七年级数学上册第四章4

合集下载

2024秋七年级数学上册第四章整式的加减4.4整式的加减教学设计(新版)冀教版

2024秋七年级数学上册第四章整式的加减4.4整式的加减教学设计(新版)冀教版
三、教学过程
1.导入:通过简单的数学谜语或实际问题,引发学生对整式加减的兴趣。
2.新课讲解:结合课本内容,讲解整式加减的规则和步骤。
3.案例分析:分析并பைடு நூலகம்决几个典型的整式加减问题。
4.课堂练习:学生独立完成几道整式加减的练习题,老师进行点评和解答。
5.总结:对本节课的内容进行总结,强调重点和难点。
四、作业布置:
(4)通过实际问题引导学生建模,让学生理解整式加减在实际问题中的应用。
教学方法与策略
1.教学方法:
针对本节课的内容,将采用讲授法、案例研究和项目导向学习相结合的教学方法。
(1)讲授法:在课堂中,教师将运用清晰、简洁的语言,系统地传授整式加减的规则、步骤以及实际应用。
(2)案例研究:教师将挑选几个具有代表性的案例,引导学生通过分析、讨论,掌握整式加减的方法。
b. 5(x^2 + x) - 3(2x - x^2) + 2(x - 1)
c. (4x^3 - 9x^2 + 12x - 6x) ÷ 2x - (3x^2 + 2x)
答案:
1. a. 5x^2 - x + 3
b. 2x^2 + x - 2x^2
c. 10x^2 + 5x - 3x - 3
2. 5元
(三)新课呈现(预计用时:25分钟)
知识讲解:
清晰、准确地讲解整式加减的规则和步骤,结合实例帮助学生理解。
突出整式加减重点,强调整式加减难点,通过对比、归纳等方法帮助学生加深记忆。
互动探究:
设计小组讨论环节,让学生围绕整式加减问题展开讨论,培养学生的合作精神和沟通能力。
鼓励学生提出自己的观点和疑问,引导学生深入思考,拓展思维。

人教版(2024新版)七年级数学上册第四章课件:第四章 整式的加减 小结与复习

人教版(2024新版)七年级数学上册第四章课件:第四章 整式的加减 小结与复习
数为4;
32t3是单项式,系数为32,次数为3;
2x-y是多项式,有2x,-y两项,次数为1.
随堂练习
4. 先化简,再求值.
5x2+4-3x2-5x-2x2-5+6x,其中x =-3.
解:5x2+4-3x2-5x-2x2-5+6x
= (5-3-2)x2+(-5+6)x-1
= x-1.
当x = -3时,原式 =-3-1 =-4.
当n=5时,S=12;当n=7时,S=18;当n=11时,S=30.
|b-a|+|a+b|-|c|-|b-c|+|a+c|.
解:由题意,得b<c<0<a,且|c|<|a|<|b|,
所以b-a<0,a+b<0,b-c<0,a+c>0,
所以|b-a|+|a+b|-|c|-|b-c|+|a+c|
=-(b-a)-(a+b)+c+(b-c)+(a+c)
=-b+a-a-b+c+b-c+a+c
x是单项式,系数为1,次数为1;
随堂练习
3.下列整式中哪些是单项式?哪些是多项式?是单项式的指出系数
和次数,是多项式的指出项和次数:





a2b,
,x2+y2-1,

x ,3x2-y+3xy3+x4-1,32t3,2x-y.
解:3x2-y+3xy3 +x4-1是多项式,有3x2,-y,3xy3,x4,-1五项,次

人教版七年级数学上册:第四章4.2《直线、射线、线段》例题与讲解

人教版七年级数学上册:第四章4.2《直线、射线、线段》例题与讲解

4.2 直线、射线、线段1.直线(1)概念:直线是最简单、最基本的几何图形之一,是一个不作定义的原始的概念,直线常用“一根拉得很紧的细线”,“一张纸的折痕”等实际事物进行描述.(2)特点:直线向两方无限延伸,不可度量,没有粗细;并且同一平面内的两条相交直线只有一个交点.(3)直线的基本性质:经过两点有一条直线,并且只有一条直线.即“两点确定一条直线”.(4)直线的两种表示法:一是用一个小写字母表示:如直线a,b,c或直线l等.另一个是用直线上两个点的大写字母表示,如:直线AB或直线BA.如图:表示为直线l或直线AB(点的字母位置可以交换).(5)直线与点的位置关系:一是点在直线上,也叫做直线经过这点;另一种是点在直线外,也叫做直线不经过这个点.【例1-1】下面几种表示直线的写法中,错误的是().A.直线a B.直线MaC.直线MN D.直线MO解析:直线的表示法有两种,一种是用一个小写字母表示,另一种是用直线上两个点的大写字母表示,所以直线Ma这种表示法不正确,故选B.答案:B【例1-2】如图,下列说法错误的是().A.点A在直线m上B.点A在直线l上C.点B在直线l上D.直线m不经过B点解析:点与直线有两种位置关系,一是点在直线上,也称作直线过这点,另一种是点在直线外.所以C错误.答案:C2.射线(1)定义:直线上一点和它一旁的部分,叫做射线.它是直线的一部分.如图就是一条射线,其中O是射线的端点.(2)表示法:同直线一样,射线也有两种表示方法,一种是用一个小写字母表示:如射线a,b,c或射线l等,另一个是用射线上两个点的大写字母表示,其中前面的字母表示的点必须是端点.如图:表示为射线l或射线OA.注意:表示射线端点的字母一定要写在前面.(3)特点:射线只有1个端点,向一方无限延伸,因此不可度量.【例2-1】如图,若射线AB上有一点C,下列与射线AB是同一条射线的是().A.射线BA B.射线ACC.射线BC D.射线CB解析:端点相同,在同一条直线上,且方向一致,就是同一条射线,所以B正确.答案:B3.线段(1)定义:直线上两点和它们之间的部分,叫做线段.它是直线的一部分.(2)特点:有两个端点,不能向两方无限延伸,因此它有长度,有大小.(3)表示法:同直线一样,线段也有两种表示法,一种是用一个小写字母表示,如线段a,b,c.另一种是用线段两个端点的大写字母表示.如图:可以表示为:线段AB或线段BA,或线段a.(4)线段的基本性质:两点的所有连线中,线段最短,简单的说成:“两点之间,线段最短.”意义:选取最短路线的原则和依据.(5)两点间的距离:连接两点的线段的长度,叫做这两点间的距离.破疑点线段的表示表示线段的两端点的字母可以交换,如线段AB也是线段BA,但端点字母不同线段就不一样.【例3】如图有几条直线?几条射线?几条线段?并写出.分析:直线主要看有几条线向两方无限延伸,图中只有一条;射线主要看端点,再看延伸方向,3个端点,所以有6条,线段主要是看端点,3个端点,所以有3条.解:有一条直线AB(或AC,AD,AE,BE,BD,CD,…);射线有6条:CA,CB,DA,DB,EA,EB.线段有3条:CD,CE,DE.4.线段的画法(1)画一条线段等于已知线段画法:①测量法:用刻度尺先量出已知线段的长度,画一条等于这个长度的线段;②尺规法:如图:画一条射线AB,在这条射线上截取(用圆规)AC=a.(2)画线段的和差测量法:量出每一条线段的长度,求出它们的和差,画一条线段等于计算结果的长度.如:已知线段a,b(a>b),画线段AB=a-b,就是计算出a-b的长度,画出线段AB等于a-b 的长度即可.尺规法:如图,已知线段a,b,画一条线段,使它等于2b-a.画法:如图,①画一条射线AB,在这条射线上连续截取(用圆规)AC=2b,②再以A为一个端点,截取AD=a,那么DC=2b-a.【例4】如图,已知线段a,b,c,画一条线段,使它等于a+b-c(用尺规法).画法:如图,①画射线(直线也可)AB,在射线AB上分别截取AC=a,CD=b.②以D为一个端点在AD上截取DE=c,线段AE即为所求.5.线段的比较(1)测量法:就是用刻度尺测量出两条线段的长度,再比较它们的大小.(2)叠合法:把两条线段的一端对齐,放在一起进行比较.如图:①若C 点落在线段AB 内,那么AB >AC ;②若C 点落在线段AB 的一个端点上,那么AB =AC ;③若C 点落在线段AB 外(准确的说是AB 的延长线上),那么AB <AC .谈重点 线段的比较 用叠合法比较两条线段的大小,一端一定要对齐,看另一个端点的落点,测量法要注意单位的统一.【例5】 已知:如图,完成下列填空:(1)图中的线段有________、________、________、________、________、________共六条.(2)AB =________+________+________;AD =________+________;CB =_______+__________.(3)AC =AB -__________;CD =AD -__________=BC -__________;(4)AB =__________+__________.解析:根据图形和线段间的和差关系填空,注意(4)题有两种可能.答案:(1)AC AD AB CD CB DB(2)AC CD DB AC CD CD DB(3)CB AC DB(4)AD DB 或AC CB6.线段中点、线段等分点(1)定义:点M 把线段AB 分成相等的两条线段AM 与MB ,点M 叫做线段AB 的中点.(2)拓展:把一条线段分成相等的三条线段的点叫做这条线段的三等分点….(3)等量关系:在上图中:AM =BM =12AB ;2AM =2BM =AB . 【例6】 如图,点C 是线段AB 的中点.(1)若AB =6 cm ,则AC =__________cm.(2)若AC =6 cm ,则AB =__________cm.解析:若AB =6 cm ,那么AC =12AB =3(cm). 若AC =6 cm ,那么AB =2AC =2×6=12(cm).答案:3 127.关于延长线的认识延长线是重要的,也是应用较多的几何术语,是初学者最易错,最不好理解的地方,下面介绍几种关于延长线的术语:如图(1)延长线段AB ,就是由A 往B 的方向延长,并且延长线一般在作图中都用虚线表示;如图(2)叫做反向延长线段AB ,就是由B 向A 的方向延长;如图(3)延长AB 到C ,就是到C 不再延长;如图(4)延长AB 到C ,使AB =BC ;如图(5)点C 在AB 的延长线上等.几种常见的错误,延长射线AB 或延长直线AB ,都是错误的,图(6)中只能反向延长射线AB .【例7-1】 若AC =12AB ,那么点C 与AB 的位置关系为( ). A .点C 在AB 上 B .点C 在AB 外C .点C 在AB 延长线上D .无法确定答案:D【例7-2】 画线段AB =5 cm ,延长AB 至C ,使AC =2AB ,反向延长AB 至E ,使AE =13CE ,再计算: (1)线段AC 的长;(2)线段AE ,BE 的长.分析:按要求画图.由画图过程可知:AC =2AB ,且C 在AB 的延长线上,所以AB =BC =12AC ,E 在AB 的反向延长线上,且AE =13CE ,所以AB =BC =AE =5 c m.解:如图:(1)因为AC =2AB ,所以BC =AB =5 cm ,所以AC =AB +BC =5+5=10 (cm).(2)因为AE =13CE ,所以AE =AB =BC =5 cm , 所以BE =AB +AE =5+5=10 (cm).8.线段的计数公式及应用一条直线上有n 个点,如何不重复不遗漏地数出该直线上分布着多少条线段呢?以下图为例:为避免重复,我们一般可以按以下方法来数线段的条数:即A →AB ,AC ,AD ,B →BC ,BD ,C →CD ,线段总数为3+2+1=6,若是更多的点,由以A 为顶点的线段的条数可以看出,每个点除了自身以外,和其他任何一个点都能组成一条线段,因此当有n 个点时,以A 为顶点的线段就有(n -1)条,同样以B 为顶点的线段也有(n -1)条,因此n 个顶点共有n (n -1)条线段;但由A 到B 得到的线段AB 和由B 到A 得到的线段BA 是同一条,而每条线段的数法都是如此,这样对于每一条线段都数了2次,所以除以2就是所得线段的实际条数,即当一条直线上有n 个点时,线段的总条数就等于12n (n -1). 【例8-1】 从秦皇岛开往A 市的特快列车,途中要停靠两个站点,如果任意两站之间的票价都不相同,那么有多少种不同的票价?有多少种车票?分析:这个问题相当于一条直线上有4个点,求这条直线上有多少条线段.因为任意两站之间的票价都不相同,因此有多少条线段就有多少种票价,根据公式我们很快可以得出有6种不同的票价,因为任意两站往返的车票不一样,所以,从秦皇岛到达目的地有12种车票.解:当n =4时,有n (n -1)2=4×(4-1)2=6(种)不同的票价.车票有6×2=12(种).答:有6种不同的票价,有12种车票.【例8-2】 在1,2,3,…,100这100个不同的自然数中任选两个求和,则不同的结果有多少种?分析:本题初看似乎和线段条数的计数规律无关,但事实上,若把每个数都看成直线上的点,而把这两个数求和得到的结果看成是1条线段,则其中的道理就和直线上线段的计数规律是完全一致的,因而解法一样,直接代入公式计算即可求出结果.解:不同的结果共有:12n (n -1)=12×100×(100-1)=4 950(种). 答:共有4 950种不同的结果. 9.与线段有关的计算和线段有关的计算主要分为以下三种情况:(1)线段的和差及有关计算,一般比较简单,根据线段间的和差由已知线段求未知线段.(2)有关线段中点和几等分点的计算,是本节的重点,其中以中点运用最多,这也是用数学推理的方式进行运算的开始.(3)综合性的运算,既有线段的和差,也有线段的中点,综合运用和差倍分关系求未知线段.解技巧 线段的计算 有关线段的计算都是由已知,经过和差或中点进行转化,求未知的过程,因此要结合图形,分析各段关系,找出它们的联系,通过加减倍分的运算解决.【例9-1】 如图,线段AB =8 cm ,点C 是AB 的中点,点D 在CB 上且DB =1.5 cm ,求线段CD 的长度.分析:根据中点关系求出CB ,再根据CD =CB -DB 求出CD .解:CB =12AB =12×8=4(cm),CD =CB -DB =4-1.5=2.5(cm). 答:线段CD 的长度为2.5 cm.【例9-2】 如图所示,线段AB =4,点O 是线段AB 上一点,C ,D 分别是线段OA ,OB 的中点,求线段CD 的长.解:由于C ,D 分别是线段OA ,OB 的中点,所以OC =12OA ,OD =12OB ,所以CD =12(OA +OB )=12AB =12×4=2. 答:线段CD 的长为2.10.直线相交时的交点数两条直线相交有1个交点,三条直线两两相交最多有3个交点,那么n 条直线两两相交最多有多少个交点?下面以5条直线两两相交最多有多少个交点为例研究:如图,当有5条直线时,每条直线上有4个交点,共计有(5-1)×5个交点,但图中交点A ,既在直线e 上也在直线a 上,因而多算了一次,其他交点也是如此,因而实际交点数是(5-1)×5÷2=10个,同样的道理,当有n 条直线时,在没有共同交点的情况下,每条直线上有(n -1)个交点,共有n 条直线,交点总数就是n (n -1)个,但由于每一个点都数了两次,所以交点总数是12n (n -1)个. 【例10-1】 三条直线a ,b ,c 两两相交,有__________个交点( ).A .1B .2C .3D .1或3解析:三条直线a ,b ,c 两两相交的情形有两种,如图.答案:D【例10-2】 同一平面内的12条直线两两相交,(1)最多可以有多少个交点?(2)是否存在最多交点个数为10的情况?分析:(1)将n =12代入12n (n -1)中求出交点个数.(2)交点个数为10,也就是12n (n -1)=10,即n (n -1)=20,没有两个相邻整数的积是20,所以不存在最多交点个数是10的情况.解:(1)12条直线两两相交,最多可以有:12n (n -1)=12×12×(12-1)=66(个)交点. (2)不存在最多交点个数为10的情况.11.最短路线选择“两点之间,线段最短”是线段的一条重要性质,运用这个性质,可以解决一些最短路线选择问题.这类问题一般分两类:一类是选择路线,选择从A 到B 的最短路线,连接AB 所得到的线段就是;另一类是选择一个点,使这个点到A ,B 的距离之和最小,根据“两点之间,线段最短”这条线段上的任一点到A 到B 的距离之和都等于这条线段的长度,所以这条线段上的任一点都符合要求.但这类问题往往还有附加条件,如:这点还要在某条公路上,某条河上等,所以要满足所有条件.解技巧 求最短路线 对于第一类问题,只要将A ,B 放到同一个平面上,连接AB 即可得到所需线路.对于第二类问题,连接AB ,它们的交点一般就是所求的点.【例11】 如图(1),一只壁虎要从圆柱体A 点沿着表面尽可能快的爬到B 点,因为B 点处有它要吃的一只蚊子,则它怎样爬行路线最短?分析:要想求最短路线,必须将AB 放置到一个平面上,根据“两点之间,线段最短”,连接AB ,所得路线就是所求路线,因此将圆柱体的侧面展开如图(2)所示,连接AB ,则AB 是壁虎爬行的最短路线.解:在圆柱上,标出A ,B 两点,将圆柱的侧面展开(如图(2)),连接AB ,再将圆柱复原,会得到围绕圆柱的一条弧线,这条线就是所求最短路线.析规律 立体图形中的最短路线 在立体图形中研究两点之间最短路径问题时,通常把立体图形展开成平面图形,转化为平面图形中的两点间的距离问题,再用平面内“两点之间,线段最短”求解.。

七年级数学上册第四章几何图形初步认识4

七年级数学上册第四章几何图形初步认识4

D
C (F) D A C (F)
人教版七年级数学上册第四章几何图形初步认识
A (D)
B (E)
C (F)
(3)∠ABC = ∠DEF
人教版七年级数学上册第四章几何图形初步认识
估计图中∠1与∠2的大小关系,并用适当的方法检验.
2 1
(1)
2
1
(2)
人教版七年级数学上册第四章几何图形初步认识
角的大小与角的两边画出的长短有关吗?
(1)角的大小与角的两边画出的长短没有关系. (2)角张开的程度越小,角度就越小.
人教版七年级数学上册第四章几何图形初步认识
用放大镜看蚂蚁,用放大镜看自己的手,用放大镜看 精致的邮票,用放大镜从太阳光里取火等等,都会得到令 人开心的结果.那么,有没有放大镜放不大的事物呢?
你知道放大镜不能“放大”角的度数的原因吗?
已知O为直线AB上一点,OE平分∠AOC,OF平分 ∠COB, 求∠EOF的大小.
C
E
F
A
O
B
人教版七年级数学上册第四章几何图形初步认识
解:∵ OE平分∠AOC,OF平分∠COB,
∴∠EOC=
1 2
∠AOC
∠COF= 1∠COB (角平分线的定义),
2
∵∠AOB=∠AOC+∠COB=180°
(平角的定义),
∠ABC > ∠DEF
D
70°
B
C
E
30°
F
人教版七年级数学上册第四章几何图形初步认识
比较两个角的大小的方法有三种: • 观察法 • 叠合法 • 度量法
人教版七年级数学上册第四章几何图形初步认识
两个角的大小关系有三种,记作:

铜陵市四中七年级数学上册 第四章 基本平面图形4《角的比较》说课稿 北师大版

铜陵市四中七年级数学上册 第四章 基本平面图形4《角的比较》说课稿 北师大版

《角的比较》说课稿各位老师大家好:我说课的题目是《角的比较》。

“角的比较”是义务教育课程标准实验用书,北师大版《七年级数学》上册第四章第四节内容,共1个课时,下面我将从五个方面对本节课的设计进行说明。

一、教材分析:本节课内容是在学生学习了“线段、射线、直线”、“比较线段的长短”、“角的度量与表示”、等知识的基础上进行的,它既是对前面所学知识的综合应用,也是对这些知识的拓展与延伸,对学生体会数学建模具有重要的作用。

是今后学习平面几何等内容的基础。

二、目标分析根据数学课程标准和本节课教学内容特点,针对学生已有认知水平,我从知识、能力、情感态度三个方面确定本节课的目标:1、知识与技能(1)、在现实情境中,进一步丰富锐角、钝角、直角、平角、周角及大小的认识;(2)、学会比较角的大小,能估计一个角的大小;(3)、在操作活动中认识角平分线,能画出一个角的平分线。

(4)、认识度、分、秒,并会进行简单的换算。

2、情感态度与价值观(1)、能通过角的测量、折叠等体验数、符号和图形是描述现实世界的重要手段。

(2)、通过实际观察、操作体会角的大小,发展几何直觉。

(3)、能用符号语言叙述角的大小关系,解决实际问题。

三、教学重点与难点教学重点:比较角的大小;找出角与角之间的等量关系;估测角的度数。

教学难点:角的比较;估测角的度数。

为了突出重点、突破难点我采用以下的教学方法和手段。

四、教学方法和手段在课堂教学活动过程中,我作为学生学习的组织者、引导者与合作者,注意突出学生的数学实践活动,变“教学”为“导学”,利用演示文稿结合几何画板制作课件,增强了教学的直观性,提高了课堂效率。

在教学中我尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,鼓励学生亲自动手实践、在实践中发现知识,培养学生的创新精神和实践能力。

下面介绍本节课的教学过程,本节课我共设计了五个教学环节。

五、教学过程(一)创设情境,导入新课。

2022人教版七年级数学上册第四章4

2022人教版七年级数学上册第四章4

4.1.1立体图形与平面图形一.选择题(共10小题)1.下列几何体中,是圆柱的为()A.B.C.D.2.如图,在长方体ABCD﹣EFGH中,下列棱中与棱BC异面的是()A.棱AB B.棱CG C.棱EF D.棱EH 3.在长方体中的十二条棱和六个面中,下列叙述正确的是()A.长方体中棱与棱不是相交就是异面B.长方体中任何一条棱都和两个面平行C.长方体中任何一个面都和两个面平行D.长方体中任何一个面都和两个面垂直4.如图,在一个图中任意画4条半径,可以把这个图分成()个扇形.A.4 B.8 C.12 D.16 5.如图所示立体图形,是由____个面组成,面与面相交成____条线()A.3,6 B.4,5 C.4,6 D.5,7 6.围成下列立体图形的各个面中,每个面都是平面的是()A.B.C.D.7.由若干个小正方体堆成的大正方体,其表面被涂成红色,在所有小正方体中,三面被涂成红的有a个,两面被涂成红的有b个,一面被涂成红的有c个,那么在a,b,c三个数中()A.a最大B.b最大C.c最大D.哪一个最大与堆成大正方体的小正方体个数有关8.把一张圆形纸片沿半径平均分成若干份,拼成一个近似长方形,其周长()A.等于圆周长B.大于圆周长C.小于圆周长D.无法比较9.如图,在矩形ABCD中,EF∥AB,GH∥BC,EF、GH的交点P在BD上,图中面积相等的矩形有()A.1对B.2对C.3对D.4对10.若制作的一个长方体底面积为24,长、宽、高的比为4:2:1,则此长方体的体积为()A.216 B.C.D.二.填空题(共8小题)11.如图,阴影部分面积是小圆面积的,是大圆面积的,则大圆面积与小圆面积的比是.12.将下列几何体分类,柱体有:,锥体有(填序号)13.体育课上,同学们围成一个圆圈做游戏,老师站在中心点上,已知这个圆圈的周长是18.84米,则每个同学与老师的距离大约是米.14.如图,一个圆柱形钢化玻璃容器的底面半径是10cm,把一块铁块从这个容器的水中取出后,水面下降2cm,则这块铁块的体积是cm3.15.如图,在长方体ABCD﹣EFGH中,可以把平面ABFE与平面BCGF组成的图形看作直立于面ABCD上的合页形折纸,从而说明棱垂直于平面ABCD.16.如图,扇形AOB的面积,占圆O面积的15%,则扇形AOB的圆心角的度数是.17.草坪上自动旋转喷灌装置半径是10米,它的最大喷射面积是平方米.18.一只蚂蚁从如图所示的正方体的一顶点A沿着棱爬向B,只能经过三条棱,共有种走法.三.解答题(共5小题)19.如图是从圆柱中挖去一个圆锥后的剩余部分,请计算它的体积.(单位:厘米,π取3.14)20.学校每天给班级提供一桶体积相同的饮用水,每个同学的平均饮水量和饮水人数关系如表:每个同学的平均饮水量/升饮水人数/人25 30(1)一桶装纯净水桶可看做圆柱,高度:49cm,直径:27cm,同学们喝了一些,无水部分高29cm,喝了多少水?(2)假如每个班级学生每天将学校提供饮用水全部喝完,通过计算将表格补充完整.(要有计算过程)(3)若每桶饮用水为15元,超过18桶打八折.某班按每人每天平均饮水升计算,结果到月底共付水费240元(每月在校日按20天计算),请计算这个班级共有多少名学生?21.修建一些圆柱形的沼气池,底面直径是3m,深2m.在池的侧面与下底面抹上厚度为0.02m的水泥.(π取3.14)(1)修建一个圆柱形的沼气池,抹水泥部分的面积是多少?(2)如图是一个水泥罐尺寸的示意图,这个水泥罐的内部都装满水泥(水泡罐壁的厚度忽略不计).在使用水泥过程中没有损耗的情况下.这个水泥罐中的水泥最多可以满足修建多少个圆柱形的沼气池的水泥用量?22.随着城市的发展,住宅小区的建设也越来越人性化.为响应国家“加强全民健身设施建设,发展全民体育”的号召.哈市某小区在一片足够大的空地中,改建出一个休闲广场,规划设计如图所示.(π取3)(1)求塑胶地面休闲区的面积;(2)求广场中种植花卉的面积与种植草坪的面积的比值.23.如图所示是一张铁皮.(1)计算该铁皮的面积;(2)它能否做成一个长方体盒子?若能,画出长方体盒子的立体图形,并计算其体积;若不能,说明理由.4.1.2点、线、面、体一,选择题1.将图中的三角形绕虚线旋转一周,所得的几何体是( )A. B. C. D.2.下面现象说明“线动成面”的是( )A.旋转一扇门,门在空中运动的痕迹B.扔一块小石子,石子在空中飞行的路线C.天空划过一道流星D.汽车雨刷在挡风玻璃上面画出的痕迹3.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征,甲同学:它有4个面是三角形;乙同学:它有8条棱,该模型的形状对应的立体图形可能是( )A.三棱柱B.四棱柱C.三棱锥D.四棱锥4.下列几何体中,由一个平面和一个曲面围成的是( )A.圆柱B.圆锥C.圆台D.球5.在图(1)中的几何体是由图(2)中的__________绕线旋转一周得到的().6.围成下列几何体:球、三棱锥、圆锥、圆柱、正方体、棱柱的面中,包含有曲面的有__________个().A.1 B.2 C.3 D.47.如图,这是一个正三棱柱,则从上面看到的图为().8.下面形状的四张纸板,按图中线经过折叠可以围成一个三棱柱的是().9.一个长方体被一刀切去一部分,剩下的部分可能是().A.三棱柱B.四棱柱C.五棱柱D.以上都有可能10.如图,为一个多面体的表面展开图,每个面内都标注了数字.若数字为6的面是底面,则朝上一面所标注的数字为().A.5 B.4 C.3 D.211.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是().A.和B.谐C.凉D.山二,填空题12.如图所示,这个几何体是由个面组成,有个顶点,有条棱,经过每个顶点有条棱.13.第一行的图形绕虚线旋转一周,能形成第二行的某个几何体,按要求填空.图1旋转形成,图2旋转形成,图3旋转形成,图4旋转形成,图5旋转形成,图6旋转形成.14.一个物体从不同的方向看,平面图形如图所示,物体的立体图形是__________.15.如图,从上面看到的图形是__________,从左面看到的图形是__________,从正面看得到的图形是__________.16.如图是三棱柱的表面展开示意图,则BC=__________,CD=__________,BD=__________,AE=__________.17.观察下图中圆柱和棱柱,回答下列问题:(1)图中的棱柱和圆柱各由几个面组成?它们都是平的吗?(2)圆柱的侧面与底面相交成几条线?它们是直线还是曲线?(3)这个棱柱有几个顶点?经过每个顶点有几条棱?答案以及解析1.答案:C解析:由题意可知,该图应是圆锥和圆锥的组合体.故选C.2.答案:D解析:根据点动成线,线动成面,面动成体对各选项分析判断后利用排除法求解.解:A、旋转一扇门,门在空中运动的痕迹是“面动成体”,故本选项错误;B、扔一块小石子,石子在空中飞行的路线是“点动成线”,故本选项错误;C、天空划过一道流星是“点动成线”,故本选项错误;D、汽车雨刷在挡风玻璃上面画出的痕迹是“线动成面”,故本选项正确.故选D3.答案:D解析:四棱锥的底面是四边形,侧面是4个三角形,底面有4条棱,侧面有4条棱.4.答案:B解析:圆柱由两个平面和一个曲面围成,故选项A不符合题意;圆锥由一个平面和一个曲面围成,故选项B符合题意;圆台由两个平面和一个曲面围成,故选项C不符合题意;球由一个曲面围成,故选项D不符合题意.故选B5答案:D点拨:凡是绕轴旋转得到的几何体,只能是球、圆柱、圆锥或它们的一部分或它们组合而成的几何体.6答案:C点拨:包含有曲面的有球、圆锥、圆柱,所以有3个,故选C.7答案:C点拨:从上面看得到的是三角形.8答案:C9答案:D点拨:三棱柱、四棱柱、五棱柱都有可能,关键是看切的位置.10答案:D点拨:6所对应的面是2,故选D.11答案:D点拨:“建”与“山”相对应,故“建”对面的字是“山12.答案:5,6,9,3解析:这个几何体是由5个面组成,有6个顶点,有9条棱,经过每个顶点有3条棱.13.答案:d a c f b e解析:图1旋转形成d,图2旋转形成a,图3旋转形成c,图4旋转形成f,图5旋转形成b,图6旋转形成e.14答案:圆锥点拨:顶尖向上的圆锥的图形从三面看能得到题中平面图形.15答案:③②①点拨:从上面看到的图形是下边有1个,上边有3个正方形组成的图形,③适合,从左面看到的图形是②,从正面看得到的图形是①.16答案:5648点拨:关键在于弄清楚展开之前哪两条棱是相对的,知道它们之间的转换.17.答案:解:(1)圆柱:3个面,2个平面,1个曲面.棱柱:8个面,都是平面.(2)2条线,曲线.(3)12个顶点,经过每个顶点都有3条棱.解析:。

人教版初中数学七年级上册第四章4.3.3余角和补角

人教版初中数学七年级上册第四章4.3.3余角和补角

O
60°
上发现了客轮B.仿照表示灯塔方位的方法,
A
画出表示客轮B方向的射线.并说出你是怎样画出的.
②同时在它南偏西10°、西北(北偏西45°)方向上又分 别发现了货轮C和海岛D.请再画出表示货轮C和海岛D方向的射 线.
如图,A地和B地都是海上观测站,从A地发现它的北偏东 60°方向有一艘船,同时,从B地发现这艘船 在它的北偏东30°方向,你能从图中确定这艘船的位置吗?
练习 : 看谁答得快:
∠α
∠α 的余角
∠α 的补角
30° 54° 90°
62°23′

60 °
150 °
36 °
126 °
00
另 比余外角:大同,(等并9)且0 °角大的90补°角
27 ° 37 ′
117 ° 37 ′
90 x
同一个角的余角和补角什么关系?
1、动手画一画:
1)已知∠α(如图),请利用三角板画的∠α的余角
样的角称为方位角.
方位角的表示习惯上以正北、正南方向为基准来描述物体 的方向. 即用“北偏东多少度”“北偏西多少度” 或者“南偏东多少度”“南偏西多少度”来表示方向.
北 西北
西 O
西南 南
东北 东 东南

30°
西

O 60°

北例4:如图,货轮O在航行过程中,发现灯塔A
在它南偏东60°方向上. ①在它北偏东40°方向
性质3:等角的补角相等
如图,∠1与∠2互余, ∠3与∠4互余,并且∠1= ∠3,
2
1
3
4
请问:∠ 2与∠4相等吗?为什么?你还能得出什么结论?
答:相等。
∵∠1与∠2互余,可得∠2=90°- ∠1 ; 又∠3与∠4互余,可得∠4=90°- ∠3; 且∠1= ∠3,所以90°- ∠1=90°- ∠3 ; ∴∠2= ∠4

北师大版七年级数学上册第四章《4

北师大版七年级数学上册第四章《4

北师大版七年级数学上册第四章《4.角的比较》综合练习题(含答案)一、单选题1.若12018'∠=︒,22015'30''∠=︒,320.25∠=︒,则( )A .123∠>∠>∠B .213∠>∠>∠C .132∠>∠>∠D .312∠>∠>∠2.把10°36″用度表示为( )A .10.6°B .10.001°C .10.01°D .10.1° 3.已知α∠与∠β都小于平角,在平面内把这两个角的一条边重合,若α∠的另一条边恰好落在∠β的内部,则().A .αβ∠<∠B .αβ∠=∠C .αβ∠>∠D .不能比较α∠与∠β的大小4.下列度分秒运算中,正确的是( )A .48°39′+67°31′=115°10′B .90°﹣70°39′=20°21′C .21°17′×5=185°5′D .180°÷7=25°43′(精确到分) 5.计算:135333030306︒︒''''⨯-÷的值为( )A .335355︒'''B .363355︒'''C .63533︒'''D .53533︒''' 6.如图,把一张长方形的纸片沿着EF 折叠,点C 、D 分别落在M 、N 的位置,且∠MFB =12∠MFE .则∠E FM 的度数为( )A .30°B .36°C .45°D .72° 7.如图,直线AB 与CD 相交于点,60O AOC ∠=,一直角三角尺EOF 的直角顶点与点O 重合,OE 平分AOC ∠,现将三角尺EOF 以每秒3的速度绕点O 顺时针旋转,同时直线CD 也以每秒9的速度绕点O 顺时针旋转,设运动时间为t 秒(040t ≤≤),当CD 平分EOF ∠时,t 的值为( )A .2.5B .30C .2.5或30D .2.5或32.58.已知∠AOB=30°,∠BOC=45°,则∠AOC 等于( )A .15°B .75°C .15°或75°D .不能确定二、填空题9.55.66=____度____分____秒;433224'''=______度.10.单位换算:56°10′48″=_____°.11.12.3°=________°______′;1530'︒=_________°.12.如图,将一块三角板的直角顶点放在直尺的一边上,当237∠=︒时,1∠= _________.13.如图,已知点O 在直线AB 上,OC ⊥OD ,∠BOD :∠AOC =3:2,那么∠BOD =___度.14.把一副三角尺按如图所示拼在一起,如图,其中B ,C ,D 三点在同一条直线上,∠ACB =45°,∠DCE =60°.(1)若CM 和CN 分别平分∠ACB 和∠DCE ,如图1,则∠MCN 的度数为___________;(2)若CM 平分∠BCE ,CN 平分∠DCA ,如图2,则∠MCN 的度数为___________.三、解答题15.将一副三角尺叠放在一起:(1)如图①,若∠1=4∠2,请计算出∠CAE的度数;(2)如图②,若∠ACE=2∠BCD,请求出∠ACD的度数.16.如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOB的度数.17.如图,将一副三角板放到一起可以擦除怎样的数学火花呢?福山区某学校两个数学兴趣小组对一副三角板进行了以下两种方式的摆放组合.已知一副三角板重合的顶点记为点O,作射线OE平分∠AOC,射线OF平分∠BOD,来研究一下45°三角板不动,30°三角板绕重合的顶点O旋转时,∠EOF的度数如何变化.【A组研究】在同一平面内,将这副三角板的的两个锐角顶点重合(图中点O),此时∠AOB=45°,∠COD=30°将三角板OCD绕点O转动.(1)如图①,当射线OB与OC重合时,则∠EOF的度数为___________;∠=,∠EOF的度数是否发生变化?(2)如图②,将∠COD绕着点O顺时针旋转,设BOCα如果不变,请根据图②求出∠EOF的度数;如果变化,请简单说明理由.【B组研究】在同一平面内,将这副直角三角板中的一个直角顶点和一个锐角顶点重合(图中点O),此时∠AOB=90°,∠COD=30°,将三角板OCD绕点O转动.(3)如图③,当三角板OCD摆放在三角板AOB内部时,则∠EOF的度数为___________;(4)如图④,当三角板OCD转动到三角板AOB外部,设∠BOC=β,∠EOF的度数是否发生变化?如果不变,请根据图④求出∠EOF的度数;如果变化,请简单说明理由.18.【阅读理解】定义:在一条直线同侧的三条具有公共端点的射线之间若满足以下关系,其中一条射线分别与另外两条射线组成的角恰好满足2倍的数量关系,则称该射线是另外两条射线的“双倍和谐线”.如图1,点P在直线l上,射线PR,PS,PT位于直线l同侧,若PS平分∠RPT,则有∠RPT=2∠RPS,所以我们称射线PR是射线PS,PT的“双倍和谐线”.【迁移运用】(1)如图1,射线PS(选填“是”或“不是”)射线PR,PT的“双倍和谐线”;射线PT(选填“是”或“不是”)射线PS,PR的“双倍和谐线”;(2)如图2,点O在直线MN上,OA MN,∠AOB=40°,射线OC从ON出发,绕点O以每秒4°的速度逆时针旋转,运动时间为t秒,当射线OC与射线OA重合时,运动停止.①当射线OA是射线OB,OC的“双倍和谐线”时,求t的值;②若在射线OC旋转的同时,∠AOB绕点O以每秒2°的速度逆时针旋转,且在旋转过程中,射线OD平分∠AOB.当射线OC位于射线OD左侧且射线OC是射线OM,OD的“双倍和谐线”时,求∠CON的度数.19.已知∠AOB和∠COD均为锐角,∠AOB>∠COD,OP平分∠AOC,OQ平分∠BOD,将∠COD绕着点O逆时针旋转,使∠BOC=α(0≤α<180°)(1)若∠AOB=60°,∠COD=40°,①当α=0°时,如图1,则∠POQ=;②当α=80°时,如图2,求∠POQ的度数;③当α=130°时,如图3,请先补全图形,然后求出∠POQ的度数;(2)若∠AOB=m°,∠COD=n°,m>n,则∠POQ=,(请用含m、n的代数式表示).20.已知120AOB ∠=︒,OC 、OD 是过点O 的射线,射线OM 、ON 分别平分∠AOC 和∠DOB .(1)如图①,若OC 、OD 是∠AOB 的三等分线,则MON ∠=______°(2)如图②,若40COD ∠=︒,AOC DOB ∠≠∠,则MON ∠=______°(3)如图③,在∠AOB 内,若()060COD αα∠=︒<<︒,则MON ∠=______°(4)将(3)中的∠COD 绕着点O 逆时针旋转到∠AOB 的外部(0180AOC <∠<︒,0180BOD <∠<︒),求此时∠MON 的度数。

数学七年级上册第四章

数学七年级上册第四章

数学七年级上册第四章
数学七年级上册的第四章通常涵盖了代数表达式和简单方程的内容。

这一章节主要包括以下几个主题:
1. 代数表达式的引入:介绍代数表达式的概念,包括变量、常数和运算符等基本概念,以及代数表达式的构成和意义。

2. 代数表达式的简单运算:学习如何对代数表达式进行简单的加减乘除运算,包括类似项的合并、同底数的幂运算等。

3. 代数表达式的展开和因式分解:学习如何将代数表达式用乘法展开,并了解如何进行因式分解,将一个代数表达式分解为乘积的形式。

4. 解一元一次方程:介绍一元一次方程的概念和解法,包括用逆运算法和等式的等价变形法解方程等。

这些只是一些可能在数学七年级上册第四章中涉及到的主题,具体内容可能因教材版本和学校的教学计划而有所不同。

北师大版(2024新版)七年级数学上册第四章课件:第四章 基本的平面图形 小结与复习

北师大版(2024新版)七年级数学上册第四章课件:第四章 基本的平面图形 小结与复习
北师大版 七年级(上册) 2024新版教材
第四章 基本的平面图形 小结与复习
知识梳理
基 本 平 面 图 形
直线 两点确定一条直线
线段 射线
两点之间线段最短 线段的中点 线段比较长短
角的定义

角平分线
角比较大小
尺规作图
知识梳理
基 本 平 面 图 形
多边形
定义 对角线 正多边形
定义

弧 扇形
圆心角
知识回顾

是否 可以 度量
不能 度量
不能 度量
表示方法
表示 方法
备注
作图 描述
射线 AB
A,B两点 以A为端点
有序,端 作射线
点在前
AB
直线
AB 或直 线BA 或直线
a
A,B两点
无序
过A,B两点 作直线AB
知识回顾
2.两点确定一条直线 经过两点有且只有一条直线.
二、比较线段的长度 1.线段的基本事实 两点之间的所有连线中,线段__最__短___. 简述为:两点之间,线段__最__短____ .
基础巩固
4.下午2时15分到5时30分,时钟的时针转过的度数 为__9_7_.5_°_.
解析:时钟被分成12个大格,相当于把圆分成12等份, 每一等份等于30°. 分针转360°时,时针转一格,即30°. 从2时15分到5时30分,时针走了(3.5-0.25)格, 即30°×(3.5-0.25)=97.5°.
知识回顾
4.角的度量 (1)角的度量单位是度、分、秒. (2)它们之间的关系是六十进制的,即1°=60′,1′=60″.
5.方向角 借助角表示方向,通常以正北或正南为基准,配以偏 西或偏东的角度来描述方向.

七年级上册数学第四章知识点

七年级上册数学第四章知识点

一、比例的概念和性质比例是指两个或多个数量之间具有相等关系的比较。

当两个比例相等时,我们称为比例。

比例的表达方式通常为:a:b或a/b。

其中,a和b 都是具有相同单位的数。

在比例中,a叫做被比或者前项,b叫做比或者后项。

比例通常也可以写为 double colon 的形式,如 a:b 可以写为 a::b。

比例的性质:1.比例中,任意可以互相交换位置而不改变比例的值,即a:b=b:a。

2.若比例中的每一项同时乘以或除以相同的非零数,比例的值不变。

二、等比例线段和分部比例等比例线段指的是一个线段被不同点分成若干份的情况下,这些小线段之间的比例是相等的。

分部比例指的是在一个比例中,已知其中一项和比值,求另一项的问题。

可以根据已知项和比值,通过比例性质进行求解。

三、比例的计算比例的计算主要分为两种情况:比例的倍数和反比例。

1.比例的倍数:可以将比例的两项分别与同一个数相乘或者相除,得到新的比例。

比如,将a:b的比例的两项同时乘以2,得到2a:2b的比例,这时候的新比例是原比例的倍数;再比如,将a:b的比例的两项分别除以2,得到a/2:b/2的比例,这时候的新比例也是原比例的倍数。

2.反比例:比例的倒数也是一个比例的话,这两个比例就是反比例。

比如,若a:b是一个比例,且a/b的倒数是b/a,则a:b和b:a是一对反比例。

比例的计算可以通过交叉相乘法、定比分线法及连通法等进行。

四、综合运用在比例的学习中,还可以通过大比例的分析和计算等方式进行综合运用。

如:已知一个直角三角形的两条直角边的长度比为3:4,求这两条直角边的实际长度。

在解决这个问题时,可以设一个未知数x,假设其中一条直角边的长度为3x,另一条直角边的长度为4x。

根据三角形的性质可得出两直角边的长度的平方和等于斜边的平方。

通过求解方程,可以得到未知数的值,进而求出直角边的实际长度。

以上就是七年级上册数学第四章的主要知识点。

掌握这些知识点后,能够灵活运用比例的概念和性质,能够准确计算比例问题,同时能够运用比例解决实际问题。

七年级-人教版(2024新版)-数学-上册-【教学设计】初中数学-七年级上册-第四章-4

七年级-人教版(2024新版)-数学-上册-【教学设计】初中数学-七年级上册-第四章-4

4.2整式的加法与减法(第3课时)教学目标1.掌握整式加减的运算法则.2.让学生感受到整式的加减运算在解决实际问题中所起的作用.教学重点整式加减的运算法则.教学难点能正确进行整式的加减运算.教学过程新课导入【问题】某中学合唱团出场时第一排站了n名同学,从第二排起每一排都比前面一排多1人,一共站了四排,则该合唱团一共有多少名同学参加?【答案】解:参加该合唱团的学生人数为n+(n+1)+(n+2)+(n+3).解决实际问题时,经常需要把若干个整式相加减.像这样把若干个整式相加减,即为整式的加减运算.新知探究一、探究学习【问题】化简:n+(n+1)+(n+2)+(n+3).【答案】解:原式=n+n+1+n+2+n+3=(n+n+n+n)+(1+2+3)=4n+6.【问题】在上面的化简过程中,实际进行了哪些运算?怎样进行整式的加减运算?【师生活动】学生运用已经学过的知识,独立解答.【设计意图】通过解决这一问题,引出后面的整式加减的运算法则.二、新知精讲【问题】1.计算:(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b).【答案】解:(1)原式=2x-3y+5x+4y=7x+y.(2)原式=8a-7b-4a+5b=4a-2b.【师生活动】学生独立解决,然后同桌之间进行交流.【设计意图】使学生意识到,进行整式加减运算时,通常是先去括号,再合并同类项.【思考】如果题目(1)变形为:求多项式2x-3y和5x+4y的和;(2)变形为:求多项式8a-7b和4a-5b的差,应分别怎样列式?【师生活动】学生尝试独立列式.【设计意图】基于实例使学生明白,多项式之间相加减的时候,要把每一个多项式添加括号,再用加减运算符号连接起来.【问题】2.做大、小两个长方体纸盒,尺寸如下表所示.长方体纸盒的尺寸(1)做这两个纸盒共用纸多少平方厘米?(2)做大纸盒比做小纸盒多用纸多少平方厘米?【答案】解:小纸盒的表面积是(2ab+2bc+2ca) cm2,大纸盒的表面积是(6ab+8bc+6ca) cm2.(1)由(2ab+2bc+2ca)+(6ab+8bc+6ca)=2ab+2bc+2ca+6ab+8bc+6ca=8ab+10bc+8ca可知,做这两个纸盒共用纸(8ab+10bc+8ca)cm2.(2)由(6ab+8bc+6ca)-(2ab+2bc+2ca)=6ab +8bc +6ca -2ab -2bc -2ca =4ab +6bc +4ca可知,做大纸盒比做小纸盒多用纸(4ab +6bc +4ca )cm 2. 【师生活动】一起读题,写出要求的表达式.【设计意图】熟悉利用整式的加减运算解决实际问题的过程,明确应该注意的问题. 【新知】解决整式加减运算应用题的“三步法”: (1)列式;(2)运算:去括号,合并同类项; (3)得出结果.【新知】整式加减的运算法则几个整式相加减,如果 有括号就先去括号 ,然后 再合并同类项 . 三、典例精讲 【例题】求22113122323x x y x y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭--+-+的值,其中x =-2,y =23. 【答案】解:22113122323x x y x y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭--+-+ =12x -2x +223y -32x +213y=-3x +y 2.当x =-2,y =23时,原式=(-3)×(-2)+223⎛⎫ ⎪⎝⎭=6+49=469.【师生活动】学生独立解决,组内交流,判断对错. 【设计意图】熟悉整式加减的运算法则. 【思考】整式的化简与求值的具体步骤是什么?课堂小结板书设计一、整式加减运算的实质二、整式加减运算的步骤三、整式加减运算的结果课后任务完成教材第101页练习1~3题.教学反思_______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________。

人教版数学七年级上册第四章第四章(教案)

人教版数学七年级上册第四章第四章(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解整式的乘除的基本概念。整式的乘除是指如何将字母和数字的组合(整式)进行相乘和相除。它在代数运算中非常重要,可以帮助我们简化表达式,解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。假设我们需要计算一个长方体的体积,通过整式的乘除,我们可以将这个问题转化为简单的数学运算。
人教版数学七年级上册第四章第四章(教案)
一、教学内容
人教版数学七年级上册第四章《整式的乘除》:
1.单项式乘以单项式;
2.单项式乘以多项式;
3.多项式乘以多项式;
4.乘法公式:平方差公式和完全平方公式;
5.整式的除法:单项式除以单项式,多项式除以单项式;
6.整式的乘除混合运算;
7.应用题:利用整式的乘除解决实际问题。
-针对实际问题的难点,教师可以设计一些具体的案例,如计算多个物品的总价,引导学生将问题转化为整式的乘除运算,并逐步解决。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《整式的乘除》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算面积、体积或价格折扣的情况?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索整式的乘除的奥秘。
-强调平方差公式(a+b)(a-b)=a²-b²)和完全平方公式((a±b)²=a²±2ab+b²)的应用场景和计算方法;
-通过例题演示多项式除以单项式的步骤,如(a²+2ab+b²)÷a = a+b;
-结合实际应用题,如计算长方形面积,让学生实际操作,加深对整式乘除法则的理解。
2.教学难点

七年级-人教版(2024新版)-数学-上册-【课件】初中数学-七年级上册-第四章-4

七年级-人教版(2024新版)-数学-上册-【课件】初中数学-七年级上册-第四章-4

问题 应如何化简下面的多项式?
4x2+2x+7+3x-8x2-2
找出多项式中的同类项
=4x2-8x2+2x+3x+7-2
加法交换律
=(4x2-8x2)+(2x+3x)+(7-2)
加法结合律
=(4-8)x2+(2+3)x+(7-2) =-4x2+5x+5.
分配律
运算结果通常按照某个字母的指数从大到小(降幂)或从小到大(升幂) 的顺序排列.
例3 (1)水库水位第一天连续下降了a h,平均每小时下降 2 cm; 第二天连续上升了a h,平均每小时上升 0.5 cm.这两天水位总的变化 情况如何?
解:(1)把下降的水位变化量记为负,上升的水位变化量记为正, 则第一天水位的变化量是-2a cm ,第二天水位的变化量是0.5a cm.由
-2a+0.5a=(-2+0.5)a=-1.5a 可知,这两天水位总的变化情况为下降了1.5a cm.
化简: 72a+120a =(72+120)a =192a.
仿照式子72a+120a的化简方法,填空:
(72 -120 )a=-48a
(1)72a-120a=( -48 )a;
(3+2)m2=5m2
(2)3m2+2m2 =( 5 )m2;
(3-4)xy2=-xy2
(3)3xy2-4xy2 =( - )xy2.
ห้องสมุดไป่ตู้
(1)运用运算律计算:
72×2+120×2=__3_8_4__;
72×(-2)+120×(-2)=_-__3_8_4__.
(2)根据(1)中的方法完成下面的运算:
72a +120a =

观察这个式子,可以发现它与(1)中 的式子有相同的结构,并且字母 a代表的是 一个乘数,所以也可以根据分配律对这个 式子进行化简.

七年级数学上册第四章几何图形初步4.4课题学习设计制作长方体形状的包装纸盒课件新版新人教版20190115263

七年级数学上册第四章几何图形初步4.4课题学习设计制作长方体形状的包装纸盒课件新版新人教版20190115263

(2013湖北随州中考,7,★★☆)下图是一个长方体形状包装盒的表面展 开图.折叠制作完成后得到长方体的容积是(包装材料厚度不计) ( )
A.40×40×70 B.70×70×80
C.80×80×40
D.40×70×80
答案 D 如图,围成的长方体的长、宽、高分别为80、70、40,所以长 方体的容积=40×70×80.故选D.
图4-4-1
解析 (1)此包装盒是一个长方体. (2)此包装盒的表面积S=2(2a· a+a· b+2a· b)=4a2+6ab.当a=1,b=4时,S=4×12 +6×1×4=28.
旋转的三角板 典例剖析 例 如图4-4-2①,点O为直线AB上一点,过O点作射线OC,使∠BOC=120 °,将一个直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一
2.如图是一个多面体的表面展开图,每个面上都标注了字母(字母在多 面体的外表面),请根据要求回答问题.
(1)如果D面在多面体的左面,那么F面在哪里?
(2)B面和哪一面是相对的面? (3)如果C面在前面,从上面看到的是D面,那么从左面能看到哪一面?
解析 由题图可知B面的对面是E面,A面的对面是C面,D面的对面是F 面. (1)D面在左面,所以F面在右面. (2)B面和E面是相对的面. (3)C面在前面,从上面看到的是D面,所以从左面能看到B面.
图4-4-10
解析 (1)如图:
(2)当盒子的高为10 cm时,该盒子的容积=40×20×10=8 000(cm3).
在一次数学活动课上,王老师给学生发了一张长为40 cm,宽为30 cm 的长方形纸片(如图),要求折成一个高为5 cm的无盖且容积最大的长方 体盒子. (1)该如何裁剪呢?请画出示意图,并标出尺寸; (2)求该盒子的容积.

七年级上册数学第四单元

七年级上册数学第四单元

七年级上册数学第四单元
七年级上册数学第四单元是关于几何图形的初步认识,主要包括以下几个方面:
1. 图形的基本元素:在这一部分,学生将学习如何识别和命名不同的几何图形,如直线、线段、射线、角、三角形、四边形等。

2. 直线的性质:学生将学习直线的性质,如两点确定一条直线,以及直线的基本性质,如两点之间线段最短。

3. 角:在这一部分,学生将学习角的定义和性质,如角的度量单位,角的基本性质等。

4. 相交线与平行线:在这一部分,学生将学习相交线和平行线的性质,以及如何判断两条线是相交还是平行。

5. 多边形:在这一部分,学生将学习多边形的定义和性质,如四边形、五边形等,以及它们的内角和。

通过这一单元的学习,学生可以建立起基本的几何直觉,为后续更深入的几何学习打下基础。

七年级上册数学第四章知识点

七年级上册数学第四章知识点

七年级上册数学第四章知识点第四章:小数
一、小数的引入
1.分数到小数的初步引入;
2.纯小数和有限小数的初步了解及相关计算。

二、小数的读法和写法
1.小数读法的标准规定;
2.小数的读法与中文的联系;
3.小数的写法及相关注意事项。

三、小数的比较
1.小数的大小比较方法;
2.小数大小比较中的注意事项;
3.大小相等与大小不等的判断。

四、小数的四则运算
1.加法和减法的计算方法;
2.乘法和除法的计算方法;
3.小数的连乘与连除,及其运算顺序。

五、小数与整数的混合运算
1.小数和整数的运算基本规则;
2.小数和整数混合运算的解法。

六、小数的应用
1.小数在生活中的应用及实例分析;
2.数据分析中小数的应用举例;
3.小数的应用题及思路分析。

小结
小数是数学的重要概念之一,涉及到生活中的许多实际问题。

初中数学中的小数学习是一个系统性的过程,必须掌握小数引入、读法和写法、大小比较、四则运算、小数与整数的混合运算以及小数的应用等基本知识。

在学习过程中,要重点掌握小数的四则运算方法和应用,善于转化小数为分数、整数或百分数,同时注意运算过程中的小数进位和消去。

在实际应用中,
应充分发挥小数的特点,灵活掌握小数的计算并运用数学知识解决实际问题。

七年级-人教版(2024新版)-数学-上册-【教学设计】初中数学-七年级上册-第四章-4

七年级-人教版(2024新版)-数学-上册-【教学设计】初中数学-七年级上册-第四章-4

4.2整式的加法与减法(第2课时)1.类比有理数的去括号规律,归纳概括得出整式的去括号规律,体会“数式通性”.2.让学生掌握整式的去括号规律.准确运用去括号规律进行整式的化简.括号前面是“-”号时如何去括号.新课导入港珠澳大桥是集主桥、海底隧道和人工岛于一体的世界上最长的跨海大桥.一辆汽车从香港口岸行驶到东人工岛的平均速度为96km/h,在海底隧道和主桥上行驶的平均速度分别为72 km/h和92 km/h.如果汽车通过主桥需要b h,通过海底隧道所需时间比通过主桥的时间少0.15h,你能用含b的代数式表示主桥与海底隧道长度的和吗?主桥与海底隧道的长度相差多少千米?【师生活动】学生独立列出问题中要求的两个表达式:92b+72(b-0.15),①92b-72(b-0.15).②【设计意图】列出两个含有括号的式子,在教师的指导下,引入对整式的去括号规律的研究.【问题】利用分配律计算:(1)12×1263⎛⎫⎪⎝⎭+;(2)-12×1143⎛⎫⎪⎝⎭-.【答案】解:(1)原式=12×16+12×23=2+8=10;(2)原式=-12×14+(-12)×13⎛⎫⎪⎝⎭-=-3+4=1.教学目标教学重点教学难点教学过程【师生活动】学生独立解答.【设计意图】通过数的运算,引导学生进行类比,为学习整式如何去括号做铺垫.新知探究一、探究学习【问题】如何对前面的①②两式去括号呢?92b+72(b-0.15),①92b-72(b-0.15).②【师生活动】学生仿照数的运算,对①②进行去括号运算.【设计意图】通过对整式去括号,让学生意识到,数的运算中去括号的方法,在整式的运算中依然成立.二、新知精讲【思考】整式的去括号法则是什么?【师生活动】学生通过对整式去括号得到的结果进行总结,找到去括号前后的符号变化规律.【设计意图】通过自己总结,让学生熟练掌握去括号时符号变化的规律.【新知】一般地,一个数与一个多项式相乘,需要去括号,去括号就是用括号外的数乘括号内的每一项,再把所得的积相加.【师生活动】让学生理解去括号定义内容.【设计意图】进一步巩固学生对去括号的认识.【问题】你能利用分配律为下面的式子去括号吗?(1)+(x-3);(2)-(x-3).【师生活动】学生独立解决,完成去括号.【设计意图】巩固对去括号时符号变化的规律的认识.三、典例精讲【例1】化简:(1)8a+2b+(5a-b);(2)(4y-5)-3(1-2y).【答案】解:(1)原式=8a+2b+5a-b=13a+b;(2)原式=4y-5-3+6y=10y-8.【师生活动】学生独立完成,然后互相纠错、评价.【设计意图】通过做题,熟练掌握整式去括号时符号变化的规律,同时意识到去括号有助于将式子化简.【例2】两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50 km/h,水流速度是a km/h.(1)2 h后两船相距多远?(2)2 h后甲船比乙船多航行多少千米?【答案】解:顺水航速=静水航速+水流速度=(50+a) km/h,逆水航速=静水航速-水流速度=(50-a) km/h.(1)由2(50+a)+2(50-a)=100+2a+100-2a=200可知,2 h后两船相距200 km.(2)由2(50+a)-2(50-a)=100+2a-100+2a=4a可知,2 h后甲船比乙船多航行4a km.【师生活动】学生尝试独立解答,派出学生代表回答.【设计意图】该题涉及列式表示数量关系、去括号和合并同类项,为后面研究整式的加减做铺垫.课堂小结板书设计一、去括号的依据二、去括号时符号变化的规律课后任务完成教材第100页练习1~4题.教学反思_______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________。

七年级-人教版(2024新版)-数学-上册-【能力提升】初中数学-七年级上册-第四章--4

七年级-人教版(2024新版)-数学-上册-【能力提升】初中数学-七年级上册-第四章--4

4.2整式的加法与减法(第3课时)1.长方形的一边长等于3a+2b,另一边长比它大a-b,那么这个长方形的周长是().A.14a+6b B.7a+3b C.10a+10b D.12a+8b2.先化简,再求值:当x=12,y=2 022时,14(-4x2+2x-8y)-(-x-2y)的值为().A.-1B.1C.12D.-2 0223.若规定一种运算:a*b=(a+b)-(a-b),其中a,b为有理数,则a*b+(b-a)*b等于_________.4.求5(a2b-3ab2)-2(a2b-7ab2)-(3a2b-ab2)的值,其中a=2 022,b=2 021.对于此题,四位同学展开讨论.小亮:这么大的数,没法算.小刚:先去括号,合并同类项,化简后再代入数值,就简单了.小龙:这个算式的结果是个常数.小颖:这个算式的结果与a,b的取值无关.那么谁的说法正确?你能说明理由吗?参考答案1.【答案】A【解析】由题意,得长方形的另一边长为(3a+2b)+(a-b)=3a+2b+a-b=4a+b,所以这个长方形的周长是2[(3a+2b)+(4a+b)]=2(3a+2b+4a+b)=2(7a+3b)=14a+6b.2.【答案】C【解析】14(-4x2+2x-8y)-(-x-2y)=-x2+12x-2y+x+2y=-x2+32x.当x=12,y=2 022时,原式=-14+34=12.3.【答案】4b【解析】a*b+(b-a)*b=(a+b)-(a-b)+[(b-a)+b]-[(b-a)-b]=a+b-a+b+(b-a+b)-(b-a-b)=2b+2b-a+a=4b.4.【答案】解:小刚、小龙、小颖的说法都正确.理由:5(a2b-3ab2)-2(a2b-7ab2)-(3a2b-ab2)=5a2b-15ab2-2a2b+14ab2-3a2b+ab2=(5a2b-2a2b-3a2b)+(-15ab2+14ab2+ab2)=0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档