湘教版初中数学第二学期七年级下册期末考试数学试卷及答案解析

合集下载

湘教版七年级数学下册期末考试卷(含答案)

湘教版七年级数学下册期末考试卷(含答案)

湘教版七年级数学下册期末考试卷(含答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-5的相反数是()A.15-B.15C.5 D.-52.如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°3.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,B.10m n==,C.12m n==,D.21m n==,4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A.x y50{x y180=-+=B.x y50{x y180=++=C.x y50{x y90=++=D.x y50{x y90=-+=5.已知点P(a+5,a-1)在第四象限,且到x轴的距离为2,则点P的坐标为()A.(4,-2) B.(-4,2) C.(-2,4) D.(2,-4) 6.下列图形中,不能通过其中一个四边形平移得到的是()A .B .C .D .7.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,58.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( )A .1B .2C .3D .89.如图,在△ABC 中,P 为BC 上一点,PR ⊥AB,垂足为R,PS ⊥AC,垂足为S,∠CAP=∠APQ,PR=PS,下面的结论:①AS=AR;②QP ∥AR;③△BRP ≌△CSP.其中正确的是( )A .①②B .②③C .①③D .①②③10.已知a m =3,a n =4,则a m+n 的值为( )A .7B .12C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.2.如图,一条公路修到湖边时,需拐弯绕湖而过,在A ,B ,C 三处经过三次拐弯,此时道路恰好和第一次拐弯之前的道路平行(即AE ∥CD ),若∠A =120°,∠B =150°,则∠C 的度数是________.3.已知有理数a ,b 满足ab <0,a+b >0,7a+2b+1=﹣|b ﹣a|,则()123a b a b ⎛⎫++- ⎪⎝⎭ 的值为________. 4.若()2320m n -++=,则m+2n 的值是________.5.若数轴上表示互为相反数的两点之间的距离是16,则这两个数是______.6.如果20a b --=,那么代数式122a b +-的值是________.三、解答题(本大题共6小题,共72分)1.求满足不等式组()328131322x x x x ⎧--≤⎪⎨--⎪⎩<的所有整数解.2.已知关于x 的不等式组5x 13(x-1),13x 8-x 2a 22+>⎧⎪⎨≤+⎪⎩恰有两个整数解,求实数a 的取值范围.3.如图,AE ⊥BC ,FG ⊥BC ,∠1=∠2,求证:AB ∥CD .4.如图1,△ABD ,△ACE 都是等边三角形,(1)求证:△ABE ≌△ADC ;(2)若∠ACD=15°,求∠AEB 的度数;(3)如图2,当△ABD 与△ACE 的位置发生变化,使C 、E 、D 三点在一条直线上,求证:AC ∥BE .5.育人中学开展课外体育活动,决定开设A:篮球、B:乒乓球、C:踢毽子、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A项目的人数所占的百分比为________ ,其所在扇形统计图中对应的圆心角度数是 ______度;(2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、D4、C5、A6、D7、C8、C9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-22、150°3、0.4、-15、-8、86、5三、解答题(本大题共6小题,共72分)1、不等式组的解集:-1≤x<2,整数解为:-1,0,1.2、-4≤a<-3.3、略4、(1)略(2) ∠AEB=15°(3) 略5、(1)40% , 144;(2)补图见解析;(3)估计全校最喜欢踢毽子的学生人数约100人.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。

湘教版七年级数学下册期末考试题及答案【完美版】

湘教版七年级数学下册期末考试题及答案【完美版】

湘教版七年级数学下册期末考试题及答案【完美版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x - 2.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总 人口为4400000000人,这个数用科学记数法表示为( )A .4.4×108B .4.40×108C .4.4×109D .4.4×10103n 为( )A .2B .3C .4D .54.下列说法正确的是( )A .一个数前面加上“-”号,这个数就是负数B .零既是正数也是负数C .若a 是正数,则a -不一定是负数D .零既不是正数也不是负数5.下列说法,正确的是( )A .若ac bc =,则a b =B .两点之间的所有连线中,线段最短C .相等的角是对顶角D .若AC BC =,则C 是线段AB 的中点6.在平面直角坐标系中,将点A (1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A ′,则点A ′的坐标是( )A .(﹣1,1)B .(﹣1,﹣2)C .(﹣1,2)D .(1,2)7.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,58.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .7086480x y x y +=⎧⎨+=⎩B .7068480x y x y +=⎧⎨+=⎩C .4806870x y x y +=⎧⎨+=⎩D .4808670x y x y +=⎧⎨+=⎩9.已知有理数a 、b 、c 在数轴上对应的点如图所示,则下列结论正确的是( )A .c+b >a+bB .cb <abC .﹣c+a >﹣b+aD .ac >ab10.x=1是关于x 的方程2x ﹣a=0的解,则a 的值是( )A .﹣2B .2C .﹣1D .1二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC 三条边长为a ,b ,c ,化简:|a -b -c |-|a +c -b |=__________.2.式子3x -在实数范围内有意义,则 x 的取值范围是________.3.关于x 的不等式组430340a x a x +>⎧⎨-≥⎩恰好只有三个整数解,则a 的取值范围是_____________.4.已知4x =,12y =,且0xy <,则x y的值等于_________. 5.如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S 1=4,S 2=9,S 3=8,S 4=10,则S=________.6.设4x 2+mx+121是一个完全平方式,则m=________三、解答题(本大题共6小题,共72分)1.解方程(组):(1)2321x y x y +=⎧⎨-=⎩(2)30.20.20.030.70.20.01x x ++-=2.如果方程34217123x x-+-=-的解与关于x的方程4x-(3a+1)=6x+2a-1的解相同,求代数式a2+a-1的值.3.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.4.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?5.某小学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:(1)补全条形统计图;(2)求扇形统计图扇形D的圆心角的度数;(3)若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?6.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、D5、B6、A7、C8、A9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2b-2a2、x≥33、43 32a≤≤4、8-5、316、±44三、解答题(本大题共6小题,共72分)1、(1)11xy=⎧⎨=⎩;(2) 2.85x=-.2、x=10;a=-4;11.3、(1)略;(2)112.5°.4、(1)略(2)成立5、(1)补图见解析;(2)27°;(3)1800名6、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.。

湘教版七年级数学下册期末考试卷(带答案)

湘教版七年级数学下册期末考试卷(带答案)

湘教版七年级数学下册期末考试卷(带答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+7C.12或7+7D.以上都不对2.甲、乙两地相距360千米,一轮船往返于甲、乙两地之间,顺水行船用18小时,逆水行船用24小时,若设船在静水中的速度为x千米/时,水流速度为y千米/时,则下列方程组中正确的是( )A.()()1836024360x yx y⎧+=⎪⎨-=⎪⎩B.()()1836024360x yx y⎧+=⎪⎨+=⎪⎩C.()()1836024360x yx y⎧-=⎪⎨-=⎪⎩D.()()1836024360x yx y⎧-=⎪⎨+=⎪⎩3.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x4.如果a与1互为相反数,则|a+2|等于()A.2 B.-2 C.1 D.-15.已知点C在线段AB上,则下列条件中,不能确定点C是线段AB中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.12 BC AB=6.已知一次函数y=kx+b随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是()A.B.C.D.7.明月从家里骑车去游乐场,若速度为每小时10km ,则可早到8分钟,若速度为每小时8km ,则就会迟到5分钟,设她家到游乐场的路程为xkm ,根据题意可列出方程为( )A .851060860x x -=-B .851060860x x -=+C .851060860x x +=-D .85108x x +=+ 8.如图,已知在四边形ABCD 中,90BCD ∠=︒,BD 平分ABC ∠,6AB =,9BC =,4CD =,则四边形ABCD 的面积是( )A .24B .30C .36D .429.如图,在△ABC 中,AB=AC ,∠A=30°,E 为BC 延长线上一点,∠ABC 与∠ACE 的平分线相交于点D ,则∠D 的度数为( )A .15°B .17.5°C .20°D .22.5°10.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( )A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a +1)2+|b +5|=b +5,且|2a -b -1|=1,则ab =___________.2.如图,在△ABC 中,∠C =90°,BC =8cm ,AC =6cm ,点E 是BC 的中点,动点P 从A 点出发,先以每秒2cm 的速度沿A →C 运动,然后以1cm /s 的速度沿C →B 运动.若设点P 运动的时间是t 秒,那么当t =_______________,△APE 的面积等于6.3.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________4.方程()()()()32521841x x x x +--+-=的解是_________.5.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t 时后两车相距50千米,则t 的值为____________.6.若实数a 、b 满足a 2b 40+-=,则2a b=_______. 三、解答题(本大题共6小题,共72分)1.解方程组(1)327413x y x y +=⎧⎨-=⎩ (2)143()2()4x y x y x y ⎧-=-⎪⎨⎪+--=⎩2.甲乙两人同时解方程85mx ny mx ny +=-⎧⎨-=⎩①②由于甲看错了方程①,得到的解是42x y =⎧⎨=⎩,乙看错了方程中②,得到的解是25x y =⎧⎨=⎩,试求正确m ,n 的值.3.如图,直线AB //CD ,BC 平分∠ABD ,∠1=54°,求∠2的度数.4.如图,已知AB∥CD,CN是∠BCE的平分线.(1)若CM平分∠BCD,求∠MCN的度数;(2)若CM在∠BCD的内部,且CM⊥CN于C,求证:CM平分∠BCD;(3)在(2)的条件下,连结BM,BN,且BM⊥BN,∠MBN绕着B点旋转,∠BMC+∠BNC是否发生变化?若不变,求其值;若变化,求其变化范围.5.“校园手机”现象越来越受到社会的关注.“寒假”期间,某校小记者随机调查了某地区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图1;(2)求图2中表示家长“赞成”的圆心角的度数;(3)已知某地区共6500名家长,估计其中反对中学生带手机的大约有多少名家长?6.某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、C4、C5、C6、A7、C8、B9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、1.5或5或93、135°4、3x=.5、2或2.56、1三、解答题(本大题共6小题,共72分)1、(1)31xy=⎧⎨=-⎩;(2)4989xy⎧=-⎪⎪⎨⎪=⎪⎩.2、74n=-,38m=.3、72°4、(1)90°;(2)略;(3)∠BMC+∠BNC=180°不变,理由略5、(1)答案见解析(2)36°(3)4550名6、(1)设甲种书柜单价为180元,乙种书柜的单价为240元.(2)学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个方案二:甲种书柜9个,乙种书柜11个,方案三:甲种书柜10个,乙种书柜10个.。

【湘教版】七年级数学下期末试卷(含答案)

【湘教版】七年级数学下期末试卷(含答案)

一、选择题1.下列事件是必然事件的是( )A .太阳从西方升起B .若a <0,则|a |=﹣aC .打开电视正在播放动画片《喜羊羊与灰太狼》D .某运动员投篮时连续3次全中 2.下列事件中,属于必然事件的是( )A .一个数的相反数等于它本身B .早上的太阳从北方升起C .380人中有两人的生日在同一天D .明天上学路上遇到下雨 3.不透明的袋子中装有形状、大小、质地完全相同的5个球,其中2个黑球、3个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( )A .摸出的是3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球4.如图,在四边形ABCD 中,∠A=120°,∠C=80°.将△BMN 沿着MN 翻折,得到△FMN .若MF ∥AD ,FN ∥DC ,则∠F 的度数为( )A .70°B .80°C .90°D .100° 5.把一张对边互相平行的纸条按如图所示折叠,EF 是折痕,若∠EFB =34°,则下列结论不正确的是( )A .34C EF '∠︒=B .∠AEC =146° C .∠BGE =68°D .∠BFD =112° 6.低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是( ) A . B .C .D .7.如图,AB 与CD 相交于点E ,AD=CB ,要使△ADE ≌△CBE ,需添加一个条件,则添加的条件以及相应的判定定理正确的是( )A .AE=CE ;SASB .DE=BE ;SASC .∠D=∠B ;AASD .∠A=∠C ;ASA8.如图,在ABC 和DEF 中,,B DEF AB DE ∠=∠=,添加下列一个条件后,仍然不能证明ABC DEF ≌,这个条件是( )A .A D ∠=∠B .BC EF = C .ACB F ∠=∠D .AC DF = 9.下列各组条件中,不能判定A ABC B C '''≌△△的是( ) A .AC ACBC B C C C '''''==∠=∠ B .A A BC B C AC AC '''''∠=∠== C .AC AC AB A B A A '''''==∠=∠ D .AC AC A A C C ''''=∠=∠∠=∠10.用一水管向图中容器内持续注水,若单位时间内注入的水量保持不变,则在注满容器的过程中,容器内水面升高的速度( )A .保持不变B .越来越慢C .越来越快D .快慢交替变化 11.如图,AB ∥EF ,∠ABP =14∠ABC ,∠EFP =14∠EFC ,已知∠FCD =60°,则∠P 的度数为( )A .60°B .80°C .90°D .100° 12.下列运算正确..的是( ) A .246x x x ⋅= B .246()x x = C .3362x x x += D .33(2)6x x -=- 二、填空题13.如图,在4×4的正方形网络中,已将部分小正方形涂上阴影,有一个小虫落到网格中,那么小虫落到阴影部分的概率是________.14.如图,在4×4正方形网格中,有4个涂成黑色的小方格,现在任意选取一个白色的小方格涂成黑色,则使得黑色部分的图形构成轴对称图形的概率为_____.15.如图,∠AOB =30°,C 是BO 上的一点,CO =4,点P 为AO 上的一动点,点D 为CO 上的一动点,则PC +PD 的最小值为_____,当PC +PD 的值取最小值时,则△OPC 的面积为_____.16.生活中,将一个宽度相等的纸条按图所示折叠一下, 如果∠1=140º,那么∠2=_____.17.AC 、BD 是四边形ABCD 的两条对角线,△ABD 是等边三角形,∠DCB =30°,设CD =a ,BC =b ,AC =4,则a +b 的最大值为_____.18.某种树木的分枝生长规律如下表所示,则预计到第6年时,树木的分枝数为__.年份分枝数第1年1第2年1第3年2第4年3第5年5∠=︒∠=︒,19.如图,这是购物车的侧面示意图,扶手AB与车底CD平行,1100,250∠的度数是_________.则320.若(x+m)与(x+3)的乘积中不含x的一次项,则m=_____.三、解答题21.在一个不透明的袋子中装有 4 个红球和 6 个黄球,这些球除颜色外都相同,将袋子中的球充分摇匀后,随机摸出一球.(1)分别求摸出红球和摸出黄球的概率(2)为了使摸出两种球的概率相同,再放进去 8 个同样的红球或黄球,那么这 8 个球中红球和黄球的数量分别是多少?22.如图,在正方形网格中,每个小方格的边长都为1,△ABC各顶点都在格点上.若点A 的坐标为(0,3),请按要求解答下列问题:(1)在图中建立符合条件的平面直角坐标系;(2)根据所建立的坐标系,写出点B 和点C 的坐标;(3)画出△ABC 关于x 轴的对称图形△A B C '''.23.如图,已知ABC 和AEF 中,B E ∠=∠,AB AE =,BC EF =,25EAB ∠=︒,57F ∠=︒,线段BC 分别交AF ,EF 于点M ,N .(1)请说明EAB FAC ∠=∠的理由;(2)ABC 可以经过图形的变换得到AEF ,请你描述这个变换;(3)求AMB ∠的度数.24.一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y (单位:升)与时间x (单位:分钟)之间的部分关系如图象所示.求从关闭进水管起需要多少分钟该容器内的水恰好放完.25.如图,直线AB 与直线CD 相交于点O ,射线OE 在AOD ∠内部,OA 平分EOC ∠. (1)当OE CD ⊥时,写出图中所有与BOD ∠互补的角.(2)当:2:3EOC EOD ∠∠=时,求BOD ∠的度数.26.化简:()()()2222x y y x x y -+--.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】必然事件就是一定发生的事件,根据定义即可做出判断.【详解】解:A 、是不可能事件,选项错误;B 、是必然事件,选项正确;C 、是随机事件,选项错误;D 、是随机事件,选项错误.故选:B .【点睛】本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件. 2.C解析:C【分析】根据事件发生的可能性判断相应事件的类型即可.【详解】A. 一个数的相反数等于它本身,0的相反数等于它本身,是不确定事件.B. 早上的太阳从北方升起,是不可能事件.C. 380人中有两个人的生日在同一天是必然事件.D. 明天上学路上遇到下雨,是不确定事件.故选:C.【点睛】此题考查随机事件,解题关键在于判断相应事件的类型.3.B解析:B【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、有可能三个都是白球,是随机事件,故A不符合题意;B、不可能3个都是黑球,是不可能事件,故B符合题意;C、有可能摸出的是2个白球、1个黑球,是随机事件,故C不符合题意;D、有可能是摸出的是2个黑球、1个白球,是随机事件,故D不符合题意;故选:B.【点睛】考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.B解析:B【分析】首先利用平行线的性质得出∠BMF=120°,∠FNB=80°,再利用翻折变换的性质得出∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,进而求出∠B的度数以及得出∠F的度数.【详解】∵MF∥AD,FN∥DC,∠A=120°,∠C=80°,∴∠BMF=120°,∠FNB=80°,∵将△BMN沿MN翻折得△FMN,∴∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,∴∠F=∠B=180°-60°-40°=80°,故选B.【点睛】主要考查了平行线的性质以及多边形内角和定理以及翻折变换的性质,得出∠FMN=∠BMN,∠FNM=∠MNB是解题关键.5.B解析:B【分析】根据平行线的性质以及翻折不变性,分别求出∠C′EF;∠AEC;∠BGE;∠BFD即可判断.【详解】解:A、∵∠EFB=34°,AC′∥BD′,∴∠EFB=∠FEC′=∠FEG=34°,故正确,不符合题意;B、由折叠可得∠C′EG=68°,则∠AEC=180°﹣∠C′EG=112°,故错误,符合题意;C、∵∠BGE=∠C′EG=68°,故正确,不符合题意;D、∵EC∥DF,∴∠BFD=∠BGC=∠AEC=112°,故正确,不符合题意.故选:B.【点睛】本题考查的是平行线的性质及翻折变换的性质,熟知图形翻折不变性的性质是解答此题的关键.6.A解析:A【分析】根据轴对称图形的概念求解.【详解】A、是轴对称图形.故选项正确;B、不是轴对称图形.故选项错误;C、不是轴对称图形.故选项错误;D、不是轴对称图形.故选项错误.故选:A.【点睛】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,折叠后两边可重合.7.C解析:C【分析】根据三角形全等的判定方法结合全等的判定方法逐一进行来判断.【详解】解:A.添加AE=CE后,根据已知两边和其中一边的对角对应相等,两个三角形不一定全等;故不符合题意;B.添加DE=BE后,根据已知两边和其中一边的对角对应相等,两个三角形不一定全等;故不符合题意;C.添加∠D=∠B,根据AAS可证明△ADE≌△CBE,故此选项符合题意;D.添加∠A=∠C,根据AAS可证明△ADE≌△CBE,故此选项不符合题意;故选:C【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA.关键在于应根据所给的条件判断应证明哪两个三角形全等.8.D解析:D【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.【详解】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;添加BC=EF,利用SAS可得△ABC≌△DEF;添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;,不符合任何一个全等判定定理,不能证明△ABC≌△DEF;添加AC DF故选:D.【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL 是解题的关键.9.B解析:B【分析】根据全等三角形的判定逐一分析即可.【详解】解:A、根据SAS即可判定全等,该项不符合题意;B、根据SSA不能判定全等,该项符合题意;C、根据SAS即可判定全等,该项不符合题意;D、根据ASA即可判定全等,该项不符合题意;故选:B.【点睛】本题考查全等三角形的判定,掌握三角形全等的判定方法是解题的关键.10.C解析:C【分析】此容器不是一个圆柱体,从下到上直径越来越小,因为相同体积的水在直径较大的地方比在直径较小的地方的高度低,因此,若单位时间内注入的水量保持不变,容器内水面上升的速度会越来越快.【详解】由图可知:此容器不是一个圆柱体,从下到上直径越来越小∵相同体积的水在直径较小的地方比在直径较大的地方的高度更高∴若单位时间内注入的水量保持不变,容器内水面上升的速度会越来越快故答案选:C【点睛】本题考查了体积、直径、高之间的关系,寻找出三者之间的变化关系是解题关键.11.A解析:A【分析】过C 作CQ ∥AB ,利用平行线的判定与性质进行解答即可.【详解】解:过C 作CQ ∥AB ,∵AB ∥EF ,∴AB ∥EF ∥CQ ,∴∠ABC +∠BCQ =180°,∠EFC +∠FCQ =180°,∴∠ABC +∠BCF +∠EFC =360°,∵∠FCD =60°,∴∠BCF =120°,∴∠ABC +∠EFC =360°﹣120°=240°,∵∠ABP =14∠ABC ,∠EFP =14∠EFC , ∴∠ABP +∠PFE =60°,∴∠P =60°.故选:A .【点睛】此题考查平行线的性质,关键是利用平行线的判定与性质进行解答.12.A解析:A【分析】根据同底数幂的乘法、幂的乘方、积的乘方以及合并同类项进行判断即可.【详解】A 选项246x x x ⋅=,选项正确,故符合题意;B 选项248()x x =,选项错误,故不符合题意;C 选项3332x x x +=,选项错误,故不符合题意;D 选项33(2)8x x -=-,选项错误,故不符合题意.故选:A .【点睛】本题考查同底数幂的乘法、幂的乘方、积的乘方以及合并同类项,属于基础题,熟练掌握这些计算公式和方法是解决本题的关键. 二、填空题13.【分析】根据概率的计算公式解答【详解】∵共有16个小正方形其中有4个涂上阴影∴小虫落到阴影部分的概率是故答案为:【点睛】此题考查简单事件的概率计算掌握事件发生的所有可能性及该事件可能发生的次数是解题解析:1 4【分析】根据概率的计算公式解答.【详解】∵共有16个小正方形,其中有4个涂上阴影,∴小虫落到阴影部分的概率是41164,故答案为:14.【点睛】此题考查简单事件的概率计算,掌握事件发生的所有可能性及该事件可能发生的次数是解题的关键.14.【解析】【分析】由在4×4正方形网格中任选取一个白色的小正方形并涂黑共有12种等可能的结果使图中黑色部分的图形构成轴对称图形的有3种情况直接利用概率公式求解即可求得答案【详解】解:如图若要使得黑色部解析:1 4【解析】【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有12种等可能的结果,使图中黑色部分的图形构成轴对称图形的有3种情况,直接利用概率公式求解即可求得答案.【详解】解:如图,若要使得黑色部分的图形构成轴对称图形有如图所示的三种可能,∴使得黑色部分的图形构成轴对称图形的概率为31=124,故答案为:14.【点睛】本题考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.15.【分析】如图作OB关于OA的对称直线OB′在OB′设取一点D′使得OD′=OD则PD=PD′作CH⊥OB′于H交OA于P′把问题转化为垂线段最短解决【详解】解:如图作OB关于OA的对称直线OB′在O解析:343【分析】如图,作OB关于OA的对称直线OB′,在OB′设取一点D′,使得OD′=OD,则PD=PD′,作CH⊥OB′于H,交OA于P′.把问题转化为垂线段最短解决.【详解】解:如图,作OB关于OA的对称直线OB′,在OB′设取一点D′,使得OD′=OD,则PD=PD′,作CH⊥OB′于H,交OA于P′.∵PD+PC=PC+PD′≤CH,∴当C,P,D′共线且与CH重合时,PC+PD的值最小,在Rt△OCH中,∵∠CHO=90°,∠COH=90,OC=4,∴∠OCH=30°,∴OH=12OC=2,CH3=3HP′=OH•tan30°23∴PC+PD的最小值为3此时S△OP′C=S∠OCH﹣S△OHP′=123122343故答案为343【点睛】本题考查轴对称,三角形的面积,垂线段最短等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题.16.110°【解析】【分析】如图因为AB∥CD所以∠BEM=∠1(两直线平行内错角相等);根据折叠的性质可知∠3=∠4可以求得∠4的度数;再根据两直线平行同旁内角互补即可求得∠2的度数【详解】∵AB∥C解析:110°【解析】【分析】如图,因为AB∥CD,所以∠BEM=∠1(两直线平行,内错角相等);根据折叠的性质可知∠3=∠4,可以求得∠4的度数;再根据两直线平行,同旁内角互补,即可求得∠2的度数.【详解】∵AB∥CD,∴∠BEM=∠1=140°,∠2+∠4=180°,∵∠3=∠4,∠BEM=70°,∴∠4=12∴∠2=180°−70°=110°.故答案为:110°【点睛】此题考查翻折变换(折叠问题),平行线的性质,解题关键在于根据折叠的性质得到∠3=∠417.【分析】如图过点C作EC⊥DC于点C使EC=BC连接DEBE首先证明a2+b2=16再证明a=b时a+b的值最大即可【详解】解:如图过点C作EC⊥DC于点C使EC=BC连接DEBE∵∠DCB=30°解析:42【分析】如图,过点C作EC⊥DC于点C,使EC=BC,连接DE,BE,首先证明a2+b2=16,再证明a =b时,a+b的值最大即可.【详解】解:如图,过点C作EC⊥DC于点C,使EC=BC,连接DE,BE,∵∠DCB=30°,∴∠3=60°,∵BC=EC,∴△BCE是等边三角形,∴BC=BE=EC,∠2=60°,∴∠ABD+∠1=∠2+∠1,即∠DBE=∠ABC,∵在△ABC和△DBE中,BD AB DBE ABC BE BC ⎧=⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DBE (SAS ),∴AC =ED ,在Rt △DCE 中,DC 2+CE 2=DE 2,∴DC 2+BC 2=AC 2,∴a 2+b 2=16,∵(a +b )2=a 2+b 2+2ab =16+2ab ,∵以a ,b ,4为边的三角形是直角三角形,a ,b 是直角边,∴S △=12ab , 易知当a =b 时,三角形的面积最大,此时a =b =22,ab =8,∴(a +b )2的最大值为32,∴a +b 的最大值为42.【点睛】本题主要考查了全等三角形的性质与判定,结合等边三角形的性质、勾股定理、旋转的性质计算是关键.18.8【分析】通过所给数据应当发现:后边的每一个数据总是前面两个数据的和【详解】根据所给的具体数据发现:从第三个数据开始每一个数据是前面两个数据的和则第6年的时候是3+5=8个故答案为8【点睛】本题考查 解析:8【分析】通过所给数据应当发现:后边的每一个数据总是前面两个数据的和.【详解】根据所给的具体数据发现:从第三个数据开始,每一个数据是前面两个数据的和,则第6年的时候是3+5=8个.故答案为8.【点睛】本题考查了图形的变化类问题,仔细观察树枝的分叉的个数后找到规律是解题的关键. 19.【分析】先根据平行线的性质可得再根据角的和差即可得【详解】扶手与车底平行又解得故答案为:【点睛】本题考查了平行线的性质角的和差熟练掌握平行线的性质是解题关键解析:50︒【分析】先根据平行线的性质可得1100ADC ∠=∠=︒,再根据角的和差即可得.【详解】扶手AB 与车底CD 平行,1100∠=︒,1100ADC ∴∠=∠=︒,又,02253ADC ∠+∠∠∠==︒,350010∴+∠=︒︒,解得350∠=︒,故答案为:50︒.【点睛】本题考查了平行线的性质、角的和差,熟练掌握平行线的性质是解题关键.20.﹣3【分析】先根据已知式子可找出所有含x 的项合并系数令含x 项的系数等于0即可求m 的值【详解】解:∵(x+m )(x+3)=x2+3x+mx+3m =x2+(3+m )x+3m 又∵乘积中不含x 的一次项∴3+解析:﹣3.【分析】先根据已知式子,可找出所有含x 的项,合并系数,令含x 项的系数等于0,即可求m 的值.【详解】解:∵(x +m )(x +3)=x 2+3x +mx +3m =x 2+(3+m )x +3m ,又∵乘积中不含x 的一次项,∴3+m =0,解得m =﹣3.故答案为:﹣3.【点睛】本题主要考查多项式乘以多项式的法则,注意不含某一项就是说含此项的系数等于0.三、解答题21.(1)P (摸到红球)=,P (摸到黄球)=;(2)5 个, 3 个.【解析】分析:(1)直接利用概率公式计算即可求出摸出的球是红球和黄球的概率;(2)设放入红球x 个,则黄球为(8−x )个,由摸出两种球的概率相同建立方程,解方程即可求出8个球中红球和黄球的数量分别是多少.详解:(1)∵袋子中装有4个红球和6个黄球,∴随机摸出一球是红球和黄球的概率分别是:P (摸到红球)=,P (摸到黄球)=;(2)设放入红球x 个,则黄球为(8−x )个, 由题意列方程得:解得:x =5.所以这8个球中红球和黄球的数量分别应是5个和3个.点睛:本题考查的是求随机事件的概率,解决这类题目要注意具体情况具体对待.用到的知识点为:可能性等于所求情况数与总情况数之比.22.(1)见解析;(2)点B 的坐标为(-3,-1),点C 的坐标为(1,1);(3)见解析.【分析】(1)根据点A 的坐标(0,3)可建立坐标系;(2)根据所建立的平面直角坐标系可得两个点的坐标;(3)分别作出点A ,B ,C 关于x 轴的对称点,再首尾顺次连接即可得.【详解】(1)如图所示:(2)如图所示,点B 的坐标为(-3,-1),点C 的坐标为(1,1);(3)如图所示,△A′B′C′即为所求.【点睛】本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点.23.(1)见解析;(2)通过观察可知ABC 绕点A 顺时针旋转25︒,可以得到AEF ;(3)82AMB ∠=︒【分析】(1)先利用已知条件∠B=∠E ,AB=AE ,BC=EF ,利用SAS 可证△ABC ≌△AEF ,那么就有∠C=∠F ,∠BAC=∠EAF ,那么∠BAC-∠PAF=∠EAF-∠PAF ,即有∠BAE=∠CAF=25°; (2)通过观察可知△ABC 绕点A 顺时针旋转25°,可以得到△AEF ;(3)由(1)知∠C=∠F=57°,∠BAE=∠CAF=25°,而∠AMB 是△ACM 的外角,根据三角形外角的性质可求∠AMB .【详解】解:(1)∵B E ∠=∠,AB AE =,BC EF =,∴ABC AEF ≅,∴C F ∠=∠,BAC EAF ∠=∠,∴BAC PAF EAF PAF ∠-∠=∠-∠,∴25BAE CAF ∠=∠=︒;(2)通过观察可知ABC 绕点A 顺时针旋转25︒,可以得到AEF ;(3)由(1)知57C F ∠=∠=︒,25BAE CAF ∠=∠=︒,∴572582AMB C CAF ∠=∠+∠=︒+︒=︒.【点睛】本题利用了全等三角形的判定、性质,三角形外角的性质,等式的性质等.24.从关闭进水管起需要8分钟该容器内的水恰好放完.【解析】【分析】先根据函数图象求出进水管的进水量和出水管的出水量,由工程问题的数量关系就可以求出结论.【详解】解:由函数图象,得:进水管每分钟的进水量为:20÷4=5(升).设出水管每分钟的出水量为 m 升,由函数图象,得:20+(5-m)×(12-4)=30.解得:m=154 ∴30÷154=8(分钟). 即从关闭进水管起需要8分钟该容器内的水恰好放完.【点睛】本题考查利用函数的图象解决实际问题和用一元一次方程求出水管的出水量的运用,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.25.(1)AOD ∠、BOC ∠、∠BOE ;(2)36°.【分析】(1)根据题意,由角平分线的定义,先求出45AOC AOE BOD ∠=∠=∠=︒,然后求出135AOD BOC BOE ∠=∠=∠=︒,即可得到答案;(2)根据角的比例,先求出72EOC ∠=︒,由角平分线的定义和对顶角定理,即可得到答案.【详解】解:(1)∵OE CD ⊥,∴90COE EOD ∠=∠=︒,∵OA 平分EOC ∠, ∴190452AOC AOE ∠=∠=⨯︒=︒, ∴45BOD ∠=︒,∴18045135AOD BOC BOE ∠=∠=∠=︒-︒=︒,∴与BOD ∠互补的角有AOD ∠、BOC ∠、∠BOE ;(2)根据题意,∵:2:3EOC EOD ∠∠=,又∵180EOC EOD ∠+∠=︒, ∴21807223EOC ∠=⨯︒=︒+, ∵OA 平分EOC ∠, ∴172362AOC AOE ∠=∠=⨯︒=︒, ∴36BOD AOC ∠=∠=︒;【点睛】本题考查了角平分线的定义,余角和补角的定义,对顶角相等,以及平角的定义,解题的关键是熟练掌握所学的知识,正确的理解题意,得到角的关系进行解题.26.284y xy .【分析】原式根据平方差公式和完全平方公式将括号展开,然后再合并同类项即可得到答案.【详解】解:()()()2222x y y x x y -+-- 2222444x y x y xy =---+284y xy =-+.【点睛】此题主要考查了整式的四则运算,熟练掌握平方差公式和完全平方公式是解答此题的关键.。

湘教版七年级数学下册期末测试卷(参考答案)

湘教版七年级数学下册期末测试卷(参考答案)

湘教版七年级数学下册期末测试卷(参考答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.如果y =2x -+2x -+3,那么y x 的算术平方根是( ) A .2 B .3 C .9 D .±3 2.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D ′处.若AB=3,AD=4,则ED 的长为A .32B .3C .1D .433.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.如图,若AB ,CD 相交于点O ,∠AOE =90°,则下列结论不正确的是( )A .∠EOC 与∠BOC 互为余角B .∠EOC 与∠AOD 互为余角 C .∠AOE 与∠EOC 互为补角 D .∠AOE 与∠EOB 互为补角5.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是( )A .a b >B .a b <C .0a b +>D .0a b< 6.如图,直线AB ,CD 相交于点O ,射线OM 平分AOC ∠,ON OM ⊥,若30AOM ∠=︒,则CON ∠的度数为( )A .30︒B .40︒C .60︒D .50︒7.下面是一位同学做的四道题:①222()a b a b +=+;②224(2)4a a -=-;③532a a a ÷=;④3412a a a ⋅=,其中做对的一道题的序号是( )A .①B .②C .③D .④8.估计7+1的值( )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间9.若a <b ,则下列结论不一定成立的是( )A .11a b -<-B .22a b <C .33a b ->-D .22a b <10.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A .12B .10C .8D .6二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________.2.如图所示,计划把河水引到水池A 中,先作AB ⊥CD ,垂足为B ,然后沿AB 开渠,能使所开的渠道最短,这样设计的依据是___________________.3a 的平方根是3±,则a =_________。

湘教版初中七年级下学期数学期末试题及答案

湘教版初中七年级下学期数学期末试题及答案

下列式子由左到右的变形是因式分解的是
4.

(
)
(
如图,下列条件中,不能判定直线a∥b 的是
7.

期末综合检测卷
10.
如果多项式 x2-mx+9(
14.
m 为常数)可以用完全平方公式进行
因式分解,那么 m = .
如图,将一张长方形纸条 ABCD 沿EF 折叠,点 B ,
15.
A 分别落在
点 B′,
若 ∠DGF =110
A′的位置上,
FB′与 AD 的 交 点 为 G .
°,
则 ∠A′EF 的度数为 .
3 匹 小 马 能 拉 1 片 瓦,则 有 多 少 匹 大
马、多少匹小马? 若设大马有 x 匹,小马有y 匹,则可列方程
组为
x+y=100,
{
{
A
C

3x+3y=100
x+y=100,
3x+y=100
x+y=100,
(
{
B

x+3y=100
ìïx+y=1
00,
ï
D
í

ï3
00
ï x+3y=1
î
)
3 匹 小 马 能 拉 1 片 瓦,则 有 多 少 匹 大
马、多少匹小马? 若设大马有 x 匹,小马有y 匹,则可列方程
组为
x+y=100,
{
A
{
B

3x+3y=100
x+3y=100
ìïx+y=1
00,
ï
D
í

ï3
00
ï x+3y=1
î
x+y=100,
{
C

湘教版七年级数学下册期末考试卷(附答案)

湘教版七年级数学下册期末考试卷(附答案)

湘教版七年级数学下册期末考试卷(附答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.计算12+16+112+120+130+……+19900的值为()A.1100B.99100C.199D.100992.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是()A.100 B.被抽取的100名学生家长C.被抽取的100名学生家长的意见 D.全校学生家长的意见3.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是( )秒A.2.5 B.3 C.3.5 D.44.如图,数轴上的点A,B,O,C,D分别表示数-2,-1,0,1,2,则表示数25的点P应落在()A.线段AB上B.线段BO上C.线段OC上D.线段CD上5.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC 于点E,则下列结论一定正确的是()A .AE =ECB .AE =BEC .∠EBC =∠BACD .∠EBC =∠ABE6.2019-的倒数是( )A .2019-B .12019-C .12019D .20197.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人( )A .赚16元B .赔16元C .不赚不赔D .无法确定8.实数a 、b 在数轴上的位置如图所示,则化简|a-b|﹣a 的结果为( )A .-2a+bB .bC .﹣2a ﹣bD .﹣b9.若|abc |=-abc ,且abc ≠0,则||||b a c a b c++=( ) A .1或-3 B .-1或-3 C .±1或±3 D .无法判断10.若x ﹣m 与x+3的乘积中不含x 的一次项,则m 的值为( )A .3B .1C .0D .﹣3二、填空题(本大题共6小题,每小题3分,共18分)1.4的算术平方根是________.2.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.3.如图,五边形ABCDE 是正五边形,若12l l //,则12∠-∠=__________.4.如果关于x 的不等式组232x a x a >+⎧⎨<-⎩无解,则a 的取值范围是_________. 5.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为____________.6.如图,已知AE 是△ABC 的边BC 上的中线,若AB=8cm,△ACE 的周长比△AEB 的周长多2cm,则AC=________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)251237x y x y -=-⎧⎨+=⎩ (2)4(1)3(2)833634x y x y --+=⎧⎪++⎨=⎪⎩2.设m 为整数,且关于x 的一元一次方程(5)30m x m -+-=(1)当2m =时,求方程的解;(2)若该方程有整数..解,求m 的值.3.如图,A (4,3)是反比例函数y=k x在第一象限图象上一点,连接OA ,过A 作AB ∥x 轴,截取AB=OA (B 在A 右侧),连接OB ,交反比例函数y=k x 的图象于点P .(1)求反比例函数y=kx的表达式;(2)求点B的坐标;(3)求△OAP的面积.4.如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点0;求证:(1)DBC ECB∆≅∆(2)OB OC=5.为了了解本校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,课题小组随机选取该校部分学生进行了问卷调查(问卷调查表如图1所示),并根据调查结果绘制了图2、图3两幅统计图(均不完整),请根据统计图解答下列问题.(1)本次接受问卷调查的学生有________名.(2)补全条形统计图.(3)扇形统计图中B类节目对应扇形的圆心角的度数为________.(4)该校共有2000名学生,根据调查结果估计该校最喜爱新闻节目的学生人数.6.在一次实验中,小明把一根弹簧的上端固定、在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体质量x的一组对应值.所挂物体质量0 1 2 3 4 5x/kg弹簧长度18 20 22 24 26 28y/cm①上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?②当所挂物体重量为3千克时,弹簧多长?不挂重物时呢?③若所挂重物为7千克时(在允许范围内),你能说出此时的弹簧长度吗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、B5、C6、B7、B8、A9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、()()2a b a b++.3、724、a≤2.5、454353x yx y+=⎧⎨-=⎩6、10cm三、解答题(本大题共6小题,共72分)1、(1)21xy=⎧⎨=⎩;(2)62xy=⎧⎨=⎩2、(1)13x=-;(2)6m=或4m=,7m=或3m=3、(1)反比例函数解析式为y=12x;(2)点B的坐标为(9,3);(3)△OAP的面积=5.4、(1)略;(2)略.5、(1)100;(2)见解析;(3)72 ;(4)160人.6、①上表反映了弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量;②当所挂物体重量为3千克时,弹簧长24厘米;当不挂重物时,弹簧长18厘米;③32厘米.。

湘教版七年级下册期末数学试卷(含答案)

湘教版七年级下册期末数学试卷(含答案)

七年级下册期末数学试卷一.选择题(本大题共9小题,每小题2分,共18分)1.“认识交通标志,遵守交通规则”,下列交通标志中,是轴对称图形的是()A.B.C.D.2.下列计算正确的是()A.a•a2=a2B.(x3)2=x5C.(2a)2=4a2D.(x+1)2=x2+1;3.下列因式分解正确的是()A.x2﹣4=(x+4)(x﹣4)B.4a2﹣8a=a(4a﹣8)C.a+2a+2=(a﹣1)2+1 D.x2﹣2x+1=(x﹣1)24.下列运算正确的是()A.(m+n)(﹣m+n)=n2﹣m2B.(a﹣b)2=a2﹣b2C.(a+m)(b+n)=ab+mn D.(x﹣1)2=x2﹣2x﹣15.下列说法错误的是()A.平移不改变图形的形状和大小^B.对顶角相等C.在同一平面内,垂直于同一条直线的两条直线平行D.同位角相等6.我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定9名同学参加决赛,他们的决赛成绩各不相同,其中小辉已经知道自己的成绩,但能否进前5名,他还必须清楚这9名同学成绩的()A.众数B.平均数C.中位数D.方差7.如图.直线a∥b,直线L与a、b分别交于点A、B,过点A作AC⊥b于点C.若∠1=50°,则∠2的度数为().A.130°B.50°C.40°D.25°8.如图,下列条件中,能判定AD∥BC的是()A.∠C=∠CBE B.∠A+∠ADC=180°C.∠ABD=∠CDB D.∠A=∠CBE9.图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.2mn B.(m+n)2C.(m﹣n)2D.m2﹣n2/二、填空题(本大题共9小题,每小题2分,共18分)10.计算:(﹣2a)2﹣a2=.11.是二元一次方程2x+ay=5的一个解,则a的值为.12.若a+4b=10,2a﹣b=﹣1,则a+b=.13.如图是一次射击训练中甲、乙两人的10次射击成绩的分布情况,则射击成绩的方差较小的是(填“甲”或“乙”).14.已知多项式x2+mx+25是完全平方式,且m<0,则m的值为.15.因式分解:(x﹣3)﹣2x(x﹣3)=.~16.已知直线a∥b,a与b之间的距离为5,a与b之间有一点P,点P到a的距离是2,则点P到b的距离是.17.如图,将△ABC绕着点C按顺时针方向旋转20°后,B点落在B位置,A点落在A′位置,若AC⊥BC,则∠BCA′的度数是.18.如图,将一张矩形纸片ABCD沿EF折叠,使顶点C,D分别落在点C′,D′处,C′E交AF于点G,若∠CEF=70°,则∠GFD′=°.三、解答题(本大题共9小题,19~23每小题6分,24~26每小题6分,27小题10分,共64分)19.先化简,再求值:2x(2x﹣y)﹣(2x﹣y)2,其中x=,y=﹣1.20.解方程组.|21.如图,在正方形网格中,有格点三角形ABC(顶点都是格点)和直线MN.(1)画出三角形ABC关于直线MN对称的三角形A1B1C1(2)将三角形ABC绕点A按逆时针方向旋转90°得到三角形AB2C2,在正方形网格中画出三角形AB2C2.(不要求写作法)22.推理填空:如图,∠1+∠2=180°,∠A=∠C,试说明:AE∥BC.解:因为∠1+∠2=180°,?所以AB∥(同旁内角互补,两直线平行)所以∠A=∠EDC(),又因为∠A=∠C(已知)所以∠EDC=∠C(等量代换),所以AE∥BC()23.某中学有15位学生利用暑假参加社会实践活动,到某公司销售部做某种商品的销售员,销售部为帮助学生制定合理的周销售定额,统计了这15位学生某周的销售量如下:周销售量(件)-450130 60 50 40 35人数 1 <13 5 3 2(1)求这15位学生周销售量的平均数、中位数、众数;(2)假设销售部把每位学生的周销售定额规定为80件,你认为是否合理为什么如果不合理,请你从表中选一个较合理的周销售量作为周销售定额,并说明理由.24.我市某中学决定到超市购买一定数量的羽毛球拍和羽毛球,已知买1副羽毛球拍和1个羽毛球要花费35元,买2副羽毛球拍和3个羽毛球要花费75元,求购买10副羽毛球拍和20个羽毛球共需多少元(25.如图,直线a∥b,直线AB与a,b分别相交于点A,B,AC⊥AB,AC交直线b于点C.(1)若∠1=60°,求∠2的度数;(2)若AC=3,AB=4,BC=5,求a与b的距离.26.先仔细阅读材料,冉尝试解决问题完全平方公式a2±2ab+b2=(a±b)2及(a±b)2的值具有非负性的特点在数学学习中有着广泛的应用,例如求多项式2x2+12x﹣4的最小值时,我们可以这样处理:解:原式=2(x2+6x﹣2)=2(x2+6x+9﹣9﹣2)^=2[(x+3)2﹣11]=2(x+3)2﹣22因为无论x取什么数,都有(x+3)2的值为非负数,所以(x+3)2的最小值为0,当x=﹣3时,2(x+3)2﹣22的最小值是﹣22,所以当x=﹣3时,原多项式的最小值是﹣22.解决问题:(1)请根据上面的解题思路探求:多项式x2+4x+5的最小值是多少,并写出此时x的值;(2)请根据上面的解题思路探求:多项式﹣3x2﹣6x+12的最大值是多少,并写出此时x的值.27.如图,MN∥OP,点A为直线MN上一定点,B为直线OP上的动点,在直线MN与OP之间且在线段AB的右方作点D,使得AD⊥BD.设∠DAB=α(α为锐角).(1)求∠NAD与∠PBD的和;(提示过点D作EF∥MN)】(2)当点B在直线OP上运动时,试说明∠OBD﹣∠NAD=90°;(3)当点B在直线OP上运动的过程中,若AD平分∠NAB,AB也恰好平分∠OBD,请求出此时α的值参考答案与试题解析一.选择题(本大题共9小题,每小题2分,共18分)1.解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;;D、不是轴对称图形,故本选项错误;故选:B.2.解:A、a•a2=a3,故此选项错误;B、(x3)2=x6,故此选项错误;C、(2a)2=4a2,正确;D、(x+1)2=x2+2x+1,故此选项错误.故选:C.3.解:A、原式=(x+2)(x﹣2),不符合题意;}B、原式=4a(a﹣2),不符合题意;C、原式不能分解,不符合题意;D、原式=(x﹣1)2,符合题意,故选:D.4.解:∵(m+n)(﹣m+n)=n2﹣m2,故选项A正确,∵(a﹣b)2=a2﹣2ab+b2,故选项B错误,∵(a+m)(b+n)=ab+an+bm+mn,故选项C错误,∵(x﹣1)2=x2﹣2x+1,故选项D错误,(故选:A.5.解:A、平移不改变图形的形状和大小,正确;B、对顶角相等,正确;C、在同一平面内,垂直于同一条直线的两条直线平行,正确;D、两直线平行,同位角相等,错误;故选:D.6.解:由于总共有9个人,且他们的分数互不相同,第5名的成绩是中位数,要判断是否进入前5名,故应知道自已的成绩和中位数.故选:C.^7.解:∵AC⊥b,∴∠ACB=90°,∵∠1=50°,∴∠ABC=40°,∵a∥b,∴∠ABC=∠2=40°.故选:C.8.解:A、∵∠C=∠CBE,∴AB∥CD,故本选项错误;,B、∵∠A+∠ADC=180°,∴AB∥CD,故本选项错误;C、∵∠ABD=∠CDB,∴AB∥CD,故本选项错误;D、∵∠A=∠CBE,∴AD∥BC,故本选项正确.故选:D.9.解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)2,又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)2﹣4mn=(m﹣n)2.(故选:C.二、填空题(本大题共9小题,每小题2分,共18分)10.解:(﹣2a)2﹣a2=4a2﹣a2=3a2,故答案为:3a2.11.解:将代入二元一次方程2x+ay=5,得2+3a=5,解得a=1,故答案为:1.?12.解:∵a+4b=10①,2a﹣b=﹣1②,①+②可得:3a+3b=9,即:a+b=3.故答案为:3.13.解:由图中知,甲的成绩为7,8,8,9,8,9,9,8,7,7,乙的成绩为6,8,8,9,8,10,9,8,6,7,=(7+8+8+9+8+9+9+8+7+7)÷10=8,=(6+8+8+9+8+10+9+8+6+7)÷10=,—甲的方差S甲2=[3×(7﹣8)2+4×(8﹣8)2+3×(9﹣8)2]÷10=,乙的方差S乙2=[2×(6﹣)2+4×(8﹣)2+2×(9﹣)2+(10﹣)2+(7﹣)2]÷10=,则S2甲<S2乙,即射击成绩的方差较小的是甲.故答案为:甲.14.解:∵x2+mx+25是一个完全平方式,∴x2+mx+25=(x+5)2或x2+mx+25=(k﹣5)2,∴m=±10.∵m<0,(∴m的值为﹣10.故答案是:﹣10.15.解:(x﹣3)﹣2x(x﹣3)=(x﹣3)(1﹣2x).故答案为:(x﹣3)(1﹣2x).16.解:∵直线a∥b,a与b之间的距离为5,a与b之间有一点P,点P到a的距离是2,∴点P到b的距离是5﹣2=3,故答案为:3.17.解:∵AC⊥BC,^∴∠ACB=90°,∵∠ACB=∠A′CB′=90°,∴∠BCB′=∠ACA′=20°,∴∠BCA′=90°+20°=110°,故答案为110°.18.解:矩形纸片ABCD中,AD∥BC,∵∠CEF=70°,∴∠EFG=∠CEF=70°,|∴∠EFD=180°﹣70°=110°,根据折叠的性质,∠EFD′=∠EFD=110°,∴∠GFD′=∠EFD′﹣∠EFG,=110°﹣70°,=40°.故答案为:40.三、解答题(本大题共9小题,19~23每小题6分,24~26每小题6分,27小题10分,共64分)19.解:2x(2x﹣y)﹣(2x﹣y)2*=4x2﹣2xy﹣4x2+4xy﹣y2=2xy﹣y2,当x=,y=﹣1时,原式=2××(﹣1)﹣(﹣1)2=﹣2.20.解:①×2+②得:7x=14,即x=2,将x=2代入①得:y=﹣1,则方程组的解为.21.解:(1)如图所示,△A1B1C1即为所求;#(2)如图所示,△AB2C2即为所求.22.解:因为∠1+∠2=180°,所以AB∥DC(同旁内角互补,两直线平行)所以∠A=∠EDC(两直线平行,同位角相等),又因为∠A=∠C(已知)所以∠EDC=∠C(等量代换),所以AE∥BC(内错角相等,两直线平行)*故答案为:DC,两直线平行,同位角相等;内错角相等,两直线平行.23.解:(1)这15位学生周销售量的平均数=(450×1+130×1+60×3+50×5+40×3+35×2)÷15=80,中位数为50,众数为50;(2)不合理.因为15人中有13人销售量达不到80,周销售额定为50较合适,因为50是众数也是中位数.24.解:设购买1副羽毛球拍需要x元,购买1个羽毛球需要y元,根据题意得:,解得:,|∴10x+20y=10×30+20×5=400.答:购买10副羽毛球拍和20个羽毛球共需400元.25.解:(1)∵直线a∥b,∴∠3=∠1=60°,又∵AC⊥AB,∴∠2=90°﹣∠3=30°;(2)如图,过A作AD⊥BC于D,则AD的长即为a与b之间的距离.∵AC⊥AB,~∴×AB×AC=×BC×AD,∴AD==,∴a与b的距离为.26.解:(1)x2+4x+5=x2+4x+4+1=(x+2)2+1,当x=﹣2时,多项式x2+4x+5的最小值是1;(2)﹣3x2﹣6x+12=﹣3(x2+2x+1)+3+12=﹣3(x+1)2+15,当x=﹣1时,多项式﹣3x2﹣6x+12的最大值是15.27.解:(1)如图,过点D作EF∥MN,则∠NAD=∠ADE.∵MN∥OP,EF∥MN,∴EF∥OP.∴∠PBD=∠BDE,∴∠NAD+∠PBD=∠ADE+∠BDE=∠ADB.∵AD⊥BD,∴∠ADB=90°,∴∠NAD+∠PBD=90°.(2)由(1)得:∠NAD+∠PBD=90°,则∠NAD=90°﹣∠PBD.∵∠OBD+∠PBD=180°,∴∠OBD=180°﹣∠PBD,∴∠OBD﹣∠NAD=(180°﹣∠PBD)﹣(90°﹣∠PBD)=90°.(3)若AD平分∠NAB,AB也恰好平分∠OBD,则有∠NAD=∠BAD=α,∠NAB=2∠BAD=2α,∠OBD=2∠OBA.∵OP∥MN,∴∠OBA=∠NAB=2α,∴∠OBD=4α.由(2)知:∠OBD﹣∠NAD=90°,则4α﹣α=90°,解得:α=30°.。

湘教版七年级数学下册期末考试及答案【完整版】

湘教版七年级数学下册期末考试及答案【完整版】

湘教版七年级数学下册期末考试及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2020的倒数是()A.﹣2020 B.﹣12020C.2020 D.120202.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4400000000人,这个数用科学记数法表示为()A.4.4×108B.4.40×108C.4.4×109D.4.4×10103.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是( )秒A.2.5 B.3 C.3.5 D.44.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>05.图甲和图乙中所有的正方形都全等,将图甲的正方形放在图乙中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A .①B .②C .③D .④6.下列各组数中,两个数相等的是( )A .-2与2(-2)B .-2与-12C .-2与3-8D .|-2|与-27.下列各组线段不能组成三角形的是 ( )A .4cm 、4cm 、5cmB .4cm 、6cm 、11cmC .4cm 、5cm 、6cmD .5cm 、12cm 、13cm8.64的立方根是( )A .4B .±4C .8D .±8 9.下列说法正确的是( )A .零是正数不是负数B .零既不是正数也不是负数C .零既是正数也是负数D .不是正数的数一定是负数,不是负数的数一定是正数10.将9.52变形正确的是( )A .9.52=92+0.52B .9.52=(10+0.5)(10﹣0.5)C .9.52=102﹣2×10×0.5+0.52D .9.52=92+9×0.5+0.52二、填空题(本大题共6小题,每小题3分,共18分)1.4的算术平方根是________.2.如图,在△ABC 中,∠C =90°,BC =8cm ,AC =6cm ,点E 是BC 的中点,动点P 从A 点出发,先以每秒2cm 的速度沿A →C 运动,然后以1cm /s 的速度沿C →B 运动.若设点P 运动的时间是t 秒,那么当t =_______________,△APE 的面积等于6.3.已知点A (0,1),B (0 ,2),点C 在x 轴上,且2ABC S ∆=,则点C 的坐标________.4.如果方程(m-1)x |m|+2=0是表示关于x 的一元一次方程,那么m 的取值是________.5.若一个数的平方等于5,则这个数等于________.6.如图,已知AE是△ABC的边BC上的中线,若AB=8cm,△ACE的周长比△AEB的周长多2cm,则AC=________.三、解答题(本大题共6小题,共72分)1.解方程组:25 342x yx y-=⎧⎨+=⎩2.马虎同学在解方程13123x mm---=时,不小心把等式左边m前面的“﹣”当做“+”进行求解,得到的结果为x=1,求代数式m2﹣2m+1的值.3.如图是一块长方形的空地,长为x米,宽为120米,现在它分成甲、乙、丙三部分,其中甲和乙是正方形形状.(1)乙地的边长为;(用含x的代数式表示)(2)若设丙地的面积为S平方米,求出S与x的关系式;(3)当200x=时,求S的值.4.如图,已知直线AB∥CD,直线EF分别与AB,CD相交于点O,M,射线OP在∠AOE的内部,且OP⊥EF,垂足为点O.若∠AOP=30°,求∠EMD的度数.5.学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计我市近8000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?6.某市两超市在元旦节期间分别推出如下促销方式:甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折;已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少?(2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、B5、A6、C7、B8、A9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、1.5或5或93、(4,0)或(﹣4,0)4、-15、6、10cm三、解答题(本大题共6小题,共72分)1、21x y =⎧⎨=-⎩2、0.3、(1)(0)12x -米 (2)(120)(240)S x x =-- (3)32004、60°5、(1)200;(2)见解析;(3)54°;(4)估计该市初中生中大约有6800名学生学习态度达标.6、(1)甲超市实付款352元,乙超市实付款 360元;(2)购物总额是625元时,甲、乙两家超市实付款相同;(3)该顾客选择不划算.。

湘教版七年级数学下册期末考试及答案【完整】

湘教版七年级数学下册期末考试及答案【完整】

湘教版七年级数学下册期末考试及答案【完整】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.超市出售的某种品牌的面粉袋上,标有质量为(25±0.2)kg 的字样,从中任意拿出两袋,它们的质量最多相差-( )A .0.2 kgB .0.3 kgC .0.4 kgD .50.4 kg2.下列说法中正确的是( )A .若0a <,则20a <B .x 是实数,且2x a =,则0a >C .x -有意义时,0x ≤D .0.1的平方根是0.01±3.①如图1,AB ∥CD,则∠A +∠E +∠C=180°;②如图2,AB ∥CD,则∠E =∠A +∠C;③如图3,AB ∥CD,则∠A +∠E -∠1=180° ; ④如图4,AB ∥CD,则∠A=∠C +∠P.以上结论正确的个数是( )A .、1个B .2个C .3个D .4个4. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A .523220x y x y +=⎧⎨+=⎩B .522320x y x y +=⎧⎨+=⎩C .202352x y x y +=⎧⎨+=⎩D .203252x y x y +=⎧⎨+=⎩5.如图,四边形ABCD 内接于⊙O ,点I 是△ABC 的内心,∠AIC=124°,点E 在AD 的延长线上,则∠CDE 的度数为( )A.56°B.62°C.68°D.78°6.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④7.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A.赚16元B.赔16元C.不赚不赔D.无法确定8.设[x]表示最接近x的整数(x≠n+0.5,n为整数),则[1]+[2]+[3]+…+[36]=()A.132 B.146 C.161 D.6669.下列各组数值是二元一次方程x﹣3y=4的解的是()A.11xy=⎧⎨=-⎩B.21xy=⎧⎨=⎩C.12xy=-⎧⎨=-⎩D.41xy=⎧⎨=-⎩10.如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.3 C.6 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)11x-x的取值范围是_______.2.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是________元.3.分解因式:32x 2x x -+=_________.4.已知直线AB ∥x 轴,点A 的坐标为(1,2),并且线段AB =3,则点B 的坐标为________.5 5.036,=15.906=__________.6.化简: 43ππ-+-=________三、解答题(本大题共6小题,共72分)1.解方程:3531132x x -+-=2.已知x 、y 满足方程组52251x y x y -=-⎧⎨+=-⎩,求代数式()()()222x y x y x y --+-的值.3.(1)如图(1),已知:在△ABC 中,∠BAC =90°,AB=AC ,直线m 经过点A ,BD ⊥直线m, CE ⊥直线m,垂足分别为点D 、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC 中,AB=AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE,若∠BDA=∠AEC=∠BAC ,试判断△DEF 的形状.CD=,4.某学校要对如图所示的一块地进行绿化,已知4mAD=,3m ⊥,13mAD DCBC=,求这块地的面积.AB=,12m5.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?6.食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A,B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A,B两种饮料共100瓶,问A,B两种饮料各生产了多少别瓶?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、D5、C6、B7、B8、B9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、1x≥2、2000,3、()2 x x1-.4、(4,2)或(﹣2,2).5、503.66、1三、解答题(本大题共6小题,共72分)1、3x=.2、3 53、(1)见解析(2)成立(3)△DEF为等边三角形4、224cm.5、(1)100;(2)补全图形见解析;(3)36°;(4)估计该校喜欢书法的学生人数为500人.6、A饮料生产了30瓶,B饮料生产了70瓶.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湘教版初中数学第二学期七年级下册期末考试数学试卷及答案解析一.选择题(共10小题)1.下面的各组图案中,不能由其中一个经平移后得到另一个的是( )A .B .C .D .2.π、227 3.1416,0. 中,无理数的个数是( ) A .1个 B .2个 C .3个 D .4个3.如图,AB ∥CD ,∠ABK 的角平分线BE 的反向延长线和∠DCK 的角平分线CF 的反向延长线交于点H ,∠K ﹣∠H=27°,则∠K=( )A .76°B .78°C .80°D .82°(第3题)(第5题) (第9题)4.点P (x ﹣1,x +1)不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限 5.把图中的一个三角形先横向平移x 格,再纵向平移y 格,就能与另一个三角形拼合成一个四边形,那么x +y ( )A .是一个确定的值B .有两个不同的值C .有三个不同的值D .有三个以上不同的值6.在3,0,﹣2四个数中,最小的数是( )A .3B .0C .﹣2 D7.平面直角坐标系中,将三角形各点的纵坐标都减去﹣3,横坐标保持不变,所得图形与原图形相比( )A .向上平移了3个单位B .向下平移了3个单位C .向右平移了3个单位D .向左平移了3个单位 8.若是方程组的解,则(a +b )•(a ﹣b )的值为( ) A .﹣353 B .353C .﹣16D .16 9.某校对学生上学方式进行了一次抽样调查,如图是根据此次调查结果所绘制的一个未完成的扇形统计图,已知该校学生共有2560人,被调查的学生中骑车的有21人,则下列四种说法中,不正确的是( )A .被调查的学生有60人B .被调查的学生中,步行的有27人C .估计全校骑车上学的学生有1152人D .扇形图中,乘车部分所对应的圆心角为54°10.如图,是做课间操时,小明,小刚和小红三人的相对位置,如果用(4,5)表示小明的位置,(2,4)表示小刚的位置,则小红的位置可表示为( )A .(0,0)B .(0,1)C .(1,0)D .(1,2)二.填空题(共8小题)11.已知:(x 2+y 2+1)2﹣4=0,则x 2+y 2= .12.如果点A 的坐标为(3,5),点B 的坐标为(0,﹣4),那么A 、B 两点的距离等于 .13.规定用符号[m ]表示一个实数m 的整数部分,例如:[23]=0,[3.14]=3.按此规定]的值为 . 14.如图,已知∠1=∠2,∠D=78°,则∠BCD= 度.15.如图,将边长为2个单位的等边△ABC 沿边BC 向右平移1个单位得到△DEF ,则四边形ABFD 的周长为 个单位.16.若不等式(a ﹣3)x ≤3﹣a 的解集在数轴上表示如图所示,则a 的取值范围是 .17.小林每天下午5点放学时,爸爸总是从家开车按时到达学校接他回家,有一天学校提前一个小时放学,小林自己步行回家,在途中遇到开车来接他的爸爸,结果比平时早20分钟到家,则小林步行分钟遇到来接他的爸爸.18.在平面直角坐标系中,智多星做走棋的游戏,其走法是:棋子从原点出发,第1步向上走1个单位,第2步向上走2个单位,第3步向右走1个单位,第4步向上走1个单位……依此类推,第n步的走法是:当n被3除,余数为2时,则向上走2个单位;当走完第2018步时,棋子所处位置的坐标是三.解答题(共6小题)19.计算:(1)解不等式组并在数轴上把解集表示出来;(2)解方程组.20.如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.(1)在图中画出△A′B′C′,并写出点A′、B′、C′的坐标;(2)在y轴上求点P,使得△BCP与△ABC面积相等.21.典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)扇形统计图中a=,b=;并补全条形统计图;(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少?22.填空并完成以下证明:已知:点P在直线CD上,∠BAP+∠APD=180°,∠1=∠2.求证:AB∥CD,∠E=∠F.证明:∵∠BAP+∠APD=180°,(已知)∴AB∥.()∴∠BAP=.()又∵∠1=∠2,(已知)∠3=﹣∠1,∠4=﹣∠2,∴∠3=(等式的性质)∴AE∥PF.()∴∠E=∠F.()23.一玩具工厂用于生产的全部劳力为450个工时,原料为400个单位.生产一个小熊要使用15个工时、20个单位的原料,售价为80元;生产一个小猫要使用10个工时、5个单位的原料,售价为45元.在劳力和原料的限制下合理安排生产小熊、小猫的个数,可以使小熊和小猫的总售价尽可能高.请用你所学过的数学知识分析,总售价是否可能达到2200元?参考答案解析一.选择题(共10小题)1.C.2.B.3.B.4.D.5.B.6.C.7.A.8.C.9.C.10.D.二.填空题(共8小题)11.1.1213.4.14.102.158.16.a<3.17.50.18.(672,2019)三.解答题(共6小题)19.计算:(1)解不等式组并在数轴上把解集表示出来;(2)解方程组.【分析】(1)先求出不等式组的解集,再在数轴上表示出来即可;(2)①+②得出4x=12,求出x,把x=3代入①求出y即可.【解答】解:(1)∵解不等式①得:x<1,解不等式②得:x≥﹣2,∴不等式组的解集为﹣2≤x<1,在数轴上表示为:;(2)∵①+②得:4x=12,解得:x=3.把x=3代入①得:6﹣y=7,解得:y=﹣1,∴原方程组的解是.【点评】本题考查了解二元一次方程组和解一元一次不等式组、在数轴上表示不等式组的解集,能求出不等式组的解集是解(1)的关键,能把二元一次方程组转化成一元一次方程是解(2)的关键.20.如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.(1)在图中画出△A′B′C′,并写出点A′、B′、C′的坐标;(2)在y轴上求点P,使得△BCP与△ABC面积相等.【分析】(1)根据图形平移的性质画出△A′B′C′,并写出点A′、B′、C′的坐标即可(2)求出△ABC中BC边上的高,进而可得出结论.【解答】解:(1)如图,△A′B′C′即为所求.A′(0,4)B′(﹣1,1),C′(3,1);(2)如图,P(0,1)或(0,﹣5)).【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.21.典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)扇形统计图中a=20%,b=12%;并补全条形统计图;(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少?【分析】(1)根据“15~40”的百分比和频数可求总数,进而求出b和a的值.利用总数和百分比求出频数再补全条形图;(2)用样本估计总体即可;(3)首先设甲组得x分,则乙组得(110﹣x)分,由题意得不等关系:甲组得x分≥乙组得x分×1.5,根据不等关系列出不等式,解不等式即可.【解答】解:(1)总人数:230÷46%=500(人),100÷500×100%=20%,60÷500×100%=12%;500×22%=110(人),如图所示:(2)3500×20%=700(人);(3)设甲组得x分,则乙组得(110﹣x)分,由题意得:x≥1.5(110﹣x),解得:x≥66.答:甲组最少得66分.【点评】此题主要考查了扇形统计图与条形统计图,以及一元一次不等式的应用,正确读图,能从图中得到正确的信息是解决问题的关键.22.填空并完成以下证明:已知:点P在直线CD上,∠BAP+∠APD=180°,∠1=∠2.求证:AB∥CD,∠E=∠F.证明:∵∠BAP+∠APD=180°,(已知)∴AB∥CD.(同旁内角互补两直线平行)∴∠BAP=∠APC.(两直线平行内错角相等)又∵∠1=∠2,(已知)∠3=∠BAP﹣∠1,∠4=∠APC﹣∠2,∴∠3=∠4(等式的性质)∴AE∥PF.(内错角相等两直线平行)∴∠E=∠F.(两直线平行内错角相等)【分析】根据平行线的性质和判定即可解决问题;【解答】解:∵∠BAP+∠APD=180°,(已知)∴AB∥CD.(同旁内角互补两直线平行)∴∠BAP=∠APC.(两直线平行,内错角相等)又∵∠1=∠2,(已知)∠3=∠BAP﹣∠1,∠4=∠APC﹣∠2,∴∠3=∠4(等式的性质)∴AE∥PF.(内错角相等两直线平行)∴∠E=∠F.(两直线平行内错角相等)故答案为CD,同旁内角互补两直线平行,∠APC,两直线平行内错角相等,∠BAP,∠APC,内错角相等两直线平行,两直线平行内错角相等;【点评】本题考查平行线的性质和判定、熟练掌握平行线的判定和性质是解决问题的关键.23.一玩具工厂用于生产的全部劳力为450个工时,原料为400个单位.生产一个小熊要使用15个工时、20个单位的原料,售价为80元;生产一个小猫要使用10个工时、5个单位的原料,售价为45元.在劳力和原料的限制下合理安排生产小熊、小猫的个数,可以使小熊和小猫的总售价尽可能高.请用你所学过的数学知识分析,总售价是否可能达到2200元?【分析】本题在劳力和原料两个限制条件下,设出生产小熊小猫的个数分别为x和y,可列出关于x和y的两个不等式,由总售价为2200元还可以列出关于x和y的一个等式,三个式子结合就可以求出x和y看符合不符合条件,求出答案.【解答】解:设小熊和小猫的个数分别为x和y,总售价为z,则z=80x+45y=5(16x+9y)①根据劳力和原材料的限制,x和y应满足15x+10y≤450,20x+5y≤400化简3x+2y≤90(1)及4x+y≤80(2)当总售价z=2200时,由①得16x+9y=440(3)(2)•9得36x+9y≤720(4)(4)﹣(3)得20x≤720﹣440=280,即x≤14(A)得(5)(3)﹣(5)得,即x≥14(B)综合(A)、(B)可得x=14,代入(3)求得y=24当x=14,y=24时,有3x+2y=90,4x+y=80满足工时和原料的约束条件,此时恰有总售价z=80×14+45×24=2200(元)答:只需安排生产小熊14个、小猫24个,就可达到总售价为2200元.【点评】本题考查理解题意能力以及对于多个量进行分析根据数据列出不等式以及等式.本题要根据劳力和原料列出不等式,根据要达到的售价可列出等式.。

相关文档
最新文档