解直角三角形应用的复习教案(定稿)

合集下载

人教版九年级数学下册《解直角三角形》教学设计(复习课)

人教版九年级数学下册《解直角三角形》教学设计(复习课)
设公共边为 ,表示出BD边和CD边,再列出一个方程CD -BD=50
老师板书:
设计意图:学生懂得转化为方程问题解决问题,板书让学生看到规范的作答过程。
【举一反三】
以下这道题是上一道题的变式
5.(2013益阳)益阳市梓山湖中有一孤立小岛P,湖边有一条笔直的观光小道AB,现测得AB=100米, ,计划从小岛P处架一座与观光小道垂直的小桥PD,求小桥PD的长度(结果保留根号)
一、知识点回顾:
解直角三角形的定义
在直角三角形中,除直角外,由已知_____个元素(至少要有________)求其余_____个元素的过程叫做解直角三角形
解直角三角形的理论依据
(1)三边之间的关系:_____________________________
(2)锐角之间的关系:______________________________
学生分析
1、学生在八年级时已经学会利用勾股定理求直角三角形的边
2、通过第28章节第1小节学习,学习了锐角三角函数包括正弦、余弦、正切,掌握了特殊角的三角函数值。
有了以上知识作为基础,提高学生运用锐角三角函数解决与直角三角形有关的度量问题能力。
教学目标
知识与技能
使学生了解解直角三角形的概念,能运用直角三角形的角与角(两锐角互余),边与边(勾股定理)、边与角关系解直角三角形;
过程与方法
通过学生的探索讨论发现解直角三角形所需的最简条件,使学生了解体会用化归的思想方法将未知问题转化为已知问题去解决;
情感态度与价值观
通过对问题情境的讨论,以及对解直角三角形所需的最简条件的探究,培养学生的问题意识,体验经历运用数学知识解决一些简单的实际问题,渗透“数学建模”的思想。
教学重点

(完整版)解直角三角形的复习课教案.doc

(完整版)解直角三角形的复习课教案.doc

解直角三角形的复习课教案( 1)执教者:上海市园南中学姚春花教学目标: 掌握直角三角形的基本方法,能灵活运用锐角三角比解直角三角形。

并在解题过程中渗透化归方程等数学思想。

通过习题的变式, 让学生感悟图形间的联系,以及知识的本质。

通过一题多解,培养学生的发散思维。

教学重点与难点 :寻找合适的方法灵活求解直角三角形。

教学过程 : 一、回顾与思考1、在 Rt △ABC 中,∠ C=90°, b=2,c= 2 2 ,则∠ B=度; a=2、在 Rt △ABC 中,∠ C=90°,∠ A=3 0°, AB=3,则 AC= ;∠ B=度、在 Rt △ABC 中,∠ B=90°, sin A= 3, a=3,则 c= ;b=3 54、在 Rt △ABC 中,∠ A=60°∠ B=75°, AB=8,则 AC=归纳:1、解一个直角三角形要具备什么样的条件?生:除直角外,已知三角形的两个元素(其中至少有一个条件与边有关) ,才能解这个直角三角形。

2、解直角三角形运用到哪些定理或定义?(依据) ①勾股定理 ②锐角三角比 ③两锐角互余(以上四题均给出图形,教师根据学生的回答,让学生回顾知识)归纳:解直角三角形首先要根据题目给出图形, 其次关键在于正确选用只含有一个未知数的三角比的式子。

3、你能归纳出解一般三角形的思路吗? 构造有效的直角三角形二、小试牛刀1、已知在 Rt △ABC 中,∠ ACB=9 0°, CD 是斜边 AB 上的高,AB=10, tan A3,求 AC 的长 C4A BD归纳:常用解法:①寻找 Rt△(根据三角比)②转化角(等角的同名三角比相等)③设元(列方程求解)2、已知,如图,在△ ABC 中,∠ A=3 0°,F 为 AC上一点,且 AF : FC 4 : 1, EF ⊥ AB,E 为垂足,联结 EC,求 tan∠CEB 的值。

5.6解直角三角形的应用复习教案

5.6解直角三角形的应用复习教案

§5.6解直角三角形的应用教学目标:1.理解直角三角形中5个元素的关系,会运用“勾股定理、直角三角形的两个锐角互余、锐角三角函数”解直角三角形.2.正确理解“旋转角、仰角、俯角、视线、方位角”从而正确理解实际问题,解决实际问题。

3.正确理解“坡度、坡角、倾斜角”等在实际问题中的意义.4. 能综合运用解直角三角形的知识解决实际问题,进一步培养“把实际问题转化为数学问题”的能力.教学重点:能综合运用解直角三角形的知识解决实际问题. 教学过程: 一、回顾旧知1、在Rt△ABC 中,∠C =90°,根据已知量,填出下列表中的未知量:2、如图所示,在△ABC 中,∠A=30°,tan 2B =,AC =AB = . 变式:若已知AB ,如何求AC ?3、在离大楼15m 的地面上看大楼顶部仰角65°,则大楼高约 m. (精确到1m ,sin 650.9,cos650.4,tan 65 2.1≈≈≈)4、如图,铁路路基横断面为一个等腰梯形,若腰的坡度为1:3,顶宽为3米,路基高为4米,则坡角= °,腰AD= ,路基的下底CD= .5、如图所示,王英同学从A 地沿北偏西60°方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 m.二、典型例题图 34-1B图 34-2图 34-6D图 34-5F图34-3例1 如图所示,在Rt △ABC 中,∠C =90°,AD =2AC =2BD ,且DE ⊥AB . (1)求tan B ;(2)若DE =1,求CE 的长.例2.某校初三课外活动小组,在测量树高的一次活动中,如图所示,测得树底部中心A 到斜坡底C 的水平距离为8.8m.在阳光下某一时刻测得1m的标杆影长为0.8m ,树影落在斜坡上的部分CD =3.2m.已知斜坡CD 的坡比i =AB .(结果保留整数,参考数据1.7≈)例3.一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF ,∠F =∠ACB =90°,∠E =45°,∠A=60°,AC =10,试求CD 的长.三、当堂反馈1、某坡面的坡度为_______度.2、已知一斜坡的坡度为1:4,水平距离为20m ,则该斜坡的垂直高度为 .3、河堤的横断面如图1所示,堤高BC 是5m ,迎水斜坡AB 长13m ,那么斜坡AB 的坡度等于 .4、菱形OABC 在平面直角坐标系中的位置如图2所示,45AOC OC ∠=°,则点B 的坐标为 .5、如图3,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为 .A图1 图26、如图,一巡逻艇航行至海面B 处时,得知其正北方向上C 处一渔船发生故障.已知港口A 处在B 处的北偏西37方向上,距B 处20海里;C 处在A 处的北偏东65方向上,求,B C 之间的距离(结果精确到0.1海里)sin370.60cos370.80tan370.75≈≈≈,,,sin 650.91cos650.42tan 65 2.14.≈≈≈,,四、归纳总结本节课你有何收获?五、教学反思:。

初中数学解直角三角形复习教案

初中数学解直角三角形复习教案

第5章、解直角三角形(3课时)教学目标:1.理解直角三角形的概念及锥度、仰角和俯角、坡度和坡角、方向角和方位角的概念,灵活运用直角三角形中边与角的关系和勾股定理解直角三角形,提高把实际问题转化为解直角三角形问题的能力;2.利用锐角三角函数和直角三角形,体会数形结合、转化的重要数学思想在解题中的应用。

3.掌握综合性较强的题型融会贯通地运用数学的各部分知识,提高分析解决问题的能力。

教学重点:灵活运用直角三角形中边与角的关系和勾股定理解直角三角形,提高把实际问题转化为解直角三角形问题的能力;教学难点:体会数形结合、转化的重要数学思想在解题中的应用。

教学过程:一:【课前复习】1、在Rt △ABC 中,∠C =90°,a =4,c =5,则 sinA =____。

2、在Rt △ABC 中,∠C =90°,若AC =3,AB =5,则cosB 的值为__________。

3、在Rt △ABC 中,∠C=90°.若sinA= ,则sinB= 。

4.如图,为测一河两岸相对两电线杆A 、B 间的距离,在距A点15米处的C 点(AC ⊥BA )测得∠A =50°,则A 、B 间的距离应为( )A .15sin50°米;B.15cos50°米;C.15tan50°米;D.015tan 50米5.我市东坡中学升国旗时,余露同学站在离旗杆底部12米行注目礼,当国旗升到旗杆顶端时,该同学视线的仰角为45°,若他的双眼离地面1.3米,则旗杆高度为_________米。

二:【复习过程】(一):【知识梳理】1.解直角三角形中常见类型:①已知一边一锐角.②已知两边.③解直角三角形的应用.2.解直角三角形问题时,关键是否存在直角三角形,如果有则从已知的边角关系入手寻找合适的三角函数,如果没有则要构造直角三角形,引垂线。

例1 如图,在电线杆上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面成60°角,在离电线杆6米的B 处安置测角仪,在A 处测得电线杆上C 处的仰角为30°,已知测角仪离AB 为1.5米,求拉线CE30°A B E D F CG60°的长.(结果保留根号)【分析】求CE的长,此时就要借助于另一个直角三角形,故过点A作AG⊥CD,垂足为G,在Rt△ACG中,可求出CG,从而求得CD,在Rt△CED中,即可求出CE的长.【解】过点A作AG⊥CD,垂足为点G,在Rt△ACG中,∵∠CAG=30°,BD=6,∴tan30°=CGAG ,∴CG=6×33=2 3∴CD=2 3 + 1.5,在Rt△CED中,sin60°=CDEC,∴EC=CDsin60°=23+1.532=4+ 3 .答:拉线CE的长为4+ 3 米.例2.如图,小山岗的斜坡AC的坡度是tanα=,在与山脚C距离200米的D 处,测得山顶A的仰角为26.6°,求小山岗的高AB(结果取整数:参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50).考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题。

九年级数学《解直角三角形-复习课》教案

九年级数学《解直角三角形-复习课》教案

第28章解直角三角形(单元复习课)教学任务分析问题1:在Rt △ABC 中,∠C=90°则(1)∠A 、∠B 的关系是_________, (2)_____,,的关系是c b a(3)边角关系是________________________________________________________________________________问题2:你能根据上述边角关系得到30°、45°、60°角的三角函数值吗?填写下表。

问题3:同角的三角函数之间有什么关系?互余的两角呢?问题4:锐角的正弦值是怎样随着角度数的变化而变化的?余弦、正切呢?其锐角三角函数值的范围分别是什么? 2、组织交流,总结要点;3、板书教师总结知识结构图(多媒体展示)。

【学生活动】 1、学生反思回顾知识点,回答和完成导学案中的问题及三个表格;2、绘制出自己总结的知识结构图;3、交流展示自己总结的知识结构图及自主学习的成果;4、看听记教师的总结。

用数学的意识。

帮助学生学会用数学的思考方法解决实际问题,引发认知冲突,激发学生学习兴趣。

【媒体应用】1、展示反思回顾的问题;2、展示导学案中提出的问题;3、展示师生共同总结的本章本章要点和本章知识结构图。

活动三 基础训练,查补缺漏: 【基础闯关】1、Rt △ABC 中,∠C=90°若SinA= 时,tanA= 。

2、Rt △ABC 中,∠C=90°,若AC=3BC ,则CosA= 。

3、菱形ABCD 中对角线AC 交BD 于点O ,且AC=8,BD=6,则下列结论中正确的为( )A 、Sin ∠ADB=B 、Cos ∠DAB=C 、tan ∠DBA =D 、tan ∠ADB=4、计算: (1)(2)丨Sin45°- 1丨-【教师活动】 1、操作多媒体出示问题。

2、组织学生交流和点评,得出正确答案。

【学生活动】 1、尝试完成练习,有困难的同学可以合作完成; 2、参与交流展示及点评。

解直角三角形复习(教案)

解直角三角形复习(教案)

课题:锐角的三角比专题复习(解直角三角形)执教老师:孙燕平上课班级:九(3)班一、复习目标1.进一步掌握解直角三角形的基本方法,加深对直角三角形中边角关系的认识.2.经历运用解直角三角形的知识解决问题的过程,渗透数形结合、化归与转化等数学思想方法.3.学生通过积极参与数学学习的活动,提高分析问题和解决问题的能力.二、复习重点、难点1.复习重点:解直角三角形的基本方法.2.复习难点:灵活运用解直角三角形的相关知识解决问题.三、复习思路四、复习进程(一)复习检测1.如图,在Rt △ABC 中,︒=∠90C ,a 、b 、c 分别是A ∠、B ∠、C ∠的对边, 下列等式中正确的是( )A.c a A =cos ; B.bc B =sin ; C. b a B =tan ; D. a b A =cot . 2. 在△ABC 中,若tan A =1,sin B =22,你认为最确切的判断是( ) A.△ABC 是等腰三角形; B.△ABC 是等腰直角三角形;C.△ABC 是直角三角形;D.△ABC 是一般锐角三角形.3. 已知Rt △ABC 中,90C ∠=︒,CAB α∠=,7AC =,那么BC 为( )A. 7sin α;B. 7cos α;C. 7tan α;D. 7cot α.4. Rt ΔABC ,已知∠C =90°,∠B =30°,AB =6,则∠A = °,BC = .5.在以O 为坐标原点的直角坐标平面内有一点A (3,4),如果AO 与x 轴正半轴的夹角为α,那么sin α= .说明:学生通过练习简单回顾锐角三角比的概念、特殊锐角三角比、直角三角形中的边角关系,教师归纳整理知识点,引出本节课复习的主要内容:解直角三角形的应用.(二)例题举例例题:如图,在Rt ABC ∆中,90C ∠=︒,点D 是BC 边上的一点,6CD =,3cos 5ADC ∠=,2tan 3B =. (1)求AC 和AB 的长;(2)求sin BAD ∠的值.说明:学生独立思考,并做相应解答.教师整理归纳解题的基本思路和方法,总结在解直角三角形这类问题时涉及到的思想方法以及注意点.(三)能力提升在Rt △ABC 中,∠ACB =90°,BC =30,AB =50.点P 是AB 边上任意一点,直线PE ⊥AB ,与边AC 或BC 相交于E .点M 在线段AP 上,点N 在线段BP 上,EM =EN ,12sin 13EMP ∠=. (1)如图1,当点E 与点C 重合时,求CM 的长;(2)如图2,当点E 在边AC 上时,点E 不与点A 、C 重合,设AP =x ,BN =y ,求y 关于x 的函数关系式,并写出函数的定义域;DB说明:学生思考,教师引导并一起探索解题的方法,进一步巩固解直角三角形的方法和基本思路.(四)课堂小结通过这节课的复习,你有哪些收获或困惑?五、课外作业《锐角的三角比》相关练习.。

初中数学面试真题-《解直角三角形的应用(2)》教案、教学设计

初中数学面试真题-《解直角三角形的应用(2)》教案、教学设计

《解直角三角形的应用(2)》教案、教学设计
一、教学目标
【知识与技能】
掌握应用解直角三角形解决实际问题的思路及步骤。

【过程与方法】
通过应用解直角三角形解决实际问题的过程,提升推理能力及运算能力。

【情感态度与价值观】
感受数学知识与实际生活的联系,激发学习数学的兴趣。

二、教学重难点
【重点】应用解直角三角形解决实际问题的思路及步骤。

【难点】运用同一方法多角度解决问题。

三、教学过程
(一)课堂导入
承接上节课《解直角三角形的应用(1)》,导入课题。

(二)回顾旧知
回顾解直角三角形的一般步骤:先找直角三角形,再解直角三角形。

还可复习锐角三角函数定义。

(四)小结作业
小结:教师提问,学生汇报本节课收获。

作业:完成教材上相应习题;了解解直角三角形在生活中的更多应用。

四、板书设计。

解直角三角形教案精选5篇

解直角三角形教案精选5篇

解直角三角形教案精选5篇解直角三角形教案篇一一、教学目标〔一〕知识教学点使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.〔二〕能力训练点通过综合运用勾股定理,直角三角形的'两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.〔三〕德育渗透点渗透数形结合的数学思想,培养学生良好的学习习惯.二、教学重点、难点和疑点1.重点:直角三角形的解法.2.难点:三角函数在解直角三角形中的灵活运用.3.疑点:学生可能不理解在的两个元素中,为什么至少有一个是边.三、教学过程〔一〕明确目标1.在三角形中共有几个元素?2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?〔1〕边角之间关系如果用表示直角三角形的一个锐角,那上述式子就可以写成。

〔2〕三边之间关系a2+b2=c2〔勾股定理〕〔3〕锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用.〔二〕整体感知教材在继锐角三角函数后安排解直角三角形,目的是运用锐角三角函数知识,对其加以复习稳固.同时,本课又为以后的应用举例打下根底,因此在把实际问题转化为数学问题之后,就是运用本课——解直角三角形的知识来解决的.综上所述,解直角三角形一课在本章中是起到承上启下作用的重要一课.〔三〕重点、难点的学习与目标完成过程1.我们已掌握Rt△ABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素〔至少有一个是边〕后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个元素中必有一条边呢?激发了学生的学习热情.2.教师在学生思考后,继续引导“为什么两个元素中至少有一条边?〞让全体学生的思维目标一致,在作出准确答复后,教师请学生概括什么是解直角三角形?〔由直角三角形中除直角外的两个元素,求出所有未知元素的过程,叫做解直角三角形〕.3.例题例1在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且c=287.4,∠B=42°6′,解这个三角形.解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比拟各种方法中哪些较好完成之后引导学生小结“一边一角,如何解直角三角形?〞答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比拟可靠,防止第一步错导致一错到底.例2在Rt△ABC中,a=104.0,b=20.49,解这个三角形.在学生独立完成之后,选出最好方法,教师板书.4.稳固练习解直角三角形是解实际应用题的根底,因此必须使学生熟练掌握.为此,教材配备了练习针对各种条件,使学生熟练解直角三角形,并培养学生运算能力.说明:解直角三角形计算上比拟繁锁,条件好的学校允许用计算器.但无论是否使用计算器,都必须写出解直角三角形的整个过程.要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯.〔四〕总结与扩展1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素〔至少有一个是边〕,就可以求出另三个元素.2.出示图表,请学生完成abcAB1√√2√√3√b=acotA√4√b=atanB√5√√6a=btanA√√7a=bcotB√√8a=csinAb=ccosA√√9a=ccosBb=csinB√√10不可求不可求不可求√√注:上表中“√〞表示。

解直角三角形的应用 复习课教案

解直角三角形的应用 复习课教案

解直角三角形的应用复习课教案一、教学目标1、会根据题意把实际问题转化为数学问题,然后利用解直角三角形的知识解决实际问题.2、发散思维尝试用不同的方法解决问题。

3、提高观察问题、分析问题的能力。

二、学法引导教学方法:自主探究、互助合作、教师适当引导.学生学法:本节是复习课,学生对基础知识都比较了解,主要是对知识的梳理总结和综合运用.三、重点·难点及解决办法(-)重点解直角三角形的综合应用.(二)难点直角三角形的构造和不同的量之间的关系转化.(三)解决办法在解题的过程中,运用类比的方法使学生思维得到开拓.四、课时安排一课时.五、教具学具准备投影仪、课件、课前导测卡.六、活动设计1、请一名学生引导大家进行知识梳理.2、小组展示典例和拓展.3、将典例进行适当延伸,一道题目提升到一个题型.七、教学步骤(-)明确目标1、会根据题意把实际问题转化为数学问题,然后利用解直角三角形的知识解决实际问题.2、发散思维尝试用不同的方法解决问题。

3、提高观察问题、分析问题的能力。

(二)课前准备提前下发导测卡并进行批阅,让学生对知识重难点有所把握.(三)教学过程1.表扬导测卡优秀学生(课件展示)银牌选手:*** ** *** *** **金牌选手:*****.2.齐读学习目标①会根据题意把实际问题转化为数学问题,然后利用解直角三角形的知识解决实际问题.②发散思维尝试用不同的方法解决问题。

③提高观察问题、分析问题的能力。

④展示自我、体会学习的快乐^_^3.一名学生引导大家进行知识回顾课件展示知识结构图4.订正基础训练题目答案请四号同学分别公布几个题目答案,请一名同学讲解第一题,注意仰角、俯角的区分。

5.讨论典例再现和拓展延伸,力争让学生在讨论中解决出现的问题。

(在学生讨论过程中教师把展示题目的图画在黑板上)6.学生展示第1、3、4、6小组分别展示典例再现1、2、3和拓展延伸7.点拨典例再现第一题,两种方法,与实际联系典例再现第二题,两种方法典例再现第三题,根式的大小比较拓展延伸,影响范围是何图形?可与尺规作图联系(课件中用图形让学生有直观感觉)8.拓展延伸典例再现1和2,把具体数字问题延伸到字母符号,让学生进行 实际问题 数学问题解直角三角形 转化 翻译回去思考和讨论,使问题转化为一般模型,学生知识得到提升。

《解直角三角形》复习教学案

《解直角三角形》复习教学案

《解直角三角形》复习教案一、复习目标:1. 掌握解直角三角形中有关概念及锐角三角函数的定义。

2. 熟记30°,45°,60°角的各三角函数值,会计算含特殊角三角函数的代数式的值。

3. 能熟练运用勾股定理、直角三角形中两锐角互余及三角函数定义解直角三角形。

4. 会用解直角三角形的有关知识解简单的实际问题。

二、复习重点:先构造直角三角形,再综合应用勾股定理和锐角三角函数解决简单的实际问题。

三、复习难点:把实际问题转化为解直角三角形的数学问题。

四、教学过程(一)复习提问, 1,本章知识结构解直角三角形锐角三角函数解直角三角形三角函数定义特殊角的三角函数值互余两角三角函数关系同角三角函数关系两锐角之间的关系三边之间的关系边角之间的关系A BC∠A的对边∠A的邻边∠A的对边∠A的邻边tanAcosA ∠A的邻边∠A的对边斜边sinA斜边斜边1.锐角A 的正弦、余弦、和正切统称锐角∠A 的三角函数.1,定义:注意:三角函数的定义,必须在直角三角形中.2.∠A 的取值范围是什么?sinA ,cosA 与tanA 的取值范围又如何?2,特殊角的三角函数值表锐角α三角函数300450600正弦sinα余弦cosα正切tanα21233322221232133.互余两角三角函数关系:(1).S in A =cos (900-A )(2).cos A =sin (900-A )4.同角三角函数关系:1.sin 2A +cos 2A =1AA A cos sin t an .2什么是解直角三角形?由直角三角形中除直角外的已知元素,求未知元素的过程,叫做解直角三角形.如图:Rt ABC 中,∠C=90,则其余的5个元素之间关系?CABbca解直角三角形1.两锐角之间的关系:2.三边之间的关系:3.边角之间的关系∠A +∠B =900a 2+b 2=c 2ACBabcsin A =a ccosA =b ctan A =a b在解直角三角形及应用时经常接触到的一些概念lhα(2)坡度i =hl概念反馈(1)仰角和俯角视线铅垂线水平线视线仰角俯角(3)方位角30°45°BO A东西北南α为坡角=tan α30º5.5米ABC1:山坡上种树,要求株距(相临两树间的水平距离)是5.5米,测得斜坡倾斜角是30º,求斜坡上相邻两树间的坡面距离是多少米(精确到0.1米)2 :如图所示,B 、C 是河对岸的两点,A 是对岸岸边一点,测量∠ABC=45°,∠ACB=30°,BC=60米,则点A到BC 的距离是米。

解直角三角形复习教案-人教版(优秀教案)

解直角三角形复习教案-人教版(优秀教案)

解直角三角形【课标要求】.掌握直角三角形的判定、性质..能用面积法求直角三角形斜边上的高..掌握勾股定理及其逆定理,能用勾股定理解决简单的实际问题. .理解锐角三角函数定义(正弦、余弦、正切、余切),知道四个三角函数间的关系. .能根据已知条件求锐角三角函数值. .掌握并能灵活使用特殊角的三角函数值..能用三角函数、勾股定理解决直角三角形中的边与角的问题. .能用三角函数、勾股定理解决直角三角形有关的实际问题. 【课时分布】解直角三角形部分在第一轮复习时大约需要课时,其中包括单元测试,下表为课时安排(仅供参考).【知识回顾】 .知.基锐如图则 解直角三角形(△,∠=°) ⑴三边之间的关系:.⑵两锐角之间的关系:∠+∠=°..⑶边角之间的关系:A a c ∠的对边=斜边 A bc∠的邻边=斜边.A a A b ∠∠的对边=的邻边 A b A a∠∠的邻边=的对边.⑷解直角三角形中常见类型:①已知一边一锐角. ②已知两边.③解直角三角形的应用. .能力要求例 在△中,∠=°,=,=,⊥于点,求∠的四个三角函数值.【分析】求∠的四个三角函数值,关键要弄清其定义,由于∠是在△中的一个内角,根据定义,仅一边是已知的,此时有两条路可走,一是设法求出和,二是把∠转化成∠,显然走第二条路较方便,因为在△中,三边均可得出,利用三角函数定义即可求出答案. 【解】 在△中,∵∠=°∴∠+∠=°, ∵⊥,∴∠+∠=°,∴∠=∠.∴∠∠, ∠∠.【说明】本题主要是要学生了解三角函数定义,把握其本质题中角的转换.(或可利用射影定理,求出、,从而利用三角函数定义直接求出)例 如图,在电线杆上的处引拉线、固定电线杆,拉线和地面成°角,在离电线杆米的处安置测角仪,在处测得电线杆上处的仰角为°,已知测角仪离为米,求拉线的长.(结果保留根号)【分析】求的长,此时就要借助于另一个直角三角形,故过点作⊥,垂足为,在△中,可求出,从而求得,在△中,即可求出的长. 【解】 过点作⊥,垂足为点,在△中,∵∠=°,=,∴°,∴× ∴,. 答:拉线的长为米.【说明】在直角三角形的实际应用中,利用两个直角三角形的公共边或边长之间的关系,往往是解决这类问题的关键.老师在复习过程中应加以引导和总结.例 如图,某县为了加固长米,高米,坝顶宽为米的迎水坡和背水坡,它们是坡度均为∶,橫断面是梯形的防洪大坝,现要使大坝顺势加高米,求⑴坡角的度数;⑵完成该大坝的加固工作需要多少立方米的土?【分析】大坝需要的土方=橫断面面积×坝长;所以问题就转化为求梯形的面积,在此问题中,主要抓住坡度不变,即与的坡度均为∶.【解】 ⑴∵,即,∴∠°. ⑵过点、分别作⊥,⊥,垂足分别为、.由题意可知:==,∴=, ∴==, ∵, ∴,∴梯形=()×=.∴需要土方为× () .【说明】本题的关键在于抓住前后坡比不变来解决问题,坡度==坡角的正切值,虽然年中考时计算器不能带进考场,但学生应会使用计算器,所以建议老师还是要复习一下计算器的使用方法.例 某风景区的湖心岛有一凉亭,其正东方向有一棵大树,小明想测量、之间的距离,他从湖边的处测得在北偏西°方向上,测得在北偏东°方向上,且量得、间距离为米,根据上述测量结果,请你帮小明计算、之间的距离.(结果精确到米,参考数据:°≈°≈°≈°≈) 【分析】本题涉及到方位角的问题,要解出的长,只要去解△ 和△即可.【解】过点作⊥,垂足为. 由题知:∠α°,∠β°.在△中,°,∴=°≈.°,∴°≈.在△中,∵∠°,∴. ∴≈米.答:间距离约为米.【说明】本题中涉及到方位角的问题,引导学生画图是本题的难点,找到两个直角三角形的公共边是解题的关键,教师在复习中应及时进行归纳、总结由两个直角三角形构成的各种情形.例 在某海滨城市附近海面有一股台风,据监测,当前台风中心位于该城市的东偏南°方向千米的海面处,并以千米 时的速度向西偏北°的的方向移动,台风侵袭范围是一个圆形区域,当前半径为千米,且圆的半径以千米 时速度不断扩张.()当台风中心移动小时时,受台风侵袭的圆形区域半径增大到千米;又台风中心移动小时时,受台风侵袭的圆形区域半径增大到千米.()当台风中心移动到与城市距离最近时,这股台风是否侵袭这座海滨城市?请说明理由(参考数据2 1.41≈,3 1.73≈). 【分析】⑴由题意易知. ⑵先要计算出和的长,即可求得台风中心移动时间,而后求出台风侵袭的圆形区域半径,此圆半径与比较即可. 【解】⑴; (6010)t +. ⑵作⊥于点,可算得 1002141OH =≈(千米),设经过小时时,台风中心从移动到,则201002PH t ==,算得52t =(小时),此时,受台风侵袭地区的圆的半径为:601052130.5+⨯≈(千米)<(千米).北 βα∴城市不会受到侵袭.【说明】本题是在新的情境下涉及到方位角的解直角三角形问题,对于此类问题常常要构造直角三角形,利用三角函数知识来解决.例如图所示:如图,某人在山坡坡脚处测得电视塔尖点的仰角为°,沿山坡向上走到处再测得点的仰角为°,已知米,山坡坡度为,(即∠)且、、在同一条直线上。

《解直角三角形的应用专题复习》教案

《解直角三角形的应用专题复习》教案

课题解直角三角形应用的复习授课教师董礼授课班级九年九班指导教师徐迎红教学目标知识与技能1. 熟练解直角三角形的基础知识,构建本章知识结构;2. 会用解直角三角形的有关知识去解决某些简单的实际问题;3. 会将简单的实际问题数学化,能建立恰当的数学模型解决实际问题。

过程与方法1.通过将实际问题数学化的过程,进一步把数和形结合起来,提高分析问题、解决问题的能力;2.通过将实际问题数学化,建立数学模型解决实际问题的过程,提高运用数学知识解决实际问题的能力,增强数学的应用意识.情感态度价值观继续渗透转化和数形结合思想,进一步体会模型化的思想方法,培养观察、思考、归纳的良好思维习惯,增强学习信心.重点、难点重点:会用解直角三角形的有关知识去解决某些简单的实际问题.难点:会将简单的实际问题数学化,能建立恰当的数学模型解决实际问题.教学过程教学环节教学内容设计意图一、知识回顾二、例题分析直角三角形相关知识:1、直角三角形斜边上的中线等于斜边的一半2、30度角所对的直角边等于斜边的一半3、三边之间的关系(勾股定理);4、锐角之间的关系5、边角之间的关系(锐角三角函数)【出示5个利用三角函数进行计算的小题】6、在解直角三角形及应用时经常接触到的一些概念(1)仰角和俯角;(2)坡度;(3)方位角【出示关于概念的三个小题】下面,我们就利用这些相关知识解决关于直角三角形的一些实际应用题【例题】如图,直升飞机在跨江大桥AB的上方P点处,此时飞机离地面的高度PO=450米,且A、B、O三点在一条直线上,测得大桥两端的俯角分别为α=30°,β=45°,求大桥的长AB .变式1:如图,直升飞机在长400米的跨江大桥AB的上方P点处,且A、B、O三点在一条直线上,在大桥的两端测得飞机的仰角分别为30°和45 °,求飞机的高度PO 。

变式2:如图,直升飞机在高为200米的大楼AB上方P点处,从大楼的顶部和底部测得飞机的仰角为30°和45°,求飞机的高度PO .通过直角三角形相关知识的复习,既让学生对本章重点知识进行复习巩固,又为本节课所学内容做好知识铺垫例1的设计立足让学生熟练掌握课本中基础的题型,对解直角三角形的知识进行回顾,同时为例2搭建了一个台阶。

解直角三角形及应用(教案)

解直角三角形及应用(教案)
4.实践活动和小组讨论环节,学生们积极参与,表现出很高的热情。他们在讨论中互相启发,共同解决问题,这有助于培养他们的团队协作能力和沟通能力。
5.学生在小组讨论中提出了很多有趣的观点和想法,这让我意识到他们对解直角三角形的应用有着广泛的兴趣。在今后的教学中,我可以更多地引入类似的实际案例,激发学生的学习兴趣。
6.总结回顾环节,我发现部分学生对正弦、余弦、正切的记忆仍然不够牢固。在接下来的教学中,我需要加强对这些知识点的复习和巩固,确保学生能够熟练掌握。
1.注重理论与实践相结合,让学生在实际问题中感受数学的魅力。
2.加强对重点、难点的讲解和练习,帮助学生扎实掌握知识点。
3.鼓励学生积极参与课堂讨论,培养他们的团队协作和沟通能力。
2.在案例分析环节,我尝试让学生通过实际测量和计算,体验到解直角三角形的实际应用。这让他们对知识点的印象更加深刻,也提高了他们解决实际问题的能力。
3.教学难点方面,正弦、余弦、正切在不同象限的正负问题对学生来说是一个挑战。我通过举例和对比,帮助学生理解和记忆这个难点。但从课堂反应来看,这部分内容还需要在后续的练习中进一步巩固。
3.培养学生的数据运算能力,通过计算特殊角的正弦、余弦、正切值,提高学生的计算准确性和速度。
4.培养学生的数学建模素养,使学生能够将实际问题转化为数学模型,运用数学知识解决现实问题,增强学生的应用意识。
三、教学难点与重点
1.教学重点
-理解并掌握正弦、余弦、正切的定义及其在直角三角形中的应用。
-学会使用计算器计算特殊角的正弦、余弦、正切值。
五、教学反思
在今天的教学中,我发现学生们对于解直角三角形这一章节的内容充满了好奇心。通过引入日常生活中的实际问题,他们能够更直观地感受到数学知识的实用性和趣味性。在讲授新课的过程中,我注意到以下几点:

解直角三角形应用的复习教案

解直角三角形应用的复习教案

CB A孟津县朝阳初中九年级数学教案章名称 第25章年级九年级主备教师姓名 赵晓利节名称解直角三角形应用的复习教学目标知识与能力目标1. 熟练解直角三角形的基础知识,构建本章知识结构;2. 会用解直角三角形的有关知识去解决某些简单的实际问题;3. 会将简单的实际问题数学化,能建立恰当的数学模型解决实际问题。

过程与方法目标1.通过将实际问题数学化的过程,进一步把数和形结合起来,提高分析问题、解决问题的能力;2.通过将实际问题数学化,建立数学模型解决实际问题的过程,提高运用数学知识解决实际问题的能力,增强数学的应用意识.情感态度价值观继续渗透转化和数形结合思想,进一步体会模型化的思想方法,培养观察、思考、归纳的良好思维习惯,增强学习信心.教学重点、难点 重点:会用解直角三角形的有关知识去解决某些简单的实际问题.难点:会将简单的实际问题数学化,能建立恰当的数学模型解决实际问题.教具 三角板;白板 教学过程 教学环节教学内容设计意图知识回顾一、知识回顾1、本章知识结构图2、直角三角形边角间的关系: (1)三边间的关系: . (2)两锐角间的关系: .(3)边角间的关系:=A sin ;=B sin ; =A cos ;=B cos ; =A tan ;=B tan .复习回顾本章知识结构图,明确解直角三角形的应用在教材中的作用和地位,引入本课课题。

通过解直角三角形的基础知识的复习,既让学生对本章重点知识进行复习巩固,又为本节课所学内容做好知识铺垫abcD AX60°45° BCX-103、特殊角的三角函数:30° 45° 60° αsinαcos αtan例题讲解例1 如图,AB 和CD 是同一地面上的两座相距36米的楼房,在楼AB 的楼顶A 点测得楼CD 的楼顶C 的仰角为45 °,楼底D 的俯角为30 °,求楼CD 的高?(结果保留根号)例 2 又到了一年中的春游季节,某班学生利用周末到白塔山去参观“晏阳初博物馆”。

解直角三角形专题复习教案设计

解直角三角形专题复习教案设计

专题复习解直角三角形回车一中教研组长牛晓丽一、复习目标1. 掌握直角三角形中锐角三角函数的定义。

2. 熟记30°,45°,60°角的各三角函数值,会计算含特殊角三角函数的代数式的值。

3. 能熟练运用勾股定理、直角三角形中两锐角互余及三角函数定义解直角三角形。

4. 会用解直角三角形的有关知识解简单的实际问题。

二、复习重点:先构造直角三角形,再综合应用勾股定理和锐角三角函数解决简单的实际问题。

三、复习难点:把实际问题转化为解直角三角形的数学问题。

四、中招分析:分析河南近几年中招试题,对于解直角三角形的实际应用,除了2010年外,这几年在解答题中都有考查,并且难度适中,基本上都是把实际问题转化为解直角三角形的问题,在进行求解,考查背景灵活多样,特别是2011、2012、2014年都考查了俯、仰角的问题,并且结果取整数,解决此类问题,要学会把实际问题抽象成数学问题进行处理,熟练掌握三角函数的表示方法也是解题的关键,预测2016年,解直角三角形的实际应用仍是中考解答题考查的重点.五、复习过程(一)知识回顾考点一解直角三角形1.解直角三角形的定义由直角三角形中除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形(直角三角形中,除直角外,一共有5个元素,即3条边和2个锐角).2.直角三角形的边角关系在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c.(1)三边之间的关系:a2+b2=c2;(2)两个锐角之间的关系:∠A+∠B=90°;3.解直角三角形的类型温馨提示: 解直角三角形的思路可概括为“有斜斜边用弦 正弦、余弦,无斜用切正切,宁乘勿除,取原避中”.考点二 解直角三角形的应用 1.仰角、俯角如图①,在测量时,视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角.2.坡度(坡比)、坡角如图②,坡面的高度h 和水平距离l 的比叫做坡度(或坡比),即i =tan α=h l,坡面与水平面的夹角α叫做坡角.3.方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标方向线所成的角(一般指锐角),通常表达为北(南)偏东(西)多少度.如图③,A点位于O点的北偏东60°方向.注意:东北方向指北偏东45°方向,东南方向指南偏东45°方向,西北方向指北偏西45°方向,西南方向指南偏西45°方向.我们一般画图的方位为上北下南,左西右东.(二)典型例题例1.在直角三角形ABC中,已知∠C=90°,∠A=40°,BC=3,则AC=( )A.3sin 40° B.3sin 50°C.3tan 40° D.3tan 50°例2.如图,在△ABC中,∠A=30°,∠B=45°,AC=23,则AB的长为________.例3.如图,一堤坝的坡角∠ABC =62°,坡面长度AB =25米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角∠ADB=500,则此时就将坝底向外拓宽多少米?(结果保留到0.01米,参考数据:sin620 ≈ 0.88,cos620 ≈ 0.47,tan500 ≈ 1.20)(三).拓展运用1.如图,在Rt△ABC 中,∠C =90°,AB =6,cos B =23,则BC 的长为( A )A .4B .2 5 C. 181313 D. 1213132.如图,从热气球C 处测得地面A ,B 两点的俯角分别为30°,45°,如果此时热气球C 处的高度CD 为100米,点A ,D ,B 在同一直线上,则AB 两点间的距离是( )A .200米B .2003米C .2203米D .100(3+1)米3.某人想沿着梯子爬上高4 m 的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为( ) A .8 m B .8 3 m C. 833 m D.433 m4.如图,两个建筑物AB 和CD 的水平距离为30 m ,张明同学住在建筑物AB 内10楼P 室,5.我国为了维护对钓鱼岛P (如图)的主权,决定对钓鱼岛进行常态化的立体巡航.在一次巡航中,轮船和飞机的航向相同(AP ∥BD ),当轮船航行到距钓鱼岛20 km 的A 处时,飞机在B 处测得轮船的俯角是45°;当轮船航行到C 处时,飞机在轮船正上方的E 处,此时EC =5 km.轮船到达钓鱼岛P 时,测得D 处飞机的仰角为30°.试求飞机的飞行距离BD (结果保留根号).(五)通过本节课的复习你有什么收获呢?(六)考点热练一、选择题(每小题4分,共40分)1.已知在Rt△ABC 中,∠C =90°,∠A =α,AC =3,那么AB 的长为( )A .3sin αB .3cos α C. 3sin α D. 3cos α2.如图,河坝横断面迎水坡AB 的坡比1∶3(坡比是坡面的铅直高度BC 与水平宽度AC 之比),坝高BC =3 m ,则坡面AB 的长度是( )A .9 mB .6 mC .6 3 mD .3 3 m3.在Rt△ACB 中,∠C =90°,AB =10,sin A =35,cos A =45,tan A =34,则BC 的长为( ) A .6 B .7.5C .8D .12.54.在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,如果a 2+b 2=c 2,那么下列结论正确的是( )A .c sin A =aB .b cos B =cC .a tan A =bD .c tan B =b5.如图是以△ABC 的边AB 为直径的半圆O ,点C 恰在半圆上,过C 作CD ⊥AB 交AB 于D ,已知cos∠ACD =35,BC =4,则AC 的长为( )A .1 B. 203 C .3 D. 1636.(2014·随州)如图,要测量B 点到河岸AD 的距离,在A 点测得∠BAD =30°,在C 点测得∠BCD =60°,又测得AC =100米,则B 点到河岸AD 的距离为( )A .100米B .50 3 米 C. 20033 米 D .50米 7.如图,在△ABC 中,∠A =45°,∠B =30°,CD ⊥AB ,垂足为D ,CD =1,则AB 的长为( )A .2B .2 3C. 33+1 D. 3+18.(2014·临沂)如图,在某监测点B 处望见一艘正在作业的渔船在南偏西15°方向的A 处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C 处,在C 处观测到B 在C 的北偏东60°方向上,则B ,C 之间的距离为( )A .20海里B .10 3 海里C .20 2 海里D .30海里9.如图,在Rt△ABC 中,∠ACB =90°,BC =3,cos A =45,AB 的垂直平分线DE 交BC 的延长线于点E ,则DE的长为( )A. 32B. 103C. 256D .2 10.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米,已知斜坡的坡角为30°,同一时刻,一根长为1米,垂直于地面放置的标杆在地面上的影长为2米,则树的高度为( )A .(6+3)米B .12米C .(4-23)米D .10米二、填空题(每小题5分,共25分)11.(2013·成都)如图,某山坡的坡面AB =200米,坡角∠BAC =30°,则该山坡的高BC 的长为米.12.如图,已知△ABC 为等边三角形,BD 为中线,延长BC 至E ,使CE =CD =1,连接DE ,则DE = .13.(2014·宿迁)如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC与BC相交于点D,若BD=4,CD=2,则AB的长是 .14.如图,在小山的东侧A点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A,B两点间的距离为米.15.(2014·武汉)如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为 .三、解答题(共35分)16.(11分)(2014·资阳)如图,湖中的小岛上有一标志性建筑物,其底部为A,某人在岸边的B处测得A在B的北偏东30°的方向上,然后沿岸边直行4公里到达C处,再次测得A在C的北偏西45°的方向上(其中A,B,C在同一个平面上).求这个标志性建筑物的底部A到岸边BC的最短距离.17.(12分)(2014·潍坊)如图,某海域有两个海拔均为200米的海岛A和海岛B,一勘测飞机在距离海平面垂直高度为1 100米的空中飞行,飞行到点C处时测得正前方一海岛顶端A的俯角是45°,然后沿平行于AB的方向水平飞行1.99×104米到达点D处,在D处测得正前方另一海岛顶端B的俯角是60°,求两海岛间的距离AB.18.(12分)(2013·济宁)钓鱼岛及其附属岛屿是中国固有领土(如图①),A,B,C分别是钓鱼岛、南小岛、黄尾屿上的点(如图②),图①。

解直角三角形复习课定稿教学设计新部编版

解直角三角形复习课定稿教学设计新部编版

教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校教案:解直角三角形复习课教材来源:九年级《数学(下册)》教科书,人民教育出版社2013年内容来源:九年级《数学(下册)》第二十八章主题:解直角三角形复习课授课对象:九年级学生设计者:杨利 / 大峪沟镇二中解直角三角形复习课【目标确定的依据】课程标准相关要求:1. 借助数形结合思想记住30°,45°, 60°角的三角函数值. 会由已知锐角的三角函数值,求出它对应的角度;2.能在实际问题中抽象出数学模型,并借助解直角三角形的方法解决实际问题;3.在实际问题中通过添加辅助线构造直角三角形,从而把斜三角形问题转化为直角三角形问题解决。

【教材分析】锐角三角函数刻画了直角三角形中边角之间的关系,它的直接应用是解直角三角形,而解直角三角形在现实生活中有着广泛的应用.锐角三角函数又是高中阶段学习任意角三角函数的基础,也是整个三角学的基础.因此,本章内容也是初中阶段数学学习的重点内容之一.【学情分析】本节课是一节复习课,学生对解直角三角形已经有了一定的认识和了解,对基础内容巩固很好,但在灵活运用上需要加强。

所以本节课借助类比思想,运用数学模型,引发学生思考,使他们的注意力始终集中在课堂上,让学生自主探究、合作交流,发挥学习主动性。

【学习目标】1、借助数形结合思想记住30°,45°, 60°角的三角函数值. 会由已知锐角的三角函数值,求出它对应的角度;2、能在实际问题中抽象出数学模型,并借助解直角三角形的方法解决实际问题;3、在实际问题中通过添加辅助线构造直角三角形,从而把斜三角形问题转化为直角三角形问题解决。

【学习重难点】通过揭示解直角三角形的应用,渗透类比、转化、方程的思想。

【评价任务】1、通过自主学习检测目标1的达成;2、通过变式2,情景引例检测目标2的达成;3、通过合作探究检测目标3的达成。

解直角三角形复习课定稿教学设计新部编版

解直角三角形复习课定稿教学设计新部编版

精选讲课讲课设计设计 | Excellent teaching plan教师学科讲课设计[ 20–20学年度第__学期]任讲课科: _____________任教年级: _____________任教老师: _____________xx市实验学校精选讲课讲课设计设计| Excellent teaching plan教案:解直角三角形复习课教材本源:九年级《数学(下册)》教科书,人民教育第一版社2013 年内容本源:九年级《数学(下册)》第二十八章主题:解直角三角形复习课讲课对象:九年级学生设计者:杨利/大峪沟镇二中精选讲课讲课设计设计| Excellent teaching plan解直角三角形复习课【目标确立的依据】课程标准相关要求: 1.借助数形联合思想记着30°, 45° , 60 °角的三角函数值.会由已知锐角的三角函数值,求出它对应的角度;2.能在实诘问题中抽象出数学模型,并借助解直角三角形的方法解决实诘问题;3.在实诘问题中经过增添辅助线构造直角三角形,从而把斜三角形问题转变成直角三角形问题解决。

【教材剖析】锐角三角函数刻画了直角三角形中边角之间的关系,它的直接应用是解直角三角形,而解直角三角形在现实生活中有着广泛的应用.锐角三角函数又是高中阶段学习任意角三角函数的基础,也是整个三角学的基础.所以,本章内容也是初中阶段数学学习的要点内容之一.【学情剖析】本节课是一节复习课,学生对解直角三角形已经有了必定的认识和认识,对基础内容巩固很好,但在灵巧运用上需要增强。

所以本节课借助类比思想,运用数学模型,引起学生思考,使他们的注意力向来会合在课堂上,让学生自主研究、合作交流,发挥学习主动性。

【学习目标】1、借助数形联合思想记着30°, 45° , 60 °角的三角函数值.会由已知锐角的三角函数值,求出它对应的角度;2、能在实诘问题中抽象出数学模型,并借助解直角三角形的方法解决实诘问题;3、在实诘问题中经过增添辅助线构造直角三角形,从而把斜三角形问题转变成直角三角形问题解决。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题解直角三角形应用的复习
授课教师董礼授课班级九年九班
教学目标
知识与技能
1. 熟练解直角三角形的基础知识,构建本章知识结构;
2. 会用解直角三角形的有关知识去解决某些简单的实际问题;
3. 会将简单的实际问题数学化,能建立恰当的数学模型解决实际问题。

过程与方法
1.通过将实际问题数学化的过程,进一步把数和形结合起来,提高分析问题、
解决问题的能力;
2.通过将实际问题数学化,建立数学模型解决实际问题的过程,提高运用数
学知识解决实际问题的能力,增强数学的应用意识.
情感态度价值观
继续渗透转化和数形结合思想,进一步体会模型化的思想方法,培养观察、
思考、归纳的良好思维习惯,增强学习信心.
重点、难点重点:会用解直角三角形的有关知识去解决某些简单的实际问题.
难点:会将简单的实际问题数学化,能建立恰当的数学模型解决实际问题.
教学过程
教学环节教学内容设计意图
一、知识
回顾
二、例题
分析直角三角形相关知识:
1、直角三角形斜边上的中线等于斜边的一半
2、30度角所对的直角边等于斜边的一半
3、三边之间的关系(勾股定理);
4、锐角之间的关系
5、边角之间的关系(锐角三角函数)
【出示5个利用三角函数进行计算的小题】
6、在解直角三角形及应用时经常接触到的一些概念
(1)仰角和俯角;(2)坡度;(3)方位角
【出示关于概念的三个小题】
下面,我们就利用这些相关知识解决关于直角三角形的一些实际应用

【例1】如图,直升飞机在跨江大桥AB的上方P点处,此时飞机离地
面的高度PO=450米,且A、B、O三点在一条直线上,测得大桥两端的
俯角分别为α=30°,β=45°,求大桥的长AB .
变式1:如图,直升飞机在长400米的跨江大桥AB的上方P点处,且
A、B、O三点在一条直线上,在大桥的两端测得飞机的仰角分别为30°
和45 °,求飞机的高度PO 。

变式2:如图,直升飞机在高为200米的大楼AB上方P点处,从大楼
通过直角三角形相关知
识的复习,既让学生对
本章重点知识进行复习
巩固,又为本节课所学
内容做好知识铺垫
例1的设计立足让学生
熟练掌握课本中基础的
题型,对解直角三角形
的知识进行回顾,同时
为例2搭建了一个台
阶。

变式1是中考的热点和
难点问题之一,也是这
一章节学生的难点问
题,这节课的重点就是
要解决这类问题。

三、总结
提高的顶部和底部测得飞机的仰角为30°和45°,求飞机的高度PO .
变式3:如图,直升飞机在高为200米的大楼AB左侧P点处,测得大
楼的顶部仰角为45°,测得大楼底部俯角为30°,求飞机与大楼之间
的水平距离.
【总结基本模型】
选用题型的变式,目的
就是通过对这个问题的
分析,帮助学生把这一
类问题进行数学化,并
构建数学模型解决这一
类问题。

通过学生自己参与知识
的总结过程,经历知识
的“再发现”过程,提
高学生学习数学的能力
和兴趣。

当堂反馈1、一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA 与
CA的夹角为θ,现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽
度1米,则地毯的面积至少需要()米2
2、如图,水库大坝截面的迎水坡AD坡比为4:3,背水坡BC坡比为
1:2,大坝高DE=20m,坝顶宽CD=10m,则下底AB的长为()
3、如图,甲楼楼高16米,乙楼座落在甲楼的正北面,已知当地冬至
中午12时太阳光线与水平面的夹角为30°,求:
①如果两楼相距20米,那么甲楼的影子落在乙楼上米
②如果甲楼的影子不落在乙楼上,则两楼的距离至少是

对例题模型化分析的基
础上,进一步让学生利
用所学知识将实际问题
数学化,建立数学模型
解决实际问题。

提高学
生分析解决问题的能
力,检验学生的学习成
果,提高学生应用数学
的意识。

米.
4、如图,海岛A四周20海里周围内为暗礁区,一艘货轮由东向西航
行24海里到C,在B处观测岛A在北偏西60˚.在C观测岛A在北偏西30˚,货轮继续向西航行,有无触礁的危险?
课堂小结
这节课你学到了哪些知识?你有什么样的体会?给学生提供一个交流和倾听的机会。

让学生所学知识的总结,实现了自我的反馈,从而构建起自己的知识经验,形成自己的见解.
板书设计
直角三角形的应用专题复习一、
30度角所对的直角边等于斜边的一半


三角函数
仰角俯角、方位角、坡角坡比
二、例题:





应用。

相关文档
最新文档