人教版数学七年级下册--数据收集的方法
人教版七年级下册10.1数据的收集、整理与描述教案
一、教学内容
人教版七年级下册10.1数据的收集、整理与描述:
1.数据的收集:学习使用观察、调查、访谈等方法收集数据,了解数据收集的注意事项。
2.数据的整理:学习使用表格、图表等方法整理数据,掌握分类、排序等整理技巧。
3.数据的描述:学习使用平均数、中位数、众数等描述数据集中趋势,了解极差、方差等描述数据离散程度的指标。
-数据描述的统计量:重点介绍平均数、中位数、众数等描述数据集中趋势的统计量,以及极差、方差等描述数据离散程度的指标。
-实践活动的应用:通过具体案例,让学生掌握如何将数据收集、整理与描述的方法应用于解决实际问题。
举例:在讲解数据的整理技巧时,可以以班级同学的身高数据为例,演示如何将原始数据整理成表格,并通过图表直观展示数据分布。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何对一次班级考试成绩进行收集、整理与描述,以及如何通过这些数据帮助我们分析学生的学习情况。
3.重点难点解析:在讲授过程中,我会特别强调数据收集的准确性和整理的逻辑性这两个重点。对于难点部分,比如统计量的选择和应用,我会通过举例和比较来帮助大家理解。
5.培养学生的创新意识,鼓励学生尝试不同的数据收集和整理方法,勇于探索新思路,提高数据处理能力。
三、教学难点与重点
1.教学重点
-数据的收集方法:重点讲解观察法、调查法、访谈法等常见的数据收集方法,并通过实例让学生理解各种方法的适用场景和操作步骤。
-数据的整理技巧:强调分类、排序等整理方法的重要性,以及如何利用表格、图表等形式清晰、有序地展示数据。
2.教学难点
-数据收集的准确性:难点在于如何确保收集到的数据真实、可靠,避免因主观因素造成数据偏差。
人教版七年级数学(下册)第十章-数据的收集、整理与总结教案
人教版七年级数学(下册)第十章-数据的收
集、整理与总结教案
教学目标
1. 理解数据的概念和数据在日常生活中的作用。
2. 掌握数据的收集方法,包括观察法、实验法和调查法。
3. 学会整理数据的方法,包括制作频数表、制作条形统计图和
折线统计图。
4. 能够运用所学知识对数据进行分析和总结。
教学准备
1. 教材:人教版七年级数学(下册)第十章教材。
2. 教具:白板、黑板、多媒体课件、绘图工具。
教学过程
1. 导入:通过实例引入数据的概念和作用,激发学生的研究兴趣。
2. 授课:介绍数据的收集方法,包括观察法、实验法和调查法,并进行详细讲解和示范。
3. 练:分组进行实践操作,让学生亲自收集数据,并使用合适
的方法整理和表达数据。
4. 深化:引导学生分析和总结所收集的数据,提出问题并讨论。
5. 归纳:对本节课所学内容进行归纳总结,强化学生对数据收集、整理和总结方法的理解。
6. 作业:布置相应的练题和作业,巩固所学知识。
教学评价
1. 观察学生在课堂上的表现和参与程度。
2. 检查学生的作业完成情况和答案正确率。
3. 进行小组或个别评价,关注学生的理解深度和解决问题的能力。
教学活动设计合理,有助于学生对数据的收集、整理和总结方
法有更深入的认识。
最新人教版七下数学 第十章 数据的收集、整理与描述 单元解读
据
据
据
据
论
统条折扇直 计形线形方 表图图图图
课标对单元内容的要求
1. 进一步经历收集、整理、描述、分析数据的活动,了解数据处理的过程; 能用计算器处理较为复杂的数据.
2. 体会抽样的必要性,通过实例认识简单随机抽样. 3. 会制作扇形统计图,能用统计图直观、有效地描述数据. 4. 通过实例,了解频数和频数分布的意义,能画频数直方图,能—通过用样本估计总体作出科学合理的判断与决策 数据观念主要是指对数据的意义和随机性有比较清晰的认
识,形成数据观念有助于理解和表达生活中随机现象发生的规 律,感知大数据时代数据分析的重要性,养成重证据、讲道理 的科学态度用样本估计总体是统计史最基本的思想方法,从总 体中抽取样本,通过对样本的整理、分析,来估计总体情况,最 终得出客观结论,作出科学决策.
单元重难点分析
教学重点
1. 数据的收集∶理解全面调查和抽样调查的区别,以及如何根据实 际问题选择合适的调查方式。
2. 数据的整理∶学习使用划记法等方法整理数据。 3. 数据的描述∶学会根据数据特性和分析目的选择合适的统计图表,
制作频数分布表和绘制直方图、条形图等统计图表,并能准确解 读图表中的信息。 4. 知道数据收集、整理、描述的过程,了解统计调查的一般步骤。
人教版·七年级下册
10
人单教 版元七 年解下 册读
小学阶段统计内容分析
对于统计的学习,小学阶段学习了 收集、整理、描述、分析数据的哪 些方法?
对“事物” 分类.
对“数据” 分类.
“数据的描述” 准确、但不直观.
“数据的描述” 不同类别数据数量
的多少.
“数据的描述” 数据的增减情况变化.
“数据的描述” 不同类别数据的数量 在整体中的占比情况.
人教版七年级下册数学教学设计(教案):第十章数据的收集、整理与描述单元备课
第十章“数据的收集、整理与描述”单元备课本章是统计部分的第一章,内容包括:1.利用全面调查与抽样调查(以抽样调查为重点)收集和整理数据;2.利用统计图表(以直方图为重点)描述数据;3.展现收集、整理、描述和分析数据得出结论的统计调查的基本过程.本章共安排三个小节和两个选学内容,教学(不包括选学内容)约需10课时,具体安排如下(仅供参考):10.1 统计调查约3课时10.2 直方图约2课时课题学习从数据谈节水约3课时数学活动小结约2课时一、教科书内容与本章学习目标(一)本章知识结构框图本章知识结构如下图所示:(二)教科书内容10.1节“统计调查”,主要介绍收集、整理与描述数据的一些常用方法.全面调查和抽样调查是统计调查的常用方法.教科书以调查人们对几种电视节目的喜爱情况为背景,设计了两个问题,通过统计调查问题1回顾了全面调查;通过统计调查问题2介绍了抽样调查.教科书首先设置问题1,要求学生考察全班同学喜爱五种电视节目的情况.解决这个问题需要统计调查,首先是收集数据,由此引出利用调查问卷收集数据的方法;对于收集到的数据需要进行整理才能看出数据分布的规律,这就涉及如何整理数据的问题,教科书介绍了利用频数分布表(没有给出频数分布的概念)整理数据的方法;为了更直观地看出全班同学喜爱五种电视节目的情况,教科书选用了学生在小学已经学过的条形图和扇形图展示了数据的分布规律;最后通过分析统计图表就可以看出全班同学五种电视节目的情况.对于扇形图,学生在小学只能从扇形图中读出信息,不会画出扇形图来描述数据,在本节中,教科书结合问题1介绍了如何画出扇形图,这是本学段的一个教学要求.问题1的统计调查过程实际上让学生经历了一个收集、整理、描述和分析数据得出结论,即数据处理的一般过程.数据的来源一般有两条渠道:一条是通过统计调查或科学试验直接得到第一手统计数据;另一条是通过查阅资料等间接获得第二手统计数据.统计调查是获得第一手数据的重要途径,它们常常通过访问、邮寄、电话、电脑辅助等形式来收集数据;科学试验是取得自然科学数据的主要手段;各种文献资料、报刊杂志、广播、电视媒体等提供了大量的统计数据,通过这些资料或媒体可以获得第二手数据.本章主要学习通过统计调查来收集数据,并对收集到的数据进行整理的方法.关于通过科学试验获得数据的方法,教科书通过一个选学栏目作了简单介绍;对于通过查阅资料等间接手段收集数据的方法,主要安排在课题学习和习题中.用样本估计总体是统计的基本思想,抽样调查是实际中经常采用的一种调查方式,也是本节重点介绍的统计调查方法.教科书沿用问题1的情景,设计了问题2,介绍利用抽样调查收集数据.在问题2中,调查全校学生对五种电视节目的喜爱情况,由于学生人数较多,采用全面调查的方式收集数据不太实际,抽样调查是一种经济、有效、省时省力的方法,这就使学生对抽样的必要性有所感受.结合着必要性的讨论,教科书给出了与抽样调查有关的概念和术语,如样本、总体、个体、样本容量等.为了使样本尽可能具有好的代表性,抽取样本时,要求每一个学生都有相等的机会被抽到,教科书介绍了一种利用学号随机抽取样本,实现简单随机抽样的方法.这个抽样方法简单有效,便于学生理解样本的代表性.有了样本数据,就可以整理、描述和分析样本数据,通过分析样本数据来估计总体的情况.通过问题2的学习,学生经历了一个利用抽样调查处理数据、解决问题的统计过程,对抽样调查的必要性、样本的代表性、单随机抽样,以及通过样本估计总体的思想等有所了解.在问题1,2的基础上,教科书设置了问题3.问题3是比较学生所在学校三个年级学生的平均体重,教科书没有给数据,也没有给分析和解决过程,需要学生自主合作完成.教科书这么做的目的是考虑到统计内容有较强的实践性,希望学生通过亲自参与统计活动这种有效方式学习统计内容.问题3中设置的三个小问题,事实上是给学生完成此问题适当的引导.其中调查方案的确定,需要根据学生自己所在学校的实际情况进行综合权衡,选取相对合适的调查方案.即使是调查同一所学校,也完全可以采用不同的调查方式收集数据,但要能解决所提问题为前提,其实这是辩证地认识两种调查方式特点的过程,更是正确认识统计方法特点的过程.通过问题3,让学生亲自参与在实际问题中收集、整理、描述和分析数据得出结论的统计过程,培养应用意识和解决问题的能力,初步建立数据分析观念,感受统计的思想.“捉-放-捉(capture-recapture)”是生产和科研中经常用到的方法,常常被用来根据部分的情况估计整体的情况,例如估计养鱼池中鱼的个数,森林中某种动物的个数等,这个方法体现了用样本估计总体的思想.教科书在选学栏目“实验与探究瓶子中有多少粒豆子”中,模拟这种方法设计了一个活动,通过学生动手活动体验这种方法,感受用样本估计总体的思想,并了解试验也是获得数据的有效方法.10.2节“直方图”,重点讨论利用直方图来描述数据.对于直方图,学生在前两个学段没有接触,这是本学段学习的一种新统计图.教科书从学生熟悉的问题情景入手:从63名学生中选出40名参加广播体操比赛.选择参赛队员的一个要求是队员的身高应尽可能整齐.我们可以用不同的方法选出符合这个要求的队员,教科书介绍了利用频数分布确定人选的方法.分析数据的频数分布,首先是将数据分组,根据一组数据的最大值、最小值可以确定这组数据的极差,极差反映了数据的变化范围.参照极差,可以确定组距,进而可以将数据进行分组,利用频数分布表给出了身高数据的分布情况,分析频数分布表可以看出大部分学生的身高分布在哪个范围,由此可以确定参赛选手的身高.对于取值比较少的数据(如前一节最喜爱的电视节目),可以用条形图描述频数分布,而对于取值比较多的数据(如身高),分组后可以用直方图来描述频数分布.教科书利用问题4介绍了根据频数分布表作出频数分布直方图的方法.教科书结合一个实际问题介绍直方图描述数据的方法,使得对于统计图表的认识具体化.10.3节“课题学习从数据谈节水”,要求学生综合利用学过的统计知识和方法从事统计活动,经历收集、整理、描述和分析数据的基本过程.教科书选择了一个具有实际意义和时代气息的问题——水资源问题为主题编写课题学习,这不仅有利于统计知识的深入学习,而且具有“节能减污,保护环境”的教育价值.这个课题学习由两部分组成,第一部分要求学生阅读背景材料,从中收集数据,通过数据处理回答问题.第二部分要求学生运用已学的统计调查知识,完成一个以“家庭人均月生活用水量”为题的统计调查活动,并结合第一部分的内容撰写一份报告.课题学习的设计目的,一方面是让学生感受对数据进行合适处理,可以挖掘其中蕴涵的信息,体会统计方法的意义;另一方面是让学生经历在实际问题中收集、整理、描述和分析数据得出结论的统计过程,在经历这个统计调查的过程中,发展学生的数据分析观念,感受统计的思想,逐步建立用数据说话的习惯.(三)本章学习目标1.经历收集数据、整理、描述和分析数据的活动,了解数据处理的过程.了解全面调查和抽样调查两种收集数据的方式,会设计简单的调查问卷.2.通过实例,体会抽样的必要性,了解简单随机抽样.通过简单随机抽样,体会样本估计总体的合理性,能根据统计结果作出简单的判断和预测.3.通过实例,了解频数及频数分布的意义,会用表格整理数据,体会表格在整理数据中的作用.5.能画扇形图和简单频数分布直方图(等距分组的情形),并能利用频数分布直方图解释数据中蕴涵的信息.会根据问题需要选择适当的统计图描述数据,进一步体会统计图在描述数据中的作用.6.通过表格、折线图、趋势图等,感受随即现象的变化趋势.7.通过实际参与收集、整理、描述和分析数据的活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立数据分析观念,培养重视调查研究的良好习惯和科学态度.三、对教学的几个建议1.注意统计思想的渗透与体现2.在统计过程中学习统计,改进学生的学习方式3.挖掘现实生活中的素材进行教学4.准确把握教学要求5.关注信息技术的使用。
人教版七年级数学下册《十章 数据的收集、整理与描述 利用折线图、条形图、扇形图描述数据》教案_9
习本节内容的内驱力。
究活动一:①课件展示条形统计图的制作方法。
②学生观察归纳条形图的特点,熟悉制图方法。
③学生动手实践,尝试绘制条形统计图。
活动二:①借助微课展示扇形图的制作方法。
②学生通过学习微课内容,了解扇形图特点。
明确绘图原来。
③学生动手实践,尝试绘制扇形图。
活动三:①微课视频展示折线图的画法。
②通过微视频了解折线图的特点。
③学生动手实践,尝试绘制折线图。
通过观看课件让学生体会条形图的特点和条形图反映数据的直观性。
学生动手实践亲历画条形统计图的过程。
深对条形图作用的理解。
借助微课提高学生学习兴趣,提高学习效率。
使学生清楚地感知由条形统计图演变成折线统计图的过程,扇形统计图的制作原理,明确扇形图的特点。
部分与总体的百分比。
通过归纳概括统计图的特点和用法。
生的发现问题和提出问题的能力,思考与探索的研究精神。
固1、填空题(1)学校统计了各班级为“希望工程”捐款的金额,为了直观表示出各班捐款的数量情况,应绘制()统计图。
(2)爸爸想把小明每学期数学测试的成绩绘制成一幅统计图,看一看小明的学习成绩是上升还是下降,选用()统计图比较恰当。
(3)某公司进行了一项市场调查,了解到各品牌冰箱所占的市场份额,绘制成()统计图比较恰当。
2、如图,要想知道2000年10万人中初中人数是否达到了总人数的三分之一,应该看哪个统计图?要想知道2000年10万人中有多少大学生,应该看哪个统计图?要想知道大学生人数是否持续增长,应该看哪个统计图?3、随着我国精准扶贫工作的深入开展,小明家近两年的家庭收入也发生了变化.经测算2016年棉花收入占48%,粮食收入占29%,副业收入占23%;2017年棉花收入占36%,粮食收入占33%,副业收入占31%,并绘制成了两幅扇形统计图.下列说法正确的是( )A.棉花收入2016年比2017年多B.粮食收入2017年比2016年多C.副业收入2017年比2016年多D.棉花收入哪年多不能确定4、某校九年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,九年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)求本次调查共抽取了名学生的征文;(2)将上面的条形统计图和扇形统计图补充完整;(3) 扇形图中“爱国”所对应的圆心角的度数是。
人教版七年级数学下第十章-数据的收集与整理归类总结
第十章数据的收集与整理【知识梳理】一、调查与收集数据想知道“喜欢哪种动物的同学最多”,要通过调查来收据数据.其过程主要有如下步骤:1、明确调查问题——喜欢哪种动物的同学最多;2、明确调查对象——全班每个同学;3、选择调查方法——采用问卷调查;4、展开调查——每位同学将自己最喜欢的动物写在调查问卷上,收集每位同学最喜欢的动物,进行编号;5、整理数据——用“划记法”记录数据;6、得出结论——划记最多的动物,即为同学们喜欢的最多的动物;7、描述数据——统计表是描述数据最常用的方式,为了更直观地获取信息,还可以用条形统计图和扇形统计图来描述数据.二、调查方式的有关概念统计调查是收集数据常用的方法,一般有全面调查和抽样调查两种方式.实际上最常用的调查方式是抽样调查.1、全面调查:在“喜欢哪种动物的同学最多”调查活动中,全班同学都是考察对象。
像这样考察全体对象的调查属于全面调查,又称为“普查”.2、抽样调查:在“调查中小学生的视力情况”调查活动中,采用了调查部分学生的方式来收集数据,根据部分学生的视力来估计整个地区学生的视力情况.这种调查称为抽样调查.这里,整个地区的中小学生的视力情况是要考察的全体对象,称为总体;所有实际被调查的小学生、初中生和高中生的视力组成一个样本.注意:(1)抽样调查只考虑总体中的一个样本,因此其优点是调查范围小,节省时间、人力、物力,但其调查结果往往不如全面调查得到的结果准确.(2)抽样调查时一般应注意:被调查的对象不能太少,被调查的对象应是随意抽取的,调查的对象应是真实的.因此,抽样调查时既要关注样本的广泛性又要关注其代表性.方法点拨:(1)全面调查是对总体中每个对象进行调查,调查范围广,数据详细;而调查样本有局限性,数据不全面;(2)当受客观条件限制,无法对所有对象进行全面调查时,往往采用抽样调查;(3)当调查具有破坏性时,不允许进行全面调查;4. ⑴总体:把所要考察对象的①叫总体.⑵个体:②考察对象叫做个体.⑶样本:从总体中所抽取的一部分③叫做总体的一个样本.⑷样本容量:样本中个体的④叫做样本容量.规律总结:①弄清考察对象是明确总体、个体、样本的关键;②总体或样本中的每一个数据表示个体,不同的个体在数值上是可以相同的,样本中有多少个体,样本容量就是多少,样本容量没有单位.三、统计图的选择——条形统计图、扇形统计图和折线统计图,它们各具特色:条形统计图能清晰地展现出每个项目的具体数目,扇形统计图能清晰地展现出各部分在总体中所占的百分比,折线统计图能清晰地展现出事物变化的情形。
人教版七年级数学下册数据的收集整理与描述《统计调查(第1课时)》示范教学课件
合理选择收集数据的方式
(1)对调查范围比较小且容易调查的,应采用实地调查.
(2)对调查对象比较复杂、不常见的,可以采用查阅资料或上网搜索等方式进行调查.
总之,采用哪种方式一定要结合实际问题来决定,具体问题具体分析.
DCADACDDAD
其中 A 代表红色,B 代表黄色,C 代表绿色,D 代表蓝色,E 代表白色.根据上面的结果,你能说出该班同学喜欢什么颜色的人最多吗?
颜色
划记
人数
A
7
B
5
C
8
D
15
E
5
解:根据上面的数据整理成如下表格:
由表格,知该班同学喜欢蓝色的人最多.
节目类型
划记
人数
百分比
A 新闻
4
8%
B 体育
10
20%
C 动画
15
30%
D 娱乐
18
36%
E 戏曲
3
6%
合计
50
50
100%
全班同学最喜爱节目的人数统计表
为了更直观地看出表中的信息,还可以用条形图和扇形图来描述数据.
问题:条形统计图、折线统计图、扇形统计图有哪些优缺点?如何选用合适的统计图描述数据?
如果要了解全班同学对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,你会怎么做?
为解决问题,需要进行统计调查.
问题
首先可以对全班同学采用问卷调查的方法收集数据,为此要设计调查问卷.
调查问卷是收集数据的一种工具,是调查者根据调查目的所设计的由一系列问题、备选答案和说明等组成的一种调查形式.
人教版七年级下册数学第10章 数据的收集、整理与描述 数据的收集与描述
感悟新知
知2-练
2. 设计调查问卷时要注意( C ) ①问题应尽量简明;②不要提问被调查者不愿意回 答的问题;③提问不能涉及提问者的个人观点; ④提供的选择答案要尽可能全面;⑤问卷应简洁. A.①②④⑤B.①③④⑤ C.①②③④⑤D.①⑤
感悟新知
知识点 3 统计图
知3-讲
1.数据的描述方法有: 统计表和统计图两种.其中统计图常见的有: 条形统计图,折实际需要,常要把日常工作中所得到的相互关联的 知2-讲 数据按照一定的要求进行整理、归类,并按照一定的顺 序把数据排列起来,制成表格,这种表格叫做统计表. (2)统计表的作用: ①使数据更直观、清楚,便于分析; ②用数据把研究对象之间的变化规律清楚地表示出来; ③用数据把研究对象之间的差别清楚地表示出来,以便 于人们分析问题和研究问题.
知2-讲
感悟新知
知2-讲
选项
A
B
C
问题
划 记
人 数
百 分 比
划 记
人 数
百 分 比
划 记
人 数
百 分 比
1
2
感悟新知
归纳
知2-讲
1.设计调查问卷要根据调查的需要和要求进行设计,如果考虑不 周,有的数据了解不到,调查的结果就不具备代表性.因此设计 调查问卷时要进行周密的考虑.一份调查问卷的设计包括问题的 设计和答案的设计:(1)问题的设计要求:①表述要清楚;②表述 要简单明了;③一个问题只能包含一个内容;④易于回答.(2)答 案的设计:①答案要不同;②答案要涉及各种情况.
的变化规律.
感悟新知
知2-讲
例3 某厂准备在“六一”儿童节时送一批气球给幼儿园的 小朋友,特地对50名小朋友最喜欢的气球颜色进行调 查,数据如下: 红蓝红黄红蓝绿绿黄红 红蓝红蓝蓝蓝红蓝红绿 黄红红蓝红绿黄红黄红 黄红绿蓝蓝黄蓝红蓝红 绿红红蓝蓝红红黄蓝绿
人教版七年级数学(下册)第十章_数据的收集、整理与描述教案解析
第十章数据的收集、整理与描述本章内容本章主要内容是通过数据的收集——全面调查和抽样调查,数据的整理——频数分布表(没有给出概念),数据的描述——统计图表,和数据的分析得出结论的一般过程。
问题1回顾了全面调查,介绍了问卷调查的方法,用表格整理数据,用条形统计图和扇表统计图描述数据以及扇形统计图的画法。
问题2和问题3介绍了抽样调查。
结合问题2讨论了抽样调查的必要性,同时给出了抽样调查的有关概念和术语,还讨论了抽样调查的代表性,介绍了简单随机抽样的方法。
问题3是利用分层抽样获取样本,通过分析样本数据,利用样本估计总体的例子。
接着从学生熟悉的问题入手,介绍了频数分布直方图和频数分布折线图的画法,从而使对统计图表的认识具体化。
最后是课题学习:从数据谈节水。
三维目标知识目标1、了解全面调查,会设计简单的调查问卷,会用表格整理数据,会画扇形统计图;2、了解抽样调查及相关的概念和术语,理解抽样调查的必要性和代表性;3、了解频数及频数分布,掌握划记法,会画频数分布直方图和频数分布折线图。
过程目标经历全面调查和抽样调查的一般过程,了解这两种调查的优缺点,感受抽样调查的必要性;通过案例了解简单随机抽样,体会用样本估计总体的思想。
情感目标通过实际参与收集、整理、描述和分析数据的活动,感受统计在生产和生活中的作用,增强学习统计的兴趣,初步建立统计的观念,培养重视调查研究的良好习惯和科学态度。
重点、难点收集、整理和描述数据是重点;样本的抽取,频数分布直方图的画法是难点。
课时分配10.1统计调查…………………………………… 3课时10.2直方图……………………………………… 2课时10.3课题学习从数据谈节水………………… 2课时本章小结………………………………………… 2课时10.1统计调查(一)教学目标1、了解全面调查的概念;2、会设计简单的调查问卷,收集数据;3、掌握划记法,会用表格整理数据;4、会画扇形统计图,能用统计图描述数据;5、经历统计调查的一般过程,体验统计与生活的关系.重点难点:全面调查的过程(数据的收集、整理、描述)是重点;绘制扇形统计图是难点。
人教版七年级数学下册第十章《数据的收集,整理与描述》教学设计
数据的收集、整理与描述小结人教版《义务教育课程标教科书·数学》(七年级下册第十章)授课教师:《数据的收集、整理与描述小结》教学设计(一)内容和内容解析本课是人教版七年级下册“第十章数据的收集,整理与描述的小结”。
主要的内容是通过解决一个实际生活问题,从而回顾,复习整个一章的知识。
内容解析:本章第一节的内容就是统计调查,已经对数据的处理经历的四步:收集数据,整理数据,分析数据,描述数据进行了详细的介绍,并且介绍了收集数据的一种重要方式---调查问卷。
也学习了如何利用表格整理数据,并且根据问题需要,选择适当的统计图描述数据。
通过绘制条形图,扇形图和折线图体会了不同统计图的优缺点。
本课是对这节内容的提高和升华,通过解决一个实际生活问题(要了解七年四班同学周一至周五平均每天使用手机上网的时间情况),进一步强化学生对统计调查的认识,进一步提高学生的数据意识,体会数学的应用价值。
根据内容分析,本节课的重点是:处理数据的四个过程以及选择适当的统计图描述数据。
(二)目标和目标解析教学目标:1.体会数据处理过程中各个环节之间的联系;能选择合适的统计图对数据进行整理和描述。
2.通过实际参与收集,整理,描述和分析数据的活动,感受统计在实际生活中的作用。
增强学习统计的兴趣,培养重视调查研究的良好习惯和科学态度。
3.通过解决实际问题,让学生认识数学与人类生活的密切联系;通过研究解决问题的过程,进一步提高学生的数据意识,体会数学的应用价值,感受合作学习和运用所学知识解决问题的成功经验。
目标解析:目标1达成的标志是:学生能够按照教师的引导,明确数据处理的过程要经过四步:收集数据,整理数据,描述数据,分析数据;能够根据表格中的数据,绘制出条形统计图和扇形统计图。
目标2达成的标志是:学生参与并绘制完成条形图和扇形图,并且根据条形图和扇形图进行简单的分析,从而解决教师所提出的问题。
目标3达成的标志是:学生能够积极参与课堂活动,主动参与小组讨论,交流活动,表现出求知的欲望、主动展示自己学习成果。
人教版七年级数学下第十章数据的收集、整理10.2直方图
1. 为了解某校九年级男生的身高情况,该校从九年级随机找来 50 名男生进 行了身高测量,根据测量结果(均取整数,单位:cm) 列出了下表.
根据表中提供的信息回答下列问题: (1) 数据在 161~165 范围内的频数是_1_2__; (2) 频数最大的一组数据的范围是_1_6_6~_1_7_0__; (3) 估计该校九年级男生身高在 176 cm (含 176
2
1
横轴
0 149 152 155 158 161 164 167 170 173 身高/cm
小长方形的宽是组距
2. 为了解某地区新生儿体重状况,某医院随机调取了该地区 60 名新生儿 出生体重,结果(单位:克)如下:
3850 2500 4000 3850 3300 3520 3400
3900 2700 3300 3610 3450 3850 3400
3300 2850 2800 3800 3100 2850 3400
3500 3800 2150 3280 3400 3450 3120
3315 3500 3700 3100 4160 3800 3600
3800 2900 3465 3000 3300 3500 2900
2550 2850 3680 2800 2750 3100
39 (1) 请用你所学的数学统计知识,补全频数分布直方图;
(2) 如果此地汽车时速不低于 80 千米/时即为违章,求这组汽 车的违章频数;
解:18 + 22 = 40.
(3) 如果请你根据调查数据绘制扇形统计图,那么时速在 70~
80 范围内的车辆数所对应的扇形圆心角的度数是__1_4_4_°___.
24.4 19.1 22.7 20.4 21.0 21.6 22.8 20.9 21.8 18.6 24.3 20.5 19.7 23.5 21.6 19.8 20.3 22.4 20.2 22.3 21.9 22.3 21.4 19.2 23.5 20.5 22.1 22.7 23.2 21.7 21.1 23.1 23.4 23.3 21.0 24.1 18.5 21.5 24.4 22.6 21.0 20.0 20.7 21.5 19.8 19.1 19.1 22.4
人教版七年级数学(下册)第十章-数据的收集、整理与描述教案
人教版七年级数学(下册)第十章-数据的收集、整理与描述教案第十章数据的收集、整理与描述本章主要介绍了数据的收集、整理和描述的一般过程。
数据的收集可以通过全面调查和抽样调查两种方法进行。
数据的整理可以通过频数分布表来进行,而数据的描述则可以通过统计图表来进行。
最后,通过数据的分析得出结论。
问题1回顾了全面调查,介绍了问卷调查的方法,用表格整理数据,用条形统计图和扇形统计图描述数据以及扇形统计图的画法。
问题2和问题3介绍了抽样调查。
结合问题2讨论了抽样调查的必要性,同时给出了抽样调查的有关概念和术语,还讨论了抽样调查的代表性,介绍了简单随机抽样的方法。
问题3是利用分层抽样获取样本,通过分析样本数据,利用样本估计总体的例子。
最后,介绍了频数分布直方图和频数分布折线图的画法。
本章的教学目标包括了对全面调查和抽样调查的了解,会设计简单的调查问卷,会用表格整理数据,会画扇形统计图,掌握划记法,了解频数及频数分布,掌握划记法,掌握画频数分布直方图和频数分布折线图的方法。
本章的重点难点是收集、整理和描述数据,以及样本的抽取和频数分布直方图的画法。
本章的课时分配为统计调查3课时,直方图2课时,课题研究从数据谈节水2课时,本章小结2课时。
在教学过程中,可以通过引入实际问题来引导学生理解和掌握本章的知识和技能。
例如,可以引导学生设计调查问卷,收集关于青年歌手大奖赛的收视情况的数据,并用统计图表来描述数据。
通过实际参与收集、整理、描述和分析数据的活动,可以让学生感受统计在生产和生活中的作用,增强研究统计的兴趣,初步建立统计的观念,培养重视调查研究的良好惯和科学态度。
二、数据的收集为了解决问题,需要进行统计调查。
例如,我们想了解全班同学对新闻、体育、动画和娱乐四类电视节目的喜爱情况,可以采用举手表决或问卷调查等方式进行调查。
问卷调查是一种常用的调查方式,但在采用这种方式时需要设计好调查问卷,包括调查中提出的问题、答案选项以及要求等。
人教版数学七年级下册:(数据的收集、整理与描述)统计调查(教案)
第十章数据的收集、整理与描述10.1统计调查第1课时统计调查(1)【知识与技能】1.了解统计调查、收集数据、整理数据的意义.2.掌握用统计表整理数据的方法.3.掌握用条形图和扇形图来描述数据的方法.4.理解全面调查的概念.5.能用全面调查的方法做一次简单的统计调查.【过程与方法】由问题引入统计调查,在此基础上学习有关概念和方法,然后布置学生用全面调查的方法做一次简单的统计调查.【情感态度】培养学生合作交流的意识和探究精神,体会数学在实际生活中的作用,激发学生爱数学的热情.【教学重点】用统计表整理数据,用条形图和扇形图描述数据.【教学难点】设计调查问卷,收集数据,扇形统计图的画法.一、情景导入,初步认识问题如果要了解全班同学对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,你会怎么做?为了解决这个问题,需要做________.首先设计问卷,用问卷调查法_____数据.为了使被调查的人易于答卷,也为了收集数据便于操作,所以最好将问卷的题目设计成______题,请设计问卷.二、思考探究,获取新知提前提出问题,出示设计、制出的调查问卷,然后下发调查问卷,3分钟后收集数据.用表格统计数据.用条形图和扇形图来描述数据.思考:1.条形图和扇形图各自的特点是怎样的?2.怎样画扇形统计图?【归纳结论】1.条形图能够显示每组中的具体数据,易于比较数据之间的差别;扇形图用扇形的大小表示部分在总体中所占百分比,易于显示每组数据相对于总数的大小,但不能直接判断出每组数的绝对大小.2.扇形图通过扇形的大小来反映各个部分占总体的百分比.画扇形图时,用圆代表总体,每一个扇形代表总体的一部分,画扇形时,先确定扇形圆心角的度数,如果某部分占20%,则它所在扇形的圆心角为360°×20%=72°.扇形图画好后,要标明各部分的名称及相应的百分比.3.全面调查:考察全体对象的调查叫做全面调查.三、运用新知,深化理解.1.对“天宫一号”空间站的零部件合格性的调查应采用的调查方式是_____.2.在暑假社会实践活动中,小明所在小组的同学与一家玩具生产厂家联系,给该厂组装玩具,该厂同意他们组装240套玩具.这些玩具分为A、B、C三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数量如图所示.若每人组装同一种型号玩具的速度都相同,根据以上信息,完成下列填空:(1)从上述统计图可知,A型玩具有套,B型玩具有套,C型玩具有套.(2)若每人组装A型玩具16套与组装C型玩具12套所花的时间相同,那么a的值为____,每人每小时组装C型玩具____套.3.“阳光体育”运动在我市轰轰烈烈开展,为了解同学们最喜爱的“阳光体育”运动项目,小王对本班50名同学进行了跳绳、羽毛球、篮球、乒乓球、踢毽子等运动项目最喜爱人数的调查,并根据调查结果绘制了如下的人数分布直方图,若将其转化为扇形统计图,那么最喜爱打篮球的人数所在扇形区域的圆心角的度数为()A.120°B.144°C.180°D.72°4.为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一问题是“你平均每天参加体育活动的时间是多少?”,共有4个选项:A.1.5小时以上B.1~1.5小时C.0.5~1小时D.0.5小时以下如图是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图①中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.【教学说明】题1可采用抢答方式练习,题2、3让学生分组讨论,然后给出正确答案,并说明理由,题4先让学生思考,然后教师给予提示,最后指派学生上台写出解题过程.【答案】1.全面调查2.(1)132 60 48 (2)4 6解析:(1)A型玩具有240×55%=132(套),C型玩具有240×25%=60(套),B型玩具有240-132-60=48(套);(2)由题意得:,解得a=4.故2a-2=6,即每人每小时组装C型玩具6套.3.B解析:喜爱打篮球的人数占总人数的百分比为20/50×100%=40%,因此所求的圆心角度数为360°×40%=144°.4.解:(1)60÷30%=200(名),即本次一共调查了200名学生;(2)选项B的学生有200-60-30-10=100(名),补图略;(3)3000×5%=150(名)四、师生互动,课堂小结统计调查,全面调查,条形图,扇形图1.布置作业:从教材“习题10.1”中选取.2.完成练习册中本课时的练习.统计与现实生活的联系是非常紧密的,通过选择学生感兴趣的典型例题对教学课堂概念进行拓展.在教学过程中,充分体现学生是学习的主体,通过让学生亲自动手收集和整理数据,让学生体会到数学活动充满了乐趣,使学生更好地体会统计思想,建立统计概念,培养学生的创新精神与实践能力.第十章数据的收集、整理与描述10.1统计调查第2课时统计调查(2)【知识与技能】1.理解为什么要进行抽样调查.2.掌握总体、个体、样本、样本容量等概念.3.理解简单随机抽样、分层抽样的概念及它们在抽样调查中的合理性,并能设计出简单随机抽样或分层抽样的方法进行抽样调查.4.掌握折线的画法,并能从折线图中获取信息.【过程与方法】由问题入手,理解抽样调查的合理性与必要性.从而理解总体、个体、样本、样本容量等概念.为了使抽样调查能较好地反映总体,我们必须使抽取的样本具有代表性,这样就顺理成章地引出了简单随机抽样和分层抽样两种简单的抽样方法.最后学习折线图,知道折线图也是描述数据的一种方法.【情感态度】在了解统计思想方法的基础上,锻炼用样本估计总体的本领,提高数学兴趣.【教学重点】抽样调查,简单随机抽样,分层抽样,折线统计图.【教学难点】抽样方案的制订,折线图.一、情境导入,初步认识问题1 某校有2000名学生,要想了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,怎样进行调查?分析:如果采用全面调查,那么花费时间长,消耗人力、物力大.因此,需要寻找一种只要调查部分学生就能了解全体学生喜爱各类电视节目的情况的方法.达到省时省力又能解决问题的目的.这种调查方法就是________.这样,就必须引入总体、个体、样本及样本容量的概念.“总体”的定义:________.“个体”的定义:________.“样本”的定义:________.“样本容量”的定义:________.为了使样本能较好地反映总体的情况,除了有合适的________外,抽取时还要尽量使每一个个体都有________被抽到,这种抽样方法叫________.问题2 某地区有500万电视观众,要想了解他们对新闻、体育、动画、娱乐、戏曲五类节目的喜爱情况,应怎样调查?分析:由于这500万人个体差异大(如年龄段),所以不适合________抽样,而应当分成青少年、成年人、老年人三个层次,在每个层次进行________抽样,然后汇总调查结果,这种抽样方法叫________________.【教学说明】全班同学先阅读教材,再完成以上自学提纲.二、思考探究,获取新知思考 1.为什么要进行抽样调查?2.什么叫总体、个体、样本、样本容量?3.什么叫简单随机抽样?什么叫分层抽样?4.什么情况下适宜简单随机抽样?什么情况下适宜分层抽样?5.折线图的特点是什么?【归纳结论】抽样调查:从全体对象中抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况,这种调查方法叫抽样调查.总体:要考察的全体对象称为总体.个体:组成总体的每一个考察对象称为个体.样本:从总体抽取的一部分个体组成一个样本.样本容量:样本中个体的数目叫样本容量.(注意:样本容量是一个数目,不能带单位,样本容量一定要适当,太少,则不能较好地反映总体的情况,太多,达不到省时省力的目的.)适合抽样调查的情况:(1)总体数目巨大;(2)调查具有破坏性.简单随机抽样:总体中的每一个个体都有相等的机会被抽到,这样的抽样方法叫简单随机抽样.分层抽样:先将总体按一定的要求分成若干层次,在每个层次都进行简单的随机抽样.然后汇总调查结果,这种抽样方法叫分层抽样.简单随机抽样适合的情况:个体的差异不大.分层抽样适合的情况:个体的差异大.折线图的特点:能较好反映数据的变化趋势.三、运用新知,深化理解1.下列调查中,适宜采用全面调查(普查)方式的是()A.调查一批新型节能灯泡的使用寿命B.调查长江流域的水污染情况C.调查重庆市初中生视力情况D.为保证“神舟8号”成功发射,对其零部件进行检查2.要了解我国八年级学生的视力情况,你认为合适的调查方式是.3.如图是我市城乡居民储蓄存款余额的统计图,请你根据图写出两条正确的信息:(1)________________________;(2)________________________.城乡居民储蓄存款余额(亿元)4.如图是根据我市2007年至2011年财政收入绘制的折线统计图,观察统计图可得:同上年相比,我市财政收入增长速度最快的年份是_______年,比它的前一年增加_______亿元.5.某专业户要出售100只羊,现在市场上羊的价格为每千克11元,为了估计这100只羊能卖多少钱,该专业户从中随机抽取5只羊,每只羊的重量如下(单位:千克):26 31 32 36 37(1)在这个问题中,样本是指什么?总体是指什么?(2)估计这100只羊能卖多少钱?6.某种电脑在七个月之内销售量增长变化情况如图所示,下列结论中不正确的是()A.2~6月销售量逐月减少B.7月份的销售量开始回升C.这7个月中,每月的销售量不断上涨D.这7个月中销售量有涨有跌【教学说明】题1、2、5考查的是全面调查、抽样调查、样本、总体、个体等概念;题3、4、6考查的是从折线统计图中获取信息.【答案】1.D2.抽样调查3.(1)2011年我市城乡居民储蓄存款余额达到239.6亿元(2)我市城乡居民储蓄存款余额逐年增长(答案不唯一,合理即可)4. 2011 505.解:(1)样本是5只羊的重量;总体是100只羊的重量.(2)5只羊的平均重量是:(26+31+32+36+37)÷5=32.4(千克),故100只羊的重量约为100×32.4=3240(千克),可卖3240×11=35640(元)6.C四、师生互动,课堂小结点学生口答,老师将小结内容放映在屏幕上.1.布置作业:从教材“习题10.1”中选取.2.完成练习册中本课时的练习.本课时主要讲解抽样调查问题,抽样调查要注意选取的样本应具有广泛性和代表性,由样本估计总体时,要搞清总体和样本的比例及样本容量的大小.通过这些问题,让学生学会用数据和事实说话,培养学生实事求是的科学态度,促进学生学习方式的转变,积极主动地参与活动.。
人教版数学七年级下册 数据的收集、整理与描述 专题
故答案为:50,108°. (2) 由 (1) 得 C 活动小组人数为 15 名,补全图形如右:
(3) 估计参加“B”活动小组的人数有: 1500× 5 =150(名) .
50
答:估计参加“B”活动小组的有 150 名学生.Fra bibliotek由题意得
6 12%
50,
所以 a=50×32%=16.
(2) 由题意得出,安全行驶速度小于或等于 44 km/h,
因为该时段检测车辆样本中安全行驶的车辆占总监测车
辆的 ,
所以估计其中安全行驶的车辆数为 20000× =19200.
1. 为了解某初级中学落实《中共中央国务院关于全面加 强新时代大中小学劳动教育的意见》的实施情况,调查 组从该校全体学生中随机抽取部分学生,调查他们平均 每周劳动时间 t(单位:h),并对数据进行整理、描述 和分析. 以下是根据调查结果绘制的统计图表的一部分.
了《中小学生课外读物进校园管理办法》的通知.某学校
根据通知精神,积极优化校园阅读环境,推动书香校园建
设,开展了“爱读书、读好书、善读书”主题活动,随机 抽取部分学生同时进行“你最喜欢的课外读物”(只能选 一项) 和“你每周课外阅读的时间”两项问卷调查,并绘 制成如图 1,图 2 的统计图.图 1 中 A 代表“喜欢人文类” 的人数,B 代表“喜欢社会类”的人数,C 代表“喜欢科 学类”的人数,D 代表“喜欢艺术类”的人数.已知 A 为 56 人,且对应扇形圆心角的度数为 126°.请你根据以上 信息解答下列问题:
请根据图中提供的信息,解答下列问题:
(1) 本次随机调查的学生有 名,在扇形统计图中
“C”部分圆心角的度数为
;
(2) 通过计算补全条形统计图;
人教版初一数学下册重点难点知识总结:数据的收集、整理与描述.doc
人教版初一数学下册重点难点知识总结:数据的收集、整理与描述七年级下册数学知识点:数据的收集、整理与描述一、目标与要求1.了解全面调查的概念;会设计简单的调查问卷,收集数据;掌握划记法,会用表格整理数据;会画扇形统计图,能用统计图描述数据;经历统计调查的一般过程,体验统计与生活的关系。
2.经历数据的收集、整理和分析的模拟过程,了解抽样调查、样本、个体与总体等统计概念;学会从样本中分析、归纳出较为正确的结论,增强用统计方法解决问题的意识。
3.理解频数、频数分布的意义,学会制作频数分布表;学会画频数分布直方图和频数折线图。
二、重点学会画频数分布直方图;分层抽样的方法和样本的分析、归纳;抽样调查、样本、总体等概念以及用样本估计总体的思想;全面调查的过程(数据的收集、整理、描述)。
三、难点绘制扇形统计图;样本的抽取;分层抽样方案的制定;确定组距和组数。
四、知识点、概念总结1.数据的整理:我们利用划记法整理数据,如下图所示,2.数据的描述:为了更直观地看出上表中的信息,我们还可以用条形统计图和扇形统计图来描述数据。
如下图所示:3.全面调查:考察全体对象的调查方式叫做全面调查。
4.抽样调查:抽样调查是,一种非全面调查,它是从全部调查研究对象中,抽选一部分单位进行调查,并据以对全部调查研究对象作出估计和推断的一种调查方法。
显然,抽样调查虽然是非全面调查,但它的目的却在于取得反映总体情况的信息资料,因而,也可起到全面调查的作用。
5.抽样调查分类:根据抽选样本的方法,抽样调查可以分为概率抽样和非概率抽样两类。
概率抽样是按照概率论和数理统计的原理从调查研究的总体中,根据随机原则来抽选样本,并从数量上对总体的某些特征作出估计推断,对推断出可能出现的误差可以从概率意义上加以控制。
习惯上将概率抽样称为抽样调查。
6.总体:要考察的全体对象称为总体。
7.个体:组成总体的每一个考察对象称为个体。
8.样本:被抽取的所有个体组成一个样本。
第10章+数据的收集知识点总结及思维导图+2023—2024学年人教版数学七年级下册
第10章数据的收集、整理与描述【思维导图】10.1统计调查【知识点】1.在统计调查中,我们采用问卷调查的方法收集数据,利用表格整理数据,利用统计图描述数据,通过分析表和图来了解情况.2.统计图通常有条形统计图、扇形统计图、折线统计图.3.扇形统计图反映的是部分在整体中所占的比例,条形统计图能反映出各部分的具体数目,折线统计图反映了变化趋势,据此可选择合适的统计图来描述数据.4.扇形统计图的制作步骤:(1)根据有关数据先算出各部分在总体中所占的百分数,即部分数据×100%;再算出各总体数据部分圆心角的度数,公式:各部分扇形圆心角的度数=部分占总体的百分比×360°;(2)按比例取适当半径画一个圆;(3)按求得的扇形圆心角的度数用量角器在圆内量出各个扇形的圆心角的度数;(4)在各扇形内写上相应的名称及百分数,并用不同的标记把各扇形区分开来.5.统计调查的方法有全面调查和抽样调查. 考察全体对象的调查叫做全面调查,也叫普查.全面调查收集到的数据全面、准确,但一般花费多、耗时长,而且有些调查不宜用全面调查.6.只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况,这种调查方法叫做抽样调查,抽样调查中,抽取的样本必须具有代表性、广泛性和机会均等性.抽取的样本要有随机性,为了使样本能较好的反映总体的情况,除了有合适的样本容量外,抽取时还有尽量使每一个个体都有相等的机会被抽到.7.要正确选择合理的调查方式,一般来说,对于具有破坏性的调查、无法进行全面调查、全面调查的意义和价值不大时,应选择抽样调查,对于精确度要求高的调查、事关重大的调查往往选用全面调查.8.要考察的全体对象称为总体,组成总体的每一个考察对象称为个体,被抽取的那些个体组成一个样本,样本中个体的数目,称为样本容量.9.样本考察对象是物体某一方面的特征数据,不是物体本身,样本容量是一个数,不带单位.10.抽取样本的过程中,总体的每一个个体都有相等的机会被抽到,像这样的抽样方法是一种简单随机抽样.10.2直方图【知识点】1.绘制频数分布直方图的一般步骤是:(1)计算最大值与最小值的差;(2)决定组距和)(3)列频数分布表;(4)画频数分布直方图.组数;(组数= 最大值−最小值组距【注意】(1)一般每组数据取值含左端点,不含右端点;(2)由组距确定组数时,当最大值与最小值的差不能被组距整除时,组数要加1. 同样由组数确定组距时,组距也要增加.2.一般地,数据越多,组数也越多,当数据在100个以内时,按照数据的多少,常分成5-12组.3.把所有数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围)称为组距.4.各个小组内数据的个数叫做频数,常采用划记法进行累计.5.为了更直观形象地看出频数分布情况,可以画出频数分布直方图. 频数分布直方图是= 频数)来反映数据落在各个小组内的频数的大小,小长以小长方形的面积(=组距×频数组距方形的宽为组距,小长方形的高是频数与组距的比值. 为了画图与看图方便,一般画等距分组的频数分布直方图,直接用小长方形的高表示频数.各组频数之和等于数据的总个数.习题练习一、选择题1. 为了解某校九年级400名学生的体重情况,从中抽查了50名学生的体重进行统计分析,在这个问题中,总体是指()A. 400名学生B. 被抽取的50名学生C. 400名学生的体重D. 被抽取的50名学生的体重2.某校要调查七、八、九三个年级1200名学生的睡眠情况,下列抽样选取最合适的是()A.选取该校100名七年级的学生B.选取该校100名男生C.选取该校100名女生D.随机选取该校100名学生3.下列调查中,适合用全面调查方式的是()A.了解某班学生的身高情况B.了解一批灯泡的使用寿命C.了解目前中学生的睡眠情况D.了解一批炮弹的杀伤半径4.下列问题中,适合采用全面调查的是()A.中央电视台《开学第一课》的收视率B.某城市居民6月人均网上购物的次数C.调查全班同学最想去的春游目的地D.了解全国中学生的睡眠时间5.某住宅小区六月份1日至6日每天用水量变化情况如图所示,那么这6天的平均用水量是()A.30吨B.31吨C.32吨D.33吨6.汽车的“燃油效率”是指汽车每消耗1L汽油最多可行驶的公里数,如图描述了A,B 两辆汽车在不同速度下的燃油效率情况.根据图中信息,下面4个推断中,合理的是()①消耗1L汽油,A车最多可行驶5km;①B车以40km/h的速度行驶1h,最少消耗4L 汽油;①对于A车而言,行驶速度越快越省油;①某城市机动车最高限速80km/h,相同条件下,在该市驾驶B车比驾驶A 车更省油.A.①①B.①①C.①①D.①①①7.某班主任老师想了解本班学生平均每月有多少零用钱,随机抽取了10名同学进行调查,他们每月的零用钱数目是(单位:元)10,20,20,30,20,30,10,10,50,100,则该班学生每月平均零用钱约为()A.10元B.20元C.30元D.40元二、填空题8.已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是10,5,7,6,第五组的频率是0.2,则第六组的频率是9.某校抽查部分学生1分钟垫球测试成绩(单位:个),将测试成绩分成4组,得到如图所示的不完整的频数直方图(每一组含前一个边界值,不含后一个边界值).已知在120~150 组别的人数占抽测总人数的40%,则1分钟垫球少于90个的有名.10.为了解某产品促销广告中所称中奖率的真实性,某人买了100件该商品调查其中奖率,那么他的做法是(填“全面调查”或“抽样调查”).11.一组数据的最大值与最小值的差为20,若确定组距为3,则分成的组数是.三、解答题12.学校图书馆有励志、文学、科技及漫画四类图书.为了了解学生上周图书借阅情况(每人仅限借阅一本),图书管理员统计后绘制了如图不完整的扇形统计图,请根据图中所给信息解答以下问题:(1)借阅人数最少的是类图书;(2)求借阅文学类图书人数是多少?(3)如果借阅漫画类图书的人数占全校学生总人数的2%,那么全校学生总人数是多少?13.某九年级制学校围绕“每天30分钟的大课间,你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行随机抽样调查,从而得到一组数据.图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:(1)该校对多少学生进行了抽样调查?(2)本次抽样调查中,最喜欢篮球活动的有多少人?占被调查人数的百分比是多少?(3)若该校九年级共有200名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢跳绳活动的人数约为多少?14.育才中学现有学生2870人,学校为了进一步丰富学生课余生活,拟调整兴趣活动小组,为此进行一次抽样调查,根据采集到的数据绘制的统计图(不完整)如下,请你根据图中提供的信息,完成下列问题:(1)图1中“电脑”部分所对应的圆心角为多少?(2)在图2中,将“体育”部分的图形补充完整?(3)爱好“书画”的人数占被调查人数的百分数是多少?(4)估计育才中学现有的学生中,有多少人爱好“书画”?。
人教版七年级数学下册《十章 数据的收集、整理与描述 利用折线图、条形图、扇形图描述数据》教案_6
《利用折线图,条形图,扇形图描述数据》教学设计【教材】人教版数学七年级下册 10.1统计调查【课时安排】第2课时【教材分析】整个第十章都在围绕生活中的数据展开。
统计主要研究如何利用数据进行推断,它通过收集,整理,描述和分析数据,来帮人们对事物的发展作出合理的推断。
数据分析是统计的核心。
收集数据是处理数据的第一个环节。
对于收集到的数据,往往需要进行整理才能看出数据的分布规律,统计中常采用表格来整理数据。
整理数据是处理数据的第二个环节,这个内容也是放在统计的基本过程中学习的。
描述数据是处理数据的第三个环节。
前面第一节课学习了第一,二个环节,本节课是这章的第二节课,主要学习第三个环节描述数据。
选用什么样的统计图描述数据取决于两个方面:一是你面对什么样的数据,二是你要用统计图展示是什么信息。
【学情分析】1.学生在小学已经见过折线图,条形图和扇形图,并且会画折线图和条形图描述数据,但对于扇形图学生只会从扇形图中读取信息,还不会用扇形图来描述数据。
本节课就要教会学生如何画扇形图来描述数据,这是本学段的一个教学要求。
2.初一学生好奇心强,对新鲜事物较敏感,并且较易接受,因此,教学过程中创设的问题贴近学生的生活,问题素材多采用学生感兴趣的事物,这样可以引起学生的注意。
3.初一学生有一定的自学和总结、归纳的能力,多数学生对数学的学习有相当的兴趣和积极性,所以本课给学生提供了足够的主动参与、自主探索的空间。
【教学目标】A:知识目标:1)掌握三种统计图的特点。
2)会制作扇形统计图来描述数据。
B:能力目标:让学生亲身经历和体验运用统计图解决实际问题的过程,培养学生分析问题、解决问题的能力。
C:情感目标:让学生在实践中中感受数学的应用价值,产生对数学的兴趣,养成认真倾听他人发言的习惯,感受与同伴交流的乐趣。
.【教学重点】会用统计图描述数据,体会数形结合的数学思想【教学难点、关键】准确把握三种统计图的特点,并能根据所给数据画出扇形统计图。
人教版七年级下册数学数据的收集、整理与描述
数据的收集、整理与描述知识结构一.统计调查(一)全面调查1.数据处理的基本过程收集数据.整理数据.描述数据.分析数据.得出结论2.统计调查的方式及其优点(1)全面调查:我们把对全体对象的调查称为全面调查.(2)划计法:整理数据时,用正的每一划(笔画)代表一个数据,这种记录数据的方法叫划计法. 例如:统计中编号为1的数据每出现一次记一划,最后记为“正正一”,即共出现11次.(3)百分比:每个对象出现的次数与总次数的比值.注意:①调查方式有两种:一种是全面调查,另一种是抽样调查.②划计之和为总次数,百分比之和为1.③划计法是记录数据常用的方法,根据个人的习惯也可改用其他方法.全面调查的优点是可靠,.真实,抽样调查的优点是省时.省力,减少破坏性.3.表示数据的两种基本方法一是统计表,通过表格可以找出数据分布的规律;二是统计图,利用统计图表示经过整理的数据,能更直观地反映数据的规律.4.常见统计图(1)条形统计图:能清楚地表示出每个项目的具体数目;(2)扇形统计图:能清楚地表示出各部分与总量间的比重;(3)折线统计图:能反映事物变化的规律.5.扇形统计图(1)扇形统计图:用圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫扇形统计图.(2)制作扇形统计图的三个步骤:1°计算各部分在总体中所占的百分比;2°计算各个扇形的圆心角的度数= 360°X该部分占总体的百分比;3°在圆中依次作出上面的扇形,并标出百分比.(3)扇形的面积与对应的圆心角的关系:扇形的面积越大,圆心角的度数越大扇形的面积越小,圆心角的度数越小.(二)抽样调查1.从总体中抽取部分对象进行的调查叫抽样调查.特点:抽样调查只考察总体中的一部分个体,因此它的优点是调查范围小,节省人力.物力.财力,但结果往往不如全面调查得到的结果准确,为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性.2.在统计中,需要考察对象的全体叫做总体,其中从总体中抽取的部分个体叫做总体的一个样本,样本中个体的目叫做样本容量.3.抽样的必要性:总体中的个体数目较多,工作量较(太)大,无法一一考查;受客观条件的限制,无法对个体一一考查;考查具有破坏性,不允许对个体一一考查.4. 抽样调查的要求为了获得较为准确的调查结果,抽样时要注意样本的广泛性和代表性,即采取随机抽查的方法.如:请指出下列哪些调查的样本缺乏代表性.(1)从具有不同层次文化的市民中,调查市民的法治意识;(2)在大学生中调查我国青年的上网情况;(3)抽查电信部门的家属,了解市民对耀服务的满意程度.小结只有选择具有代表性的样本进行抽样调查,才能了解总体的面貌和特征.5. 总体和样本总体:要考察的对象的全体叫做总体.个体:组成总体的每一个考察对象称为个体.样本:从总体当中抽出的所有实际被调查的对象组成一个样本.样本容量:样本中个体的数量叫样本容量(不带单位).思考:为了解东铁营二中初中一年级学生的身高,有关部门从初一年级中抽200名学生测量他们的身高,然后根据一部分学生的身高去估计东铁营二中所有初一学生的平均身高.说出总体. 个体.样本和样本容量.解:总体是:东铁营中初一年级学生每人身高的全体.个体是:每名学生的身高.从中抽取的200名学生的每人身高的集体是总体的一个样本.样本容量是:200二.直方图1.数据的频数分布表反映了一组数据中的每个数据出现的频数,从而反映了在数据组中各数据的分情况.要全面地掌一组数据,必须分析这组数据中各个数据的分布情况.思考:八年级某班20名男生一次投掷标枪测试成绩如下(单位:m): 25,21,23,25,27,29, 25, 28, 30, 29, 26, 24, 25, 27, 26, 22, 24, 25, 26, 28.(1)将这20名男生的测试成绩按从小到大排列,统计出每种成绩的数值出现的频数,并制成统计表;(2)根据统计表回答①成绩小于25米的同学有几人?占总人数的百分之几?②成绩大于28米的同学有几人?占总人数的百分之几?③这些同学的成绩大部分集中在哪个范围内,占总人数的百分比是多少?小结:利用频数.频率分布表,可以清楚地反映出一组数据中的每个数据出现的频数和频率,从而反映这些数据的整体分布情况.2.频数分布直方图为了直观地表示一组数据的分布情况,可以以频数分布表为基础,绘制分布直方图.(1)频数分布直方图简称直方图,它是条形统计图的一种.(2)直方图的结构:直方图由横轴.纵轴.条形图的三部分组成.(3)作直方图的步骤:①作两条互相垂直的轴:横轴和纵轴;②在横轴上划分一引起相互衔接的线段,每条线段表示一组,在线段的左端点标明这组的下限,在最后一组的线段的右端点标明其上限;③在纵轴上划分刻度,并用自然数标记;④以横轴上的每条线段为底各作一个矩形立于数轴上,使各矩形的高等于相应的频数.如:为了了解某地区八年级学生的身高情况,现随机抽取了60名八年级男生,测得他们的身高(单位:cm)分别为15616216317216014115217318017415717414516153165156167161172178156166155140157167156168150164163 155162160168147161157162165160166164154161158164151169 169 162 158 163 159 164 162 148 170 161(1)将数据适当分组,并绘制相应的频数分布直方图;(2)如果身高在的学生身高为正常,试求落在正常身高范围内学生的百分比.小结:画频数分布直方图可按以下步骤:①计算数差;②确定组距与组数;③确定组限;④列频数分布表;⑤画频数分布直方图.其中组距和组数的确定没有固定标准,要凭借经验和研究的具体问题决定.一般来说,组数越多越好,但实际操作比较麻烦,当数据在100个以内时,根据数据的特征通常分成5〜〜12 组.例1.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生.1995年联合国教科文组织把每年4月23日确定为“世界读书日”.下图中扇形是某校三个年级学生人数分布扇形统计图,其中八年级人数为408人,表格中是该校学生阅读课外书籍情况统计表.请你根据图表中的信息,解析下列问题:(1)求该校八年级的人数占全校总人数的百分率.(2)求表格中A,B的值.(3)该校学生平均每人读多少本课外书?比图书种类借阅次数重科普常识840B0.3名人传记81640.2漫画丛书A50.0其它1446思路探索:扇形统计图主要描述各部分在总体中所占的百分比,所有百分比之和为100%,由于七年级占28%,九年级占38%,因此八年级的人数占全校总人数的34%.再看统计表,统计表可以具体看出借阅的次数和比重,由于比重之和应该也是1,所以科普常识类书籍所占的比重应该是1—0.34—0.25 — 0.06=0.35.由于借阅总次数为144・0.06=2400 (次),所以A = 2400 —840 — 816 — 144=600 (次).规律总结:统计表问题要抓住各部分的频数之和等于总体,各部分的频率之和等于1;而扇形统计图中,各部分的百分比之和为100%.例2.刘强同学为了调查全市初中生人数,他对自己所在城区人口和城区初中生人数作了调查: 城区人口约3万,初中生人数约1200.全市人口实际约300万,为此他推断全市初中生人数为12万.但市教育局提供的全市初中生人数约8万,与估计数据有很大偏差.请你用所学的统计知识,找出其中错误的原因.思路探索:本题属于抽样调查,总体是全市人口,抽取的样本是城区3万人口,抽取的样本不具有代表性和广泛性,因此推断的结果与真实数据之间存在偏差.巩固练习一、选择题1.下列调查适合作者普查的是()A.了解在校大学生的主要娱乐方式B.了解我市居民对废电池的处理情况C.日光灯管长要检测一批灯管的使用寿命D.对甲型HINI流感患者的同一车厢乘客进行医学检查2.要了解全校学生的课外作业负担情况,你认为作抽样方法比较合适的是()A.调查全校女生B.调查全校男生C.调查九年级全体学生D.调查七、八、九年级各100人3.要反映某市一周内每天的最高气温的变化情况,宜采用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布直方图4.小明在选举班委时得了28票,下列说法错误的是 ()A.不管小明所在的班级有多少学生,所有选票中选小明的选票频率不变B.不管小明所在的班级有多少学生,所有选票中选小明的选票频数不变C.小明所在班级的学生人数不少于28人D.小明的选票的频率不能大于15.一个班有40名学生,在期末体育考试中,优秀的有18人,在扇形统计图中,代表体育优秀扇形的圆心角是()A. 144B. 162C. 216D. 250步行15%乘车35%骑车6.某校对学生上学方式进行了一次抽样调查,右图是根据此次调查结果所绘制的扇形同就,已知该学校2560人,被调查的学生中汽车的有21人,则下列四种说法中,不正确的是( )A.被调查的学生有60人B.被调查的学生中,步行的有27人C.估计全校骑车上学的学生有1152人D.扇形图中,乘车部分所对应的圆心角为547.一组数据的最大值是97,最小值76,若组距为4,则可分为几组()A. 4B. 5C. 6D. 78.某学校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果件下图,根据此条形图估计这一天该校学生平均课外阅读时间为 ()A.0.96小时B.1.07小时C.1.15小时D.1.50小时人数/人20151050 0,5 1 1.5 2 时间/时9.超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成频数分布直方图(图中等待时间6分钟到7分钟表示大于或等于6 分钟而小于7分钟,其余类同),这个时间段内顾客等待时间不少于六分钟的人数为( )10.某水库水位发生变化的主要原因是降雨的影响,对这个水库5月份到10月份的水位进行统计得到折线统计图如图所示,则该地区降雨最多的时期为 ()月份A. 5〜6月份B.7〜8月份C.8〜9月份D.9〜10月份二、填空题11.为了考察某七年级男生的身高情况,调查了60名男生的身高,那么它的总体是-,个体是,总体的一个样本是.12.小明家本月的开支情况如图所示,如果用于其它方面的支出是150元,那么他家用于教育支出是元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版数学七年级下册--数
据收集的方法
本页仅作为文档页封面,使用时可以删除
This document is for reference only-rar21year.March
数据收集的方法
四川谢晓寒
一、调查方式的选择
例1 下列说法正确的是【】
A.要想了解各球队在赛季的比赛结果,应采用民意调查法
B.某工厂质检人员检测灯泡的使用寿命采用普查
C.要了解某小组各学生某次数学测试成绩采用抽样调查法
D.了解某市中学生的身体素质状况采用抽样调查
解析:要了解各球队在赛季的比赛结果,因球队数相对较少,故应采取普查的方法;要想了解检测灯泡的使用寿命,因其数目较大,易采用抽样调查的方法.要了解某小组各学生某次数学测试成绩,因学生数比较少,故可采取普查的方法;了解某市中学生的身体素质状况,因整个城市的学生数比较多,应采取抽样调查的方法,故知本题选D.
点评:调查方式的选择应将问题的实际情况和各种方法的特点综合起来分析确定.当总体中个体的数目比较多或者受调查条件的限制及有的调查具有破坏性时,就应采用抽样调查的方法,反之,则可采用普查的方法.
二、全面调查和抽样调查区别
全面调查是为一特定目的对所有考查对象所作的调查;抽样调查为一特定目的对部分考查对象所作的调查.全面调查和抽样调查是统计调查的常用方法,它们所考察的对象不同,优缺点也不相同,利用全面调查能得到比较准确的数据,但需要花费大量的人力物力,利用抽样调查可以省时、省力,但是得到的数据不够准确,尤其是如果样本选不好时,就缺乏代表性.那么什么时候选用全面调查,又什么时候选用抽样调查呢
例2 下列调查方式,合适的是【】
A.要了解居民日平均用水量,采用普查方式
B.要了解淮安电视台“有事报道”栏目的收视率,采用普查方式
C.要保证“神舟九号”载人飞船成功发射,对重要零部件的检查采用抽查方式
D.要了解外地游客对“淮扬菜美食文化节”的满意度,采用抽查方式
例3 下列说法正确的是【】
A.为了了解某市今年夏季冷饮市场冰淇淋的质量可采用普查的调查方式进行
B.为了了解一本150页的书稿的错别字的个数,应采用抽查的调查方式进行
C.为了了解炮弹的杀伤力,采取普查方式
D.调查煤矿的安全隐患,采用普查的调查方式进行
解析:一般来说当调查的对象很多又不是每个数据都有很大的意义(如例2(A)中的日平均用水量),或着调查的对象虽然不多,但是带有破坏性(例如例3(C)中的炮弹),应采用抽查方式;如果调查对象不需要花费太多的时间又不具有破坏性(如例3(B)中的书稿)或者生产生活中有关安全隐患的问题(如例2(C)中“神舟九号”载人飞船)就必须采用普查的调查方式进行.
所以:例2应选D;例3应选D.
三、抽样调查应注意的事项
(1)样本抽取要具有随机性:即在抽取样本时总体中的每个个体都具有相同被抽到的可能性,不能带有感情色彩和有意性.
例4 为了估计池塘里有多少条鱼,从池塘里随机捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再在不同的地方捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼______________条.
解析:本题中有个关键点,随机捕捞、标记的鱼完全混合于鱼群、不同的地方捕捞具有了随机性.
答案:20000条.
(2)样本抽取要具有代表性:当总体中的个体数目较大,且又有明显的差异时一定要注意抽取的样本要有代表性.
例5 请指出下列抽样中,样本缺乏代表性的是【】
①在大城市调查我国的扫盲情况;
②在十个城市十所中学里调查我国城市学生的视力情况
③在鱼塘里随机的捕捞100条鱼,了解鱼塘里鱼的生长情况
④在某农村小学里抽查100名学生,调查我国小学生的健康情况
A.①②
B.①④
C.②④
D.②③
解析:大城市的文化情况不能代表全国的实际水平,农村的小学生健康情况会低于全国实际水平的.答案:B.。