2019年海南中考数学压轴题预测周长最小问题(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数中周长最小问题
专题训练
1.如图,已知抛物线y =ax 2
-4x +c 经过点A (0,-6)和B (3,-9). (1)求抛物线的解析式;
(2)写出抛物线的对称轴方程及顶点坐标;
(3)点P (m ,m )与点Q 均在抛物线上(其中m >0),且这两点关于抛物线的对称轴对称,求m 的值及点Q 的坐标; (4)在满足(3)的情况下,在抛物线的对称轴上寻找一点M ,使得△QMA 的周长最小.
解:(1)依题意有⎩⎨⎧a ×0 2
-4×0+c =-6
a ×3
2
-4×3+c =-9
即⎩⎪⎨⎪⎧c =-69a -12+c =-9
····································································· 2分 ∴⎩
⎪⎨⎪⎧a =1c =-6 ················································································· 4分 ∴抛物线的解析式为:y =x
2
-4x -6 ··············································· 5分
(2)把y =x
2-4x -6配方,得y =(x -2)2
-10
∴对称轴方程为x =2 ·································································· 7分 顶点坐标(2,-10)·································································· 10分 (3)由点P (m ,m )在抛物线上
得m =m
2
-4m -6 ······································································ 12分
即m
2
-5m -6=0
∴m 1=6或m 2=-1(舍去) ························································ 13分 ∴P (6,6)
∵点P 、Q 均在抛物线上,且关于对称轴x =2对称
∴Q (-2,6) ··················································································· 15分 (4)连接AP 、AQ ,直线AP 与对称轴x =2相交于点M
由于P 、Q 两点关于对称轴对称,由轴对称性质可知,此时的交点M 能够使得△QMA 的周长最小 17分
设直线AP 的解析式为y =kx +b
则⎩⎪⎨⎪⎧b =-66k +b =6 ∴⎩⎪⎨⎪⎧k =2b =-6
∴直线AP 的解析式为:y =2x -6 18分 设点M (2,n )
则有n =2×2-6=-2 19分
此时点M (2,-2)能够使得△QMA 的周长最小 20分
2.如图,在平面直角坐标系中,直线y =-3x -3与x 轴交于点A ,与y 轴交于点C ,抛物线y =ax 2
-3
3
2x +c (a ≠0)经过点A 、C ,与x 轴交于另一点B . (1)求抛物线的解析式及顶点D 的坐标;
(2)若P 是抛物线上一点,且△ABP 为直角三角形,求点P 的坐标;
(3)在直线AC 上是否存在点Q ,使得△QBD 的周长最小,若存在,求出Q 点的坐标;若不存在,请说明理由.
(1)∵直线y =-3x -3与x 轴交于点A ,与y 轴交于C ∴A (-1,0),C (0,-3) ∵点A ,C 都在抛物线上
∴⎩⎨⎧a +332+c =0c =-3 解得⎩⎨⎧a =33
c =-3
∴抛物线的解析式为y =
33x
2-332x -3=33( x -1)2
-334∴顶点D 的坐标为(1,-3
34) (2)令
33x
2-3
3
2x -3=0,解得x 1=-1,x 2=3 ∴B (3,0) ∴AB 2
=( 1+3)2=16,AC 2=1
2+( 3)2=4,BC 2=3
2+( 3)2
=12
∴AC 2+BC 2=AB 2
,∴△ABC 是直角三角形∴P 1(0,-3)
由抛物线的对称性可知P 2的纵坐标为-3
(3)存在.延长BC 到点B ′,使B ′C =BC ,连接B ′D 交直线过点B ′ 作B ′H ⊥x 轴于H
在Rt △BOC 中,∵BC =12=32, ∴BC =2OC ∴∠OBC =30° ∴B ′H =
2
1
BB ′=BC =32,BH =3B ′H =6,∴OH =3 ∴B ′(-3,-32)设直线B ′D 的解析式为y =kx +b ,则:
⎩⎨⎧
-32=-3k +b
-3
34=k +b 解得⎩⎪⎨⎪⎧k =63b =-2
33联立⎩⎨⎧y =-3x -3y =63x -233 解得⎩⎪⎨⎪⎧x =73y =-7310∴Q (73
,-7310)故在直线AC 上
存在点Q ,使得△QBD 的周长最小,Q 点的坐标为(7
3
,-7310)
3.在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA =3,OB =4,D 为边OB 的中点.
(Ⅰ)若E 为边OA 上的一个动点,当△CDE 的周长最小时,求点E 的坐标;
(Ⅱ)若E 、F 为边OA 上的两个动点,且EF =2,当四边形CDEF 的周长最小时,求点E 、F 的坐标.
解:(Ⅰ)如图1,作点D 关于x 轴的对称点D ′,连接CD ′
与x 轴交于点E ,连接DE
若在边OA 上任取点E ′(与点E 不重合),连接CE ′、DE ′、D ′E ′ 由DE ′+CE ′=D ′E ′+CE ′>CD ′=D ′E +CE =DE +CE 可知△CDE 的周长最小
∵在矩形OACB 中,OA =3,OB =4,D 为边OB 的中点 ∴BC =3,D ′O =DO =2,D ′B =6 ∵OE ∥BC ,∴Rt △D ′OE ∽Rt △D ′BC ,∴
BC OE =
B
D O
D '' ∴O
E =B D O D ''·BC =6
2
×3=1 ∴点E 的坐标为(1,0) ························································ 6分
(Ⅱ)如图2,作点D 关于x 轴的对称点D ′,在CB 边上截取CG =2,连接D ′G 与x 轴交于点E ,在EA 上截取EF =2,则四边形GEFC 为平行四边形,得GE =CF
又DC 、EF 的长为定值,∴此时得到的点E 、F 使四边形CDEF 的周长最小
∵OE ∥BC ,∴Rt △D ′OE ∽Rt △D ′BG ,∴BG OE =
B
D O D '' ∴O
E =B D O D ''·BG =B D O D ''·(BC -CG )=62×1=3
1
∴OF =OE +EF =3
1+2=37
∴点E 的坐标为(3
1,0),点F 的坐标为(37
,0) ··················· 10分