中考数学试卷解析分类汇编第1期专题29平移旋转与对称

合集下载

2022年中考数学真题汇编:平移与旋转(含解析)

2022年中考数学真题汇编:平移与旋转(含解析)
(1)如图1,若连接 ,则 的形状为______, 的值为______;
(2)若将 沿直线l平移,并以 为一边在直线l的上方作等边 .
①如图2,当 与 重合时,连接 ,若 ,求 的长;
②如图3,当 时,连接 并延长交直线l于点F,连接 .求证: .
24.(2022北京)在平面直角坐标系 中,已知点 对于点 给出如下定义:将点 向右 或向左 平移 个单位长度,再向上 或向下 平移 个单位长度,得到点 ,点 关于点 的对称点为 ,称点 为点 的“对应点”.
A.(3,-3)B.(3,3)C.(-1,1)D.(-1,3)
【答案】解:根据图形平移的性质,B′(1-2,2+1),即B′(-1,3);
故选:D.
8.(2022铜仁)如图,等边 、等边 的边长分别为3和2.开始时点A与点D重合, 在 上, 在 上, 沿 向右平移,当点D到达点B时停止.在此过程中,设 、 重合部分的面积为y, 移动的距离为x,则y与x的函数图象大致为()
D.圆是中心对称图形,也是轴对称图形,故本选项正确.
故选:D.
2.(2022北部湾)2022北京冬残奥会的会徽是以汉字“飞”为灵感来设计的,展现了运动员不断飞跃,超越自我,奋力拼搏,激励世界的冬残奥精神下列的四个图中,能由如图所示的会徽经过平移得到的是()
A. B. C. D.
【答案】根据题意,得
不能由 平移得到,
A. B. C. D.
3.(2022毕节)下列垃圾分类标识的图案既是轴对称图形,又是中心对称图形的是()
A. B. C. D.
4.(2022广东)在平面直角坐标系中,将点 向右平移2个单位后,得到的点的坐标是()
A. B. C. D.
5.(2022福建)如图,现有一把直尺和一块三角尺,其中 , ,AB=8,点A对应直尺的刻度为12.将该三角尺沿着直尺边缘平移,使得△ABC移动到 ,点 对应直尺的刻度为0,则四边形 的面积是()

2020全国中考数学试卷分类汇编(2)专题29 平移旋转与对称

2020全国中考数学试卷分类汇编(2)专题29 平移旋转与对称

平移旋转与对称一、选择题1.(2020•辽宁省本溪市•3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A.是轴对称图形,不是中心对称图形,故本选项不合题意;B.既不是轴对称图形,也不是中心对称图形,故本选项不合题意;C.是轴对称图形,不是中心对称图形,故本选项不合题意;D.既是轴对称图形又是中心对称图形,故本选项符合题意.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(2020•山东省青岛市•3分)下列四个图形中,中心对称图形是()A.B.C.D.【分析】根据中心对称图形的概念结合各图形的特点求解.【解答】解:A.不是中心对称图形,不符合题意;B.不是中心对称图形,不符合题意;C.不是中心对称图形,不符合题意;D.是中心对称图形,符合题意.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念.判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.3.(2020•山东省青岛市•3分)如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是()A.(0,4) B.(2,-2) C.(3,-2) D.(-1,4)【分析】根据平移和旋转的性质,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,即可得点A的对应点A′的坐标.【解答】解:如图,△A′B′C′即为所求,则点A的对应点A′的坐标是(-1,4).故选D.【点评】本题考查了坐标与图形变换-旋转、平移,解决本题的关键是掌握旋转的性质.4.(2020•山东省青岛市•3分)如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O.若AE=5,BF=3,则AO的长为()A.B.C.2D.4【分析】由矩形的性质,折叠轴对称的性质,可求出AF=FC=AE=5,由勾股定理求出AB,AC,进而求出OA即可.【解答】解:∵矩形ABCD,∴AD∥BC,AD=BC,AB=CD,∴∠EFC=∠AEF,∴AE=AF=3,由折叠得,FC=AF,OA=OC,∴BC=3+5=8,在Rt△ABF中,AB==4,在Rt△ABC中,AC==4,∴OA=OC=2,故选C.【点评】本题考查矩形的性质、折叠轴对称的性质,勾股定理等知识,根据图形直观,求出线段的长是得出答案的前提.5. (2020•山东省潍坊市•3分)下列图形,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念依次对各项进行判断即可.【解答】解:A.不是轴对称图形,是中心对称图形,故此选项不符合题意;B.是轴对称图形,不是中心对称图形,故此选项不符合题意;C.是轴对称图形,也是中心对称图形,故此选项符合题意;D.是轴对称图形,不是中心对称图形,故此选项不符合题意;故选C.【点评】本题考查中心对称图形与轴对称图形的识别.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(2020•山东省枣庄市•3分)如图的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.B.C.D.【分析】根据平移,旋转的性质判断即可.【解答】解:由题意,选项A,C,D可以通过平移,旋转得到,选项B可以通过翻折,平移,旋转得到.故选B.【点评】本题考查利用旋转,平移设计图案,解题的关键是熟练掌握基本知识,属于中考常考题型.7.(2020•山东省枣庄市•3分)如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是() A.(-,3) B.(-3,) C.(-,2+) D.(-1,2+)【分析】如图,过点B′作B′H⊥y轴于H.解直角三角形求出′H,B′H即可.【解答】解:如图,过点B′作B′H⊥y轴于H.在Rt△A′B′H中,∵A′B′=2,∠B′A′H=60°,∴A′H=A′B′cos60°=1,B′H=A′B′sin60°=,∴OH=2+1=3,∴B′(-,3),故选A.【点评】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.8.(2020•山东省枣庄市•3分)如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A.3B.4 C.5 D.6【分析】根据折叠的性质得到AF=AB,∠AFE=∠B=90°,根据等腰三角形的性质得到AF=CF,于是得到结论.【解答】解:∵将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,∴AF=AB,∠AFE=∠B=90°,∴EF⊥AC,∵∠EAC=∠ECA,∴AE=CE,∴AF=CF,∴AC=2AB=6,故选D.【点评】本题考查了翻折变换的性质,矩形的性质,熟练掌握折叠的性质是解题的关键.9.(3分2020年辽宁省辽阳市)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A.是轴对称图形,不是中心对称图形,故本选项不合题意;B.既不是轴对称图形,也不是中心对称图形,故本选项不合题意;C.是轴对称图形,不是中心对称图形,故本选项不合题意;D.既是轴对称图形又是中心对称图形,故本选项符合题意.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10.(2020年山东省滨州市3分)如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平后再次折叠,使点A落在EF上的点A′处,得到折痕BM,BM与EF 相交于点N.若直线BA′交直线CD于点O,BC=5,EN=1,则OD的长为()A.B.C.D.【分析】根据中位线定理可得AM=2,根据折叠的性质和等腰三角形的性质可得A′M=A′N=2,过M点作MG⊥EF于G,可求A′G,根据勾股定理可求MG,进一步得到BE,再根据平行线分线段成比例可求OF,从而得到OD.【解答】解:∵EN=1,∴由中位线定理得AM=2,由折叠的性质可得A′M=2,∵AD∥EF,∴∠AMB=∠A′NM,∵∠AMB=∠A′MB,∴∠A′NM=∠A′MB,∴A′N=2,∴A′E=3,A′F=2过M点作MG⊥EF于G,∴NG=EN=1,∴A′G=1,由勾股定理得MG==,∴BE=OF=MG=,∴OF:BE=2:3,解得OF=,∴OD=﹣=.故选:B.【点评】考查了翻折变换(折叠问题),矩形的性质,勾股定理,关键是得到矩形的宽和A′E 的长.11.(2020年山东省滨州市3分)下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为()A.1 B.2 C.3 D.4 【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:线段是轴对称图形,也是中心对称图形;等边三角形是轴对称图形,不是中心对称图形;平行四边形不是轴对称图形,是中心对称图形;圆是轴对称图形,也是中心对称图形;则既是轴对称图形又是中心对称图形的有2个.故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.12.(2020山东省德州市4分)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A.不是轴对称图形,也不是中心对称图形.故此选项不合题意;B.是中心对称图形但不是轴对称图形.故此选项符合题意;C.既是轴对称图形,又是中心对称图形.故此选项不合题意;D.是轴对称图形,不是中心对称图形.故此选项不合题意.故选:B.【点评】此题主要中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.13.(2020•山东淄博市•4分)下列图形中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A.是轴对称图形,故本选项不符合题意;B.是轴对称图形,故本选项不符合题意;C.是轴对称图形,故本选项不符合题意;D.不是轴对称图形,故本选项符合题意.故选:D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.14. (2020•山东淄博市•4分)如图,放置在直线l上的扇形OAB.由图①滚动(无滑动)到图②,再由图②滚动到图③.若半径OA=2,∠AOB=45°,则点O所经过的最短路径的长是()A.2π+2 B.3πC.D.+2【分析】利用弧长公式计算即可.【解答】解:如图,点O的运动路径的长=的长+O1O2+的长=++=,故选:C.【点评】本题考查轨迹,弧长公式等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.15. (2020•陕西•3分)在平面直角坐标系中,将抛物线y=x2﹣(m﹣1)x+m(m>1)沿y轴向下平移3个单位.则平移后得到的抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据平移规律得到平移后抛物线的顶点坐标,然后结合m的取值范围判断新抛物线的顶点所在的象限即可.【解答】解:∵y =x 2﹣(m ﹣1)x+m =(x ﹣)2+m ﹣,∴该抛物线顶点坐标是(,m ﹣), ∴将其沿y 轴向下平移3个单位后得到的抛物线的顶点坐标是(,m ﹣﹣3), ∵m >1,∴m ﹣1>0, ∴>0, ∵m ﹣﹣3===﹣﹣1<0,∴点(,m ﹣﹣3)在第四象限; 故选:D . 【点评】本题考查了二次函数的图象与性质、平移的性质、抛物线的顶点坐标等知识;熟练掌握二次函数的图象和性质,求出抛物线的顶点坐标是解题的关键.16. (2020•四川省成都市•3分)在平面直角坐标系中,将点(3,2)P 向下平移2个单位长度得到的点的坐标是( )A. (3,0)B. (1,2)C. (5,2)D. (3,4) 【答案】A【解析】【分析】根据点的坐标平移规律“左减右加,下减上加”,即可解答.【详解】解:将点P ()3,2向下平移2个单位长度所得到的点坐标为()3,22-,即()3,0, 故选:A .【点睛】此题主要考查了坐标与图形的变化,关键是掌握点的坐标的变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.17. (2020•四川省甘孜州•3分)在平面直角坐标系中,点()2,1-关于x 轴对称的点是( )A. ()2,1B. (1,2)-C. ()1,2-D. ()2,1--【答案】A【解析】【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数'解答即可.【详解】解:点()2,1P -关于x 轴对称的点的坐标是()2,1,故选:A【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数.18. (2020•山东菏泽市•3分)如图,将△ABC 绕点A 顺时针旋转角α,得到△ADE ,若点E 恰好在CB 的延长线上,则∠BED 等于( )A .B .αC .αD .180°﹣α【分析】证明∠ABE+∠ADE =180°,推出∠BAD+∠BED =180°即可解决问题.【解答】解:∵∠ABC =∠ADE ,∠ABC+∠ABE =180°,∴∠ABE+∠ADE =180°,∴∠BAD+∠BED =180°,∵∠BAD =α,∴∠BED =180°﹣α.故选:D .【点评】本题考查旋转的性质,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.19.(2020•山东聊城市•3分)如图,在Rt△ABC中,AB=2,∠C=30°,将Rt△ABC绕点A旋转得到Rt△AB′C′,使点B的对应点B′落在AC上,在B′C′上取点D,使B′D=2,那么点D到BC的距离等于()A.2(+1)B.+1 C.﹣1 D.+1【分析】根据直角三角形的性质得到BC=2,AC=4,根据旋转的性质得到AB′=AB =2,B′C′=BC=2,求得B′C=2,延长C′B′交BC于F,解直角三角形即可得到结论.【解答】解:∵在Rt△ABC中,AB=2,∠C=30°,∴BC=2,AC=4,∵将Rt△ABC绕点A旋转得到Rt△AB′C′,使点B的对应点B′落在AC上,∴AB′=AB=2,B′C′=BC=2,∴B′C=2,延长C′B′交BC于F,∴∠CB′F=∠AB′C′=90°,∵∠C=30°,∴∠CFB′=60°,B′F=B′C=,∵B′D=2,∴DF=2+,过D作DE⊥BC于E,∴DE=DF=×(2+)=+1,故选:D.【点评】本题考查了旋转的性质,直角三角形的性质,正确的作出辅助线是解题的关键.20. (2020•甘肃省天水市•4分)下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.【答案】C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项进行分析判断即可得出答案.【详解】解:A.是轴对称图形但不是中心对称图形,故错误;B.既是轴对称图形也是中心对称图形,故错误;C.是中心对称图形,但不是轴对称图形,故正确;D.是轴对称图形但不是中心对称图形,故错误;故选:C.【点睛】本题考查了轴对称图形与中心对称图形的定义,轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后两部分能够完全重合;中心对称图形的关键是寻找对称中心,旋转180°后两部分能够重合.21.(2020•福建省•4分)下列给出的等边三角形、平行四边形、圆及扇形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A.等边三角形是轴对称图形,不是中心对称图形;B.平行四边形不是轴对称图形,是中心对称图形;C.圆既是轴对称图形又是中心对称图形;D.扇形是轴对称图形,不是中心对称图形.故选:C.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.22.(2020•北京市•2分)下列图形中,既是中心对称图形也是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A.既不是轴对称图形,也不是中心对称图形,故此选项不合题意;B.既不是轴对称图形,也不是中心对称图形,故此选项不合题意;C.不是轴对称图形,是中心对称图形,不合题意;D.既是中心对称图形,又是轴对称图形,符合题意.故选:D.【点评】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.23.(2020•安徽省•4分)如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.【分析】分为0<x≤2.2<x≤4两种情况,然后依据等边三角形的性质和三角形的面积公式可求得y与x的函数关系式,于是可求得问题的答案.【解答】解:如图1所示:当0<x≤2时,过点G作GH⊥BF于H.∵△ABC和△DEF均为等边三角形,∴△GEJ为等边三角形.∴GH=EJ=x,∴y=EJ•GH=x2.当x=2时,y=,且抛物线的开口向上.如图2所示:2<x≤4时,过点G作GH⊥BF于H.y=FJ•GH=(4﹣x)2,函数图象为抛物线的一部分,且抛物线开口向上.故选:A.【点评】本题主要考查的是动点问题的函数图象,求得函数的解析式是解题的关键.24. (2020•四川省泸州市•3分)下列正多边形中,不是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念结合选项的图形进行判断即可.【解答】解:A.正方形是中心对称图形,故本选项不合题意;B.正五边形不是中心对称图形,故本选项符合题意;C.正六边形是中心对称图形,故本选项不合题意;D.正八边形是中心对称图形,故本选项不合题意;故选:B.【点评】本题考查了中心对称图形的知识,要注意中心对称图形是要寻找对称中心,旋转180度后重合.25. (2020•四川省乐山市•3分)数轴上点A 表示的数是3-,将点A 在数轴上平移7个单位长度得到点B .则点B 表示的数是( )A. 4B. 4-或10C. 10-D. 4或10-【答案】D【解析】【分析】根据题意,分两种情况,数轴上的点右移加,左移减,求出点B 表示的数是多少即可.【详解】解:点A 表示的数是−3,左移7个单位,得−3−7=−10,点A 表示的数是−3,右移7个单位,得−3+7=4,故选:D .【点睛】此题主要考查了数轴的特征和应用,要熟练掌握,解答此题的关键是要明确:数轴上的点右移加,左移减.26. (2020•四川省内江市•3分)如图,矩形ABCD 中,BD 为对角线,将矩形ABCD 沿BE.BF 所在直线折叠,使点A 落在BD 上的点M 处,点C 落在BD 上的点N 处,连结EF .已知AB =3,BC =4,则EF 的长为( )A .3B .5C .D .【分析】求出BD =5,AE =EM ,∠A =∠BME =90°,证明△EDM ∽△BDA ,由相似三角形的性质得出,设DE =x ,则AE =EM =4﹣x ,得出,解得x =,同理△DNF∽△DCB,得出,设DF=y,则CF=NF=3﹣y,则,解得y=.由勾股定理即可求出EF的长.【解答】解:∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=4,∠A=∠C=∠EDF=90°,∴BD===5,∵将矩形ABCD沿BE所在直线折叠,使点A落在BD上的点M处,∴AE=EM,∠A=∠BME=90°,∴∠EMD=90°,∵∠EDM=∠ADB,∴△EDM∽△BDA,∴,设DE=x,则AE=EM=4﹣x,∴,解得x=,∴DE=,同理△DNF∽△DCB,∴,设DF=y,则CF=NF=3﹣y,∴,解得y=.∴DF=.∴EF===.故选:C.【点评】本题考查了翻折的性质,勾股定理,矩形的性质,相似三角形的判定与性质;熟练掌握翻折变换的性质,证明三角形相似是解题的关键.二、填空题1.(2020•宁夏省•3分)如图,直线y=x+4与x轴、y轴分别交于A.B两点,把△AOB绕点B逆时针旋转90°后得到△A1O1B,则点A1的坐标是(4,).【分析】首先根据直线AB来求出点A和点B的坐标,A1的横坐标等于OB,而纵坐标等于OB﹣OA,即可得出答案.【解答】解:在中,令x=0得,y=4,令y=0,得,解得x=,∴A(,0),B(0,4),由旋转可得△AOB≌△A1O1B,∠ABA1=90°,∴∠ABO=∠A1BO1,∠BO1A1=∠AOB=90°,OA=O1A1=,OB=O1B=4,∴∠OBO1=90°,∴O1B∥x轴,∴点A1的纵坐标为OB﹣OA的长,即为4=;横坐标为O1B=OB=4,故点A1的坐标是(4,),故答案为:(4,).【点评】本题主要考查了旋转的性质以及一次函数与坐标轴的交点问题,利用基本性质结合图形进行推理是解题的关键.2.(2020•四川省达州市•3分)如图,点P(﹣2,1)与点Q(a,b)关于直线1(y=﹣1)对称,则a+b=﹣5.【分析】利用轴对称的性质求出等Q的坐标即可.解:∵点P(﹣2,1)与点Q(a,b)关于直线1(y=﹣1)对称,∴a=﹣2,b=﹣3,∴a+b=﹣2﹣3=﹣5,故答案为﹣5.3. (2020•山东淄博市•4分)如图,将△ABC沿BC方向平移至△DEF处.若EC=2BE=2,则CF的长为1.【分析】利用平移的性质得到BE=CF,然后利用EC=2BE=2得到BE的长,从而得到CF的长.【解答】解:∵△ABC沿BC方向平移至△DEF处.∴BE=CF,∵EC=2BE=2,∴BE=1,∴CF=1.故答案为1.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.4. 2020年青海省.如图,将周长为8的ABC 沿BC 边向右平移2个单位,得到DEF ,则四边形ABFD 的周长为________.【答案】12【解析】【分析】先根据平移的性质可得,2AC DF CF AD ===,再根据三角形的周长公式可得8AB BC AC ++=,然后根据等量代换即可得.【详解】由平移的性质得:,2AC DF CF AD === ABC 的周长为88AB BC AC ∴++=则四边形ABFD 的周长为()AB BF DF AD AB BC CF AC AD +++=++++22AB BC AC =++++822=++12=故答案为:12.【点睛】本题考查了平移的性质等知识点,掌握理解平移的性质是解题关键.5. (2020•山东聊城市•3分)如图,在直角坐标系中,点A (1,1),B (3,3)是第一象限角平分线上的两点,点C 的纵坐标为1,且CA =CB ,在y 轴上取一点D ,连接AC ,BC ,AD ,BD ,使得四边形ACBD 的周长最小,这个最小周长的值为 4+2 .【分析】根据平行线的性质得到∠BAC =45°,得到∠C =90°,求得AC =BC =2,作B关于y轴的对称点E,连接AE交y轴于D,则此时,四边形ACBD的周长最小,这个最小周长的值=AC+BC+AE,过E作EF⊥AC交CA的延长线于F,根据勾股定理即可得到结论.【解答】解:∵点A(1,1),点C的纵坐标为1,∴AC∥x轴,∴∠BAC=45°,∵CA=CB,∴∠ABC=∠BAC=45°,∴∠C=90°,∵B(3,3)∴C(3,1),∴AC=BC=2,作B关于y轴的对称点E,连接AE交y轴于D,则此时,四边形ACBD的周长最小,这个最小周长的值=AC+BC+AE,过E作EF⊥AC交CA的延长线于F,则EF=BC=2,AF=6﹣2=4,∴AE===2,∴最小周长的值=AC+BC+AE=4+2,故答案为:4+2.【点评】本题考查了轴对称﹣最短路线问题,坐标与图形的性质,勾股定理,正确的作出辅助线是解题的关键.6. (2020•甘肃省天水市•4分)如图,在边长为6的正方形ABCD 内作45EAF ∠=︒,AE 交BC 于点E ,AF 交CD 于点F ,连接EF ,将ADF ∆绕点A 顺时针旋转90︒得到ABG ,若3DF =,则BE 的长为__________.【答案】2【解析】【分析】根据旋转的性质可得AG=AF ,GB=DF ,∠BAG=∠DAF ,然后根据正方形的性质和等量代换可得∠GAE=∠FAE ,进而可根据SAS 证明△GAE ≌△FAE ,可得GE=EF ,设BE=x ,则CE 与EF 可用含x 的代数式表示,然后在Rt △CEF 中,由勾股定理可得关于x 的方程,解方程即得答案.【详解】解:∵将△ADF 绕点A 顺时针旋转90︒得到△ABG ,∴AG=AF ,GB=DF ,∠BAG=∠DAF ,∵45EAF ∠=︒,∠BAD=90°,∴∠BAE+∠DAF=45°,∴∠BAE+∠BAG=45°,即∠GAE=45°,∴∠GAE=∠FAE ,又AE=AE ,∴△GAE ≌△FAE (SAS ),∴GE=EF ,设BE=x ,则CE=6-x ,EF=GE=DF+BE=3+x ,∵DF=3,∴CF=3,在Rt △CEF 中,由勾股定理,得:()()222633x x -+=+,解得:x=2,即BE=2.故答案为:2.【点睛】本题考查了旋转的性质、正方形的性质、全等三角形的判定和性质以及勾股定理等知识,属于常考题型,熟练掌握上述基本知识、灵活应用方程思想是解题的关键.7.(2020•山东省泰安市•4分)如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A,B,C的坐标分别为A(0,3),B(-1,1),C(3,1).△A'B'C′是△ABC关于x轴的对称图形,将△A'B'C'绕点B'逆时针旋转180°,点A'的对应点为M,则点M的坐标为.【分析】延长A'B'后得出点M,进而利用图中坐标解答即可.【解答】解:将△A'B'C'绕点B'逆时针旋转180°,如图所示:所以点M的坐标为(-2,1),故答案为:(-2,1).【点评】此题考查中心对称,关键是根据中心对称的性质画出图形解答.8.(2020•山东省潍坊市•3分)如图,矩形ABCD中,点G,E分别在边BC,DC上,连接AC,EG,AE,将△ABG和△ECG分别沿AG,EG折叠,使点B,C恰好落在AE上的同一点,记为点F.若CE=3,CG=4,则sin∠DAE=.【分析】根据折叠的性质结合勾股定理求得GE=5,BC=AD=8,证得Rt△EGF∽Rt△EAG,求得,再利用勾股定理得到DE的长,即可求解.【解答】解:矩形ABCD中,GC=4,CE=3,∠C=90°,∴GE=,根据折叠的性质:BG=GF,GF=GC=4,CE=EF=3,∠AGB=∠AGF,∠EGC=∠EGF,∠GFE=∠C=90°,∠B=∠AFG=90°,∴BG=GF=GC=4,∠AFG+∠EFG=90°,∴BC=AD=8,点A,点F,点E三点共线,∵∠AGB+∠AGF+∠EGC+∠EGF=180°,∴∠AGE=90°,∴Rt△EGF∽Rt△EAG,∴,即,∴,∴DE=,∴,故答案为.【点评】本考查了翻折变换,矩形的性质,勾股定理的应用,相似三角形的判定和性质,锐角三角形函数的知识等,利用勾股定理和相似三角形的性质求线段的长度是本题的关键.三、解答题1.(2020•宁夏省•6分)在平面直角坐标系中,△ABC的三个顶点的坐标分别是A(1,3),B(4,1),C(1,1).(1)画出△ABC关于x轴成轴对称的△A1B1C1;(2)画出△ABC以点O为位似中心,位似比为1:2的△A2B2C2.【分析】(1)将△ABC的各个点关于x轴的对称点描出,连接即可.(2)在△ABC同侧和对侧分别找到2OA=OA2,2OB=OB2,2OC=OC2所对应的A2,B2,C2的坐标,连接即可.【解答】解:(1)由题意知:△ABC的三个顶点的坐标分别是A(1,3),B(4,1),C (1,1),则△ABC关于x轴成轴对称的△A1B1C1的坐标为A1(1,﹣3),B1(4,﹣1),C1(1,﹣1),连接A1C1,A1B1,B1C1得到△A1B1C1.如图所示△A1B1C1为所求;(2)由题意知:位似中心是原点,则分两种情况:第一种,△A2B2C2和△ABC在同一侧则A2(2,6),B2(8,2),C2(2,2),连接各点,得△A2B2C2.第二种,△A2B2C2在△ABC的对侧A2(﹣2,﹣6),B2(﹣8,﹣2),C2(﹣2,﹣2),连接各点,得△A2B2C2.综上所述:如图所示△A2B2C2为所求;【点评】本题主要考查了位似中心、位似比和轴对称相关知识点,正确掌握位似中心、位似比的概念及应用是解题的关键.2.(2020•内蒙古包头市•10分)如图,在Rt ABC 中,90ACB ∠=︒,4,2AC BC ==,Rt ABC 绕点C 按顺时针方向旋转得到Rt A B C ''△,A C '与AB 交于点D .(1)如图,当//A B AC ''时,过点B 作BE A C '⊥,垂足为E ,连接AE .①求证:AD BD =;②求ACE ABE S S 的值;(2)如图,当A C AB '⊥时,过点D 作//DM A B '',交B C '于点N ,交AC 的延长线于点M ,求DN NM的值.【答案】(1)①见解析;②13;(2)3 【解析】【分析】 (1)①根据旋转性质可知∠A=∠A´,根据平行线的性质可知∠ACA´=∠A´,得到∠A=∠ACA´,推出AD=CD ,再由等角的余角相等可得∠BCD=∠CBD ,推出CD=BD ,最后推出结论;②在Rt △BCE 中,BC=2,可根据相似三角形的判定和性质求出BE.CE 的长,过点E 作EM ⊥AC 于M ,则可求出EM ,即可求得S △BEC.S △ACE.S △ABC.S △ABE ,进而求得答案; (2)根据勾股定理求出AB 长,根据三角形面积相等求出CD ,由相似三角形的判定可知△CDB ∽△ADC ,推出CD 2=BD·AD ,求得AD 的值,根据平行线分线段成比例定理可知CD CN A C B C ='',求出CN ,由B´C ∥A 得出CN MN AD MD =的值,进而求得DN NM的值即可. 【详解】(1)①∵Rt ABC 绕点C 按顺时针方向旋转得到Rt A B C ''△,∴∠A=∠A´,∵//A B AC ''∴∠ACA´=∠A´,∴∠ACA´=∠A ,∴AD=CD ,∵∠ACD+∠BCD=90°,∠A+∠ABC=90°∴∠BCD=∠ABC∴BD=CD∴AD=BD ,②∵∠BCD=∠ABC=∠CEM ,∠ACB=∠BEC=∠EMC=90°∴△ACB ∽△BEC ∽△CME ,BC=2,AC=4 ∴2142BC EC EM AC BC CM ==== 设CE=x ,在Rt △CEB 中,BE=2x ,BC=2,则()22222x x += 解得25x =即25EC =,BE=45 同理可得:EM=25∴S △BEC =1125454225EC BE ⋅⋅=⨯⨯= S △ACE =112442255AC EM ⋅⋅=⨯⨯= S △ABC =1142422AC BC ⋅⋅=⨯⨯= S △ABE = S △ABC -S △ACE -S △BEC 44124555--= ∴ACE ABE S S =4151235=(2)在Rt △ABC 中,BC=2,AC=4,则222+4=25∴1124=2522CD ⨯⨯⨯⨯ 解得:CD=455 ∵∠A=∠BCD ,∠ADC=∠BDC∴△ADC ∽△BDC∴CD 2=BD·AD即()245=25-5AD AD ⎛⎫⋅ ⎪⎝⎭ 解得:AD=855∵DM ∥A´B´∴∠A´=∠CDM ,∠A´CB´=∠DAN∴△CDN ∽△CA´B´∴CN CD B C A C ='',即45252545CD CN B C A C '=⋅=⨯=' ∵∠ADC=∠A´CB´=90°∴CN ∥AB∴2515==8458MN CN DM AD = ∴4DM NM= ∴3DN NM=【点睛】本题考查是三角形旋转综合题,涉及到旋转的性质、相似三角形的判定和性质、勾股定理、平行线分线段成比例定理、三角形的面积、等腰三角形的判定等知识,熟练掌握并灵活运用这些知识是解题的关键.3. (2020•山东省威海市•12分)发现规律(1)如图①,△ABC与△ADE都是等边三角形,直线BD,CE交于点F.直线BD,AC交于点H.求∠BFC的度数.(2)已知:△ABC与△ADE的位置如图②所示,直线BD,CE交于点F.直线BD,AC交于点H.若∠ABC=∠ADE=α,∠ACB=∠AED=β,求∠BFC的度数.应用结论(3)如图③,在平面直角坐标系中,点O的坐标为(0,0),点M的坐标为(3,0),N为y 轴上一动点,连接MN.将线段MN绕点M逆时针旋转60°得到线段MK,连接NK,OK.求线段OK长度的最小值.【分析】(1)由“SAS”可证△BAD≌△CAE,可得∠ABD=∠ACE,由三角形内角和定理可求解;(2)通过证明△ABC∽△ADE,可得∠BAC=∠DAE,,可证△ABD∽△ACE,可得∠ABD=∠ACE,由外角性质可得∠BFC=∠BAC,由三角形内角和定理可求解;(3)由旋转的性质可得△MNK是等边三角形,可得MK=MN=NK,∠NMK=∠NKM=∠KNM=60°,如图③,将△MOK绕点M顺时针旋转60°,得到△MQN,连接OQ,可得∠OMQ=60°,OK=NQ,MO=MQ,则当NQ为最小值时,OK有最小值,由垂线段最短可得当QN⊥y轴时,NQ有最小值,由直角三角形的性质可求解.【解答】解:(1)如图①,∵△ABC,△ADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°=∠ABC=∠ACB,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE,∵∠ABD+∠EBC=∠ABC=60°,∴∠ACE+∠EBC=60°,∴∠BFC=180°-∠EBC-∠ACE-∠ACB=60°;(2)如图②,∵∠ABC=∠ADE=α,∠ACB=∠AED=β,∴△ABC∽△ADE,∴∠BAC=∠DAE,,∴∠BAD=∠CAE,,∴△ABD∽△ACE,∴∠ABD=∠ACE,∵∠BHC=∠ABD+∠BAC=∠BFC+∠ACE,∴∠BFC=∠BAC,∵∠BAC+∠ABC+∠ACB=180°,∴∠BFC+α+β=180°,∴∠BFC=180°-α-β;(3)∵将线段MN绕点M逆时针旋转60°得到线段MK,∴MN=NK,∠MNK=60°,∴△MNK是等边三角形,∴MK=MN=NK,∠NMK=∠NKM=∠KNM=60°,如图③,将△MOK绕点M顺时针旋转60°,得到△MQN,连接OQ,。

2020年全国中考数学试卷分类汇编(一)专题29 平移旋转与对称(含解析)

2020年全国中考数学试卷分类汇编(一)专题29 平移旋转与对称(含解析)

平移旋转与对称一.选择题1.(2020•广东省•3分)把函数y=(x﹣1)2+2的图象向右平移1个单位长度,平移后图象的函数解析式为A.y=x2+2 B.y=(x﹣1)2+1C.y=(x﹣2)2+2 D.y=(x﹣1)2+3【答案】C【解析】左加右减,向右x变为x-1,y=(x﹣1﹣1)2+2y=(x﹣2)2+2 .【考点】函数的平移问题.2.(2020•广东省广州市•3分)如图所示的圆锥,下列说法正确的是()A. 该圆锥的主视图是轴对称图形B. 该圆锥的主视图是中心对称图形C. 该圆锥的主视图既是轴对称图形,又是中心对称图形D. 该圆锥的主视图既不是轴对称图形,又不是中心对称图形【答案】A【解析】【分析】首先判断出圆锥的主视图,再根据主视图的形状判断是轴对称图形,还是中心对称图形,从而可得答案.【详解】解:圆锥的主视图是一个等腰三角形,所以该圆锥的主视图是轴对称图形,不是中心对称图形,故A正确,该圆锥的主视图是中心对称图形,故B错误,该圆锥的主视图既是轴对称图形,又是中心对称图形,故C错误,该圆锥的主视图既不是轴对称图形,又不是中心对称图形,故D错误,故选A.【点睛】本题考查的简单几何体的三视图,同时考查了轴对称图形与中心对称图形的识别,掌握以上知识是解题的关键.3.(2020•广西省玉林市•3分)把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y=﹣a(x﹣1)2+4a,若(m﹣1)a+b+c≤0,则m的最大值是()A.﹣4 B.0 C.2 D.6【分析】根据关于x轴对称的点的坐标特征得出原二次函数的顶点为(1,﹣4a),即可得出原二次函数为y=a(x﹣1)2﹣4a=ax2﹣2ax﹣3a,和y=ax2+bx+c比较即可得出b =﹣2a,c=﹣3a,代入(m﹣1)a+b+c≤0,即可得到m≤6.【解答】解:∵把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y=﹣a(x﹣1)2+4a,∴原二次函数的顶点为(1,﹣4a),∴原二次函数为y=a(x﹣1)2﹣4a=ax2﹣2ax﹣3a,∴b=﹣2a,c=﹣3a,∵(m﹣1)a+b+c≤0,∴(m﹣1)a﹣2a﹣3a≤0,∵a>0,∴m﹣1﹣2﹣3≤0,即m≤6,∴m的最大值为6,故选:D.【点评】本题考查了二次函数图象与系数的关系,作关于x轴的对称的点的坐标特征,二次函数的图象与几何变换,得到b=﹣2a,c=﹣3a是解题的关键.4.(2020•江苏省无锡市•3分)下列图形中,是轴对称图形但不是中心对称图形的是() A.圆B.等腰三角形C.平行四边形D.菱形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A.圆既是中心对称图形,也是轴对称图形,故此选项不合题意;B.等腰三角形是轴对称图形但不是中心对称图形,故本选项符合题意;C.平行四边形是中心对称图形但不是轴对称图形,故此选项不合题意;D.菱形是中心对称图形但不是轴对称图形,故此选项不合题意.故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后重合.5.(2020•江苏省徐州市•3分)下列垃圾分类标识的图案既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答】解:A.不是中心对称图形,不是轴对称图形,故此选项不合题意;B.不是中心对称图形,是轴对称图形,故此选项不合题意;C.既是中心对称图形,也是轴对称图形,故此选项符合题意;D.不是中心对称图形,不是轴对称图形,故此选项不合题意;故选:C.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(2020•江苏省盐城市•3分)下列图形中,属于中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A.此图案不是中心对称图形,不符合题意;B.此图案是中心对称图形,符合题意;C.此图案不是中心对称图形,不符合题意;D.此图案不是中心对称图形,不符合题意;故选:B.【点评】此题主要考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.(2020•湖北武汉•3分)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴求解即可.【解答】解:A.不是轴对称图形,不合题意;B.不是轴对称图形,不合题意;C.是轴对称图形,符合题意;D.不是轴对称图形,不合题意;故选:C.【点评】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.8. (2020•湖南省湘潭市·3分)下列图形中,不是中心对称图形的是()A.B.C.D.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【解答】解:A.是中心对称图形,故此选项不符合题意;B.是中心对称图形,故此选项不符合题意;C.是中心对称图形,故此选项不符合题意;D.是轴对称图形,不是中心对称图形,故此选项符合题意;故选:D.【点评】此题主要考查了中心对称图形,解题的关键是要寻找对称中心,旋转180度后两部分重合.9.(2020•河北省•3分)如图,将△ABC绕边AC的中点O顺时针旋转180°.嘉淇发现,旋转后的△CDA与△ABC构成平行四边形,并推理如下:小明为保证嘉淇的推理更严谨,想在方框中“∵CB=AD,”和“∴四边形…”之间作补充,下列正确的是()A.嘉淇推理严谨,不必补充B.应补充:且AB=CDC.应补充:且AB∥CDD.应补充:且OA=OC【分析】根据两组对边分别相等的四边形是平行四边形判定即可.【解答】解:∵CB=AD,AB=CD,∴四边形ABCD是平行四边形,故选:B.【点评】本题考查平行四边形的判定,旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.10. (2020•湖南省长沙市·3分)下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念结合各图形的特点求解即可.【解答】解:A.既不是轴对称图形,也不是中心对称图形,故此选项不合题意;B.是轴对称图形,不是中心对称图形,故此选项符合题意;C.既不是轴对称图形,也不是中心对称图形,故此选项不合题意;D.不是轴对称图形,是中心对称图形,故此选项不合题意;故选:B.【点评】本题考查了中心对称图形和轴对称图形的知识,注意掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.11.(2020•湖北孝感•3分)如图,点E在正方形ABCD的边CD上,将△ADE绕点A顺时针旋转90°到△ABF的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G.若BG=3,CG=2,则CE的长为()A.B.C.4 D.【分析】连接EG,根据AG垂直平分EF,即可得出EG=FG,设CE=x,则DE=5﹣x =BF,FG=EG=8﹣x,再根据Rt△CEG中,CE2+CG2=EG2,即可得到CE的长.【解答】解:如图所示,连接EG,由旋转可得,△ADE≌△ABF,∴AE=AF,DE=BF,又∵AG⊥EF,∴H为EF的中点,∴AG垂直平分EF,∴EG=FG,设CE=x,则DE=5﹣x=BF,FG=8﹣x,∴EG =8﹣x ,∵∠C =90°,∴Rt △CEG 中,CE 2+CG 2=EG 2,即x 2+22=(8﹣x )2,解得x =,∴CE 的长为, 故选:B .【点评】本题主要考查了正方形的性质以及旋转的性质,解题时注意:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.12. (2020•江苏省连云港市•3分)如图,将矩形纸片ABCD 沿BE 折叠,使点A 落在对角线BD 上的A '处.若∠DBC =24°,则∠A 'EB 等于( )A .66°B .60°C .57°D .48°【分析】由矩形的性质得∠A =∠ABC =90°,由折叠的性质得∠BA 'E =∠A =90°,∠A 'BE =∠ABE =(90°﹣∠DBC )=33°,即可得出答案.【解答】解:∵四边形ABCD 是矩形,∴∠A =∠ABC =90°,由折叠的性质得:∠BA 'E =∠A =90°,∠A 'BE =∠ABE ,∴∠A 'BE =∠ABE =(90°﹣∠DBC )=(90°﹣24°)=33°,∴∠A 'EB =90°﹣∠A 'BE =90°﹣33°=57°;故选:C .【点评】本题考查了矩形的性质、折叠的性质以及直角三角形的性质;熟练掌握矩形的性质和折叠的性质是解题的关键.13. (2020•江苏省苏州市•3分)如图,在ABC ∆中,108BAC ∠=︒,将ABC ∆绕点A 按逆时针方向旋转得到AB C ''∆.若点B '恰好落在BC 边上,且AB CB ''=,则C '∠的度数为( )。

平移、旋转与对称-历届中考真题汇总专题(含解析答案)(原卷版)

 平移、旋转与对称-历届中考真题汇总专题(含解析答案)(原卷版)

备战2015中考系列:数学2年中考1年模拟第五篇图形的变化专题26 平移、旋转与对称☞解读考点知识点名师点晴图形的平移1.平移的概念知道什么是图形的平移。

2.平移的性质掌握平移的性质。

3.平移的条件了解平移条件。

4.平移作图能准确利用平移作图。

图形的旋转 5.旋转的定义知道什么是旋转。

6.旋转的性质掌握旋转的性质。

7.中心对称及中心对称图形了解中心对称和中心对称图形概念,能区分两个概念。

8.中心对称的性质能掌握中心对称的性质,能正确作图。

图形的轴对称 9.轴对称、轴对称图形的定义能区别两个概念。

10.轴对称的性质能正确应用性质。

11.轴对称作图会正确作出一个图形关于某直线的轴对称图形。

☞2年中考[2014年题组]1. (2014年广西来宾)将点P(﹣2,3)向右平移3个单位得到点P1,点P2与点P1关于原点对称,则P2的坐标是【】A.(﹣5,﹣3)B.(1,﹣3)C.(﹣1,﹣3)D.(5,﹣3)2. (2014年广西玉林、防城港)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x ,两个三角形重叠面积为y ,则y 关于x 的函数图象是【 】A .B .C .D .3. (2014年贵州遵义)如图,已知△ABC 中,∠C=90°,AC=BC=,将△ABC 绕点A 顺时针方向旋转60°到△AB′C′的位置,连接C′B ,则C′B 的长为【 】A .22-B .32C .31-D .1 4. (2014年江苏苏州)如图,△AOB 为等腰三角形,顶点A 的坐标为(2,5),底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A'O'B ,点A 的对应点A'在x 轴上,则点O'的坐标为【 】A .(203,103) B .(16345) C .(20345) D .(163,35.(2014年贵州黔东南)如图,在矩形ABCD 中,AB=8,BC=16,将矩形ABCD 沿EF 折叠,使点C 与点A 重合,则折痕EF 的长为【 】A.6 B.12 C.25D.456.(2014年湖南邵阳)如图,A点的初始位置位于数轴上的原点,现对A点做如下移动:第1次从原点向右移动1个单位长度至B点,第2次从B点向左移动3个单位长度至C点,第3次从C点向右移动6个单位长度至D点,第4次从D点向左移动9个单位长度至E点,…,依此类推,这样至少移动▲ 次后该点到原点的距离不小于41.7.(2014年黑龙江齐齐哈尔、大兴安岭地区、黑河)如图,在在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,得到等腰直角三角形A2014OB2014,则点A2014的坐标为▲ .8.(2014年湖南张家界)如图,AB、CD是⊙O两条弦,AB=8,CD=6,MN是直径,AB⊥MN于E,CD⊥MN 于点F,P为EF上任意一点,,则PA+PC的最小值为▲ .9. (2014年江苏连云港)如图1,将正方形纸片ABCD对折,使AB与CD重合,折痕为EF,如图2,展开再折叠一次,使点C与点E重合,折痕为GH,点B的对应点为M,EM交AB于N,则tan∠ANE= ▲ .10.(2014年辽宁本溪)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC 不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.[2013年题组]1. (2013年湖北荆门)如下图所示,已知等腰梯形ABCD,AD∥BC,若动直线l垂直于BC,且向右平移,设扫过的阴影部分的面积为S,BP为x,则S关于x的函数图象大致是【】A.B.C.D.2. (2013年湖北荆州)如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线kyx(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是【】A.1 B.2 C.3 D.43. (2013年湖北恩施)如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x轴围成的面积为【】A.122π+B.12π+C.1π+D.3-4. (2013年贵州黔东南)如图,直线y=2x与双曲线2yx=在第一象限的交点为A,过点A作AB⊥x轴于B,将△ABO绕点O旋转90°,得到△A′B′O,则点A′的坐标为【】A.(1.0)B.(1.0)或(﹣1.0)C.(2.0)或(0,﹣2)D.(﹣2.1)或(2,﹣1)5. (2013年江苏苏州)如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,3),点C的坐标为(12,0),点P为斜边OB上的一动点,则PA+PC的最小值为【】A .132B .312 C .3192+ D .276.(2013年湖南岳阳)夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘周长为280m ,且桥宽忽略不计,则小桥总长为 ▲ m .7.(2013年黑龙江牡丹江市区)菱形ABCD 在平面直角坐标系中的位置如图所示,A (0,6),D (4,0),将菱形ABCD 先向左平移5个单位长度,再向下平移8个单位长度,然后在坐标平面内绕点O 旋转90°,则边AB 中点的对应点的坐标为 ▲ .8. (2013年河南省)如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B'处,当△CEB '为直角三角形时,BE 的长为 ▲ .9. ( 2013年广西钦州)如图,在正方形ABCD 中,E 是AB 上一点,BE=2,AE=3BE ,P 是AC 上一动点,则PB+PE 的最小值是 ▲ .10.(2013年湖北随州)在平面直角坐标系xOy 中,矩形ABCO 的顶点A 、C 分别在y 轴、x 轴正半轴上,点P 在AB 上,PA=1,AO=2.经过原点的抛物线2y mx x n =-+的对称轴是直线x=2. (1)求出该抛物线的解析式.(2)如图1,将一块两直角边足够长的三角板的直角顶点放在P点处,两直角边恰好分别经过点O和C.现在利用图2进行如下探究:①将三角板从图1中的位置开始,绕点P顺时针旋转,两直角边分别交OA、OC于点E、F,当点E和点A重合时停止旋转.请你观察、猜想,在这个过程中,PEPF的值是否发生变化?若发生变化,说明理由;若不发生变化,求出PEPF的值.②设(1)中的抛物线与x轴的另一个交点为D,顶点为M,在①的旋转过程中,是否存在点F,使△DMF 为等腰三角形?若不存在,请说明理由.☞考点归纳归纳 1:判断图形的平移基础知识归纳:把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移变换,简称平移。

图形的平移翻折对称(共30题)(解析版)--2023年中考数学真题分项汇编

图形的平移翻折对称(共30题)(解析版)--2023年中考数学真题分项汇编

图形的平移翻折对称(30题)一、单选题1(2023·四川南充·统考中考真题)如图,将△ABC 沿BC 向右平移得到△DEF ,若BC =5,BE =2,则CF 的长是()A.2B.2.5C.3D.5【答案】A【分析】利用平移的性质得到BE =CF ,即可得到CF 的长.【详解】解:∵△ABC 沿BC 方向平移至△DEF 处.∴BE =CF =2,故选:A .【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.2(2023·山东·统考中考真题)如图,四边形ABCD 是一张矩形纸片.将其按如图所示的方式折叠:使DA 边落在DC 边上,点A 落在点H 处,折痕为DE ;使CB 边落在CD 边上,点B 落在点G 处,折痕为CF .若矩形HEFG 与原矩形ABCD 相似,AD =1,则CD 的长为()A.2-1B.5-1C.2+1D.5+1【答案】C【分析】先根据折叠的性质与矩形性质,求得DH =CG =1,设CD 的长为x ,则HG =x -2,再根据相似多边形性质得出EH CD =HG AD,即1x =x -21,求解即可.【详解】解:,由折叠可得:DH =AD ,CG =BC ,∵矩形ABCD ,∴AD =BC =1,∴DH =CG =1,设CD 的长为x ,则HG =x -2,∵矩形HEFG ,∴EH =1,∵矩形HEFG 与原矩形ABCD 相似,∴EH CD =HG AD,即1x =x -21,解得:x =2+1(负值不符合题意,舍去)∴CD =2+1,故选:C .【点睛】本题考查矩形的折叠问题,相似多边形的性质,熟练掌握矩形的性质和相似多边形的性质是解题的关键.3(2023·内蒙古赤峰·统考中考真题)如图,在Rt △ABC 中,∠ACB =90°,AB =10,BC =6.点F 是AB 中点,连接CF ,把线段CF 沿射线BC 方向平移到DE ,点D 在AC 上.则线段CF 在平移过程中扫过区域形成的四边形CFDE 的周长和面积分别是()A.16,6B.18,18C.16.12D.12,16【答案】C【分析】先论证四边形CFDE 是平行四边形,再分别求出CF 、CD 、DF ,继而用平行四边形的周长公式和面积公式求解即可.【详解】由平移的性质可知:DF ∥CE ,DF =CE ,∴四边形CFDE 是平行四边形,在Rt △ABC 中,∠ACB =90°,AB =10,BC =6,∴AC =AB 2-BC 2=102-62=8在Rt △ABC 中,∠ACB =90°,AB =10,点F 是AB 中点∴CF =12AB =5∵DF ∥CE ,点F 是AB 中点∴AD AC =AF AB=12,∠CDF =180°-∠ABC =90°,∴点D 是AC 的中点,∴CD =12AC =4∵D 是AC 的中点,点F 是AB 中点,∴DF 是Rt △ABC 的中位线,∴DF =12BC =3∴四边形CFDE 的周长为:2DF +CF =2×5+3 =16,四边形CFDE 的面积为:DF ×CD =3×4=12.故选:C .【点睛】本题考查平移的性质,平行四边形的判定与性质,直角三角形斜边上的中线等于斜边的一半,平行线分线段成比例,三角形中位线定理等知识,推导四边形CFDE 是平行四边形和DF 是Rt △ABC 的中位线是解题的关键.4(2023·黑龙江·统考中考真题)如图,在平面直角坐标中,矩形ABCD 的边AD =5,OA :OD =1:4,将矩形ABCD 沿直线OE 折叠到如图所示的位置,线段OD 1恰好经过点B ,点C 落在y 轴的点C 1位置,点E 的坐标是()A.1,2B.-1,2C.5-1,2D.1-5,2【答案】D【分析】首先证明△AOB ∼△D 1C 1O ,求出AB =CD =2,连结OC ,设BC 与OC 1交于点F ,然后求出OC =OC 1=25,可得C 1F =25-2,再用含EF 的式子表示出EC 1,最后在Rt △EFC 1中,利用勾股定理构建方程求出EF 即可解决问题.【详解】解:∵矩形ABCD 的边AD =5,OA :OD =1:4,∴OA =1,OD =4,BC =5,由题意知AB ∥OC 1,∴∠ABO =∠D 1OC 1,又∵∠BAO =∠OD 1C 1=90°,∴△AOB ∼△D 1C 1O ,∴OA AB=D 1C 1OD 1,由折叠知OD 1=OD =4,D 1C 1=DC =AB ,∴1AB=AB 4,∴AB =2,即CD =2,连接OC ,设BC 与OC 1交于点F ,∴OC =OD 2+CD 2=42+22=25,∵∠FOA =∠OAB =∠ABF =90°,∴四边形OABF 是矩形,∴AB =OF =2,∠BFO =90°=∠EFC 1,OA =BF =1,∴CF =5-1=4,由折叠知OC 1=OC =25,EC 1=EC =CF -EF =4-EF ,∴C 1F =OC 1-OF =25-2,∵在Rt △EFC 1中,EF 2+C 1F 2=EC 12,∴EF 2+25-2 2=4-EF 2,解得:EF =5-1,∴点E 的坐标是1-5,2 ,故选:D .【点睛】本题考查了矩形的判定和性质,相似三角形的判定和性质,折叠的性质以及勾股定理的应用等知识,通过证明三角形相似,利用相似三角形的性质求出AB 的长是解题的关键.5(2023·浙江嘉兴·统考中考真题)如图,已知矩形纸片ABCD ,其中AB =3,BC =4,现将纸片进行如下操作:第一步,如图①将纸片对折,使AB 与DC 重合,折痕为EF ,展开后如图②;第二步,再将图②中的纸片沿对角线BD 折叠,展开后如图③;第三步,将图③中的纸片沿过点E 的直线折叠,使点C 落在对角线BD 上的点H 处,如图④.则DH 的长为()A.32B.85C.53D.95【答案】D 【分析】根据折叠的性质得出EB =EH =EC ,CH ⊥BD ,等面积法求得CH ,根据tan ∠BDC =BC CD =CH HD,即可求解.【详解】解:如图所示,连接CH ,∵折叠,∴EB =EH =EC∴B ,C ,H 在以E 为圆心,BC 为直径的圆上,∴∠BHC =90°,∴CH ⊥BD∵矩形ABCD ,其中AB =3,BC =4,∴BC =4,CD =3∴BD =BC 2+CD 2=5,∴CH =BC ×CD BD =125,∵tan ∠BDC =BC CD =CH HD ∴HD =95,故选:D .【点睛】本题考查了矩形与折叠问题,直径所对的圆周角是直角,勾股定理,正切的定义,熟练掌握以上知识是解题的关键.6(2023·甘肃武威·统考中考真题)如图,将矩形ABCD 对折,使边AB 与DC ,BC 与AD 分别重合,展开后得到四边形EFGH .若AB =2,BC =4,则四边形EFGH 的面积为()A.2B.4C.5D.6【答案】B【分析】由题意可得四边形EFGH 是菱形,FH =AB =2,GE =BC =4,由菱形的面积等于对角线乘积的一半即可得到答案.【详解】解:∵将矩形ABCD 对折,使边AB 与DC ,BC 与AD 分别重合,展开后得到四边形EFGH ,∴EF ⊥GH ,EF 与GH 互相平分,∴四边形EFGH 是菱形,∵FH =AB =2,GE =BC =4,∴菱形EFGH 的面积为12FH ⋅GE =12×2×4=4.故选:B .【点睛】此题考查了矩形的折叠、菱形的判定和性质等知识,熟练掌握菱形的面积等于对角线乘积的一半是解题的关键.7(2023·内蒙古赤峰·统考中考真题)如图,把一个边长为5的菱形ABCD 沿着直线DE 折叠,使点C 与AB 延长线上的点Q 重合.DE 交BC 于点F ,交AB 延长线于点E .DQ 交BC 于点P ,DM ⊥AB 于点M ,AM =4,则下列结论,①DQ =EQ ,②BQ =3,③BP =158,④BD ∥FQ .正确的是()A.①②③B.②④C.①③④D.①②③④【答案】A【分析】由折叠性质和平行线的性质可得∠QDF =∠CDF =∠QEF ,根据等角对等边即可判断①正确;根据等腰三角形三线合一的性质求出MQ =AM =4,再求出BQ 即可判断②正确;由△CDP ∽△BQP 得CP BP =CD BQ=53,求出BP 即可判断③正确;根据EF DE ≠QE BE 即可判断④错误.【详解】由折叠性质可知:∠CDF =∠QDF ,CD =DQ =5,∵CD ∥AB ,∴∠CDF =∠QEF .∴∠QDF =∠QEF .∴DQ =EQ =5.故①正确;∵DQ =CD =AD =5,DM ⊥AB ,∴MQ=AM=4.∵MB=AB-AM=5-4=1,∴BQ=MQ-MB=4-1=3.故②正确;∵CD∥AB,∴△CDP∽△BQP.∴CP BP =CDBQ=53.∵CP+BP=BC=5,∴BP=38BC=158.故③正确;∵CD∥AB,∴△CDF∽△BEF.∴DF EF =CDBE=CDBQ+QE=53+5=58.∴EF DE =8 13.∵QEBE=58,∴EF DE ≠QEBE.∴△EFQ与△EDB不相似.∴∠EQF≠∠EBD.∴BD与FQ不平行.故④错误;故选A.【点睛】本题主要考查了折叠的性质,平行线的性质,等腰三角形的性质,相似三角形的判定和性质,菱形的性质等知识,属于选择压轴题,有一定难度,熟练掌握相关性质是解题的关键.二、填空题8(2023·吉林长春·统考中考真题)如图,将正五边形纸片ABCDE折叠,使点B与点E重合,折痕为AM,展开后,再将纸片折叠,使边AB落在线段AM上,点B的对应点为点B ,折痕为AF,则∠AFB 的大小为度.【答案】45【分析】根据题意求得正五边形的每一个内角为155-2×180°=108°,根据折叠的性质求得∠BAM,∠FAB ,在△AFB 中,根据三角形内角和定理即可求解.【详解】解:∵正五边形的每一个内角为155-2×180°=108°,将正五边形纸片ABCDE折叠,使点B与点E重合,折痕为AM,则∠BAM=12∠BAE=12×108°=54°,∵将纸片折叠,使边AB落在线段AM上,点B的对应点为点B ,折痕为AF,∴∠FAB =12∠BAM=12×54°=27°,∠AB F=∠B=108°,在△AFB 中,∠AFB =180°-∠B-∠FAB =180°-108°-27°=45°,故答案为:45.【点睛】本题考查了折叠的性质,正多边形的内角和的应用,熟练掌握折叠的性质是解题的关键.9(2023·全国·统考中考真题)如图,在Rt△ABC中,∠C=90°,BC<AC.点D,E分别在边AB,BC上,连接DE,将△BDE沿DE折叠,点B的对应点为点B .若点B 刚好落在边AC上,∠CB E= 30°,CE=3,则BC的长为.【答案】9【分析】根据折叠的性质以及含30度角的直角三角形的性质得出B E=BE=2CE=6,即可求解.【详解】解:∵将△BDE沿DE折叠,点B的对应点为点B .点B 刚好落在边AC上,在Rt△ABC中,∠C =90°,BC<AC,∠CB E=30°,CE=3,∴B E=BE=2CE=6,∴BC=CE+BE=3+6=9,故答案为:9.【点睛】本题考查了折叠的性质,含30度角的直角三角形的性质,熟练掌握以上知识是解题的关键.10(2023·湖北宜昌·统考中考真题)如图,小宇将一张平行四边形纸片折叠,使点A落在长边CD上的点A处,并得到折痕DE,小宇测得长边CD=8,则四边形A EBC的周长为.【答案】16【分析】可证∠ADE=∠AED,从而可得AD=AE,再证四边形A EBC是平行四边形,可得C▱A EBC=2A C+A E,即可求解.【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠AED=∠A DE,由折叠得:∠ADE=∠A DE,AD=A D,AE=A E,∴∠ADE=∠AED,∴AD=AE,∴AD=AE=A D=A E,∴AB-BE=CD-A D,∴A C=BE,∴四边形A EBC是平行四边形,∴C▱A EBC =2A C+A E=2A C+A D=2CD=16.故答案:16.【点睛】本题考查了平行四边形判定及性质,折叠的性质,掌握相关的判定方法及性质是解题的关键.11(2023·辽宁·统考中考真题)如图,在三角形纸片ABC中,AB=AC,∠B=20°,点D是边BC上的动点,将三角形纸片沿AD对折,使点B落在点B 处,当B D⊥BC时,∠BAD的度数为.【答案】25°或115°【分析】分两种情况考虑,利用对称的性质及三角形内角和等知识即可完成求解.【详解】解:由折叠的性质得:∠ADB =∠ADB;∵B D⊥BC,∴∠BDB =90°;①当B 在BC下方时,如图,∵∠ADB+∠ADB +∠BDB =360°,∴∠ADB=12×(360°-90°)=135°,∴∠BAD=180°-∠B-∠ADB=25°;②当B 在BC上方时,如图,∵∠ADB+∠ADB =90°,∴∠ADB=12×90°=45°,∴∠BAD=180°-∠B-∠ADB=115°;综上,∠BAD 的度数为25°或115°;故答案为:25°或115°.【点睛】本题考查了折叠的性质,三角形内角和,注意分类讨论.12(2023·江苏徐州·统考中考真题)如图,在Rt △ABC 中,∠C =90°,CA =CB =3,点D 在边BC 上.将△ACD 沿AD 折叠,使点C 落在点C 处,连接BC ,则BC 的最小值为.【答案】32-3【分析】由折叠性质可知AC =AC =3,然后根据三角不等关系可进行求解.【详解】解:∵∠C =90°,CA =CB =3,∴AB =AC 2+BC 2=32,由折叠的性质可知AC =AC =3,∵BC ≥AB -AC ,∴当A 、C 、B 三点在同一条直线时,BC 取最小值,最小值即为BC =AB -AC =32-3;故答案为32-3.【点睛】本题主要考查勾股定理、折叠的性质及三角不等关系,熟练掌握勾股定理、折叠的性质及三角不等关系是解题的关键.13(2023·黑龙江齐齐哈尔·统考中考真题)矩形纸片ABCD 中,AB =3,BC =5,点M 在AD 边所在的直线上,且DM =1,将矩形纸片ABCD 折叠,使点B 与点M 重合,折痕与AD ,BC 分别交于点E ,F ,则线段EF 的长度为.【答案】154或325【分析】分点M 在D 点右边与左边两种情况分别画出图形,根据勾股定理即可求解.【详解】解:∵折叠,∴OM =OB ,EF ⊥BM ,∵四边形ABCD 是矩形,∴AD ∥BC∴∠M =∠OBF ,∠MEO =∠BFO ,又OM =OB∴△OEM ≌△OFB∴OF =OB ,当M 点在D 点的右侧时,如图所示,设BM ,EF 交于点O ,∵AB =3,BC =5,DM =1,∴Rt △ABM 中,BM =AM 2+AB 2=32+62=35,则OM =12BM =325,∵tan M =EO OM =AB AM =36=12,∴EO =12OM ∴EF =2OE =OM =325,当M 点在D 点的左侧时,如图所示,设BM ,EF 交于点O ,∵AB =3,BC =5,DM =1,∴Rt △ABM 中,BM =AM 2+AB 2=32+42=5则OM =12BM =52,∵tan ∠EMO =EO OM =AB AM =34,∴EO =34OM ∴EF =2OE =32OM =154,综上所述,EF 的长为:154或325,故答案为:154或325.【点睛】本题考查了矩形与折叠问题,勾股定理,分类讨论是解题的关键.14(2023·四川凉山·统考中考真题)如图,在Rt △ABC 纸片中,∠ACB =90°,CD 是AB 边上的中线,将△ACD 沿CD 折叠,当点A 落在点A 处时,恰好CA ⊥AB ,若BC =2,则CA =.【答案】23【分析】由Rt△ABC,∠ACB=90°,CD是AB边上的中线,可知CD=AD,则∠ACD=∠A,由翻折的性质可知,∠ACD=∠A CD,A C=AC,则∠ACD=∠A CD=∠A,如图,记A C与AB的交点为E,∠CEA=90°,由∠CEA+∠ACD+∠A CD+∠A=180°,可得∠A=30°,根据A C=AC=BCtan∠A,计算求解即可.【详解】解:∵Rt△ABC,∠ACB=90°,CD是AB边上的中线,∴CD=AD,∴∠ACD=∠A,由翻折的性质可知,∠ACD=∠A CD,A C=AC,∴∠ACD=∠A CD=∠A,如图,记A C与AB的交点为E,∵CA ⊥AB,∴∠CEA=90°,∵∠CEA+∠ACD+∠A CD+∠A=180°,∴∠A=30°,∴A C=AC=BC=23,tan∠A故答案为:23.【点睛】本题考查了直角三角形斜边的中线等于斜边的一半,翻折的性质,等边对等角,三角形内角和定理,正切.解题的关键在于对知识的熟练掌握与灵活运用.15(2023·新疆·统考中考真题)如图,在▱ABCD中,AB=6,BC=8,∠ABC=120°,点E是AD上一动点,将△ABE沿BE折叠得到△A BE,当点A 恰好落在EC上时,DE的长为.【答案】37-3【分析】过点C作CH⊥AD交AD的延长线于点H,根据平行四边形的性质以及已知条件得出∠ADC=∠ABC =120°,∠HDC =60°,进而求得DH ,HC ,根据折叠的性质得出CB =CE ,进而在Rt △ECH 中,勾股定理即可求解.【详解】解:如图所示,过点C 作CH ⊥AD 交AD 的延长线于点H ,∵在▱ABCD 中,AB =6,BC =8,∠ABC =120°,∴∠ADC =∠ABC =120°,∠HDC =60°,CD =AB =6,AD =CB =8,∴DH =DC ×cos ∠HDC =12DC =3,在Rt △ECH 中,HC =CD 2-DH 2=62-32=33∵将△ABE 沿BE 折叠得到△A BE ,当点A 恰好落在EC 上时,∴∠AEB =∠CEB又AD ∥BC∴∠EBC =∠AEB ∴∠EBC =∠CEB∴CE =BC =8设ED =x ,∴EH =x +3在Rt △ECH 中,EC 2=EH 2+HC 2∴82=x +3 2+33 2解得:x =37-3(负整数)故答案为:37-3.【点睛】本题考查了折叠的性质,平行四边形的性质,解直角三角形,熟练掌握折叠的性质是解题的关键.16(2023·江苏扬州·统考中考真题)如图,已知正方形ABCD 的边长为1,点E 、F 分别在边AD 、BC 上,将正方形沿着EF 翻折,点B 恰好落在CD 边上的点B 处,如果四边形ABFE 与四边形EFCD 的面积比为3∶5,那么线段FC 的长为.【答案】38【分析】连接BB ,过点F 作FH ⊥AD 于点H ,设CF =x ,则DH =x ,则BF =1-x ,根据已知条件,分别表示出AE ,EH ,HD ,证明△EHF ≌△B CB ASA ,得出EH =B C =54-2x ,在Rt △B FC 中,B F 2=B C 2+CF 2,勾股定理建立方程,解方程即可求解.【详解】解:如图所示,连接BB ,过点F 作FH ⊥AD 于点H ,∵正方形ABCD 的边长为1,四边形ABFE 与四边形EFCD 的面积比为3∶5,∴S 四边形ABFE =38×1=38,设CF =x ,则DH =x ,则BF =1-x∴S 四边形ABFE =12AE +BF ×AB =38即12AE +1-x ×1=38∴AE =x -14∴DE =1-AE =54-x ,∴EH =ED -HD =54-x -x =54-2x ,∵折叠,∴BB ⊥EF ,∴∠1+∠2=∠BGF =90°,∵∠2+∠3=90°,∴∠1=∠3,又FH =BC =1,∠EHF =∠C∴△EHF ≌△B CB ASA ,∴EH =B C =54-2x 在Rt △B FC 中,B F 2=B C 2+CF 2即1-x 2=x 2+54-2x 2解得:x =38,故答案为:38.【点睛】本题考查了正方形的性质,折叠的性质,勾股定理,全等三角形的性质与判定,熟练掌握以上知识是解题的关键.17(2023·湖北随州·统考中考真题)如图,在矩形ABCD 中,AB =5,AD =4,M 是边AB 上一动点(不含端点),将△ADM 沿直线DM 对折,得到△NDM .当射线CN 交线段AB 于点P 时,连接DP ,则△CDP 的面积为;DP 的最大值为.【答案】10;25【分析】(1)根据等底等高的三角形和矩形面积关系分析求解;(2)结合勾股定理分析可得,当AP最大时,DP即最大,通过分析点N的运动轨迹,结合勾股定理确定AP的最值,从而求得DP的最大值.【详解】解:由题意可得△CDP的面积等于矩形ABCD的一半,∴△CDP的面积为12AB⋅AD=12×4×5=10,在Rt△APD中,PD=AD2+AP2,∴当AP最大时,DP即最大,由题意可得点N是在以D为圆心4为半径的圆上运动,当射线CN与圆相切时,AP最大,此时C、N、M 三点共线,如图:由题意可得:AD=ND,∠MND=∠BAD=∠B=90°,∴∠NDC+∠DCN=90°,∠DCN+∠MCB=90°,∴∠NDC=∠MCB∵AD=BC,∴DN=BC,∴△NDC≌△BCM,∴CN=BM=CD2-DN2=3,∴AP=AB-BP=2,在Rt△APD中,PD=AD2+AP2=42+22=25,故答案为:10,25.【点睛】本题考查了矩形的性质、折叠的性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,分析点的运动轨迹,证明三角形全等是解决问题的关键.18(2023·湖南·统考中考真题)如图,在矩形ABCD中,AB=2,AD=7,动点P在矩形的边上沿B →C→D→A运动.当点P不与点A、B重合时,将△ABP沿AP对折,得到△AB P,连接CB ,则在点P 的运动过程中,线段CB 的最小值为.【答案】11-2/-2+11【分析】根据折叠的性质得出B 在A为圆心,2为半径的弧上运动,进而分类讨论当点P在BC上时,当点P在DC上时,当P在AD上时,即可求解.【详解】解:∵在矩形ABCD中,AB=2,AD=7,∴BC=AD=7,AC=BC2+AB2=7+4=11,如图所示,当点P在BC上时,∵AB =AB=2∴B 在A为圆心,2为半径的弧上运动,当A,B ,C三点共线时,CB 最短,此时CB =AC-AB =11-2,当点P在DC上时,如图所示,此时CB >11-2当P在AD上时,如图所示,此时CB >11-2综上所述,CB 的最小值为11-2,故答案为:11-2.【点睛】本题考查了矩形与折叠问题,圆外一点到圆上的距离的最值问题,熟练掌握折叠的性质是解题的关键.19(2023·湖北武汉·统考中考真题)如图,DE 平分等边△ABC 的面积,折叠△BDE 得到△FDE ,AC 分别与DF ,EF 相交于G ,H 两点.若DG =m ,EH =n ,用含m ,n 的式子表示GH 的长是.【答案】m 2+n 2【分析】先根据折叠的性质可得S △BDE =S △FDE ,∠F =∠B =60°,从而可得S △FHG =S △ADG +S △CHE ,再根据相似三角形的判定可证△ADG ∽△FHG ,△CHE ∽△FHG ,根据相似三角形的性质可得S △ADG S △FHG =DG GH2=m 2GH 2,S △CHE S △FHG =EH GH 2=n 2GH 2,然后将两个等式相加即可得.【详解】解:∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°,∵折叠△BDE 得到△FDE ,∴△BDE ≌△FDE ,∴S △BDE =S △FDE ,∠F =∠B =60°=∠A =∠C ,∵DE 平分等边△ABC 的面积,∴S 梯形ACED =S △BDE =S △FDE ,∴S △FHG =S △ADG +S △CHE ,又∵∠AGD =∠FGH ,∠CHE =∠FHG ,∴△ADG ∽△FHG ,△CHE ∽△FHG ,∴S △ADG S △FHG =DG GH 2=m 2GH 2,S △CHE S △FHG =EH GH 2=n 2GH 2,∴S △ADG S △FHG +S △CHE S △FHG =m 2+n 2GH 2=S △ADG +S △CHE S △FHG =1,∴GH 2=m 2+n 2,解得GH =m 2+n 2或GH =-m 2+n 2(不符合题意,舍去),故答案为:m 2+n 2.【点睛】本题考查了等边三角形的性质、折叠的性质、相似三角形的判定与性质等知识点,熟练掌握相似三角形的判定与性质是解题关键.20(2023·广东深圳·统考中考真题)如图,在△ABC 中,AB =AC ,tan B =34,点D 为BC 上一动点,连接AD ,将△ABD 沿AD 翻折得到△ADE ,DE 交AC 于点G ,GE <DG ,且AG :CG =3:1,则S 三角形AGE S 三角形ADG =.【答案】4975【分析】AM ⊥BD 于点M ,AN ⊥DE 于点N ,则AM =AN ,过点G 作GP ⊥BC 于点P ,设AM =12a ,根据tan B =AM BM =34得出BM =16a ,继而求得AB =AM 2+BM 2=20a ,CG =5a ,AG =15a ,再利用tan C =tan B =GP CP=34,求得GP =3a ,CP =4a ,利用勾股定理求得GN =AG 2-AN 2=9a ,EN =AE 2-AN 2=16a ,故EG =EN -GN =7a ,【详解】由折叠的性质可知,DA 是∠BDE 的角平分线,AB =AE ,用HL 证明△ADM ≌△ADN ,从而得到DM =DN ,设DM =DN =x ,则DG =x +9a ,DP =12a -x ,利用勾股定理得到DP 2+GP 2=DG 2即12a -x 2+3a 2=x +9a 2,化简得x =127a ,从而得出DG =757a ,利用三角形的面积公式得到:S 三角形AGE S 三角形ADG =12EG ⋅AN 12DG ⋅AN =EG DG =7a 757a =4975.作AM ⊥BD 于点M ,AN ⊥DE 于点N ,则AM =AN ,过点G 作GP ⊥BC 于点P ,∵AM ⊥BD 于点M ,∴tan B =AM BM=34,设AM =12a ,则BM =16a ,AB =AM 2+BM 2=20a ,又∵AB =AC ,AM ⊥BD ,∴CM =AM =12a ,AB =AC =20a ,∠B =∠C ,∵AG :CG =3:1,即CG =14AC ,∴CG =5a ,AG =15a ,在Rt △PCG 中,CG =5a ,tan C =tan B =GP CP=34,设GP =3m ,则CP =4m ,CG =GP 2+CP 2=5m∴m =a∴GP =3a ,CP =4a ,∵AG =15a ,AM =AN =12a ,AN ⊥DE ,∴GN =AG 2-AN 2=9a ,∵AB =AE =20a ,AN =12a ,AN ⊥DE∴EN =AE 2-AN 2=16a ,∴EG =EN -GN =7a ,∵AD =AD ,AM =AN ,AM ⊥BD ,AN ⊥DE ,∴△ADM ≌△ADN HL ,∴DM =DN ,设DM =DN =x ,则DG =DN +GN =x +9a ,DP =CM -CP -DM =16a -4a -x =12a -x ,在Rt △PDG 中,DP 2+GP 2=DG 2,即12a -x 2+3a 2=x +9a 2,化简得:x =127a ,∴DG =x +9a =757a ,∴S 三角形AGE S 三角形ADG =12EG ⋅AN 12DG ⋅AN =EG DG =7a 757a =4975故答案是:4975.【点睛】本题考查解直角三角形,折叠的性质,全等三角形的判定与性质,角平分线的性质,勾股定理等知识,正确作出辅助线并利用勾股定理列出方程是解题的关键.21(2023·黑龙江·统考中考真题)矩形ABCD 中,AB =3,AD =9,将矩形ABCD 沿过点A 的直线折叠,使点B 落在点E 处,若△ADE 是直角三角形,则点E 到直线BC 的距离是.【答案】6或3+22或3-22【分析】由折叠的性质可得点E 在以点A 为圆心,AB 长为半径的圆上运动,延长BA 交⊙A 的另一侧于点E ,则此时△ADE 是直角三角形,易得点E 到直线BC 的距离;当过点D 的直线与圆相切于点E 时,△ADE 是直角三角形,分两种情况讨论即可求解.【详解】解:由题意矩形ABCD 沿过点A 的直线折叠,使点B 落在点E 处,可知点E 在以点A 为圆心,AB 长为半径的圆上运动,如图,延长BA 交⊙A 的另一侧于点E ,则此时△ADE 是直角三角形,点E 到直线BC 的距离为BE 的长度,即BE =2AB =6,当过点D 的直线与圆相切与点E 时,△ADE 是直角三角形,分两种情况,①如图,过点E 作EH ⊥BC 交BC 于点H ,交AD 于点G ,∵四边形ABCD 是矩形,∴EG ⊥AD ,∴四边形ABHG 是矩形,GH =AB =3∵AE =AB =3,AE ⊥DE ,AD =9,由勾股定理可得DE =92-32=62,∵S △AED =12AE ⋅DE =12AD ⋅EG ,∴EG =22,∴E 到直线BC 的距离EH =EG +GH =3+22,②如图,过点E 作EN ⊥BC 交BC 于点N ,交AD 于点M ,∵四边形ABCD 是矩形,∴NM ⊥AD ,∴四边形ABNM 是矩形,MN =AB =3∵AE =AB =3,AE ⊥DE ,AD =9,由勾股定理可得DE =92-32=62,∵S △AED =12AE ⋅DE =12AD ⋅EM ,∴EM =22,∴E 到直线BC 的距离EN =MN -GN =3-22,综上,6或3+22或3-22,故答案为:6或3+22或3-22.【点睛】本题考查了矩形的折叠问题切线的应用,以及勾股定理,找到点E 的运动轨迹是解题的关键.22(2023·四川成都·统考中考真题)如图,在Rt △ABC 中,∠ABC =90°,CD 平分∠ACB 交AB 于点D ,过D 作DE ∥BC 交AC 于点E ,将△DEC 沿DE 折叠得到△DEF ,DF 交AC 于点G .若AG GE =73,则tan A =.【答案】377【分析】过点G 作GM ⊥DE 于M ,证明△DGE ∽△CGD ,得出DG 2=GE ×GC ,根据AD ∥GM ,得AG GE=73=DM ME ,设GE =3,AG =7,EM =3n ,则DM =7n ,则EC =DE =10n ,在Rt △DGM 中,GM 2=DG 2-DM 2,在Rt △GME 中,GM 2=GE 2-EM 2,则DG 2-DM 2=GE 2-EM 2,解方程求得n =34,则EM=94,GE =3,勾股定理求得GM ,根据正切的定义,即可求解.【详解】解:如图所示,过点G 作GM ⊥DE 于M ,∵CD 平分∠ACB 交AB 于点D ,DE ∥BC∴∠1=∠2,∠2=∠3∴∠1=∠3∴ED =EC∵折叠,∴∠3=∠4,∴∠1=∠4,又∵∠DGE =∠CGD∴△DGE ∽△CGD∴DG CG =GE DG∴DG 2=GE ×GC ∵∠ABC =90°,DE ∥BC ,则AD ⊥DE ,∴AD ∥GM∴AG GE =DM ME ,∠MGE =∠A ,∵AG GE=73=DM ME 设GE =3,AG =7,EM =3n ,则DM =7n ,则EC =DE =10n ,∵DG 2=GE ×GC∴DG 2=3×3+10n =9+30n在Rt △DGM 中,GM 2=DG 2-DM 2在Rt △GME 中,GM 2=GE 2-EM 2∴DG 2-DM 2=GE 2-EM 2即9+30n -7n 2=32-3n 2解得:n =34∴EM =94,GE =3则GM =GE 2-ME 2=32-94 2=374∴tan A =tan ∠EGM =ME MG =94374=377故答案为:377.【点睛】本题考查了求正切,折叠的性质,勾股定理,平行线分线段成比例,相似三角形的性质与判定,熟练掌握以上知识是解题的关键.23(2023·四川南充·统考中考真题)如图,在等边△ABC 中,过点C 作射线CD ⊥BC ,点M ,N 分别在边AB ,BC 上,将△ABC 沿MN 折叠,使点B 落在射线CD 上的点B ′处,连接AB ′,已知AB =2.给出下列四个结论:①CN +NB ′为定值;②当BN =2NC 时,四边形BMB ′N 为菱形;③当点N 与C 重合时,∠AB ′M =18°;④当AB ′最短时,MN =72120.其中正确的结论是(填写序号)【答案】①②④【分析】根据等边三角形的性质可得BC =2,根据折叠的性质可得NB ′=NB ,由此即可判断①正确;先解直角三角形可得∠CB N =30°,从而可得∠B NC =60°=∠B ,然后根据平行线的判定可得BM ∥B N ,MB ∥BN ,根据菱形的判定即可得②正确;先根据折叠的性质可得B C =BC ,∠MB C =∠B =60°,从而可得AC =B C ,再根据等腰三角形的性质可得∠AB C =∠CAB =75°,然后根据∠AB ′M =∠AB C -∠MB C 即可判断③错误;当AB ′最短时,则AB ′⊥CD ,过点M 作ME ⊥BC 于点E ,连接BB ,交MN 于点O ,先利用勾股定理求出BN =74,BB =7,根据折叠的性质可得OB =72,设BE =y y >0 ,则EN =74-y ,BM =2y ,再利用勾股定理可得EM =3y ,MN =4916-72y +4y 2,然后根据S △BMN =12BN ⋅EM =12OB ⋅MN 建立方程,解一元二次方程可得y 的值,由此即可判断④正确.【详解】解:∵△ABC 是等边三角形,且AB =2,∴BC =AC =AB =2,∠B =∠ACB =60°,由折叠的性质得:NB ′=NB ,∴CN +NB ′=CN +NB =BC =2,是定值,则结论①正确;当BN =2NC 时,则NB ′=2NC ,在Rt △CB N 中,sin ∠CB N =NC NB ′=12,∴∠CB N =30°,∴∠B NC =60°=∠B ,∴BM ∥B N ,由折叠的性质得:∠MB N =∠B =60°,∴∠MB N =∠B NC =60°,∴MB ∥BN ,∴四边形BMB ′N 为平行四边形,又∵NB ′=NB ,∴四边形BMB ′N 为菱形,则结论②正确;如图,当点N 与C 重合时,∵CD ⊥BC ,∴∠BCD =90°,由折叠的性质得:B C =BC ,∠MB C =∠B =60°,∴AC =B C ,∠ACB =∠BCD -∠ACB =30°,∴∠AB C =∠CAB =12×180°-30° =75°,∴∠AB ′M =∠AB C -∠MB C =15°,则结论③错误;当AB ′最短时,则AB ′⊥CD ,如图,过点M 作ME ⊥BC 于点E ,连接BB ,交MN 于点O ,∵AC =2,∠ACB =30°,∴B C =AC ⋅cos30°=3,∴BB =BC 2+B C 2=7,由折叠的性质得:BB ⊥MN ,OB =12BB =72,设BN =B N =x ,则CN =BC -BN =2-x ,在Rt △B CN 中,CN 2+B C 2=B N 2,即2-x 2+3 2=x 2,解得x =74,∴BN =74, 设BE =y y >0 ,则EN =74-y ,BM =2y ,∴EM =BM 2-BE 2=3y ,∴MN =EN 2+EM 2=4916-72y +4y 2,∵S △BMN =12BN ⋅EM =12OB ⋅MN ,∴74×3y =72×4916-72y +4y 2,解得y =710或y =-72<0(不符合题意,舍去),∴MN =4916-72×710+4×710 2=72120,则结论④正确;综上,正确的结论是①②④,故答案为:①②④.【点睛】本题考查了等边三角形的性质、折叠的性质、解直角三角形、菱形的判定、一元二次方程的应用等知识点,熟练掌握折叠的性质是解题关键.24(2023·浙江杭州·统考中考真题)如图,在△ABC 中,AB =AC ,∠A <90°,点D ,E ,F 分别在边AB ,BC ,CA 上,连接DE ,EF ,FD ,已知点B 和点F 关于直线DE 对称.设BC AB =k ,若AD =DF ,则CF FA=(结果用含k 的代数式表示).【答案】k 22-k 2【分析】先根据轴对称的性质和已知条件证明DE ∥AC ,再证△BDE ∽△BAC ,推出EC =12k ⋅AB ,通过证明△ABC ∽△ECF ,推出CF =12k 2⋅AB ,即可求出CF FA的值.【详解】解:∵点B 和点F 关于直线DE 对称,∴DB =DF ,∵AD =DF ,∴AD =DB .∵AD =DF ,∴∠A =∠DFA ,∵点B 和点F 关于直线DE 对称,∴∠BDE =∠FDE ,又∵∠BDE +∠FDE =∠BDF =∠A +∠DFA ,∴∠FDE =∠DFA ,∴DE ∥AC ,∴∠C =∠DEB ,∠DEF =∠EFC ,∵点B 和点F 关于直线DE 对称,∴∠DEB =∠DEF ,∴∠C =∠EFC ,∵AB =AC ,∴∠C =∠B ,在△ABC 和△ECF 中,∠B =∠C ∠ACB =∠EFC ,∴△ABC ∽△ECF .∵在△ABC 中,DE ∥AC ,∴∠BDE =∠A ,∠BED =∠C ,∴△BDE ∽△BAC ,∴BE BC =BD BA =12,∴EC =12BC ,∵BC AB=k ,∴BC =k ⋅AB ,EC =12k ⋅AB ,∵△ABC ∽△ECF .∴AB EC =BC CF ,∴AB 12k ⋅AB =k ⋅AB CF ,解得CF =12k 2⋅AB ,∴CF FA =CF AC -CF =CF AB -CF =12k 2⋅AB AB -12k 2⋅AB =k 22-k 2.故答案为:k 22-k 2.【点睛】本题考查相似三角形的判定与性质,轴对称的性质,平行线的判定与性质,等腰三角形的性质,三角形外角的定义和性质等,有一定难度,解题的关键是证明△ABC ∽△ECF .三、解答题25(2023·安徽·统考中考真题)如图,在由边长为1个单位长度的小正方形组成的网格中,点A ,B ,C ,D均为格点(网格线的交点).(1)画出线段AB关于直线CD对称的线段A1B1;(2)将线段AB向左平移2个单位长度,再向上平移1个单位长度,得到线段A2B2,画出线段A2B2;(3)描出线段AB上的点M及直线CD上的点N,使得直线MN垂直平分AB.【答案】见解析【分析】(1)根据轴对称的性质找到A,B关于直线CD的对称点,A1,B1,连接A1,B1,则线段A1B1即为所求;(2)根据平移的性质得到线段A2B2即为所求;(3)勾股定理求得AM=BM=12+32=10,MN=12+32=10,则AM=MN证明△NPM≌△MQA 得出∠NMP+∠AMQ=90°,则AM⊥MN,则点M,N即为所求.【详解】(1)解:如图所示,线段A1B1即为所求;(2)解:如图所示,线段A2B2即为所求;(3)解:如图所示,点M,N即为所求如图所示,∵AM=BM=12+32=10,MN=12+32=10,∴AM=MN,又NP=MQ=1,MP=AQ=3,∴△NPM≌△MQA,∴∠NMP=∠MAQ,又∠MAQ+∠AMQ=90°,∴∠NMP+∠AMQ=90°∴AM⊥MN,∴MN垂直平分AB.【点睛】本题考查了轴对称作图,平移作图,勾股定理与网格问题,熟练掌握以上知识是解题的关键.26(2023·四川广安·统考中考真题)将边长为2的正方形剪成四个全等的直角三角形,用这四个直角三角形拼成符合要求的四边形,请在下列网格中画出你拼成的四边形(注:①网格中每个小正方形的边长为1;②所拼的图形不得与原图形相同;③四边形的各顶点都在格点上).【答案】见解析(答案不唯一,符合题意即可)【分析】根据轴对称图形和中心对称图形的性质进行作图即可.【详解】解:①要求是轴对称图形但不是中心对称图形,则可作等腰梯形,如图四边形ABCD即为所求;②要求是中心对称图形但不是轴对称图形,则可作一般平行四边形,如图四边形ABCD即为所求;③要求既是轴对称图形又是中心对称图形,则可作菱形、矩形等,如图四边形ABCD即为所求;④要求既不是轴对称图形又不是中心对称图形,则考虑作任意四边形,如图四边形ABCD即为所求.【点睛】本题考查轴对称图形和中心对称图形的概念及作图,轴对称图形:把一个图形沿着某条直线折叠,能够与另一个图形重合;中心对称图形:把一个图形绕着某个点旋转180°能够和原图形重合.27(2023·内蒙古通辽·统考中考真题)综合与实践课上,老师让同学们以“正方形的折叠”为主题开展数学活动,有一位同学操作过程如下:操作一:对折正方形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在正方形内部点M处,把纸片展平,连接PM、BM,延长PM交CD于点Q,连接BQ.(1)如图1,当点M在EF上时,∠EMB=度;(2)改变点P在AD上的位置(点P不与点A,D重合)如图2,判断∠MBQ与∠CBQ的数量关系,并说明理由.【答案】(1)30(2)∠MBQ=∠CBQ,理由见解析【分析】(1)由正方形的性质结合折叠的性质可得出BM=AB=2BE,∠BEF=90°,进而可求出sin∠EMB=12,即得出∠EMB=30°;(2)由正方形的性质结合折叠的性质可证Rt△BCQ≅Rt△BMQ HL,即得出∠MBQ=∠CBQ.【详解】(1)解:∵对折正方形纸片ABCD,使AD与BC重合,得到折痕EF,∴AB=BC=CD=AD=2BE,∠BEF=90°.∵在AD上选一点P,沿BP折叠,使点A落在正方形内部点M处,∴BM=AB=2BE.在Rt△BEM中,sin∠EMB=BEBM=BE2BE=12,∴∠EMB=30°.故答案为:30.(2)解:结论:∠MBQ=∠CBQ,理由如下:∵四边形ABCD是正方形,∴AB=BC,∠BAD=∠C=90°.由折叠可得:AB=BM,∠BAD=∠BMP=90°,∴BM=BC,∠BMQ=∠C=90°.又∵BQ=BQ,∴Rt△BCQ≌Rt△BMQ HL,∴∠MBQ=∠CBQ.【点睛】本题主要考查正方形的性质、折叠的性质、解直角三角形、三角形全等的判定和性质、勾股定理等知识点.熟练掌握上述知识并利用数形结合的思想是解题关键.28(2023·湖北·统考中考真题)如图,将边长为3的正方形ABCD沿直线EF折叠,使点B的对应点M落在边AD上(点M不与点A,D重合),点C落在点N处,MN与CD交于点P,折痕分别与边AB,CD 交于点E,F,连接BM.。

中考数学解析版试卷分类汇编专题29:平移旋转与对称.doc

中考数学解析版试卷分类汇编专题29:平移旋转与对称.doc

平移旋转与对称一、选择题1. ( 2014•福建泉州,第5题3分)正方形的对称轴的条数为( )2. ( 2014•广东,第2题3分)在下列交通标志中,既是轴对称图形,又是中心对称图形的是( ) A .B .C .D .考点: 中心对称图形;轴对称图形.分析: 根据轴对称图形与中心对称图形的概念求解.解答: 解:A 、不是轴对称图形,不是中心对称图形.故此选项错误;B 、不是轴对称图形,也不是中心对称图形.故此选项错误;C 、是轴对称图形,也是中心对称图形.故此选项正确;D 、是轴对称图形,不是中心对称图形.故此选项错误. 故选C .点评: 此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3. (2014•广西贺州,第6题3分)下列图形中既是轴对称图形,又是中心对称图形的是( )A.等边三角形B.平行四边形C.正方形D.正五边形考点:中心对称图形;轴对称图形.专题:常规题型.分析:根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.解答:解:A、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;B、平行四边形不是轴对称图形,是中心对称图形,故本选项错误;C、正方形是轴对称图形,也是中心对称图形,故本选项正确;D、正五边形是轴对称图形,不是中心对称图形,故本选项错误.故选C.点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(2014年天津市,第3 题3分)下列标志中,可以看作是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.点评:此题主要考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.5.(2014•新疆,第9题5分)如图,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处.若AD=3,BC=5,则EF的值是()B=2==2,DH6.(2014•舟山,第7题3分)如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC 的周长为16cm,则四边形ABFD的周长为()7.(2014年广东汕尾,第2题4分)下列电视台的台标,是中心对称图形的是()A .B.C.D.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断得出.解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,故此选项正确;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,故此选项错误;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误.故选;A.点评:此题主要考查了中心对称图形的定义,根据定义得出图形形状是解决问题的关键.8.(2014•邵阳,第9题3分)某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()9.(2014•孝感,第9题3分)如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点D (5,3)在边AB 上,以C 为中心,把△CDB 旋转90°,则旋转后点D 的对应点D ′的坐标是( )10.(2014•四川自贡,第6题4分)下面的图形中,既是轴对称图形又是中心对称图形的是()..D.11.(2014·台湾,第8题3分)下列选项中有一张纸片会与如图紧密拼凑成正方形纸片,且正方形上的黑色区域会形成一个轴对称图形,则此纸片为何?()A.B.C.D.分析:根据轴对称图形的概念:如果一个图形沿着一条直线对折,直线两侧的图形能够完全重合,这个图形就是轴对称图形可得答案.解:如图所示:故选:A.点评:此题主要考查了利用轴对称设计图案,关键是掌握轴对称图形的概念.12.(2014·浙江金华,第8题4分)如图,将Rt△ABC绕直角顶点顺时针旋转90°,得到△A′B′C,连结AA′,若∠1=20°,则∠B的度数是【】A.70°B.65°C.60°D.55°【答案】B.【解析】13. (2014•益阳,第4题,4分)下列图形中,既是轴对称图形又是中心对称图形的是()B C D14. (2014年江苏南京,第1题,6分)下列图形中,既是轴对称图形,又是中心对称图形的是()A. B.C.D.(第2题图)考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、是轴对称图形,不是中心对称图形.故错误.故选C.点评:掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.15. (2014•泰州,第5题,3分)下列图形中是轴对称图形但不是中心对称图形的是()B16.(2014•滨州,第10题3分)如图,如果把△ABC 的顶点A 先向下平移3格,再向左平移1格到达A′点,连接A ′B ,则线段A ′B 与线段AC 的关系是( )=17.(2014•德州,第2题3分)下列银行标志中,既不是中心对称图形也不是轴对称图形的是()B18.(2014年山东泰安,第6题3分)下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是()A.1 B.2C.3D.4分析:根据轴对称图形及对称轴的定义求解.解:第一个是轴对称图形,有2条对称轴;第二个是轴对称图形,有2条对称轴;第三个是轴对称图形,有2条对称轴;第四个是轴对称图形,有3条对称轴;故选C.点评:本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.二.填空题1. (2014•广东,第16题4分)如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于﹣1.考点:旋转的性质.分析:根据题意结合旋转的性质以及等腰直角三角形的性质得出AD=BC=1,AF=FC′=AC′=1,进而求出阴影部分的面积.解答:解:∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴图中阴影部分的面积等于:S△AFC′﹣S△DEC′=×1×1﹣×(﹣1)2=﹣1.故答案为:﹣1.点评:此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.2.(2014年四川资阳,第15题3分)如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为6.考点:轴对称-最短路线问题;正方形的性质.分析:连接BD,DE,根据正方形的性质可知点B与点D关于直线AC对称,故DE的长即为BQ+QE的最小值,进而可得出结论.解答:解:连接BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE===5,∴△BEQ周长的最小值=DE+BE=5+1=6.故答案为:6.点评:本题考查的是轴对称﹣最短路线问题,熟知轴对称的性质是解答此题的关键.3.(2014•舟山,第14题4分)如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB,CA′相交于点D,则线段BD的长为6.=,4.(2014年广东汕尾,第16题5分)如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=.分析:根据题意得出∠ACA′=35°,则∠A′=90°﹣35°=55°,即可得出∠A的度数.解:∵把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D,∠A′DC=90°,∴∠ACA′=35°,则∠A′=90°﹣35°=55°,则∠A=∠A′=55°.故答案为:55°.点评:此题主要考查了旋转的性质以及三角形内角和定理等知识,得出∠A′的度数是解题关键.5.(2014•邵阳,第16题3分)如图,在平面直角坐标系xOy中,已知点A(3,4),将OA 绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是(﹣4,3).6. (2014•益阳,第13题,4分)如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB 与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是60°.(第1题图)7.(2014•济宁,第15题3分)如图(1),有两个全等的正三角形ABC和ODE,点O、C 分别为△ABC、△DEO的重心;固定点O,将△ODE顺时针旋转,使得OD经过点C,如图(2),则图(2)中四边形OGCF与△OCH面积的比为4:3.,则高长是×x=2×=2××x×x x×x×××x•xx三.解答题1. (2014•安徽省,第17题8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC向上平移3个单位得到△A1B1C1,请画出△A1B1C1;(2)请画一个格点△A2B2C2,使△A2B2C2∽△ABC,且相似比不为1.考点:作图—相似变换;作图-平移变换.分析:(1)利用平移的性质得出对应点位置,进而得出答案;(2)利用相似图形的性质,将各边扩大2倍,进而得出答案.解答:解:(1)如图所示:△A1B1C1即为所求;(2)如图所示:△A2B2C2即为所求.点评:此题主要考查了相似变换和平移变换,得出变换后图形对应点位置是解题关键.2. (2014•福建泉州,第22题9分)如图,已知二次函数y=a(x﹣h)2+的图象经过原点O(0,0),A(2,0).(1)写出该函数图象的对称轴;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?OA OB(+OAOB,﹣)的顶点坐标为(﹣,,<﹣>﹣时,﹣取得最小值<﹣时,时,3. (2014•珠海,第18题7分)如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,线段AB为半圆O的直径,将Rt△ABC沿射线AB方向平移,使斜边与半圆O相切于点G,得△DEF,DF与BC交于点H.(1)求BE的长;(2)求Rt△ABC与△DEF重叠(阴影)部分的面积.,;=,即=,﹣;=,即BD=×2=重叠(阴影)部分的面积为4. (2014•广西玉林市、防城港市,第21题6分)如图,已知:BC与CD重合,∠ABC=∠CDE=90°,△ABC≌△CDE,并且△CDE可由△ABC逆时针旋转而得到.请你利用尺规作出旋转中心O(保留作图痕迹,不写作法,注意最后用墨水笔加黑),并直接写出旋转角度是90°.5.(2014•毕节地区,第23题10分)在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中做出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(﹣3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.6.(2014•武汉,第20题7分)如图,在直角坐标系中,A(0,4),C(3,0).(1)①画出线段AC关于y轴对称线段AB;②将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD;(2)若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k的值.的中心坐标为(,k.7. (2014•湘潭,第17题)在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为(﹣3,2);(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为(﹣2,3).(第1题图)8. (2014年江苏南京,第24题)已知二次函数y=x2﹣2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?考点:二次函数和x轴的交点问题,根的判别式,平移的性质,二次函数的图象与几何变换的应用分析:(1)求出根的判别式,即可得出答案;(2)先化成顶点式,根据顶点坐标和平移的性质得出即可.解答:(1)证明:∵△=(﹣2m)2﹣4×1×(m2+3)=4m2﹣4m2﹣12=﹣12<0,∴方程x2﹣2mx+m2+3=0没有实数解,即不论m为何值,该函数的图象与x轴没有公共点;(2)解答:y=x2﹣2mx+m2+3=(x﹣m)2+3,把函数y=(x﹣m)2+3的图象延y轴向下平移3个单位长度后,得到函数y=(x﹣m)2的图象,它的顶点坐标是(m,0),因此,这个函数的图象与x轴只有一个公共点,所以,把函数y=x2﹣2mx+m2+3的图象延y轴向下平移3个单位长度后,得到的函数的图象与x轴只有一个公共点.点评:本题考查了二次函数和x轴的交点问题,根的判别式,平移的性质,二次函数的图象与几何变换的应用,主要考查学生的理解能力和计算能力,题目比较好,有一定的难度.9. (2014•扬州,第23题,10分)如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DF、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.(第3题图)10.(2014·浙江金华,第19题6分)在棋盘中建立如图所示的直角坐标系,三颗棋子A ,O ,B 的位置如图,它们的坐标分别是()1,1- ,(0,0),(1,0).(1)如图2,添加棋C 子,使四颗棋子A ,O ,B ,C 成为一个轴对称图形,请在图中画出该图形的对称轴;(2)在其他格点位置添加一颗棋子P ,使四颗棋子A ,O ,B ,P 成为轴对称图形,请直接写出棋子P 的位置的坐标. (写出2个即可)平移旋转与对称一、选择题1. (2014•四川巴中,第7题3分)下列汽车标志中既是轴对称图形又是中心对称图形的是()A.B. C.D.考点:轴对称图形和中心对称图形的识别.分析:根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.解答:A、是轴对称图形,不是中心对称图形.故本选项错误;B、不是轴对称图形,也不是中心对称图形.故本选项错误;C、是轴对称图形,也是中心对称图形.故本选项正确;D、是轴对称图形,不是中心对称图形.故本选项错误.故选C.点评:考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2. (2014•山东枣庄,第8题3分)将一次函数y=x的图象向上平移2个单位,平移后,若3. (2014•山东潍坊,第2题3分)下列标志中不是中心对称图形的是( )考点:中心对称图形.分析:根据中心对称图形的概念对各选项分析判断后利用排除法求解.解答:A、是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、是不中心对称图形,故本选项正确;D、是中心对称图形,故本选项错误.故选:C.点评:本题考查了中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.中心对称图形是要寻找对称中心,旋转180度后两部分重合.4. (2014•山东烟台,第2题3分)下列手机软件图标中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:轴对称图形和中心对称图形的识别.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解答:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.5. (2014•山东烟台,第10题3分)如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是()A.(1,1)B.(1,2)C.(1,3)D.(1,4)考点:平面直角坐标系与旋转.分析:先根据旋转的性质得到点A的对应点为点A′,点B的对应点为点B′,再根据旋转的性质得到旋转中心在线段AA′的垂直平分线,也在线段BB′的垂直平分线,即两垂直平分线的交点为旋转中心.解答:∵将△ABC以某点为旋转中心,顺时针旋转90°得到△A′B′C′,∴点A的对应点为点A′,点B的对应点为点B′,作线段AA′和BB′的垂直平分线,它们的交点为P(1,2),∴旋转中心的坐标为(1,2).故选B.点评:本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.6. (2014•江西抚州,第2题,3分)下列安全标志图中,是中心对称图形的是解析:选B. ∵A、C、D是轴对称图形.7. (2014山东济南,第5题,3分)下列图案既是轴对称图形又是中心对称图形的是【解析】图A为轴对称图但不是中心对称图形;图B为中心对称图但不是轴对称图形;图C既不是轴对称图也不是中心对称图形;图D既是轴对称图形又是中心对称图形.8.(2014•山东聊城,第11题,3分)如图,在平面直角坐标系中,将△ABC绕点P旋转180°,得到△A1B1C1,则点A1,B1,C1的坐标分别为()Rt△ADE,点B的对应点D恰好落在BC边上.若AC=,∠B=60°,则CD的长为()A.0.5 B. 1.5 C. D. 1考点:旋转的性质分析:解直角三角形求出AB,再求出CD,然后根据旋转的性质可得AB=AD,然后判断出△ABD是等边三角形,根据等边三角形的三条边都相等可得BD=AB,然后根据CD=BC ﹣BD计算即可得解.解答:解:∵∠B=60°,∴∠C=90°﹣60°=30°,∵AC=,∴AB=×=1,∴BC=2AB=2,由旋转的性质得,AB=AD,∴△ABD是等边三角形,∴BD=AB=1,∴CD=BC﹣BD=2﹣1=1.故选D.点评:本题考查了旋转的性质,等边三角形的判定与性质,解直角三角形,熟记性质并判断出△ABD是等边三角形是解题的关键.10.(2014•遵义2.(3分))观察下列图形,是中心对称图形的是()B11.(2014•遵义10.(3分))如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C ′B,则C′B的长为()﹣﹣1,,=2×=,D=﹣B轴对称的点的坐标为(﹣1,﹣2).考点:关于x轴、y轴对称的点的坐标.分析:根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.解答:解:点P(1,﹣2)关于y轴对称的点的坐标为(﹣1,﹣2).故答案为:(﹣1,﹣2).点评:本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.14. (2014•江苏苏州,第10题3分)如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B′,点A 的对应点A′在x轴上,则点O′的坐标为()(,,),,))OA=×=,,15. (2014•江苏徐州,第6题3分)顺次连接正六边形的三个不相邻的顶点.得到如图的图形,该图形()A.既是轴对称图形也是中心对称图形B.是轴对称图形但并不是中心对称图形C.是中心对称图形但并不是轴对称图形D.既不是轴对称图形也不是中心对称图形考点:中心对称图形;轴对称图形.分析:根据正多边形的性质和轴对称图形与中心对称图形的定义解答.解答:解:此图形是轴对称图形但并不是中心对称图形,故选:B.点评:此题考查正多边形对称性.关键要记住偶数边的正多边形既是轴对称图形,又是中心对称图形,奇数边的正多边形只是轴对称图形.16. (2014•江苏徐州,第15题3分)在平面直角坐标系中,将点A(4,2)绕原点逆时针方向旋转90°后,其对应点A′的坐标为(﹣2,4).考点:坐标与图形变化-旋转.分析:建立网格平面直角坐标系,然后确定出点A与A′的位置,再写出坐标即可.解答:解:如图A′的坐标为(﹣2,4).故答案为:(﹣2,4).点评:本题考查了坐标与图形变化﹣旋转,作出图形,利用数形结合的思想求解更形象直观.17.(2014•四川南充,第3题,3分)下列几何体的主视图既是中心对称图形又是轴对称图形的是()A.B.C.D.分析:先判断主视图,再根据轴对称图形与中心对称图形的概念求解.解:A、主视图是扇形,扇形是轴对称图形,不是中心对称图形,故错误;B、主视图是等腰三角形,是轴对称图形,不是中心对称图形,故错误;C、主视图是等腰梯形,是轴对称图形,不是中心对称图形,故错误;D、主视图是矩形,是轴对称图形,也是中心对称图形,故正确.故选D.点评:掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.18.(2014•四川遂宁,第10题,4分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()19.(2014•甘肃白银、临夏,第6题3分)下列图形中,是轴对称图形又是中心对称图形的是()BB21.(2014•广州,第2题3分)下列图形是中心对称图形的是().(A)(B)(C)(D)【考点】轴对称图形和中心对称图形.【分析】旋转180°后能与完全重合的图形为中心对称图形.【答案】DB C D.7.8.二、填空题1. (2014•四川巴中,第18题3分)如图,直线y=x+4与x轴、y轴分别交于A、B两点,把△A0B绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是.考点:一次函数的性质,旋转.分析:首先根据直线AB来求出点A和点B的坐标,B′的横坐标等于OA+OB,而纵坐标等于OA,进而得出B′的坐标.解答:直线y=﹣x+4与x轴,y轴分别交于A(3,0),B(0,4)两点.旋转前后三角形全等.由图易知点B′的纵坐标为OA长,即为3,即横坐标为OA+OB=OA+O′B′=3+4=7.故点B′的坐标是(7,3).故答案为:(7,3).点评:本题主要考查了对于图形翻转的理解,其中要考虑到点B和点B′位置的特殊性,以及点B'的坐标与OA和OB的关系.2. (2014•山东枣庄,第13题4分)如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有3 种.3. (2014•江西抚州,第14题,3分)如图,两块完全相同的含30°角的直角三角板ABC 和A'B'C'重合在一起,将三角板A'B'C'绕其顶点C'按逆时针方向旋转角α(0°< α≤90°),有以下四个结论:①当α=30°时,A'C 与AB 的交点恰好为AB 的中点;②当α=60°时,A'B'恰好经过点B ;③在旋转过程中,存在某一时刻,使得AA'BB'=;④在旋转过程中,始终存在AA'BB'⊥,其中结论正确的序号是 ① ② ④ .(多填或填错得0分,少填酌情给分)解析:如图1,∵α=30°,∴∠ACA ′=∠A=30°,∠BCA ′=∠B=60°,∴DC=DA,DC=DB,∴DA=DB,∴D 是AB 的中点.正确如图2,当α=60°时,取A ′B ′的中点E,连接CE,则∠B ′CE=∠B ′CB=60°,又CB=CB ′,∴E 、B 重合,∴A ′、B ′恰好经过点B.正确如图3,连接AA ′,BB ′,则⊿CAA ′∽⊿CBB ′,∴AA AC BB BCtan '==︒='60,∴AA ′′.错误如图4,∠A ′B ′D=∠CBB ′-60°,∠B ′A ′D=180°-(∠CA ′A+30°),∴∠A ′B ′D +∠B ′A ′D=90°+∠CBB ′-∠CA ′A∵ ∠CBB ′=∠CA ′A ,∴∠A ′B ′D +∠B ′A ′D=90°,即∠D=90°,∴AA ′⊥BB ′.正确∴①,②,④正确.4. (2014山东济南,第20题,3分)如图,将边长为12的正方形ABCD 是沿其对角线AC 剪开,再把ABC ∆沿着AD 方向平移,得到C B A '''∆,当两个三角形重叠的面积为32时,它移动的距离A A '等于________.【解析】设m A A =',则222121264m (m )+-=-,解之m =4或8,应填4或8.5. (2014•山东聊城,第7题,3分)如图,点P 是∠AOB 外的一点,点M ,N 分别是∠AOB 两边上的点,点P 关于OA 的对称点Q 恰好落在线段MN 上,点P 关于OB 的对称点R 落在MN 的延长线上.若PM=2.5cm ,PN=3cm ,MN=4cm ,则线段QR 的长为( )A D CB ’ 第20题图6.(2014•四川宜宾,第14题,3分)如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′= 1.5 .,7.(2014•四川宜宾,第13题,3分)在平面直角坐标系中,将点A(﹣1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是(2,﹣2).8.(2014•四川南充,第16题,3分)如图,有一矩形纸片ABCD,AB=8,AD=17,将此矩形纸片折叠,使顶点A落在BC边的A′处,折痕所在直线同时经过边AB、AD(包括端点),设BA′=x,则x的取值范围是.分析:作出图形,根据矩形的对边相等可得BC=AD,CD=AB,当折痕经过点D时,根据翻折的性质可得A′D=AD,利用勾股定理列式求出A′C,再求出BA′;当折痕经过点B时,根据翻折的性质可得BA′=AB,此两种情况为BA′的最小值与最大值的情况,然后写出x的取值范围即可.解:如图,∵四边形ABCD是矩形,AB=8,AD=17,∴BC=AD=17,CD=AB=8,①当折痕经过点D时,由翻折的性质得,A′D=AD=17,在Rt△A′CD中,A′C===15,∴BA′=BC﹣A′C=17﹣15=2;②当折痕经过点B时,由翻折的性质得,BA′=AB=8,∴x的取值范围是2≤x≤8.故答案为:2≤x≤8.点评:本题考查了翻折变换的性质,勾股定理的应用,难点在于判断出BA′的最小值与最大值时的情况,作出图形更形象直观.。

全国各地中考数学分类汇编:平移旋转与对称(含解析)

全国各地中考数学分类汇编:平移旋转与对称(含解析)

平移旋转与对称一.选择题1.(2016·山东省菏泽市·3分)如图,A,B的坐标为(2,0),(0,1),若将线段AB 平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.5【考点】坐标与图形变化-平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.2.(2016·山东省菏泽市·3分)以下微信图标不是轴对称图形的是()A. B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解,看图形是不是关于直线对称.【解答】解:A、是轴对称图形;B、是轴对称图形;C、是轴对称图形;D、不是轴对称图形.故选D.【点评】本题主要考查了轴对称的概念,轴对称的关键是寻找对称轴,两边图象折叠后可重合.3.(2016·山东省德州市·3分)如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.65°B.60°C.55°D.45°【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.【解答】解:由题意可得:MN是AC的垂直平分线,则AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC﹣∠CAD=65°,故选A.【点评】此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键.4.(2016·山东省德州市·3分)对于平面图形上的任意两点P,Q,如果经过某种变换得到新图形上的对应点P′,Q′,保持PQ=P′Q′,我们把这种变换称为“等距变换”,下列变换中不一定是等距变换的是()A.平移 B.旋转 C.轴对称D.位似【考点】位似变换.【分析】根据平移、旋转变换、轴对称变换和位似变换的性质进行判断即可.【解答】解:平移的性质是把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,则平移变换是“等距变换”;旋转的性质:旋转前、后的图形全等,则旋转变换是“等距变换”;轴对称的性质:成轴对称的两个图形全等,则轴对称变换是“等距变换”;位似变换的性质:位似变换的两个图形是相似形,则位似变换不一定是等距变换,故选:D.【点评】本题考查的是平移、旋转变换、轴对称变换和位似变换,理解“等距变换”的定义、掌握平移、旋转变换、轴对称变换和位似变换的性质是解题的关键.5.(2016·山东省济宁市·3分)如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.21cm【考点】平移的性质.【分析】先根据平移的性质得到CF=AD=2cm,AC=DF,而AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD,然后利用整体代入的方法计算即可【解答】解:∵△ABE向右平移2cm得到△DCF,∴EF=AD=2cm,AE=DF,∵△ABE的周长为16cm,∴AB+BE+AE=16cm,∴四边形ABFD的周长=AB+BE+EF+DF+AD=AB+BE+AE+EF+AD=16cm+2cm+2cm=20cm.故选C.5.(2016·四川眉山·3分)下列既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】结合选项根据轴对称图形与中心对称图形的概念求解即可.【解答】解:A、是轴对称图形,也是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,也不是中心对称图形.故选A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.6.(2016·青海西宁·3分)在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【解答】解:四个汉字中只有“善”字可以看作轴对称图形,故选D.7.(2016·山东潍坊·3分)下列科学计算器的按键中,其上面标注的符号是轴对称图形但不是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,又是中心对称图形,故此选项错误;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,又是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.故选:D.8. (2016·湖北随州·3分)随着我国经济快速发展,轿车进入百姓家庭,小明同学在街头观察出下列四种汽车标志,其中既是中心对称图形,又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A 、不是轴对称图形,是中心对称图形;B 、是轴对称图形,不是中心对称图形;C 、是轴对称图形,也是中心对称图形;D、不是轴对称图形,是中心对称图形.故选C.9.(2016·四川泸州)下列图形中不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:根据轴对称图形的概念可知:A,B,D是轴对称图形,C不是轴对称图形,故选:C.10.(2016·四川内江)下列标志既是轴对称图形又是中心对称图形的是( )[答案]A[考点]中心对称与轴对称图形。

2014年中考数学解析版试卷分类汇编专题29:平移旋转与对称

2014年中考数学解析版试卷分类汇编专题29:平移旋转与对称

移旋转与对称一、选择1. 2014•福建泉 ,第5 3 方形的对 轴的条数A.1 B.2 C.3 D.4考点 轴对 的性质析 根据 方形的对 性解答.解答 解 方形有4条对 轴.故选D.点评 本 考查了轴对 的性质,熟记 方形的对 性是解 的 键.2. 2014•广 ,第2 3 在 列交通标志中,既是轴对 图形,又是中心对 图形的是A.B.C.D.考点 中心对 图形 轴对 图形.析 根据轴对 图形 中心对 图形的概念求解.解答 解 A、 是轴对 图形, 是中心对 图形.故 选 错误B、 是轴对 图形,也 是中心对 图形.故 选 错误C、是轴对 图形,也是中心对 图形.故 选 确D、是轴对 图形, 是中心对 图形.故 选 错误.故选C.点评 要考查了中心对 图形 轴对 图形的概念,轴对 图形的 键是寻找对 轴,图形两部 沿对 轴折叠后 重合 中心对 图形是要寻找对 中心,旋转180度后 原图重合.3. 2014•广西贺 ,第6 3 列图形中既是轴对 图形,又是中心对 图形的是A.等边 角形B. 行四边形C. 方形D. 五边形考点 中心对 图形 轴对 图形.常规 型.析 根据轴对 图形 中心对 图形的概念求解.如果一个图形沿着一条直线对折后两部 完全重合, 样的图形 做轴对 图形, 条直线 做对 轴.如果一个图形绕某一点旋转180°后能够 自身重合,那 个图形就 做中心对 图形, 个点 做对 中心.解答 解 A、等边 角形是轴对 图形, 是中心对 图形,故本选 错误B、 行四边形 是轴对 图形,是中心对 图形,故本选 错误C、 方形是轴对 图形,也是中心对 图形,故本选 确D、 五边形是轴对 图形, 是中心对 图形,故本选 错误.故选C.点评 本 考查了中心对 图形 轴对 图形的概念 轴对 图形的 键是寻找对 轴,图形两部 折叠后 重合,中心对 图形是要寻找对 中心,旋转180度后两部 重合.4.(2014 天津市,第3 3 ) 列标志中, 以看作是轴对 图形的是A.B.C.D.考点 轴对 图形.析 根据轴对 图形 中心对 图形的概念求解.解答 解 A、 是轴对 图形,是中心对 图形, 符合 意B、 是轴对 图形,是中心对 图形, 符合 意C、 是轴对 图形,是中心对 图形, 符合 意D、是轴对 图形,符合 意.故选 D.点评 要考查了中心对 图形和轴对 图形的定 ,掌握中心对 图形 轴对 图形的概念,解答时要注意判断轴对 图形的 键是寻找对 轴,图形两部沿对 轴叠后 重合 判断中心对 图形是要寻找对 中心,图形旋转180度后 原图重合.5. 2014•新疆,第9 5 如图,四边形ABCD中,AD∥BC,∠B=90°,E AB 一点, 以ED,EC 折痕将两个角 ∠A,∠B 向内折起,点A,B恰好落在CD边的点F处.若AD=3,BC=5,则EF的值是A.B.2C.D.2考点 翻折变换 折叠问计算 .析 先根据折叠的性质得EA=EF,BE=EF,DF=AD=3,CF=CB=5,则AB=2EF,DC=8,再作DH⊥BC于H, 于AD∥BC,∠B=90°,则 判断四边形ABHD 矩形,所以DH=AB=2EF,HC=BC﹣BH=BC﹣AD=2,然后在Rt△DHC中,利用勾股定理计算出DH=2,所以EF=.解答 解 以ED,EC 折痕将两个角 ∠A,∠B 向内折起,点A,B恰好落在CD边的点F处,EA=EF,BE=EF,DF=AD=3,CF=CB=5,AB=2EF,DC=DF+CF=8,作DH⊥BC于H,AD∥BC,∠B=90°,四边形ABHD 矩形,DH=AB=2EF,HC=BC﹣BH=BC﹣AD=5﹣3=2,在Rt△DHC中,DH==2,EF=DH=.故选A.点评 本 考查了折叠的性质 折叠是一种对 变换,它属于轴对 ,折叠前后图形的形状和大小 变, 置变 ,对 边和对 角相等.也考查了勾股定理.6. 2014•舟山,第7 3 如图,将△ABC沿BC方向 移2cm得到△DEF,若△ABC 的周长 16cm,则四边形ABFD的周长A.16cm B.18cm C.20cm D.22cm考点 移的性质.析 根据 移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC 即 得出答案.解答 解 根据 意,将周长 16cm的△ABC沿BC向右 移2cm得到△DEF, AD=2cm,BF=BC+CF=BC+2cm,DF=AC又 AB+BC+AC=16cm,四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC=20cm.故选C.点评 本 考查 移的基本性质 移 改变图形的形状和大小 经过 移,对 点所连的线段 行 相等,对 线段 行 相等,对 角相等.得到CF=AD,DF=AC是解 的 键.7. 2014 广 汕尾,第2 4 列电视 的 标,是中心对 图形的是A .B.C.D.析 根据中心对 图形的定 旋转180°后能够 原图形完全重合即是中心对 图形,即 判断得出.解 A、 图形旋转180°后能 原图形重合, 图形是中心对 图形,故 选 确B、 图形旋转180°后 能 原图形重合, 图形 是中心对 图形,故 选 错误C、 图形旋转180°后 能 原图形重合, 图形 是中心对 图形,故 选 错误D、 图形旋转180°后 能 原图形重合, 图形 是中心对 图形,故 选 错误.故选 A.点评 要考查了中心对 图形的定 ,根据定 得出图形形状是解决问 的 键.8. 2014•邵 ,第9 3 某数学 趣小 开展 手操作活 ,设计了如图所示的 种图形,现计划用铁 按照图形制作相 的造型,则所用铁 的长度 系是A. 种方案所用铁 最长B.乙种方案所用铁 最长C.丙种方案所用铁 最长D. 种方案所用铁 一样长考点 生活中的 移现象析 利用 移的性质得出各图形中所用铁 的长度,进而得出答案.解答 解 图形 得出 所用铁 的长度 2a+2b,乙所用铁 的长度 2a+2b,丙所用铁 的长度 2a +2b , 故 种方案所用铁 一样长. 故选 D .点评要考查了生活中的 移现象,得出各图形中铁 的长是解 键.9. 2014•孝感,第9 3 如图, 方形OABC 的两边OA 、OC 在x 轴、y 轴 ,点D 5,3 在边AB ,以C 中心,把△CDB 旋转90°,则旋转后点D 的对 点D ′的坐标是A . 2,10B . ﹣2,0C . 2,10 或 ﹣2,0D . 10,2 或 ﹣2,考点 坐标 图形变 -旋转.析 时针旋转和逆时针旋转两种情况讨论解答即 . 解答 解 点D 5,3 在边AB ,BC =5,BD =5﹣3=2,若 时针旋转,则点D ′在x 轴 ,OD ′=2, 所以,D ′ ﹣2,0 ,若逆时针旋转,则点D ′到x 轴的距离 10,到y 轴的距离 2, 所以,D ′ 2,10 ,综 所述,点D ′的坐标 2,10 或 ﹣2,0 . 故选C .点评 本 考查了坐标 图形变 ﹣旋转, 方形的性质,难点在于 情况讨论.10. 2014•四 自贡,第6 4 面的图形中,既是轴对 图形又是中心对 图形的是A .B .C .D .考点 中心对 图形 轴对 图形.常规 型.析 根据轴对 图形 中心对 图形的概念求解.解答 解 A 、 是轴对 图形,是中心对 图形, 符合 意B 、 是轴对 图形,是中心对 图形, 符合 意C 、既是轴对 图形,也是中心对 图形,符合 意D 、是轴对 图形, 是中心对 图形, 符合 意. 故选C .点评 本 考查了中心对 及轴对 的知识,解 时掌握好中心对 图形 轴对 图形的概念.轴对 图形的 键是寻找对 轴,图形两部 折叠后 重合,中心对 图形是要寻找对 中心,旋转180度后两部 重合.11. 2014· 湾,第8 3 列选 中有一张纸片会 如图紧密拼凑成 方形纸片, 方形 的黑色区域会形成一个轴对 图形,则 纸片 何 ( )A .B .C .D .析 根据轴对 图形的概念 如果一个图形沿着一条直线对折,直线两侧的图形能够完全重合, 个图形就是轴对 图形 得答案. 解 如图所示 故选 A .点评 要考查了利用轴对 设计图案, 键是掌握轴对 图形的概念.12. 2014·浙江金华,第8 4 如图,将Rt△ABC绕直角顶点 时针旋转90°,得到△A′B′C,连结AA′,若∠1=20°,则∠B的度数是A.70°B.65°C.60°D.55°答案 B.解析13. 2014•益 ,第4 ,4 列图形中,既是轴对 图形又是中心对 图形的是C.D.A.B.第1 图考点 中心对 图形 轴对 图形.析 根据中心对 图形的定 旋转180°后能够 原图形完全重合即是中心对 图形,以及轴对 图形的定 即 判断出.解答 解 A、 图形旋转180°后 能 原图形重合, 图形 是中心对 图形,是轴对 图形,故 选 错误B、 图形旋转180°后 能 原图形重合, 图形 是中心对 图形,是轴对图形,故 选 错误C、 图形旋转180°后能 原图形重合, 图形是中心对 图形,也是轴对 图形,故 选 确D、 图形旋转180°后能 原图形重合, 图形是中心对 图形, 是轴对 图形,故 选 错误.故选C.点评 要考查了中心对 图形 轴对 的定 ,根据定 得出图形形状是解决问 的 键.14. 2014 江苏南京,第1 ,6 列图形中,既是轴对 图形,又是中心对 图形的是A. B.C.D.第2 图考点 中心对 图形 轴对 图形.析 根据轴对 图形 中心对 图形的概念求解.解答 A、是轴对 图形, 是中心对 图形.故错误B、 是轴对 图形,是中心对 图形.故错误C、是轴对 图形,也是中心对 图形.故 确D、是轴对 图形, 是中心对 图形.故错误.故选C.点评 掌握中心对 图形 轴对 图形的概念 轴对 图形的 键是寻找对 轴,图形两部 沿对 轴折叠后 重合 中心对 图形是要寻找对 中心,旋转180度后 原图重合.15. 2014•泰 ,第5 ,3 列图形中是轴对 图形但 是中心对 图形的是A.B.C.D.考点 中心对 图形 轴对 图形.析 根据中心对 图形的定 旋转180°后能够 原图形完全重合即是中心对 图形,以及轴对 图形的定 即 判断出.解答 解 A、 图形旋转180°后 能 原图形重合, 图形 是中心对 图形,也 是轴对 图形,故 选 错误B、 图形旋转180°后 能 原图形重合, 图形 是中心对 图形,是轴对图形,故 选 确C、 图形旋转180°后能 原图形重合, 图形是中心对 图形, 是轴对 图形,故 选 错误D、 图形旋转180°后能 原图形重合, 图形是中心对 图形,也是轴对 图形,故 选 错误.故选 B.点评 要考查了中心对 图形 轴对 的定 ,根据定 得出图形形状是解决问 的 键.16. 2014•滨 ,第10 3 如图,如果把△ABC的顶点A先向 移3格,再向左 移1格到达A′点,连接A′B,则线段A′B 线段AC的 系是A.垂直B.相等C. D. 垂直考点 移的性质网格型.析 先根据 意画出图形,再利用勾股定理结合网格结构即 判断线段A′B 线段AC的 系.解答 解 如图,将点A先向 移3格,再向左 移1格到达A′点,连接A′B, 线段AC交于点O.A′O=OB=,AO=OC=2,线段A′B 线段AC互相 ,又 ∠AOA′=45°+45°=90°,A′B⊥AC,线段A′B 线段AC互相垂直 .故选D.点评 本 考查了 移的性质,勾股定理, 确利用网格是解 的 键.17. 2014•德 ,第2 3 列银行标志中,既 是中心对 图形也 是轴对 图形的是A.B.C.D.考点 中心对 图形 轴对 图形.析 根据轴对 图形 中心对 图形的概念求解.解答 解 A、是轴对 图形,也是中心对 图形,故 选 合 意B、是轴对 图形, 是中心对 图形,故 选 合 意C、是轴对 图形,也是中心对 图形.故 选 合 意D、 是轴对 图形,也 是中心对 图形,故 选 符合 意故选D.点评 要考查了中心对 图形 轴对 图形的概念 轴对 图形的 键是寻找对 轴,图形两部 沿对 轴折叠后 重合 中心对 图形是要寻找对 中心,旋转180度后 原图重合.18. 2014 山 泰安,第6 3 列四个图形中是轴对 图形, 对 轴的条数 2的图形的个数是A. 1 B.2C.3D.4 析 根据轴对 图形及对 轴的定 求解.解 第一个是轴对 图形,有2条对 轴 第二个是轴对 图形,有2条对 轴 第 个是轴对 图形,有2条对 轴 第四个是轴对 图形,有3条对 轴 故选C.点评 本 考查了轴对 图形的知识,轴对 图形的 键是寻找对 轴,图形两部 沿对 轴折叠后 重合.二.填空1. 2014•广 ,第16 4 如图,△ABC绕点A 时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中 影部 的面 等于 ﹣1.考点 旋转的性质.析 根据 意结合旋转的性质以及等腰直角 角形的性质得出AD=BC=1,AF=FC′=AC′=1,进而求出 影部 的面 .解答 解 △ABC绕点A 时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=, BC=2,∠C=∠B=∠CAC′=∠C′=45°,AD⊥BC,B′C′⊥AB,AD=BC=1,AF=FC′=AC′=1,图中 影部 的面 等于 S△AFC′﹣S△DEC′=×1×1﹣× ﹣1 2=﹣1.故答案 ﹣1.点评 要考查了旋转的性质以及等腰直角 角形的性质等知识,得出AD,AF,DC′的长是解 键.2.(2014 四 资 ,第15 3 )如图,在边长 4的 方形ABCD中,E是AB边 的一点, AE=3,点Q 对角线AC 的 点,则△BEQ周长的最小值 6.考点 轴对 -最短路线问 方形的性质.析 连接BD,DE,根据 方形的性质 知点B 点D 于直线AC对 ,故DE的长即 BQ+QE的最小值,进而 得出结论.解答 解 连接BD,DE,四边形ABCD是 方形,点B 点D 于直线AC对 ,DE的长即 BQ+QE的最小值,DE=BQ+QE===5,△BEQ周长的最小值=DE+BE=5+1=6.故答案 6.点评 本 考查的是轴对 ﹣最短路线问 ,熟知轴对 的性质是解答 的 键.3. 2014•舟山,第14 4 如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB, 延长AB,CA′相交于点D,则线段BD的长 6.考点 旋转的性质 相似 角形的判定 性质析 利用 行线的性质以及旋转的性质得出△CAD∽△B′A′C,再利用相似 角形的性质得出AD的长,进而得出BD的长.解答 解 将△ABC绕点C按逆时针方向旋转得到△A′B′C,AC=CA′=4,AB=B′A′=2,∠A=∠CA′B′,CB′∥AB,∠B′CA′=∠D,△CAD∽△B′A′C,=,=,解得AD=8,BD=AD﹣AB=8﹣2=6.故答案 6.点评 要考查了旋转的性质以及相似 角形的判定 性质等知识,得出△CAD∽△B′A′C是解 键.4. 2014 广 汕尾,第16 5 如图,把△ABC绕点C按 时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=.析 根据 意得出∠ACA′=35°,则∠A′=90°﹣35°=55°,即 得出∠A的度数.解 把△ABC绕点C按 时针方向旋转35°,得到△A′B′C,A′B′交AC于点D,∠A′DC=90°, ∠ACA′=35°,则∠A′=90°﹣35°=55°,则∠A=∠A′=55°.故答案 55°.点评 要考查了旋转的性质以及 角形内角和定理等知识,得出∠A′的度数是解 键.5. 2014•邵 ,第16 3 如图,在 面直角坐标系xOy中,已知点A 3,4 ,将OA 绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是 ﹣4,3 .考点 坐标 图形变 -旋转析 过点A作AB⊥x轴于B,过点A′作A′B′⊥x轴于B′,根据旋转的性质 得OA=OA′,利用同角的余角相等求出∠OAB=∠A′OB′,然后利用“角角边”证明△AOB和△OA′B′全等,根据全等 角形对 边相等 得OB′=AB,A′B′=OB,然后写出点A′的坐标即 .解答 解 如图,过点A作AB⊥x轴于B,过点A′作A′B′⊥x轴于B′,OA绕坐标原点O逆时针旋转90°至OA′,OA=OA′,∠AOA′=90°,∠A′OB′+∠AOB=90°,∠AOB+∠OAB=90°,∠OAB=∠A′OB′,在△AOB和△OA′B′中,,△AOB≌△OA′B′ AAS ,OB′=AB=4,A′B′=OB=3,点A′的坐标 ﹣4,3 .故答案 ﹣4,3 .点评 本 考查了坐标 图形变 ﹣旋转,熟记性质并作辅 线构造出全等 角形是解 的 键,也是本 的难点.6. 2014•益 ,第13 ,4 如图,将等边△ABC绕顶点A 时针方向旋转,使边AB AC重合得△ACD,BC的中点E的对 点 F,则∠EAF的度数是 60°.第1 图考点 旋转的性质 等边 角形的性质.析 根据等边 角形的性质以及旋转的性质得出旋转角,进而得出∠EAF的度数.解答 解 将等边△ABC绕顶点A 时针方向旋转,使边AB AC重合得△ACD,BC 的中点E的对 点 F,旋转角 60°,E,F是对 点,则∠EAF的度数 60°.故答案 60°.点评 要考查了等边 角形的性质以及旋转的性质,得出旋转角的度数是解 键.7. 2014•济宁,第15 3 如图 1 ,有两个全等的 角形ABC和ODE,点O、C △ABC、△DEO的重心 固定点O,将△ODE 时针旋转,使得OD经过点C,如图 2 ,则图 2 中四边形OGCF △OCH面 的 4 3.考点 旋转的性质 角形的重心 等边 角形的性质.析 设 角形的边长是x,则图1中四边形OGCF是一个内角是60°的菱形,图2中△OCH 是一个角是30°的直角 角形, 求得两个图形的面 ,即 求解.解答 解 设 角形的边长是x,则高长是x.图1中, 影部 是一个内角是60°的菱形,OC=×x=x.另一条对角线长是 FG=2GH=2×OC•tan30°=2××x•tan30°=x.则四边形OGCF的面 是 ×x•x=x2图2中,OC=×x=x.是一个角是30°的直角 角形.则△OCH的面 =OC•sin30°•OC•cos30°=×x•××x•=x2.四边形OGCF △OCH面 的 x2 x2=4 3.故答案 4 3.点评 本 要考查了 角形的重心的性质,解直角 角形,以及菱形、直角 角形面 的计算, 确计算两个图形的面 是解决本 的 键..解答1. 2014•安徽省,第17 8 如图,在边长 1个单 长度的小 方形 成的网格中,给出了格点△ABC 顶点是网格线的交点 .1 将△ABC向 移3个单 得到△A1B1C1,请画出△A1B1C12 请画一个格点△A2B2C2,使△A2B2C2∽△ABC, 相似 1.考点 作图—相似变换 作图- 移变换.析 1 利用 移的性质得出对 点 置,进而得出答案2 利用相似图形的性质,将各边扩大2倍,进而得出答案.解答 解 1 如图所示 △A1B1C1即 所求2 如图所示 △A2B2C2即 所求.点评 要考查了相似变换和 移变换,得出变换后图形对 点 置是解 键.2. 2014•福建泉 ,第22 9 如图,已知二次函数y=a x﹣h 2+的图象经过原点O 0,0 ,A 2,0 .1 写出该函数图象的对 轴2 若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否 该函数图象的顶点考点 二次函数的性质 坐标 图形变 -旋转.析 1 于 物线过点O 0,0 ,A 2,0 ,根据 物线的对 性得到 物线的对 轴 直线x=12 作A′B⊥x轴 B,先根据旋转的性质得OA′=OA=2,∠A′OA=2,再根据 30度的直角 角形 边的 系得OB=OA′=1,A′B=OB=,则A′点的坐标 1, ,根据 物线的顶点式 判断点A′ 物线y=﹣ x﹣1 2+的顶点.解答 解 1 二次函数y=a x﹣h 2+的图象经过原点O 0,0 ,A 2,0 . 物线的对 轴 直线x=12 点A′是该函数图象的顶点.理 如如图,作A′B⊥x轴于点B,线段OA绕点O逆时针旋转60°到OA′,OA′=OA=2,∠A′OA=2,在Rt△A′OB中,∠OA′B=30°,OB=OA′=1,A′B=OB=,A′点的坐标 1, ,点A′ 物线y=﹣ x﹣1 2+的顶点.点评 本 考查了二次函数的性质 二次函数y=ax2+bx+c a≠0 的顶点坐标 ﹣, ,对 轴直线x=﹣,二次函数y=ax2+bx+c a≠0 的图象 有如 性质 当a 0时, 物线y=ax2+bx+c a≠0 的开口向 ,x ﹣时,y随x的增大而减小 x ﹣时,y随x的增大而增大 x=﹣时,y取得最小值,即顶点是 物线的最 点. 当a 0时, 物线y=ax2+bx+c a≠0 的开口向 ,x ﹣时,y随x的增大而增大 x ﹣时,y随x的增大而减小 x=﹣时,y取得最大值,即顶点是 物线的最高点.也考查了旋转的性质.3. 2014•珠海,第18 7 如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,线段AB 半圆O的直径,将Rt△ABC沿射线AB方向 移,使斜边 半圆O相 于点G,得△DEF,DF BC交于点H.1 求BE的长2 求Rt△ABC △DEF重叠 影 部 的面 .考点 线的性质 扇形面 的计算 移的性质计算 .析 1 连结OG,先根据勾股定理计算出BC=5,再根据 移的性质得AD=BE,DF=AC=3,EF=BC=5,∠EDF=∠BAC=90°, 于EF 半圆O相 于点G,根据 线的性质得OG⊥EF,然后证明Rt△EOG∽Rt△EFD,利用相似 计算出OE=,所以BE=OE ﹣OB=2 求出BD的长度,然后利用相似 例式求出DH的长度,从而求出△BDH,即影部 的面 .解答 解 1 连结OG,如图,∠BAC=90°,AB=4,AC=3,BC==5,Rt△ABC沿射线AB方向 移,使斜边 半圆O相 于点G,得△DEF,AD=BE,DF=AC=3,EF=BC=5,∠EDF=∠BAC=90°,EF 半圆O相 于点G,OG⊥EF,AB=4,线段AB 半圆O的直径,OB=OG=2,∠GEO=∠DEF,Rt△EOG∽Rt△EFD,=,即=,解得OE=,BE=OE﹣OB=﹣2=2 BD=DE﹣BE=4﹣=.DF∥AC,,即,解得 DH=2.S 影=S△BDH=BD•DH=××2=,即Rt△ABC △DEF重叠 影 部 的面 .点评 本 考查了 线的性质 圆的 线垂直于经过 点的半径.也考查了 移的性质、勾股定理和相似 角形的判定 性质.4. 2014•广西玉林市、 城港市,第21 6 如图,已知 BC CD重合,∠ABC=∠CDE=90°,△ABC≌△CDE,并 △CDE △ABC逆时针旋转而得到.请你利用尺规作出旋转中心O 保留作图痕迹, 写作法,注意最后用墨水笔加黑 ,并直接写出旋转角度是 90°.考点 作图-旋转变换.析 作出AC,CE的垂直 线进而得出 交点O,进而得出答案.解答 解 如图所示 旋转角度是90°.故答案 90°.点评 要考查了旋转变换,得出旋转中心的 置是解 键.5. 2014• 节地区,第23 10 在 列网格图中,每个小 方形的边长均 1个单 .在Rt△ABC中,∠C=90°,AC=3,BC=4.1 试在图中做出△ABC以A 旋转中心,沿 时针方向旋转90°后的图形△AB1C12 若点B的坐标 ﹣3,5 ,试在图中画出直角坐标系,并标出A、C两点的坐标3 根据 2 的坐标系作出 △ABC 于原点对 的图形△A2B2C2,并标出B2、C2两点的坐标.考点 作图-旋转变换作图 .析 1 根据网格结构找出点B、C的对 点B1、C1的 置,然后 点A 次连接即2 以点B向右3个单 ,向 5个单 坐标原点建立 面直角坐标系,然后写出点A、C的坐标即3 根据网格结构找出点A、B、C 于原点的对 点A2、B2、C2的 置,然后 次连接即 .解答 解 1 △AB1C1如图所示2 如图所示,A 0,1 ,C ﹣3,13 △A2B2C2如图所示,B2 3,﹣5 ,C2 3,﹣1 .点评 本 考查了利用旋转变换作图,熟 掌握网格结构准确找出对 点的 置是解 的 键.6. 2014• 汉,第20 7 如图,在直角坐标系中,A 0,4 ,C 3,0 .1 画出线段AC 于y轴对 线段AB将线段CA绕点C 时针旋转一个角,得到对 线段CD,使得AD∥x轴,请画出线段CD2 若直线y=kx 1 中四边形ABCD的面 ,请直接写出实数k的值.考点 作图-旋转变换 作图-轴对 变换作图 .析 1 根据 于y轴对 的点的横坐标互 相反数确定出点B的 置,然后连接AB即根据轴对 的性质找出点A 于直线x=3的对 点,即 所求的点D2 根据 行四边形的性质, 四边形面 的直线经过中心,然后求出AC的中点,代入直线计算即 求出k值.解答 解 1 如图所示直线CD如图所示2 A 0,4 ,C 3,0 ,行四边形ABCD的中心坐标 ,2 ,代入直线得,k=2,解得k=.点评 本 考查了利用旋转变换作图,利用轴对 变换作图, 考查了 行四边形的判定 性质,是基础 ,要注意 四边形面 的直线经过中心的用.7. 2014•湘潭,第17 在边长 1的小 方形网格中,△AOB的顶点均在格点 ,1 B点 于y轴的对 点坐标 ﹣3,22 将△AOB向左 移3个单 长度得到△A1O1B1,请画出△A1O1B13 在 2 的条件 ,A1的坐标 ﹣2,3 .第1 图考点 作图- 移变换 于x轴、y轴对 的点的坐标.析 1 根据 于y轴对 的点的横坐标互 相反数,纵坐标相等解答2 根据网格结构找出点A、O、B向左 移后的对 点A1、O1、B1的 置,然后次连接即3 根据 面直角坐标系写出坐标即 .解答 解 1 B点 于y轴的对 点坐标 ﹣3,22 △A1O1B1如图所示3 A1的坐标 ﹣2,3 .故答案 1 ﹣3,2 3 ﹣2,3 .点评 本 考查了利用 移变换作图, 于y轴对 点的坐标,熟 掌握网格结构准确找出对 点的 置是解 的 键.8. 2014 江苏南京,第24 已知二次函数y=x2﹣2mx+m2+3 m是常数 .1 求证 论m 何值,该函数的图象 x轴没有 点2 把该函数的图象沿y轴向 移多少个单 长度后,得到的函数的图象 x轴有一个 点考点 二次函数和x轴的交点问 ,根的判 式, 移的性质,二次函数的图象 几何变换的 用析 1 求出根的判 式,即 得出答案2 先 成顶点式,根据顶点坐标和 移的性质得出即 .解答 1 证明 △= ﹣2m 2﹣4×1× m2+3 =4m2﹣4m2﹣12=﹣12 0,方程x2﹣2mx+m2+3=0没有实数解,即 论m 何值,该函数的图象 x轴没有 点2 解答 y=x2﹣2mx+m2+3= x﹣m 2+3,把函数y= x﹣m 2+3的图象延y轴向 移3个单 长度后,得到函数y= x﹣m 2的图象,它的顶点坐标是 m,0 ,因 , 个函数的图象 x轴 有一个 点,所以,把函数y=x2﹣2mx+m2+3的图象延y轴向 移3个单 长度后,得到的函数的图象 x轴 有一个 点.点评 本 考查了二次函数和x轴的交点问 ,根的判 式, 移的性质,二次函数的图象 几何变换的 用, 要考查学生的理解能力和计算能力, 目 较好,有一定的难度.9. 2014•扬 ,第23 ,10 如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B 时针旋转90°至△DBE后,再把△ABC沿射线 移至△FEG,DF、FG相交于点H.1 判断线段DE、FG的 置 系,并说明理2 连结CG,求证 四边形CBEG是 方形.第3 图考点 旋转的性质 方形的判定 移的性质析 1 根据旋转和 移 得∠DEB=∠ACB,∠GFE=∠A,再根据∠ABC=90° 得∠A+∠ACB=90°,进而得到∠DEB+∠GFE=90°,从而得到DE、FG的 置 系是垂直2 根据旋转和 移找出对 线段和角,然后再证明是矩形,后根据邻边相等 得四边形CBEG是 方形.解答 1 解 FG⊥E D.理 如△ABC绕点B 时针旋转90°至△DBE后,∠DEB=∠ACB,把△ABC沿射线 移至△FEG,∠GFE=∠A,∠ABC=90°,∠A+∠ACB=90°,∠DEB+∠GFE=90°,∠FHE=90°,FG⊥ED2 证明 根据旋转和 移 得∠GEF=90°,∠CBE=90°,CG∥EB,CB=BE,CG∥EB,∠BCG+∠CBE=90°,∠BCG =90°,四边形BCGE 是矩形,CB =BE ,四边形CBEG 是 方形.点评 要考查了图形的旋转和 移, 键是掌握新图形中的每一点,都是 原图形中的某一点移 后得到的, 两个点是对 点.连接各 对 点的线段 行 相等.10. 2014·浙江金华,第19 6 在棋盘中建立如图所示的直角坐标系, 棋子A ,O ,B 的 置如图,它们的坐标 是()1,1− , 0,0 , 1,0 . 1 如图2,添加棋C 子,使四 棋子A ,O ,B ,C 成 一个轴对 图形,请在图中画出该图形的对 轴 2 在 他格点 置添加一 棋子P ,使四 棋子A ,O ,B ,P 成 轴对 图形,请直接写出棋子P 的 置的坐标. 写出2个即移旋转 对一、选择1. 2014•四 巴中,第7 3 列汽车标志中既是轴对 图形又是中心对 图形的是A.B. C.D.考点 轴对 图形和中心对 图形的识 .析 根据轴对 图形 中心对 图形的概念求解.如果一个图形沿着一条直线对折后两部 完全重合, 样的图形 做轴对 图形, 条直线 做对 轴.如果一个图形绕某一点旋转180°后能够 自身重合,那 个图形就 做中心对 图形, 个点 做对 中心.解答 A、是轴对 图形, 是中心对 图形.故本选 错误B、 是轴对 图形,也 是中心对 图形.故本选 错误C、是轴对 图形,也是中心对 图形.故本选 确D、是轴对 图形, 是中心对 图形.故本选 错误.故选C.点评 考查了中心对 图形 轴对 图形的概念 轴对 图形的 键是寻找对 轴,图形两部 沿对 轴折叠后 重合 中心对 图形是要寻找对 中心,旋转180度后 原图重合.2. 2014•山 枣庄,第8 3 将一次函数y=x的图象向 移2个单 , 移后,若y 0,则x的取值范围是A.x 4 B.x ﹣4 C.x 2 D.x ﹣2考点 一次函数图象 几何变换析 利用一次函数 移规律得出 移后解析式,进而得出图象 坐标轴交点坐标,进而利用图象判断y 0时,x的取值范围.解答 解 将一次函数y=x的图象向 移2个单 ,移后解析式 y=x+2,当y=0,则x=﹣4,x=0时,y=2,如图y 0,则x的取值范围是 x ﹣4,故选 B.点评 要考查了一次函数图象 几何变换以及图象画法,得出函数图象进而判断x的取值范围是解 键.3. 2014•山 潍坊,第2 3 列标志中 是中心对 图形的是( )考点 中心对 图形.析 根据中心对 图形的概念对各选 析判断后利用排除法求解.解答 A、是中心对 图形,故本选 错误 B、是中心对 图形,故本选 错误C、是 中心对 图形,故本选 确D、是中心对 图形,故本选 错误.故选 C.点评 本 考查了中心对 图形的概念 把一个图形绕某一点旋转180°,如果旋转后的图形能够 原来的图形重合,那 个图形就 做中心对 图形, 个点 做对 中心.中心对 图形是要寻找对 中心,旋转180度后两部 重合.4. 2014•山 烟 ,第2 3 列手机软件图标中,既是轴对 图形又是中心对 图形的是A.B.C.D.考点 轴对 图形和中心对 图形的识 .析 根据中心对 图形的定 旋转180°后能够 原图形完全重合即是中心对 图形,以及轴对 图形的定 即 判断出.解答 A、 图形旋转180°后 能 原图形重合, 图形 是中心对 图形,是轴对 图形,故 选 错误B、 图形旋转180°后 能 原图形重合, 图形 是中心对 图形,也 是轴对图形,故 选 错误。

最新初中数学图形的平移,对称与旋转的分类汇编附答案解析(1)

最新初中数学图形的平移,对称与旋转的分类汇编附答案解析(1)

最新初中数学图形的平移,对称与旋转的分类汇编附答案解析(1)一、选择题1.点M(﹣2,1)关于y轴的对称点N的坐标是( )A.(﹣2,﹣1) B.(2,1) C.(2,﹣1) D.(1,﹣2)【答案】B【解析】【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【详解】点M(-2,1)关于y轴的对称点N的坐标是(2,1).故选B.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.2.下列全国各地地铁标志图中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】C【解析】【分析】试题解析:选项A既不是轴对称图形,也不是中心对称图形,故该该选项错误;选项B既不是轴对称图形,也不是中心对称图形,故该选项错误;选项C 既是轴对称图形,也是中心对称图形,故该选项正确;选项D是轴对称图形,但不是中心对称图形,故该选项错误.故选C.【详解】请在此输入详解!3.如图,△ABC绕点A逆时针旋转使得点C落在BC边上的点F处,则以下结论:①AC =AF ;②∠FAB =∠EAB ;③EF =BC ;④∠EAB =∠FAC .其中正确的结论有( )A .4个B .3个C .2个D .1个【答案】B【解析】【分析】根据旋转的性质,旋转前后对应线段相等、对应角相等即可解答.【详解】由旋转可知△ABC ≌△AEF ,∴AC=AF ,EF=BC ,①③正确,∠EAF=∠BAC ,即∠EAB+∠BAF=∠BAF+∠FAC ,∴∠EAB=∠FAC ,④正确,②错误,综上所述,①③④正确.故选B.【点睛】本题考查了旋转的性质,属于简单题,熟悉旋转的性质,利用旋转的性质找到对应角之间的关系是解题关键.4.如图,在ABC ∆中,5AB =,3AC =,4BC =,将ABC ∆绕一逆时针方向旋转40︒得到ADE ∆,点B 经过的路径为弧BD ,则图中阴影部分的面积为( )A .1463π- B .33π+ C .3338π- D .259π 【答案】D【解析】【分析】 由旋转的性质可得△ACB ≌△AED ,∠DAB=40°,可得AD=AB=5,S △ACB =S △AED ,根据图形可得S 阴影=S △AED +S 扇形ADB -S △ACB =S 扇形ADB ,再根据扇形面积公式可求阴影部分面积.【详解】∵将△ABC 绕A 逆时针方向旋转40°得到△ADE ,∴△ACB ≌△AED ,∠DAB=40°,∴AD=AB=5,S△ACB=S△AED,∵S阴影=S△AED+S扇形ADB-S△ACB=S扇形ADB,∴S阴影=4025360π⨯=259π,故选D.【点睛】本题考查了旋转的性质,扇形面积公式,熟练掌握旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.5.下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【解析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选B.6.在下面由冬季奥运会比赛项目图标组成的四个图形中,其中可以看作轴对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7.如图,将线段AB 绕点O 顺时针旋转90°得到线段''A B 那么()2, 5A -的对应点'A 的坐标是 ( )A .()5,2B .()2,5C .()2,5-D .()5,2-【答案】A【解析】【分析】 根据旋转的性质和点A (-2,5)可以求得点A′的坐标.【详解】作AD ⊥x 轴于点D ,作A′D′⊥x 轴于点D′,则OD=A′D′,AD=OD′,OA=OA′,△OAD ≌△A ′OD ′(SSS ),∵A (-2,5),∴OD=2,AD=5,∴点A′的坐标为(5,2),故选:A .【点睛】此题考查坐标与图形变化-旋转,解题的关键是明确题意,找出所求问题需要的条件.8.下列图案中既是轴对称又是中心对称图形的是( )A .B .C .D .【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念判断即可.【详解】A 、不是轴对称图形,是中心对称图形,故本选项错误;B 、不是轴对称图形,也不是中心对称图形,故本选项错误;C 、是轴对称图形,是中心对称图形,故本选项正确;D 、是轴对称图形,不是中心对称图形,故本选项错误;故选C .【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9.如图,ABC ∆是O e 的内接三角形,45A ∠=︒,1BC =,把ABC ∆绕圆心O 按逆时针方向旋转90︒得到DEB ∆,点A 的对应点为点D ,则点A ,D 之间的距离是()A .1B .2C .3D .2【答案】A【解析】【分析】 连接AD ,构造△ADB ,由同弧所对应的圆周角相等和旋转的性质,证△ADB 和△DBE 全等,从而得到AD=BE=BC=1.【详解】如图,连接AD ,AO ,DO∵ABC ∆绕圆心O 按逆时针方向旋转90︒得到DEB ∆,∴AB=DE ,90AOD ∠=︒,45CAB BDE ∠=∠=︒∴1452ABD AOD ∠=∠=︒(同弧所对应的圆周角等于圆心角的一半),即45ABD EDB ∠=∠=︒,又∵DB=BD ,∴DAB BED ∠=∠(同弧所对应的圆周角相等),在△ADB 和△DBE 中ABD EDB AB EDDAB BED ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADB ≌△EBD (ASA ),∴AD=EB=BC=1.故答案为A.【点睛】本题主要考查圆周角、圆中的计算问题以及勾股定理的运用;顶点在圆上,两边都与圆相交的角角圆周角;掌握三角形全等的判定是解题的关键.10.直角坐标系内,点P(-2,3)关于原点的对称点Q 的坐标为( )A .(2,-3)B .(2,3)C .(-2,3)D .(-2,-3) 【答案】A【解析】试题解析:根据中心对称的性质,得点P (-2,3)关于原点对称点P′的坐标是(2,-3). 故选A .点睛:平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ).11.下列字母中:H 、F 、A 、O 、M 、W 、Y 、E ,轴对称图形的个数是( )A .5B .4C .6D .7【答案】D【解析】从第一个字母研究,只要能够找到一条对称轴,令这个字母沿这条对称轴折叠后,两边的部分能够互相重合,就是轴对称图形,可以得出:字母H 、A 、O 、M 、W 、Y 、E 这七个字母,属于轴对称图形.故选:D.12.如图,ABC V 的三个顶点都在方格纸的格点上,其中点A 的坐标是()1,0-.现将ABC V 绕点A 顺时针旋转90︒,则旋转后点C 的坐标是( )A .()3,3B .()2,1C .()4,1--D .()2,3【答案】B【解析】【分析】 在网格中绘制出CA 旋转后的图形,得到点C 旋转后对应点.【详解】如下图,绘制出CA 绕点A 顺时针旋转90°的图形由图可得:点C 对应点的坐标为(2,1)故选:B【点睛】本题考查旋转,需要注意题干中要求顺时针旋转还是逆时针旋转.13.如图,已知点P (0,3) ,等腰直角△ABC 中,∠BAC=90°,AB=AC ,BC =2,BC 边在x 轴上滑动时,PA +PB 的最小值是 ( )A 102B 26C .5D .6【答案】B【解析】【分析】 过点P 作PD ∥x 轴,做点A 关于直线PD 的对称点A´,延长A´ A 交x 轴于点E ,则当A´、P 、B 三点共线时,PA +PB 的值最小,根据勾股定理求出A B '的长即可.【详解】如图,过点P 作PD ∥x 轴,做点A 关于直线PD 的对称点A´,延长A´A 交x 轴于点E ,则当A´、P 、B 三点共线时,PA +PB 的值最小,∵等腰直角△ABC 中,∠BAC=90°,AB=AC ,BC =2,∴AE=BE=1,∵P (0,3) ,∴A A´=4, ∴A´E=5, ∴22221526A B BE A E ''=+=+=,故选B.【点睛】本题考查了勾股定理,轴对称-最短路线问题的应用,解此题的关键是作出点A 关于直线PD 的对称点,找出PA +PB 的值最小时三角形ABC 的位置.14.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 【答案】C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A 、是轴对称图形,不是中心对称的图形,故本选项不符合题意;B 、不是轴对称图形,是中心对称的图形,故本选项不符合题意;C 、既是轴对称图形,又是中心对称的图形,故本选项符合题意;D 、是轴对称图形,不是中心对称的图形,故本选项不符合题意.故选:C .【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.15.如图,在▱ABCD 中,E 为边AD 上的一点,将△DEC 沿CE 折叠至△D ′EC 处,若∠B =48°,∠ECD =25°,则∠D ′EA 的度数为( )A.33°B.34°C.35°D.36°【答案】B【解析】【分析】由平行四边形的性质可得∠D=∠B,由折叠的性质可得∠D'=∠D,根据三角形的内角和定理可得∠DEC,即为∠D'EC,而∠AEC易求,进而可得∠D'EA的度数.【详解】解:∵四边形ABCD是平行四边形,∴∠D=∠B=48°,由折叠的性质得:∠D'=∠D=48°,∠D'EC=∠DEC=180°﹣∠D﹣∠ECD=107°,∴∠AEC=180°﹣∠DEC=180°﹣107°=73°,∴∠D'EA=∠D'EC﹣∠AEC=107°﹣73°=34°.故选:B.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.16.如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小为( )A.70°B.80°C.84°D.86°【答案】B【解析】【分析】由旋转的性质可知∠B=∠AB1C1,AB=AB1,由等腰三角形的性质和三角形的内角和定理可求得∠B=∠BB1A=∠AB1C1=40°,从而可求得∠BB1C1=80°.【详解】由旋转的性质可知:∠B=∠AB1C1,AB=AB1,∠BAB1=100°.∵AB=AB1,∠BAB1=100°,∴∠B=∠BB1A=40°.∴∠AB1C1=40°.∴∠BB1C1=∠BB1A+∠AB1C1=40°+40°=80°.故选:B.【点睛】本题主要考查的是旋转的性质,由旋转的性质得到△ABB1为等腰三角形是解题的关键.17.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.7【答案】B【解析】试题解析:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得DC′=22+=22BC BD'+=5.故选B.3418.下列图形中,是轴对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据轴对称图形的概念逐一判断即可.【详解】A、B、C都不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,不符合题意;D、是轴对称图形,符合题意.【点睛】本题考查轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.19.等腰三角形、直角三角形、等边三角形、锐角三角形、钝角三角形和等腰直角三角形中,一定是轴对称图形的有()A.3个 B.4个 C.5个 D.2个【答案】A【解析】等腰三角形、等边三角形、等腰直角三角形都是轴对称图形,是轴对称图形的有3个.故选:A.20.如图,在△ABC中,AB=AC,BC=9,点D在边AB上,且BD=5将线段BD沿着BC 的方向平移得到线段EF,若平移的距离为6时点F恰好落在AC边上,则△CEF的周长为()A.26 B.20 C.15 D.13【答案】D【解析】【分析】直接利用平移的性质得出EF=DB=5,进而得出CF=EF=5,进而求出答案.【详解】解:∵将线段BD沿着BC的方向平移得到线段EF,∴EF=DB=5,BE=6,∵AB=AC,BC=9,∴∠B=∠C,EC=3,∴∠B=∠FEC,∴CF=EF=5,∴△EBF的周长为:5+5+3=13.故选D.【点睛】本题考查了平移的性质,根据题意得出CF的长是解题关键.。

初中数学图形的平移,对称与旋转的分类汇编及答案解析(1)

初中数学图形的平移,对称与旋转的分类汇编及答案解析(1)

初中数学图形的平移,对称与旋转的分类汇编及答案解析(1)一、选择题1.如图,将ABC V 绕点A 逆时针旋转90︒得到,ADE V 点,B C 的对应点分别为,,1,D E AB =则BD 的长为( )A .1B 2C .2D .22【答案】B【解析】【分析】 根据旋转的性质得到AD=AB=1,∠BAD=90°,即可根据勾股定理求出BD .【详解】由旋转得到AD=AB=1,∠BAD=90°,∴22AB AD +2211+2,故选:B .【点睛】此题考查了旋转的性质,勾股定理,找到直角是解题的关键.2.在平行四边形、菱形、矩形、正方形这四种图形中,是轴对称图形的有( ) A .1个 B .2个 C .3个 D .4个【答案】C【解析】【分析】根据轴对称图形的概念求解.【详解】解:平行四边形不是轴对称图形,菱形、矩形、正方形都是轴对称图形.故选:C .【点睛】本题考查轴对称图形的概念,解题关键是寻找轴对称图形的对称轴,图形两部分沿对称轴折叠后可重合.3.下列全国各地地铁标志图中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.【答案】C【解析】【分析】试题解析:选项A既不是轴对称图形,也不是中心对称图形,故该该选项错误;选项B既不是轴对称图形,也不是中心对称图形,故该选项错误;选项C 既是轴对称图形,也是中心对称图形,故该选项正确;选项D是轴对称图形,但不是中心对称图形,故该选项错误.故选C.【详解】请在此输入详解!4.下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形【答案】D【解析】【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【详解】A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确,故选D.【点睛】本题考查了中心对称图形与轴对称图形的概念.辨别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;.辨别中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合.5.如图,已知△A1B1C1的顶点C1与平面直角坐标系的原点O重合,顶点A1、B1分别位于x 轴与y轴上,且C1A1=1,∠C1A1B1=60°,将△A1B1C1沿着x轴做翻转运动,依次可得到△A2B2C2,△A3B3C3等等,则C2019的坐标为()A .(2018+6723,0)B .(2019+6733,0)C .(40352+6723,3)D .(2020+6743,0) 【答案】B【解析】【分析】根据题意可知三角形在x 轴上的位置每三次为一个循环,又因为20193673÷=,那么2019C 相当于第一个循环体的3673C 个即可算出.【详解】由题意知,111C A =,11160C A B ︒∠=,则11130C B A ︒∠=,11222A B A B ==,1122333C B C B C B ===,结合图形可知,三角形在x 轴上的位置每三次为一个循环,Q 20193673÷=,∴2019673(123)20196733OC =++=+,∴2019C (20196733,0)+,故选B .【点睛】考查解直角三角形,平面直角坐标系中点的特征,结合找规律.理解题目中每三次是一个循环是解题关键.6.已知点P (a +1,12a -+)关于原点的对称点在第四象限,则a 的取值范围在数轴上表示正确的是( )A .B .C .D . 【答案】C【解析】试题分析:∵P (1a +,12a -+)关于原点对称的点在第四象限,∴P 点在第二象限,∴10a +<,102a -+>,解得:1a <-,则a 的取值范围在数轴上表示正确的是.故选C .考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组;3.关于原点对称的点的坐标.7.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧.三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆.下列说法中错误的是( )A .勒洛三角形是轴对称图形B .图1中,点A 到¶BC上任意一点的距离都相等 C .图2中,勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都相等 D .图2中,勒洛三角形的周长与圆的周长相等【答案】C【解析】【分析】根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴. 鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE 的扇形的重叠,根据其特点可以进行判断选项的正误.【详解】鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确;点A 到¶BC上任意一点的距离都是DE ,故正确; 勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都不相等,1O 到顶点的距离是到边的中点的距离的2倍,故错误;鲁列斯曲边三角形的周长=3×60180DE DE ππ⨯=⨯ ,圆的周长=22DE DE ππ⨯=⨯ ,故说法正确.故选C.主要考察轴对称图形,弧长的求法即对于新概念的理解.8.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断即可求解.【详解】解:第一个图形不是轴对称图形,是中心对称图形;第二、三个图形是轴对称图形,也是中心对称图形,第四个图形不是轴对称图形,不是中心对称图形;故选:B.【点睛】此题考查中心对称图形,轴对称图形,解题关键在于对概念的掌握9.下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【答案】A【解析】A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D. 是轴对称图形也是中心对称图形,错误,故选A.【点睛】本题考查轴对称图形与中心对称图形,正确地识别是解题的关键.10.下面是同学们利用图形变化的知识设计的一些美丽的图案,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】A【解析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【详解】A、是中心对称图形,又是轴对称图形,故此选项正确;B、是中心对称图形,不是轴对称图形,故此选项错误;C、不是中心对称图形,是轴对称图形,故此选项错误;D、不是中心对称图形,是轴对称图形,故此选项错误;故选A.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.11.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.7【答案】B【解析】试题解析:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得DC22+22'BC BD+.故选B.3412.如图在平面直角坐标系中,等边三角形OAB的边长为4,点A在第二象限内,将∆沿射线AO平移,平移后点A'的横坐标为3B'的坐标为()OABA .(63,2)-B .(63,23)-C .(6,2)-D .(63,2)-【答案】D【解析】【分析】 先根据已知条件求出点A 、B 的坐标,再求出直线OA 的解析式,继而得出点A '的纵坐标,找出点A 平移至点A '的规律,即可求出点B '的坐标.【详解】解:∵三角形OAB 是等边三角形,且边长为4∴(23,2),(0,4)A B -设直线OA 的解析式为y kx =,将点A 坐标代入,解得:33k =-即直线OA 的解析式为:3y x =- 将点A '的横坐标为43代入解析式可得:4y =-即点A '的坐标为(43,4)-∵点A 向右平移63个单位,向下平移6个单位得到点A '∴B '的坐标为(063,46)(63,2)+-=-.故选:D .【点睛】本题考查的知识点是坐标与图形变化-平移,熟练掌握坐标平面图形平移的规律是解决本题的关键.13.观察下列图形,其中既是轴对称又是中心对称图形的是( )A .B .C .D .【答案】D【解析】【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】A. 是中心对称图形,不是轴对称图形,选项不符合题意;B. 是轴对称图形,不是中心对称图形,选项不符合题意;C. 不是中心对称图形,也不是轴对称图形,选项不符合题意;D. 是中心对称图形,也是轴对称图形,选项符合题意,故选D.【点睛】本题考查轴对称图形和中心对称图形,解题的关键是掌握轴对称图形和中心对称图形的定义.14.如图,已知点P(0,3) ,等腰直角△ABC中,∠BAC=90°,AB=AC,BC=2,BC边在x轴上滑动时,PA+PB的最小值是()A.102+B.26C.5 D.26【答案】B【解析】【分析】过点P作PD∥x轴,做点A关于直线PD的对称点A´,延长A´ A交x轴于点E,则当A´、P、B三点共线时,PA+PB的值最小,根据勾股定理求出A B'的长即可.【详解】如图,过点P作PD∥x轴,做点A关于直线PD的对称点A´,延长A´ A交x轴于点E,则当A´、P、B三点共线时,PA+PB的值最小,∵等腰直角△ABC中,∠BAC=90°,AB=AC,BC=2,∴AE=BE=1,∵P(0,3) ,∴A A´=4, ∴A´E=5, ∴22221526A B BE A E ''=+=+=,故选B.【点睛】本题考查了勾股定理,轴对称-最短路线问题的应用,解此题的关键是作出点A 关于直线PD 的对称点,找出PA +PB 的值最小时三角形ABC 的位置.15.如图,在▱ABCD 中,E 为边AD 上的一点,将△DEC 沿CE 折叠至△D ′EC 处,若∠B =48°,∠ECD =25°,则∠D ′EA 的度数为( )A .33°B .34°C .35°D .36°【答案】B【解析】【分析】 由平行四边形的性质可得∠D =∠B ,由折叠的性质可得∠D '=∠D ,根据三角形的内角和定理可得∠DEC ,即为∠D 'EC ,而∠AEC 易求,进而可得∠D 'EA 的度数.【详解】解:∵四边形ABCD 是平行四边形,∴∠D =∠B =48°,由折叠的性质得:∠D '=∠D =48°,∠D 'EC =∠DEC =180°﹣∠D ﹣∠ECD =107°, ∴∠AEC =180°﹣∠DEC =180°﹣107°=73°,∴∠D 'EA =∠D 'EC ﹣∠AEC =107°﹣73°=34°.故选:B .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.16.如图,将△ABC 绕点C (0,1)旋转180°得到△A'B'C ,设点A 的坐标为(,)a b ,则点的坐标为( )A .(,)a b --B .(,1)a b ---C .(,1)a b --+D .(,2)a b --+【答案】D【解析】 试题分析:根据题意,点A 、A′关于点C 对称,设点A 的坐标是(x ,y ),则 0122a xb y ++==,,解得2x a y b =-=-+,,∴点A 的坐标是(2)a b --+,.故选D . 考点:坐标与图形变化-旋转.17.如图,在ABC ∆中,2AB =,=3.6BC ,=60B ∠o ,将ABC ∆绕点A 顺时针旋转度得到ADE ∆,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .1.6B .1.8C .2D .2.6【答案】A【解析】【分析】 由将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上,可得AD=AB ,又由∠B=60°,可证得△ABD 是等边三角形,继而可得BD=AB=2,则可求得答案.【详解】由旋转的性质可知,AD AB =,∵60B ∠=o ,AD AB =,∴ADB ∆为等边三角形,∴2BD AB ==,∴ 1.6CD CB BD =-=,故选:A .【点睛】此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB18.下列所给图形是中心对称图形但不是轴对称图形的是()A.B.C.D.【答案】D【解析】A. 此图形不是中心对称图形,不是轴对称图形,故A选项错误;B. 此图形是中心对称图形,也是轴对称图形,故B选项错误;C. 此图形不是中心对称图形,是轴对称图形,故D选项错误.D. 此图形是中心对称图形,不是轴对称图形,故C选项正确;故选D.19.如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小为( )A.70°B.80°C.84°D.86°【答案】B【解析】【分析】由旋转的性质可知∠B=∠AB1C1,AB=AB1,由等腰三角形的性质和三角形的内角和定理可求得∠B=∠BB1A=∠AB1C1=40°,从而可求得∠BB1C1=80°.【详解】由旋转的性质可知:∠B=∠AB1C1,AB=AB1,∠BAB1=100°.∵AB=AB1,∠BAB1=100°,∴∠B=∠BB1A=40°.∴∠AB1C1=40°.∴∠BB1C1=∠BB1A+∠AB1C1=40°+40°=80°.故选:B.【点睛】本题主要考查的是旋转的性质,由旋转的性质得到△ABB1为等腰三角形是解题的关键. 20.如图,在平面直角坐标系中,AOB∆的顶点B在第一象限,点A在y轴的正半轴上,AO AB==,1202∠绕点O逆时针旋转90o,点B的对应点'B的∠=o,将AOBOAB坐标是()A .3(2,3)2--B .33(2,2)22---C .3(3,2)--D .(3,3)-【答案】D 【解析】【分析】过点'B 作x 轴的垂线,垂足为M ,通过条件求出'B M ,MO 的长即可得到'B 的坐标.【详解】解:过点'B 作x 轴的垂线,垂足为M ,∵2AO AB ==,120OAB ∠=︒,∴'''2A O A B ==,''120OA B ∠=︒,∴'0'6M B A ∠=︒,在直角△''A B M 中,3==2=B'M B'M 'sin B A M B '''A ∠ , 1==22=A'M A'M 'cos B A M B '''A ∠, ∴'3B M ='1A M =,∴OM=2+1=3,∴'B 的坐标为(3)-.故选:D.【点睛】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.。

2019年全国各地中考数学试题分类汇编 专题29 平移旋转与对称(含解析)

2019年全国各地中考数学试题分类汇编 专题29 平移旋转与对称(含解析)

平移旋转与对称一.选择题1. (2019•江苏无锡•3分)下列图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答】解:A、不是中心对称图形,是轴对称图形,故此选项错误;B、是中心对称图形,也是轴对称图形,故此选项错误;C、是中心对称图形,不是轴对称图形,故此选项正确;D、不是中心对称图形,也不是轴对称图形,故此选项错误;故选:C.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2. (2019•江苏扬州•3分)下列图案中,是中心对称图形的是( D )A. B. C. D.【考点】:中心对称图形【解析】:中心对称图形绕某一点旋转180°与图形能够完全重合【答案】:D.3. (2 019·江苏盐城·3分)下列图形中,既是轴对称图形又是中心对称图形的是( )【答案】B【解析】考查对轴对称和中心对称的理解,故选B.4. (2019•天津•3分)在一些美术字中,有的汉字是轴对称图形,下面4个汉字中,可以看做是轴对称图形的是【答案】A【解析】美、丽、校、园四个汉子中,“美”可以看做轴对称图形。

故选A5.(2019•四川自贡•4分)下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】直接利用轴对称图形和中心对称图形的概念求解.【解答】解:A、是轴对称图形,但不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、既是中心对称图形也是轴对称图形,故此选项正确.故选:D.【点评】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.6.(2019•河南•3分)如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()A.(10,3)B.(﹣3,10)C.(10,﹣3)D.(3,﹣10)【分析】先求出AB=6,再利用正方形的性质确定D(﹣3,10),由于70=4×17+2,所以第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,此时旋转前后的点D关于原点对称,于是利用关于原点对称的点的坐标特征可出旋转后的点D的坐标.【解答】解:∵A(﹣3,4),B(3,4),∴AB=3+3=6,∵四边形ABCD为正方形,∴AD=AB=6,∴D(﹣3,10),∵70=4×17+2,∴每4次一个循环,第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,∴点D的坐标为(3,﹣10).故选:D.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.7.(2019•天津•3分)如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列结论一定正确的是A.AC=ADB.AB⊥EBC. BC=DED.∠A=∠EBC【答案】D【解析】由旋转性质可知,AC=CD,AC≠AD,∴A错由旋转性质可知,BC=EC,BC≠DE,∴C错由旋转性质可知,∠ACB=∠DCE,∵∠ACB=∠ACD+∠DCB,∠DCE =∠ECB +∠DCB ∴∠ACD =∠ECB ,∵AC =CD ,BC =CE ,∴∠A =∠CDA =21(180°-∠ECB ),∠EBC =∠CEB =21(180°-∠ECB ),∴D 正确,由于由题意无法得到∠ABE =90°,∴B 选项错误. 故选D 。

中考数学真题分类解析汇编 30平移旋转与对称

中考数学真题分类解析汇编 30平移旋转与对称

平移旋转与对称一、选择题1. ( 2014•福建泉州,第5题3分)正方形的对称轴的条数为( )2. ( 2014•广东,第2题3分)在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .考点: 中心对称图形;轴对称图形. 分析: 根据轴对称图形与中心对称图形的概念求解.解答: 解:A 、不是轴对称图形,不是中心对称图形.故此选项错误;B 、不是轴对称图形,也不是中心对称图形.故此选项错误;C 、是轴对称图形,也是中心对称图形.故此选项正确;D 、是轴对称图形,不是中心对称图形.故此选项错误.故选C .点评: 此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3. (2014•广西贺州,第6题3分)下列图形中既是轴对称图形,又是中心对称图形的是( )A . 等边三角形B . 平行四边形C . 正方形D . 正五边形考点: 中心对称图形;轴对称图形.专题: 常规题型.分析: 根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.解答: 解:A 、等边三角形是轴对称图形,不是中心对称图形,故本选项错误; B 、平行四边形不是轴对称图形,是中心对称图形,故本选项错误;C、正方形是轴对称图形,也是中心对称图形,故本选项正确;D、正五边形是轴对称图形,不是中心对称图形,故本选项错误.故选C.点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(2014年天津市,第3 题3分)下列标志中,可以看作是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.点评:此题主要考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.5.(2014•新疆,第9题5分)如图,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处.若AD=3,BC=5,则EF的值是()2,所以。

中考数学复习整理专题29 平移旋转与对称

中考数学复习整理专题29 平移旋转与对称

平移旋转与对称一.选择题1,(2015•山东莱芜,第3题3分)在下列四个图案中既是轴对称图形,又是中心对称图形的是( )A. B. C. D.【答案】B因此:A、不是轴对称图形,是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选B.考点:轴对称图形和中心对称图形2, (2015山东青岛,第3题,3分)下列四个图形中,既是轴对称图形又是中心对称图形的是().【答案】B【解析】试题分析:在一个平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,这样的图形叫做中心对称图形.根据定义可以判定B 既是轴对称图形,也是中心对称图形.考点:轴对称图形与中心对称图形.3, (2015•淄博第3题,4分)将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的( )““”【答案】【解析】点P 坐标为【备考指导】此题主要考查了关于原点对称点的坐标性质,这一类题目是需要识记的基础题,要熟悉关于原点对称点的横纵坐标变化规律.4.(2015·湖北省孝感市,第6题3分)在平面直角坐标系中,把点)3 5(,P 向右平移8个单位得到点1P ,再将点1P 绕原点旋转 ︒90得到点2P ,则点2P 的坐标是A .)33(-,B .)3 3(,-C .)33()3 3(--,或,D .)33(-,或)3 3(,- 考点:坐标与图形变化-旋转;坐标与图形变化-平移.. 专题:分类讨论.分析:首先利用平移的性质得出点P 1的坐标,再利用旋转的性质得出符合题意的答案. 解答:解:∵把点P (﹣5,3)向右平移8个单位得到点P 1, ∴点P 1的坐标为:(3,3),如图所示:将点P 1绕原点逆时针旋转90°得到点P 2,则其坐标为:(﹣3,3), 将点P 1绕原点顺时针旋转90°得到点P 3,则其坐标为:(3,﹣3), 故符合题意的点的坐标为:(3,﹣3)或(﹣3,3). 故选:D .点评:此题主要考查了坐标与图形的变化,正确利用图形分类讨论得出是解题关键. 5.(2015•湖南株洲,第4题3分)下列几何图形中,既是轴对称图形,又是中心对称图形的是( )A .等腰三角形B .正三角形C .平行四边形D .正方形【试题分析】本题考点为:轴对称图形与中心对称图形的理解 答案为:D1.(2015•江苏无锡,第6题2分)下列图形,是轴对称图形但不是心对称图形的是( )6.(2015•福建泉州第5题3分)如图,△ABC沿着由点B到点E的方向,平移到△DEF,已知BC=5.EC=3,那么平移的距离为()解:根据平移的性质,易得平移的距离=BE=5﹣3=2,故选A.7.(2015•广东佛山,第2题3分)在下列四个图案中,不是中心对称图形的是()8.(2015•广东梅州,第9题4分)如图,将矩形纸片ABCD 折叠,使点A 与点C 重合,折痕为EF ,若AB =4,BC =2,那么线段EF 的长为( )9. (2015•浙江嘉兴,第2题4分)下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有(▲)(A )1个 (B )2个 (C )3个 (D )4个考点:中心对称图形..分析:根据中心对称的概念对各图形分析判断即可得解. 解答:解:第一个图形是中心对称图形, 第二个图形不是中心对称图形, 第三个图形是中心对称图形, 第四个图形不是中心对称图形, 所以,中心对称图有2个. 故选:B .点评:本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10. (2015•浙江丽水,第10题3分)如图,在方格纸中,线段错误!不能通过编辑域代码创建对象。

初中数学图形的平移,对称与旋转的分类汇编及解析(1)

初中数学图形的平移,对称与旋转的分类汇编及解析(1)

初中数学图形的平移,对称与旋转的分类汇编及解析(1)一、选择题1.如图,在R t △ABC 中,∠ACB=90°,∠B=60°,BC=2,∠A ′B ′C ′可以由△ABC 绕点C 顺时针旋转得到,其中点A′与点A 是对应点,点B′与点B 是对应点,连接AB′,且A 、B′、A′在同一条直线上,则AA′的长为( )A .43B .6C .33D .3【答案】B【解析】【分析】【详解】 试题分析:∵在Rt △ABC 中,∠ACB=90°,∠B=60°,BC=2,∴∠CAB=30°,故AB=4,∵△A ′B ′C 可以由△ABC 绕点C 顺时针旋转得到,其中点A′与点A 是对应点,点B′与点B 是对应点,连接AB′,且A 、B′、A′在同一条直线上,∴AB=A ′B ′=4,AC=A′C ,∴∠CAA ′=∠A ′=30°,∴∠ACB ′=∠B ′AC=30°,∴AB ′=B ′C=2,∴AA ′=2+4=6.故选B .考点:1、旋转的性质;2、直角三角形的性质2.如图,在Rt ABC V 中,BAC 90∠=︒,B 36∠=︒,AD 是斜边BC 上的中线,将△ACD 沿AD 对折,使点C 落在点F 处,线段DF 与AB 相交于点E ,则∠BED 等于( )A .120°B .108°C .72°D .36° 【答案】B【解析】【分析】根据三角形内角和定理求出C 90B 54∠∠=︒-=︒.由直角三角形斜边上的中线的性质得出AD =BD =CD ,利用等腰三角形的性质求出BAD B 36∠∠==︒,DAC C 54∠∠==︒,利用三角形内角和定理求出ADC 180DAC C 72∠∠∠=︒--=︒.再根据折叠的性质得出ADF ADC 72∠∠==︒,然后根据三角形外角的性质得出BED BAD ADF 108∠∠∠=+=︒.【详解】∵在Rt ABC V 中,BAC 90∠=︒,B 36∠=︒,∴C 90B 54∠∠=︒-=︒.∵AD 是斜边BC 上的中线,∴AD BD CD ==,∴BAD B 36∠∠==︒,DAC C 54∠∠==︒,∴ADC=180DAC C 72∠∠∠︒--=︒.∵将△ACD 沿AD 对折,使点C 落在点F 处,∴ADF ADC 72∠∠==︒,∴BED BAD ADF 108∠∠∠=+=︒.故选B .【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了直角三角形斜边上的中线的性质、等腰三角形的性质、三角形内角和定理以及三角形外角的性质.3.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是( )A .主视图B .左视图C .俯视图D .主视图和左视图【答案】C【解析】 【分析】根据所得到的主视图、俯视图、左视图结合中心对称图形的定义进行判断即可.【详解】观察几何体,可得三视图如图所示:可知俯视图是中心对称图形,故选C.【点睛】本题考查了三视图、中心对称图形,正确得到三视图是解决问题的关键.4.如图,在Rt△ABC中,∠CAB=90°,AB=AC,点A在y轴上,BC∥x轴,点B(2,32)-.将△ABC绕点A顺时针旋转的△AB′C′,当点B′落在x轴的正半轴上时,点C′的坐标为()A32﹣1)B231)C33)D33﹣1)【答案】D【解析】【分析】作C'D⊥OA于D,设AO交BC于E,由等腰直角三角形的性质得出∠B=45°,AE=12BC=2,BC=22AB,得出AB=2,OA3,由旋转的性质得:AB'=AB=AC=AC'=2,∠C'AB'=∠CAB=90°,由勾股定理得出OB'22'AB OA-1=12AB',证出∠OAB'=30°,得出∠C'AD=∠AB'O=60°,证明△AC'D≌△B'AO得出AD=OB'=1,C'D=AO=3,求出OD=AO﹣AD3﹣1,即可得出答案.【详解】解:作C'D⊥OA于D,设AO交BC于E,如图所示:则∠C'DA=90°,∵∠CAB=90°,AB=AC,∴△ABC是等腰直角三角形,∴∠B=45°,∵BC∥x轴,点B232),∴AE=12BC2,BC=22AB,∴AB=2,OA=3,由旋转的性质得:AB'=AB=AC=AC'=2,∠C'AB'=∠CAB=90°,∴OB'=22'AB OA-=1=12AB',∴∠OAB'=30°,∴∠C'AD=∠AB'O=60°,在△AC'D和△AB'O中,''''''C DA AOBC AD AB OAC AB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AC'D≌△B'AO(AAS),∴AD=OB'=1,C'D=AO=3,∴OD=AO﹣AD=3﹣1,∴点C′的坐标为(﹣3,3﹣1);故选:D.【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、坐标与图形性质、旋转的性质、直角三角形的性质、勾股定理等知识;熟练掌握旋转的性质,证明三角形全等是解题的关键.5.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1).则点B的对应点的坐标为()A.(5,3)B.(﹣1,﹣2)C.(﹣1,﹣1)D.(0,﹣1)【答案】C【解析】【分析】根据点A、点A的对应点的坐标确定出平移规律,然后根据规律求解点B的对应点的坐标即可.【详解】∵A(1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∵点B(2,1)的对应点的坐标为(﹣1,﹣1),故选C.【点睛】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.6.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,3),且|a﹣c|+7b-=0,将线段PQ向右平移a个单位长度,其扫过的面积为20,那么a+b+c的值为()A.12 B.15 C.17 D.20【答案】C【解析】【分析】由非负数的性质得到a=c,b=7,P(a,7),故有PQ∥y轴,PQ=7-3=4,由于其扫过的图形是矩形可求得a,代入即可求得结论.【详解】b-=0,∵且|a-c|++7∴a=c,b=7,∴P(a,7),PQ∥y轴,∴PQ=7-3=4,∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,∴4a=20,∴a=5,∴c=5,∴a+b+c=5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y 轴,进而求得PQ是解题的关键.7.在下面由冬季奥运会比赛项目图标组成的四个图形中,其中可以看作轴对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C 、不是轴对称图形,故本选项错误;D 、是轴对称图形,故本选项正确.故选:D .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8.如图,在ABC V 中,60,3,5,B AB BC ∠=︒==将ABC V 绕点A 顺时针方向旋转得到,ADE V 当点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .3B .2.5C .2D .1【答案】C【解析】【分析】 由旋转得到AD=AB ,由此证明△ADB 是等边三角形,得到BD=AB=3,即可求出CD.【详解】由旋转得AD=AB ,∵60B ∠=︒,∴△ADB 是等边三角形,∴BD=AB=3,∴CD=BC-BD=5-3=2,故选:C.【点睛】此题考查旋转的性质,等边三角形的判定及性质,根据旋转得到AD=AB 是解题的关键,由此得到等边三角形进行求解.9.下列图形中,是轴对称图形但不是中心对称图形的是( )A .B .C .D .【答案】A【解析】A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D. 是轴对称图形也是中心对称图形,错误,故选A.【点睛】本题考查轴对称图形与中心对称图形,正确地识别是解题的关键.10.下列图案中既是轴对称又是中心对称图形的是()A.B.C.D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念判断即可.【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、不是轴对称图形,也不是中心对称图形,故本选项错误;C、是轴对称图形,是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误;故选C.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.11.下列图形中,不一定是轴对称图形的是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形【答案】C【解析】A.等腰三角形是轴对称图形,不符合题意;B.等边三角形是轴对称图形,不符合题意;C.直角三角形不一定是轴对称图形,符合题意;D.等腰直角三角形是轴对称图形,不符合题意.故选C.12.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.【答案】B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.故选B.13.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A-45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长度为()A.32B.5 C.4 D31【答案】B【解析】【分析】【详解】由题意易知:∠CAB=45°,∠ACD=30°,若旋转角度为15°,则∠ACO=30°+15°=45°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=6,则AC=BC=32同理可求得:AO=OC=3.在Rt△AOD1中,OA=3,OD1=CD1-OC=4,由勾股定理得:AD1=5.故选B.14.如图,已知点P(0,3) ,等腰直角△ABC中,∠BAC=90°,AB=AC,BC=2,BC边在x轴上滑动时,PA+PB的最小值是()A .102+B .26C .5D .26【答案】B【解析】【分析】 过点P 作PD ∥x 轴,做点A 关于直线PD 的对称点A´,延长A´ A 交x 轴于点E ,则当A´、P 、B 三点共线时,PA +PB 的值最小,根据勾股定理求出A B '的长即可.【详解】如图,过点P 作PD ∥x 轴,做点A 关于直线PD 的对称点A´,延长A´A 交x 轴于点E ,则当A´、P 、B 三点共线时,PA +PB 的值最小,∵等腰直角△ABC 中,∠BAC=90°,AB=AC ,BC =2,∴AE=BE=1,∵P (0,3) ,∴A A´=4, ∴A´E=5, ∴22221526A B BE A E ''=+=+=,故选B.【点睛】本题考查了勾股定理,轴对称-最短路线问题的应用,解此题的关键是作出点A 关于直线PD 的对称点,找出PA +PB 的值最小时三角形ABC 的位置.15.如图,将△ABC 绕点C (0,1)旋转180°得到△A'B'C ,设点A 的坐标为(,)a b ,则点的坐标为( )A .(,)a b --B .(,1)a b ---C .(,1)a b --+D .(,2)a b --+【答案】D【解析】 试题分析:根据题意,点A 、A′关于点C 对称,设点A 的坐标是(x ,y ),则 0122a xb y ++==,,解得2x a y b =-=-+,,∴点A 的坐标是(2)a b --+,.故选D . 考点:坐标与图形变化-旋转.16.如图,在ABC ∆中,2AB =,=3.6BC ,=60B ∠o ,将ABC ∆绕点A 顺时针旋转度得到ADE ∆,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .1.6B .1.8C .2D .2.6【答案】A【解析】【分析】 由将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上,可得AD=AB ,又由∠B=60°,可证得△ABD 是等边三角形,继而可得BD=AB=2,则可求得答案.【详解】由旋转的性质可知,AD AB =,∵60B ∠=o ,AD AB =,∴ADB ∆为等边三角形,∴2BD AB ==,∴ 1.6CD CB BD =-=,故选:A .【点睛】此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB17.下列几何图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故本选项错误;B、是中心对称图形,不是轴对称图形,故本选项错误;C、是中心对称图形,也是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误;故选:C.【点睛】此题考查中心对称图形与轴对称图形的概念,注意掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.18.斐波那契螺旋线也称为“黄金螺旋线”,是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线图案.下列斐波那契螺旋线图案中属于轴对称图形的是()A.B.C.D.【答案】A【解析】【分析】如果一个图形沿着一条直线对折,直线两边的图形能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】根据轴对称图形的定义,只有选项A是轴对称图形,其他不是.故选:A【点睛】考核知识点:轴对称图形.理解定义是关键.19.下列图形中,不是轴对称图形的是()A.有两个内角相等的三角形 B.有一个内角为45°的直角三角形C.有两个内角分别为50°和80°的三角形 D.有两个内角分别为55°和65°的三角形【答案】D【解析】A.有两个内角相等的三角形是等腰三角形,等腰三角形是轴对称图形;B.有一个内角为45度的直角三角形是等腰直角三角形,也是等腰三角形,是轴对称图形;C.有两个内角分别为50度和80度的三角形,第三个角是50度,故是等腰三角形,是轴对称图形;D.有两个内角分别为55度和65度的三角形,不是等腰三角形,不是轴对称图形. 故选:D.20.如图,将线段AB 绕点O 顺时针旋转90°得到线段''A B 那么()2, 5A -的对应点'A 的坐标是 ( )A .()5,2B .()2,5C .()2,5-D .()5,2-【答案】A【解析】【分析】 根据旋转的性质和点A (-2,5)可以求得点A′的坐标.【详解】作AD ⊥x 轴于点D ,作A′D′⊥x 轴于点D′,则OD=A′D′,AD=OD′,OA=OA′,△OAD ≌△A ′OD ′(SSS ),∵A (-2,5),∴OD=2,AD=5,∴点A′的坐标为(5,2),故选:A .【点睛】此题考查坐标与图形变化-旋转,解题的关键是明确题意,找出所求问题需要的条件.。

中考数学试题解析分类汇编汇总-《30-平移旋转与对称》

中考数学试题解析分类汇编汇总-《30-平移旋转与对称》

平移旋转与对称一、选择题1. (2014•海南,第8题3分)如图,△ABC与△DEF关于y轴对称,已知A(﹣4,6),B (﹣6,2),E(2,1),则点D的坐标为()A.(﹣4,6)B.(4,6)C.(﹣2,1)D.(6,2)考点:关于x轴、y轴对称的点的坐标.分析:根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y),进而得出答案.解答:解:∵△ABC与△DEF关于y轴对称,A(﹣4,6),∴D(4,6).故选:B.点评:此题主要考查了关于y轴对称点的性质,准确记忆横纵坐标的关系是解题关键.2. (2014•黑龙江龙东,第12题3分)下列交通标志图案是轴对称图形的是()A.B.C.D.考点:轴对称图形..分析:根据轴对称的定义结合选项所给的特点即可得出答案.解答:解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选B.点评:本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3. (2014•黑龙江绥化,第13题3分)下列图形中,既是中心对称图形又是轴对称图形的是()A.角B.等边三角形C.平行四边形D.圆考点:中心对称图形;轴对称图形.专题:常规题型.分析:根据轴对称及中心对称的定义,结合选项所给图形的特点即可作出判断.解答:解:A、角是轴对称图形,不是中心对称图形,故本选项错误;B、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;C、平行四边形不轴对称图形,是中心对称图形,故本选项错误;D、圆既是轴对称图形也是中心对称图形,故本选项正确;故选D.点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4. (2014•湖南衡阳,第2题3分)下列图案中,不是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念对各选项分析判断利用排除法求解.解答:解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.可重合.5. (2014•湖南永州,第2题3分)永州的文化底蕴深厚,永州人民的生活健康向上,如瑶族长鼓舞,东安武术,宁远举重等,下面的四幅简笔画是从永州的文化活动中抽象出来的,其中是轴对称图形的是()A.B.C.D.考点:利用轴对称设计图案..分析:根据轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,即可作出判断.解答:解:轴对称图形的只有C.故选C.点评:本题考查了轴对称图形的定义,解答此题要明确:如果一个图形沿着一条直线对折,直线两侧的图形能够完全重合,这个图形就是轴对称图形,对称轴是折痕所在的这条直线叫做对称轴.6. (2014•广西来宾,第1题3分)在下列平面图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形的概念与中心对称图形的概念对各选项分析判断利用排除法求解.解答:解:A、既是轴对称图形又是中心对称图形,故本选项正确;B、是轴对称图形,但不是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,但不是中心对称图形,故本选项错误.故选A.图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.(2014•广西来宾,第12题3分)将点P(﹣2,3)向右平移3个单位得到点P1,点P2与点P1关于原点对称,则P2的坐标是()A.(﹣5,﹣3)B.(1,﹣3)C.(﹣1,﹣3)D.(5,﹣3)考点:关于原点对称的点的坐标;坐标与图形变化-平移.分析:首先利用平移变化规律得出P1(1,3),进而利用关于原点对称点的坐标性质得出P2的坐标.解答:解:∵点P(﹣2,3)向右平移3个单位得到点P1,∴P1(1,3),∵点P2与点P1关于原点对称,∴P2的坐标是:(﹣1,﹣3).故选;C.点评:此题主要考查了关于原点对称点的性质以及点的平移规律,正确把握坐标变化性质是解题关键.8.((2014年广西南宁,第2题3分)下列图形中,是轴对称图形的是()A.B.C.D.考点:轴对称图形..分析:根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,进而得出答案.解答:解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.点评:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9.(2014年广西钦州,第6题3分)下列图形中,既是轴对称图形又是中心对称图形的是()A. B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解答:解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.10.(2014年贵州安顺,第3题3分)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.1个B.2个C.3个D. 4个考点:中心对称图形;轴对称图形..分析:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合,结合选项所给的图形即可得出答案.解答:解:①既是轴对称图形,也是中心对称图形,故正确;②是轴对称图形,不是中心对称图形,故错误;③既是轴对称图形,也是中心对称图形,故正确;④既不是轴对称图形,也不是中心对称图形,故错误.综上可得共有两个符合题意.故选B.点评:本题考查轴对称及中心对称的定义,属于基础题,掌握好中心对称图形与轴对称图形的概念是关键.11.(2014•莱芜,第8题3分)如图,AB为半圆的直径,且AB=4,半圆绕点B顺时针旋转45°,点A旋转到A′的位置,则图中阴影部分的面积为()A.πB.2πC.D.4π考点:扇形面积的计算;旋转的性质.分析:根据题意可得出阴影部分的面积等于扇形ABA′的面积加上半圆面积再减去半圆面积,即为扇形面积即可.解答:解:∵S阴影=S扇形ABA′+S半圆﹣S半圆=S扇形ABA′==2π,故选B.点评:本题考查了扇形面积的计算以及旋转的性质,是基础知识,难度不大.12. (2014•青岛2题3分)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解答:解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.13. (2014•丽水,第8题3分)在同一平面直角坐标系内,将函数y=2x2+4x﹣3的图象向右平移2个单位,再向下平移1个单位得到图象的顶点坐标是()A.(﹣3,﹣6)B.(1,﹣4)C.(1,﹣6)D.(﹣3,﹣4)考点:二次函数图象与几何变换.分析:根据函数图象向右平移减,向下平移减,可得目标函数图象,再根据顶点坐标公式,可得答案.解答:解:函数y=2x2+4x﹣3的图象向右平移2个单位,再向下平移1个单位得到图象y=2(x﹣2)2+4(x﹣2)﹣3﹣1,即y=2(x﹣1)2﹣6,顶点坐标是(1,﹣6),故选:C.点评:本题考查了二次函数图象与几何变换,利用了图象的平移规律:上加下减,左加右减.14.(2014•贵州黔西南州, 第8题4分)下列图形中,既是中心对称,又是轴对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解答:解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误.故选:A.点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.15. (2014•黑龙江哈尔滨,第4题3分)下列图形中,不是中心对称图形的是()A.B.C.D.考点:中心对称图形.分析:根据中心对称图形的概念求解.解答:解:A、是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项正确;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选B.点评:本题考查了中心对称的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.16. (2014•黑龙江哈尔滨,第8题3分)将抛物线y=﹣2x2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为()A.y=﹣2(x+1)2﹣1 B.y﹣2(x+1)2+3 C.y=﹣2(x﹣1)2+1 D.y=﹣2(x﹣1)2+3考点:二次函数图象与几何变换.分析:根据图象右移减,上移加,可得答案.解答:解;将抛物线y=﹣2x2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为y=﹣2(x﹣1)2+3,故选:D.点评:本题考查了二次函数图象与几何变换,函数图象平移的规律是:左加右减,上加下减.17. (2014•黑龙江哈尔滨,第9题3分)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()第4题图A.6B.4C.3D.3考点:旋转的性质.分析:利用直角三角形的性质得出AB=4,再利用旋转的性质以及三角形外角的性质得出AB′=2,进而得出答案.解答:解:∵在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠CAB=30°,故AB=4,∵△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,∴AB=A′B′=4,AC=A′C,∴∠CAA′=∠A′=30°,∴∠ACB′=∠B′AC=30°,∴AB′=B′C=2,∴AA′=2+4=6.故选:A.点评:此题主要考查了旋转的性质以及直角三角形的性质等知识,得出AB′=B′C=2是解题关键.18. (2014•黑龙江牡丹江, 第4题3分)下列对称图形中,是轴对称图形,但不是中心对称图形的有()A.1个B.2个C.3个D.4个考点:中心对称图形;轴对称图形.版权所有分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.解答:解:①此图形不是中心对称图形,是轴对称图形,故此选项正确;②此图形是中心对称图形,也是轴对称图形,故此选项错误;③此图形是中心对称图形,不是轴对称图形,故此选项错误;④此图形不是中心对称图形,是轴对称图形,故此选项正确.故是轴对称图形,但不是中心对称图形的有2个.故选:B.点评:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.19. (2014•黑龙江牡丹江, 第6题3分)如图,把ABC经过一定的变换得到△A′B′C′,如果△ABC 上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为()第6题图A.(﹣x,y﹣2)B.(﹣x,y+2)C.(﹣x+2,﹣y)D.(﹣x+2,y+2)考点:坐标与图形变化-旋转;坐标与图形变化-平移.专题:几何变换.分析:先观察△ABC和△A′B′C′得到把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,然后把点P(x,y)向上平移2个单位,再关于y轴对称得到点的坐标为(﹣x,y+2),即为P′点的坐标.解答:解:∵把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,∴点P(x,y)的对应点P′的坐标为(﹣x,y+2).故选B.点评:本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.20. (2014年湖北黄石) (2014•湖北黄石,第9题3分)正方形ABCD在直角坐标系中的位置如下图表示,将正方形ABCD绕点A顺时针方向旋转180°后,C点的坐标是()第7题图A.(2,0)B.(3,0)C.(2,﹣1)D.(2,1)考点:坐标与图形变化-旋转.分析:正方形ABCD绕点A顺时针方向旋转180°后,C点的对应点与C一定关于A对称,A是对称点连线的中点,据此即可求解.解答:解:AC=2,则正方形ABCD绕点A顺时针方向旋转180°后C的对应点设是C′,则AC′=AC=2,则OC′=3,故C′的坐标是(3,0).故选B.点评:本题考查了旋转的性质,理解C点的对应点与C一定关于A对称,A是对称点连线的中点是关键.21. (2014年湖北荆门) (2014•湖北荆门,第9题3分)如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有()第8题图A.2种B.3种C.4种D.5种考点:利用旋转设计图案;利用轴对称设计图案.分析:利用轴对称图形的性质以及中心对称图形的性质分析得出符合题意的图形即可.解答:解;如图所示:组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有4种.故选:C.点评:此题主要考查了利用轴对称以及旋转设计图案,正确把握相关定义是解题关键.22.(2014•四川成都,第5题3分)下列图形中,不是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解答:解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,符合题意;B、是轴对称图形,不符合题意;C、是轴对称图形,不符合题意;D、是轴对称图形,不符合题意;故选:A.点评:此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.23.(2014•四川绵阳,第2题3分)下列四个图案中,属于中心对称图形的是()A.B.C.D.考点:中心对称图形.分析:根据中心对称的概念和各图形的特点即可求解.解答:解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选D.点评:本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.24.(2014•随州,第9题3分)在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列结论错误的是()A.A E∥BC B.∠ADE=∠BDCC.△BDE是等边三角形D.△ADE的周长是9考点:旋转的性质;等边三角形的性质分析:首先由旋转的性质可知∠AED=∠ABC=60°,所以看得AE∥BC,先由△ABC是等边三角形得出AC=AB=BC=5,根据图形旋转的性质得出AE=CD,BD=BE,故可得出AE+AD=AD+CD=AC=5,由∠EBD=60°,BE=BD即可判断出△BDE是等边三角形,故DE=BD=4,故△AED的周长=AE+AD+DE=AC+BD=9,问题得解.解答:解:∵△ABC是等边三角形,∴∠ABC=∠C=60°,∵将△BCD绕点B逆时针旋转60°,得到△BAE,∴∠AEB=∠C=60°,∴AE∥BC,故选项A正确;:∵△ABC是等边三角形,∴AC=AB=BC=5,∵△BAE△BCD逆时针旋旋转60°得出,∴AE=CD,BD=BE,∠EBD=60°,∴AE+AD=AD+CD=AC=5,∵∠EBD=60°,BE=BD,∴△BDE是等边三角形,故选项C正确;∴DE=BD=4,∴△AED的周长=AE+AD+DE=AC+BD=9,故选项D正确;而选项B没有条件证明∠ADE=∠BDC,∴结论错误的是B,故选B.点评:本题考查的是图形旋转的性质及等边三角形的判定与性质,平行线的判定,熟知旋转前、后的图形全等是解答此题的关键.25、(2014衡阳,第2题3分)下列图案中不是轴对称图形的是【】A.B.C. 2 D.26.二、填空题1. (2014•海南,第18题4分)如图,△COD是△AOB绕点O顺时针旋转40°后得到的图形,若点C恰好落在AB上,且∠AOD的度数为90°,则∠B的度数是60°.考点:旋转的性质.分析:根据旋转的性质可得∠AOC=∠BOD=40°,AO=CO,再求出∠BOC,∠ACO,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:∵△COD是△AOB绕点O顺时针旋转40°后得到的图形,∴∠AOC=∠BOD=40°,AO=CO,∵∠AOD=90°,∴∠BOC=90°﹣40°×2=10°,∠ACO=∠A=(180°﹣∠AOC)=(180°﹣40°)=70°,由三角形的外角性质得,∠B=∠ACO﹣∠BOC=70°﹣10°=60°.故答案为:60°.点评:本题考查了旋转的性质,等腰三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.2. (2014•黑龙江龙东,第10题3分)如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;…,按此规律继续旋转,直至得到点P2014为止.则AP2014=1342+672.考点:旋转的性质..专题:规律型.分析:由已知得AP1=,AP2=1+,AP3=2+;再根据图形可得到AP4=2+2;AP5=3+2;AP6=4+2;AP7=4+3;AP8=5+3;AP9=6+3;每三个一组,由于2013=3×671,则AP2013=(2013﹣761)+671,然后把AP2013加上即可.解答: 解:AP 1=,AP 2=1+,AP 3=2+;AP 4=2+2;AP 5=3+2;AP 6=4+2; AP 7=4+3;AP 8=5+3;AP 9=6+3;∵2013=3×671,∴AP 2013=(2013﹣761)+671=1342+671,∴AP 2014=1342+671+=1342+672.故答案为:1342+672.点评: 本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.3. (2014衡阳,第20题3分)如图,在平面直角坐标系xOy 中,已知点0M 的坐标为()10,,将线段0OM 绕原点O 逆时针方向旋转45,再将其延长至点1M ,使得100M M OM ⊥,得到线段1OM ;又将线段1OM 绕原点O 逆时针方向旋转45,再将其延长至点2M ,使得211M M OM ⊥,得到线段2OM ;如此下去,得到线段、、5OM 、…。

中考数学考前小题狂做专题29平移旋转与对称含解析

中考数学考前小题狂做专题29平移旋转与对称含解析

平移旋转与对称1.下列图形中是中心对称图形的有()个.A.1 B.2 C.3 D.42. 下列所述图形中,是中心对称图形的是()A、直角三角形B、平行四边形C、正五边形D、正三角形3.如图,将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD= .4. 下列所述图形中,是中心对称图形的是()A、直角三角形B、平行四边形C、正五边形D、正三角形5. 如图所示,将一个含30°角的直角三角板ABC绕点A旋转,使得点B,A,C′在同一条直线上,则三角板ABC旋转的角度是()A.60° B.90° C.120° D.150°6. 下列交通标志中,是轴对称图形但不是中心对称图形的是()A. B. C. D.7. 如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;…根据以上操作,若要得到100个小三角形,则需要操作的次数是()A.25 B.33 C.34 D.508. 下列图形中既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边行C.正五边形D.圆9. 在线段、平行四边形、矩形、等腰三角形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是()A.2个B.3个C.4个D.5个10.将含有30°角的直角三角板OAB如图放置在平面直角坐标系中,OB在x 轴上,若OA=2,将三角板绕原点O顺时针旋转75°,则点A的对应点A′的坐标为()A.(,﹣1)B.(1,﹣)C.(,﹣)D.(﹣,)参考答案1.【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:第2个、第4个图形是中心对称图形,共2个.故选B.【点评】本题考查了中心对称图形的概念,中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.2. 答案:B考点:中心对称图形与轴对称图形。

2020-2021初中数学图形的平移,对称与旋转的分类汇编附答案解析

2020-2021初中数学图形的平移,对称与旋转的分类汇编附答案解析

2020-2021初中数学图形的平移,对称与旋转的分类汇编附答案解析一、选择题1.如图,△ABC中,∠BAC=45°,∠ACB=30°,将△ABC绕点A顺时针旋转得到△AB1C1,当点C1、B1、C三点共线时,旋转角为α,连接BB1,交AC于点D.下列结论:①△AC1C 为等腰三角形;②△AB1D∽△BCD;③α=75°;④CA=CB1,其中正确的是()A.①③④B.①②④C.②③④D.①②③④【答案】B【解析】【分析】将△ABC绕点A顺时针旋转得到△AB1C1,得到△ABC≌△AB1C1,根据全等三角形的性质得到AC1=AC,于是得到△AC1C为等腰三角形;故①正确;根据等腰三角形的性质得到∠C1=∠ACC1=30°,由三角形的内角和得到∠C1AC=120°,得到∠B1AB=120°,根据等腰三角形的性质得到∠AB1B=30°=∠ACB,于是得到△AB1D∽△BCD;故②正确;由旋转角α=120°,故③错误;根据旋转的性质得到∠C1AB1=∠BAC=45°,推出∠B1AC=∠AB1C,于是得到CA=CB1;故④正确.【详解】解:∵将△ABC绕点A顺时针旋转得到△AB1C1,∴△ABC≌△AB1C1,∴AC1=AC,∴△AC1C为等腰三角形;故①正确;∴AC1=AC,∴∠C1=∠ACC1=30°,∴∠C1AC=120°,∴∠B1AB=120°,∵AB1=AB,∴∠AB1B=30°=∠ACB,∵∠ADB1=∠BDC,∴△AB1D∽△BCD;故②正确;∵旋转角为α,∴α=120°,故③错误;∵∠C1AB1=∠BAC=45°,∴∠B1AC=75°,∵∠AB1C1=∠BAC=105°,∴∠AB1C=75°,∴∠B 1AC =∠AB 1C ,∴CA =CB 1;故④正确.故选:B .【点睛】本题考查了相似三角形的判定和性质,等腰三角形的判定和性质,旋转的性质,正确的识别图形是解题的关键.2.如图,DEF ∆是由ABC ∆经过平移后得到的,则平移的距离不是( )A .线段BE 的长度B .线段EC 的长度 C .线段CF 的长度D .A D 、两点之向的距离【答案】B【解析】【分析】 平移的距离是平移前后对应两点之间连线的距离,根据这可定义可判定【详解】∵△DEF 是△ABC 平移得到∴A 和D 、B 和E 、C 和F 分别是对应点∴平移距离为:线段AD 、BE 、CF 的长故选:B【点睛】本题考查平移的性质,在平移过程中,我们通常还需要注意,平移前后的图形是全等图形.3.如图,在锐角△ABC 中,AB =4,∠ABC =45°,∠ABC 的平分线交AC 于点D ,点P ,Q 分别是BD ,AB 上的动点,则AP +PQ 的最小值为( )A .4B .2C .2D .2【答案】D【分析】作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.【详解】作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.∵BD平分∠ABC,P′H⊥BC,P′Q′⊥AB,P′Q′=P′H,∴AP′+P′Q′=AP′+P′H=AH,根据垂线段最短可知,PA+PQ的最小值是线段AH的长,∵AB=4,∠AHB=90°,∠ABH=45°,∴AH=BH=22.故选:D.【点睛】考查了轴对称-最短路线问题,解题关键是从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.4.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧.三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆.下列说法中错误的是( )A.勒洛三角形是轴对称图形B.图1中,点A到¶BC上任意一点的距离都相等C.图2中,勒洛三角形上任意一点到等边三角形DEF的中心1O的距离都相等D.图2中,勒洛三角形的周长与圆的周长相等【解析】【分析】根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴. 鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE 的扇形的重叠,根据其特点可以进行判断选项的正误.【详解】鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确;点A 到¶BC上任意一点的距离都是DE ,故正确; 勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都不相等,1O 到顶点的距离是到边的中点的距离的2倍,故错误;鲁列斯曲边三角形的周长=3×60180DE DE ππ⨯=⨯ ,圆的周长=22DE DE ππ⨯=⨯ ,故说法正确.故选C.【点睛】主要考察轴对称图形,弧长的求法即对于新概念的理解.5.如图,在Rt △ABC 中,∠CAB =90°,AB =AC ,点A 在y 轴上,BC ∥x 轴,点B (2,32)-.将△ABC 绕点A 顺时针旋转的△AB ′C ′,当点B ′落在x 轴的正半轴上时,点C ′的坐标为( )A 32﹣1)B 231)C 33)D 33﹣1)【答案】D【解析】【分析】 作C 'D ⊥OA 于D ,设AO 交BC 于E ,由等腰直角三角形的性质得出∠B =45°,AE =12BC =2,BC =22AB ,得出AB =2,OA 3,由旋转的性质得:AB '=AB =AC =AC '=2,∠C 'AB '=∠CAB =90°,由勾股定理得出OB '22'AB OA -1=12AB ',证出∠OAB '=30°,得出∠C 'AD =∠AB 'O =60°,证明△AC 'D ≌△B 'AO 得出AD =OB '=1,C 'D =AO =3,求出OD=AO﹣AD=3﹣1,即可得出答案.【详解】解:作C'D⊥OA于D,设AO交BC于E,如图所示:则∠C'DA=90°,∵∠CAB=90°,AB=AC,∴△ABC是等腰直角三角形,∴∠B=45°,∵BC∥x轴,点B(2,3﹣2),∴AE=12BC=2,BC=22=2AB,∴AB=2,OA=3,由旋转的性质得:AB'=AB=AC=AC'=2,∠C'AB'=∠CAB=90°,∴OB'=22'AB OA-=1=12AB',∴∠OAB'=30°,∴∠C'AD=∠AB'O=60°,在△AC'D和△AB'O中,''''''C DA AOBC AD AB OAC AB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AC'D≌△B'AO(AAS),∴AD=OB'=1,C'D=AO=3,∴OD=AO﹣AD=3﹣1,∴点C′的坐标为(﹣3,3﹣1);故选:D.【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、坐标与图形性质、旋转的性质、直角三角形的性质、勾股定理等知识;熟练掌握旋转的性质,证明三角形全等是解题的关键.6.如图,若OABCY的顶点O,A,C的坐标分别为(0,0),(4,0),(1,3),则顶点B 的坐标为()A.(4,1)B.(5,3)C.(4,3)D.(5,4)【答案】B【解析】【分析】根据平行四边形的性质,以及点的平移性质,即可求出点B的坐标.【详解】解:∵四边形OABC是平行四边形,∴OC∥AB,OA∥BC,∴点B的纵坐标为3,∵点O向右平移1个单位,向上平移3个单位得到点C,∴点A向右平移1个单位,向上平移3个单位得到点B,∴点B的坐标为:(5,3);故选:B.【点睛】本题考查了平行四边形的性质,点坐标平移的性质,解题的关键是熟练掌握平行四边形的性质进行解题.7.下面是同学们利用图形变化的知识设计的一些美丽的图案,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】A【解析】【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【详解】A、是中心对称图形,又是轴对称图形,故此选项正确;B、是中心对称图形,不是轴对称图形,故此选项错误;C、不是中心对称图形,是轴对称图形,故此选项错误;D、不是中心对称图形,是轴对称图形,故此选项错误;故选A.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.8.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°【答案】C【解析】【分析】根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC=12∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=12∠1=22°∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°;故选C.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.9.如图,在菱形纸片ABCD中,∠A=60°,点E在BC边上,将菱形纸片ABCD沿DE折叠,点C落在AB边的垂直平分线上的点C′处,则∠DEC的大小为()A.30°B.45°C.60°D.75°【答案】D【解析】【分析】连接BD ,由菱形的性质及60A ∠=︒,得到ABD △为等边三角形,P 为AB 的中点,利用三线合一得到DP 为角平分线,得到30ADP ∠=︒,120ADC =∠︒,60C ∠=°,进而求出90PDC ∠=︒,由折叠的性质得到45CDE PDE ∠=∠=︒,利用三角形的内角和定理即可求出所求角的度数.【详解】解:连接BD ,如图所示:∵四边形ABCD 为菱形,∴AB AD =,∵60A ∠=︒,∴ABD △为等边三角形,120ADC =∠︒,60C ∠=°,∵P 为AB 的中点,∴DP 为ADB ∠的平分线,即30ADP BDP ∠=∠=︒,∴90PDC ∠=︒,∴由折叠的性质得到45CDE PDE ∠=∠=︒,在DEC V 中,()18075DEC CDE C ∠=︒-∠+∠=︒.故选:D【点睛】此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及三角形内角和定理,熟练掌握折叠的性质是解本题的关键.10.直角坐标系内,点P(-2,3)关于原点的对称点Q 的坐标为( )A .(2,-3)B .(2,3)C .(-2,3)D .(-2,-3) 【答案】A【解析】试题解析:根据中心对称的性质,得点P (-2,3)关于原点对称点P′的坐标是(2,-3). 故选A .点睛:平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ).11.等腰三角形、直角三角形、等边三角形、锐角三角形、钝角三角形和等腰直角三角形中,一定是轴对称图形的有( )A .3个B .4个C .5个D .2个【答案】A【解析】等腰三角形、等边三角形、等腰直角三角形都是轴对称图形,是轴对称图形的有3个.故选:A.12.如图,将ABC V 沿BC 方向平移1个单位长度后得到DEF V ,若ABC V 的周长等于9,则四边形ABFD 的周长等于( )A .13B .12C .11D .10【答案】C【解析】【分析】 先利用平移的性质求出AD 、CF ,进而完成解答.【详解】解:将△ABC 沿BC 方向平移1个单位得到△DEF ,∴AD=CF=1,AC=DF ,又∵△ABC 的周长等于9,∴四边形ABFD 的周长等于9+1+1=11.故答案为C .【点睛】本题主要考查了平移的性质,通过平移确定AD=CF=1是解答本题的关键.13.如图,在菱形ABCD 中,对角线AC =8,BD =6,点E ,F 分别是边AB ,BC 的中点,点P 在AC 上运动,在运动过程中,存在PE +PF 的最小值,则这个最小值是( )A .3B .4C .5D .6【答案】C【解析】【分析】先根据菱形的性质求出其边长,再作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF 的最小值,再根据菱形的性质求出E′F的长度即可.【详解】解:如图∵四边形ABCD是菱形,对角线AC=6,BD=8,∴AB=22=5,34作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF的最小值,∵AC是∠DAB的平分线,E是AB的中点,∴E′在AD上,且E′是AD的中点,∵AD=AB,∴AE=AE′,∵F是BC的中点,∴E′F=AB=5.故选C.14.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A-45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长度为()A.32B.5 C.4 D31【答案】B【解析】【分析】【详解】由题意易知:∠CAB=45°,∠ACD=30°,若旋转角度为15°,则∠ACO=30°+15°=45°.∴∠AOC=180°-∠ACO -∠CAO=90°.在等腰Rt △ABC 中,AB=6,则AC=BC=32.同理可求得:AO=OC=3.在Rt △AOD1中,OA=3,OD 1=CD 1-OC=4,由勾股定理得:AD 1=5.故选B .15.如图,在▱ABCD 中,E 为边AD 上的一点,将△DEC 沿CE 折叠至△D ′EC 处,若∠B =48°,∠ECD =25°,则∠D ′EA 的度数为( )A .33°B .34°C .35°D .36°【答案】B【解析】【分析】 由平行四边形的性质可得∠D =∠B ,由折叠的性质可得∠D '=∠D ,根据三角形的内角和定理可得∠DEC ,即为∠D 'EC ,而∠AEC 易求,进而可得∠D 'EA 的度数.【详解】解:∵四边形ABCD 是平行四边形,∴∠D =∠B =48°,由折叠的性质得:∠D '=∠D =48°,∠D 'EC =∠DEC =180°﹣∠D ﹣∠ECD =107°, ∴∠AEC =180°﹣∠DEC =180°﹣107°=73°,∴∠D 'EA =∠D 'EC ﹣∠AEC =107°﹣73°=34°.故选:B .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.16.如图,在ABC ∆中,90,2,4C AC BC ∠=︒==,将ABC ∆绕点A 逆时针旋转90︒,使点C 落在点E 处,点B 落在点D 处,则B E 、两点间的距离为( )A.10B.22C.3D.25【答案】B【解析】【分析】延长BE和CA交于点F,根据旋转的性质可知∠CAE=90︒,证明∠BAE=∠ABC,即可证得AE∥BC,得出2142EF AF AEFB FC BC====,即可求出BE.【详解】延长BE和CA交于点F∵ABC∆绕点A逆时针旋转90︒得到△AED ∴∠CAE=90︒∴∠CAB+∠BAE=90︒又∵∠CAB+∠ABC=90︒∴∠BAE=∠ABC∴AE∥BC∴2142 EF AF AEFB FC BC====∴AF=AC=2,FC=4∴BF=42∴BE=EF=12BF=22故选:B【点睛】本题考查了旋转的性质,平行线的判定和性质.17.我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图1),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形. 图2是等宽的勒洛三角形和圆形滚木的截面图.图1图2有如下四个结论:①勒洛三角形是中心对称图形②图1中,点A到BC上任意一点的距离都相等③图2中,勒洛三角形的周长与圆的周长相等④使用截面是勒洛三角形的滚木来搬运东西,会发生上下抖动上述结论中,所有正确结论的序号是()A.①②B.②③C.②④D.③④【答案】B【解析】【分析】逐一对选项进行分析即可.【详解】①勒洛三角形不是中心对称图形,故①错误;②图1中,点A到BC上任意一点的距离都相等,故②正确;③图2中,设圆的半径为r∴勒洛三角形的周长=12032180rrππ⨯=g g圆的周长为2rπ∴勒洛三角形的周长与圆的周长相等,故③正确;④使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动,故④错误故选B【点睛】本题主要考查中心对称图形,弧长公式等,掌握中心对称图形和弧长公式是解题的关键. 18.下列说法中正确的是()①角平分线上任意一点到角的两边的线段长相等②角是轴对称图形③线段不是轴对称图形④矩形是轴对称图形A.①②③④ B.①②③ C.②④ D.②③④【答案】C【解析】解:①叙述不清,正确的应该是“角平分线上任意一点到角的两边的距离相等”;②正确,对称轴是角平分线所在直线;③错误,线段本身也是轴对称图形,有2条对称轴;④正确,非正方形的矩形有两条对称轴,正方形有四条对称轴.故选C.19.下列图形中,是轴对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据轴对称图形的概念逐一判断即可.【详解】A、B、C都不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,不符合题意;D、是轴对称图形,符合题意.【点睛】本题考查轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.20.如图,在△ABC中,AB=AC,BC=9,点D在边AB上,且BD=5将线段BD沿着BC 的方向平移得到线段EF,若平移的距离为6时点F恰好落在AC边上,则△CEF的周长为()A.26 B.20 C.15 D.13【答案】D【解析】【分析】直接利用平移的性质得出EF=DB=5,进而得出CF=EF=5,进而求出答案.【详解】解:∵将线段BD沿着BC的方向平移得到线段EF,∴EF=DB=5,BE=6,∵AB=AC,BC=9,∴∠B=∠C,EC=3,∴∠B=∠FEC,∴CF=EF=5,∴△EBF的周长为:5+5+3=13.故选D.【点睛】本题考查了平移的性质,根据题意得出CF的长是解题关键.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平移旋转与对称选择题1,(2015•山东莱芜,第3题3分)在下列四个图案中既是轴对称图形,又是中心对称图形的是( )B. C. D.【答案】B因此:A、不是轴对称图形,是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选B.考点:轴对称图形和中心对称图形2, (2015山东青岛,第3题,3分)下列四个图形中,既是轴对称图形又是中心对称图形的是().【答案】B【解析】试题分析:在一个平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,这样的图形叫做中心对称图形.根据定义可以判定B既是轴对称图形,也是中心对称图形.考点:轴对称图形与中心对称图形.3, (2015•淄博第3题,4分)将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的()A.面CDHE B.面BCEF C.面ABFG D.面ADHG考点:展开图折叠成几何体..分析:由平面图形的折叠及正方体的展开图解题.注意找准红心“”标志所在的相邻面.解答:解:由图1中的红心“”标志,可知它与等边三角形相邻,折叠成正方体是正方体中的面CDHE .故选A .点评: 本题考查了正方体的展开图形,解题关键是从相邻面入手进行分析及解答问题. 【答案】【解析】点P 坐标为【备考指导】 此题主要考查了关于原点对称点的坐标性质,这一类题目是需要识记的基础题,要熟悉关于原点对称点的横纵坐标变化规律.4.(2015·湖北省孝感市,第6题3分)在平面直角坐标系中,把点)3 5(,-P 向右平移8个单位得到点1P ,再将点1P 绕原点旋转 ︒90得到点2P ,则点2P 的坐标是)33(-, B .)3 3(,- C .)33()3 3(--,或, D .)33(-,或)3 3(,-考点:坐标与图形变化-旋转;坐标与图形变化-平移..专题:分类讨论.分析:首先利用平移的性质得出点P 1的坐标,再利用旋转的性质得出符合题意的答案.解答:解:∵把点P (﹣5,3)向右平移8个单位得到点P 1,∴点P 1的坐标为:(3,3),如图所示:将点P 1绕原点逆时针旋转90°得到点P 2,则其坐标为:(﹣3,3),将点P 1绕原点顺时针旋转90°得到点P 3,则其坐标为:(3,﹣3),故符合题意的点的坐标为:(3,﹣3)或(﹣3,3).故选:D .点评:此题主要考查了坐标与图形的变化,正确利用图形分类讨论得出是解题关键.5.(2015•湖南株洲,第4题3分)下列几何图形中,既是轴对称图形,又是中心对称图形的是 ( )A .等腰三角形B .正三角形C .平行四边形D .正方形【试题分析】本题考点为:轴对称图形与中心对称图形的理解 答案为:D1.(2015•江苏无锡,第6题2分)下列图形,是轴对称图形但不是心对称图形的是( )A.等边三角形B.平行四边形C.矩形D.圆考点:心对称图形;轴对称图形.分析:根据轴对称图形和心对称图形的概念以及等边三角形、平行四边形、矩形、圆的性质解答.解答:解:A、只是轴对称图形,不是心对称图形,符合题意;B.只是心对称图形,不合题意;C.D既是轴对称图形又是心对称图形,不合题意.故选A.点评:掌握好心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,两边图象折叠后可重合,心对称图形是要寻找对称心,旋转180度后重合.6.(2015•福建泉州第5题3分)如图,△ABC沿着由点B到点E的方向,平移到△DEF,已知BC=5.EC=3,那么平移的距离为()A. 2 B. 3 C. 5 D. 7解:根据平移的性质,易得平移的距离=BE=5﹣3=2,故选A.7.(2015•广东佛山,第2题3分)在下列四个图案中,不是中心对称图形的是()A.B.C.D.考点:中心对称图形.分析:根据中心对称图形的概念求解.解答:解:根据中心对称图形的概念可得:图形B不是中心对称图形.故选B.点评:本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.8.(2015•广东梅州,第9题4分)如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为()A. 2B. C.D.9. (2015•浙江嘉兴,第2题4分)下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有(▲)(A)1个(B)2个(C)3个(D)4个考点:中心对称图形..分析:根据中心对称的概念对各图形分析判断即可得解.解答:解:第一个图形是中心对称图形,第二个图形不是中心对称图形,第三个图形是中心对称图形,第四个图形不是中心对称图形,所以,中心对称图有2个.故选:B.点评:本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.11.(2015•绵阳第2题,3分)下列图案中,轴对称图形是()A. B.C.D.考点:轴对称图形..分析:根据轴对称图形的概念对各图形分析判断后即可求解.解答:解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选;D.点评:本题考查了轴对称图形,图形两部分沿对称轴折叠后可重合,轴对称图形的关键是寻找对称轴.12. (2015•四川泸州,第11题3分)如图,在△ABC中,AB=AC,BC=24,tanC=2,如果将△ABC沿直线l翻折后,点B落在边AC的中点E处,直线l与边BC交于点D,那么BD的长为A.13B.152C.272D.12考点:翻折变换(折叠问题)..专题:计算题.分析:利用三线合一得到G为BC的中点,求出GC的长,过点A作AG⊥BC于点G,在直角三角形AGC中,利用锐角三角函数定义求出AG的长,再由E为AC中点,求出EC的长,进而求出FC的长,利用勾股定理求出EF 的长,在直角三角形DEF中,利用勾股定理求出x 的值,即可确定出BD的长.解答:解:过点A作AG⊥BC于点G,∵AB=AC,BC=24,tanC=2,∴=2,GC=BG=12,∴AG=24,∵将△ABC沿直线l翻折后,点B落在边AC的中点处,过E点作EF⊥BC于点F,∴EF=AG=12,∴=2,∴FC=6,设BD=x,则DE=x,∴DF=24﹣x﹣6=18﹣x,∴x2=(18﹣x)2+122,解得:x=13,则BD=13.故选A.点评:此题主要考查了翻折变换的性质以及勾股定理和锐角三角函数关系,根据已知表示出DE的长是解题关键.13.(2015·深圳,第4题分)下列图形既是中心对称又是轴对称图形的是()【答案】D【解析】A、B、C都只是轴对称图形,只有D既是中心对称又是轴对称图形。

14.(2015·深圳,第11题分)如图,已知⊿ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()【答案】D【解析】因为PA+PC=BC=PB+PC,所以,PA=PB,点P在AB的垂直平分线上。

15.(2015·南宁,第11题3分)如图6,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N 是弧MB的中点,P是直径AB上的一动点,若MN=1,则△PMN周长的最小值为().(A)4 (B)5 (C)6 (D)7图6考点:轴对称-最短路线问题;圆周角定理..分析:作N关于AB的对称点N′,连接MN′,NN′,ON′,ON,由两点之间线段最短可知MN′与AB的交点P′即为△PMN周长的最小时的点,根据N是弧MB的中点可知∠A=∠NOB=∠MON=20°,故可得出∠MON′=60°,故△MON′为等边三角形,由此可得出结论.解答:解:作N关于AB的对称点N′,连接MN′,NN′,ON′,ON.∵N关于AB的对称点N′,∴MN′与AB的交点P′即为△PMN周长的最小时的点,∵N是弧MB的中点,∴∠A=∠NOB=∠MON=20°,∴∠MON′=60°,∴△MON′为等边三角形,∴MN′=OM=4,∴△PMN周长的最小值为4+1=5.故选B.点评:本题考查的是轴对称﹣最短路径问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.16.(2015·黑龙江绥化,第1题分)下列图案中,既是中心对称又是轴对称图形的个数有()A. 1个 B. 2个 C. 3个 D. 4个考点:中心对称图形;轴对称图形..分析:根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.解答:解:第一个图形是轴对称图形,又是中心对称图形,第二个图形既是轴对称图形,不是中心对称图形,第三个图形是轴对称图形,不是中心对称图形,第四个图形是轴对称图形,又是中心对称图形,综上所述,既是轴对称图形又是中心对称图形的是第二个图形共2个.故选B.点评:本题考查了中心对称图形与轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.17.(2015•江苏泰州,第5题3分)如图,在平面直角坐标系xOy中,△由△绕点P旋转得到,则点P的坐标为A.( 0, 1)B.( 1,-1)C.( 0,-1)D.( 1, 0)【答案】B.【解析】试题分析:根据格结构,找出对应点连线的垂直平分线的交点即为旋转中心.试题解析:由图形可知,对应点的连线CC′、AA′的垂直平分线过点(0,-1),根据旋转变换的性质,点(1,-1)即为旋转中心.故旋转中心坐标是P(1,-1)故选B.考点:坐标与图形变化—旋转.18 .(2015•江苏徐州,第6题3分)下列图形中,是轴对称图形但不是中心对称图形的是()A.直角三角形B.正三角形C.平行四边形D.正六边形考点:中心对称图形;轴对称图形..分析:中心对称图形绕某一点旋转180°,旋转后的图形能够与原来的图形重合;轴对称图形被一条直线分割成的两部分沿着对称轴折叠时,互相重合;据此判断出是轴对称图形,但不是中心对称图形的是哪个即可.解答:解:∵选项A中的图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,它也不是轴对称图形,∴选项A不正确;∵选项B中的图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,但它是轴对称图形,∴选项B正确;∵选项C中的图形旋转180°后能与原图形重合,∴此图形是中心对称图形,但它不是轴对称图形,∴选项C不正确;∵选项D中的图形旋转180°后能与原图形重合,∴此图形是中心对称图形,它也是轴对称图形,∴选项D不正确.故选:B.点评:(1)此题主要考查了中心对称图形问题,要熟练掌握,解答此题的关键是要明确:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.(2)此题还考查了轴对称图形,要熟练掌握,解答此题的关键是要明确:轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合;轴对称图形的对称轴可以是一条,也可以是多条甚至无数条.19.(2015•山东潍坊第4 题3分)如图汽车标志中不是中心对称图形的是()A.B.C.D.考点:中心对称图形..分析:根据中心对称图形的概念求解.解答:解:A、是中心对称图形.故错误;B、不是中心对称图形.故正确;C、是中心对称图形.故错误;D、是中心对称图形.故错误.故选B.点评:本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.20 .(2015•四川甘孜、阿坝,第3题4分)下列图形中,是中心对称图形的为()A.B.C.D.考点:中心对称图形..分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是轴对称图形,不是中心对称图形.故A错误;B、不是轴对称图形,是中心对称图形.故B正确;C、是轴对称图形,不是中心对称图形.故C错误;D、是轴对称图形,不是中心对称图形.故D错误.故选:B.点评:此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.21.(2015•山东日照,第1题3分)下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.考点:轴对称图形..分析:根据轴对称图形的概念求解.解答:解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.点评:本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.22.(2015•广东省,第5题,3分)下列所述图形中,既是中心对称图形,又是轴对称图形的是【】A. 矩形B. 平行四边形C. 正五边形D. 正三角形【答案】A.【考点】轴对称图形和中心对称图形.【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合. 因此,既是轴对称图形,又是中心对称图形的是矩形. 故选A.23.(2015•北京市,第4题,3分)剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为【考点】轴对称图形【难度】容易【答案】D【点评】本题考查轴对称图形。

相关文档
最新文档