2013届3月上海七校联考高三数学试卷(2013年3月6日)(文)

合集下载

2013年上海市高考数学试卷(文科)答案与解析

2013年上海市高考数学试卷(文科)答案与解析

2013年上海市高考数学试卷(文科)参考答案与试题解析一、填空题(本大题共有14题,满分56分),考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分1.(4分)(2013•上海)不等式<0的解为0<x<.考点:其他不等式的解法.专题:不等式的解法及应用.分析:根据两数相除商为负,得到x与2x﹣1异号,将原不等式化为两个一元一次不等式组,求出不等式组的解集即可得到原不等式的解集.解答:解:原不等式化为或,解得:0<x<,故答案为:0<x<点评:此题考查了其他不等式的解法,利用了转化的思想,是一道基本试题.2.(4分)(2013•上海)在等差数列{a n}中,若a1+a2+a3+a4=30,则a2+a3=15.考点:等差数列的性质;等差数列的通项公式.专题:等差数列与等比数列.分析:根据给出的数列是等差数列,由等差数列的性质可得a1+a4=a2+a3,结合已知条件可求a2+a3.解答:解:因为数列{a n}是等差数列,根据等差数列的性质有:a1+a4=a2+a3,由a1+a2+a3+a4=30,所以,2(a2+a3)=30,则a2+a3=15.故答案为:15.点评:本题考查了等差中项概念,在等差数列中,若m,n,p,q,t∈N*,且m+n=p+q=2t,则a m+a n=a p+a q=2a t,此题是基础题.3.(4分)(2013•上海)设m∈R,m2+m﹣2+(m2﹣1)i是纯虚数,其中i是虚数单位,则m=﹣2.考点:复数的基本概念.专题:计算题.分析:根据纯虚数的定义可得m2﹣1=0,m2﹣1≠0,由此解得实数m的值.解答:解:∵复数z=(m2+m﹣2)+(m﹣1)i为纯虚数,∴m2+m﹣2=0,m2﹣1≠0,解得m=﹣2,故答案为:﹣2.点评:本题主要考查复数的基本概念,得到m2+m﹣2=0,m2﹣1≠0,是解题的关键,属于基础题.4.(4分)(2013•上海)已知,,则y=1.考点:二阶行列式的定义.专题:计算题.分析:利用二阶行列式的运算法则,由写出的式子化简后列出方程,直接求解y即可.解答:解:由已知,,所以x﹣2=0,x﹣y=1所以x=2,y=1.故答案为:1.点评:本题考查了二阶行列式的展开式,考查了方程思想,是基础题.5.(4分)(2013•上海)已知△ABC的内角A,B,C所对的边分别是a,b,c,若a2+ab+b2﹣c2=0,则角C的大小是.考点:余弦定理.专题:解三角形.分析:利用余弦定理表示出cosC,将已知等式变形后代入求出cosC的值,由C为三角形的内角,利用特殊角的三角函数值即可求出C的度数.解答:解:∵a2+ab+b2﹣c2=0,即a2+b2﹣c2=﹣ab,∴cosC===﹣,∵C为三角形的内角,∴C=.故答案为:点评:此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.6.(4分)(2013•上海)某学校高一年级男生人数占该年级学生人数的40%,在一次考试中,男,女平均分数分别为75、80,则这次考试该年级学生平均分数为78.考点:众数、中位数、平均数.专题:概率与统计.分析:设该年级男生有x人,女生有y人,这次考试该年级学生平均分数为a,根据“平均成绩×人数=总成绩”分别求出男生的总成绩和女生的总成绩以及全班的总成绩,进而根据“男生的总成绩+女生的总成绩=全班的总成绩”列出方程,结合高一年级男生人数占该年级学生人数的40%,即可求出这次考试该年级学生平均分数.解答:解:设该班男生有x人,女生有y人,这次考试该年级学生平均分数为a.根据题意可知:75x+80y=(x+y)×a,且=40%.所以a=78,则这次考试该年级学生平均分数为78.故答案为:78.点评:本题主要考查了平均数.解答此题的关键:设该班男生有x人,女生有y人,根据平均数的意义即平均成绩、人数和总成绩三者之间的关系列出方程解决问题.7.(4分)(2013•上海)设常数a∈R,若的二项展开式中x7项的系数为﹣10,则a=﹣2.考点:二项式系数的性质.专题:计算题.分析:利用二项展开式的通项公式求得二项展开式中的第r+1项,令x的指数为7求得x7的系数,列出方程求解即可.解答:解:的展开式的通项为T r+1=C5r x10﹣2r()r=C5r x10﹣3r a r令10﹣3r=7得r=1,∴x7的系数是aC51∵x7的系数是﹣10,∴aC51=﹣10,解得a=﹣2.故答案为:﹣2.点评:本题主要考查了二项式系数的性质.二项展开式的通项公式是解决二项展开式的特定项问题的工具.8.(4分)(2013•上海)方程的实数解为log34.考点:函数的零点.专题:函数的性质及应用.分析:用换元法,可将方程转化为一个二次方程,然后利用一元二次方程根,即可得到实数x的取值.解答:解:令t=3x(t>0)则原方程可化为:(t﹣1)2=9(t>0)∴t﹣1=3,t=4,即x=log34可满足条件即方程的实数解为log34.故答案为:log34.点评:本题考查的知识点是根的存在性,利用换元法将方程转化为一个一元二次方程是解答本题的关键,但在换元过程中,要注意对中间元取值范围的判断.9.(4分)(2013•上海)若cosxcosy+sinxsiny=,则cos(2x﹣2y)=﹣.考点:两角和与差的余弦函数;二倍角的余弦.专题:三角函数的求值.分析:已知等式左边利用两角和与差的余弦函数公式化简,求出cos(x﹣y)的值,所求式子利用二倍角的余弦函数公式化简后,将cos(x﹣y)的值代入计算即可求出值.解答:解:∵cosxcosy+sinxsiny=cos(x﹣y)=,∴cos(2x﹣2y)=cos2(x﹣y)=2cos2(x﹣y)﹣1=﹣.故答案为:﹣.点评:此题考查了两角和与差的余弦函数公式,二倍角的余弦函数公式,熟练掌握公式是解本题的关键.10.(4分)(2013•上海)已知圆柱Ω的母线长为l,底面半径为r,O是上底面圆心,A,B 是下底面圆周上两个不同的点,BC是母线,如图,若直线OA与BC所成角的大小为,则=.考点:异面直线及其所成的角.专题:空间角.分析:过A作与BC平行的母线AD,由异面直线所成角的概念得到∠OAD为.在直角三角形ODA中,直接由得到答案.解答:解:如图,过A作与BC平行的母线AD,连接OD,则∠OAD为直线OA与BC所成的角,大小为.在直角三角形ODA中,因为,所以.则.故答案为点评:本题考查了异面直线所成的角,考查了直角三角形的解法,是基础题.11.(4分)(2013•上海)盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意抽取两个,则这两个球的编号之积为偶数的概率是(结果用最简分数表示)考点:古典概型及其概率计算公式.专题:概率与统计.分析:从7个球中任取2个球共有=21种,两球编号之积为偶数包括均为偶数、一奇一偶两种情况,有=15种取法,利用古典概型的概率计算公式即可求得答案.解答:解:从7个球中任取2个球共有=21种,所取两球编号之积为偶数包括均为偶数、一奇一偶两种情况,共有=15种取法,所以两球编号之积为偶数的概率为:=.故答案为:.点评:本题考查古典概型的概率计算公式,属基础题,其计算公式为:P(A)=,其中n(A)为事件A所包含的基本事件数,m为基本事件总数.12.(4分)(2013•上海)设AB是椭圆Γ的长轴,点C在Γ上,且∠CBA=,若AB=4,BC=,则Γ的两个焦点之间的距离为.考点:椭圆的标准方程;椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由题意画出图形,设椭圆的标准方程为,由条件结合等腰直角三角形的边角关系解出C的坐标,再根据点C在椭圆上求得b值,最后利用椭圆的几何性质计算可得答案.解答:解:如图,设椭圆的标准方程为,由题意知,2a=4,a=2.∵∠CBA=,BC=,∴点C的坐标为C(﹣1,1),因点C在椭圆上,∴,∴b2=,∴c2=a2﹣b2=4﹣=,c=,则Γ的两个焦点之间的距离为.故答案为:.点评:本题考查椭圆的定义、解三角形,以及椭圆的简单性质的应用.13.(4分)(2013•上海)设常数a>0,若9x+对一切正实数x成立,则a的取值范围为[,+∞).考点:基本不等式.专题:综合题;压轴题;转化思想.分析:由题设数a>0,若9x+对一切正实数x成立可转化为(9x+)min≥a+1,利用基本不等式判断出9x+≥6a,由此可得到关于a的不等式,解之即可得到所求的范围解答:解:常数a>0,若9x+≥a+1对一切正实数x成立,故(9x+)min≥a+1,又9x+≥6a,当且仅当9x=,即x=时,等号成立故必有6a≥a+1,解得a≥故答案为[,+∞)点评:本题考查函数的最值及利用基本不等式求最值,本题是基本不等式应用的一个很典型的例子14.(4分)(2013•上海)已知正方形ABCD的边长为1,记以A为起点,其余顶点为终点的向量分别为;以C为起点,其余顶点为终点的向量分别为,若i,j,k,l∈{1,2,3},且i≠j,k≠l,则的最小值是﹣5.考点:平面向量数量积的运算.专题:压轴题;平面向量及应用.分析:如图建立直角坐标系.不妨记以A为起点,其余顶点为终点的向量分别为,,,以C为起点,其余顶点为终点的向量分别为,,.再分类讨论当i,j,k,l取不同的值时,利用向量的坐标运算计算的值,从而得出的最小值.解答:解:不妨记以A为起点,其余顶点为终点的向量分别为,,,以C为起点,其余顶点为终点的向量分别为,,.如图建立坐标系.(1)当i=1,j=2,k=1,l=2时,则=[(1,0)+(1,1)]•[((﹣1,0)+(﹣1,﹣1)]=﹣5;(2)当i=1,j=2,k=1,l=3时,则=[(1,0)+(1,1)]•[((﹣1,0)+(0,﹣1)]=﹣3;(3)当i=1,j=2,k=2,l=3时,则=[(1,0)+(1,1)]•[((﹣1,﹣1)+(0,﹣1)]=﹣4;(4)当i=1,j=3,k=1,l=2时,则=[(1,0)+(0,1)]•[((﹣1,0)+(﹣1,﹣1)]=﹣3;同样地,当i,j,k,l取其它值时,=﹣5,﹣4,或﹣3.则的最小值是﹣5.故答案为:﹣5.点评:本小题主要考查平面向量坐标表示、平面向量数量积的运算等基本知识,考查考查分类讨论、化归以及数形结合等数学思想方法,考查分析问题、解决问题的能力.二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分15.(5分)(2013•上海)函数f(x)=x2﹣1(x≥0)的反函数为f﹣1(x),则f﹣1(2)的值是()A.B.C.1+D.1﹣考点:反函数;函数的值.专题:函数的性质及应用.分析:根据反函数的性质,求f﹣1(2)的问题可以变为解方程2=x2﹣1(x≥0).解答:解:由题意令2=x2﹣1(x≥0),解得x=所以f﹣1(2)=.故选A.点评:本题考查反函数的定义,解题的关键是把求函数值的问题变为解反函数的方程问题.16.(5分)(2013•上海)设常数a∈R,集合A={x|(x﹣1)(x﹣a)≥0},B={x|x≥a﹣1},若A∪B=R,则a的取值范围为()A.(﹣∞,2)B.(﹣∞,2]C.(2,+∞)D.[2,+∞)考点:集合关系中的参数取值问题;并集及其运算;一元二次不等式的解法.专题:不等式的解法及应用;集合.分析:当a>1时,代入解集中的不等式中,确定出A,求出满足两集合的并集为R时的a 的范围;当a=1时,易得A=R,符合题意;当a<1时,同样求出集合A,列出关于a的不等式,求出不等式的解集得到a的范围.综上,得到满足题意的a范围.解答:解:当a>1时,A=(﹣∞,1]∪[a,+∞),B=[a﹣1,+∞),若A∪B=R,则a﹣1≤1,∴1<a≤2;当a=1时,易得A=R,此时A∪B=R;当a<1时,A=(﹣∞,a]∪[1,+∞),B=[a﹣1,+∞),若A∪B=R,则a﹣1≤a,显然成立,∴a<1;综上,a的取值范围是(﹣∞,2].故选B.点评:此题考查了并集及其运算,二次不等式,以及不等式恒成立的条件,熟练掌握并集的定义是解本题的关键.17.(5分)(2013•上海)钱大姐常说“好货不便宜”,她这句话的意思是:“好货”是“不便宜”的()A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件考点:必要条件、充分条件与充要条件的判断.专题:压轴题;规律型.分析:“好货不便宜”,其条件是:此货是好货,结论是此货不便宜,根据充要条件的定义进行判断即可,解答:解:若p⇒q为真命题,则命题p是命题q的充分条件;“好货不便宜”,其条件是:此货是好货,结论是此货不便宜,由条件⇒结论.故“好货”是“不便宜”的充分条件.故选A点评:本题考查了必要条件、充分条件与充要条件的判断,属于基础题.18.(5分)(2013•上海)记椭圆围成的区域(含边界)为Ωn(n=1,2,…),当点(x,y)分别在Ω1,Ω2,…上时,x+y的最大值分别是M1,M2,…,则M n=()A.0B.C.2D.2考点:数列的极限;椭圆的简单性质.专题:压轴题;圆锥曲线的定义、性质与方程.分析:先由椭圆得到这个椭圆的参数方程为:(θ为参数),再由三角函数知识求x+y的最大值,从而求出极限的值.解答:解:把椭圆得,椭圆的参数方程为:(θ为参数),∴x+y=2cosθ+sinθ,∴(x+y)max==.∴M n==2.故选D.点评:本题考查数列的极限,椭圆的参数方程和最大值的求法,解题时要认真审题,注意三角函数知识的灵活运用.三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤19.(12分)(2013•上海)如图,正三棱锥O﹣ABC的底面边长为2,高为1,求该三棱锥的体积及表面积.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:根据题意画出图形,结合正三棱锥O﹣ABC的底面边长为2,高为1,由此入手,能够求出此三棱锥的体积及表面积.解答:解:∵O﹣ABC是正三棱锥,其底面三角形ABC是边长为2的正三角形,其面积为,∴该三棱锥的体积==;设O′是正三角形ABC的中心,则OO′⊥平面ABC,延长AO′交BC于D.则AD=,O′D=,又OO′=1,∴三棱锥的斜高OD=,∴三棱锥的侧面积为×=2,∴该三棱锥的表面积为.点评:本题考查三棱锥的体积、表面积的求法,解题时要认真审题,注意合理地化立体问题为平面问题.20.(14分)(2013•上海)甲厂以x千克/小时的速度匀速生产某种产品(生产条件要求1≤x≤10),每一小时可获得的利润是100(5x+1﹣)元.(1)求证:生产a千克该产品所获得的利润为100a(5+)元;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.考点:函数模型的选择与应用;二次函数在闭区间上的最值.专题:应用题;函数的性质及应用.分析:(1)由题意可得生产a千克该产品所用的时间是小时,由于每一小时可获得的利润是100(5x+1﹣)元,即可得到生产a千克该产品所获得的利润;(2)利用(1)的结论可得生产1千克所获得的利润为90000(5+),1≤x≤10.进而得到生产900千克该产品获得的利润,利用二次函数的单调性即可得出.解答:解:(1)生产a千克该产品所用的时间是小时,∵每一小时可获得的利润是100(5x+1﹣)元,∴获得的利润为100(5x+1﹣)×元.因此生产a千克该产品所获得的利润为100a(5+)元.(2)生产900千克该产品获得的利润为90000(5+),1≤x≤10.设f(x)=,1≤x≤10.则f(x)=,当且仅当x=6取得最大值.故获得最大利润为=457500元.因此甲厂应以6千克/小时的速度生产,可获得最大利润457500元.点评:正确理解题意和熟练掌握二次函数的单调性是解题的关键.21.(14分)(2013•上海)已知函数f(x)=2sin(ωx),其中常数ω>0(1)令ω=1,判断函数F(x)=f(x)+f(x+)的奇偶性,并说明理由;(2)令ω=2,将函数y=f(x)的图象向左平移个单位,再向上平移1个单位,得到函数y=g(x)的图象,对任意a∈R,求y=g(x)在区间[a,a+10π]上零点个数的所有可能值.考点:函数y=Asin(ωx+φ)的图象变换;函数奇偶性的判断;根的存在性及根的个数判断.专题:综合题;三角函数的图像与性质.分析:(1)特值法:ω=1时,写出f(x)、F(x),求出F()、F(﹣),结合函数奇偶性的定义可作出正确判断;(2)根据图象平移变换求出g(x),令g(x)=0可得g(x)可能的零点,而[a,a+10π]恰含10个周期,分a是零点,a不是零点两种情况讨论,结合图象可得g(x)在[a,a+10π]上零点个数的所有可能值;解答:解:(1)f(x)=2sinx,F(x)=f(x)+f(x+)=2sinx+2sin(x+)=2(sinx+cosx),F()=2,F(﹣)=0,F(﹣)≠F(),F(﹣)≠﹣F(),所以,F(x)既不是奇函数,也不是偶函数.(2)f(x)=2sin2x,将y=f(x)的图象向左平移个单位,再向上平移1个单位后得到y=2sin2(x+)+1的图象,所以g(x)=2sin2(x+)+1.令g(x)=0,得x=kπ+或x=kπ+(k∈z),因为[a,a+10π]恰含10个周期,所以,当a是零点时,在[a,a+10π]上零点个数21,当a不是零点时,a+kπ(k∈z)也都不是零点,区间[a+kπ,a+(k+1)π]上恰有两个零点,故在[a,a+10π]上有20个零点.综上,y=g(x)在[a,a+10π]上零点个数的所有可能值为21或20.点评:本题考查函数y=Asin(ωx+φ)的图象变换、函数的奇偶性、根的存在性及根的个数的判断,考查数形结合思想,结合图象分析是解决(2)问的关键22.(16分)(2013•上海)已知函数f(x)=2﹣|x|,无穷数列{a n}满足a n+1=f(a n),n∈N*(1)若a1=0,求a2,a3,a4;(2)若a1>0,且a1,a2,a3成等比数列,求a1的值(3)是否存在a1,使得a1,a2,…,a n,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.考点:等差关系的确定;数列的函数特性;等比关系的确定.专题:综合题;压轴题;等差数列与等比数列.分析:(1)由题意代入式子计算即可;(2)把a2,a3表示为a1的式子,通过对a1的范围进行讨论去掉绝对值符号,根据a1,a2,a3成等比数列可得关于a1的方程,解出即可;(3)假设这样的等差数列存在,则a1,a2,a3成等差数列,即2a2=a1+a3,亦即2﹣a1+|2﹣|a1||=2|a1|(*),分情况①当a1>2时②当0<a1≤2时③当a1≤0时讨论,由(*)式可求得a1进行判断;③当a1≤0时,由公差d>2可得矛盾;解答:解:(1)由题意,代入计算得a2=2,a3=0,a4=2;(2)a2=2﹣|a1|=2﹣a1,a3=2﹣|a2|=2﹣|2﹣a1|,①当0<a1≤2时,a3=2﹣(2﹣a1)=a1,所以,得a1=1;②当a1>2时,a3=2﹣(a1﹣2)=4﹣a1,所以,得(舍去)或.综合①②得a 1=1或.(3)假设这样的等差数列存在,那么a2=2﹣|a1|,a3=2﹣|2﹣|a1||,由2a2=a1+a3得2﹣a1+|2﹣|a1||=2|a1|(*),以下分情况讨论:①当a1>2时,由(*)得a1=0,与a1>2矛盾;②当0<a1≤2时,由(*)得a1=1,从而a n=1(n=1,2,…),所以{a n}是一个等差数列;③当a1≤0时,则公差d=a2﹣a1=(a1+2)﹣a1=2>0,因此存在m≥2使得a m=a1+2(m﹣1)>2,此时d=a m+1﹣a m=2﹣|a m|﹣a m<0,矛盾.综合①②③可知,当且仅当a1=1时,a1,a2,…,a n,…成等差数列.点评:本题考查数列的函数特性、等差关系等比关系的确定,考查分类讨论思想,考查学生逻辑推理能力、分析解决问题的能力,综合性强,难度较大.23.(18分)(2013•上海)如图,已知双曲线C1:,曲线C2:|y|=|x|+1,P是平面内一点,若存在过点P的直线与C1,C2都有公共点,则称P为“C1﹣C2型点”(1)在正确证明C1的左焦点是“C1﹣C2型点“时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);(2)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1﹣C2型点”;(3)求证:圆x2+y2=内的点都不是“C1﹣C2型点”考点:直线与圆锥曲线的关系;点到直线的距离公式;双曲线的简单性质.专题:压轴题;新定义;圆锥曲线的定义、性质与方程.分析:(1)由双曲线方程可知,双曲线的左焦点为(),当过左焦点的直线的斜率不存在时满足左焦点是“C1﹣C2型点”,当斜率存在时,要保证斜率的绝对值大于等于该焦点与(0,1)连线的斜率;(2)由直线y=kx与C2有公共点联立方程组有实数解得到|k|>1,分过原点的直线斜率不存在和斜率存在两种情况说明过远点的直线不可能同时与C1和C2有公共点;(3)由给出的圆的方程得到圆的图形夹在直线y=x±1与y=﹣x±1之间,进而说明当|k|≤1时过圆内的点且斜率为k的直线与C2无公共点,当|k|>1时,过圆内的点且斜率为k的直线与C2有公共点,再由圆心到直线的距离小于半径列式得出k的范围,结果与|k|>1矛盾.从而证明了结论.解答:(1)解:C1的左焦点为(),写出的直线方程可以是以下形式:或,其中.(2)证明:因为直线y=kx与C2有公共点,所以方程组有实数解,因此|kx|=|x|+1,得.若原点是“C1﹣C2型点”,则存在过原点的直线与C1、C2都有公共点.考虑过原点与C2有公共点的直线x=0或y=kx(|k|>1).显然直线x=0与C1无公共点.如果直线为y=kx(|k|>1),则由方程组,得,矛盾.所以直线y=kx(|k|>1)与C1也无公共点.因此原点不是“C1﹣C2型点”.(3)证明:记圆O:,取圆O内的一点Q,设有经过Q的直线l与C1,C2都有公共点,显然l不与x轴垂直,故可设l:y=kx+b.若|k|≤1,由于圆O夹在两组平行线y=x±1与y=﹣x±1之间,因此圆O也夹在直线y=kx±1与y=﹣kx±1之间,从而过Q且以k为斜率的直线l与C2无公共点,矛盾,所以|k|>1.因为l与C1由公共点,所以方程组有实数解,得(1﹣2k2)x2﹣4kbx﹣2b2﹣2=0.因为|k|>1,所以1﹣2k2≠0,因此△=(4kb)2﹣4(1﹣2k2)(﹣2b2﹣2)=8(b2+1﹣2k2)≥0,即b2≥2k2﹣1.因为圆O的圆心(0,0)到直线l的距离,所以,从而,得k2<1,与|k|>1矛盾.因此,圆内的点不是“C1﹣C2型点”.点评:本题考查了双曲线的简单几何性质,考查了点到直线的距离公式,考查了直线与圆锥曲线的关系,直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法.属难题.。

2013年上海高考数学理科试卷(带详解)

2013年上海高考数学理科试卷(带详解)
【难易程度】容易
【试题解析】因为ABCD A1B1C1D1为长方体,AB C1D1
, AB C1D1,
故ABC1D1为平行四边形, 故BC1
AD1(步骤1),显然B
不在平面D1AC上,于是直线BC1
平行于平面D1AC(步骤2);直线BC1到平面D1AC的距离即为点
B到平面
D1AC的距离设
为h考虑三棱锥ABCD
.
【难易程度】容易
【参考答案】1
5
2
【试题解析】联立方程组得
(
1)
1
1
5(步骤1),
2
又⋯0,故所求为1 5.(步骤
2)
2
8.盒子中装有编号为
1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个
球的编号之积为偶数的概率是
___________(结果用最简分数表示).
【测量目标】古典概型,随机事件的的概率
不便宜,故选B.
17.在数列
{ an}中,an
2n
1,若一个
7

12
列的矩阵的第
i行第j
列的元素
ai, j
aiaj
aiaj
,(i
1,2,
,7; j
1,2,
,12
)则该矩阵元素能取到的不同数值的个数



A 18
B 28
C 48
D 63
【测量目标】指数函数模型.
【考查方式】给出了数列矩阵以及行列元素的关系,求出矩阵元素不同数值的个数
y)
2sin( x
y) cos( x y)
,sin 2x sin 2 y
,故
2
3

2013年普通高等学校招生全国统一考试文数上海卷pdf版含答案

2013年普通高等学校招生全国统一考试文数上海卷pdf版含答案

(3)显然过圆
x2
+
y2
= 1 内一点的直线 l 2
若与曲线
C 1 有交点,则斜率必存在;
根据对称性,不妨设直线 l 斜率存在且与曲线 C2交于点 (t, t +1)(t ≥ 0) ,则
l : y = (t +1) = k(x − t) ⇒ kx − y + (1+ t − kt) = 0
直线 l 与圆 x2 + y2 = 1 内部有交点,故 |1+ t − kt | < 2
2
(2)令ω = 2 ,将函数 y = f (x) 的图像向左平移 π 个单位,再往上平移1个单位,得到函
6 数 y = g(x) 的图像.对任意的 a ∈ R ,求 y = g(x) 在区间[a, a +10π ] 上零点个数的所有可
能值.
22.(本题满分 16 分)本题共有 3 个小题.第 1 小题满分 3 分,第 2 小题满分 5 分,第 3 小题满分 8 分.
a3 =2 − (a1 − 2) =4 − a1, 所以a1(4 − a1) =(2 − a1)2 , 得a =2 − 2(舍去)或a1 =2 + 2
综合①②得 a1= 1或a1= 2 + 2 (3)假设这样的等差数列存在,那么 a2 =2 − a1 , a3 =2 − 2 − a1
由 2a2 = a1 + a3得2-a1+ 2- a1 = 2 a1 (*) 以下分情况讨论: ① 当 a1 >2 时,由(*)得 a1 = 0,与a1 >2 矛盾 ② 当 0< a1 ≤2 时,有(*)得 a1 =1,从而 a=n 1(=n 1, 2,...)
= 1 内的点都不是“ 2

上海市2013届高三数学上学期联合调研考试试题 文 新人教A版

上海市2013届高三数学上学期联合调研考试试题 文 新人教A版

同济大学、第二附属中学2012—2013学年高三联合调研考试数学试题(文科)一、填空题:本大题有14小题,每小题4分,共56分1、不等式112x <的解集是 (,0)-∞⋃(2,)+∞ 2、若3sin()25πθ+=,则cos 2θ=_________.725-3、已知圆锥的底面半径为2,母线长为6,则圆锥的侧面展开图的圆心角度数为23π4、已知向量()1,1=a ,()2,m =b ,若+=⋅a b a b ,则实数m = 35、函数y =2,0,0x x x x <⎧⎨≥⎩ 的反函数是y =,0,0x x x x <⎧⎪≥6、方程||1222xx -=的解为 2log (21) 7、若由命题A: “22031x x ”能推出命题B: “x a >”,则a 的取值范围是________2a ≤-8、已知z ∈C ,且i =z 23i z -++(i 为虚数单位),则2iz+= 2i + 9、已知A B 、依次是双曲线22:13y E x -=的左、右焦点,C 是双曲线E 右支上的一 点,则在ABC ∆中,sin sin sin A B C-= .12-10、某电视台连续播放5个广告,其中3个不同的商业广告和2个不同的世博宣传广告,则最后播放的是世博宣传广告,且2个世博宣传广告不连续播放的方法有 种.(用数字作答) 3611、顶点在同一球面上的正四棱柱ABCD A B C D ''''-中,12AB AA '==,A 、C 两点间的球面距离为____________.2π 12、执行如图的程序框图,若0.8p =,则输出的n = .4密封线内不要题答13、已知不相等的实数m 、n 分别满足:2201020110m m -+=和2201020110n n -+=,则11m n +=2010201114、已知集合{}23225|5|,A x x x x ax x R =++-≤∈,{}213120B x x x =-+≤,若A B φ≠.则实数a 的取值范围为 10a ≥二、选择题:本大题共4小题,每小题4分,共16分 15、“41=a ”是“对任意的正数,x 均有1≥+xa x ”的 ( A ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分也非必要条件16、设0>x ,若10)1(x -展开式的第三项为20,则()nn xx x +++∞→ 2lim 的值是…( B )A .21 B .2 C .1 D .32 17、若椭圆12222=+by a x 与双曲线122=-y x 有相同的焦点,且过抛物线x y 82=的焦点,则该椭圆的方程是 ( A )A .12422=+y x B .1322=+y x C .14222=+y x D .1322=+y x 18、设)(x f 是定义在R 上的奇函数,且当0≥x 时,)(x f 单调递增,若021<+x x ,,则)()(21x f x f +的值 ( C )A .恒为正值 C .恒等于零 C .恒为负值 D .无法确定正负 三、解答题:(本大题共有5道题,满分78分),解答下列各题必须写出必要的步骤. 19、(本题满分12分)在ΔABC 中,a 、b 、c 分别为角A 、B 、C 的对边,已知tan c =c =ABC的面积为ABC S ∆=,求a+b 的值。

2013年高考理科数学上海卷-答案

2013年高考理科数学上海卷-答案

【解析】复数【解析】22 11x y= -【提示】利用行列式的定义,可得等式,配方即可得到结论【考点】二阶行列式的定义【解析】232a ab+1arccos3-,故答案为2.7x的系数是【提示】利用二项展开式的通项公式求得二项展开式中的第方程求解即可.x-=,即2380,CBA∠=43b-=-3322x y【解析】cos cosx,sin2sinx+276a x x -=面积相等,故它们的体积相等,即Ω的体积为22π12π28π2π16π+=+,故答案为2π16π+.【考点】进行简单的合情推理 14.【答案】2【解析】因为(){|(),}g I y y g x x I ==∈,1([0,1))[1,2)f -=,1((2,4])[0,1)f -=,所以对于函数()f x ,当[0,1)x ∈时,()(2,4]f x ∈,所以方程()0f x x -=即()f x x =无解;当[1,2)x ∈时,()[0,1)f x ∈,所以方程()0f x x -=即()f x x =无解;所以当[0,2)x ∈时方程()0f x x -=即()f x x =无解,又因为方程()0f x x -=有解x 0,且定义域为[0,3],故当[2,3]x ∈时,()f x 的取值应属于集合(,0)[1,2](4,)-∞+∞,故若00()f x x =,只有02x =,故答案为2.【提示】根据互为反函数的两函数定义域、值域互换可判断:当[0,1)x ∈时,[1,2)x ∈时()f x 的值域,进而可判断此时()f x x =无解;由()f x 在定义域[0,3]上存在反函数可知:[2,3]x ∈时,()f x 的取值集合,再根据方程()f x x =有解即可得到x 0的值. 【考点】反函数,函数的零点 二、选择题 15.【答案】B【解析】当1a >时,(,1][,)A a =-∞+∞,[1,)B a =-+∞,若A B =R ,则11a -≤,12a ∴<≤;当1a =时,易得A =R ,此时AB =R ;当1a <时,(,][1,)A a =-∞+∞,[1,)B a =-+∞,若A B =R ,则1a a -≤,显然成立,1a ∴<;综上,a 的取值范围是(,2]-∞,故选B .【提示】当1a >时,代入解集中的不等式中,确定出A ,求出满足两集合的并集为R 时的a 的范围;当1a =时,易得A =R ,符合题意;当1a <时,同样求出集合A ,列出关于a 的不等式,求出不等式的解集得到a 的范围.综上,得到满足题意的a 范围.【考点】集合关系中的参数取值问题,并集及其运算,一元二次不等式的解法 16.【答案】B【解析】“好货不便宜”是“便宜没好货”的逆否命题,根据互为逆否命题的真假一致得到:“好货不便宜”是真命题.所以“好货”⇒“不便宜”,所以“不便宜”是“好货”的必要条件,故选B .【提示】因为“好货不便宜”是“便宜没好货”的逆否命题,根据互为逆否命题的真假一致得到:“好货不便宜”是真命题.再据命题的真假与条件的关系判定出“不便宜”是“好货”的必要条件. 【考点】必要条件,充分条件与充要条件的判断 17.【答案】A【解析】该矩阵的第i 行第j 列的元素(1,2,,7;1,2,,12)i j ==……,当且仅当i j m n +=+时,ij mna a =(,1,2,,7;,1,2,,12)i m j n ==……,因此该矩阵元素能取到的不同数值为i j +的所有不同和,其和为2,3,…,i j i a a a a ++为起点,其余顶点为终点的向量分别为1a 、2a 、3a 、4a 、5a ;以D 顶点为终点的向量分别为1d 、2d 、3d 、4d 、5d ,∴利用向量的数量积公式,可知只有0AF DE AB DC =>,,m ()()i j k r s t a a a d d d ++++的最小值、最大值,m ∴【提示】利用向量的数量积公式,可知只有0AF DE AB DC =>,其余数量积均小于等于【考点】平面向量数量积的运算,进行简单的合情推理 13222223=,所以的一个法向量为(,,)n u v w =,则由n D A '⊥,n D C '⊥,可得0n D A '⊥=,0n D C '⊥=.(1,0,1)D A '=,(0,2,1)D C '=令1v =,可得,可得(2,1,2)n =-由于(1,0,BC '=-0n BC '∴=-,故有n BC '⊥内,可得直线BC '平行于平面D AC '. 由于(1,0,0)CB =,可得点B 到平面D 的距离|||2||n CB d n ⨯==的距离,设为h ,再利用等体积法求得h 的一个法向量为(2,1,2)n =-,再根据0n BC '=-,可得n BC '⊥,可得直线||||n BC n '的值,即为直线【考点】点、线、面间的距离计算,直线与平面平行的判定110x ≤≤(2)设利润为110≤≤x故甲厂应以【提示】()函数11 / 11③若1a c ≥-,则由1n a a ≥得到1()8n n n a f a a c +==++,从而{}n a 为无穷等差数列,符合要求. 综上可知:a 1的取值范围为{8}[,)c c ---+∞.【提示】(1)对于分别取1n =,2,1()n n a f a +=,*n ∈N .去掉绝对值符合即可得出;(2)由已知可得8,()338,48,4x c x c f x x c c x c x c x c ++≥-⎧⎪=++--≤<-⎨⎪---<--⎩,分三种情况讨论即可证明; (3)由(2)及0c >,得1n n a a +≥,即{}n a 为无穷递增数列.分以下三种情况讨论:当14a c <--时,当14c a c --≤<-时,当1a c ≥-时.即可得出a 1的取值范围.【考点】数列的函数特性,等差关系的确定,数列与函数的综合。

【精校】2013年普通高等学校招生全国统一考试(上海卷)文数-含答案

【精校】2013年普通高等学校招生全国统一考试(上海卷)文数-含答案

2013年普通高等学校招生全国统一考试(上海卷)文科数学一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.不等式021xx <-的解为 . 2.在等差数列{}n a 中,若123430a a a a +++=,则23a a += .3.设m ∈R ,()2221i m m m +-+-是纯虚数,其中i 是虚数单位,则m = . 4.若2011x =,111x y=,则y = .5.已知ABC ∆的内角A 、B 、C 所对的边分别是a ,b ,c .若2220a ab b c ++-=,则角C 的大小是 .6.某学校高一年级男生人数占该年级学生人数的40%.在一次考试中,男、女生平均分数分别为75、80,则这次考试该年级学生平均分数为 .7.设常数a ∈R .若52a x x ⎛⎫+ ⎪⎝⎭的二项展开式中7x 项的系数为-10,则a = .8.方程91331xx+=-的实数解为 . 9.若1cos cos sin sin 3x y x y +=,则()cos 22x y -= . 10.已知圆柱Ω的母线长为l ,底面半径为r ,O 是上地面圆心,A 、B 是下底面圆心上两个不同的点,BC 是母线,如图.若直线OA 与BC 所成角的大小为π6,则1r= . 11.盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是 (结果用最简分数表示).12.设AB 是椭圆Γ的长轴,点C 在Γ上,且π4CBA ∠=.若4AB =,2BC =,则Γ的两个焦点之间的距离为 .13.设常数0a >,若291a x a x+≥+对一切正实数x 成立,则a 的取值范围为 . 14.已知正方形ABCD 的边长为1.记以A 为起点,其余顶点为终点的向量分别为1a u r、2a u u r 、3a u u r ;以C 为起点,其余顶点为终点的向量分别为1c u r 、2c u u r 、3c u r.若{},,,1,2,3i j k l ∈且,i j k l ≠≠,则()()i j k l a a c c +⋅+u r u u r u u r u r的最小值是 .二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.函数()()211f x x x =-≥的反函数为()1f x -,则()12f -的值是( ) (A(B)(C)1(D)116.设常数a ∈R ,集合()(){}|10A x x x a =--≥,{}|1B x x a =≥-.若A B =R U ,则a 的取值范围为( ) (A )(),2-∞(B )(],2-∞(C )()2,+∞(D )[)2,+∞17.钱大姐常说“好货不便宜”,她这句话的意思是:“好货”是“不便宜”的( ) (A )充分条件(B )必要条件(C )充分必要条件(D )既非充分又非必要条件18.记椭圆221441x ny n +=+围成的区域(含边界)为()1,2,n n Ω=L ,当点(),x y 分别在12,,ΩΩL 上时,x y +的最大值分别是12,,M M L ,则lim n n M →∞=( )(A )0 (B )14三.解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域写出必要的步骤.19.(本题满分12分)如图,正三棱锥O ABC -底面边长为2,高为1,求该三棱锥的体积及表面积.B20.(本题满分14分)本题共有2个小题.第1小题满分5分,第2小题满分9分.甲厂以x 千米/小时的速度匀速生产某种产品(生产条件要求110x ≤≤),每小时可获得的利润是3100(51)x x+-元.(1)求证:生产a 千克该产品所获得的利润为213100(5)a x x+-; (2)要使生产900千克该产品获得的利润最大,问:甲厂应该如何选取何种生产速度?并求此最大利润.21.(本题满分14分)本题共有2个小题.第1小题满分6分,第2小题满分8分.已知函数()2sin()f x x ω=,其中常数0ω>.(1)令1ω=,判断函数()()()2F x f x f x π=++的奇偶性并说明理由;(2)令2ω=,将函数()y f x =的图像向左平移6π个单位,再往上平移1个单位,得到函数()y g x =的图像.对任意的a R ∈,求()y g x =在区间[,10]a a π+上零点个数的所有可能值.22.(本题满分16分)本题共有3个小题.第1小题满分3分,第2小题满分5分,第3小题满分8分.已知函数()2||f x x =-.无穷数列{}n a 满足1(),*n n a f a n N +=∈.(1)若10a =,求2a ,3a ,4a ;(2)若10a >,且1a ,2a ,3a 成等比数列,求1a 的值;(3)是否存在1a ,使得1a ,2a ,3a ,…,n a …成等差数列?若存在,求出所有这样的1a ;若不存在,说明理由.23.(本题满分18分)本题共有3个小题.第1小题满分3分,第2小题满分6分,第3小题满分9分.如图,已知双曲线1C :2212x y -=,曲线2C :||||1y x =+.P 是平面内一点,若存在过点P 的直线与1C 、2C 都有公共点,则称P为“1C -2C 型点”.(1)在正确证明1C 的左焦点是“1C -2C 型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);(2)设直线y kx =与2C 有公共点,求证||1k >,进而证明原点不是“1C -2C 型点;(3)求证:圆2212x y +=内的点都不是“1C -2C 型点”.参考答案 一. 填空题 1. 0< X <122. 153. -24. 15.23π 6. 78 7. -2 8. 3log 4 9. -7910. 11. 5712. 13. )1,5⎡+∞⎢⎣14. -5二. 选择题三. 解答题19.解:由已知条件可知,正三棱锥O-ABC 的底面△ABC 是边长为2的正三角形。

2013年上海高考数学理科试卷(带详解)

2013年上海高考数学理科试卷(带详解)
a1, a2, a3, a4 , a5 ;以 D 为起点,其余顶点为终点的向量分别为 d1, d2 , d3, d4, d5 .若 m, M 分别
为 (ai a j ak ) ( dr ds dt ) 的最小值、最大值,其中
{ i , j , k} {1,2,3, 4,5} ,{ r, s,t} {1,2,3, 4,5} ,则 m, M 满足
平行于平面 D1AC ,并求直线 BC1 到平面 D1AC 的距离 .
第 19 题图
【测量目标】直线与平面平行的判定,锥的体积
.
【考查方式】给出长方体及若干条件,根据直线与平面平行的判定定理以及三棱锥的体积公
式求出答案 .
【难易程度】容易
【试题解析】因为 ABCD A1B1C1D1 为长方体, AB C1D1 , AB C1D1 ,
【测量目标】奇函数的性质 . 【考查方式】给出了在某段定义域内的函数解析式,利用奇函数的性质求出 【难易程度】中等
8 【参考答案】 a ,
7 【试题解析】 f (0) 0,故 0 厔a 1 a 1 (步骤 1);当 x 0 时
a 的范围 .
a2
f (x) 9x
7 …a 1(步骤 2)
x
即 6 | a |… a 8 ,又 a , 1,故 a ,
f (x) [0,1) ,而 y f (x) 的定义域为 [0,3] (步骤 2),故当 x [2,3] 时, f (x) 的取值应在
( ,0) [1,2] (4, ) ,故若 f ( x0 ) x0 ,只有 x0 2.(步骤 3)
二、选择题
15.设常数 a R ,集合 A { x | ( x 1)( x a) 厖0}, B { x | x a 1} ,若 A B R ,则 a

2013年上海市高考数学试卷(文科)-含答案详解

2013年上海市高考数学试卷(文科)-含答案详解

第1页,共13页………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2013年普通高等学校招生全国统一考试(上海卷)数学(文科)副标题考试范围:xxx ;考试时间:100分钟;命题人:xxx题号 一 二 三 总分 得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I 卷(选择题)一、单选题(本大题共4小题,共20.0分。

在每小题列出的选项中,选出符合题目的一项)1. 函数f(x)= x 2−1(x ≥0)的反函数为f −1(x),则f −1(2)的值是( ) A.B.C.D.2. 设常数a ∈R ,集合A ={x|(x −1)(x −a)≥0},B ={x|x ≥a −1},若A ∪B =R ,则a 的取值范围为( )A. ( −∞,2)B. ( −∞,2]C. ( 2,+∞ )D. [2,+∞ )3. 钱大姐常说“好货不便宜”,她这句话的意思是“好货”是“不便宜”的( ) A. 充分条件 B. 必要条件C. 充分必要条件D. 既非充分又非必要条件4. 记椭圆=1围成的区域(含边界)为Ωn (n =1,2,…),当点(x ,y)分别在Ω 1,Ω 2,…上时,x + y 的最大值分别是M 1,M 2,…,则=( ) A. 0 B. ‘ C. 2 D.第II 卷(非选择题)第2页,共13页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………二、填空题(本大题共14小题,共56.0分)5. 不等式<0的解为______.6. 在等差数列{a n }中,若a 1+ a 2+ a 3+ a 4=30,则a 2+ a 3=______.7. 设m R ,m 2+ m −2+(m 2−1)i 是纯虚数,其中i 是虚数单位,则m =______. 8. 已知=0,=1,则y =______.9. 已知△ ABC 的内角A 、B 、C 所对的边分别是a 、b 、c.若a 2+ ab + b 2− c 2=0,则角C 的大小是______.10. 某学校高一年级男生人数占该年级学生人数的40%.在一次考试中,男、女生平均分数分别为75、80,则这次考试该年级学生平均分数为______.11. 设常数a R.若的二项展开式中x 7项的系数为−10,则a =______.12. 方程=3 x 的实数解为______.13. 若cos x cos y +sin x sin y =,则cos(2x −2 y)=______.14. 已知圆柱Ω的母线长为l ,底面半径为r ,O 是上底面圆心,A 、B 是下底面圆周上两个不同的点,BC 是母线,如图.若直线OA 与BC 所成角的大小为,则=______.15. 盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是______(结果用最简分数表示).16. 设AB 是椭圆Γ的长轴,点C 在Γ上,且∠ CBA =.若AB =4,BC =,则Γ的两个焦点之间的距离为______.17. 设常数a >0.若9 x +≥ a +1对一切正实数x 成立,则a 的取值范围为______.第3页,共13页………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………○…………内…………○…………装…………○…………订…………○…………线…………○…………18. 已知正方形ABCD 的边长为1.记以A 为起点,其余顶点为终点的向量分别为a 1、a 2、a 3;以C 为起点,其余顶点为终点的向量分别为c 1、c 2、c 3.若i ,j ,k ,l {1,2,3}且i ≠ j ,k ≠ l ,则(a i + a j )·( c k + c l )的最小值是______.三、解答题(本大题共5小题,共74.0分。

(完整word版)2013年上海市春季高考数学试卷及答案

(完整word版)2013年上海市春季高考数学试卷及答案

2013年上海市普通高等学校春季招生考试数学试卷考试注意:1.答卷前,考生务必将姓名、高考座位号、校验码等填与清疋。

2■本试卷共有31道试题,满分150分。

考试时间120分钟。

3■请考生用钢笔或圆珠笔按要求在试卷相应位置上作答。

一.填空题(本大题满分36分)本大题共有12题,要求直接填写结果,每题填对得3分,否则一律得0分。

1.函数y = log 2( x • 2)的定义域是____________________2. 方程2x =8的解是____________________3. 抛物线y2 =8x的准线方程是_________________4. ____________________________________________ 函数y二2sin x的最小正周期是5.已知向量^(1,k),^(9, k -6)。

若a//:,则实数k 二_______________________6. 函数y = 4sin x - 3cos x的最大值是_________________7.复数2 3i( i是虚数单位)的模是_______________________8. 在-ABC中,角A、B C所对边长分别为a、b c,9. 在如图所示的正方体ABCD -AEGD^!中,异面直线AB与B,C所成角的大小为 __________10. 从4名男同学和6名女同学中随机选取3人参加某社团活动,选出的3人中男女同学都有的概率为(结果用数值表示)。

11. _______________________________________________________________________ 若等差数列的前6项和为23,前9项和为57,则数列的前n项和S n= ___________________12. 36的所有正约数之和可按如下方法得到:2 2因为36=2 3,所以36的所有正约数之和为(1 3 32) (2 2 3 2 32) (22 22 3 22 32) =(1 2 2(1 3 32) =91参照上述方法,可求得2000的所有正约数之和为_____________________________二•选择题(本大题满分36分)本大题共有12题,每题都给出四个结论,其中有且只有一个结论是正确的。

2013年高考文科数学上海卷-答案

2013年高考文科数学上海卷-答案
综上,存在 的等差数列 ,且 满足题意.
【提示】(1)由题意代入式子计算即可.
(2)把 , 表示为 的式子,通过对 的范围进行讨论去掉绝对值符号,根据 , , 成等比数列可得关于 的方程,解出即可.
(3)假设这样的等差数列存在,则 , , 成等差数列,即 3,亦即 ( ),分情况①当 时②当 时③当 时讨论,由( )式可求得 进行判断;③当 时,由公差 可得矛盾.
2013年全国普通高等学校招生统一考试(上海卷)
数学试卷(文史类)答案解析
一、填空题
1.【答案】
【解析】 .
【提示】根据两数相除商为负,得到 与 异号,将原不等式化为两个一元一次不等式组,求出不等式组的解集即可得到原不等式的解集.
【考点】其他不等式的解法.
2.【答案】15
【解析】 .
【提示】根据给出的数列是等差数列,由等差数列的性质可得 ,结合已知条件可求 .
若直线 与双曲线 有交点,则 .
若直线 与双曲线 有交点,则 .
所以直线 与 有公共点,则 .
, 直线 与曲线 、 不能同时有公共交点.
所以原点不是“ 型点”.
(3)设直线 过圆 内一点,则直线 斜率不存在时与曲线 无交点.
设直线 方程为: ,则:
假设直线 与曲线 相交上方,则 .
【提示】(1)由双曲线方程可知,双曲线的左焦点为 ,当过左焦点的直线的斜率不存在时满足左焦点是“ 型点”,当斜率存在时,要保证斜率的绝对值大于等于该焦点与 连线的斜率.
【考点】直线与圆锥曲线的关系,点到直线的距离公式,双曲线的简单性质.
5.【答案】
【解析】 .
【提示】利用余弦定理表示出 ,将已知等式变形后代入求出 的值,由C为三角形的内角,利用特殊角的三角函数值即可求出C的度数.

2013年上海市春季高考数学试卷答案与解析

2013年上海市春季高考数学试卷答案与解析

2013年上海市春季高考数学试卷参考答案与试题解析一、填空题(本大题满分36分)本大题共有12题,要求直接填写结果,每题填对得3分,否则一律得0分.1.(3分)(2013•上海)函数y=log2(x+2)的定义域是(﹣2,+∞).2.(3分)(2013•上海)方程2x=8的解是3.3.(3分)(2013•上海)抛物线y2=8x的准线方程是x=﹣2.=2,可得=24.(3分)(2013•上海)函数y=2sinx的最小正周期是2π.=5.(3分)(2013•上海)已知向量,.若,则实数k=.,得﹣故答案为:,则6.(3分)(2013•上海)函数y=4sinx+3cosx的最大值是5.(sinx+cosx==7.(3分)(2013•上海)复数2+3i(i是虚数单位)的模是.,代入计算即可得出复数=故答案为:8.(3分)(2013•上海)在△ABC中,角A,B,C所对边长分别为a,b,c,若a=5,c=8,B=60°,则b=7.9.(3分)(2013•上海)正方体ABCD﹣A1B1C1D1中,异面直线A1B与B1C所成角的大小为60°.10.(3分)(2013•上海)从4名男同学和6名女同学中随机选取3人参加某社团活动,选出的3人中男女同学都有的概率为(结果用数值表示).人中只有男同学或只有女同学的概率为:,﹣.故答案为:.11.(3分)(2013•上海)若等差数列的前6项和为23,前9项和为57,则数列的前n项和S n=.,,12.(3分)(2013•上海)36的所有正约数之和可按如下方法得到:因为36=22×32,所以36的所有正约数之和为(1+3+32)+(2+2×3+2×32)+(22+22×3+22×32)=(1+2+22)(1+3+32)=91,参照上述方法,可求得2000的所有正约数之和为4836.二.选择题(本大题满分36分)本大题共有12题,每题都给出四个结论,其中有且只有一个结论是正确的.考生必须把真确结论的代码写在题后的括号内,选对得3分,否则一律得0分.B解:根据由题意得,﹣1的反函数,的反函数,15.(3分)(2013•上海)直线2x﹣3y+1=0的一个方向向量是(),即可得到它的一个方向向量(k=,=)16.(3分)(2013•上海)函数f(x)=的大致图象是()...D.解:因为﹣<B=,∴18.(3分)(2013•上海)若复数z 1,z2满足z1=,则z1,z2在复数平面上对应的点Z1,,则10••)上是减函数,在(根据球的表面积公式算出它们的表面积之比为= =,由此结合球的体积公式即可算出这两个球的体积之比.==,解之得(舍负)因此,这两个球的体积之比为=)23.(3分)(2013•上海)已知a,b,c∈R,“b2﹣4ac<0”是“函数f(x)=ax2+bx+c的图象恒24.(3分)(2013•上海)已知A,B为平面内两定点,过该平面内动点M作直线AB的垂线,垂足为N.若,其中λ为常数,则动点M的轨迹不可能是(),三、解答题(本大题满分78分)本大题共有7题,解答下列各题必须写出必要的步骤.25.(7分)(2013•上海)如图,在正三棱柱ABC﹣A1B1C1中,AA1=6,异面直线BC1与AA1所成角的大小为,求该三棱柱的体积.C=C=.×=2,=3,×6=1826.(7分)(2013•上海)如图,某校有一块形如直角三角形ABC的空地,其中∠B为直角,AB长40米,BC长50米,现欲在此空地上建造一间健身房,其占地形状为矩形,且B为矩形的一个顶点,求该健身房的最大占地面积.,求得﹣﹣27.(8分)(2013•上海)已知数列{a n}的前n项和为S,数列{b n}满足b,求.时,=公比为=.28.(13分)(2013•上海)已知椭圆C的两个焦点分别为F1(﹣1,0)、F2(1,0),短轴的两个端点分别为B1,B2(1)若△F1B1B2为等边三角形,求椭圆C的方程;(2)若椭圆C的短轴长为2,过点F2的直线l与椭圆C相交于P,Q两点,且,求直线l的方程.系写出两个交点的横坐标的和,把的方程为.根据题意知,解得的方程为的方程为由因为,所以,即===,解得的方程为29.(12分)(2013•上海)已知抛物线C:y2=4x 的焦点为F.(1)点A,P满足.当点A在抛物线C上运动时,求动点P的轨迹方程;(2)在x轴上是否存在点Q,使得点Q关于直线y=2x的对称点在抛物线C上?如果存在,求所有满足条件的点Q的坐标;如果不存在,请说明理由.的坐标,由,所以,,解得,解得或)和(30.(13分)(2013•上海)在平面直角坐标系xOy中,点A在y轴正半轴上,点P n在x轴上,其横坐标为x n,且{x n} 是首项为1、公比为2的等比数列,记∠P n AP n+1=θn,n∈N*.(1)若,求点A的坐标;(2)若点A的坐标为(0,8),求θn的最大值及相应n的值.,知==,解得=≥,当且仅当,)上为增函数,最大,其最大值为31.(18分)(2013•上海)已知真命题:“函数y=f(x)的图象关于点P(a,b)成中心对称图形”的充要条件为“函数y=f(x+a)﹣b 是奇函数”.(1)将函数g(x)=x3﹣3x2的图象向左平移1个单位,再向上平移2个单位,求此时图象对应的函数解析式,并利用题设中的真命题求函数g(x)图象对称中心的坐标;(2)求函数h(x)=图象对称中心的坐标;(3)已知命题:“函数y=f(x)的图象关于某直线成轴对称图象”的充要条件为“存在实数a 和b,使得函数y=f(x+a)﹣b 是偶函数”.判断该命题的真假.如果是真命题,请给予证明;如果是假命题,请说明理由,并类比题设的真命题对它进行修改,使之成为真命题(不必证明).==由不等式=。

2013年上海市高考文科数学试卷及参考答案与试题解析

2013年上海市高考文科数学试卷及参考答案与试题解析

2013年上海市高考文科数学试卷及参考答案与试题解析一、填空题(本大题共有14题,满分56分),考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分1.(4分)不等式<0的解为.2.(4分)在等差数列{an }中,若a1+a2+a3+a4=30,则a2+a3=.3.(4分)设m∈R,m2+m-2+(m2-1)i是纯虚数,其中i是虚数单位,则m=.4.(4分)已知,,则y=.5.(4分)已知△ABC的内角A,B,C所对的边分别是a,b,c,若a2+ab+b2-c2=0,则角C的大小是.6.(4分)某学校高一年级男生人数占该年级学生人数的40%,在一次考试中,男,女平均分数分别为75、80,则这次考试该年级学生平均分数为.7.(4分)设常数 a∈R,若(x2+)5的二项展开式中x7项的系数为-10,则 a=.8.(4分)方程的实数解为.9.(4分)若cosxcosy+sinxsiny=,则cos(2x-2y)=.10.(4分)已知圆柱Ω的母线长为l,底面半径为r,O是上底面圆心,A,B是下底面圆周上两个不同的点,BC是母线,如图,若直线OA与BC所成角的大小为,则=.11.(4分)盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意抽取两个,则这两个球的编号之积为偶数的概率是(结果用最简分数表示)12.(4分)设AB是椭圆Γ的长轴,点C在Γ上,且∠CBA=,若AB=4,BC=,则Γ的两个焦点之间的距离为.13.(4分)设常数a>0,若9x+对一切正实数x成立,则a的取值范围为.14.(4分)已知正方形ABCD的边长为1,记以A为起点,其余顶点为终点的向量分别为;以C为起点,其余顶点为终点的向量分别为,若i,j,k,l∈{1,2,3},且i≠j,k≠l,则的最小值是.二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分15.(5分)函数f(x)=x2-1(x≥0)的反函数为f-1(x),则f-1(2)的值是( )A. B. C.1+ D.1-16.(5分)设常数a∈R,集合A={x|(x-1)(x-a)≥0},B={x|x≥a-1},若A∪B=R,则a的取值范围为( )A.(-∞,2)B.(-∞,2]C.(2,+∞)D.[2,+∞)17.(5分)钱大姐常说“好货不便宜”,她这句话的意思是:“好货”是“不便宜”的( )A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件18.(5分)记椭圆围成的区域(含边界)为Ωn(n=1,2,…),当点(x,y)分别在Ω1,Ω2,…上时,x+y的最大值分别是M1,M2,…,则Mn=( )A.0B.C.2D.2三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤19.(12分)如图,正三棱锥O-ABC的底面边长为2,高为1,求该三棱锥的体积及表面积.20.(14分)甲厂以x千克/小时的速度匀速生产某种产品(生产条件要求1≤x≤10),每一小时可获得的利润是100(5x+1-)元.(1)求证:生产a千克该产品所获得的利润为100a(5+)元;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.21.(14分)已知函数f(x)=2sin(ωx),其中常数ω>0.(Ⅰ)令ω=1,判断函数的奇偶性,并说明理由.(Ⅱ) 令ω=2,将函数y=f(x)的图象向左平移个单位,再向上平移1个单位,得到函数y =g(x)的图象.对任意a∈R,求y=g(x)在区间[a,a+10π]上的零点个数的所有可能.22.(16分)已知函数f(x)=2-|x|,无穷数列{an }满足an+1=f(an),n∈N*(1)若a1=0,求a2,a3,a4;(2)若a1>0,且a1,a2,a3成等比数列,求a1的值(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.23.(18分)如图,已知双曲线C1:,曲线C2:|y|=|x|+1,P是平面内一点,若存在过点P的直线与C1,C2都有公共点,则称P为“C1-C2型点”(1)在正确证明C1的左焦点是“C1-C2型点“时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);(2)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1-C2型点”;(3)求证:圆x2+y2=内的点都不是“C1-C2型点”2013年上海市高考数学试卷(文科)参考答案与试题解析一、填空题(本大题共有14题,满分56分),考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分1.(4分)不等式<0的解为0<x<.【分析】根据两数相除商为负,得到x与2x-1异号,将原不等式化为两个一元一次不等式组,求出不等式组的解集即可得到原不等式的解集.【解答】解:原不等式化为或,解得:0<x<,故答案为:0<x<【点评】此题考查了其他不等式的解法,利用了转化的思想,是一道基本试题.2.(4分)在等差数列{an }中,若a1+a2+a3+a4=30,则a2+a3=15 .【分析】根据给出的数列是等差数列,由等差数列的性质可得a1+a4=a2+a3,结合已知条件可求a2+a3.【解答】解:因为数列{an }是等差数列,根据等差数列的性质有:a1+a4=a2+a3,由a1+a2+a3+a4=30,所以,2(a2+a3)=30,则a2+a3=15.故答案为:15.【点评】本题考查了等差中项概念,在等差数列中,若m,n,p,q,t∈N*,且m+n=p+q=2t,则a m +an=ap+aq=2at,此题是基础题.3.(4分)设m∈R,m2+m-2+(m2-1)i是纯虚数,其中i是虚数单位,则m=-2 .【分析】根据纯虚数的定义可得m2-1=0,m2-1≠0,由此解得实数m的值.【解答】解:∵复数z=(m2+m-2)+(m-1)i为纯虚数,∴m2+m-2=0,m2-1≠0,解得m=-2,故答案为:-2.【点评】本题主要考查复数的基本概念,得到 m2+m-2=0,m2-1≠0,是解题的关键,属于基础题.4.(4分)已知,,则y= 1 .【分析】利用二阶行列式的运算法则,由写出的式子化简后列出方程,直接求解y即可.【解答】解:由已知,,所以x-2=0,x-y=1所以x=2,y=1.故答案为:1.【点评】本题考查了二阶行列式的展开式,考查了方程思想,是基础题.5.(4分)已知△ABC的内角A,B,C所对的边分别是a,b,c,若a2+ab+b2-c2=0,则角C的大小是.【分析】利用余弦定理表示出cosC,将已知等式变形后代入求出cosC的值,由C为三角形的内角,利用特殊角的三角函数值即可求出C的度数.【解答】解:∵a2+ab+b2-c2=0,即a2+b2-c2=-ab,∴cosC===-,∵C为三角形的内角,∴C=.故答案为:【点评】此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.6.(4分)某学校高一年级男生人数占该年级学生人数的40%,在一次考试中,男,女平均分数分别为75、80,则这次考试该年级学生平均分数为78 .【分析】设该年级男生有x人,女生有y人,这次考试该年级学生平均分数为a,根据“平均成绩×人数=总成绩”分别求出男生的总成绩和女生的总成绩以及全班的总成绩,进而根据“男生的总成绩+女生的总成绩=全班的总成绩”列出方程,结合高一年级男生人数占该年级学生人数的40%,即可求出这次考试该年级学生平均分数.【解答】解:设该班男生有x人,女生有y人,这次考试该年级学生平均分数为a.根据题意可知:75x+80y=(x+y)×a,且=40%.所以a=78,则这次考试该年级学生平均分数为78.故答案为:78.【点评】本题主要考查了平均数.解答此题的关键:设该班男生有x人,女生有y人,根据平均数的意义即平均成绩、人数和总成绩三者之间的关系列出方程解决问题.7.(4分)设常数 a∈R,若(x2+)5的二项展开式中x7项的系数为-10,则 a=-2 .【分析】利用二项展开式的通项公式求得二项展开式中的第r+1项,令x的指数为7求得x7的系数,列出方程求解即可.【解答】解:的展开式的通项为Tr+1=C5r x10-2r()r=C5r x10-3r a r令10-3r=7得r=1, ∴x7的系数是aC51∵x7的系数是-10,∴aC51=-10,解得a=-2.故答案为:-2.【点评】本题主要考查了二项式系数的性质.二项展开式的通项公式是解决二项展开式的特定项问题的工具.4 .8.(4分)方程的实数解为log3【分析】用换元法,可将方程转化为一个二次方程,然后利用一元二次方程根,即可得到实数x 的取值.【解答】解:令t=3x(t>0)则原方程可化为:(t-1)2=9(t>0)4可满足条件∴t-1=3,t=4,即x=log3即方程的实数解为 log4.34.故答案为:log3【点评】本题考查的知识点是根的存在性,利用换元法将方程转化为一个一元二次方程是解答本题的关键,但在换元过程中,要注意对中间元取值范围的判断.9.(4分)若cosxcosy+sinxsiny=,则cos(2x-2y)=-.【分析】已知等式左边利用两角和与差的余弦函数公式化简,求出cos(x-y)的值,所求式子利用二倍角的余弦函数公式化简后,将cos(x-y)的值代入计算即可求出值.【解答】解:∵cosxcosy+sinxsiny=cos(x-y)=,∴cos(2x-2y)=cos2(x-y)=2cos2(x-y)-1=-.故答案为:-.【点评】此题考查了两角和与差的余弦函数公式,二倍角的余弦函数公式,熟练掌握公式是解本题的关键.10.(4分)已知圆柱Ω的母线长为l,底面半径为r,O是上底面圆心,A,B是下底面圆周上两个不同的点,BC是母线,如图,若直线OA与BC所成角的大小为,则=.【分析】过A作与BC平行的母线AD,由异面直线所成角的概念得到∠OAD为.在直角三角形ODA中,直接由得到答案.【解答】解:如图,过A作与BC平行的母线AD,连接OD,则∠OAD为直线OA与BC所成的角,大小为.在直角三角形ODA中,因为,所以.则.故答案为【点评】本题考查了异面直线所成的角,考查了直角三角形的解法,是基础题.11.(4分)盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意抽取两个,则这两个球的编号之积为偶数的概率是(结果用最简分数表示)【分析】从7个球中任取2个球共有=21种,两球编号之积为偶数包括均为偶数、一奇一偶两种情况,有=15种取法,利用古典概型的概率计算公式即可求得答案.【解答】解:从7个球中任取2个球共有=21种,所取两球编号之积为偶数包括均为偶数、一奇一偶两种情况,共有=15种取法,所以两球编号之积为偶数的概率为:=.故答案为:.【点评】本题考查古典概型的概率计算公式,属基础题,其计算公式为:P(A)=,其中n(A)为事件A所包含的基本事件数,m为基本事件总数.12.(4分)设AB是椭圆Γ的长轴,点C在Γ上,且∠CBA=,若AB=4,BC=,则Γ的两个焦点之间的距离为.【分析】由题意画出图形,设椭圆的标准方程为,由条件结合等腰直角三角形的边角关系解出C的坐标,再根据点C在椭圆上求得b值,最后利用椭圆的几何性质计算可得答案.【解答】解:如图,设椭圆的标准方程为,由题意知,2a=4,a=2.∵∠CBA=,BC=,∴点C的坐标为C(-1,1),因点C在椭圆上,∴,∴b2=,∴c2=a2-b2=4-=,c=,则Γ的两个焦点之间的距离为.故答案为:.【点评】本题考查椭圆的定义、解三角形,以及椭圆的简单性质的应用.13.(4分)设常数a>0,若9x+对一切正实数x成立,则a的取值范围为[,+∞) .≥a+1,【分析】由题设数a>0,若9x+对一切正实数x成立可转化为(9x+)min利用基本不等式判断出9x+≥6a,由此可得到关于a的不等式,解之即可得到所求的范围≥a+1, 【解答】解:常数a>0,若9x+≥a+1对一切正实数x成立,故(9x+)min又9x+≥6a,当且仅当9x=,即x=时,等号成立故必有6a≥a+1,解得a≥故答案为[,+∞)【点评】本题考查函数的最值及利用基本不等式求最值,本题是基本不等式应用的一个很典型的例子14.(4分)已知正方形ABCD的边长为1,记以A为起点,其余顶点为终点的向量分别为;以C为起点,其余顶点为终点的向量分别为,若i,j,k,l∈{1,2,3},且i≠j,k≠l,则的最小值是-5 .【分析】如图建立直角坐标系.不妨记以A为起点,其余顶点为终点的向量分别为,,,以C为起点,其余顶点为终点的向量分别为,,.再分类讨论当i,j,k,l取不同的值时,利用向量的坐标运算计算的值,从而得出的最小值.【解答】解:不妨记以A为起点,其余顶点为终点的向量分别为,,,以C为起点,其余顶点为终点的向量分别为,,.如图建立坐标系.(1)当i=1,j=2,k=1,l=2时,则=[(1,0)+(1,1)]•[((-1,0)+(-1,-1)]=-5;(2)当i=1,j=2,k=1,l=3时,则=[(1,0)+(1,1)]•[((-1,0)+(0,-1)]=-3;(3)当i=1,j=2,k=2,l=3时,则=[(1,0)+(1,1)]•[((-1,-1)+(0,-1)]=-4;(4)当i=1,j=3,k=1,l=2时,则=[(1,0)+(0,1)]•[((-1,0)+(-1,-1)]=-3;同样地,当i,j,k,l取其它值时,=-5,-4,或-3.则的最小值是-5.故答案为:-5.【点评】本小题主要考查平面向量坐标表示、平面向量数量积的运算等基本知识,考查考查分类讨论、化归以及数形结合等数学思想方法,考查分析问题、解决问题的能力.二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分15.(5分)函数f(x)=x2-1(x≥0)的反函数为f-1(x),则f-1(2)的值是( )A. B. C.1+ D.1-【分析】根据反函数的性质,求f-1(2)的问题可以变为解方程2=x2-1(x≥0).【解答】解:由题意令2=x2-1(x≥0),解得x=所以f-1(2)=.故选:A.【点评】本题考查反函数的定义,解题的关键是把求函数值的问题变为解反函数的方程问题.16.(5分)设常数a∈R,集合A={x|(x-1)(x-a)≥0},B={x|x≥a-1},若A∪B=R,则a的取值范围为( )A.(-∞,2)B.(-∞,2]C.(2,+∞)D.[2,+∞)【分析】当a>1时,代入解集中的不等式中,确定出A,求出满足两集合的并集为R时的a的范围;当a=1时,易得A=R,符合题意;当a<1时,同样求出集合A,列出关于a的不等式,求出不等式的解集得到a的范围.综上,得到满足题意的a范围.【解答】解:当a>1时,A=(-∞,1]∪[a,+∞),B=[a-1,+∞),若A∪B=R,则a-1≤1,∴1<a≤2;当a=1时,易得A=R,此时A∪B=R;当a<1时,A=(-∞,a]∪[1,+∞),B=[a-1,+∞),若A∪B=R,则a-1≤a,显然成立,∴a<1;综上,a的取值范围是(-∞,2].故选:B.【点评】此题考查了并集及其运算,二次不等式,以及不等式恒成立的条件,熟练掌握并集的定义是解本题的关键.17.(5分)钱大姐常说“好货不便宜”,她这句话的意思是:“好货”是“不便宜”的( )A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件【分析】“好货不便宜”,其条件是:此货是好货,结论是此货不便宜,根据充要条件的定义进行判断即可,【解答】解:若p⇒q为真命题,则命题p是命题q的充分条件;“好货不便宜”,其条件是:此货是好货,结论是此货不便宜,由条件⇒结论.故“好货”是“不便宜”的充分条件.故选:A.【点评】本题考查了必要条件、充分条件与充要条件的判断,属于基础题.18.(5分)记椭圆围成的区域(含边界)为Ωn(n=1,2,…),当点(x,y)分别在Ω1,Ω2,…上时,x+y的最大值分别是M1,M2,…,则Mn=( )A.0B.C.2D.2【分析】先由椭圆得到这个椭圆的参数方程为:(θ为参数),再由三角函数知识求x+y的最大值,从而求出极限的值.【解答】解:把椭圆得,椭圆的参数方程为:(θ为参数),∴x+y=2cosθ+sinθ,∴(x+y)max==.∴Mn==2.故选:D.【点评】本题考查数列的极限,椭圆的参数方程和最大值的求法,解题时要认真审题,注意三角函数知识的灵活运用.三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤19.(12分)如图,正三棱锥O-ABC的底面边长为2,高为1,求该三棱锥的体积及表面积.【分析】根据题意画出图形,结合正三棱锥O-ABC的底面边长为2,高为1,由此入手,能够求出此三棱锥的体积及表面积.【解答】解:∵O-ABC是正三棱锥,其底面三角形ABC是边长为2的正三角形,其面积为,∴该三棱锥的体积==;设O′是正三角形ABC的中心,则OO′⊥平面ABC,延长AO′交BC于D.则AD=,O′D=,又OO′=1,∴三棱锥的斜高OD=,∴三棱锥的侧面积为×=2,∴该三棱锥的表面积为.【点评】本题考查三棱锥的体积、表面积的求法,解题时要认真审题,注意合理地化立体问题为平面问题.20.(14分)甲厂以x千克/小时的速度匀速生产某种产品(生产条件要求1≤x≤10),每一小时可获得的利润是100(5x+1-)元.(1)求证:生产a千克该产品所获得的利润为100a(5+)元;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.【分析】(1)由题意可得生产a千克该产品所用的时间是小时,由于每一小时可获得的利润是100(5x+1-)元,即可得到生产a千克该产品所获得的利润;(2)利用(1)的结论可得生产1千克所获得的利润为90000(5+),1≤x≤10.进而得到生产900千克该产品获得的利润,利用二次函数的单调性即可得出.【解答】解:(1)生产a千克该产品所用的时间是小时,∵每一小时可获得的利润是100(5x+1-)元,∴获得的利润为100(5x+1-)×元.因此生产a千克该产品所获得的利润为100a(5+)元.(2)生产900千克该产品获得的利润为90000(5+),1≤x≤10.设f(x)=,1≤x≤10.则f(x)=,当且仅当x=6取得最大值.故获得最大利润为=457500元.因此甲厂应以6千克/小时的速度生产,可获得最大利润457500元.【点评】正确理解题意和熟练掌握二次函数的单调性是解题的关键.21.(14分)已知函数f(x)=2sin(ωx),其中常数ω>0.(Ⅰ)令ω=1,判断函数的奇偶性,并说明理由.(Ⅱ) 令ω=2,将函数y=f(x)的图象向左平移个单位,再向上平移1个单位,得到函数y =g(x)的图象.对任意a∈R,求y=g(x)在区间[a,a+10π]上的零点个数的所有可能.【分析】(1)特值法:ω=1时,写出f(x)、F(x),求出F()、F(-),结合函数奇偶性的定义可作出正确判断;(2)根据图象平移变换求出g(x),令g(x)=0可得g(x)可能的零点,而[a,a+10π]恰含10个周期,分a是零点,a不是零点两种情况讨论,结合图象可得g(x)在[a,a+10π]上零点个数的所有可能值;【解答】解:(1)f(x)=2sinx,F(x)=f(x)+f(x+)=2sinx+2sin(x+)=2(sinx+cosx),F()=2,F(-)=0,F(-)≠F(),F(-)≠-F(),所以,F(x)既不是奇函数,也不是偶函数.(2)f(x)=2sin2x,将y=f(x)的图象向左平移个单位,再向上平移1个单位后得到y=2sin2(x+)+1的图象,所以g(x)=2sin2(x+)+1.令g(x)=0,得x=kπ+或x=kπ+(k∈z),因为[a,a+10π]恰含10个周期,所以,当a是零点时,在[a,a+10π]上零点个数21,当a不是零点时,a+kπ(k∈z)也都不是零点,区间[a+kπ,a+(k+1)π]上恰有两个零点,故在[a,a+10π]上有20个零点.综上,y=g(x)在[a,a+10π]上零点个数的所有可能值为21或20.【点评】本题考查函数y=Asin(ωx+φ)的图象变换、函数的奇偶性、根的存在性及根的个数的判断,考查数形结合思想,结合图象分析是解决(2)问的关键22.(16分)已知函数f(x)=2-|x|,无穷数列{an }满足an+1=f(an),n∈N*(1)若a1=0,求a2,a3,a4;(2)若a1>0,且a1,a2,a3成等比数列,求a1的值(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.【分析】(1)由题意代入式子计算即可;(2)把a2,a3表示为a1的式子,通过对a1的范围进行讨论去掉绝对值符号,根据a1,a2,a3成等比数列可得关于a1的方程,解出即可;(3)假设这样的等差数列存在,则a1,a2,a3成等差数列,即2a2=a1+a3,亦即2-a1+|2-|a1||=2|a1|(*),分情况①当a1>2时②当0<a1≤2时③当a1≤0时讨论,由(*)式可求得a1进行判断;③当a1≤0时,由公差d>2可得矛盾;【解答】解:(1)由题意,代入计算得a2=2,a3=0,a4=2;(2)a2=2-|a1|=2-a1,a3=2-|a2|=2-|2-a1|,①当0<a1≤2时,a3=2-(2-a1)=a1,所以,得a1=1;②当a1>2时,a3=2-(a1-2)=4-a1,所以,得(舍去)或.综合①②得a1=1或.(3)假设这样的等差数列存在,那么a2=2-|a1|,a 3=2-|2-|a1||,由2a2=a1+a3得2-a1+|2-|a1||=2|a1|(*),以下分情况讨论:①当a1>2时,由(*)得a1=0,与a1>2矛盾;②当0<a1≤2时,由(*)得a1=1,从而an=1(n=1,2,…),所以{an}是一个等差数列;③当a1≤0时,则公差d=a2-a1=(a1+2)-a1=2>0,因此存在m≥2使得am =a1+2(m-1)>2,此时d=am+1-am=2-|am|-am<0,矛盾.综合①②③可知,当且仅当a1=1时,a1,a2,…,an,…成等差数列.【点评】本题考查数列的函数特性、等差关系等比关系的确定,考查分类讨论思想,考查学生逻辑推理能力、分析解决问题的能力,综合性强,难度较大.23.(18分)如图,已知双曲线C1:,曲线C2:|y|=|x|+1,P是平面内一点,若存在过点P的直线与C1,C2都有公共点,则称P为“C1-C2型点”(1)在正确证明C1的左焦点是“C1-C2型点“时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);(2)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1-C2型点”;(3)求证:圆x2+y2=内的点都不是“C1-C2型点”【分析】(1)由双曲线方程可知,双曲线的左焦点为(),当过左焦点的直线的斜率不存在时满足左焦点是“C1-C2型点”,当斜率存在时,要保证斜率的绝对值大于等于该焦点与(0,1)连线的斜率;(2)由直线y=kx与C2有公共点联立方程组有实数解得到|k|>1,分过原点的直线斜率不存在和斜率存在两种情况说明过远点的直线不可能同时与C1和C2有公共点;(3)由给出的圆的方程得到圆的图形夹在直线y=x±1与y=-x±1之间,进而说明当|k|≤1时过圆内的点且斜率为k的直线与C2无公共点,当|k|>1时,过圆内的点且斜率为k的直线与C2有公共点,再由圆心到直线的距离小于半径列式得出k的范围,结果与|k|>1矛盾.从而证明了结论.【解答】(1)解:C1的左焦点为(),写出的直线方程可以是以下形式:或,其中.(2)证明:因为直线y=kx与C2有公共点,所以方程组有实数解,因此|kx|=|x|+1,得.若原点是“C1-C2型点”,则存在过原点的直线与C1、C2都有公共点.考虑过原点与C2有公共点的直线x=0或y=kx(|k|>1).显然直线x=0与C1无公共点.如果直线为y=kx(|k|>1),则由方程组,得,矛盾.所以直线y=kx(|k|>1)与C1也无公共点.因此原点不是“C1-C2型点”.(3)证明:记圆O:,取圆O内的一点Q,设有经过Q的直线l与C1,C2都有公共点,显然l不与x轴垂直,故可设l:y=kx+b.若|k|≤1,由于圆O夹在两组平行线y=x±1与y=-x±1之间,因此圆O也夹在直线y=kx ±1与y=-kx±1之间,从而过Q且以k为斜率的直线l与C2无公共点,矛盾,所以|k|>1.因为l与C1由公共点,所以方程组有实数解,得(1-2k2)x2-4kbx-2b2-2=0.因为|k|>1,所以1-2k2≠0,因此△=(4kb)2-4(1-2k2)(-2b2-2)=8(b2+1-2k2)≥0,即b2≥2k2-1.因为圆O的圆心(0,0)到直线l的距离,所以,从而,得k2<1,与|k|>1矛盾.因此,圆内的点不是“C1-C2型点”.【点评】本题考查了双曲线的简单几何性质,考查了点到直线的距离公式,考查了直线与圆锥曲线的关系,直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法.属难题.。

2013年全国卷数学试题及答案(文)

 2013年全国卷数学试题及答案(文)

2013·全国卷(文科数学)1. 设全集U ={1,2,3,4,5},集合A ={1,2},则∁U A =( ) A .{1,2} B .{3,4,5} C .{1,2,3,4,5} D .∅1.B [解析] 所求的集合是由全集中不属于集合A 的元素组成的集合,显然是{3,4,5}.2. 已知α是第二象限角,sin α=513,则cos α=( )A .-1213B .-513 C.513 D.12132.A [解析] cos α=-1-sin 2 α=-1213.3. 已知向量=(λ+1,1),=(λ+2,2),若(+)⊥(-),则λ=( ) A .-4 B .-3 C .-2 D .-13.B [解析] (+)⊥(-)⇔(+)·(-)=0⇔=,所以(λ+1)2+12=(λ+2)2+22,解得λ=-3.4. 不等式|x 2-2|<2的解集是( ) A .(-1,1) B .(-2,2)C .(-1,0)∪(0,1)D .(-2,0)∪(0,2)4.D [解析] |x 2-2|<2等价于-2<x 2-2<2,即0<x 2<4,即0<|x |<2,解得-2<x <0或者0<x <2,故所求的不等式的解集是(-2,0)∪(0,2).5. (x +2)8的展开式中x 6的系数是( ) A .28 B .56 C .112 D .2245.C [解析] 含x 6的项是展开式的第三项,其系数为C 28×22=112.6. 函数f (x )=log 2⎝⎛⎭⎫1+1x (x >0)的反函数f -1(x )=( ) A.12x -1(x >0) B.12x -1(x ≠0) C .2x -1(x ∈) D .2x -1(x >0)6.A [解析] 令y =log 2⎝⎛⎭⎫1+1x ,则y >0,且1+1x =2y ,解得x =12y -1,交换x ,y 得f -1(x )=12x-1(x >0). 7. 已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于( )A .-6(1-3-10) B.19(1-310)C .3(1-3-10) D .3(1+3-10)7.C [解析] 由3a n +1+a n =0,得a n ≠0(否则a 2=0)且a n +1a n =-13,所以数列{a n }是公比为-13的等比数列,代入a 2可得a 1=4,故S 10=4×⎣⎡⎦⎤1-⎝⎛⎭⎫-13101+13=3×⎣⎡⎦⎤1-⎝⎛⎭⎫1310=3(1-3-10).8. 已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为( )A.x 22+y 2=1B.x 23+y 22=1 C.x 24+y 23=1 D.x 25+y 24=1 8.C [解析] 设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),与直线x =1联立得y =±b 2a (c =1),所以2b 2=3a ,即2(a 2-1)=3a ,2a 2-3a -2=0,a >0,解得a =2(负值舍去),所以b 2=3,故所求椭圆方程为x 24+y 23=1.9. 若函数y =sin(ωx +φ)(ω>0)的部分图像如图1-1所示,则ω=( )图1-1A .5B .4C .3D .29.B [解析] 根据对称性可得π4为已知函数的半个周期,所以2πω=2×π4,解得ω=4.10. 已知曲线y =x 4+ax 2+1在点(-1,a +2)处切线的斜率为8,则a =( )A .9B .6C .-9D .-610.D [解析] y ′=4x 3+2ax ,当x =-1时y ′=8,故8=-4-2a ,解得a =-6.11. 已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( )A.23B.33C.23 D.1311.A [解析] 如图,联结AC ,交BD 于点O .由于BO ⊥OC ,BO ⊥CC 1,可得BO ⊥平面OCC 1,从而平面OCC 1⊥平面BDC 1,过点C 作OC 1的垂线交OC 1于点E ,根据面面垂直的性质定理可得CE ⊥平面BDC 1,∠CDE 即为所求的线面角.设AB =2,则OC =2,OC 1=18=32,所以CE =CC 1·OC OC 1=4 23 2=43,所以sin ∠CDE =CE CD =23.12.、 已知抛物线C :y 2=8x与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若MA →·MB →=0,则k =( )A.12B.22C. 2 D .212.D [解析] 抛物线的焦点坐标为(2,0),设直线l 的方程为x =ty +2,与抛物线方程联立得y 2-8ty -16=0.设A (x 1,y 1),B (x 2,y 2),则y 1y 2=-16,y 1+y 2=8t ,x 1+x 2=t (y 1+y 2)+4=8t 2+4,x 1x 2=t 2y 1y 2+2t (y 1+y 2)+4=-16t 2+16t 2+4=4.MA →·MB →=(x 1+2,y 1-2)·(x 2+2,y 2-2)=x 1x 2+2(x 1+x 2)+4+y 1y 2-2(y 1+y 2)+4 =4+16t 2+8+4-16-16t +4=16t 2-16t +4=4(2t -1)2=0,解得t =12,所以k =1t =2.13. 设f (x )是以2为周期的函数,且当x ∈[1,3)时,f (x )=x -2,则f (-1)=________13.-1 [解析] f (-1)=f (-1+2)=f (1)=1-2=-1. 14.、 从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有____种.(用数字作答)14.60 [解析] 从6人逐次选出1人,2人,3人分别给奖项即可,方法数为C 16C 25C 33=60.15. 若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4,则z =-x +y 的最小值为________.15.0 [解析] 已知不等式组表示区域如图中的三角形ABC 及其内部,目标函数的几何意义是直线y =x +z 在y 轴上的截距,显然在点A 取得最小值,点A (1,1),故z min =-1+1=0.16.、 已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,OK =32,且圆O 与圆K 所在的平面所成的一个二面角为60°,则球O 的表面积等于________.16.16π [解析] 设两圆的公共弦AB 的中点为D ,则KD ⊥DA ,OD ⊥DA ,∠ODK 即为圆O 和圆K 所在平面所成二面角的平面角,所以∠ODK =60°.由于O 为球心,故OK 垂直圆K 所在平面,所以OK ⊥KD .在直角三角形ODK 中,OK OD =sin 60°,即OD =32×23=3,设球的半径为r ,则DO =32r ,所以32r =3,所以r =2,所以球的表面积为4πr 2=16π.17.、 等差数列{a n }中,a 7=4,a 19=2a 9.(1)求{a n }的通项公式;(2)设b n =1na n,求数列{b n }的前n 项和S n .17.解:(1)设等差数列{a n }的公差为d , 则a n =a 1+(n -1)d .因为⎩⎪⎨⎪⎧a 7=4,a 19=2a 9,所以⎩⎪⎨⎪⎧a 1+6d =4,a 1+18d =2(a 1+8d ), 解得a 1=1,d =12.所以{a n }的通项公式为a n =n +12. (2)因为b n =1na n =2n (n +1)=2n -2n +1,所以S n =21-22+22-23+…+2n -2n +1=2n n +1. 18.、 设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,(a +b +c )(a -b +c )=ac . (1)求B ; (2)若sin A sin C =3-14,求C . 18.解:(1)因为(a +b +c )(a -b +c )=ac , 所以a 2+c 2-b 2=-ac .由余弦定理得cos B =a 2+c 2-b 22ac =-12,因此B =120°.(2)由(1)知A +C =60°, 所以cos (A -C )=cos A cos C +sin A sin C=cos A cos C -sin A sin C +2sin A sin C =cos(A +C )+2sin A sin C =12+2×3-14 =32, 故A -C =30°或A -C =-30°, 因此C =15°或C =45°. 19.、 如图1-3所示,四棱锥P —ABCD 中,∠ABC =∠BAD =90°,BC =2AD ,△P AB 和△P AD 都是边长为2的等边三角形.图1-3(1)证明:PB ⊥CD ;(2)求点A 到平面PCD 的距离.19.解:(1)证明:取BC 的中点E ,联结DE ,则四边形ABED 为正方形.过P 作PO ⊥平面ABCD ,垂足为O .联结OA ,OB ,OD ,OE .由△P AB 和△P AD 都是等边三角形知P A =PB =PD ,所以OA =OB =OD ,即点O 为正方形ABED 对角线的交点.故OE ⊥BD ,从而PB ⊥OE .因为O 是BD 的中点,E 是BC 的中点,所以OE ∥CD .因此PB ⊥CD .(2)取PD 的中点F ,联结OF ,则OF ∥PB . 由(1)知,PB ⊥CD ,故OF ⊥CD .又OD =12BD =2,OP =PD 2-OD 2=2,故△POD 为等腰三角形,因此OF ⊥PD . 又PD ∩CD =D ,所以OF ⊥平面PCD .因为AE ∥CD ,CD ⊂平面PCD ,AE ⊄平面PCD ,所以AE ∥平面PCD .因此O 到平面PCD 的距离OF 就是A 到平面PCD 的距离,而OF =12PB =1,所以点A 到平面PCD 的距离为1. 20.、、 甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为12,各局比赛的结果相互独立,第1局甲当裁判.(1)求第4局甲当裁判的概率;(2)求前4局中乙恰好当1次裁判的概率.20.解:(1)记A 1表示事件“第2局结果为甲胜”, A 2表示事件“第3局甲参加比赛时,结果为甲负”, A 表示事件“第4局甲当裁判”. 则A =A 1·A 2,P (A )=P (A 1·A 2)=P (A 1)P (A 2)=14.(2)记B 1表示事件“第1局比赛结果为乙胜”,B 2表示事件“第2局乙参加比赛时,结果为乙胜”, B 3表示事件“第3局乙参加比赛时,结果为乙胜”, B 表示事件“前4局中乙恰好当1次裁判”. 则B =B 1·B 3+B 1·B 2·B 3+B 1·B 2, P (B )=P (B 1·B 3+B 1·B 2·B 3+B 1·B 2) =P (B 1·B 3)+P (B 1·B 2·B 3)+P (B 1·B 2)=P (B 1)P (B 3)+P (B 1)P (B 2)P (B 3)+P (B 1)P (B 2) =14+18+14 =58. 21.、 已知函数f (x )=x 3+3ax 2+3x +1.(1)当a =-2时,讨论f (x )的单调性;(2)若x ∈[2,+∞)时,f (x )≥0,求a 的取值范围.21.解:(1)当a =-2时,f (x )=x 3-3 2x 2+3x +1, f ′(x )=3x 2-6 2x +3.令f ′(x )=0,得x 1=2-1,x 2=2+1.当x ∈(-∞,2-1)时,f ′(x )>0,f (x )在(-∞,2-1)上是增函数; 当x ∈(2-1,2+1)时,f ′(x )<0,f (x )在(2-1,2+1)上是减函数; 当x ∈(2+1,+∞)时,f ′(x )>0,f (x )在(2+1,+∞)上是增函数. (2)由f (2)≥0得a ≥-54.当a ≥-54,x ∈(2,+∞)时,f ′(x )=3(x 2+2ax +1)≥3⎝⎛⎭⎫x 2-52x +1=3⎝⎛⎭⎫x -12(x -2)>0, 所以f (x )在(2,+∞)上是增函数,于是当x ∈[2,+∞)时,f (x )≥f (2)≥0. 综上,a 的取值范围是⎣⎡⎭⎫-54,+∞. 22.、、 已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为3,直线y =2与C 的两个交点间的距离为 6.(1)求a ,b ;(2)设过F 2的直线l 与C 的左、右两支分别交于A ,B 两点,且|AF 1|=|BF 1|,证明:|AF 2|,|AB |,|BF 2|成等比数列.22.解:(1)由题设知ca =3,即a 2+b 2a 2=9,故b 2=8a 2.所以C 的方程为8x 2-y 2=8a 2. 将y =2代入上式,并求得x =±a 2+12.由题设知,2a 2+12=6,解得a 2=1.所以a =1,b =2 2.(2)证明:由(1)知,F 1(-3,0),F 2(3,0),C 的方程为8x 2-y 2=8.①由题意可设l 的方程为y =k (x -3),|k |<22,代入①并化简得(k 2-8)x 2-6k 2x +9k 2+8=0.设A (x 1,y 1),B (x 2,y 2),则x 1≤-1,x 2≥1,x 1+x 2=6k 2k 2-8,x 1x 2=9k 2+8k 2-8.于是|AF 1|=(x 1+3)2+y 21=(x 1+3)2+8x 21-8=-(3x 1+1),|BF 1|=(x 2+3)2+y 22=(x 2+3)2+8x 22-8=3x 2+1.由|AF 1|=|BF 1|得-(3x 1+1)=3x 2+1,即x 1+x 2=-23.故6k 2k 2-8=-23,解得k 2=45,从而x 1x 2=-199.由于|AF 2|=(x 1-3)2+y 21=(x 1-3)2+8x 21-8=1-3x 1,|BF 2|=(x 2-3)2+y 22=(x 2-3)2+8x 22-8=3x 2-1,故|AB |=|AF 2|-|BF 2|=2-3(x 1+x 2)=4, |AF 2|·|BF 2|=3(x 1+x 2)-9x 1x 2-1=16. 因而|AF 2|·|BF 2|=|AB |2,所以|AF 2|,|AB |,|BF 2|成等比数列.。

2013年高考上海卷

2013年高考上海卷

.(2013年高考上海卷(理))盒子中装有编号为1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是___________(结果用最简分数表示)【答案】1318. 1.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.(Ⅰ) 根据茎叶图计算样本均值;(Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人;(Ⅲ) 从该车间12名工人中,任取2人,求恰有名优秀工人的概率.【答案】解:(1)由题意可知,样本均值171920212530226x +++++==(2)样本6名个人中日加工零件个数大于样本均值的工人共有2名,∴可以推断该车间12名工人中优秀工人的人数为:21246⨯= (3)从该车间12名工人中,任取2人有21266C =种方法,而恰有1名优秀工人有1110220C C =∴所求的概率为:1110221220106633C C P C === 2.(2013年高考北京卷(理))下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气重度污染的概率;(Ⅱ)设X 是此人停留期间空气质量优良的天数,求X 的分布列与数学期望;1 7 92 0 1 53 0第17题图(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)【答案】解:设i A 表示事件“此人于3月日到达该市”(=1,2,,13).根据题意, 1()13i P A =,且()i j A A i j =∅≠.(I)设B 为事件“此人到达当日空气重度污染”,则58B A A =,所以58582()()()()13P B P A A P A P A ==+=. (II)由题意可知,X 的所有可能取值为0,1,2,且P(X=1)=P(A 3∪A 6∪A 7∪A 11)= P(A 3)+P(A 6)+P(A 7)+P(A 11)= 413, P(X=2)=P(A 1∪A 2∪A 12∪A 13)= P(A 1)+P(A 2)+P(A 12)+P(A 13)= 413,P(X=0)=1-P(X=1)-P(X=2)= 513,所以X 的分布列为:012544131313X P故X 的期望5441201213131313EX =⨯+⨯+⨯=. (III)从3月5日开始连续三天的空气质量指数方差最大.3.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为23,中将可以获得2分;方案乙的中奖率为25,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,X Y ,求3X ≤的概率;(2)若小明.小红两人都选择方案甲或方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?【答案】解:(Ⅰ)由已知得:小明中奖的概率为23,小红中奖的概率为25,两人中奖与否互不影响,记“这2人的累计得分3≤X ”的事件为A,则A 事件的对立事件为“5=X ”,224(5)3515==⨯=P X ,11()1(5)15∴=-==P A P X∴这两人的累计得分3≤X 的概率为1115. (Ⅱ)设小明.小红都选择方案甲抽奖中奖的次数为1X ,都选择方案乙抽奖中奖的次数为2X ,则这两人选择方案甲抽奖累计得分的数学期望为1(2)E X ,选择方案乙抽奖累计得分的数学期望为2(3)E X由已知:12~(2,)3X B ,22~(2,)5X B124()233∴=⨯=E X ,224()255=⨯=E X 118(2)2()3∴==E X E X ,2212(3)3()5==E X E X12(2)(3)>E X E X∴他们都在选择方案甲进行抽奖时,累计得分的数学期望最大.4.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3,4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同). (Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 再取出的4张卡片中, 红色卡片编号的最大值设为X , 求随机变量X 的分布列和数学期望.【答案】5.(2013年普通高等学校招生统一考试大纲版数学(理)WORD版含答案(已校对))甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为1,2各局比赛的结果相互独立,第局甲当裁判.(I)求第4局甲当裁判的概率;(II)X表示前4局中乙当裁判的次数,求X的数学期望. 【答案】1.(2013年高考陕西卷(理))在一场娱乐晚会上, 有5位民间歌手(1至5号)登台演唱, 由现场数百名观众投票选出最受欢迎歌手. 各位观众须彼此独立地在选票上选3名歌手, 其中观众甲是1号歌手的歌迷, 他必选1号, 不选2号, 另在3至5号中随机选2名. 观众乙和丙对5位歌手的演唱没有偏爱, 因此在1至5号中随机选3名歌手.(Ⅰ) 求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(Ⅱ) X 表示3号歌手得到观众甲、乙、丙的票数之和, 求X 的分布列和数学期望.【答案】解:(Ⅰ) 设事件A 表示:观众甲选中3号歌手且观众乙未选中3号歌手. 观众甲选中3号歌手的概率为32,观众乙未选中3号歌手的概率为53-1. 所以P(A) = 15453-132=⋅)(. 因此,观众甲选中3号歌手且观众乙未选中3号歌手的概率为154 (Ⅱ) X 表示3号歌手得到观众甲、乙、丙的票数之和,则X 可取0,1,2,3.观众甲选中3号歌手的概率为32,观众乙选中3号歌手的概率为53. 当观众甲、乙、丙均未选中3号歌手时,这时X=0,P(X = 0) = 754)531()321(2=-⋅-.当观众甲、乙、丙中只有1人选中3号歌手时,这时X=1,P(X = 1) =75207566853)531(321()531(53321()531(322=++=⋅-⋅-+-⋅⋅-+-⋅)).当观众甲、乙、丙中只有2人选中3号歌手时,这时X=2,P(X = 2) =7533751291253)531(325353321()531(5332=++=⋅-⋅+⋅⋅-+-⋅⋅). 当观众甲、乙、丙均选中3号歌手时,这时X=3,P(X =3) = 7518)53(322=⋅.X 的分布列如下表:1575753752751750==⋅+⋅+⋅+⋅=εE 所以,数学期望1528=EX。

2013届高三上学期联考数学试题

2013届高三上学期联考数学试题

2013届高三上学期联考数学试题黄山市2013届高三“七校联考”理科数学试卷考生注意:1、本试卷分第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间120分钟;2、答题前,请考生务必将答题卷左侧密封线内的项目填写清楚。

请考生按规定用笔将所有试题的答案涂、填在答题卡上,在试题卷上作答无效;3、请规范、工整书写,保持卷面清洁。

第Ⅰ卷(选择题 满分50分)一、选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知复数z 满足ii z 313+=,其中i 为虚数单位,则复数z 的虚部是.Ai 23.Bi 43 .C43.D232. 已知2tan =θ,则=-θθθsin cos cos 2 .A 2-.B 2.C 0.D323. 设集合{}032|2<--=x x x A ,⎭⎬⎫⎩⎨⎧<=0log |21x x B ,则=B A.A()1,1-.B ()3,1 .C()+∞,3 .D()1,-∞-4.已知直线l 是抛物线2x y =的一条切线,且l 与直线42=+-y x 平行,则直线l 的方程是.A 032=+-y x .B 032=--y x .C12=+-y x.D12=--y x5.已知双曲线的方程为)0,0(12222>>=-b a by a x ,双曲线的一个焦点到渐近线的距离为c 35(c 是双曲线的半焦距长),则双曲线的离心率是.A25.B 23 .C 253.D 32 6. 在甲、乙两 地的月销售数量的茎叶图,则在甲、乙两是A .65B .64C .63D .62 7.已知二项式nxx)1(2+的展开式的二项式系数之和为32,则展开式中含x 项的系数是 .A 5 .B 20 .C 10 .D 408.由曲线x x y 22+=与直线x y =所围成的封闭图形面积是 .A 61 .B 65 .C 31.D 32 9.现有一种密码,它是由3个a ,2个b ,1个c 和1个d组成的七位代码,则这种密码的个数是 .A 120 .B 240 .C 360 .D 420侧视俯视第11题10. 给出以下命题: (1)R x ∈∃,使得1cos sin >+x x ;(2)函数x x x f sin )(=在区间⎪⎭⎫⎝⎛2,0π上是单调减函数; (3)“1>x ”是“1>x ”的充分不必要条件; (4)在ABC ∆中,“B A >”是“B A sin sin >”的必要不充分条件。

上海市七校2013届高三上学期3月联考物理试卷(含答案)

上海市七校2013届高三上学期3月联考物理试卷(含答案)

上海市七校2013届高三3月联考物理试卷 2013年3月7日(完卷时间120分钟 满分150分)第I 卷(共56分)一、单项选择题(共16分,每小题2分,每小题只有一个正确选项,答案涂写在答题纸上。

)1.在物理学发展的过程中,许多物理学家的科学发现推动了人类历史的进步。

对以下几位物理学家所作科学贡献的表述中,与事实相符的是( )A .哥白尼提出了日心说并发现了行星沿椭圆轨道运行的规律B .开普勒通过研究行星观测记录,发现了行星运动三大定律C .笛卡尔根据理想斜面实验,提出了力不是维持物体运动的原因D .牛顿首先将实验事实和逻辑推理(包括数学推演)和谐地结合起来2.伽利略在研究自由落体运动时,做了如下的实验:他让一个铜球从阻力很小(可忽略不计)的斜面上由静止开始滚下,并且做了上百次。

假设某次实验在固定斜面上任取三个位置A 、B 、C ,让小球分别由A 、B 、C 滚下,使A 、B 、C 与斜面底端的距离分别为s 1、s 2、s 3,小球由A 、B 、C 运动到斜面底端的时间分别为t 1、t 2、t 3,小球由A 、B 、C 运动到斜面底端时的速度分别为v 1、v 2、v 3,则下列关系式中正确并且是伽利略用来证明小球沿光滑斜面向下运动是匀变速直线运动的是( )A .222321v v v == B .233222211t s t s t s == C .332211t v t v t v == D .1223s s s s -=- 3.下列物理公式表述正确的是( )A .由R=U/I 可知:导体电阻与加在导体两端的电压成正比,与通过导体的电流成反比B .由E=F/q 可知:电场强度与检验电荷受到的电场力成正比,与检验电荷的电量成反比C .由F=GmM/r 2可知:在国际单位制中,只要公式中各物理量的数值选取恰当,就可使常量G 的数值为1D .由F=kq 1q 2/r 2可知:真空中两个点电荷之间的库仑力与两个点电荷电量的乘积成正比,与它们之间距离的平方成反比4.如图所示,为某种用来束缚原子的磁场的磁感线分布情况,以O 点(图中白点)为坐标原点,沿Z 轴正方向磁感应强度B 大小的变化最有可能为( )5.如图所示的电路中,电源电动势为E ,内电阻为r ,L 为小灯泡(其灯丝电阻可以视为不变),R 1和R 2为定值电阻,R 3为光敏电阻,其阻值的大小随照射光强度的增强而减小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年上海市高三七校联考
数学试卷(文科) 2013年3月6日
(完卷时间120分钟 满分150分)
一、填空题(本大题满分56分)本大题共有14题,只要求将最终结果直接填写答题纸上相应的横线上,每
个空格填对得4分,否则一律得零分.
1. 若2cos sin 0x x -=,则tan()4
x π
+= .
2. 线性方程组
{23
23
x y x y -=+=-的增广矩阵是 . 3. 已知复数1z i =+的共轭复数是z , z z 、在复平面内对应的点分别是 A B 、,O 为坐标原点,则A O B
∆的面积是 .
4. 若函数()8x f x =的图像经过点1
()3
a ,,则1
()f
a -= .
5. 设 a b c ,,分别是锐角A B C ∆中角 A B C ,,所对的边,若2sin a c A =,则角C = .
6. 设等差数列}{n a 的公差为正,若13132 3a a a a +==-,,则456a a a ++= .
7. 已知向量(2 3) (4 7)a b ==- ,,,,若(2)//()a b a b λ+- ,则λ= .
8. 若21
2lim (1)3
n n a a a
-→∞
++++=

则二项式10(2)x a -展开式的系数和是 . 9. 如图的程序框图运行后输出的结果是 . 10. 一个盒子装有六张卡片,上面分别写着如下六个函数:
3
1()f x x =,2()5x
f x =,3()2f x =,4()22
x x
f x -=-,
5()cos f x x =-,6()cos f x x x =.从中任意拿取2张
卡片,则两张卡片上写着的函数相加得到的新函数为奇函 数的概率是 . 11. 已知arcsin ()22
x
x
x
f x -=
+的最大值和最小值分别
是M 和m ,则M m += .
12. 设12 F F 、分别为双曲线22
221(00)y x a t a ta
-=>>,的左、右焦点,过1F 且倾斜角为30 的直线与双曲线
的右支相交于点P ,若212||||PF F F =,则t = .
13. 函数()M f x 的定义域为R ,且定义如下:{
1 () 1 M x M
f x x M
∈=
-∉(其中M 是实数集R 的非空真子集),
若{||1|2} {|11}A x x B x x =-≤=-≤<,,则函数2()1()()()1
A B A B f x F x f x f x +=
++ 的值域为 .
14. 如图所示,四棱锥P A B C D -中,底面A B C D 是边长为2的菱形,Q ∈棱PA ,AC BD O = .有下列命题:
①若Q 是P A 的中点,则//PC 平面BDQ ; ②若PB PD =,则BD CQ ⊥;
③若P A C ∆是正三角形,则P O ⊥平面A B C D ;
④若3P A P C P B P D ===,,60ABC ∠=

则四棱锥P A B C D -
的体积为其中正确的命题是 .
二、选择题(本大题满分20分)本大题共有4题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有且只
第9题图
O
D
B
C A P Q 第14题图
有一个结论是正确的,必须把答题纸上相应的正确代号用2B 铅笔涂黑,选对得5分,不选、选错或者选出的代号超过一个,一律得零分.
15. 若抛物线22(0)x py p =>上不同三点的横坐标的平方成等差数列, 那么这三点 ( ) A .到原点的距离成等差数列 B .到x 轴的距离成等差数列
C .到y 轴的距离成等差数列
D .到焦点的距离的平方成等差数列 16. 若()sin f x x =在区间()()a b a b <,上单调递减,则()x a b ∈,时, ( ) A.sin 0x < B.cos 0x < C.tan 0x < D.tan 0x > 17. 已知 a b C ∈,,则下列结论成立的是 ( )
A.||a b -=
B.22
00a b a b +=⇒== C. 22
0||||a b a b +=⇒=
D.0a b a b ->⇒>
18. 若实数 a b 、满足0 0a b ≥≥,,且0ab =,则称a 与b 互补.记( )a b a b ϕ=-,,那么
“( )0a b ϕ=,”是“a 与b 互补”的 ( )
A.充分非必要条件
B.必要非充分条件
C.充要条件
D.既非充分也非必要条件
三、解答题: 19. (本题满分12分)本题共有2小题,第(1)小题满分6分,第(2)小题满分6分.
设A B C ∆的角 A B C ,,所对的边分别是 a b c ,,,向量( )m a b = ,, (sin sin )n B A =
,,
(2 2)p b a =--
,.
(1)若//m n
,求证:A B C ∆为等腰三角形;
(2)若m p ⊥ ,边长2c =,角3
C π
=,求A B C ∆的面积.
20. (本题满分14分)本题共有2小题,第(1)小题满分6分,第(2)小题满分8分.
空气污染指数(API)是一种用于反映和评价空气质量的数量,我国计入空气污染指数的项目暂定为:
总悬浮颗粒物(10P M )、2SO 和2N O .其计算公式为()I I I C C I C C -=
-+-大小小小大小
,其中I 为某污染物的污
染指数,C 为该污染物的浓度;C 大(I 大)和C 小(I 小)分别是API 分级限值表(附表)中最贴近C (I )值的两个限值.根据这个公式分别计算各污染物的API 分指数;选取API 分指数最大值为全市API,且该项污染物即为该市空气中的首要污染物.
(1)若某地区的10P M 、2SO 和2N O 日均值分别为0.215毫克/立方米,0.105毫克/立方米和0.080毫克/立方米,求空气污染指数API ,并指出首要污染物;
(2)已知某地的首要污染物为2SO ,10PM 和2N O 的API 分指数分别为122和67,政府对相关企业进行限排,减少2SO 和10PM 的污染,使得首要污染物变成了10PM ,且其分指数不超过80,2SO 的API 分指数低于2N O 的API 分指数,求限排后2SO 和10PM 浓度的范围.
21. (本题满分14分)本题共有2小题,第(1)小题满分7分,第(2)小题满分7分.
如图,已知抛物线2
4y x =的焦点为F ,过点(2 0)P ,且斜率为1k 的直线交抛物线于11( )A x y ,,22( )B x y ,两点,直线 A F B F 、
分别与抛物线交于点 M N 、. (1)证明12y y ⋅的值与1k 无关,并用12y y ,表示1k ; (2)记直线M N 的斜率为2k .证明
12
k k 为定值.
22. (本题满分16分)本题共有3小题,第(1)小题4分,第(2)小题5分,第(3)小题7分. 已知函数2
()2(0)f x x ax a =->
(1)当2a =时,解关于x 的不等式3()5f x -<<;
第21题图
(2)函数()y f x =在[0 2],的最大值为1,求正数a 的值;
(3)对于给定的正数a ,有一个最大的正数()M a ,使得在整个区间[0 ()]M a ,上,不等式|()|5f x ≤恒成立. 求出()M a 的解析式.
23. (本题满分18分)本题共有3小题,第(1)小题4分,第(2)小题6分,第(3)小题8分.
一青蛙从点000(,)A x y 开始依次水平向右和竖直向上跳动,其落点坐标依次是( )()i i i A x y i N *
∈,,(如
图所示,000( )
A x y ,坐标以已知条件为准),
n S 表示青蛙从点0A 到点n A 所经过的路程.
(1)若点000( )A x y ,为抛物线2
2y px =(0)p >准线上 一点,点12 A A ,均在该抛物线上,并且直线12A A 经过 该抛物线的焦点,证明23S p =.
(2)若点( )n n n A x y ,
要么落在y x =所表示的曲线上, 要么落在2y x =所表示的曲线上,并且01
1( )2
2
A ,
,试写出lim n n S →+∞
(请简要说明理由); (3)若点( )n n n A x y ,
要么落在y x =所表示的曲线上,要么落在2y x =所表示的曲线上,并且01
( 1)2A ,,求数列{}n x 和{}n y 的通项公式
.。

相关文档
最新文档