离心式压缩机喘振问题研究及解决方案

合集下载

离心式压缩机喘振产生的原因分析及解决方案

离心式压缩机喘振产生的原因分析及解决方案

离心式压缩机喘振产生的原因及解决方案一一离心式压缩机是工业生产中的重要设备,其具有排气量大、结构简单紧凑等优点,但也存在一些缺点如稳定工况区间较窄、容易发生喘振。

喘振给压缩机带来危害极大,为了保障压缩机稳定运行,必须应用有效的防喘振控制。

本文主要介绍了离心式压缩机喘振产生的原因,详细叙述了压缩机防喘振的意义与方法,以离心式空气压缩机为例,基于霍尼韦尔DCS系统如何实现防喘振控制。

离心式压缩机的工作原理随着我国工业的迅速发展,工业气体的需求日益增长,离心式压缩机因其优秀的性能及较大的排气量而被广泛应用于工业生产中。

在离心式压缩机中,汽轮机(或电动机)带动压缩机主轴叶轮转动,在离心力作用下,气体会被甩到工作轮后面的扩压器中去。

而在工作轮中间形成稀薄地带,前面的气体从工作轮中间的进气部分进入叶轮,由于工作轮不断旋转,气体能连续不断地被甩出去,从而保持了气压机中气体的连续流动。

气体因离心作用增加了压力,以很高的速度离开工作轮,经扩压器后速度逐渐降低,动能转变为静压能,压力增加,同时气体温度相应升高,在单级压缩不能达到压力要求的情况下,需要经过多级压缩,压缩前需要经过气体冷却器冷却,经过这种多级冷却多级压缩后,最终达到气体压缩的目的。

喘振产生的原因喘振是目前离心式压缩机容易发生的通病。

离心式压缩机的操作工况偏离设计工况导致入口流量减小,使得压缩机内部叶轮、扩压器等部件气流方向发生变化,在叶片非工作面上出现气流的旋转脱离,造成叶轮通道中气流无法通过。

该工况下,压缩机出口压力及与压缩机联合工作的管网压力会出现不稳定波动,进而使得压缩机出口气体反复倒流即“喘振”现象。

另外,压缩机的吸入气体温度发生变化时,其特性曲线也将改变,如图1、图2所示,这是压缩机在某一恒定转速情况下,因吸入气体温度变化时的一组特性曲线。

曲线表明随着温度的升高,压缩机易进入喘振区。

图1离心压缩机的性能曲线图2温度对性能曲线的影响喘振现象的发生,由于气体反复倒流,会打破压缩机原有的运动平衡,导致转子的振动增大,在旋转中与定子接触摩擦,通常监控上的表现为压缩机出口的压力反复波动,轴承温度逐渐升高。

浅析什么是喘振-离心式压缩机为什么会发生喘振

浅析什么是喘振-离心式压缩机为什么会发生喘振

浅析什么是喘振/离心式压缩机为什么会发生喘振
什么是喘振
喘振是流体机械及其管道中介质的周期性振荡,是周期性吸入和排出激发下介质的机械振动。

在离心式空气压缩机中,喘振是压缩机运行中常见的故障之一,也是旋转失速的进一步发展。

当离心式压缩机的负荷降低到一定程度时,压缩气体将在叶轮的非工作面上形成分离质量,导致冲击损失急剧增加,不仅增加了流量损失,而且降低了效率,但也导致空气从管道网络流回压缩机,引起机身强烈振荡,并引起“哮喘”或“哮喘”。

“咆哮”声,这种现象被称为离心式压缩机的“浪涌”。

浪涌引起的机械振动频率和振幅与管网的体积密切相关。

管网的体积越大,浪涌频率越低,振幅越大。

离心式压缩机发生喘振时,典型现象有:
1、压缩机的出口压力最初先升高,继而急剧下降,并呈周期性大幅波动;
2、压缩机的流量急剧下降,并大幅波动,严重时甚至出现空气倒灌至吸气管道;
3、拖动压缩机的电机的电流和功率表指示出现不稳定,大幅波动;
4、机器产生强烈的振动,同时发出异常的气流噪声。

目前来说解决喘振常用的方法有三种:
1、在压气机上增加放气活门,使多余的气体能够排出。

2、使用双转子或三转子压气机。

3、使用可调节式叶片。

理论上的偶就说了,喘振的发生区间可以在工况曲线上找到。

主要产生原因:
1、蒸发压力过低,或者蒸发温度过低
引起这个的可能是回水温度低了,导致导叶开度迅速降低以致于压缩机的出口压力和冷凝压力接近,或者节流装置堵塞导致蒸发器里的液态冷媒不足以支持压缩机持续的像冷凝器输出高压气态冷媒。

2、冷凝压力过高,或者冷凝温度过高。

离心式压缩机的防喘振控制

离心式压缩机的防喘振控制

离心式压缩机的防喘振控制离心式压缩机是一种常见的工业设备,广泛应用于制冷、空调、石化、化工和能源等领域。

但离心式压缩机在高速旋转过程中,易发生喘振现象,严重影响设备的可靠性和运行效率。

因此,实现离心式压缩机的防喘振控制,成为压缩机研发领域的热门话题。

喘振的概念和机理喘振是指机械系统在一定运行工况下,出现自激振动和自我放大的现象。

具体表现为设备发出高频噪声、振幅剧烈震动、设备受到损坏等。

离心式压缩机的喘振主要由两种类型引起,分别是稳定喘振和非稳定喘振。

稳定喘振是指设备在一定工况下,由于颤振力和阻尼力平衡不稳定而发生振动。

非稳定喘振则是指由于系统参数的变化而导致的振动,如流量、压力、转速等。

喘振的机理比较复杂,通常是由流体特性、机械特性和控制策略等多个因素综合作用形成。

针对离心式压缩机,具体原因如下:•离心式压缩机转子和静子间的流体动力学作用•离心式压缩机转子的惯性力和弹力•离心式压缩机流量的变化导致的系统不稳定防喘振的控制为了防止离心式压缩机的喘振,降低因喘振而引起的振动、噪声、能耗和设备损坏等问题,可以采用以下控制策略:转子动平衡离心式压缩机转子的动平衡是减少振动和噪声的有效措施。

动平衡可以通过加装质量均匀化转子重量分布,减少旋转惯量差异,使转子自身的振动减少。

减弱单元耦合离心式压缩机中存在转子和静子的相互作用,转子运转时的振动会将振动传递到静子中,同时静子的反作用力也会反过来影响转子。

因此,为了减小单元之间的耦合作用,需要采用合适的材料和合理的结构设计。

控制喘振频率喘振频率是指转子和压气机系统之间的谐振频率。

为了控制喘振,可以借助传感器、控制系统和信号处理技术,实时检测喘振频率,调节系统工况,减小喘振频率。

同时还可以采用创建额外的泄放卡止或捆绑物来改变系统频率。

控制驱动力离心式压缩机喘振的发生和发展与外界激励力有关。

为了降低驱动力,需要在系统中加入有阻尼的弹簧,将外部力矩转换为电信号或机械压力信号,并将信号传输到控制系统中,调节工况,实现防喘振。

压缩机异常喘振原因分析及有效对策

压缩机异常喘振原因分析及有效对策

压缩机异常喘振原因分析及有效对策1、引言在多年对电力、冶金、石油化工、煤化工、油田、航空等行业轴流式压缩机和离心压缩机的状态监测及故障诊断工作中,发现不论是新投产的机组、还是运行多年的机组,都由于各种不同原因引起喘振或旋转分离,经常看到因为喘振问题造成机组振动过大,联锁停机、推力瓦磨损、径向瓦磨损、叶轮开裂、叶片断裂、部件磨损、管线开裂等等问题,引起问题的原因很多,本文列举了13种,并给出7种典型喘振原因案例,包括相应对策和效果,案例和方法基本都是笔者独创和首次提出应用的,没有资料可以参考和借鉴,而应用效果验证了解决问题方法的正确性。

同时本文提出一点设想。

2、旋转分离与喘振常见的与不常见的原因对于离心与轴流式压缩机,由于入口流量低于性能曲线对应的转速下的流量,因为叶片入口安装角的微小误差,会在某只或某几只叶片的非工作面发生边界层分离,并且沿着旋转方向依次发生,故称为:旋转分离,当流量进一步降低,旋转分离在所有流道和整级、整机发生,并和出口罐及管系联合作用,就会发展成喘振;造成喘振的物理机理很简单,而对于一起起发生在具体机组上的喘振故障,所引起喘振的具体原因,却是形形色色、各种不同的存在。

比如发生在西南地区某石化乙烯气透平压缩机进口管线、或出口管线、及机内通流截面局部堵塞引起的,发生在中油辽宁某石化的乙烯气离心压缩机组的喘振是防喘系统控制逻辑问题造成,每天损失产值过亿圆,中石化武汉中韩石化开工过程中乙烯气透平压缩机组喘振是由于入口罐引液不足问题造成,损坏了干气密封;中油东北某石化空分装置透平压缩机的喘振是因为环境湿度过大造成;山东某石化丙烯气透平压缩机喘振是入口气体温度过低造成的;华能公司某电厂的多轴式离心压缩机引起的喘振是环境粉尘造成的,造成机组无法运行;神华某煤化工企业甲醇气透平压缩机喘振是工艺系统反应收率低引起的,每年损失1.8亿圆;西南某石化丙烯气循环压缩机喘振是机后换热器管束粘结物料问题引起的;东北某石化甲烷气透平压缩机喘振是降速过程转速与流量不匹配问题引起的,中海油某石化透平压缩机喘振是现场没有进行实际气体防喘标定造成的,东北某石化焦化装置透平压缩机喘振是选型过大引起,中油、中石化多台新比隆二氧化碳透平压缩机喘振是设计问题造成的,西北某煤化工企业透平压缩机喘振是改造问题引起的,等等。

第一章离心压缩机防喘振控制

第一章离心压缩机防喘振控制

4.2 离心压缩机防喘振控制4.2.1 离心压缩机的喘振1.离心压缩机喘振现象及原因离心式压缩机在运行过程中,可能会出现这样一种现象,即当负荷低于某一定值时,气体的正常输送遭到破坏,气体的排出量时多时少,忽进忽出,发生强烈震荡,并发出如同哮喘病人“喘气”的噪声。

此时可看到气体出口压力表、流量表的指示大幅波动。

随之,机身也会剧烈震动,并带动出口管道、厂房震动,压缩机会发出周期性间断的吼响声。

如不及时采取措施,将使压缩机遭到严重破坏。

例如压缩机部件、密封环、轴承、叶轮、管线等设备和部件的损坏,这种现象就是离心式压缩机的喘振,或称飞动。

下面以图4.2-1 所示为离心压缩机的特性曲线来说明喘振现象的原因。

离心压缩机的特性曲线显示压缩机压缩比与进口容积流量间的关系。

当转速一定时,曲线上点有最大压缩比,对应流量设n c 为,该点称为喘振点。

如果工作点为点,要P Q B 求压缩机流量继续下降,则压缩机吸入流量,工作点从点突跳到点,压缩机出P Q Q <C D 口压力从突然下降到,而出口管网压力仍为C PD P ,因此气体回流,表现为流量为零 同时管网压力 图4.2-1 离心压缩机的特性曲线C P 也下降到,一旦管网压力与压缩机出口压力相等,压缩机由输送气体到管网,流量达到D P 。

因流量大于点的流量,因此压力憋高到,而流量的继续下降,又使压缩机A Q A Q B B P 重复上述过程,出现工作点从的反复循环,由于这种循环过程极B A D C B →→→→迅速,因此也称为“飞动”。

由于飞动时机体的震动发出类似哮喘病人的喘气吼声,因此,将这种由于飞动而造成离心压缩机流量呈现脉动的现象,称为离心压缩机的防喘振现象。

2.喘振线方程喘振是离心压缩机的固有特性。

离心压缩机的喘振点与被压缩机介质的特性、转速等有关。

将不同转速下的喘振点连接,组成该压缩机的喘振线。

实际应用时,需要考虑安全余量。

喘振线方程可近似用抛物线方程描述为:(4.2-θ2121Q b a p p +=1)式中,下标1表示入口参数;、、分别表示压力、流p Q θ量和温度;是压缩机系数,由压缩机厂商提供。

离心式压缩机喘振现象与调节方法

离心式压缩机喘振现象与调节方法

离心式压缩机喘振现象与调节方法一、什么是喘振喘振是离心式压缩机的一种特有的异常工作现象,归根揭底是由旋转失速引起的,气体的连续性受到破坏,其显著特征是:流量大幅度下降,压缩机出口排气量显著下降;出口压力波动较大,压力表的指针来回摆动;机组发生强烈振动并伴有间断的低沉的吼声,好像人在干咳一般。

判断是否发生喘振除了凭人的感觉以外,还可以根据仪表和运行参数配合性能曲线查出。

压缩机发生喘振的原因:由于某些原因导致压缩机入口流量减小,当减小到一定程度时,整个扩压器流道中会产生严重的旋转失速,压缩机出口压力突然下降,当与压缩机出口相连的管网的压力高于压缩机的出口压力时,管网的气流倒流回压缩机,直到管网的压力下降到比压缩机的出口压力低时,压缩机才重新开始向管网排气,此时压缩机恢复到正常状态。

当管网压力恢复到正常压力时,如果压缩机入口流量依然小于产生喘振工况的最小流量,压缩机扩压器流道中又产生严重的旋转失速,压缩机出口压力再次下降,管网压力大于压缩机排气压力,管网中的气流再次倒流回压缩机,如此不断循环,压缩机系统中产生了一种周期性的气流喘振现象,这种现象被称之为“喘振”。

二、离心式压缩机特性曲线对于一定的气体而言,在压缩机转速一定时,每一流量都对应一个压力,把不同流量下对应的每一个压力连成一条曲线,即为压缩机的性能曲线。

如图1所示,对每一种转速,都可以用一条曲线描述压缩机入口流量Q1与压缩比P2/P1的关系(P2、P1分别为压缩机出口绝对压力和入口绝对压力)。

图1为离心式压缩机特性曲线压缩机特性线是压缩机变动工况性能的图像表示,它清晰地表明了各种工况下的性能、稳定工作范围等,是操作运行、分析变工况性能的重要依据。

(1)转速一定,流量减少,压力比增加,起先增加很快,当流量减少到一定值开始,压比增加的速度放慢,有的压缩机级的特性压比随流量减少甚至还要减少。

(2)流量进一步减少,压缩机的工作会出现不稳定,气流出现脉动,振动加剧,伴随着吼叫声,这个现象称为喘振现象,这个最小流量称为喘振流量。

喘振的原因及解决方法

喘振的原因及解决方法

喘振的原因及解决方法1、负荷过低喘振是离心式压缩机的固有特性。

当压缩机吸气口压力或流量突然降低,低过最低允许工况点时,压缩机内的气体由于流量发生变化会出现严重的旋转脱离,形成突变失速(指气体在叶道进口的流动方向和叶片进口角出现很大偏差),这时叶轮不能有效提高气体的压力,导致压缩机出口压力降低。

但是系统管网的压力没有瞬间相应的降下来,从而发生气体从系统管网向压缩机倒流,当系统管网压力降至低于压缩机出口压力时,气体又向管网流动。

如此反复,使机组与管网发生周期性的.轴向低频大振幅的气流振荡现象。

离心冷水机组在低负荷运行时,压缩机导叶开度减小,参与循环的制冷剂流量减少。

压缩机排量减小,叶轮到达压头的能力也减小。

而冷凝温度由于冷却水温未改变而维持不变,那么此时就可能发生旋转失速或喘振。

2、冷凝压力过高当机组负荷过高时,冷却水温度不能及时降低,就会造成冷凝温度增高,冷凝压力也就随之增高,当增加至接近于排气压力时,冷凝器内局部制冷剂气体会倒流,此时也会发生喘振。

对于任何一台离心式压缩机,当排量小到某一极度限点或冷凝压力高于某一极度限点时就会发生喘振现象。

冷水机组是否在喘振点区域运行,主要取决于机组的运行工况。

喘振运行时离心式制冷机的一种不稳定运行状态,会导致压缩机的性能显著恶化,能效降低;大大加剧整个机组的振动,喘振使压缩机的转子和定子原件经受交变力的动应力;压力失调引起强烈的振动,使密封和轴承损坏,甚至发生转子和定子元件相碰等;叶轮动应力加大。

1、改变压缩机转速对压缩机加装变频驱动装置,将恒速转动改为变速转动。

在低负荷状态运行时,通过同时调节倒流叶片开度和电机转速,调节机组运行状态,可控制离心机组迅速避开喘振点,防止喘振对机组的伤害,确保机组运行平安。

同时,变频离心机运行在局部负荷工况时,低转速运行,降低了电机噪音,并能缓解与建筑物产生共振现象。

2、降低冷凝温度发生喘振时,一般会认为是吸入口压力过低造成的,但机组在80%以上负荷运转时也会产生喘振,那么是由于冷凝压力过高引起的,这时就要想法降低冷却水温度来降低冷凝压力。

离心式压缩机防喘振措施

离心式压缩机防喘振措施

离心式压缩机防喘振措施离心式压缩机是工业生产中常用的一种压缩机,其工作原理是通过离心力将气体压缩。

然而,在使用离心式压缩机的过程中,有时会出现喘振现象,严重影响设备的正常运行和使用寿命。

为了解决离心式压缩机的喘振问题,我们需要采取一系列的防喘振措施。

我们需要对压缩机的系统进行合理的设计和优化。

在设计过程中,应根据实际工况和使用要求,选择合适的压缩机型号和规格。

同时,要合理安排压缩机的进出口管道,保证气流的顺畅和均匀。

此外,还应考虑到系统的冷却和排放问题,避免过热和堵塞导致喘振。

我们需要对离心式压缩机进行定期的维护和保养。

定期检查压缩机的各个部件和连接件,确保其处于良好的工作状态。

特别要注意清洁压缩机的滤芯和冷却器,避免因积尘和杂质堆积导致系统阻塞和喘振。

我们还可以采取一些降低压缩机喘振的技术手段。

例如,可以通过在系统中增加减振器来吸收和分散喘振产生的冲击力。

减振器的选择应根据系统的工作条件和压力来确定,以提高系统的稳定性和可靠性。

还可以采用自动控制系统来监测和调节压缩机的运行状态。

通过实时监测和分析压缩机的振动和压力数据,及时发现和预防喘振现象的发生。

同时,可以通过调整系统的工作参数和控制策略,降低压缩机的负荷和运行压力,减少喘振的可能性。

还需培养和提高操作人员的技术水平和安全意识。

操作人员应具备一定的机械和压缩机知识,能够正确操作和维护离心式压缩机。

同时,要加强安全教育和培训,提高操作人员对喘振危害的认识,遵守安全操作规程,减少人为因素导致的喘振事故。

离心式压缩机的喘振问题是一个需要重视和解决的技术难题。

通过合理设计和优化系统、定期维护保养、采用技术手段和加强人员培训等一系列措施,可以有效预防和降低喘振的发生率,提高离心式压缩机的工作效率和安全性。

离心式压缩机喘振发生的机理、原因及预防措施!

离心式压缩机喘振发生的机理、原因及预防措施!

离⼼式压缩机喘振发⽣的机理、原因及预防措施!⼀、喘振发⽣的机理当离⼼式压缩机的操作⼯况发⽣变动并偏离设计⼯况时,如果⽓体流量减少则进⼊叶轮或扩压器流道的⽓流⽅向就会发⽣变化。

当流量减少到⼀定程度,由于叶轮的连续旋转和⽓流的连续性,使这种边界层分离现象扩⼤到整个流道,⽽且由于⽓流分离沿着叶轮旋转的反⽅向扩展,从⽽使叶道中形成⽓流漩涡,再从叶轮外圆折回到叶轮内圆,此现象称为⽓流旋离,⼜称旋转失速。

发⽣旋转脱离时叶道中的⽓流通不过去,级的压⼒也突然下降,排⽓管内较⾼压⼒的⽓体便倒流回级⾥来。

瞬间,倒流回级中的⽓体就补充了级流量的不⾜,使叶轮⼜恢复了正常⼯作,从⽽从新把倒流回来的⽓体压出去。

这样⼜使级中流量减少,于是压⼒⼜突然下降,级后的压⼒⽓体⼜倒流回级中来,如此周⽽复始,在系统中产⽣了周期性的⽓体振荡现象,这种现象称为“喘振”。

⼆、喘振发⽣的原因1、流量图1 不同转速下出⼝压⼒与流量的关系每台离⼼式压缩机在不同转速n下都对应着⼀条出⼝压⼒P与流量Q之间的曲线,如图1所⽰。

随着流量的减少,压缩机的出⼝压⼒逐渐增⼤,当达到该转速下最⼤出⼝压⼒时,机组进⼊喘振区,压缩机出⼝压⼒开始减⼩,流量也随之减⼩,压缩机发⽣喘振。

从曲线上看,流量减⼩是发⽣喘振的根本原因,在实际⽣产中尽量避免压缩机在⼩流量的⼯况下运⾏。

2、⽓体相对分⼦质量图2 不同相对分⼦质量时的性能离⼼压缩机在相同转速、不同相对分⼦质量下恒压进⾏的曲线,从曲线中可以看出,在恒压运⾏条件下,当相对分⼦质量M=20的⽓体发⽣喘振时,相对分⼦质量为M=25和M=28的⽓体运⾏点还远离喘振区。

因此,在恒压运⾏⼯况下,相对分⼦质量越⼩,越容易发⽣喘振。

3、⼊⼝压⼒图3 不同⼊⼝压⼒时的性能压缩机的⼊⼝压⼒P1>P2>P3,在压缩机恒压的运⾏⼯况下,⼊⼝压⼒越低,压缩机越容易发⽣喘振,这也是⼊⼝过滤器压差增⼤时,要及时更换滤⽹的原因。

4、⼊⼝温度图4 不同⼊⼝温度时的性能恒压恒转速下进⾏的离⼼式压缩机在不同⼊⼝⽓体温度时的进⾏曲线,从曲线上可以看出在恒压运⾏⼯况下,⽓体⼊⼝温度越⾼,越容易发⽣喘振。

离心式压缩机喘振及防喘振系统研究

离心式压缩机喘振及防喘振系统研究

离心式压缩机喘振及防喘振系统研究辛文俊(胜利油田石化总厂重油催化车间,山东东营257000)协%要]介绍了离心式压缩机的喘振机理及防喘振的条件,并具体分析了胜利油田化工总厂80万吨/年催化裂化装置富气压缩机防喘振控制系统的特点、存在的问题屈相应的改进措施,并总结了几项防喘振措施.,保障了枳纽的平稳运行及装置的安全生产。

泼罐嗣]压缩机;喘振;防喘振;控制系统1离心式压缩机的喘振1.1喘振机理如果压缩机在输送气体介质的过程中,其流量不断减小,当压缩机流量小到一定值时,则气体在整个扩压器流道中产生分离涡流:流量进一步减小,气体在扩压器流道内的分离涡流区进一步扩大,并形成严重的旋转脱离现象。

气体流动状态严重恶化,压缩机出口压力大幅度下降,使管网的压力比压缩机出口压力高,迫使气流倒回压缩机,一直到管网压力下降至l低于压缩机出口压力时,压缩机又开始向管网供气,压缩机又恢复正常工作。

如此周而复始,使压缩机的流量和出口压力周期性的大幅波动,引起压缩机强烈的气流波动,这种现象就叫压缩机的喘振。

从以上分析可以看出喘振的产生包含两方面因素:内在因素是离心式压缩机中的气流在一定条件下出现“旋转脱离”;外界条件是压缩机管网系统的特性。

当外界条件适合内在因素时,便发生喘振。

12防止喘振的条件离心式压缩机的喘振工况是在进口流量减少到一定程度是产生的,该流量统称为压缩机的喘振流量,也是维持压缩机运行的最小流量,以Q。

表示之,为确保压缩机平稳运行,则进口实际流量Q必须大于最小流量Q。

即Q>Q.。

2胜利油田石化总厂重催富气压缩机防喘振系统研究胜利油田石化总厂80万吨/年催化裂化装置富气压缩机,是引进美国德莱塞兰(D R E SSE R—RA N D)公司产品3M8—9型单缸两段9级离心式压缩机,背压式蒸汽透平驱动。

额定入口压力160kPa,出口压力1600kPa,蒸汽压力35M Pao背压1.O M Pa,额定功率2474 kW,流量22831N m3/h。

离心式压缩机喘振及控制

离心式压缩机喘振及控制

离心式压缩机喘振及控制一、什么是喘振?离心式压缩机产生喘振的原因?当离心机压缩机的负荷降低,排气量小于某一定值时,气体的正常输送遭到破坏,气体的排出量时多时少,忽进忽出,产生强烈的震荡,并发出如哮喘病人的喘气的噪声,此时可看到气体出口压力表、流量表的指示发生大幅度的波动,随之,机身也会发生剧烈的震动,并带动出口管道,厂房振动,压缩机将会发生周期性、间断的吼响声。

如不及时采取措施,压缩机将会产生严重的破坏,这种现象就叫做压缩机的喘振,也称飞动。

喘振是因为离心式压缩机的特性曲线程驼峰状引起的,离心式压缩机是其压缩比(出口绝压P2与入口绝压P1之比)与进口气体的体积流量之间的关系曲线,具体图如下(其中n 为压缩机的转速):从上图可以看出每种转速下都有一个P2/P1的最高点,这个点称之为驼峰,将各个驼峰点连接起来就可以得到一条喘振边界线,如图中虚线所示,边界线左侧的阴影部分为不稳定的喘振区,边界线右侧部分则为安全运行区,在安全运行区压缩比P2/P1随流量Q的增大而减小,而在喘振区P2/P1随流量的增大而增大举例说明:假设压缩机在n2转速下工作在A点,对应的流量为QA,如果此时有某个干扰使流量减,小,但仍在安全区内,这时压缩比会增大,即P2增大,这时就会使压缩机的排出压力增大并恢复到稳定时的流量QA。

但如果流量继续下降到小于n2转速下的驼峰值QB,这时压缩比不但不会增大,反而会下降,即出口压力P2会下降,这时就会出现恶性循环,压缩机的排出量会继续小,P2会继续下降,当P2下降到低于管网压力时瞬间将会出现气体的倒流,随着倒流的产生,管网压力下降,当管网压力降到与压缩机出口压力相等时倒流停止,然而压缩机仍处于运转状态,于是压缩机又将倒流回来的气体又重新压缩出去,此时又会引起P2/P1下降,被压出的气体又重新倒流回来,这种现象将反复的出现,气体反复进出,产生强烈的整理,这就是所谓的喘振。

二、防喘振控制的方案(两种)固定极限流量防喘振控制:把压缩机最大转速下的喘振点的流量作为极限值,是压缩运行时流量始终大于该极限值。

离心式制冷压缩机的喘振与防喘振措施

离心式制冷压缩机的喘振与防喘振措施

离心式制冷压缩机的喘振与防喘振措施一、喘振产生的机理离心压缩机的基本工作原理是利用高速旋转的叶轮对气体做功,将机械能加给气体,使气体压力升高,速度增大,气体获得财务压力能和速度能。

在叶轮后面设置增设有通流面积逐渐扩大的扩压元件,高压气体从叶轮流向后,再流经扩压器进行降速扩压,使气体流速降低,压力继续升高,即把气体的一部分能转变为压力能,完成了压缩过程。

扩压器流道内的边界层分离现象:扩压器流道内所气流的流动,来自叶轮对气流所做功变为做功的动能,边界层内气流流动,主要靠主流产品传递中传递来的动能,形变内气流流动时,要克服梁柱的摩擦力,由于沿流道方向速度降低,压力增大,大众化的动能也不断减小。

当主流传递给边界层的动能不足以压力差之克服以使继续前进时,最终停顿边界层的气流停滞下来,进而会发生旋涡和倒流,使气流边界层分离。

气体在叶轮中的流动也微粒是一种扩压流动,当流量减小或压差增大时也会出现这种边界层分离现象。

当流道内共气体流量减少到某一值后,叶道进口气流的就和叶片进口角很不一致,冲角α大大增加,在非工作面引起流道中气流已引起边界层严重分离,使流道进出口出现强烈的气流脉动。

当流量大大减小时,由于气流流动的不均匀性及流道型线的不均匀性,假定在B流道发生气流分离的现象,这样B流道的有效通流面积减小,使原来要流过B流道的气流有西风带一部分要流向相邻的A流道和C流道,这样就改变了A流道,C流道原来气流的方向,它使C流道的冲角有所减小,A流道的冲角更加增大,从而使A流道中的气流分离,反过来使B流道冲角减小而消除了分离现象,于是分离现象由B 流道转移到A流道。

这样分离区就以和叶轮旋转方向相反的方向旋转,这种现象称为旋转脱离。

扩压器同样存在滑动脱离。

在压缩机的运转过程中,流量不断减小到Qmin值时,在压缩机流道中出现如上所述严重的偏转脱离脱离,流动严重恶化,使轴承压缩机出口排气财务压力突然大大下降,低于冷凝器的顾虑,气流就倒流向压缩机,一直到冷凝压力低于财务压力涡轮出口排气压力为止,这时倒流停止,压缩机的排量增加,压缩机趋于稳定工作。

离心式压缩机振动故障的诊断及解决措施

离心式压缩机振动故障的诊断及解决措施

离心式压缩机振动故障的诊断及解决措施汇报人:日期:CATALOGUE目录•引言•离心式压缩机振动故障的诊断•振动故障的原因分析•离心式压缩机振动故障的解决措施•案例分析•结论与展望引言01离心式压缩机的基本结构和工作原理离心式压缩机的特点和应用领域离心式压缩机的概述振动故障的危害振动故障对离心式压缩机的危害振动故障对操作人员和设备周围环境的影响离心式压缩机振动故障的诊断02离心式压缩机振动故障的原因多种多样,包括机械不平衡、气动不平衡、转子不对中、轴承磨损等。

因此,对于振动故障的诊断,需要采用多种方法,包括信号处理、机器学习以及其他技术。

信号处理方法主要包括频谱分析、波形分析、轴心轨迹等,可以用于识别机械不平衡和气动不平衡等故障。

机器学习算法则可以通过学习样本数据,自动识别和预测振动故障,提高诊断准确率。

其他技术,如轴颈测量和激光对中等,也可以用于诊断转子不对中和轴承磨损等故障。

诊断方法概述VS频谱分析01通过对振动信号进行频谱分析,可以将振动信号分解成不同频率的分量,从而识别出不同性质的振动故障。

例如,对于机械不平衡故障,可以在频谱上看到以转子转速频率为基频的振动分量。

波形分析02波形分析可以用于识别不同性质的振动故障。

例如,对于气动不平衡故障,可以在波形上看到周期性的波动,其频率与气动力的频率相等。

轴心轨迹03轴心轨迹可以用于识别转子不平衡和不对中等故障。

通过测量轴心位置的变化,可以绘制出轴心轨迹图,从而识别出转子不平衡和不对中的位置和大小。

支持向量机(SVM)SVM是一种有监督学习算法,可以用于分类和回归问题。

在振动故障诊断中,可以使用SVM对采集的振动信号进行分类,判断是否存在故障,并预测故障的类型和程度。

随机森林(RF)RF是一种集成学习方法,将多个决策树的结果进行集成,提高预测精度和稳定性。

在振动故障诊断中,可以使用RF对采集的振动信号进行分类或回归分析,预测故障的类型和程度。

神经网络神经网络是一种模拟人脑神经元网络结构的计算模型,具有强大的自学习和自适应能力。

离心压缩机异常振动、异常噪音、喘振原因与处理方法

离心压缩机异常振动、异常噪音、喘振原因与处理方法
离心压缩机异常振动、异常噪音、喘振原因与处理方法
1、压缩机的异常振动和异常噪音:
可能的原因
处理方法
①、机组找正精度被破坏,不对中。
检查机组振动情况,轴向振幅大,振动频率与转速相同,有时为其2倍、3倍……卸下联轴器,使原动机单独转动,如果原动机无异常振动,则可能为不对中,应重新找正。
②、转子不平衡。
检查振动情况,若径向振幅大,振动频率为n,振幅与不平衡量及n2成正比;此时应检查转子,看是否有污垢或破损,必要时转子重新动平衡。
⑦、防喘装置或机构工作失准或失灵。
定期检查防喘装置的工作情况,发现失灵、失准或卡涩,动作不灵,应及时修理调整。
⑧、防喘整定值不准。
严格整定防喘数值,并定期试验,发现数值不准及时校正。
⑨、升速、升压过快。
运行工况变化,升速、升压不可过猛、过快,应当缓慢均匀。
⑩、降速未先降压。
降速之前应先降压,合理操作才能避免发生喘振。
④、压缩机出口气体系统压力超间。
压缩机减速或停机时气体未放空或未回流,出口逆止阀失灵或不严,气体倒灌,应查明原因,采取相应措施。
⑤、工况变化时放空阀或回流阀未及时打开。
进口流量减少或转速下降,或转速急速升高时,应查明特性线,及时打开防喘的放空阀或回流阀。
⑥、防喘装置未投自动。
正常运行时防喘装置应投自动。
⑮、气体管道对机壳有附加应力。
气体管路应很好固定,防止有过大的应力作用在压缩机气缸上;管路应有足够的弹性补偿,以应付热膨胀。
⑯、压缩机附近有机器工作。
将它的基础、基座互相分离,并增加连结管的弹性。
⑰、压缩机负荷急剧变化。
调节节流阀开度。
⑱、部件松动。
紧固零部件,增加防松设施。
2、离心压缩机喘振:

压缩机喘振现象及处理方法

压缩机喘振现象及处理方法

压缩机喘振现象及处理方法压缩机喘振现象及处理方法1. 喘振现象的定义喘振是指在压缩机工作过程中发生的一种流动性现象,表现为压缩机机体及管道内的气流产生剧烈的振荡。

喘振会导致压缩机性能下降、噪音增大,并且对设备寿命和安全造成影响。

2. 喘振的原因喘振的产生原因较为复杂,主要有以下几个方面:•气流回流现象:当气流经过突然的节流或阻碍,会产生压力波,并引起喘振。

•气体返流:由于管路系统设计不当或安装错误,会导致气体返流,进而引起压缩机喘振。

•系统过载:当压缩机运行在过载工况下,过多的气体被压缩,产生的压力波会引起喘振。

•系统堵塞:管道内的污染物或异物堵塞,导致气流不畅,也会引起喘振。

3. 处理喘振的方法为了解决压缩机喘振问题,可以采取以下方法:安装减振装置•在压缩机的进气口和排气口安装减振器,可以有效降低振动的传导和扩散,减少喘振的发生。

•在压缩机和管道连接处安装减振垫,起到缓冲作用,减少振动对管道的影响。

调整压缩机的工况•根据压缩机的额定工况,合理设置压缩机的运行参数,避免过载运行,减少喘振的可能性。

•对于多台压缩机并联运行的系统,需要合理分配压缩机的负荷,避免负载不均衡引起的喘振。

清洁管道和过滤器•定期清洗管道和过滤器,防止污染物和异物堵塞管道,保持气流通畅,减少喘振的概率。

优化系统设计•在设计压缩机系统时,合理选用管道材料和直径,减小阻力,降低压缩机运行时的压力波。

•合理设计气流通道,避免急转弯、突变节流等情况,减少压力波的产生。

总结压缩机喘振是一个常见且严重的问题,但通过合适的处理方法,可以有效地降低喘振的发生。

在实际操作过程中,需要根据具体情况综合考虑上述方法,并结合实际经验进行处理,以确保压缩机正常工作,延长设备寿命,保障工作安全。

4. 使用软启动装置•软启动装置可以帮助降低压缩机的启动冲击,减少振动和喘振的发生。

•软启动可以逐渐增加电流和转速,避免突然的负载变化,降低喘振的风险。

5. 定期维护和检查•定期维护和检查压缩机,包括清洁和更换滤芯、润滑油等。

离心式空气压缩机喘振问题研究及解决方案

离心式空气压缩机喘振问题研究及解决方案
关键词 : 离心式空压机 叶轮 冷却器 机组效率 喘振

1 问题 的提 出及分 析
通 常情 况 下 , 对 于 机 组来 说 , 多种 原 因都 可 能 引发 喘
振:

1 . 1 机 组 流道 小 , 效 率 降低 。 对于 离 心式 空 气压 缩机 象 的发 生。 通过 对 中 间冷却 器芯 体进 行 检查 发现 , 在 芯体 组来 说 , 在运 行过 程 中出现 喘振 现 象。 为 了确 保 机组 运行 内部 存在 严 重 的堵塞 现 象 ,经过 统计 前 后压 力表 的数 值 , 的安 全 性 , 通 过 对 离 心 式 空气 压 缩机 进 行 停 机 , 进 而 在 一 发 现前 后相 差 0 . 0 4 MP a。 由于 二级 的吸入压 力 比较低 , 进 定 程 度 上 进 行检 查 , 在检 查 过 程 中发 现 : 许 多污 垢 附着 在 而在 一定 程度 上导 致发 生 喘振。 叶轮 以及 流 道 内 , 在 一定 程 度上 增加 了清洗蜗 壳及 叶轮 的 4 改造 后结 论 难度 , 开机 试 车运行 后 , 发现 喘振 现 象依 然存在 。 ① 送 气 过程 中 , 温度 要符 合相 关要求 , 方案更 新后 , 温 1 . 2 机 组 出气 口被堵 塞 。通 过检查 机 组 的雾滴 捕集器 度 由原来 的 4 5 ℃ 直 接下 降到 目前 的 2 8 ℃。 ② 改造 方案后 , 内 的丝 网 , 在检 查 过程 中没 有发 现任 何异 常现 象。 机组 始 终 处于 良好 的运 行状 态 , 并且 在一 定 程度上 没 有发 1 . 3 受机 组 内部 通道 发生堵 塞 的影响和 制约 ,通常 情 生 过 喘振 现 象 , 并 且 对 吸 风 系统 进行 了改 造 , 进 而在 一定 况下 需要拆 出空气冷 却器 ,进 而在一定 程度 上 对其进行相 程度上确保了系统运行的稳定性。③提高了机组效率 , 单 应 的检 查 , 检查 结 果显示铝 翅 片被灰 尘覆 盖着 , 空 气冷却 器 电消 耗 由 更 新 前 的 5 9 k W・ h / k m。降低 到 现 在 的 5 7 k W・ 在 一定 程度上 受到严 重 的堵塞 。 对于 此类翅片来 说 , 受强 度 h / k ms 。④ 由于冷却器垢阻减小传热系数增加使冷却效果 较 弱的影 Ⅱ 向 和制约, 进而 对翅 片进行 清洗 的过程 中 , 容 易造 提 高 ,冬 季原 两 台 冷却 器 的 用水 由并联 使用 改 为 串 联 使 成翅片 倒伏 ,换热效 果及 清洗效 果在 一定 程度上 受到影 响 用, 减少用水量。⑤ 国产冷却器芯体每台在 1 7 万元左右 , 和制 约 , 因此在 这种 情况下 , 需要更换 冷却器 芯体。

离心式压缩机的喘振原因与预防措施分析

离心式压缩机的喘振原因与预防措施分析

离心式压缩机的喘振原因与预防措施分析摘要:离心式压缩机是通过叶轮带动气流,增大气流的速度,把气流中的能量转换成气压,从而提高气体的压强。

其优点是单级流量大,压力比高,气体介质密封效果好。

离心式压缩机具有较强的压力、流量相关性,其稳态工作区间较小,且极易产生喘振现象,为了保证离心式压缩机的安全、稳定工作,需要对喘振现象进行有效的控制。

通过对压缩机特性曲线的测试,可以得到满足特定工况的压缩机抗喘振特性曲线,该防喘振系统控制下的机组应是最安全和经济的。

关键词:预防喘振;离心式压缩机;故障分析1.离心式压缩机喘振原理离心式压缩机是一种利用叶轮高速转动来持续提高气压的转动设备。

气体压力主要是通过扩散阀和推进器来提高的。

当压缩机内的气体速度下降到一定程度时,将引起压缩机内叶轮的转动、分离,并在叶轮内产生大量的气体漩涡。

在这种情况下,由于阻塞严重,会使压缩机出口的压力大大下降。

因为管网的容积很大,所以出现在管网上的气体压力快速降低的可能性很小。

一般情况下,管网内的气压比压缩机出口气压高的多,造成管网内气压回流。

直到压缩机出口的气压和管道内的气压相同,这种回流现象才会发生。

此后,在人工转动叶轮的作用下,气压逐渐上升。

在管网内气压快速升高后,气压又会逐步下降,使系统内再一次发生回流,导致系统内出现大幅的气体喘振及周期的低频现象。

这就是压缩机的喘振现象。

2.离心式压缩机喘振的影响因素2.1内部因素离心式压缩机产生喘振的内在原因有两个:一个是叶轮,另一个是介质。

如果进气体速小于规定的数值,则会使压缩机的风向发生偏移。

如果有非常大的偏离,也可能造成分离。

这时,气体将滞留于叶轮流道内,使压缩机内压下降。

但是,在工程管道中,由于背压的存在,出口的压力不会下降,从而引起气体的回流,从而补充气体的流动,最终达到正常水平。

若持续降低且补给不充分,仍然存在回流现象。

长此以往,设备内的空气将产生喘振,这就是造成离心式压缩机喘振的内部因素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离心式压缩机喘振问题研究及解决方案Re search and Solution of Surge in Centrifugal Compre ssor 王计栓 苑文改Π华北制药股份有限公司摘要:针对HR9-040-5型离心空压机出现的喘振现象进行了分析研究,得出主要原因是空气冷却器故障。

改变了冷却器结构形式并采取了防范措施。

关键词:离心式压缩机 冷却器 喘振中图分类号:TH452 文献标识码:A 文章编号:1006-8155(2005)03-0051-03Abstract :Analysis reasearch is carried out on phe 2nomenon of surge in HR9-040-5type centrifugal air com press or ,and the reas on is air cooler with trou 2ble.The structure form of cooler is changed and pre 2vent measures is taken.K ey words :Centrifugal com press or C ooler Surge1 引言HR9-040-5空压机为美国Atlas 公司制造的带中间冷却器的二级离心式空气压缩机。

投入使用7年后该机组先后出现了送气温度高,机组效率下降,喘振等现象。

2 问题的提出及分析产生喘振的原因主要有以下几点。

(1)机组流道缩小,造成效率降低停机检查,叶轮及流道内污垢较多,对蜗壳及叶轮进行清洗后开机试车运行仍未见好转。

(2)机组出气口堵塞检查雾滴捕集器内的丝网,未见异常。

(3)机组内部通道发生堵塞将空气冷却器拆出检查,发现铝翅片间布满灰尘,空气冷却器堵塞严重。

但是此类型翅片强度极低,在清洗时容易造成翅片倒伏,影响换热效果及清洗效果。

必须更换冷却器芯体。

同时经过对机组拆检发现,由于空气冷却器芯体密封胶条老化脆断造成热空气短路致使送气温度升高;由于空气冷却器芯体被尘埃堵塞提高了吸、排气阻力使机组效率下降;而中冷器的尘埃灰垢被压缩空气带入二级叶轮并附着在上面使流道状况恶劣引起压缩空气旋转脱离,严重时便出现了喘振。

由此可见,机组出现异常的主要原因是空气冷却器故障。

在空气冷却器出现短路时,曾试图用聚四氟板(耐高温、不易老化)来代替胶条,但实际效果不太理想。

因为密封胶条呈倒“V ”字形扣在冷却器的挡风板上,而冷却器芯体长3.6m ,一端固定。

当压缩空气吹向芯体时,造成芯体漂移,使密封用聚四氟板移至出气口,挡住部分出气口,同时造成密封垫被破坏,引起短路。

故决定更新空气冷却器芯体。

由于此设备为进口设备,空气冷却器的缺点是生产周期长,造价较高,为了生产急需,同时鉴于上述缺点,最终提出了改变冷却器的结构形式且由自己制造。

3 对策对原有的冷却器形式进行分析,当空压机工作时,造成冷却器芯体受力。

按材料力学公式建立模型,见图1。

可以计算出芯体的漂移距离为20mm 。

而实际冷却器芯体密封垫与排气口的距离为15mm 。

图1 计算模型收稿日期:2004-09-30 石家庄市 050015—15— 经过借鉴其他冷却器的形式,决定采用如下的结构形式。

(1)将整体铝翅片串片式的结构改为铜翅片缠绕式结构,提高翅片强度便于今后清洗。

增加传热系数。

加强制冷效果。

(2)在有效的空间内增加换热管数量,保证并提高冷却效果。

(3)改变原来的密封形式。

在壳体上焊接挡风板,并将不锈钢弹簧板固定在挡风板上,利用空气的压力将密封片紧紧压在冷却器的上下支撑板上。

(4)在壳体上焊接轨道,在芯体上安装滚轮方便拆装。

(5)在冷却器进出口安装压力表,便于随时检查冷却器的情况,以确保机组正常运行。

在确定上述方案后,先在后冷却器芯体上试验。

经过对壳体及原冷却器芯体的精确测量,设计出图纸,再经过认真核对尺寸,将图纸上未反映出的设计思路重新进行了修正。

后冷却器芯体首先制作完成。

结构见图2。

安装完成后经开机检验,进出冷却器压差降为0.0025MPa ,比原来低0.015MPa 。

同时解决了后冷却器芯体串气的问题。

在筒体上焊接完后,由于此设备属于压力容器,对所有焊缝进行了无损探伤,合格后投入使用。

在更新后冷却器芯体后,经实际运行,机组的喘振周期延长,但还有喘振现象。

经过对中间冷却器芯体检查发现,堵塞现象严重,经过加前后压力表观察,发现前后压差达到0.04MPa 。

而二级的吸入压力较低,这很可能是造成喘振的重要原因。

经过对中间冷却器芯体认真测量绘制图纸并制作完成后,安装试车,压降为0.003MPa ,比原来低0.037MPa 。

效果明显,而且整体单耗降低。

机组运行至今再未产生喘振现象。

图2 冷却器结构4 防范措施在上述改造完成后,为了避免上述现象的再次发生,认真检查了吸风系统。

该吸风系统为设备厂家提出的三级过滤系统,而同类型机组使用四级过滤,且过滤精度也比此机组高。

用尘埃粒子计数器检测空气洁净度与同类型的机组相比效果较差(见表1)。

根据检测的结果,发现主要是一级过滤效果不理想(尤其在小粒子方面),决定在吸风室一级与二级过滤介质间再增加一层粗效过滤器(DV3)作为改造后的一级过滤,以便提高过滤能力,从而提高了空气洁净度。

改造后,检测的空气净化度达到同类型机组的水平,检测结果见表1。

同时在操作规程中制定了详细的措施,每半年监测一次洁净度,如发现变化,及时更换介质,从而确保洁净度。

避免上述现象的再次发生。

5 结论(1)送气温度达到要求,由更新前的45℃降低到28℃。

(2)机组运行状态良好,再没有发生喘振现象,并且改造了吸风系统,保证了系统稳定运行。

(3)机组效率提高,电单耗由更新前的59kW ・h Πkm 3降低到57kW ・h Πkm 3。

更新后运行了7500h ,节电(59-57)×27×7500=405000kW ・h ,按0.45元ΠkW ・h 计算合18.23万元。

—25—风机技术 2005年第3期Π使用维护表1 改造前、后此机组与相同类型机组过滤效果比较改造前改造后位置粒径(μm)本机组同类型机组本机组粒子数粒Π10-1ft3级过滤效率Π%累计过滤效率Π%粒子数粒Π10-1ft级过滤效率Π%累计过滤效率Π%粒子数粒Π10-1ft3级过滤效率Π%累计过滤效率Π%过滤前大气0.3335255——335255——335255——0.749435——49435——49435——1.08121——8121——8121——2.03000——3000——3000——一级过滤后0.33332260.60.618725144.144.118439045450.7457747.47.4615287.687.6543889891.0279965.565.525296.996.925296.996.92.055881.481.49396.996.99396.996.9二级过滤后0.33326100.20.816054814.352.11567321553.20.7455390.57.9463624.690.640242691.91.027302.566.41773097.81713297.92.050010.483.36925.897.7682797.7三级过滤后0.329745310.611.3163419-1.851.314011810.658.20.73519122.728.84383 5.591.13742792.41.0230115.771.711037.998.61034098.72.04101888.75618.898.1542098.2 (4)由于冷却器垢阻减小传热系数增加使冷却效果提高,冬季原两冷却器的用水由并联使用改为串联使用。

供水管直径Φ159,循环水流速3mΠs,因串联使用减少的一组供水管的流量为3.14×0.152÷4×3×3600=190.8tΠh,实际使用90d,节约循环水190.8×24×90=412128t,按0.2元Πt计算合82425.6元。

(5)国产冷却器芯体每台在17万元左右,而进口冷却器芯体在36万元左右。

节省进口设备费用19万元,2台共计节省38万元。

经过上述的改进后节省设备费38万元,电耗降低18.23万元,节水8.24万元。

三项合计64.47万元。

(上接第56页)谱图上看不出轴承各故障频率,但峭度指标为5.4,初步诊断,风机靠近联轴器侧的滚动轴承可能存在着故障。

建议严密注意故障劣化趋势,并及早做好维修准备。

4.3 结论经过以上分析,认为风机振动异常的原因主要是由于转轴存在的不对中故障造成的。

由于滚动轴承是在低速、变速和重载工况下,受所测试仪器和分析软件的影响,从频谱图上看不出轴承各故障频率,因此不易确定滚动轴承故障的部位,但可以初步确定滚动轴承也很可能存在着故障。

应该提早做好维修的准备。

4.4 验证半个月拆机检修后发现联轴器弹性柱销磨损很严重,大多数已呈圆锥形,完全失去了补偿两轴间相对位移的能力,实际结果与诊断的相符,是典型的不对中的现象,测点3滚动轴承的保持架已经损坏了,属于滚动轴承晚期故障。

维修时更换了滚动轴承、电机及联轴器的柱销后,运行状态马上恢复正常。

5 结束语通过对助燃风机的振动监测与故障诊断,查明了风机振动异常的原因,处理后的风机恢复正常运行状态,避免了事故的发生,并节约了大量的人力、物力及维修时间。

这个实例说明,当受仪器和分析软件限制,查找不出滚动轴承故障时,可利用峭度指标来初步判断轴承是否存在故障。

尤其是在低速、变速和重载等复杂工况下,频率较低并且变化,频谱分析方法不太适用的情况下,显得尤为突出。

参考文献[1]陈大禧,朱铁光.大型回转机械诊断现场实用技术.机械工业出版社,2002.[2]易良榘.简易振动诊断现场实用技术.机械工业出版社,2003.—35—。

相关文档
最新文档