ),若f (-1)·f (3)<0,则( )【导学号:37102349】A .方程f (x )=0一定有实数解B .方程f (x )=0一定无实数解C .方程f (x )=0一定有两实根D .方程f (x )=0可能无实数解D [∵函数f (x )的图象在(-1,3)上未必连续,故尽管f (-1)·f (3)<0,但方程f (x )=0在(-1,3)上可能无实数解.]4.若f (x )=x +b 的零点在区间(0,1)内,则b 的取值范围为________. (-1,0) [∵f (x )=x +b 是增函数,又f (x )=x +b 的零点在区间(0,1)内,∴⎩⎪⎨⎪⎧f ,f ,∴⎩⎪⎨⎪⎧b <0,1+b >0,∴-1<b <0.]5.已知函数f (x )=x 2-x -2a . (1)若a =1,求函数f (x )的零点; (2)若f (x )有零点,求实数a 的取值范围.【导学号:37102350】[解] (1)当a =1时,f (x )=x 2-x -2. 令f (x )=x 2-x -2=0,得x =-1或x =2.即函数f (x )的零点为-1和2.(2)要使f (x )有零点,则Δ=1+8a ≥0,解得a ≥-18,所以a 的取值范围是a ≥-18.。

【配套K12】[学习]2018-2019学年高中数学 第三章 函数的应用 3.1.1 方程的根与函数

【配套K12】[学习]2018-2019学年高中数学 第三章 函数的应用 3.1.1 方程的根与函数

3.1.1 方程的根与函数的零点【选题明细表】1.函数y=4x-2的零点是( D )(A)2 (B)(-2,0) (C)(,0) (D)解析:令y=4x-2=0,得x=.所以函数y=4x-2的零点为.故选D.2.下列图象表示的函数中没有零点的是( A )解析:因为B,C,D项函数的图象均与x轴有交点,所以函数均有零点,A项的图象与x轴没有交点,故函数没有零点,故选A.3.(2017·长春外国语学校高一期末)函数f(x)=ln x+x2+a-1有唯一的零点在区间(1,e)内,则实数a的取值范围是( A )(A)(-e2,0) (B)(-e2,1)(C)(1,e) (D)(1,e2)解析:因为f(x)在其定义域内是增函数,且f(x)有唯一的零点在(1,e)内,所以解得-e2<a<0.故选A.4.函数f(x)=πx+log2x的零点所在区间为( A )(A)[,] (B)[,](C)[0,] (D)[,1]解析:因为f()=+log2<0,f()=+log2>0,所以f()·f()<0,故函数f(x)=πx+log2x的零点所在区间为[,].故选A.5.函数f(x)=|x-2|-ln x在定义域内零点的个数为( C )(A)0 (B)1 (C)2 (D)3解析:由题意,函数f(x)的定义域为(0,+∞).由函数零点的定义,f(x)在(0,+∞)内的零点即是方程|x-2|-ln x=0的根.令y1=|x-2|,y2=ln x(x>0),在一个坐标系中画出两个函数的图象.由图得,两个函数图象有两个交点,故方程有两个根,即对应函数有两个零点.6.函数f(x)=ax2+2ax+c(a≠0)的一个零点为-3,则它的另一个零点是( B )(A)-1 (B)1 (C)-2 (D)2解析:由根与系数的关系得方程f(x)=0的两根x1,x2满足x1+x2=-=-2,所以方程的另一个根为1.故选B.7.方程|x2-2x|=a2+1(a>0)的解的个数是.解析:因为a>0,所以a2+1>1.而y=|x2-2x|的图象如图所示,所以y=|x2-2x|的图象与y=a2+1的图象总有两个交点.即方程|x2-2x|=a2+1(a>0)有两个解.答案:28.关于x的方程mx2+2(m+3)x+2m+14=0有两实根,且一个大于4,一个小于4,求m的取值范围.解:令f(x)=mx2+2(m+3)x+2m+14.依题意得或即或解得-<m<0.即m的取值范围是(-,0).9.(2018·广东高一期末)如果关于x的方程2x+1-a=0有实数根,则a的取值范围是( D )(A)[2,+∞) (B)(-1,2](C)(-2,1] (D)(0,+∞)解析:由方程2x+1-a=0变形为a=2x+1,因为2x+1>0,所以a>0.10.(2018·河北省唐山市一中调研)已知函数f(x)是奇函数,且满足f(2-x)=f(x)(x∈R),当0<x≤1时,f(x)=-,则函数f(x)在(-2,2]上零点的个数是( B )(A)5 (B)6 (C)7 (D)8解析:法一由-=0,解得x=,所以f()=0.因为f(2-x)=f(x),所以f()=f(2-)=f()=0.因为f(x)是奇函数,所以f(-)=-f()=0,f(-)=-f()=0,f(0)=0,f(2)=f(0)=0,所以f(x)在(-2,2]上零点为-,-,0,,,2,共6个.法二依题意,作出函数f(x)的图象,如图所示.由图象可知,f(x)的图象在(-2,2]内与x轴的交点有6个.所以f(x)在(-2,2]上的零点有6个.11.已知函数f(x)=其中m>0.若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是. 解析:作出f(x)的大致图象(图略).当x>m时,x2-2mx+4m=(x-m)2+4m-m2,所以要使方程f(x)=b有三个不同的根,则4m-m2<m,即m2-3m>0.又m>0,解得m>3.答案:(3,+∞)12.(2018·北京市丰台区综合练习)已知函数f(x)=(1)若a=0,x∈[0,4],求f(x)的值域;(2)若f(x)恰有三个零点,求实数a的取值范围.解:(1)若a=0,则f(x)=当x∈[0,1]时,f(x)=-x2是减函数.所以-1≤f(x)≤0;当x∈(1,4]时,f(x)=-1是增函数.所以0<f(x)≤1.于是当x∈[0,4]时,f(x)的值域为[-1,1].(2)由(x-2a)(a-x)=0解得x=a或x=2a.由+a-1=0解得x=(1-a)2.因为f(x)恰有三个零点,所以解得a<0.所以实数a的取值范围是(-∞,0).13.(2017·朔州高一三模)已知函数f(x)=|x(x+3)|,若y=f(x)-x+b有四个零点,则实数b的取值范围是.解析:令f(x)-x+b=0,所以b=x-|x(x+3)|,作出y=x-|x(x+3)|的图象,要使函数y=f(x)-x+b有四个零点,则y=x-|x(x+3)|与y=b的图象有四个不同的交点,所以-4<b<-3.答案:(-4,-3)。

【配套K12】[学习]2018-2019学年高中数学 第三章 函数的应用 3.1 函数与方程 3.1

【配套K12】[学习]2018-2019学年高中数学 第三章 函数的应用 3.1 函数与方程 3.1

第三章 3.1 3.1.2 用二分法求方程的近似解1.下列关于函数f(x),x∈[a,b]的命题中,正确的是( )A.若x0∈[a,b]且满足f(x0)=0,则x0是f(x)的一个零点B.若x0是f(x)在[a,b]上的零点,则可以用二分法求x0的近似值C.函数f(x)的零点是方程f(x)=0的根,但f(x)=0的根不一定是函数f(x)的零点D.用二分法求方程的根时,得到的都是近似解解析:使用“二分法”必须满足“二分法”的使用条件,B不正确;f(x)=0的根也一定是函数f(x)的零点,C不正确;用二分法求方程的根时,得到的也可能是精确解,D不正确,只有A正确.答案:A2.用二分法求函数f(x)=x3+5的零点可以取的初始区间是( )A.[-2,1] B.[-1,0]C.[0,1] D.[1,2]解析:∵f(-2)=-3<0,f(1)=6>0,f(-2)·f(1)<0,故可取[-2,1]作为初始区间,用二分法逐次计算.答案:A3.用二分法求函数f(x)=3x-x-4的一个零点,其参考数据如下:) A.1.55 B.1.56C.1.57 D.1.58解析:由参考数据知,f(1.562 5)=0.003>0,f(1.556 2)=-0.029<0,即f(1.562 5)·f(1.556 2)<0,∴f(x)=3x-x-4的一个零点的近似值(精确到0.01为1.56).答案:B4.已知函数f(x)=x3+x2-2x-2,f(1)·f(2)<0,用二分法逐次计算时,若x0是[1,2]的中点,则f(x0)=________.解析:由题意x0=1.5,f(x0)=f(1.5)=0.625.答案:0.6255.若函数f(x)的图象是连续不间断的,根据下面的表格,可以断定f(x)的零点所在的区间为________.(只填序号)①(-∞,1];②[1,2];③[2,3];④[3,4];⑤[4,5];⑥[5,6];⑦[6,+∞).6.求32的近似值(精确度0.01).解:设x=32,则x3-2=0,令f(x)=x3-2,则函数f(x)的零点的近似值就是32的近似值.以下用二分法求其零点的近似值.由于f(1)=-1<0,f(2)=6>0,故可以取区间[1,2]为计算的初始区间.用二分法逐步计算,列表如下:由于区间<0.01,所以这个区间内的点1.26可以作为函数f(x)零点的近似值,即32的近似值是1.26.。

配套K12山西省平遥县高中数学第三章函数的应用3.1函数与方程1教案新人教A版必修1

配套K12山西省平遥县高中数学第三章函数的应用3.1函数与方程1教案新人教A版必修1

函数与方程【教学目标】进一步巩固有关方程的根与函数的零点的知识,总结求方程的根与函数的零点的方法,探寻其中的规律。

【重点难点】较复杂的函数零点个数的研究。

【教学过程】一、情景设置二、教学精讲例1.已知函数f(x)=x 3-3x+4,①证明函数y=f(x)在(1,+∞)上为增函数;②证明方程f(x)=0没有大于1的根。

例2.若关于x 的方程3x 2-5x+a=0的一根在(-2,0)内,另一个根在(1,3)内,求a 的取值范围。

:画出f(x)= 3x 2-5x+a 的图像,由题意得不等式组:⎩⎨⎧f(-2)>0f(0)<0f(1)<0f(3)>0-12<a<0. 另解:画出f(x)= 3x 2-5x 和f(x)=-a 的图象使它们的交点一个在(-2,0)内,另一个根在(1,3)内,由图像得-12<a<0.例3.已知函数f(x)=3x +x -2x+1 , ①判断函数零点的个数;②找出零点所在区间.略解:①分别作出y=3x 与y=x -2x+1的图象,观察知,两图象有且只有一个交点. ②零点所在区间(0,1)例4.已知函数f(x)=ax 3+bx 2+cx+d 有三个零点,分别是0、1、2,如图, 求证:b<0。

f(x)=-b 3x(x -1)(x -2),当x<0时,f(x)<0所以b<0 方法二:∵f(0)=f(1)=f(2)=0,∴f(x)=ax(x -1)(x -2). 当x>2时,f(x)>0所以a>0. 比较同次项 系数得b=-3a,∴b<0.三、探索研究四、课堂练习①函数y=ax 2-2bx 的一个零点为1,求函数y=bx 2-ax 的零点.②若函数f(x)=2mx+4在[-2,1]上存在零点,则实数m 的取值范围是(). A .[-52,4] B .(-∞,-2]∪[1,+∞)C .[-1,2]D .(-2,1)③若方程ax 2+3x+4a=0的根都小于1,求实数a 的取值范围。

【配套K12】高中数学第三章函数的应用3.1函数与方程第2课时预习导航学案

【配套K12】高中数学第三章函数的应用3.1函数与方程第2课时预习导航学案

最新K12教育
教案试题3.1 函数与方程
预习导航
一、二分法的概念
对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.
名师点拨二分法就是通过不断地将所选区间(a,b)一分为二,逐步地逼近零点的方法,即找到零点附近足够小的区间,根据所要求的精确度,用此区间内的某个数值近似地表示真正的零点.
自主思考1能用二分法求图象连续的任何函数的近似零点吗?
提示:不能.能用二分法求零点的函数需具备两个条件:①图象连续;②零点左右两边的函数值异号.所以,若满足条件①而不满足条件②,则仍不能用二分法求零点.
二、用二分法求函数f(x)的零点近似值的步骤
1.确定区间[a,b],验证f(a)·f(b)<0,给定精确度ε;
2.求区间(a,b)的中点c;
3.计算f(c):
若f(c)=0,则c就是函数的零点;
若f(a)·f(c)<0,则令b=c〔此时零点x0∈(a,c)〕;
若f(c)·f(b)<0,则令a=c〔此时零点x0∈(c,b)〕.
4.判断是否达到精确度ε:
即若|a-b|<ε,则得到零点的近似值为a(或b);否则重复2~4.
自主思考2用二分法求函数零点时,如何决定步骤的结束?
提示:看清题目的精确度,当零点所在区间的两个端点值之差的绝对值小于精确度ε时,则二分法步骤结束.。

配套K12学年高中数学第三章函数的应用新人教版必修1

配套K12学年高中数学第三章函数的应用新人教版必修1

【创新设计】(浙江专用)2016-2017学年高中数学第三章函数的应用新人教版必修13.1 函数与方程3.1.1 方程的根与函数的零点目标定位 1.了解函数零点的概念,了解函数零点与方程根的联系.2.理解并掌握连续函数在某个区间上存在零点的判定方法.3.能利用函数的图象和性质判断函数零点的个数.自主预习1.函数的零点对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.2.方程、函数、图象之间的关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.3.函数零点存在的判定方法如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.温馨提示判定函数零点的两个条件缺一不可,否则不一定存在零点;反过来,若函数y=f(x)在区间(a,b)内有零点,则f(a)·f(b)<0不一定成立.即时自测1.思考判断(正确的打“√”,错误的打“×”)(1)函数的零点是一个点.( )(2)若函数y=f(x)满足在区间[a,b]上的图象是连续不断的一条曲线,并且f(a)·f(b)<0,那么,函数y=f(x)在(a,b)内有唯一零点.( )(3)函数y=f(x)满足f(a)·f(b)>0,函数y=f(x)也可能有零点.( )提示(1)错.函数的零点是一个数,而不是一个点.(2)错.有零点但不一定唯一.(3)对.如:f(x)=x2,x∈[-1,1].答案(1)×(2)×(3)√2.下列函数没有零点的是( )A.f (x )=0B.f (x )=3C.f (x )=x 2-2D.f (x )=x -1x解析 函数f (x )=3不能满足f (x )=0,因此没有零点;函数f (x )=0有无数个零点;函数f (x )=x 2-2有两个零点,为±2;函数f (x )=x -1x有两个零点,为±1.答案 B3.若4是函数f (x )=ax 2-2log 2x 的零点,则a 的值等于( ) A.4B.-4C.-14D.14解析 由题意知f (4)=0,即16a -2log 24=0, 解得a =14.答案 D4.函数f (x )=x 2-5x 的零点是________.解析 由f (x )=x 2-5x =0,解得x =0或x =5,所以函数f (x )的零点为0或5. 答案 0或5类型一 求函数的零点【例1】 指出下列函数的零点: (1)f (x )=x 2-3x +2的零点是________; (2)f (x )=x 4-1的零点是________;(3)若函数f (x )=x 2-ax -b 的两个零点是2和3,则a =________,b =________. 解析 (1)令f (x )=0,即(x -1)(x -2)=0,所以零点为1和2.(2)由x 4-1=0,得(x 2+1)(x -1)(x +1)=0,所以x =±1,所以函数f (x )=x 4-1的零点是1和-1.(3)由于函数f (x )=x 2-ax -b 的两个零点是2和3,所以是2和3是方程x 2-ax -b =0的两个根,所以2+3=-(-a ),2×3=-b ,所以a =5,b =-6. 答案 (1)1和2 (2)1和-1 (3)5;-6规律方法 求函数零点的两种方法:(1)代数法:求方程f (x )=0的实数根;(2)几何法:对于不能用求根公式的方程,可以将它与函数y =f (x )的图象联系起来,并利用函数的性质找出零点.【训练1】 (1)函数f (x )=2x-1的零点是________;(2)若f (x )=ax -b (b ≠0)有一个零点3,则函数g (x )=bx 2+3ax 的零点是________. 解析 (1)由2x-1=0,得x =0,故函数的零点为0.(2)因为f (x )=ax -b 的零点是3,所以f (3)=0,即3a -b =0,也就是b =3a .所以g (x )=bx 2+3ax =bx 2+bx =bx (x +1).所以方程g (x )=0的两个根为-1和0,即函数g (x )的零点为-1和0.答案 (1)0 (2)-1和0 类型二 判断函数零点所在区间【例2】 在下列区间中,函数f (x )=e x+4x -3的零点所在的区间为( )A.⎝ ⎛⎭⎪⎫-14,0B.⎝ ⎛⎭⎪⎫0,14C.⎝ ⎛⎭⎪⎫14,12D.⎝ ⎛⎭⎪⎫12,34 解析 ∵f ⎝ ⎛⎭⎪⎫14=4e -2<0,f ⎝ ⎛⎭⎪⎫12=e -1>0,∴f ⎝ ⎛⎭⎪⎫14·f ⎝ ⎛⎭⎪⎫12<0,∴零点在⎝ ⎛⎭⎪⎫14,12上. 答案 C规律方法 (1)判断零点所在区间有两种方法:一是利用零点存在定理,二是利用函数图象.(2)要正确理解和运用函数零点的性质在函数零点所在区间的判断中的应用,若f (x )图象在[a ,b ]上连续,且f (a )·f (b )<0,则f (x )在(a ,b )上必有零点,若f (a )·f (b )>0,则f (x )在(a ,b )上不一定没有零点.【训练2】方程lg x +x =0的根所在的区间可能是( ) A.(-∞,0)B.(0.1,1)C.(1,2)D.(2,4)解析 由于lg x 有意义,所以x >0,令f (x )=lg x +x ,显然f (x )在定义域内为增函数,又f (0.1)=-0.9<0,f (1)=1>0,故f (x )在区间(0.1,1)内有零点. 答案 B类型三 函数零点个数的判断(互动探究)【例3】 (1)判断函数f (x )=x 2+x -b 2的零点的个数. (2)判断函数f (x )=ln x +x 2-3的零点的个数. [思路探究]探究点一 如何求二次函数的零点个数? 提示 二次函数的零点个数的判断可借助判别式. 探究点二 如何求不可解函数的零点个数? 提示 对于不可解函数可转为图象交点的个数.解 (1)对于方程x 2+x -b 2=0,因为Δ=12+4b 2>0,所以方程有两个实数根,即函数f (x )有两个零点.(2)法一 函数对应的方程为ln x +x 2-3=0,所以原函数零点的个数即为函数y =ln x 与y =3-x 2的图象交点个数.在同一坐标系下,作出两函数的图象(如图).由图象知,函数y =3-x 2与y =ln x 的图象只有一个交点.从而ln x +x 2-3=0有一个根,即函数y =ln x +x 2-3有一个零点. 法二 由于f (1)=ln 1+12-3=-2<0,f (2)=ln 2+22-3=ln 2+1>0,∴f (1)·f (2)<0,又f (x )=ln x +x 2-3的图象在(1,2)上是不间断的,所以f (x )在(1,2)上必有零点, 又f (x )在(0,+∞)上是递增的,所以零点只有一个.规律方法 判断函数零点个数的四种常用方法:(1)利用方程根,转化为解方程,有几个不同的实数根就有几个零点.(2)画出函数y =f (x )的图象,判断它与x 轴的交点个数,从而判断零点的个数.(3)结合单调性,利用f (a )·f (b )<0,可判定y =f (x )在(a ,b )上零点的个数.(4)转化成两个函数图象的交点问题.例如,函数F (x )=f (x )-g (x )的零点个数就是方程f (x )=g (x )的实数根的个数,也就是函数y =f (x )的图象与y =g (x )的图象交点的个数.【迁移探究1】 若例题第(1)题中,变为若函数f (x )=ax 2-x -1有两个零点,求实数a 的取值范围.解 ∵f (x )=ax 2-x -1有两个零点,则满足⎩⎪⎨⎪⎧a ≠0,Δ=1+4a >0,得a >-14且a ≠0,故实数a 的取值范围是⎝ ⎛⎭⎪⎫-14,+∞.【迁移探究2】 若函数f (x )=ax 2-x -1有且仅有一个负零点,求实数a 的取值范围. 解 当a =0时,由f (x )=-x -1=0,得x =-1.当a >0时,此函数图象开口向上,又f (0)=-1<0,结合二次函数图象知成立.当a <0时,此函数图象开口向下,又f (0)=-1<0,从而有⎩⎪⎨⎪⎧Δ=1+4a =0,--12a <0,解得a =-14.综上可知,a 的取值范围是⎩⎨⎧⎭⎬⎫14∪[0,+∞).[课堂小结]1.在函数零点存在定理中,要注意三点:(1)函数是连续的;(2)定理不可逆;(3)至少存在一个零点.2.方程f (x )=g (x )的根是函数f (x )与g (x )的图象交点的横坐标,也是函数y =f (x )-g (x )的图象与x 轴交点的横坐标.3.函数与方程有着密切的联系,有些方程问题可以转化为函数问题求解,同样,函数问题有时化为方程问题,这正是函数与方程思想的基础.1.对于函数f (x ),若f (-1)·f (3)<0,则( ) A.方程f (x )=0一定有实数解 B.方程f (x )=0一定无实数解 C.方程f (x )=0一定有两实根D.方程f (x )=0可能无实数解解析 ∵函数f (x )的图象在(-1,3)上未必连续,故尽管f (-1)·f (3)<0,但未必函数y =f (x )在(-1,3)上有实数解. 答案 D2.函数f (x )=e x+x -2的零点所在的一个区间是( ) A.(-2,-1) B.(-1,0) C.(0,1)D.(1,2)解析 ∵f (0)=e 0+0-2=-1<0,f (1)=e 1+1-2=e -1>0,∴f (0)·f (1)<0,∴f (x )在(0,1)内有零点. 答案 C3.若函数f (x )=23x +1+a 的零点为1,那么函数g (x )=-2ax 2-2x +1的零点是________.解析 由已知得f (1)=0,即231+1+a =0,解得a =-12.∴g (x )=x 2-2x +1,令g (x )=0得方程x 2-2x +1=0的根为x =1,故g (x )的零点为1. 答案 14.求函数f (x )=2x|log 0.5x |-1的零点个数.解 令f (x )=2x|log 0.5x |-1=0,可得|log 0.5x |=⎝ ⎛⎭⎪⎫12x. 设g (x )=|log 0.5x |,h (x )=⎝ ⎛⎭⎪⎫12x,在同一坐标系下分别画出函数g (x ),h (x )的图象,可以发现两个函数图象一定有2个交点,因此函数f (x )有2个零点.基 础 过 关1.函数f (x )=lg x +1的零点是( ) A.110B.10C.1010D.10解析 由lg x +1=0,得lg x =-1,所以x =110.答案 A2.下列图象表示的函数中没有零点的是( )解析 由函数零点的意义可得:函数的零点是否存在表现在函数图象与x 轴有无交点. 答案 A3.若函数f (x )满足在区间(1,2)内有唯一的零点,则( ) A.f (1)·f (2)>0 B.f (1)·f (2)=0 C.f (1)·f (2)<0D.不确定解析 如图,A 、B 、C 三选项都有可能,故选D. 答案 D4.已知函数f (x )为奇函数,且该函数有三个零点,则三个零点之和等于________. 解析 ∵奇函数的图象关于原点对称,∴若f (x )有三个零点,则其和必为0. 答案 05.函数f (x )=x 2-2x +a 有两个不同零点,则实数a 取值的范围是________.解析 由题意可知,方程x 2-2x +a =0有两个不同解, 故Δ=4-4a >0,即a <1. 答案 (-∞,1)6.判断下列函数是否存在零点,如果存在,请求出. (1)f (x )=x 2+7x +6; (2)f (x )=1-log 2(x +3); (3)f (x )=2x -1-3.解 (1)解方程f (x )=x 2+7x +6=0,得x =-1或x =-6,所以函数的零点是-1,-6.(2)解方程f (x )=1-log 2(x +3)=0,得x =-1,所以函数的零点是-1. (3)解方程f (x )=2x -1-3=0,得x =log 26,所以函数的零点是log 26.7.若函数f (x )=x 2-ax -b 的零点是2和3,试求函数g (x )=bx 2-ax -1的零点. 解 函数f (x )=x 2-ax -b 的零点是2和3,由函数的零点与方程的根的关系知方程x 2-ax -b =0的两根为2和3,再由根与系数的关系得a =5,b =-6,所以g (x )=-6x 2-5x -1,易求得函数g (x )的零点为-12,-13.8.已知函数f (x )=log a (1-x )+log a (x +3)(0<a <1). (1)求函数f (x )的定义域; (2)求函数f (x )的零点.解 (1)要使函数有意义:则有⎩⎪⎨⎪⎧1-x >0,x +3>0,解之得:-3<x <1,所以函数的定义域为(-3,1).(2)函数可化为f (x )=log a (1-x )(x +3)=log a (-x 2-2x +3),由f (x )=0, 得-x 2-2x +3=1,即x 2+2x -2=0,解得x =-1± 3. 因为-1±3∈(-3,1),故f (x )的零点是-1± 3.能 力 提 升9.函数f (x )=ln x +2x -3的零点所在的区间是( ) A.(0,1)B.(1,2)C.(2,3)D.(3,4)解析 因为f (1)=-1<0,f (2)=1+ln 2>0,所以f (1)·f (2)<0,且函数f (x )是(0, +∞)上的连续函数,所以函数f (x )的零点所在区间是(1,2). 答案 B10.若a<b<c,则函数f(x)=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)的两个零点分别位于区间( )A.(a,b)和(b,c)内B.(-∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(-∞,a)和(c,+∞)内解析∵f(x)=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a),∴f(a)=(a-b)(a-c),f(b)=(b-c)(b-a),f(c)=(c-a)(c-b),∵a<b<c,∴f(a)>0,f(b)<0,f(c)>0,∴f(x)的两个零点分别位于区间(a,b)和(b,c)内.答案 A11.设x0是方程ln x+x=4的解,且x0∈(k,k+1),k∈Z,则k=________.解析令f(x)=ln x+x-4,且f(x)在(0,+∞)上递增,∵f(2)=ln 2+2-4<0,f(3)=ln 3-1>0.∴f(x)在(2,3)内有解,∴k=2.答案 212.对于方程x3+x2-2x-1=0,有下列判断:①在(-2,-1)内有实数根;②在(-1,0)内有实数根;③在(1,2)内有实数根;④在(-∞,+∞)内没有实数根.其中正确的有________(填序号).解析设f(x)=x3+x2-2x-1,则f(-2)=-1<0,f(-1)=1>0,f(0)=-1<0,f(1)=-1<0,f(2)=7>0,则f(x)在(-2,-1),(-1,0),(1,2)内均有零点,即①②③正确.答案①②③13.已知函数f(x)=x2-2x-3,x∈[-1,4].(1)画出函数y=f(x)的图象,并写出其值域;(2)当m为何值时,函数g(x)=f(x)+m在[-1,4]上有两个零点?解 (1)依题意:f (x )=(x -1)2-4,x ∈[-1,4],其图象如图所示.由图可知,函数f (x )的值域为[-4,5].(2)∵函数g (x )=f (x )+m 在[-1,4]上有两个零点.∴方程f (x )=-m 在x ∈[-1,4]上有两相异的实数根,即函数y =f (x )与y =-m 的图象有两个交点.由(1)所作图象可知,-4<-m ≤0,∴0≤m <4.∴当0≤m <4时,函数y =f (x )与y =-m 的图象有两个交点,故当0≤m <4时,函数g (x )=f (x )+m 在[-1,4]上有两个零点.探 究 创 新14.已知二次函数f (x )=x 2-2ax +4,求下列条件下,实数a 的取值范围. (1)零点均大于1;(2)一个零点在(0,1)内,另一个零点在(6,8)内.解 (1)因为方程x 2-2ax +4=0的两根均大于1,结合二次函数的单调性与零点存在定理,得⎩⎪⎨⎪⎧(-2a )2-16≥0,f (1)=5-2a >0,a >1.解得2≤a <52.(2)因为方程x 2-2ax +4=0的一个根在(0,1)内,另一个根在(6,8)内,结合二次函数的单调性与零点存在定理,得⎩⎪⎨⎪⎧f (0)=4>0,f (1)=5-2a <0,f (6)=40-12a <0,f (8)=68-16a >0,解得103<a <174.3.2 函数模型及其应用 3.2.1 几类不同增长的函数模型目标定位 1.掌握常见增长函数的定义、图象、性质,并体会其增长的快慢.2.理解直线上升、对数增长、指数爆炸的含义,及其三种函数模型增长速度的差异.3.会分析具体的实际问题,能够建模解决实际问题.自主预习1.三种函数模型的性质2.三种函数的增长速度比较(1)在区间(0,+∞)上,函数y=a x(a>1),y=log a x(a>1)和y=x n(n>0)都是增函数,但增长速度不同,且不在同一个“档次”上.(2)在区间(0,+∞)上随着x的增大,y=a x(a>1)增长速度越来越快,会超过并远远大于y =x n(n>0)的增长速度,而y=log a x(a>1)的增长速度则会越来越慢.(3)存在一个x0,使得当x>x0时,有log a x<x n<a x.即时自测1.思考判断(正确的打“√”,错误的打“×”)(1)对数函数y=log a x(a>1)和幂函数y=x n(n>0)在区间(0,+∞)上,总存在一个x0,当x>x0时,log a x<x n.( )(2)在函数y=3x,y=log3x,y=3x,y=x3中增长速度最快的是y=3x.( )(3)对于任意的x>0,a x>log a x.( )提示(1)对.根据图象可知结论正确.(2)对.在这几类函数中,指数函数的增长速度最快.(3)错.当0<a<1时,不一定成立.答案(1)√(2)√(3)×2.函数y1=2x与y2=x2,当x>0时,图象的交点个数是( )A.0B.1C.2D.3解析当x=2,4时,y1=y2,当x>4时,y1>y2,当2<x<4时,y1<y2,当0<x<2时,y1>y2,故交点个数是2,选C.答案 C3.下列函数中,随x 的增大,增长速度最快的是( ) A.y =2xB.y =10 000xC.y =log 3xD.y =x 3解析 由指数函数,对数函数,幂函数的增长差异来判断. 答案 A4.某种动物繁殖数量y (只)与时间x (年) 的关系为y =a log 2(x +1),设这种动物第一年有100只,到第7年它们发展到________只.解析 由已知第一年有100只,得a =100.将a =100,x =7代入y =a log 2(x +1),得y =300. 答案 300类型一 几类函数模型的增长差异【例1】(1)当x 越来越大时,下列函数中,增长速度最快的应该是( ) A.y =10 000xB.y =log 2xC.y =x 1 000D.y =⎝ ⎛⎭⎪⎫e 2x(2)四个变量y 1,y 2,y 3,y 4随变量x 变化的数据如下表:关于x 呈指数函数变化的变量是________. 解析 (1)由于指数型函数的增长是爆炸式增长,则当x 越来越大时,函数y =⎝ ⎛⎭⎪⎫e 2x增长速度最快. (2)以爆炸式增长的变量是呈指数函数变化的.从表格中可以看出,四个变量y 1,y 2,y 3,y 4均是从2开始变化,变量y 1,y 2,y 3,y 4都是越来越大,但是增长速度不同,其中变量y 2的增长速度最快,可知变量y 2关于x 呈指数函数变化.答案(1)D (2)y2规律方法在区间(0,+∞)上,尽管函数y=a x(a>1),y=log a x(a>1)和y=x n(n>0)都是增函数,但它们的增长速度不同,而且不在同一个“档次”上.随着x的增大,y=a x(a>1)的增长速度越来越快,会超过并远远大于y=x n(n>0)的增长速度,而y=log a x(a>1)的增长速度则会越来越慢,总会存在一个x0,当x>x0,就有log a x<x n<a x.【训练1】下列函数中,随x增大而增长速度最快的是( )A.2 014ln xB.y=x2 014C.y=x2 014D.y=2 014·2x解析由于指数函数的增长是爆炸式增长,则当x越来越大时,函数y=2014·2x的增长速度最快.故选D.答案 D类型二指数函数、对数函数与幂函数模型的比较【例2】函数f(x)=2x和g(x)=x3的图象如图所示.设两函数的图象交于点A(x1,y1),B(x2,y2),且x1<x2.(1)请指出图中曲线C1,C2分别对应的函数.(2)结合函数图象,判断f(6)与g(6),f(2 010)与g(2 010)的大小.解(1)C1对应的函数为g(x)=x3,C2对应的函数为f(x)=2x.(2)结合图象及运算可知f(1)>g(1),f(2)<g(2),f(9)<g(9),f(10)>g(10),∴1<x1<2,9<x2<10,而x1<6<x2,2 010>x2,从图象上可以看出,当x1<x<x2时,f(x)<g(x),∴f(6)<g(6).当x>x2时,f(x)>g(x),∴f(2 010)>g(2 010).规律方法根据图象判断增长型的指数函数、对数函数和幂函数时,通常是观察函数图象上升得快慢,即随着自变量的增长,图象最“陡”的函数是指数函数,图象趋于平缓的函数是对数函数.【训练2】函数f(x)=lg x,g(x)=0.3x-1的图象如图.(1)指出C1,C2分别对应图中哪一个函数;(2)比较两函数的增长差异(以两图象交点为分界点,对f(x),g(x)的大小进行比较).解 (1)由函数图象特征及变化趋势,知 曲线C 1对应的函数为g (x )=0.3x -1, 曲线C 2对应的函数为f (x )=lg x , (2)当x ∈(0,x 1)时,g (x )>f (x ); 当x ∈(x 1,x 2)时,g (x )<f (x ); 当x ∈(x 2,+∞)时,g (x )>f (x ).函数g (x )=0.3x -1呈直线增长,函数f (x )随着x 的逐渐增大,其函数值变化的越来越慢,为“蜗牛式”增长.类型三 函数模型的选择问题【例3】 某汽车制造商在2015年初公告:随着金融危机的解除,公司计划2015年生产目标定为43万辆.已知该公司近三年的汽车生产量如下表所示:如果我们分别将2012,2013,2014,2015定义为第一、二、三、四年.现在你有两个函数模型:二次函数模型f (x )=ax 2+bx +c (a ≠0),指数型函数模型g (x )=a ·b x+c (a ≠0,b >0,b ≠1),哪个模型能更好地反映该公司年产量y 与年份x 的关系?解 建立年产量y 与年份x 的函数,可知函数必过点(1,8),(2,18),(3,30). (1)构造二次函数模型f (x )=ax 2+bx +c (a ≠0),将点坐标代入,可得⎩⎪⎨⎪⎧a +b +c =8,4a +2b +c =18,9a +3b +c =30,解得a =1,b =7,c =0,则f (x )=x 2+7x ,故f (4)=44,与计划误差为1. (2)构造指数型函数模型g (x )=a ·b x +c (a ≠0,b >0,b ≠1),将点坐标代入,可得⎩⎪⎨⎪⎧ab +c =8,ab 2+c =18,ab 3+c =30,解得a =1253,b =65,c =-42.则g (x )=1253·⎝ ⎛⎭⎪⎫65x -42,故g (4)=1253·⎝ ⎛⎭⎪⎫654-42=44.4,与计划误差为1.4.由(1)(2)可得,f (x )=x 2+7x 模型能更好地反映该公司年产量y 与年份x 的关系. 规律方法 解函数应用题的四个步骤第一步:阅读、理解题意,认真审题.读懂题中的文字叙述,理解叙述所反映的实际背景,领悟从背景中概括出来的数学实质.审题时要抓住题目中的关键量,善于联想、化归,实现应用问题向数学问题的转化.第二步:引进数学符号,建立数学模型.一般地,设自变量为x,函数为y,并用x表示各相关量,然后根据已知条件,运用已掌握的数学知识、物理知识及其他相关知识建立函数关系式,将实际问题转化为一个数学问题,实现问题的数学化,即所谓建立数学模型.第三步:利用数学方法解答得到的常规数学问题(即数学模型),求得结果.第四步:再转译成具体问题作出解答.【训练3】某文具店出售软皮本和铅笔,软皮本每本2元,铅笔每根0.5元,该店推出两种优惠办法:(1)买一本软皮本赠送一根铅笔;(2)按总价的92%付款,现要买软皮本4本,铅笔若干根(不少于4根),若购买铅笔数为x根,支付款数为y元,试分别建立两种优惠办法中y与x之间的函数关系式,并说明使用哪种优惠办法更合算?解由优惠办法(1)得到y与x的函数关系式为:y=2×4+0.5(x-4)=0.5x+6(x≥4,且x∈N).由优惠办法(2)得到y与x的函数关系式为:y=(0.5x+2×4)×92%=0.46x+7.36(x≥4,且x∈N).令0.5x+6=0.46x+7.36,解得x=34,且当4≤x<34时,0.5x+6<0.46x+7.36,当x>34时,0.5x+6>0.46x+7.36,即当购买铅笔数少于34根(不少于4根)时,用优惠办法(1)合算;当购买铅笔数多于34根时,用优惠办法(2)合算;当购买铅笔数是34根时,两种优惠办法支付的总钱数是相同的,即一样合算.[课堂小结]三种函数模型的选取(1)指数型函数模型:能用指数型函数f(x)=ab x+c(a,b,c为常数,a>0,b>1)表达的函数模型,其增长特点是随着自变量x的增大,函数值增长的速度越来越快,常称之为“指数爆炸”.(2)对数型函数模型:能用对数型函数f(x)=m log a x+n(m,n,a为常数,m≠0,x>0,a>1)表达的函数模型,其增长的特点是开始阶段增长得较快,但随着x的逐渐增大,其函数值变化得越来越慢,常称之为“蜗牛式增长”.(3)幂函数模型:能用幂型函数f(x)=axα+b(a,b,α为常数,a≠0,α≠1)表达的函数模型,其增长情况由a和α的取值确定,常见的有二次函数模型和反比例函数模型.1.当x 越来越大时,下列函数中,增长速度最快的应该是( ) A.y =100x B.y =log 100x C.y =x 100D.y =100x解析 由指数函数,对数函数,幂函数的增长差异来判断. 答案 D2.某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x 倍,需经过y 年,则函数y =f (x )的图象大致是( )解析 设该林区的森林原有蓄积量为a ,由题意,ax =a (1+0.104)y,故y =log 1.104x (x ≥1), ∴y =f (x )的图象大致为D 中图象. 答案 D3.已知某工厂生产某种产品的月产量y 与月份x 满足关系y =a ·(0.5)x+b ,现已知该厂今年1月、2月生产该产品分别为1万件、1.5万件.则此厂3月份该产品产量为________万件.解析 由⎩⎪⎨⎪⎧1=a ·(0.5)1+b ,1.5=a ·(0.5)2+b ,得⎩⎪⎨⎪⎧a =-2,b =2,∴y =-2×0.5x+2, 所以3月份产量为y =-2×0.53+2=1.75(万件). 答案 1.754.一家庭(父亲、母亲和孩子们)去某地旅游,甲旅行社说:“如果父亲买全票一张,其余人可享受半价优惠.”乙旅行社说:“家庭旅行算集体票,按原价23优惠.”这两家旅行社的原价是一样的.试就家庭里不同的孩子数,分别建立表达式,计算两家旅行社的收费,并讨论哪家旅行社更优惠.解 设家庭中孩子数为x (x ≥1,x ∈N *), 旅游收费y ,旅游原价为a .甲旅行社收费:y =a +12(x +1)a =12(x +3)a ;乙旅行社收费:y =23(x +2)a .∵23(x +2)a -12(x +3)a =16(x -1)a , ∴当x =1时,两家旅行社收费相等. 当x >1时甲旅行社更优惠.基 础 过 关1.下列函数中,增长速度最慢的是( ) A.y =6xB.y =log 6xC.y =x 6D.y =6x解析 对数函数增长的越来越慢. 答案 B2.当2<x <4时,2x ,x 2,log 2x 的大小关系是( ) A.2x >x 2>log 2x B.x 2>2x>log 2x C.2x >log 2x >x 2 D.x 2>log 2x >2x解析 法一 在同一平面直角坐标系中分别画出函数y =log 2x ,y =x 2,y =2x,在区间(2,4)上从上往下依次是y =x 2,y =2x ,y =log 2x 的图象,所以x 2>2x>log 2x .法二 比较三个函数值的大小,作为选择题,可以采用特殊值代入法.可取x =3,经检验易知选B. 答案 B3.据报道,某淡水湖的湖水在50年内减少了10%,若按此规律,设2016年的湖水量为m ,从2016年起,经过x 年后湖水量y 与x 的函数关系为( )A.y =0.9x50B.y =(1-0.1x50)m C.y =0.9x50mD.y =(1-0.150x)m解析 设每年湖水量为上一年的q %,则(q %)50=0.9,∴q %=0.9150.∴x 年后的湖水量为y =0.9x50m . 答案 C4.某种产品每件80元,每天可售出30件,如果每件定价120元,则每天可售出20件,如果售出件数是定价的一次函数,则这个函数解析式为________.解析 设解析式为y =kx +b ,由⎩⎪⎨⎪⎧30=k ×80+b ,20=k ×120+b ,解得k =-14,b =50,∴y =-14x +50(0<x <200).答案 y =-14x +50(0<x <200)5.在某种金属材料的耐高温实验中,温度随着时间变化的情况由电脑记录后显示的图象如图所示.现给出下列说法:①前5 min 温度增加的速度越来越快;②前 5min 温度增加的速度越来越慢;③5 min 以后温度保持匀速增加;④5 min 以后温度保持不变. 其中正确的说法是________.解析 因为温度y 关于时间t 的图象是先凸后平,即前5 min 每当t 增加一个单位增量Δt 时,y 相应的增量Δy 越来越小,而5 min 后y 关于t 的增量保持为0,故②④正确. 答案 ②④6.有一种树木栽植五年后可成材,在栽植后五年内,年增长20%,如果不砍伐,从第六年到第十年,年增长10%,现有两种砍伐方案: 甲方案:栽植五年后不砍伐,等到十年后砍伐. 乙方案:栽植五年后砍伐重栽,再过五年再砍伐一次.请计算后回答:十年后哪一个方案可以得到较多的木材?(不考虑最初的树苗成本,只按成材的树木计算)解 设最初栽植量为a ,甲方案在10年后木材量为y 1=a (1+20%)5(1+10%)5=a (1.1×1.2)5乙方案在10年后木材量为y 2=2a (1+20%)5=2a ×1.25∵y 1-y 2=a (1.1×1.2)5-2a ×1.25<0.∴y 1<y 2,因此,十年后乙方案可以得到较多的木材.7.某种商品的进价为每个80元,零售价为每个100元.为了促销,现拟定买一个这种商品赠送一个小礼品的方案.实践表明:礼品的价值为1元时,销售量增加10%,且在一定范围内,礼品的价值为(n +1)元时的销售量比礼品的价值为n 元(n ∈N *)时的销售量增加10%.请确定礼品的价值,使商店利润最大.解 设未赠礼品时销售量为m 件,礼品价值为n 元(且n 小于20,因为若n 大于或等于20,那么该商品就不会赚钱)时利润为y n 元,则当礼品价值为n 元时,销售量为m (1+10%)n,故利润y n =(100-80-n )·m (1+10%)n=m (20-n )·1.1n(0<n <20,n ∈N *).设当礼品价值为(n +1)元时商店利润最大,则必有⎩⎪⎨⎪⎧y n +1≥y n ,y n +1≥y n +2,即⎩⎪⎨⎪⎧m (19-n )·1.1n +1≥m (20-n )·1.1n,m (19-n )·1.1n +1≥m (18-n )·1.1n +2,且0<n <20,n ∈N *, 解得8≤n ≤9,即n =8或9.故当礼品价值为9元或10元时,获利最大.8.大西洋鲑鱼每年都要逆流而上,游回产地产卵,记鲑鱼的游速为V (m/s),鲑鱼的耗氧量的单位数为Q ,研究中发现V 与log 3Q100成正比,且当Q =900时,V =1.(1)求出V 关于Q 的函数解析式;(2)计算一条鲑鱼的游速是1.5 m/s 时耗氧量的单位数. 解 (1)设V =k ·log 3Q100,∵当Q =900时,V =1,∴1=k ·log 3900100,∴k =12,∴V 关于Q 的函数解析式为V =12log 3Q 100.(2)令V =1.5,则1.5=12log 3Q100,∴Q =2 700,所以,一条鲑鱼的游速是1.5 m/s 时耗氧量为2 700个单位.能 力 提 升9.某地区植被被破坏,土地沙化越来越严重,最近三年测得沙漠增加值分别为0.2万顷、0.4万公顷和0.76万公顷,则沙漠增加数y 万公顷关于年数x 的函数关系较为近似的是( ) A.y =0.2x B.y =110(x 2+2x )C.y =2x10D.y =0.2+log 16x解析 将题中所给三个数据代入解析式知,函数y =2x10较为接近.答案 C10.如图,△ABC 为等腰直角三角形,直线l 与AB 相交且l ⊥AB ,直线l 截这个三角形所得的位于直线在右方的图形面积为y ,点A 到直线l 的距离为x ,则y =f (x )的图象大致为四个选项中的( )解析 设AB =a ,则y =12a 2-12x 2=-12x 2+12a 2,其图象为二次函数图象的一段,开口向下,顶点在y 轴上方,故选C.11.在不考虑空气阻力的情况下,火箭的最大速度v m/s 和燃料质量M kg 、火箭(除燃料外)质量m kg 的关系是v =2 000ln ⎝⎛⎭⎪⎫1+M m,则当燃料质量是火箭质量的________倍时,火箭的最大速度可达12 km/s.解析 由题意2 000ln ⎝⎛⎭⎪⎫1+M m =12 000.∴ln ⎝⎛⎭⎪⎫1+M m =6,从而M m=e 6-1. 答案 e 6-112.某化工厂2014年12月的产量是2014年1月份产量的n 倍,则该化工厂这一年的月平均增长率是________.解析 设月平均增长率为x ,第一个月的产量为a , 则有a (1+x )11=na ,所以1+x =11n ,所以x =11n -1.答案11n -113.某工厂生产某种产品,每件产品的出厂价为50元,其成本价为25元,因为在生产过程中平均每生产一件产品就有0.5立方米污水排出,为了净化环境,工厂设计两套方案对污水进行处理,并准备实施.方案一 工厂的污水先净化处理后再排出,每处理1立方米污水所用原料费2元,并且每月排污设备损耗费为30 000元;方案二 工厂将污水排到污水处理厂统一处理,每处理1立方米污水需付14元的排污费.问:(1)工厂每月生产3 000件产品时,你作为厂长,在不污染环境,又节约资金的前提下应选择哪种方案?通过计算加以说明;(2)工厂每月生产6 000件产品时,又应如何选择呢?解 设工厂每月生产x 件产品时,依方案一的利润为y 1,依方案二的利润为y 2,由题意知y 1=(50-25)x -2×0.5x -30 000=24x -30 000, y 2=(50-25)x -14×0.5x =18x .(1)当x =3 000时,y 1=42 000,y 2=54 000, ∵y 1<y 2,∴应选择方案二处理污水.(2)当x =6 000时,y 1=114 000,y 2=108 000,∴应选择方案一处理污水.探究创新14.某地区为响应上级号召,在2015年初,新建了一批有200万平方米的廉价住房,供困难的城市居民居住.由于下半年受物价的影响,根据本地区的实际情况,估计今后住房的年平均增长率只能达到5%.(1)经过x年后,该地区的廉价住房为y万平方米,求y=f(x)的表达式,并求此函数的定义域.(2)作出函数y=f(x)的图象,并结合图象求:经过多少年后,该地区的廉价住房能达到300万平方米?解(1)经过1年后,廉价住房面积为200+200×5%=200(1+5%);经过2年后为200(1+5%)2;…经过x年后,廉价住房面积为200(1+5%)x,所以y=f(x)=200(1+5%)x(x∈N*).(2)作函数y=f(x)=200(1+5%)x(x≥0,x∈N*)的图象,如图所示.作直线y=300,与函数y=200(1+5%)x的图象交于A点,则A(x0,300),A点的横坐标x0的值就是函数值y=300时所经过的时间x的值.因为8<x0<9,则取x0=9,即经过9年后,该地区的廉价住房能达到300万平方米.3.2.2 函数模型的应用实例目标定位 1.能利用给定的函数模型解决实际问题;能选择适当的函数模型进行拟合,实现问题的解决.2.了解指数函数、对数函数、幂函数、分段函数等函数模型在社会生活中的广泛应用.3.初步掌握建立函数模型解决问题的过程和方法.自主预习1.函数模型应用的两个方面(1)利用已知函数模型解决问题;(2)建立恰当的函数模型,并利用所得函数模型解释有关现象,对某些发展趋势进行预测. 温馨提示:利用函数模型解决实际应用题时,要抓住关键:选择和建立恰当的函数模型. 2.应用函数模型解决问题的基本过程用函数模型解应用题的四个步骤(1)审题——弄清题意,分清条件和结论,理顺数量关系,初步选择模型;(2)建模——将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)求模——求解数学模型,得出数学模型;(4)还原——将数学结论还原为实际问题.温馨提示:用得到的函数进行拟合时,可能误差较大或不切合客观实际,因此要对所得函数模型进行检验,切记盲目下结论.即时自测1.思考判断(正确的打“√”,错误的打“×”)(1)解决某一实际问题的函数模型是唯一的.( )(2)对于一个实际问题,收集到的数据越多,建立的函数模型的模拟效果越好.( )(3)根据收集到的数据作出散点图,结合已知的函数选择适当的函数模型,这样得到的函数模型的模拟效果较好.( )提示(1)错.对于一个实际问题,可以选择不同的函数模型,只是模拟效果有区别.(2)对.数据越多,模拟效果越好.(3)对.根据散点图选择函数模型,针对性较强,得到的函数模型效果较好.答案(1)×(2)√(3)√2.某产品的利润y(元)关于产量x(件)的函数关系式为y=10(x-2)2+5,则当产量为3时,利润y等于( )A.10B.15C.20D.25解析当x=3时,代入解析式y=10(x-2)2+5得y=15.答案 B3.某公司市场营销人员的个人月收入与其每月的销售量成一次函数关系,如图所示,由图中给出的信息可知,营销人员没有销售量时的收入是( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1.1 方程的根与函数的零点
[课时作业]
[A组基础巩固]
1.若y=f(x)在区间[a,b]上的图象为连续不断的一条曲线,则下列说法正确的是( ) A.若f(a)·f(b)<0,不存在实数c∈(a,b),使得f(c)=0
B.若f(a)·f(b)<0,存在且只存在一个实数c∈(a,b),使得f(c)=0
C.若f(a)·f(b)>0,不存在实数c∈(a,b),使得f(c)=0
D.若f(a)·f(b)>0,有可能存在实数c∈(a,b),使得f(c)=0
解析:由零点存在性定理可知选项A不正确;
对于选项B,可通过反例“f(x)=x(x-1)(x+1)在区间[-2,2]上满足f(-2)·f(2)<0,但其存在三个零点:-1,0,1”推翻;选项C可通过反例“f(x)=(x-1)·(x+1)在区间[-2,2]上满足
f(-2)·f(2)>0,但其存在两个零点:-1,1”推翻.
答案:D
2.函数f(x)=e x+x-2的零点所在的一个区间是( )
A.(-2,-1) B.(-1,0)
C.(0,1) D.(1,2)
解析:因为函数f(x)的图象是连续不断的一条曲线,又f(-2)=e-2-4<0,f(-1)=e-1-3<0,f(0)=-1<0,f(1)=e-1>0,所以f(0)f(1)<0.故函数的一个零点在(0,1).
答案:C
3.若函数y=f(x)在R上递增,则函数y=f(x)的零点( )
A.至少有一个B.至多有一个
C.有且只有一个D.可能有无数个
解析:在R上单调的函数最多有一个零点.
答案:B
4.若关于x的方程x2+mx+1=0有两个不相等的实数根,则实数m的取值范围是( ) A.(-1,1)
B.(-2,2)
C.(-∞,-2)∪(2,+∞)
D.(-∞,-1)∪(1,+∞)
解析:一元二次方程有两个不相等的实根,所以Δ=m2-4>0,
解得m>2或m<-2.
答案:C
5.若函数f(x)在区间(0,2)内有零点,则( )
A .f (0)>0,f (2)<0
B .f (0)·f (2)<0
C .在区间(0,2)内,存在x 1,x 2使f (x 1)·f (x 2)<0
D .以上说法都不正确
解析:函数y =f (x )在区间(a ,b )内存在零点,我们并不一定能找到x 1,
x 2∈(a ,b ),满足f (x 1)·f (x 2)<0,故A 、B 、C 都是错误的,故选D.
答案:D
6.函数f (x )=2-4-x 2
(x ∈[-1,1])的零点个数为________. 解析:令2-4-x 2
=0解得x =0,所以函数仅有一个零点. 答案:1
7.函数y =x 2
+2px +1的零点一个大于1,一个小于1,则p 的取值范围为________. 解析:解法一:由题设,令f (x )=y =x 2
+2px +1,则有f (1)<0, 即12
+2p +1<0,∴p <-1, ∴p 的范围为(-∞,-1)
解法二:设y =x 2
+2px +1的零点为x 1,x 2
则⎩⎪⎨⎪⎧
Δ=4p 2
-4>0,x 1-x 2-,
∴⎩⎪⎨⎪⎧
p 2
>1,
x 1x 2-
x 1+x 2+1<0,
∴⎩
⎪⎨
⎪⎧
p 2
>1,1+2p +1<0, 得p <-1.
∴p 的范围为(-∞,-1). 答案:(-∞,-1)
8.函数f (x )=e x
+x -2的零点所在的一个区间是________(填序号). ① (-2,-1);②(-1,0);③(0,1);④(1,2)
解析:∵f (x )=e x +x -2,∴f (0)=-1<0,f (1)=e -1>0. ∴函数f (x )的零点所在的一个区间是(0,1). 答案:③
9.求函数f (x )=2x +lg(x +1)-2的零点个数.
解析:解法一:∵f (0)=1+0-2=-1<0,f (2)=4+lg 3-2>0,由零点存在性定理,f (x )在(0,2)上存在实根
又f (x )=2x
+lg(x +1)-2在(0,+∞)为增函数,故f (x )有且只有一个零点.
解法二:(数形结合)在同一坐标系中作出g (x )=2-2x
和h (x )=lg(x +1)的图象(如图所示),由图象可知有且只有一个交点,即函数f (x )有且只有一个零点.
10.关于x 的方程2x 2
-3x +2m =0有两实根均在[-1,1]内,求m 的取值范围. 解析:方程有两实根,所以Δ≥0, 即9-2×2m ×4≥0, 所以m ≤9
16
.
因为两根均在[-1,1]内, 所以{ f
-1≥0,f 1≥0⇔⎩
⎨⎧
m ≥-5
2,
m ≥1
2

即m ≥12,
综上:12≤m ≤916
.
[B 组 能力提升]
1.已知函数f (x )为奇函数,且该函数有三个零点,则三个零点之和等于( ) A .0 B .1 C .-1
D .不能确定
解析:∵奇函数的图象关于原点对称,∴若f (x )有三个零点,则其和必为0. 答案:A
2.函数f (x )=x 12
-⎝ ⎛⎭
⎪⎫12x
的零点个数为( )
A .0
B .1
C .2
D .3
解析:因为y =x 12
在x ∈[0,+∞)上单调递增,y =⎝ ⎛⎭
⎪⎫12x
在x ∈R 上单调递减,所以f (x )=
x 1
2
-⎝ ⎛⎭⎪⎫12x 在x ∈[0,+∞)上单调递增,又f (0)=-1<0,f (1)=12>0,所以f (x )=x 1
2-⎝ ⎛⎭
⎪⎫12x
在定义域内有唯一零点.
答案:B 3.若函数f (x )=x -1
x
,则g (x )=f (4x )-x 的零点是________. 解析:∵f (x )=
x -1x ,∴g (x )=4x -1
4x
-x ,令g (x )=0, 则有:4x -14x -x =0,解得x =1
2.
答案:1
2
4.下列说法正确的有________:
①对于函数f (x )=x 2
+mx +n ,若f (a )>0,f (b )>0,则函数f (x )在区间(a ,b )内一定没有零点.
②函数f (x )=2x -x 2
有两个零点. ③若奇函数、偶函数有零点,其和为0.
④当a =1时,函数f (x )=|x 2
-2x |-a 有三个零点. 解析:①错,如图.
②错,应有三个零点.
③对,奇、偶函数图象与x 轴的交点关于原点对称,其和为0.
④设u (x )=|x 2
-2x |=|(x -1)2
-1|,如图向下平移1个单位,顶点与x 轴相切,图象与x 轴有三个交点.∴a =1.
答案:③④
5.已知函数f (x )=4x +m ·2x
+1仅有一个零点,求m 的取值范围,并求出零点. 解析:令2x =t (t >0),则在方程t 2
+mt +1=0中, (1)Δ=0,即m 2
-4=0,m =±2时,
t =1或t =-1(舍去).
由2x
=1,得x =0,满足题意,即m =-2时,有唯一的零点0.
(2)Δ>0,即m >2或m <-2时,要使函数有一零点,即须满足方程t 2
+mt +1=0有一正一负两根.
而t 1·t 2=1>0,故这一情况不会存在. 综上所述,m =-2时,f (x )有唯一的零点0.
6.已知关于x 的函数y =(m +6)x 2
+2(m -1)x +m +1恒有零点. (1)求m 的范围;
(2)若函数有两个不同零点,且其倒数之和为-4,求m 的值. 解析:(1)当m +6=0时,函数为y =-14x -5显然有零点,
当m +6≠0时,由Δ=4(m -1)2
-4(m +6)(m +1)=-9m -5≥0,得m ≤-59
.
∴当m ≤-5
9且m ≠-6时,二次函数有零点.
综上,m ≤-5
9
.
(2)设x 1、x 2是函数的两个零点,则有
x 1+x 2=-
m -m +6
,x 1x 2=
m +1
m +6
. ∵1x 1+1x 2=-4,即x 1+x 2x 1x 2
=-4,
∴-
m -
m +1
=-4,解得m =-3.
且当m =-3时,m +6≠0,Δ>0符合题意, ∴m 的值为-3.。

相关文档
最新文档