Hubble Space Telescope Ultraviolet Spectroscopy of Fourteen Low-Redshift Quasars
The Hubble space telescope
• 它的位置在地球的大气层之上,因此影像不会受到大气湍 流的扰动,视相度绝佳又没有大气散射造成的背景光,还 能观测会被臭氧层吸收的紫外线
Successful launch in 1990, it made up for the inadequacy of the ground observation, helping astronomers solve many of the basic problem in the history of astronomy, makes the human to astrophysics have more understanding. Is one of the most important instrument in astronomy.
它于1990年成功发射,弥补了地面观测的不足, 帮助天文学家解决了许多天文学上的基本问题, 使得人类对天文物理有更多的认识。是天文史上 最重要的仪器之一。
• In November 2011, with the aid of the Hubble space telescope, astronomers first filmed around black holes exist distant plate structure. • 2011年11月,借助哈勃空间望远镜,天文 学家们首次拍摄到围绕遥远黑洞存在的盘 状构造。
The Hubble space telescope
• Foreign names • The Hubble Space Telescope • named • The astronomer Edwin Hubble
• The Hubble Space Telescope, is named after the astronomer Edwin Hubble, a Telescope in orbit around the earth
空间望远镜介绍
哈勃空间望远镜(Hubble Space Telescope,缩写为HST),是以天文学家爱德温·哈勃(Edwin Powell Hubble)为名,在轨道上环绕着地球的望远镜。
它的位置在地球的大气层之上,因此获得了地基望远镜所没有的好处-影像不会受到大气湍流的扰动,视相度绝佳又没有大气散射造成的背景光,还能观测会被臭氧层吸收的紫外线。
于1990年发射之后,已经成为天文史上最重要的仪器。
它已经填补了地面观测的缺口,帮助天文学家解决了许多根本上的问题,对天文物理有更多的认识。
哈勃的哈勃超深空视场是天文学家曾获得的最深入(最敏锐的)的光学影像据国外媒体报道,早在1996年,著名的哈勃空间望远镜就拍摄到标志性的哈勃深场图像,巨大数量的星系就隐藏在这片小天区中,现在美国宇航局计划进行一次全新的深场成像计划。
哈勃望远镜在捕捉深场图像时将收集极遥远天体的微弱光线,慢慢“堆积”才能揭示宇宙大爆炸数亿年后的情景,否则由于光线太弱而看不到当时宇宙中存在的天体。
在哈勃望远镜于2004年拍摄的“超深场”图像中,收集光线的时间更久,2012年拍摄的“极深场”图像则花了更长的时间才完成成像。
[3]根据巴尔的摩空间望远镜研究所科学家丹安·科介绍:“与超深场图像类似,本次哈勃拍摄的六个超深场图像计划几乎可获得相同品质,在哈勃前沿领域的任务中,收集光线花了45个小时,描绘出宇宙大爆炸后大约五亿年的情景。
”这些图像深刻揭示了宇宙最深处的景象,捕捉到年代非常久远的星系和从未见过的遥远星系。
负责本项研究的科学家认为有些星系是之前尚未被发现的,比如最远的星系MACS0647-JD,就距离地球大约133亿光年处,原始深空场也显示了在仅仅2.5弧分跨度上就存在大约3000个并未被观测到宇宙星系。
[3]作为天体观测的主力,美国宇航局希望哈勃望远镜能维持到2018年,其继任者詹姆斯·韦伯空间望远镜将在不久后发射。
科学研究:探索宇宙奥秘的重要实验仪器
科学研究:探索宇宙奥秘的重要实验仪器介绍科学研究是人类认识自然、探索宇宙奥秘的重要途径之一。
在科学研究中,实验仪器是不可或缺的工具。
实验仪器通过设计精密的实验装置和进行各种测量,帮助科学家收集数据、验证理论以及发现新现象。
本文将介绍几个在探索宇宙奥秘方面起到重要作用的实验仪器。
1. 哈勃太空望远镜(Hubble Space Telescope)哈勃太空望远镜是一颗位于地球轨道上的巡天望远镜,由美国航天局(NASA)与欧洲空间局(ESA)合作开发和运营。
该望远镜于1990年发射升空,主要用于观测遥远星系、行星、星云等天体,以及研究黑洞、暗物质等宇宙物理现象。
哈勃太空望远镜拥有出色的光学性能和极高的分辨率,为天文学家提供了大量珍贵的数据,对宇宙起源、演化以及暗能量等重要问题的研究做出了巨大贡献。
2. 大型强子对撞机(Large Hadron Collider,LHC)大型强子对撞机是位于瑞士和法国边界的地下环形粒子加速器,由欧洲核子研究组织(CERN)建造和运营。
LHC主要用于模拟宇宙起源时期的高能条件,在极小的时间间隔内使粒子进行高速碰撞,并通过探测器观测并记录碰撞产生的粒子行为。
这些实验可以帮助科学家理解基本粒子、核物理、暗物质等重要问题,以及验证现有理论模型或发现新的物理现象。
3. 非线性光学显微成像(Nonlinear Optical Microscopy)非线性光学显微成像是一种基于激光技术的高分辨率成像方法,被用于观察和研究微观天体、生物分子以及材料结构等领域。
相比传统的荧光显微镜,非线性光学显微成像具有更高的分辨率和更好的深度探测能力。
这项技术通过激光与样品相互作用,利用非线性效应生成特定波长的光信号,并通过显微成像系统进行捕捉和分析。
4. 平面偏振光测量仪(Polarimeter)平面偏振光测量仪是一种用于测量光波偏振特性的实验装置。
通过将光与一系列特殊材料或器件相互作用,平面偏振光测量仪可以测量光传播方向、偏振状态以及旋转角度等参数。
哈勃
• 它已经填补了地面 观测的缺口, 观测的缺口,帮助 天文学家解决了许 多根本上的问题, 多根本上的问题, 对天文物理有更多 的认识。 的认识。哈勃的哈 勃超深空视场是天 文学家曾获得的最 深入(最敏锐的) 深入(最敏锐的) 的光学影像。 的光学影像。
仪
WF/PC
器
• 携带哈伯空间望远镜进入轨道的航天飞机升空 携带哈伯空间望远镜进入轨道的航天飞机升空 •在发射时,哈勃空间望远镜携带的仪器如下:
空 间 望 远 镜
哈
勃
哈勃小常识
• 科技名词定义
• 中文名称:哈勃空间望远镜 • 英文名称:Hubble space telescope;HST • 定 义:1990年4月24日发射的,设置在地球轨道上的,
通光口径2.4m的反射式天文望远镜。用于从紫外到近红 外(115—1 010nm) 探测宇宙目标。配备有光谱仪及高速 光度计等多种附属设备。由高增益天线通过中继卫星与地 面联系。计划工作15年。为纪念E.P.Hubble而得名。 •
GHRS
• 广域和行星照相机
•
HSP
高速光度计
FOC
•暗天体照相机 暗天体照相机
GHRS
• 戈达德高解析摄谱 仪
•
FOS
暗天体摄谱仪
维护改进
1993年 年 1997年2月 年 月 1999年12月 年 月 2002年3月 年 月
哈勃的维修
Hale Waihona Puke 所属学科:天文学(一级学科);天文仪器(二级学
科)
本内容由全国科学技术名词审定委员会审定公布
–哈勃空间望远镜 哈勃空间望远镜 (Hubble Space Telescope, Telescope,缩写为 HST), ),是以天文学 HST),是以天文学 家爱德温· 家爱德温·哈勃 (Edwin Powell Hubble)为名, Hubble)为名,在 轨道上环绕着地球 的望远镜。 的望远镜。它的位 置在地球的大气层 之上, 之上,因此获得了 地基望远镜所没有 的好处的好处-影像不会受
哈勃空间望远镜
哈勃空间望远镜
哈勃空间望远镜(Hubble Space Telescope,HST)是哈勃太空望远镜,由美国宇航局(NASA) 、欧洲航天局(ESA) 共同发射,于1990年4月24日在升空,搭乘美国宇航局空间航行者号航天飞机把它送入轨道,它是历史上功能最强大的太空望远镜之一。
哈勃空间望远镜装备了五个先进的科学仪器,这些仪器可以让它窥探宇宙、量度恒星、揭
示植物的秘密,太阳的活动与它的构造,揭示星系的结构与运动,还可以测量距离、黑洞
的质量等宇宙范围内信息。
这些仪器中有高能X射线望远镜,用于搜索天体中高温气体的
分布特性;望远镜地质仪,通过光谱分析研究任何恒星或星系;紫外望远镜,用于测量黑
洞等;极紫外望远镜,用于搜索超新星;还有多波段彩色摄影望远镜,它能用非常令人惊叹的颜色成像拍摄照片,使观众仿佛置身宇宙范围的美景之处。
望远镜的设计采用了透镜、镜片和超精确的阵列来组成,以达到最佳的图像质量,它的设计技术不仅可以远观宇宙的变化,而且能够发现三十万个以上的星体,其中多数是无法通过地面望远镜来看到的。
所以,我们可以发现宇宙深处从未被发现过的现象,从中了解宇宙科学问题,更深入了解星系等宇宙空间的许多奥秘。
宇宙里至少有两万亿个星系,是人类此前预想的 10 倍
宇宙里至少有两万亿个星系,是人类此前预想的 10 倍只能在《好奇心日报()》发布,即使我们允许了也不许*本文本文只能在《好奇心日报(转载*无穷无尽的宇宙边界最近变得更加无穷无尽:人类目前所知道的星系数量是之前预想的大约 10 倍。
英国诺丁汉大学天体物理学家克里斯多夫·J·孔塞利切(Christopher J. Conselice)领导的一项研究发现,宇宙中至少有两万亿个星系,这一结果上周发表于《天文物理学杂志》(The Astrophysical Journal)。
他的团队分析了能够一直看到大约 130 亿年前的哈勃太空望远镜(Hubble Space Telescope)和其他远距离观测仪器所观测到的天空。
这些天文学家构建了各种三维模型来测量不同时期的星系数量。
为了得到两万亿这个数字,他们不仅使用了能够观测到最古老、最模糊星系的哈勃望远镜和地球上的大型望远镜,而且做了一些数学工作。
孔塞利切博士表示:“这比任何人能够想到的数字都大得多,而且真实的数字可能比这还要大。
”在此之前人们认为,可观测的宇宙中大约有 2000 亿个星系。
你可能会问——这有什么区别吗?换句话说,你也许找到了几千亿个星系,但是谁会在乎它的多少呢?实际上,这项发现对于理解宇宙的演化方式具有重要意义。
研究人员发现,大多数最为古老的星系的质量都不高,类似于我们所处的银河系附近一些小型“卫星”星系。
而且如今的低质量星系大约是过去的十分之一,这说明在过去的几十亿年里,不同星系一直在相互碰撞和相互结合。
这项研究还表明,即将于 2018 年发射的、功能更为强大的詹姆斯·韦伯太空望远镜(James Webb Space Telescope )具有极其重要的意义。
“它可以对我们勉强能够探测到的这些星系进行研究——这些低质量星系实际上是宇宙中最初的星系,”孔塞利切博士说。
翻译 熊猫译社 刘清山题图来自 Business Insider© 2016 THE NEW YORK TIMES哈勃太空望远镜在“宇宙起源深空巡天”(Great Observatories Origins Deep Survey )计划中观测到的一幅具有数千个星系的画面。
高三英语天文观测设备单选题50题
高三英语天文观测设备单选题50题1. The astronomers in the Greenwich Observatory often use a large _____ to observe distant stars.A. microscopeB. telescopeC. binocularsD. magnifier答案:B。
解析:本题考查天文观测设备的基础概念。
telescope是望远镜,是用于观测遥远星体的设备,这与天文台(observatory)的观测功能相匹配。
microscope是显微镜,用于观察微小的物体,如细胞等,与观测星体无关。
binoculars是双筒望远镜,一般用于较近距离的观测,不太适合天文台对遥远星体的观测。
magnifier是放大镜,主要用于放大较小的物体,不用于天文观测。
2. Many important astronomical discoveries were made in the Yerkes Observatory. One of the key tools there is a powerful _____.A. spectrometerB. barometerC. telescopeD. altimeter答案:C。
解析:在叶凯士天文台 Yerkes Observatory)进行天文观测,关键的工具之一是望远镜 telescope)。
spectrometer是光谱仪,主要用于分析光谱,不是天文台最主要的观测工具。
barometer是气压计,用于测量气压,与天文观测无关。
altimeter是高度计,用于测量高度,也与天文观测不相关。
3. The Hubble Space Telescope has made remarkable contributions to astronomy. Which of the following best describes the function of a telescope?A. It measures the weight of celestial bodies.B. It collects and focuses light from distant objects.C. It changes the color of celestial bodies.D. It creates artificial stars.答案:B。
哈勃望远镜英文阅读理解
哈勃望远镜英文阅读理解The Hubble Space Telescope: A Window to the CosmosThe Hubble Space Telescope has been a groundbreaking achievement in the field of astronomy since its launch in 1990. This remarkable instrument has revolutionized our understanding of the universe, providing us with unprecedented insights into the celestial bodies and phenomena that lie beyond our planet. Through its powerful lens, the Hubble has captured breathtaking images and gathered invaluable data, shedding light on the mysteries of the cosmos.One of the Hubble's most significant contributions has been its ability to observe distant galaxies with unparalleled clarity. By peering deep into the universe, the telescope has allowed us to witness the evolution of these galactic structures over billions of years. This has enabled astronomers to study the formation and development of galaxies, as well as the role of dark matter and dark energy in shaping the large-scale structure of the universe.The Hubble has also been instrumental in the study of exoplanets, or planets orbiting stars other than our own Sun. Through its preciseobservations, the telescope has helped identify and characterize numerous exoplanets, providing valuable insights into their size, composition, and potential for supporting life. This knowledge has been crucial in the search for habitable worlds beyond our solar system, fueling our curiosity and the hope of one day discovering extraterrestrial life.In addition to its groundbreaking discoveries, the Hubble has also captivated the public's imagination with its breathtaking images of celestial objects. From colorful nebulae to distant galaxies, the Hubble's stunning visuals have not only advanced our scientific understanding but have also inspired awe and wonder in people around the world. These images have become iconic representations of the beauty and complexity of the universe, sparking the curiosity of both scientists and the general public.The Hubble's impact, however, extends beyond its scientific and visual achievements. The telescope has also played a significant role in the education and outreach of astronomy, inspiring and engaging people of all ages to explore the wonders of the cosmos. Through its educational programs and collaborations with schools and universities, the Hubble has brought the excitement of space exploration to classrooms and communities worldwide, fostering a greater appreciation for the scientific endeavor and the pursuit of knowledge.Moreover, the Hubble's success has paved the way for the development of even more advanced astronomical instruments, such as the James Webb Space Telescope, which was launched in 2021. These new telescopes, building upon the Hubble's legacy, will continue to push the boundaries of our understanding of the universe, unlocking even more secrets and mysteries.In conclusion, the Hubble Space Telescope has been a true marvel of human ingenuity and scientific exploration. Through its groundbreaking observations, the Hubble has revolutionized our understanding of the cosmos, from the formation of galaxies to the search for habitable exoplanets. Its stunning visuals have captivated the public's imagination, while its educational initiatives have inspired generations of scientists and space enthusiasts. As we look to the future, the Hubble's legacy will undoubtedly continue to shape the course of astronomy and our exploration of the universe.。
英语天文知识英语30题
英语天文知识英语30题1. Which is the largest planet in the solar system?A. EarthB. JupiterC. MarsD. Venus答案:B。
木星(Jupiter)是太阳系中最大的行星。
选项A 地球Earth)不是最大的行星。
选项C 火星(Mars)体积较小。
选项D 金星 Venus)也不是最大的行星。
2. The star at the center of our solar system is called _.A. the MoonB. the SunC. SaturnD. Pluto答案:B。
我们太阳系的中心恒星被称为太阳(the Sun)。
选项 A 月亮(the Moon)不是恒星。
选项C 土星(Saturn)是行星。
选项D 冥王星 Pluto)是矮行星。
3. Which planet is known as the "Red Planet"?A. MercuryB. VenusC. MarsD. Neptune答案:C。
火星(Mars)被称为“红色星球”。
选项A 水星(Mercury)不是红色的。
选项B 金星(Venus)不是红色星球。
选项D 海王星Neptune)不是红色的。
4. How many planets are there in the solar system?A. 8B. 9C. 10D. 11答案:A。
太阳系中有8 颗行星。
曾经冥王星被认为是第九颗行星,但现在冥王星被归类为矮行星。
5. Which planet is closest to the Sun?A. MercuryB. VenusC. EarthD. Mars答案:A。
水星(Mercury)是离太阳最近的行星。
选项B 金星Venus)距离太阳比水星远。
选项C 地球(Earth)距离太阳比水星远。
选项D 火星 Mars)距离太阳比水星远。
哈勃太空望远镜
•
• 哈勃空间望远镜(Hubble Space Telescope,缩写为 HST),是以天文学家爱德 温·哈勃(Edwin Powell Hubble)为名,在轨道上环绕 着地球的望远镜。它的位置在 地球的大气层之上,因此获得 了地基望远镜所没有的好处影像不会受到大气湍流的扰动, 视相度绝佳又没有大气散射造 成的背景光,还能观测会被臭 氧层吸收的紫外线。于1990年 发射之后,已经成为天文史上 最重要的仪器。它已经填补了 地面观测的缺口,帮助天文学 家解决了许多根本上的问题, 对天文物理有更多的认识。哈 勃的哈勃超深空视场是天文学 家曾获得的最深入(最敏锐的) 的光学影像。
以凡高作品《星夜》命名的星夜图 锥形星云 人马座的三裂星云 距地球五千五百光年的天鹅星云中的完美风暴
两个螺旋形星系相互碰撞
被命名为蚂蚁星云的Mz3 距地球两千八百万光年的宽边帽星系 沙漏星云 被称为爱斯基摩星云的NGC 2392
猫 眼 星 云
宽边帽星系的照片堪称最令人惊叹之作。这个 外形极像一顶阔边帽的星系,距地球2800万光 年,横跨5万光年的距离,更有8000亿颗恒星。
哈勃望远镜的维修是极其 困难的: 为了成功完成 维修任务,宇航员必须在 布满太空碎片的轨道上工 作,同太空碎片相撞的风 险非常大。 其次,宇航员必须戴著厚 厚的太空手套进行操作,去 拧开一些很小的仪器螺丝 钉更换镜片和仪器. 想像 一下, 你要是戴上棉手套 去维修一个数码像机或者 一个钟表该有多难!
ቤተ መጻሕፍቲ ባይዱ
Hubble Space Telescope
在1990年4月哈勃空间望 远镜发射升空的数星期后, 研究人员发现从哈勃空间 望远镜传回来的图片有严 重的问题,获得的的最佳 图像品质也远低于当初的 期望。因此,1993年, 奋进号执行了对哈勃空间 望远镜的第一次维修,此 后乘坐着“发现号”以及 “亚特兰蒂斯号”航天飞 机的宇航员又对哈勃望远 镜前后进行了四次维修, 将哈勃空间望远镜的寿命 延长至2013年后。
45 神舟13号返航与太空计划-2022年高考英语最新热点时文阅读
2022年高考最新热点时文阅读-神舟13号返航与太空计划01(2022·河南·郑州十九中模拟预测)阅读下面短文,在空白处填入1个适当的单词或括号内单词的正确形式。
After orbiting Earth for six months, the three crew members of China’s Shenzhou XIII mission (使命) have departed from the Tiangong space station and returned to the mother planet on Saturday morning, ___1___ (finish) the nation’s longest manned spaceflight.Major General Zhai Zhigang, ___2___ was the mission commander, Senior Colonel Wang Yaping and Senior Colonel Ye Guangfu breathed fresh air for the first time ___3___ the half-year space journey as ground recovery personnel (全体职员) opened the hatch (舱门) of their reentry capsule (返回舱) at 10:03 am.Zhai and his crewmates spent 183 days in ___4___ orbit about 400 kilometers above the Earth since their Shenzhou XIII spacecraft ___5___ (launch) on Oct 16 by a Long March 2F carrier rocket from the Jiuquan Satellite Launch Center. They were the second inhabitants (居民) of China’s permanent space station named Tiangong.So far the crew ___6___ (set) a new record for China’s ___7___ (long) spaceflight, almost doubling the previous record of 92 days ___8___ (create) by their peers in the Shenzhou XII mission who travelled with Tiangong from mid-June to mid-September last year.In early February, the astronauts spent Spring Festival inside the orbiting station, becoming the first Chinese people ___9___ (celebrate) the country’s most important traditional festival in outer space. They appeared in a live broadcast gala (庆典) and sent their best ____10____ (wish) to Chinese people.02(2022·四川·石室中学三模)阅读下面材料,在空白处填入适当的内容或括号内单词的正确形式。
强大的哈勃太空望远镜
强大的哈勃太空望远镜哈勃空间望远镜(Hubble Space Telescope,HST)是人类第一座太空望远镜,它总长度超过13米,质量为11吨多,主要运行在地球大气层外缘离地面约600千米的轨道上,大约每100分钟环绕地球一周。
哈勃望远镜的命名是由天文学家爱德文·哈勃而来,是由美国国家航空航天局和欧洲航天局合作创制出来的,并于1990年发射入轨。
它的出现在天文史上具有非凡的意义,它不仅利用先进的技术填补了地面观测的缺憾,还帮助天文学家解决了许多根本上的问题。
通过它我们对天文物理有了更多的认识,天文学家获得的最深入的光学影像——哈勃超深空视场就是通过哈勃望远镜观测的研究结果。
然而,哈勃空间望远镜到底有哪些高超之处呢?(1)在某些方面它有着其他设备没有的优势,哈勃望远镜与其他天体的望远镜一个明显的不同在于它主要致力于对地面的观测,它是在轨道上环绕着地球的望远镜;而它又与地基望远镜不一样,它运行的轨道在地球的大气层之上,因此获得的影像不会受到大气流的干扰,视宁度绝佳而又不会有大气散射形成的背景光,这些都是地基望远镜所做不到的。
所以它可以称为是世界上最大、图像最清晰的天文望远镜。
(2)“哈勃”所处的位置也使得在紫外波段上进行观测成为了可能,因为地球大气层的吸收,紫外光子甚至都无法到达地面,这无疑阻碍了人类对它的研究,但哈勃望远镜问世以后,这些就成为一种可能,它不但可以追踪天体物理气体中某种元素的丰度,而且还能对观测到的遥远星系的某些现象进行解释。
(3)“哈勃”的高分辨率在天文学研究中也扮演了一个很重要的角色,通过它可以识别近距星系中造父变星。
因为尽管造父变星很明亮,但是它们在地面望远镜的照片中也会和其他恒星混在一起难以分辨。
对于具有高分辨率的“哈勃”来说,再遥远的物体也逃不过它的“法眼”,即使是非常遥远的造父变星,它也能准确地把它和它附近的恒星分开。
正因为它的高分辨率,在“哈勃”上天之前,它的一个核心任务就是通过观察造父变星来确定造父变星与近距星系的距离。
哈勃空间望远镜的研究
哈勃空间望远镜的研究哈勃空间望远镜(Hubble Space Telescope)是由美国国家航空航天局(NASA)和欧洲航天局(ESA)合作建造和运行的一种大型光学望远镜。
它于1990年4月24日发射升空,是迄今为止最著名的和最重要的空间望远镜之一哈勃望远镜之所以非常重要,是因为它的先进技术和无与伦比的观测能力使得科学家能够观测到远超地球大气干扰范围的天体,并获得高分辨率和精确测量的图像。
哈勃望远镜是第一台被部署在太空中的望远镜,远离了地球的大气,这样就避免了大气湍流的影响,使得它能够拍摄到非常清晰和详细的图像。
它发现了许多重要的天文现象,带来了许多突破性的成果。
此外,哈勃望远镜还在行星科学研究方面做出了许多贡献。
它观测到了许多行星和卫星的表面和大气,帮助我们了解地球之外的行星系统的形成和演化。
例如,它观测到了火星上的冰帽,揭示了火星的水资源以及潜在的生命之迹。
它还发现了土星的环,解决了许多关于环的起源和演化的问题。
除了研究行星和宇宙学,哈勃望远镜还在恒星和银河系的研究方面产生了重要的成果。
它帮助我们了解了银河系中恒星的形成和演化过程,发现了许多恒星的残骸和行星系统。
例如,它发现了一颗被称为“哈勃深空”的遥远星系。
它还发现了超新星爆炸、黑洞和行星状星云等现象,为我们提供了关于宇宙中各种天体的深入了解。
此外,哈勃望远镜对于太阳系的研究也做出了重要贡献。
它观测到了太阳系各个行星的大气层和天体表面,提供了许多有关太阳系中行星和卫星的详细信息。
例如,它观测到了冥王星(当时还是行星)的表面特征,并帮助科学家们了解了这颗遥远天体的性质和演化过程。
总结来说,哈勃空间望远镜是迄今为止最重要和著名的空间望远镜之一、它的先进技术和无与伦比的观测能力使得科学家们能够研究宇宙的起源、演化和结构,探索行星科学、恒星和银河系的形成和演化,以及太阳系的各个成员。
它的重要成果改变了我们对宇宙和我们所在的世界的认识,对天文学和宇宙学的发展做出了巨大贡献。
全世界最大的望远镜
全世界最大的望远镜导读:我根据大家的需要整理了一份关于《全世界最大的望远镜》的内容,具体内容:如果有人问是哪个?你是否能答得上来呢?世界最大望远镜哈勃空间望远镜(英语:Hubble Space Telescope,缩写:HST) 是以著名天文学家...如果有人问是哪个?你是否能答得上来呢?世界最大望远镜哈勃空间望远镜(英语:Hubble Space Telescope,缩写:HST) 是以著名天文学家、美国芝加哥大学天文学博士爱德温哈勃为名,在地球轨道上并且围绕地球的太空空间望远镜,它于1990年4月24日在美国肯尼迪航天中心由"发现者"号航天飞机成功发射。
哈勃空间望远镜的位置在地球的大气层之上,因此影像不会受到大气湍流的扰动,视相度绝佳又没有大气散射造成的背景光,还能观测会被臭氧层吸收的紫外线,是天文史上最重要的仪器之一。
它成功弥补了地面观测的不足,帮助天文学家解决了许多天文学上的基本问题,使得人类对天文物理有更多的认识。
此外,哈勃的超深空视场则是天文学家目前能获得的最深入、也是最敏锐的太空光学影像。
哈勃空间望远镜和康普顿射线天文台、钱德拉X光天文台、斯皮策空间望远镜都是美国国家航空航天局大型轨道天文台计划的一部分。
哈勃空间望远镜由NASA和ESA合作共同管理。
哈勃太空望远镜拍到了蝴蝶状星云"Twin Jet Nebula",这一星云有两片闪闪发光的"彩虹翅膀",仿佛一只美丽的蝴蝶在展翅飞翔。
2016年3月4日,哈勃望远镜打破宇宙距离记录,通过将美国宇航局的哈勃太空望远镜推到它的极限,一个国际天文学家小组通过测量宇宙中所见过的最远的星系,打破了宇宙距离记录的记录。
这惊人的明亮的婴儿星系,命名为gn-z11,被看作是134亿年过去,就在大爆炸后4亿年。
gn-z11位于大熊座的星座的方向。
设计原理大气层中的大气湍流与散射,以及会吸收紫外线的臭氧层,这些因素都限定了地面上望远镜做进一步的观测。
第十四讲 哈勃望远镜
第十四讲哈勃望远镜简介哈勃望远镜(Hubble Space Telescope)是由NASA和ESA合作研制建造的一颗太空望远镜,于1990年在太空中发射升空,是目前世界上最著名的天文观测设备之一。
哈勃望远镜采用了先进的科技和设计,可以在太空中观测到远离地球数千万光年的天体。
设计与构造哈勃望远镜的重量约为11吨,长度约为13.2米。
它的主要部件包括反射镜、光学与仪器附件、太阳面罩盖、太阳电池板、舱口适配器和姿态控制器等。
反射镜是哈勃望远镜最重要的部件之一,直径为2.4米,由金属镜片反射望远镜范围内的光线。
反射镜的制造需要高精度的机器设备和技术,而哈勃望远镜的反射镜是采用了先进的车削和抛光技术制造而成的。
它的表面精度可以达到将光线反射到波长1/50,000个分之一的精度。
这样的高精度保证了哈勃望远镜的强大观测能力。
观测能力哈勃望远镜的观测能力突出,它可以观测到远离地球超过10亿光年的天体。
它对宇宙深度、星系演化和宇宙中心黑洞等问题的研究做出了重要贡献。
在哈勃望远镜的镜头下,科学家们可以看到大约1万个星系和10亿多颗恒星,它帮助我们从全新的角度观测宇宙和宇宙中的物质运动。
重要发现哈勃望远镜是人类观测宇宙的杰出工具,它所做出的重要发现可以让我们更加了解宇宙的运行和演化。
以下是哈勃望远镜做出的重要发现:宇宙的加速膨胀2001年,哈勃望远镜在观测遥远的超新星时发现,宇宙正在加速扩展。
这个结果彻底改变了人们对宇宙膨胀运动的认识,也让哈勃望远镜成为有史以来最重要的天文学发现之一。
这个发现对宇宙学的研究有着巨大的影响。
深空图像哈勃望远镜拍摄了宇宙史上最远的星系照片,让我们能够在不同时间和空间位置的星系中了解宇宙的演化轨迹。
行星哈勃望远镜已经发现了数百颗行星,其中一些甚至位于所谓的“宜居带”中,也就是距离恒星适中、表面温度适宜生命存在的区域,这可能有助于未来探索外星生命。
哈勃望远镜的升级哈勃望远镜的升级是不断进行的,主要是向它添加更先进的仪器和技术。
太空望远镜的科研历程
太空望远镜的科研历程太空望远镜(Space Telescope)作为人类的科技创新成果之一,经历了漫长而艰辛的研发历程。
本文将回顾太空望远镜的科研历程,并探讨其对天文学领域的重大贡献。
第一章:太空望远镜的诞生在20世纪50年代,美国国家航空航天局(NASA)就开始探索利用卫星技术进行天文观测的可能性。
经过多次研究和探索,1968年,NASA宣布着手开发一台具备太空观测能力的望远镜。
经过近20年的努力,太空望远镜终于在1990年4月24日被成功发射升空,这是人类历史上第一台太空望远镜。
第二章:哈勃太空望远镜太空望远镜的代表作品非哈勃太空望远镜(Hubble Space Telescope)莫属。
哈勃望远镜于1990年发射升空,是最早并且最成功的太空望远镜之一。
其优秀的观测能力和解析度,让我们得以窥探到了宇宙的奥秘。
哈勃太空望远镜的研发和修复历程堪称史诗级的故事。
在发射后的初期,由于光学系统的缺陷,哈勃望远镜并没有实现预期的观测效果。
然而,通过数次航天飞机的任务,哈勃望远镜的光学系统得到了修复和升级,使其成为一台拥有卓越观测能力的望远镜。
哈勃望远镜通过独特的视角和出色的成像质量,为天文学家提供了大量珍贵的观测数据。
第三章:其他太空望远镜除了哈勃望远镜,人类还发射了许多其他具有科研价值的太空望远镜。
例如,斯皮策太空望远镜(Spitzer Space Telescope)以红外观测为主,通过对宇宙中冷暗物质和行星系统的观测,为研究宇宙提供了重要的线索。
此外,查克拉太空望远镜(Chandra X-ray Observatory)专注于对X 射线源的观测,为天体物理学研究提供了重要的数据来源。
第四章:太空望远镜的科研成果太空望远镜的科研成果丰硕,为天文学领域的研究和发展做出了巨大贡献。
通过太空观测,科学家们得以回答一系列关于宇宙起源、黑洞、星系演化等重大问题。
作为历史上最为重要的科学仪器之一,太空望远镜为视觉上的天文观测带来了巨大突破,解决了地球大气层的限制,观测结果更加准确和清晰。
哈勃太空望远镜
哈勃太空望远镜00000哈勃太空望远镜(HubbleSpaceTelescope,缩写为HST),是以天文学家埃德温·哈勃(EdwinPowellHubble)为名,在地球轨道的望远镜。
哈勃望远镜接收地面控制中心(美国马里兰州的霍普金斯大学内)的指令并将各种观测数据通过无线电传输回地球。
由于它位于地球大气层之上,因此获得了地基望远镜所没有的好处--影像不受大气湍流的扰动、视相度绝佳,且无大气散射造成的背景光,还能观测会被臭氧层吸收的紫外线。
于1990年发射之后,已经成为天文史上最重要的仪器。
它成功弥补了地面观测的不足,帮助天文学家解决了许多天文学上的基本问题,使得人类对天文物理有更多的认识。
哈勃档案发射时间:1990年4月24日任务结束时间:2012年12月31日发射携载器:"发现号"航天飞机(STS-31任务)重量:11110公斤椭圆轨道高度:距离地面593公里轨道平面倾斜度:28.5度轨道周期:96-97分钟哈勃望远镜组成哈勃太空望远镜是被送入轨道的口径最大的望远镜。
它全长12.8米,镜筒直径4.27米,重11吨,由三大部分组成,第一部分是光学部分,第二部分是科学仪器,第三部分是辅助系统,包括两个长11.8米,宽2.3米,能提供2.4千瓦功率的太阳电池帆板,两个与地面通讯用的抛物面天线。
镜筒的前部是光学部分,后部是一个环形舱,在这个舱里面,望远镜主镜的焦平面上安放着一组科学仪器;太阳电池帆板和天线从筒的中间部分伸出。
望远镜的光学部分是整个仪器的心脏。
它采用卡塞格林式反射系统,由两个双曲面反射镜组成,一个是口径2.4米的主镜、另一个是装在主镜前约4.5米处的副镜,口径0.3米。
投射到主镜上的光线首先反射到副镜上,然后再由副镜射向主镜的中心孔,穿过中心孔到达主镜的焦面上形成高质量的图像,供各种科学仪器进行精密处理,得出来的数据通过中继卫星系统发回地面。
除了光学部分,望远镜的另外一个主要部分就是装在主镜焦平面上的八台科学仪器,分别是:宽视场和行星照相机、暗弱天体照相机、暗弱天体摄谱仪、高分辨率摄谱仪、高速光度计和三台精密制导遥感器。
航天技术专业名词中英文对照表
航天技术专业名词中英文对照表安全性safety拜科努尔发射场BafikOHyp KOCMogpOM备用着陆场alternate landing site舱外活动extravehicular activity测地卫星geodetic satellite测控通信网communication network for tracking, telemetering and control system测量飞机instrumentation aircraft超重医学hypergravity medicine乘员舱大气环境crew cabin atmosphere environment 冲压式发动机ramjet engine重复使用运载火箭reusable launch vehicle垂直起降火箭vertical lift off and vertical landing rocket 磁环境试验magnetism environment test单级入轨火箭single stage to orbit rocket单组元火箭发动机mono propellant rocket engine导航卫星navigation satellite导航卫星系统navigation satellite system “导航星”全球定位系统Navstar global positioning system,GPS 登月舱lunar module等效性原理的卫星试验satellite test of the equivalenceprinciple,STEP低轨道low earth orbit低轨道运载火箭low earth orbit launch vehicle 地面模拟飞行试验ground simulated flight test 地球辐射带radiation belts of earth 地球观测系统Earth Observing System,EOS 地球同步轨道geosynchronous orbit地球信息系统Earth Observation System Data and Information System,EOSDIS地球资源卫星earth resources satellite 地外文明extraterrestrialcivilization 电磁相容性试验electromagnetic compatibility test 电弧加热设备arc heater电火箭发动机electric rocket engine 动力学环境试验dynamics environment test 对地观测技术earth observation technique 多级入轨火箭multi-stage to-orbit rocket 俄罗斯航天测控网Russian spacecraft tracking, telemetering and control network俄罗斯全球导航卫星系统Russian global navigation satellite system,GLONASS发射操作launch operation反物质火箭antimatter rocket返回与再入return and reentry高超声速空气动力学hypersonic aerodynamics 跟踪与数据中继卫星tracking and data relay satellite 固体火箭solid propellant rocket固液火箭hybrid rocket光学跟踪测量系统optical tracking system轨道机动orbit maneuver轨道转移火箭orbit transfer rocket哈勃空间望远镜Hubble Space Telescope,HST海洋卫星seasat航天space flight航天测控网spacecraft tracking, telemetering and control network 航天测控系统spacecraft tracking, telemetering and control system 航天测控站space tracking, telemetering and control station 航天测量船spacecraft tracking, telemetering and control ship 航天测量数据处理系统space tracking and telemetering data processing system航天飞机space plane航天飞行训练模拟器space flight training simulator航天服spacesuit航天工效学space ergonomics航天环境医学space environmental medicine航天基础设施space infrastructure航天经济学space economics航天救生医学space lifesaving medicine航天控制中心space flying control center航天免疫功能与内分泌障碍space immune function and endocrinedecompensation航天器spacecraft航天器供配电系统spacecraft power system航天器回收系统spacecraft recovery system航天器结构系统structural system of spacecraft航天器热控系统spacecraft thermal control system航天器设计、制造与试验design, manufacture and test of spacecraft 航天器通信与测控系统spacecraft communication, telemetering, command and tracking system航天器推进系统spacecraft propulsion system 航天器信息管理系统spacecraft information management system 航天器有效载荷系统spacecraft payload system 航天器制导、导航与控制系统spacecraft guidance, navigation and control system航天食品space flight food航天适应与再适应space adaptation and readaptation 航天系统工程space system engineering 航天系统全寿命费用life cycle cost of space system 航天运输系统space transportation system 航天振动试验设备space dynamic test facility 核火箭发动机nuclear rocket engine 红外天文学infrared astronomy 化学火箭chemical rocket 回归轨道recursive orbit 火箭大型地面试验major ground testing of launch vehicle 火箭的发射轨道ascent trajectory of launch vehicle 火箭的可靠性保证reliability assurance of launch vehicle 火箭地面设备ground support system of launch vehicle火箭箭体结构rocket structure 火箭研制程序development program of launch vehicle 火箭研制与生产development and production of launch vehicle 火箭遥测telemetry of launch vehicle 火箭制导与控制系统guidance, navigation and control system of launch vehicle火星探索exploring Mars技术试验卫星technology experiment satellite 交会对接rendezvous and docking近临界点现象near critical point phenomena 进入entry酒泉卫星发射中心Jiuquan Satellite Launch Center 可靠性relibility 肯尼迪航天中心Kennedy Space Center 空间材料科学与加工space materials science and processing 空间蛋白质晶体生长protein crystal growth in space 空间地球科学space earth science 空间对地观测earth observation from space 空间法space law空间辐射生物学space radiation biology 空间环境模拟spaceenvironmental simulation 空间环境探测卫星space environmentexploration satellite 空间机器人space robot 空间救生艇spaceemergency boat 空间科学space science 空间目标监视系统space surveillance system 空间生命科学space life science 空间生物加工biology processing in space 空间碎片space debris 空间太阳能发电站space solar power station 空间探测space probe空间天气预报space weather forecast 空间天文学space astronomy 空间物理space physics 空间细胞培养cell cultivation in space 空间医学试验space medical experiment 空间应用space application 空间资源space resource 空天飞机aerospace plane 脉冲风洞impulse wind tunnel 美国航天测控网United States Spacecraft Tracking, Telemetering and Control Networks齐奥尔科夫斯基公式U U0 刀KOBCKOrO ① OpMy 刀a气动辅助变轨aero-assist changing orbit 气动热力学aerothermodynamics 气象卫星meteorological satellite 全球变化global change 热平衡试验thermal balancing test 热真空试验thermal vacuum test 人工重力artificial gravity 人造地球卫星artificial earth satellite 入轨injection三组元火箭发动机tri-propellant rocket engine 失重生理学weightlessness physiology 时间统一系统timing system 受控生态生命保障系统controlled ecological life support system 双组元火箭发动机bi-propellant rocket engine 太阳同步轨道sun-synchronous orbit 太阳系与日球探测solar system and heliosphere exploration 太阳耀斑solar flare太原卫星发射中心Taiyuan Satellite Launch Center 逃逸救生试验escape and rescue test天地往返运输系统earth to orbit and return transportation system 天空实验室Skylab天文卫星space astronomical satellite 停泊轨道parking orbit 通信卫星communications satellite 微波统一系统unified microwave system 微重力科学microgravity science 微重力流体力学microgravity fluid mechanics 微重力燃烧microgravity combustion 卫星星座Satellite constellation 卫星应用satellite application 无人航天器unmannedspacecraft无线电跟踪测量系统radio tracking system 西昌卫星发射中心Xichang Satellite Launch Center 吸气式火箭airbreathing rocket 星际火箭interplanetary rocket 行星际探测器interplanetary probe 行星探测exploring planet行星引力辅助变轨planetary gravity assist changing orbit 遥科学telescience应急着陆区emergency landing zone 应用卫星applied satellite 宇宙速度cosmic velocity 预警卫星early warning satellite 月球车lunar roving vehicle 月球探测lunar exploration 月球探测器lunar probe 月球站moon station 运货飞船cargo transportation capsule 运载火箭launch rocket 运载器launch vehicle 载人飞船manned capsule 载人航天manned space flight 载人航天器舱外活动系统extra-vehicular-activity system for manned space vehicle载人航天器发射manned space vehicle launch 载人航天器发射场launch complex for manned space vehicle 载人航天器环境控制与生命保障系统environ-mental control and life support system for mannedspacecraft载人航天器救生系统manned space vehicle escape and rescue system载人航天器居住系统habitation system for manned spacecraft 载人航天器仪表与照明系统instrumentation and lighting system for manned spacecraft侦察卫星reconnaissance satellite中国航天测控网China Spacecraft Tracking, Telemetering and Control Network重力生物学gravitational biology转移轨道transfer orbit着陆场landing site紫外天文学ultraviolet astronomy自由飞弹道靶free flight rangeX 射线天文学X-ray astronomy)Y 射线天文学Y -ray astronomy液体火箭liquid propellant rocket一次使用运载火箭expendable launch vehicle。
詹姆斯韦伯空间望远镜近照赏析
詹姆斯·韦伯空间望远镜近照赏析詹姆斯·韦伯空间望远镜(James Webb Space Telescope,JWST)已发射九个月有余,入轨后经半年多调试,七月份已正式开工,靓照不断,先看一张其在2022年9月27日发布的一张漩涡星系的照片(图1):图1漩涡星系(spiral galaxy IC5332)的照片此星系直径约六万六千光年(略大于银河系),距地球约两千九百万光年。
由于此星系平面几乎完美地正对地球,十分适合观察其对称的蜗旋结构。
此照片由JWST的中红外相机(Mid-InfraRed Instrument,MIRI)在成像模式下拍摄。
MIRI中使用的焦平面器件为硅掺砷器件,属杂质带光电导探测器,其工作温度仅为6K,响应波长覆盖约5-28微米,并可切换滤光轮上的九个窄带滤光片在5.6-25.5微米范围进行分谱成像,因此可对拍摄素材分别赋予不同颜色融合后形成假彩色照片,以适合人眼观赏,相当震撼。
MIRI还具备日冕图和低分辨、中分辨等观测模式。
星系毕竟太遥远了离家近点吧,再看两张2022年9月21日发布的海王星照片。
此照片由JWST的近红外相机(Near-InfraRed Camera,NIRCam)拍摄,图2a约一千六百万像素,图2b第二张为其局部,约一百万像素。
NIRCam 中使用的焦平面器件为碲镉汞器件,工作温度为39K,响应波长约覆盖0.6-5微米,用滤光片按0.6-2.3微米和2.4-5微米分成两个通道成像,还具有其它四种观测模式。
此照片应是有史以来海王星这颗冰巨星的最清晰照片了,相当魔幻,其较窄的行星环清晰可见,较弱的尘埃带也能看到。
海王星的16颗已知“月亮”中此张照片上可看到7颗,包括拍出巨大星芒的海卫一(海卫一特里同Triton,是海王波塞冬和海后安菲特里忒的儿子,具有人鱼形象)。
海卫一的大小与冥王星相当;由于冥王星已被开除,海王星已在太阳系的最外圈了。
西方对行星都是用希腊神话人物命名的,彼此间还有亲缘关系;东方在金、木、水、火、土之后也都沿用西方名称了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :a s t r o -p h /0610435v 1 13 O c t 2006Draft v2,February 4,2008Hubble Space Telescope Ultraviolet Spectroscopy of Fourteen Low-RedshiftQuasars 1Rajib Ganguly 2,Michael S.Brotherton 2,Nahum Arav 3,Sara R.Heap 4,Lutz Wisotzki 5,Thomas L.Aldcroft 6,Danielle Alloin 7,8,Ehud Behar 9,Gabriela Canalizo 10,D.Michael Crenshaw 11,Martijn de Kool 12,Kenneth Chambers 13,Gerald Cecil 14,Eleni Chatzichristou 15,JohnEverett 16,17,Jack Gabel 3,C.Martin Gaskell 18,Emmanuel Galliano 19,Richard F.Green 20,Patrick B.Hall 21,Dean C.Hines 22,Vesa T.Junkkarinen 23,Jelle S.Kaastra 24,Mary Elizabeth Kaiser 25,Demosthenes Kazanas 4,Arieh Konigl 26,Kirk T.Korista 27,Gerard A.Kriss 28,Ari Laor 9,Karen M.Leighly 29,Smita Mathur 30,Patrick Ogle 31,Daniel Proga 32,Bassem Sabra 33,Ran Sivron 34,Stephanie Snedden 35,Randal Telfer 36,Marianne Vestergaard 37ABSTRACTWe present low-resolution ultraviolet spectra of14low redshift(z em 0.8)quasars observed with HST/STIS as part of a Snap project to understand the relationship between quasar outflows and luminosity.By design,all observations cover the C IV emission line.Nine of the quasars are from the Hamburg-ESO catalog,three are from the Palomar-Green catalog,and one is from the Parkes catalog.The sample contains a few interesting quasars including two broad absorption line(BAL)quasars(HE0143-3535,HE0436-2614),one quasar with a mini-BAL(HE1105-0746),and one quasar with associated narrow absorption(HE0409-5004).These BAL quasars are among the brightest known(though not the most luminous)since they lie at z em<0.8.We compare the properties of these BAL quasars to the z em<0.5Palomar-Green and z em>1.4 Large Bright Quasar samples.By design,our objects sample luminosities in between these two surveys,and our four absorbed objects are consistent with the v∼L0.62 relation derived by Laor&Brandt(2002).Another quasar,HE0441-2826,contains extremely weak emission lines and our spectrum is consistent with a simple power-law continuum.The quasar is radio-loud,but has a steep spectral index and a lobe-dominated morphology,which argues against it being a blazar.The unusual spectrum of this quasar resembles the spectra of the quasars PG1407+265,SDSS J1136+0242, and PKS1004+13for which several possible explanations have been entertained. Subject headings:quasars:absorption lines—quasars:emission lines—surveys1.IntroductionOutflows from active galactic nuclei(AGN)come in many observational classes.Seyfert galax-ies show blue shifted UV and X-ray absorption lines hundreds of km s−1wide(Crenshaw et al. 1999),while the UV troughs of quasar outflows can span tens of thousands of km s−1as manifested in broad absorption line(BAL)quasars(Lynds1967;Weymann et al.1985;Turnshek et al.1988). One of the current driving questions in the AGNfield is what is the connection,if any,between the intrinsic luminosity of an AGN and the kinematic properties of the outflow(e.g.,terminal velocity and velocity-width of the observed trough).Radiative acceleration,thought to be the principal driver of such outflows,predicts that the terminal velocity should scale as v∼L n where0.25<n<0.5(Arav,Li,&Begelman1994). Qualitatively,such a progression is likely to exist given the observed fact that outflow in Seyfert galaxies terminate at∼1000km s−1,while the BAL outflows extend out to∼30,000km s−1. However,the quantitative trend is unclear given the lack of objects in between these populations. From an analysis of∼56archived Hubble Space Telescope(HST)and International Ultraviolet Explorer(IUE)spectra of z<0.5quasars from the Palomar-Green survey,Laor&Brandt(2002) showed that such a trend may indeed exist.The soft X-ray weak(SXW,defined asαox<−2.0) quasars,which exhibit BALs in their UV spectra,show a relation of the form v∼L0.62±0.08.This is a higher power-law index than predicted and implies that the radiation-pressure force multiplier has a luminosity dependence(Laor&Brandt2002).The force multiplier(Castor,Ab-bott,&Klein1975)is factor that expresses the sum total effect of all lines and edges in transferring momentum from the incident spectrum of photons to the gas.The luminosity dependence of the force multiplier arises from a variety of sources like the dust content and ionization state of the gas(e.g.,Arav et al.1994;Murray et al.1995;Sulentic et al.2006).Indeed,considerations of accretion disk-winds by Murray et al.(1995)in both the context of the broad emission-lines and broad absorption-lines require the presence of shielding gas that prevents X-rays from over-ionizing the outflowing gas.More recent considerations of the force multiplier show that it is also sensitive to black-hole mass(Proga&Kallman2004),which then favors a steeper index than predicted by Arav et al.(1994).The Laor&Brandt(2002)index is also consistent with the prediction from Proga,Stone,&Drew(1998)for AGN with L/L Edd≥M−1max,where M max is the maximum value of the force multiplier.Another crucial issue is whether the fraction of objects that show intrinsic absorption is lumi-nosity dependent.Here we are facing a large gap between the established statistics for BAL quasars (see below)and the results from a biased sample of Seyferts which showed that10out of the avail-able17HST/UV spectra of Seyferts show intrinsic absorption(Crenshaw et al.1999).Kriss(2002)find a that a similar fraction of Seyferts(16/34)exhibit absorption in the O VIλλ1031.926,1037.617 doublet.At low-redshift,Ganguly et al.(2001)found about∼25%of quasars from the HST Quasar Absorption Line Key Project appear to show absorption at z abs∼z em(i.e.,“associated”absorp-tion),comparable to the study of Laor&Brandt(2002)for the z<0.5Palomar-Green quasars.However,it must be noted that not all absorption found near quasars is necessarily intrinsic,and moreover,not necessarily part of an outflow.A follow-up study of low-redshift quasars with associ-ated absorption showed that only∼30%were time-variable(Wise et al.2004).Furthermore,large statistical studies of absorption in quasars,like the HST Quasar Absorption Line Key Project,tend to be biased toward UV bright targets in order to obtain adequate signal-to-noise spectra.For high-redshift quasars(z>1.4)intrinsic absorption(usually BALs)has been studied in large samples using ground-based telescopes.The Large Bright Quasar Survey(Hewett et al.1995) members at these redshifts have M V=−26to−28and an intrinsic fraction of BAL quasars,in the redshift range1.5<z<3.0,of22±4%(Hewett&Foltz2003).The FIRST Bright Quasar Survey (White et al.2000;Becker et al.2001)members have M V=−26to−29and a BAL incidence of18%(Becker et al.2000).Vestergaard(2003)find that about25%of quasars show evidence for intrinsic,low-velocity C IV absorption from a careful consideration of possible contamination from intervening systems in a heterogenous,yet large,sample of moderate redshift(1.5<z<3.0) quasars.In addition,Richards(2001)find that,in C IV absorption systems observed toward z∼2.5 FIRST quasars at large velocity separations,as many as30%may be intrinsic to the background quasars.Such systems must clearly arise in a high-velocity outflow.The relationship between the velocity of AGN outflows and their intrinsic luminosity,as well as the fraction of objects that show outflows,are poorly known due to two simple selection effects. The vast majority of AGN outflows are identified by detecting absorption features associated with the C IVλλ1548.20,1550.77doublet.From ground-based observations this line is only observed in objects with redshift z>1.3and therefore the population observed tends to be the higher luminosity quasars,of which∼10%are BAL quasars.In order to observe objects with z<1.3 we must use space-based UV observatories.Only∼20of the UV brightest AGN which were observed with the HST(out of∼70)show evidence for outflows,compared with upwards of500 BAL quasars identified in ground-based observations.The statistics are especially poor for the luminosity range1044erg s−1to1045.5erg s−1(corresponding roughly to the absolute magnitude range−21.9 M V −25.6).Tofill in this dearth of data,we proposed an HST Snap project to obtain low-dispersion STIS UV spectra of intermediate-luminosity AGN.Unfortunately,the low efficiency of this program only yielded observations of fourteen objects out of200approved targets,and we present the data here. Several of the objects are of individual interest based on their absorption properties.In the next section(§2),we present the spectra obtained and discuss our data reduction.In§3,we present our results and compare them with those from other quasar samples.We briefly summarize our findings in§4.2.DataOur HST/STIS(Woodgate et al.1998;Kimble et al.1998)observations were carried out using the G230L grating and the52′′×0.5′′slit which provides spectra over the wavelength range1570-3180˚A at a dispersion of1.58˚A/pixel(and a2pixel per resolution element sampling rate).For these Snap observations,we used exposure times of900s with three exceptions..We used an exposure time of720s seconds for the quasars HE0354-5500,HE0436-2614,and PG1435-067.(These three quasars were part of the bright end of our initial list of200targets,defined as objects with B<16, and therefore did not require a full900s exposure.)We used the standard pipeline which provides fully reduced and calibrated spectra.According to the STIS Instrument Handbook(Kim-Quijano et al.2003),data reduced using the pipeline have the following calibration uncertainties:0.5-1.0pixels(0.79–1.58˚A)in absolute wavelength calibration,and4%(0.02dex)in absolute spectrophotometry.The S/N for our spectra were typically∼14per pixel at2000˚A and3000˚A.Figure1shows the spectra obtained for our program.The data are publicly available both at the Multi-mission Archive at Space Telescope(MAST:/index.html,fitsfiles only)and at the University of Wyoming AGN Research Group web site(/agn,both fits and asciifiles).3.Results3.1.Sample CharacteristicsTo characterize this sample and place it in context with larger samples of low-redshift quasars, we carried out power-lawfits to all spectra with the goal of computing UV spectral slopes and luminosities.Thefits were carried out using an arbitrary number of superposed Gaussian to mimic the contribution from emission lines.That is,wefit the following functional form to our spectra:Fλ=Fλo λσi 2 ,(1)where Fλois the normalizingflux at reference wavelengthλo,αis the spectral index,m is thenumber of emission-line components each with a relative strength w i,widthσi,and centered at wavelengthλi.The best-fit was determined using the Numerical Recipes Marquardt-Levenburg χ2-minimization routines(Press et al.1992),and optimal number of Gaussian components was determined using an F-test.In carrying out thefits,we omitted regions that were clearly,or potentially,affected by absorption(as subjectively determined by RG).The results of the power-law fits are listed in Table1and overlayed on the observed spectra in Figure1.For uniformity,we used a common(observer’s frame)reference wavelength,λo=1800˚A for allfits.Table1lists the quasarname(column1),quasar redshift(z,column2),continuumflux density at1800˚A(Fλo,column3),continuum power-law index(α,column4,with the sign convention Fλ∼λα),the luminosity at rest-frame wavelengthλr=3000˚A(Lλr,column5),and the C IV emission-line equivalent width for unabsorbed quasars(column6).We note that in a few cases(e.g,PG2233+134)where the spectra cover wavelengths redward of the Al III+C III]emission line,the continuumfit can be artificially elevated due to the presence of Fe II-III emission(Vestergaard&Wilkes2001).The observer-frameflux density at observed wavelengthλo was converted to rest-frame luminosity at rest-wavelengthλr via:λr Lλr =4πD L(z)2(1+z)λr Fλr(2)=4πD L(z)2(1+z)λr F′λr(1+z)=4πD L(z)2(1+z)λr F′λo λr(1+z)HE0436-2614,if there is significant asymmetry in the intrinsic emission-line profiles(e.g.,Wills et al.1993;Brotherton et al.1994;Richards et al.2002,and references therein),it is possible that ourfits do not fully recover the correct shape.Parameters such as balinicity index that depend on the power-lawfit only should not be affected by the systematics of trying to reproduce the emission-line profile.parison To Other SamplesFigure4shows a comparison of the quasar luminosities from this sample to z em<0.5quasars in the Bright Quasar Survey(BQS,Brandt,Laor,&Wills2000;Boroson&Green1992;Schmidt &Green1983)and z em>1.4broad absorption-line quasars from the Large Bright Quasar Survey (LBQS,Gallagher et al.2006;Hewett&Foltz2003;Hewett et al.1995).For the LBQS,we restrict the comparison of the luminosity distribution to the subsample of absorbed quasars from Gallagher et al.(2006)since this is the most interesting aspect of our initial survey.While the entire LBQS sample does extend down to z em=0.2,good ground-based spectroscopic observations of C IV spectral region are available only for z em>1.4where the UV doublet shifts into the optical band. The luminosities of our quasar sample lie in between these two surveys,though with some overlap with the low-redshift BQS.Figure5shows a comparison of our quasar spectral indices to several other samples:Palomar-Green quasars from Neugebauer et al.(1987),Large Bright Quasar Survey BAL quasars from Gallagher et al.(2006),quasars used in the FUSE composite by Scott et al.(2004),and quasars from Shang et al.(2005).In general,there is agreement between the comparison samples(and in particular between the Palomar-Green,absorbed LBQS,and Shang et al.(2005)samples),with a peak nearα∼−1.8.Scott et al.(2004)show a correlation between the spectral index and luminosity,with more luminous objects having bluer spectra.This correlation nicely explains the difference in shape between the FUSE composite and the EUV portion of the HST composite spectrum from Telfer et al.(2002).The spectral indices derived for the quasars in our samples tend to be redder than those samples,with a peak nearα∼−1.4,and an aforementioned mean of −1.14.One potential explanation for this is the effect of reddening.Galactic reddening is an unlikely explanation,as the largest color excess in our sample is E(B−V)=0.063toward PG1435−067, and HE1006−1211.Baskin&Laor(2005)note that quasars(particularly from the BQS)appear redder(as measured by a two-point spectral index between1549˚A and4861˚A)as more intrinsic C IV absorption is present,implying that intrinsic dust is present along sight-lines that also produce intrinsic C IV absorption.While intrinsic reddening may be important(Gaskell et al.2004;Gaskell &Benker2006),it is unlikely to be the source of reddening in our quasars,as our three reddest quasars(PG1552+085,HE1101-0959,and PG1435-067)do not show intrinsic C IV absorption. In addition,our quasars are generally redder than the LBQS BAL quasars from Gallagher et al. (2006),although this may arise from the luminosity effect described by Scott et al.(2004).Since one of our initial goals was to test the radiative-driving hypothesis for quasar winds,we show in Figure6a plot of the maximum velocity of absorption against luminosity for our absorbed quasars,the BQS quasars from Laor&Brandt(2002),and the LBQS BAL quasars from Gallagher et al.(2006).From a consideration of soft X-ray weak quasars in the BQS sample,Laor&Brandt (2002)reported an apparent envelope to the maximum velocity of absorption as a function of luminosity(specifically M V,but see also Gallagher et al.2006,for a plot versus2500˚A luminosity). We reproduce the Laor&Brandt(2002)plot,revised for a concordance cosmology,with the four quasars from this work also shown.The two BAL quasars from this sample,HE0143-3535and HE0436-2614,both seem to lie close to the(cosmology corrected)best-fit curve derived by Laor& Brandt(2002):v max=4100km s−1 νLν(2500˚A)of4579±165km s−1from the emission redshift of the quasar.The absorption-line system is also detected in H I Ly-α.The N Vλλ1238,1242and O VIλλ1031,1038doublets are in our wavelength range,but neither is detected.We do detect absorption from low-ionization species,C II,S II-III, the Lyman-βline,and possibly the Lyman limit.This implies that the gas is in a relatively low-ionization state(compared to other associated narrow absorption-line systems).Thus,it is possible that this system,while close in velocity,is not physically linked with the quasar central engine.HE0436-2614:This quasar is the second in the sample that hosts a BAL.The BAL absorption in this quasar in very strong.The wavelength range of our spectrum gives us coverage down to the O VIλλ1031,1038doublet.We detect broad absorption from C IV,Si IV,N V,H I Ly-α,P V, and O VI.The detection of P V,which has a low relative abundance,implies a combination of high column density in theflow and,perhaps,high metallicity(Hamann1998).In the C IV BAL profile, there appears to be a curious transition in the apparent strength of the absorption(whether from coverage fraction or column density effects)around v=−1.2×104km s−1where the emission line appears to terminate(Figure3).Redward of this velocity(i.e.,closer to the emission line),the absorption appears to be completely saturated with full coverage of both the continuum and broad emission-line regions.In the velocity range−1.5×104 v[km s−1] −1.2×104,the absorption appears to a have aflat bottom with a normalizedflux of∼0.31(in units of the continuum +emission-lineflux).In the velocity range−1.8×104 v[km s−1] −1.5×104,the profile is alsoflat-bottomed,but with a normalizedflux of∼0.38.Blueward of v∼−1.8×104km s−1, the absorption tapers off(either due to coverage fraction change or column density change)to no apparent absorption at∼−2.4×104km s−1.HE0441-2826:The spectrum of this quasar is peculiar.The C IV emission-line is very weak (∼10%of the continuum strength,the lowest of the sample),and the spectrum is consistent with a simple power-law with Galactic Fe II and Mg II absorption.[The redshift of the quasar is known from optical emission lines,so we are secure in the identification of this UV line as C IV.]In the rest-frame of the quasar,the spectrum covers the wavelength range1376–2726˚A.This range also covers the Si IVλλ1393,1402doublet,the Al IIIλλ1855,1863+C III]λ1909blend and some of the Fe II UV multiplet,but these are not significantly detected.The quasar is detected in the NRAO-VLA Sky Survey(Condon et al.1998)with a1.4GHzflux of147.8±4.5mJy,and a radio core fraction of∼0.24±0.01.The quasar is also listed in the Parkes-MIT-NRAO survey catalog(PMN J0443−2820)with a4.85GHzflux of56±11mJy.We conclude that the quasar has a radio-loudness(Kellermann et al.1994)of log R∗=1.6±0.2,and a radio spectral index ofβ=−0.78±0.16(Fν∼νβ).While a weak/absent emission lines may be indicative of a blazar,the marginal radio-loudness,steep radio spectral index,and lobe-dominated morphology seem to rule this out.Alternatively,this quasar could be in the class of unusual emission-line objects that includes the radio-quiet PG1407+265(z em=0.94;McDowell et al.1995),the radio-loud SDSS J1136+0242(z em=2.4917;Hall et al.2004),and possibly the intrinsic spectrum of the radio-loud BAL PKS1004+13(z em=0.24;Wills et al.1999).These objects have very weak/absent and highly-blueshifted high-ionization emission lines.HE1105-0746:Our spectrum of this quasar covers the rest-frame wavelength range1187–2350˚A, and the H I Ly-α+N V,Si IV,C IV,He II,and Al III+C III]emission lines are clearly visible. The C IV emission-line is well described by a single Gaussian,and part of the blue wing of the C IV emission-line of this quasar appears to be absorbed.This absorption lies above the continuum and therefore the quasar has a zero balnicity.However,the width of the absorption is broader than the C IV doublet separation,so this is an example of a so-called mini-BAL.While the absorption does not dip below the continuum,the maximum depth of the absorption is equal to the strength of the continuum.That is,this mini-BAL is consistent with saturated absorption of the continuum,and no absorption of the C IV broad emission line.This has been observed before in BALs(e.g.,Arav et al.1999).Curiously,we do not detect mini-BAL absorption in N V or Si IV.The lack of Si IV absorption may be an ionization effect.The lack of N V absorption may be due to a combination of the noisiness of the spectrum in the wavelength region and dilution by the strong H I Ly-αline if indeed the absorber does not occult the broad emission-line region.PG1552+085:Based on an IUE spectrum,Turnshek et al.(1997)claimed that this quasar was host to a BAL.However,a more recent analysis by Sulentic et al.(2006)of the HST/STIS-G230L spectrum presented here yield a balnicity index of≈0.The putative location of the C IV BAL through lies in a low signal-to-noise region of the spectrum and it is difficult to ascertain if the continuum blueward of the C IV broad emission-line is absorbed.4.SummaryWhile our initial survey was designed tofill in the statistical gap between luminous quasars and Seyfert galaxies to further understand the relationship between outflows and luminosity,the low-efficiency of the program did not make this feasible.Out of the approved list of200targets, only fourteen objects were observed.The observations of fourteen nearby bright AGN resulted in the discovery of a few interesting objects which merit further study:two new,bright BAL quasars, one new mini-BAL quasar,and one quasar with unusually weak emission lines.Our observations are in agreement with v max-luminosity relation reported by Laor&Brandt(2002),and do lie in between the BQS and LBQS samples.Support for this work was provided by NASA through grant number HST-GO-09507,from the Space Telescope Science Institute,which is operated by the Association of Universities for Research in Astronomy,Inc.,under NASA contract NAS5-26555.REFERENCESArav,N.,Becker,R.H.,Laurent-Muehleisen,S.A.,Gregg,M.D.,White,R.L.,Brotherton,M.S., &de Kool,M.1999,ApJ,524,566Arav,N.,Li,Z.-Y.,&Begelman,M.C.1994,ApJ,432,62Baskin,A.,&Laor,A.2005,MNRAS,356,1029Becker,R.H.,White,R.L.,Gregg,M.D.,Brotherton,M.S.,Laurent-Muehleisen,S.A.,&Arav, N.2000,ApJ,538,72Becker,R.H.,et al.2001,ApJS,135,227Boroson,T.A.,&Green,R.F.1992,ApJS,80,109Brandt,W.N.,Laor,A.,&Wills,B.J.2000,ApJ,528,637Brotherton,M.S.,Wills,B.J.,Steidel,C.C.,&Sargent,W.L.W.1994,ApJ,423,131 Castor,J.I.,Abbott,D.C.,&Klein,R.I.1975,ApJ,195,157Condon,J.J.,Cotton,W.D.,Greisen,E.W.,Yin,Q.F.,Perley,R.A.,Taylor,G.B.,&Broderick, J.J.1998,AJ,115,1693Crenshaw,D.M.,Kraemer,S.B.,Boggess,A.,Maran,S.P.,Mushotzky,R.F.,&Wu,C.1999, ApJ,516,750Everett,J.E.2005,ApJ,631,689Gallagher,S.C.,Brandt,W.N.,Chartas,G.,Priddey,R.,Garmire,G.P.,&Sambruna,R.M.2006,ApJ,644,709Ganguly,R.,Bond,N.A.,Charlton,J.C.,Eracleous,M.,Brandt,W.N.,&Churchill,C.W.2001, ApJ,549,133Ganguly,R.,Sembach,K.R.,Tripp,T.M.,Savage,B.D.,&Wakker,B.P.2006,ApJ,645,868 Gaskell,C.M.,Goosmann,R.W.,Antonucci,R.R.J.,&Whysong,D.H.2004,ApJ,616,147 Gaskell,C.M.,&Benker,A.J.2006,ApJ,submittedHall,P.B.,et al.2002,ApJS,141,267Hall,P.B.,et al.2004,AJ,127,3146Hamann,F.1998,ApJ,500,798Hamann,F.W.,Barlow,T.A.,Chaffee,F.C.,Foltz,C.B.,&Weymann,R.J.2001,ApJ,550, 142Hewett,P.C.,&Foltz,C.B.2003,AJ,125,1784Hewett,P.C.,Foltz,C.B.,&Chaffee,F.H.1995,AJ,109,1498Kellermann,K.I.,Sramek,R.A.,Schmidt,M.,Green,R.F.,&Shaffer,D.B.1994,AJ,108,1163 Kim-Quijano,J.,et al.2003,STIS Intrument Handbook,Version7.0(Baltimore:STScI) Kimble,R.A.,et al.1998,in Proc.SPIE Vol.3356,p.188-202,Space Telescopes and Instruments V,Pierre Y.Bely;James B.Breckinridge;Eds.,188Kriss,G.A.2002,in ASP Conf.Ser.255:Mass Outflow in Active Galactic Nuclei:New Perspec-tives,ed.D.M.Crenshaw,S.B.Kraemer,&I.M.George(San Francisco:ASP),69 Krolik,J.H.,&Kriss,G.A.2001,ApJ,561,684Laor,A.,&Brandt,W.N.2002,ApJ,569,641Lynds,C.R.1967,ApJ,147,396McDowell,J.C.,Canizares,C.,Elvis,M.,Lawrence,A.,Markoff,S.,Mathur,S.,&Wilkes,B.J.1995,ApJ,450,585Murray,N.,Chiang,J.,Grossman,S.A.,&Voit,G.M.1995,ApJ,451,498Neugebauer,G.,Green,R.F.,Matthews,K.,Schmidt,M.,Soifer,B.T.,&Bennett,J.1987,ApJS, 63,615Press,W.H.,Teukolsky,S.A.,Vetterling,W.T.,&Flannery,B.P.1992,Numerical recipes in C.The art of scientific computing(Cambridge:University Press,1992,2nd ed.)Proga,D.,&Kallman,T.R.2004,ApJ,616,688Proga,D.,Stone,J.M.,&Drew,J.E.1998,MNRAS,295,595Richards,G.T.2001,ApJS,133,53Richards,G.T.,Vanden Berk,D.E.,Reichard,T.A.,Hall,P.B.,Schneider,D.P.,SubbaRao, M.,Thakar,A.R.,&York,D.G.2002,AJ,124,1Schmidt,M.,&Green,R.F.1983,ApJ,269,352Scott,J.E.,Kriss,G.A.,Brotherton,M.,Green,R.F.,Hutchings,J.,Shull,J.M.,&Zheng,W.2004,ApJ,615,135Shang,Z.,et al.2005,ApJ,619,41Sulentic,J.W.,Dultzin-Hacyan,D.,Marziani,P.,Bongardo,C.,Braito,V.,Calvani,M.,&Za-manov,R.2006,Revista Mexicana de Astronomia y Astrofisica,42,23Telfer,R.C.,Zheng,W.,Kriss,G.A.,&Davidsen,A.F.2002,ApJ,565,773Turnshek,D.A.,Grillmair,C.J.,Foltz,C.B.,&Weymann,R.J.1988,ApJ,325,651Turnshek,D.A.,Monier,E.M.,Sirola,C.J.,&Espey,B.R.1997,ApJ,476,40 Vestergaard,M.2003,ApJ,599,116Vestergaard,M.,&Wilkes,B.J.2001,ApJS,134,1Weymann,R.J.,Morris,S.L.,Foltz,C.B.,&Hewett,P.C.1991,ApJ,373,23Weymann,R.J.,Turnshek,D.A.,&Christiansen,W.A.1985,in Astrophysics of Active Galaxies and Quasi-Stellar Objects,ler,333White,R.L.,et al.2000,ApJS,126,133Wills,B.J.,Brandt,W.N.,&Laor,A.1999,ApJ,520,L91Wills,B.J.,Brotherton,M.S.,Fang,D.,Steidel,C.C.,&Sargent,W.L.W.1993,ApJ,415,563 Wise,J.H.,Eracleous,M.,Charlton,J.C.,&Ganguly,R.2004,ApJ,613,129Woodgate,B.E.,et al.1998,PASP,110,1183Fig.1.—We show the spectra(flux versus observed wavelength,solid histogram)for the subsample of quasars observed for our Snap program.The spectra are order by right ascension.In addition,we overlay the power-lawfit(smooth curve)described in§3.Fig. 2.—For the fourteen quasars in this sample,we show the region around the C IV emission line.From top to bottom,the quasars are ordered in increasing redshift.Absorption features that appear in this wavelength range are marked,and the best-fit power-law is also shown as a smoothcurve.Fig. 3.—In the above panel,we show the spectra(luminosity versus relative velocity,withλ= 1548.204˚A(1+z em)defining the velocity zero-point)of the C IV emission and absorption lines for the four AGN that show intrinsic/associated absorption.From top to bottom,the AGN spectra are shown in order of decreasing maximum ejection velocity of absorption.The luminosity profiles are shown as a black histogram.The smooth curve around the C IV emission line is our assessment of the effective continuum level(i.e.,power-law continuum plus emission lines),with the shaded region indicating the1σuncertainty.The horizontal bars indicate wavelength regions that were omitted from thefit due to the presence of absorption.Fig.4.—We compare the luminosity distribution of quasars in our sample to that of the BQS and LBQS samples.Data for the BQS was taken from Laor &Brandt (2002).Data from the LBQS was taken from Gallagher et al.(2006).Fig. 5.—In the above panel,we show the distribution of UV spectral indices (F λ∼λα)for our sample.The histogram is normalized to unit area.We compare this distribution to other samples including:Palomar-Green quasars from Neugebauer et al.(1987),Large Bright Quasar Survey BAL quasars from Gallagher et al.(2006),quasars used in the FUSE composite by Scott et al.(2004),and quasars from Shang et al.(2005).。