7.1二元一次方程组和它的解
二元一次方程组的解法
二元一次方程组的解法在数学学科中,解方程是一个非常重要的内容。
而二元一次方程组是解方程的一种特殊形式,它由两个二元一次方程组成。
解决二元一次方程组的问题可以帮助我们更好地理解和应用代数知识。
下面,我将为大家详细介绍二元一次方程组的解法。
一、代入法代入法是解决二元一次方程组的最常用方法之一。
它的基本思想是将一个方程的其中一个未知数表示为另一个方程中的未知数,然后代入另一个方程进行求解。
例如,我们有以下二元一次方程组:方程1:2x + y = 5方程2:3x - y = 1我们可以先将方程1中的y表示为方程2中的未知数:y = 3x - 1然后将y的值代入方程1,得到:2x + (3x - 1) = 5化简后,我们可以得到一个一元一次方程:5x - 1 = 5解这个方程,我们可以得到x的值为2。
将x的值代入方程1,我们可以求得y 的值为1。
因此,这个二元一次方程组的解为x=2,y=1。
二、消元法消元法是解决二元一次方程组的另一种常用方法。
它的基本思想是通过对方程组进行加减运算,消去其中一个未知数,然后求解另一个未知数。
例如,我们有以下二元一次方程组:方程1:2x + y = 5方程2:3x - y = 1我们可以将方程1乘以3,方程2乘以2,得到:方程1:6x + 3y = 15方程2:6x - 2y = 2然后将方程2的两倍加到方程1上,得到:9y = 17解这个一元一次方程,我们可以得到y的值为17/9。
将y的值代入方程1,我们可以求得x的值为5/3。
因此,这个二元一次方程组的解为x=5/3,y=17/9。
三、图像法图像法是解决二元一次方程组的另一种可视化方法。
它的基本思想是将方程组转化为直线的图像,通过观察直线的交点来求解方程组的解。
例如,我们有以下二元一次方程组:方程1:2x + y = 5方程2:3x - y = 1我们可以将这两个方程转化为直线的形式:方程1对应的直线为:y = -2x + 5方程2对应的直线为:y = 3x - 1我们可以在坐标系中画出这两条直线,并观察它们的交点。
二元一次方程组无解,唯一解,无数解
二元一次方程组无解,唯一解,无数解二元一次方程组在初中数学中是一个非常重要的概念,也是基础中的基础,因为它不仅能够提高我们的思维能力,还能在今后的学习和工作中为我们节省很多的时间和精力。
在这篇文章中,我将讨论二元一次方程组的三种解:无解、唯一解和无数解。
一、无解当二元一次方程组无解时,我们的线性方程组就成为了一对矛盾方程。
因为根据数学的基本原理,一条直线和一条曲线只有两个交点,而一对矛盾方程所代表的两条直线却没有交点,因此方程组无解。
比如以下的方程组:2x + y = 32x + y = 4我们会发现,这两个方程的系数都是一样的,它们所代表的直线是平行的,因此不可能有交点,这就导致它们所组成的方程组无解。
二、唯一解当二元一次方程组有唯一解时,我们的线性方程组就成为了一对一的方程。
这种情况下,方程组中的两个未知数可以被唯一地确定。
比如以下的方程组:2x + y = 3x + 3y = 10我们可以通过代入法或消元法,求得x = 1,y = 2,这就是这个方程组的唯一解。
三、无数解当二元一次方程组有无数解时,我们的线性方程组就成为了一对多的方程。
这种情况下,方程组中的两个未知数不能被唯一地确定,而是有多种可能的解法。
比如以下的方程组:2x + y = 34x + 2y = 6我们注意到这个方程组中的两个方程是有关系的,因为他们是等比例的。
将第二个方程式化简后得到:2x + y = 3如果我们将第一个方程乘以2,则有:4x + 2y = 6将这两个式子放在一起:2x + y = 34x + 2y = 6我们可以发现,这个方程组中的第二个式子是第一个式子的两倍,这就意味着这个方程组有无数个解。
因为我们可以随便选择一个x的值,然后就可以通过第一个式子求出相应的y值。
比如当x = 1时,y = 1,这就是这个方程组的一组解。
当x = 2时,y = -1,这就是另一组解。
总结在这篇文章中,我们讨论了二元一次方程组的三种解:无解、唯一解和无数解。
7.1二元一次方程组
7.学生自学P24问题2,列出方程组.
三、小结: 1、什么是二元一次方程,什么是二元一 次方程组? 2、什么是二元一次方程组的解?如何检 验一对数是否是某个程组的解?
四、作业P24习题7.1 1、2
X 2 是 方 程①的解 Y 1 X 2 ( 2)把 分别代入方程 ② 的左边和右边, Y 1 左边 3 2 4 1 0 ,右边 1 0 左边 右边 X 2 也是方程②解 Y 1 X 2 2 X Y 5 是方程组 的解 Y 1 3 X 4 Y 1 0
7.1二元一次方程组和它的解法
教学目标 • 1.体会二元一次方程组在刻画多个未知量间 相等关系时的作用; • 2.理解二元一次方程组的解的含义,学会检 验一对数值是不是某个方程组的解; • 3.从简单问题出发寻找列二元一次方程或二 元一次方程组的途径.
教学重点:
1.体会二元一次方程、二元一次方程组、二 元一次方程组的解等概念在刻画未知量之间 的关系的作用 2.二元一次方程组的解的检验
(2)
xy 2 x y 3
(3)
x y 5 y 7 z
(4)
5 y 15 3x 2 y 8
X=2 2X+Y=5 6.判断Y=1 是否是方程组3X+4Y=10
X 解: (1 )把
① ②
的解?
2 分别代入方程① 的左边和右边, Y 1 左边 2 2 1 5,右边 5 ∵ 左边 右边
练习一 判断下列方程是否为二元一次方程,并说明理由. ① ② ③
3x 2 y
4x xy 2
⑤
3x 4 y z
⑥
2 1 3y x
4、什么叫二元一次方程组?
《二元一次方程及二元一次方程组》教学设计
7.1二元一次方程及二元一次方程组的解一、教学目标1.了解二元一次方程、二元一次方程组和它的解的概念.2.会检验一对数值是不是某个二元一次方程组的解.3.使学生体会二元一次方程组是刻画现实生活中某些实际问题的有效手段.二、教学方法讨论法、练习法、尝试指导法.三、重点及难点重点:使学生体会二元一次方程组是刻画现实生活中某些实际问题的有效手段,会检验一对数值是否是某个二元一次方程组的解.难点:使学生体会二元一次方程组是刻画现实生活中某些实际问题的有效手段.四、课时安排一课时.五、教具学具准备电脑或投影仪、自制胶片.六、师生互动活动设计1.教师通过复习方程及其解和解方程等知识,创设情境,导入课题,并引入二元一次方程和二元一次方程组的概念.2.通过反复的练习让学生学会正确的判断二元一次方程及二元一次方程组.3.通过二元一次方程组的解的概念的教学,通过教师的示范作用,让学生学会正确地去检验二元一次方程组的解的问题.七、教学步骤(-)明确目标本节课的教学目标为理解二元一次方程及二元一次方程组的概念并会判断一对未知数的值是否为二元一次方程组的解.(二)整体感知由复习方程及其解,导入二元一次方程及二元一次方程组的概念,并会判断它们;同时学会用一个未知数表达另一个未知数为今后的解方程组埋下伏笔;最后学会检验二元一次方程组解的问题.(三)教学过程1.创设情境、复习导入(1)什么叫方程?什么叫方程的解和解方程?你能举一个一元一次方程的例子吗?回答老师提出的问题并自由举例.【教法说明】提此问题,可使学生头脑中再现有关一元一次方程的知识,为学习二元一次方程做铺垫.(2)列一元一次方程求解.香蕉的售价为5元/千克,苹果的售价为3元/千克,小华共买了香蕉和苹果9千克,付款33元,香蕉和苹果各买了多少千克?学生活动:思考,设未知数,回答.设买了香蕉千克,那么苹果买了千克,根据题意,得解这个方程,得答:小华买了香蕉3千克,苹果6千克.上面的问题中,要求的是两个数,能不能同时设两个未知数呢?设买了香蕉千克,买了苹果千克,根据题意可得两个方程观察以上两个方程是否为一元一次方程,如果不是,那么这两个方程有什么共同特点?观察、讨论、举手发言,总结两个方程的共同特点.方程里含有两个未知数,并且未知项的次数是1,像这样的方程,叫做二元一次方程.这节课,我们就开始学习与二元一次方程密切相关的知识—二元一次方程组.【教法说明】学生自己归纳总结出方程的特点之后给出二元一次方程的概念,比直接定义印象会更深刻,有助于对概念的理解.2.探索新知,讲授新课(1)关于二元一次方程的教学.我们已经知道了什么是二元一次方程,下面完成练习.练习一判断下列方程是否为二元一次方程,并说明理由.①②③④⑤⑥练习二分组练习:同桌结组,一人举例,一人判断是否为二元一次方程.学生活动:以抢答形式完成练习1,指定几组同学完成练习2.【教法说明】这样做既可以活跃气氛,又能加深学生对二元一次方程概念的理解.练习三课本第6页练习1.提出问题:二元一次方程的解是惟一的吗?学生回答后,教师归纳:一元一次方程只有一个解,而二元一次方程有无限多解,其中一个未知数(或)每取一个值,另一个未知数(或)就有惟一的值与它相对应.练习四填表,使上下每对、的值满足方程.师生共同总结方法:已知,求,用含有的代数式表示,为;已知,求,用含有的代数式表示,为.【教法说明】由此练习,学生能真正理解二元一次方程的解是无限多的;并且能把一个二元一次方程定成用含有一个未知数的代数式表示另一个未知数的形式,为用代入法解二元一次方程组奠定了基础.(2)关于二元一次方程组的教学.上面的问题包含两个必须同时满足的条件,一是香蕉和苹果共买了9千克,一是共付款33元,也就是必须同时满足两个方程.因此,把这两个方程合在一起,写成这两个方程合在一起,就组成了一个二元一次方程组.方程组各方程中,同一字母必须代表同一数量,才能合在一起.练习五已知、都是未知数,判别下列方程组是否为二元一次方程组?①②③④【教法说明】练习五有助于学生理解二元一次方程组的概念,目的是避免学生对二元一次方程组形成错误的认识.对于前面的问题,列二元一次方程组要比列一元一次方程容易些.根据前面解得的结果可以知道,买了香蕉3千克,苹果6千克,即,,这里,既满足方程①,又满足方程②,我们说是二元一次方程组的解.学生活动:尝试总结二元一次方程组的解的概念,思考后自由发言.教师纠正、指导后板书:使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.例题判断是不是二元一次方程组的解.学生活动:口答例题.此例题是本节课的重点,通过这个例题,使学生明确地认识到:二元一次方程组的解必须同时满足两个方程;同时,培养学生认真的计算习惯.3.尝试反馈,巩固知识练习:(1)课本第6页第2题目的:突出本节课的重点.(2)课本第7页第1题目的:培养学生计算的准确性.4.变式训练,培养能力练习:(1)P8 4.【教法说明】使学生更深刻地理解二元一次方程组的解的概念,并为解二元一次方程组打下基础.(2)P8 B组1.【教法说明】为列二元一次方程组找等量关系打下基础,培养了学生分析问题、解决问题的能力.(四)总结、扩展1.让学生自由发言,了解学生这节课有什么收获.2.教师明确提出要求:弄懂二元一次方程、二元一次方程组和它的解的含义,会检验一对数值是不是某个二元一次方程组的解.3.中考热点:中考中有时会出现检验某个坐标点是否在一次函数解析式上的问题.八、布置作业(一)必做题:P7 3.(二)选做题:P8 B组2.(三)预习:课本第9~13页.参考答案略.教案点评:本教案的设计有以下特点:能根据教材编写思路,自制教具创造性使用新教材中的问题情景,把教材中不动的问题情景转化为学生互动的问题情景,使学生在互动中去感受.有关的一些知识,都是在教师的引导下,经过学生充分的思考、讨论,并结合大量特例,由学生自己归纳、总结发现的.教师根据实际情况,对不同的学生进行有针对性的指导,使不同的学生都有发展,真正把课堂还给了学生,使学生真正地变为课堂学习的主人,老师只是学生学习的引导者和组织者.。
(新课标)华东师大版七年级数学下册同步训练:二元一次方程组和它的解(考点分析)
2017-2018学年(新课标)华东师大版七年级下册7.1二元一次方程组和它的解一.选择题(共8小题)1.若方程mx+ny=6的两个解是,,则m,n的值为()A. 4,2 B.2,4 C.﹣4,﹣2 D.﹣2,﹣42.已知是二元一次方程组的解,则m﹣n的值是()A. 1 B.2 C.3 D. 43.若是关于x、y的二元一次方程ax﹣3y=1的解,则a的值为()A. 7 B.2 C.﹣1 D.﹣54.二元一次方程x+2y=3的解的个数是()A. 1 B.2 C 3 D.无数5.已知二元一次方程3x﹣4y=1,则用含x的代数式表示y是()A. y=B.y=C.y=D.y=﹣6.方程组的解是,则a,b为()A.B. C D.7.下列方程组中,解是的是()A.B.C.D.8.二元一次方程x﹣2y=1有无数多个解,下列四组值中不是该方程的解的是()A.B.C.D.二.填空题(共7小题)9.关于x,y的方程组的解是,则|m+n|的值是_________ .10.已知是方程2x+ay=5的解,则a= _________ .11.4x a+2b﹣5﹣2y3a﹣b﹣3=8是二元一次方程,那么a﹣b= _________ .12.在二元一次方程2x﹣y=3中,当x=2时,y= _________ .13.试写出一个以为解的二元一次方程组_________ .14.若方程组的解是,则a+b的值是_________ .15.2x+y=5的正整数解是_________ .三.解答题(共6小题)16.已知关于x、y的方程组的解为,求m、n的值.17.已知关于x,y的方程组的解为,求m n的值.18.根据图中提供的信息,写出T恤衫的单价x(元/件)与驱虫剂的单价y(元/瓶)满足的二元一次方程组.19.是否存在m值,使方程(|m|﹣2)x2+(m+2)x+(m+1)y=m+5是关于x,y的二元一次方程?若存在,求出m的值;若不存在,请说明理由.20.甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解为;乙看错了方程②中的b,得到方程组的解为x=5,y=4.试计算a2014+(﹣b)2013的值.7.1二元一次方程组和它的解参考答案与试题解析一.选择题(共8小题)1.若方程mx+ny=6的两个解是,,则m,n的值为()A. 4,2 B.2,4 C ﹣4,﹣2 D.﹣2,﹣4考点:二元一次方程的解.菁优网版权所有专题:计算题.分析:将x与y的两对值代入方程计算即可求出m与n的值.解答:解:将,分别代入mx+ny=6中,得:,①+②得:3m=12,即m=4,将m=4代入①得:n=2,故选:A点评:此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.2.已知是二元一次方程组的解,则m﹣n的值是()A. 1 B.2 C.3 D. 4考点:二元一次方程组的解.菁优网版权所有专题:计算题.分析:将x与y的值代入方程组求出m与n的值,即可确定出m﹣n的值.解答:解:将x=﹣1,y=2代入方程组得:,解得:m=1,n=﹣3,则m﹣n=1﹣(﹣3)=1+3=4.故选:D点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.3.若是关于x、y的二元一次方程ax﹣3y=1的解,则a的值为()A. 7 B.2 C.﹣1 D.﹣5考点:二元一次方程的解.菁优网版权所有专题:计算题.分析:将x=1,y=2代入方程计算即可求出a的值.解答:解:将x=1,y=2代入方程得:a﹣6=1,解得:a=7,故选A.点评:此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.二元一次方程x+2y=3的解的个数是()A. 1 B.2 C.3 D.无数考点:解二元一次方程.菁优网版权所有分析:由于二元一次方程x+2y=3是不定方程,所以有无数组解.解答:解:由二元一次方程的解的定义知,任意一个二元一次方程都有无数个解.故选:D.点评:二元一次方程都有无数个解,但对于一些特殊解有有数个.5.已知二元一次方程3x﹣4y=1,则用含x的代数式表示y是()A. y=B.y= C y=D.y=﹣考点:解二元一次方程.菁优网版权所有专题:计算题.分析:将x看做已知数求出y即可.解答:解:3x﹣4y=1,解得:y=.故选B.点评:此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.6.方程组的解是,则a,b为()A.B.C.D.考点:二元一次方程组的解.菁优网版权所有分析:此题可以把x,y的值代入,即可求出a,b的值解答:解:依题意,得a﹣1=0,1﹣b=1∴a=1,b=0.故选B.点评:此题考查的是对二元一次方程的解的理解,解这类题时可把已知的值代入转化成求a,b的方程,这样就可以求出a,b的值.7.下列方程组中,解是的是()A.B. C D.考点:二元一次方程组的解.菁优网版权所有分析:根据解方程组,可得方程组的解,可得答案.解答:解:A、的解是,故A不符合题意;B、的解是,故B不符合题意;C、的解是,故C符合题意;D、的解是,故D不符合题意;故选:C.点评:本题考查了二元一次方程组的解,分别求出每一个方程组的解,再选出答案.8.二元一次方程x﹣2y=1有无数多个解,下列四组值中不是该方程的解的是()A.B.C.D.考点:二元一次方程的解.菁优网版权所有专题:计算题.分析:将x、y的值分别代入x﹣2y中,看结果是否等于1,判断x、y的值是否为方程x﹣2y=1的解.解答:解:A、当x=0,y=﹣时,x﹣2y=0﹣2×(﹣)=1,是方程的解;B、当x=1,y=1时,x﹣2y=1﹣2×1=﹣1,不是方程的解;C、当x=1,y=0时,x﹣2y=1﹣2×0=1,是方程的解;D、当x=﹣1,y=﹣1时,x﹣2y=﹣1﹣2×(﹣1)=1,是方程的解;故选:B.点评:本题考查二元一次方程的解的定义,要求理解什么是二元一次方程的解,并会把x,y的值代入原方程验证二元一次方程的解.二.填空题(共7小题)9.关于x,y的方程组的解是,则|m+n|的值是 3 .考点:二元一次方程组的解.菁优网版权所有专题:计算题.分析:将x与y的值代入方程组计算求出m与n的值,即可确定出所求式子的值.解答:解:将x=1,y=3代入方程组得:,解得:m=﹣1,n=﹣2,则|m+n|=|﹣1﹣2|=|﹣3|=3.故答案为:3点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.10.已知是方程2x+ay=5的解,则a= 1 .考点:二元一次方程的解.菁优网版权所有专题:计算题.分析:知道了方程的解,可以把这对数值代入方程,得到一个含有未知数a 的一元一次方程,从而可以求出a的值.解答:解:把代入方程2x+ay=5得:4+a=5,解得:a=1,故答案为:1.点评:此题考查的知识点是二元一次方程的解,解题关键是把方程的解代入原方程,使原方程转化为以系数a为未知数的方程,一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.11.4x a+2b﹣5﹣2y3a﹣b﹣3=8是二元一次方程,那么a﹣b= 0 .考点:二元一次方程的定义;解二元一次方程组.菁优网版权所有分析:根据二元一次方程的定义即可得到x、y的次数都是1,则得到关于a,b的方程组求得a,b的值,则代数式的值即可求得.解答:解:根据题意得:,解得:.则a﹣b=0.故答案为:0.点评:主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.12.在二元一次方程2x﹣y=3中,当x=2时,y= 1 .考点:解二元一次方程.菁优网版权所有专题:计算题.分析:直接把x=2代入二元一次方程2x﹣y=3,求出y的值即可.解答:解:当x=2时,原方程可化为2×2﹣y=3,解得y=1.故答案为:1.点评:本题考查的是解二元一次方程,把x=2代入得到关于y的一元一次方程是解答此题的关键.13.试写出一个以为解的二元一次方程组.考点:二元一次方程组的解.菁优网版权所有专题:开放型.分析:本题是一个开放性的题目,答案不唯一,只有举出一个方程组,把x=3,y=﹣1代入方程组,每个方程的左右两边分别相等即可.解答:解:∵当x=3,y=﹣1时,x+y=2,x﹣y=4,符合条件的一个方程组是,故答案为:.点评:本题考查了二元一次方程组的解,本题具有一定的代表性,是一道开放性的题目,答案不唯一,再如:等.14.若方程组的解是,则a+b的值是 5 .考点:二元一次方程组的解.菁优网版权所有专题:计算题.分析:所谓“方程组”的解,指的是该数值满足方程组中的每一方程的值,只需将方程的解代入方程组,就可得到关于m,n的二元一次方程组,解得a,b 的值,即可求a+b的值.解答:解:根据定义,把代入方程得:,所以a=,b=,∴a+b=5.故答案为:5.点评:此题主要考查了二元一次方程组解的定义.以及解二元一次方程组的基本方法.15.2x+y=5的正整数解是,.考点:解二元一次方程.菁优网版权所有专题:探究型.分析:根据方程2x+y=0有正整数解可分别令x=1,x=2求出y的对应值即可.解答:解:∵当x=1时,2×1+y=5,解得y=3;当x=2时,2×2+y=5,解得y=1,∴方程2x+y=0有正整数解为:,.当x取大于2的整数,求出的y是负数,即正整数解只有两个,故答案为:,.点评:本题考查的是二元一次方程,由于二元一次方程是不定方程,在解答此类题目时要先设出一个未知数的值,然后求出另一个数的对应值.三.解答题(共6小题)16.已知关于x、y的方程组的解为,求m、n的值.考点:二元一次方程组的解.菁优网版权所有专题:计算题.分析:将x与y的值代入方程组计算即可求出m与n的值.解答:解:将代入方程组得:,②﹣①得:n=,即n=1,将n=1代入②得:m=1,则.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.17.已知关于x,y的方程组的解为,求m n的值.考点:二元一次方程组的解.菁优网版权所有分析:所谓“方程组”的解,指的是该数值满足方程组中的每一方程的值,只需将方程的解代入方程组,就可得到关于m,n的二元一次方程组,解得m,n 的值,即可求m n的值.解答:解:根据定义,把代入方程组,得,解得.那么m n=3﹣2=.点评:此题主要考查了二元一次方程组解的定义,以及解二元一次方程组的基本方法,比较简单.18.根据图中提供的信息,写出T恤衫的单价x(元/件)与驱虫剂的单价y(元/瓶)满足的二元一次方程组.考点:由实际问题抽象出二元一次方程组.菁优网版权所有分析:根据图象可知两件上衣和两瓶驱虫剂共44元,一件上衣和3瓶驱虫剂共26元,据此列出方程组即可.解答:解:设每件上衣x元,每瓶驱虫剂y元,根据题意得:点评:本题考查了由实际问题抽象出二元一次方程组的知识,解题的关键是从题目中找到两个等量关系,这是列方程组的依据.19.是否存在m值,使方程(|m|﹣2)x2+(m+2)x+(m+1)y=m+5是关于x,y的二元一次方程?若存在,求出m的值;若不存在,请说明理由.考点:二元一次方程的定义.菁优网版权所有分析:利用二元一次方程的定义得出其系数的关系进而求出即可.解答:解:∵方程(|m|﹣2)x2+(m+2)x+(m+1)y=m+5是关于x,y的二元一次方程,∴|m|﹣2=0,m+2≠0,m+1≠0,解得:m=2.故当m=2时,方程(|m|﹣2)x2+(m+2)x+(m+1)y=m+5是关于x,y的二元一次方程.点评:此题主要考查了二元一次方程的定义,正确把握定义是解题关键.20.甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解为;乙看错了方程②中的b,得到方程组的解为x=5,y=4.试计算a2014+(﹣b)2013的值.考点:二元一次方程组的解.菁优网版权所有分析:将代入方程组的第二个方程,x=5,y=4代入方程组的第一个方程,联立求出a与b的值,即可求出所求式子的值.解答:解:将代入方程组中的4x﹣by=﹣2得:﹣12+b=﹣2,即b=10;将x=5,y=4代入方程组中的ax+5y=15得:5a+20=15,即a=﹣1,则a2014+(﹣b)2013=1﹣1=0.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.。
《二元一次方程和它的解》 讲义
《二元一次方程和它的解》讲义在数学的世界里,方程就像是一把神奇的钥匙,帮助我们解开各种各样的谜题。
今天,咱们就来聊聊二元一次方程以及它的解。
首先,什么是二元一次方程呢?简单来说,二元一次方程就是含有两个未知数,并且含有未知数的项的次数都是 1 的整式方程。
一般形式可以写成:ax + by = c,其中 a、b、c 是常数,而且 a 和 b 都不能等于 0。
比如说,2x + 3y = 8 就是一个二元一次方程。
这里的 x 和 y 就是两个未知数,2 和 3 分别是 x 和 y 的系数。
那二元一次方程的解又是什么呢?二元一次方程的解是指使方程左右两边相等的一对未知数的值。
咱们还是以 2x + 3y = 8 为例。
如果 x = 1,y = 2,把它们代入方程中,左边= 2×1 + 3×2 = 2 + 6 = 8,右边也是 8,左边等于右边,所以 x = 1,y = 2 就是这个方程的一组解。
但是要注意哦,二元一次方程往往有无数组解。
为什么呢?因为我们可以通过变形来找到不同的解。
比如从 2x + 3y = 8 中解出 y,得到:y =(8 2x) / 3 。
然后我们可以给 x 取不同的值,计算出对应的 y 值,这样就能得到一组一组的解。
比如当 x = 2 时,y =(8 2×2) / 3 =(8 4) / 3 = 4 / 3 。
当 x =-1 时,y =(8 2×(-1))/ 3 =(8 + 2) / 3 = 10 /3 。
所以,只要给定一个 x 的值,按照方程就能算出一个对应的 y 值,从而得到一组解。
那怎么求二元一次方程的解呢?通常有两种方法,一种是代入消元法,另一种是加减消元法。
咱们先来说说代入消元法。
还是以这个方程为例:2x + 3y = 8 ①,x y = 1 ②。
从方程②可以得到 x = y + 1 ,然后把 x = y + 1 代入方程①中,得到:2(y + 1) + 3y = 8 ,展开括号:2y + 2 + 3y = 8 ,合并同类项:5y + 2 = 8 ,移项:5y = 6 ,解得:y = 6 / 5 。
华师大版数学七年级下册全册教案
1、知识与技能:①了解方程、一元一次方程、二元一次方程组以及方程(组)的解等基本概念,了解方程的基本变形及其在解方程(组)中的作用。会解一元一次方程、二元一次方程组,并经历和体会解方程中转化的过程与思想,了解解方程(组)解法的一般步骤,并能灵活运用。②了解三角形的内角、外角及其主要线段(中线、高线、角平分线)等概念,会画出任意三角形的中线、高线和角平分线,了解三角形的稳定性,了解几种特殊三角形与多边形的特征,并能加以简单的识别,探索并掌握三角形的外角性质与外角和,理解并掌握三角形三边关系,探索、归纳多边形的内角和秘外角和公式。③通过具体实例认识轴对称探索线段、角和圆等图形的轴对称性,了解线段中垂线的性质和角平分线的性质,会画轴对称图形并探索轴对称的基本性质,理解对应点所连的线段被对称轴垂直平分的性质,能利用轴对称进行图案设计,了解等腰三角形的概念掌握其性质和其识别方法。④让学生知道普查和抽样调查的区别,感受抽样调查的必要性和现实性,体会选取有代表性的样本对正确估计总体是十分重要的,会求平均数、中位数、众数并了解它们各自适用范围,体验随机事件在每一次实验中是否发生是不可预言的,但在大数次反复实验后是有规律的。
本章难点:正确理解三角形的高、中线及角平分线的性质并能作图,及三角形内角和的证明与多边形内角和的探究。
第十章:轴对称图形是通过观察与操作,让学生感知确认最为简单的变换——轴对称中隐含着的数学不变量关系,同时辅以数学说理,给学生一定的理性训练与图形变换的思想。
本章重点:轴对称中隐含着的数学不变量关系,同时辅以数学说理
解:设小红能买到工本笔记本,那么根据题意,得
1.2x=6
因为1.2×5=6,所以小红能买到5本笔记本。
二、新授:
我们再来看下面一个例子:
问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?
华东师大版数学七年级下册 二元一次方程组和它的解练习(Word版含答案)
7.1二元一次方程组和它的解★含有个未知数,并且含有未知数的项的次数都是的方程叫做二元一次方程.★含有两个未知数的两个一次方程所组成的一组方程叫做二元一次方程组.★二元一次方程的解:使二元一次方程两边的值相等的一组未知数的值,叫做二元一次方程的解.一般情况下,一个二元一次方程有个解.★二元一次方程组中的两个方程的公共解,叫做二元一次方程组的解。
通常情况下,一个二元一次方程组只有一个解,它是一对数值.一.选择题(共7小题)1.有下列方程:①xy=2;②3x=4y;③x+=2;④y2=4x;⑤=3y﹣1;⑥x+y﹣z=1.其中二元一次方程有()A.1个B.2个C.3个D.4个2.下列方程组中,是二元一次方程组的是()A.B.C.D.3.下列方程组的解为的是()A.B.C.D.4.母亲节来临,小明去花店为妈妈准备节日礼物.已知康乃馨每支2元,百合每支3元.小明将30元钱全部用于购买这两种花(两种花都买),小明的购买方案共有()A.3种B.4种C.5种D.6种5.二元一次方程x﹣2y=1有无数多个解,下列四组值中不是该方程的解的是()A.B.C.D.6.某校举行篮球赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.八年级一班在16场比赛中得26分.设该班胜x场,负y场,则根据题意,下列方程组中正确的是()A.B.C.D.7.二果问价源于我国古代数学著作《四元玉鉴》“九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜果苦果各几个?”设甜果为x个,苦果y个,下列方程组表示正确的是()A.B.C.D.二.填空题(共6小题)8.若(a﹣2)x|a|﹣1+3y=1是关于x、y的二元一次方程,则a的值为.9.已知关于x,y的方程(2a+6)x|b|﹣1+(b﹣2)=﹣8是二元一次方程,则a=,b =.10.若方程2x2m+3+(n+3)y|n|﹣2=4是关于x,y的二元一次方程,则m n=.11.已知关于x,y的二元一次方程组的解满足x+y=0,则m的值为.12.已知等式:①=;②2x=5y﹣x;③3x﹣5y=0;④=,其中可以通过适当变形得到3x=5y的等式是.(填序号)13.若关于x,y的二元一次方程组的解满足x﹣y=2,则m的值为.三.解答题(共7小题)14.已知是方程的解,求﹣5a+2b+1964的值.15.我国古代数学名著《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”,意思是:鸡和兔关在一个笼子里,从上面看有35个头,从下面看有94条腿,问笼中鸡或兔各有多少只?16.甲、乙两人练习赛跑,如果甲让乙先跑10米,那么甲跑5秒钟就可以追上乙;如果甲让乙先跑2秒钟,那么甲跑4秒钟就能追上乙,求两人每秒钟各跑多少米?17.已知关于x、y的二元一次方程组的解是,求(a+b)2﹣(a﹣b)(a+b)的值.18.求方程4x+5y=21的整数解.19.甲、乙两位同学在解方程组时,甲把字母a看错了得到方程组的解为;乙把字母b看错了得到方程组的解为.(1)求a,b的正确值;(2)求原方程组的解.20.若干名游客要乘坐游船,要求每艘游船乘坐的人数相同.如果每艘游船乘坐12人,结果剩下1人未能上船;若有一艘游船空着开走,则所有游客正好能平均分坐到其余游船上.已知每艘游船最多能容纳15人.请你通过计算,说明游客共有多少人?7.1二元一次方程组和它的解参考答案与试题解析★含有_两_个未知数,并且含有未知数的项的次数都是1_的_整式_方程叫做二元一次方程.★含有两个未知数的两个一次方程所组成的一组方程叫做二元一次方程组.★二元一次方程的解:使二元一次方程两边的值相等的一组未知数的值,叫做二元一次方程的解.一般情况下,一个二元一次方程有无数_个解.★二元一次方程组中的两个方程的公共解,叫做二元一次方程组的解。
七年级数学下册 7.1 二元一次方程组导学案(无答案) 鲁教版五四制
二元一次方程组【学习目标】能说出二元一次方程、二元一次方程组和它的解的概念,会检验所给的一组未知数的值是否是二元一次方程、二元一次方程组的解。
【学习重点】二元一次方程、二元一次方程组、二元一次方程组的解的概念,以及检验一对数值是不是某个二元一次方程组的解;【学习过程】一、自主学习 认真阅读教材P 2——4内容,尝试完成下面的题目,相信你一定能行!1、默写二元一次方程、二元一次方程组和它的解的概念2、判断下列方程是否为二元一次方程,并说明理由。
①y x 23+ ②74=-y x ③62=+y x④23+=xy x ⑤z y x =-43 ⑥y x 312=-3、已知x 、y 都是未知数,判别下列方程组是否为二元一次方程组? ①⎩⎨⎧=+=+75243y x y x ②⎩⎨⎧=+=32y x xy ③⎩⎨⎧+==+z y y x 75 ④⎩⎨⎧=+=823155y x y 4、篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分。
某队为了争取较好名次想在全部22场比赛中得到40分,那么这个队胜负场数应分别是多少?二、合作交流1、已知下面三对数值:⎩⎨⎧-==20y x ⎩⎨⎧-==32y x ⎩⎨⎧-==51y x(1)哪几对是方程2x-y=7的解;(2)哪几对是方程x+2y=-4的解?2、下面三对数值:⎩⎨⎧-==11y x ⎩⎨⎧==12y x ⎩⎨⎧==54y x哪一对是二元一次方程组的解?(1)⎩⎨⎧=+=-104332y x y x (2)⎩⎨⎧=--=13432y x x y3、判断⎩⎨⎧==26y x 是不是二元一次方程⎩⎨⎧=-=-192325y x y x 的解三、达标测评【必做题】课本5页习题7.1【选做题】1、下列方程组中,是二元一次方程组的为 ( )A 、12x y xy =+⎧⎨=⎩ B 、4123x y y x -=⎧⎨=+⎩C 、2201x x y x ⎧--=⎨=+⎩D 、1130y x x y ⎧-=⎪⎨⎪+=⎩2、下列各式,属于二元一次方程的个数有( )①xy+2x -y=7; ②4x+1=x -y ;③1x +y=5; ④x=y ; ⑤x 2-y 2=2⑥6x -2y ⑦x+y+z=1 ⑧y (y -1)=2y 2-y 2+xA .1B .2C .3D .43、下列方程组中,是二元一次方程组的是( ) A .228423119 (237)54624x y x y a b x B C D x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩ 【提高题】 4、若方程432+=-x y mx 是二元一次方程,则m 满足( )A 、0≠mB 、2-≠mC 、3≠mD 、4≠m5、先解一元一次方程2x-1=-x+2。
7.1二元一次方程组和它的解2
第7章二元一次方程组
中央电教馆资源中心
第一节二元一次方程组和它的解
第7章二元一次方程组
华东师大版七年级下册
第7章 二元一次方程组
中央电教馆资源中心
第一节二元一次方程组和它的解
第7章二元一次方程组
在我国古代有个著名的 “鸡兔同笼”问题:“今有 鸡兔同笼,上有三十五头, 下有九十四足,问鸡兔各几 何?”
中央电教馆资源中心
第一节二元一次方程组和它的解
第7章二元一次方程组
在上面的方程 x y 8 和方程 5 x 3 y 34 中, x 的含义相同吗? y 呢?
中央电教馆资源中心
第一节二元一次方程组和它的解
第7章二元一次方程组
y 2 适合方程 (1)x 6, x y 8 吗?x 5,y 3 呢?
这个问题你能解答吗?
中央电教馆资源中心
第一节二元一次方程组和它的解
第7章二元一次方程组
小米一家8人去公园游玩, 买门票共花了34元。每张成人 票5元,每张儿童票3元。他们 到底去了几个成人、几个儿童?
中央电教馆资源中心
第一节二元一次方程组和它的解
第7章二元一次方程组
上面两个问题中都可以 用算术方法、列一个方程、 列二个方程来解答,这三种 方法之间存在什么关系?哪 种更容易理解?
(3)你能找到一组
中央电教馆资源中心
第一节二元一次方程组和它的解
第7章二元一次方程组
1听果奶多少钱? 1听可乐Байду номын сангаас少钱?
中央电教馆资源中心
第一节二元一次方程组和它的解
第7章二元一次方程组
中央电教馆资源中心
x 4,y 4 呢?你还能找到其
7.1 二元一次方程组和它的解
蓬溪外国语实验学校数学科学案模板课题:7.1 二元一次方程组和它的解班级:姓名:一、学习目标:1、能识别二元一次方程(组)2、会理解二元一次方程(组)的解3、能检验一对数是否是二元一次方程(组)的解例4、已知三对数值:①x=0 ②x=-1 ③x=3Y=8 y=-53y=5(1)哪几对是x+y=8 解?哪几对是5x-3y=0的解?(2)哪几对是方程组x+y=8 的解?5x-3y=0四、练一练:1、下列各式中属于二元一次方程的有(填序号)。
①xy+2x=1 ②4x+1=x-y ③x=2y④ 5x-2y ⑤ x2-y2=2 ⑥ x+y+z=12、二元一次方程组 x+y=5 的解是()3x+2y=13A、x=2B、x=3C、x=1D、x=5 y=3 y=2 y=4 y=-1 3、已知方程2x-y+3k=0的解是 x=2 ,则k=y=14、已知 x=-2 是方程组 ax-y=5 的解,则a= ,b= 。
y=1 2x+by=15、如果x-2y=-3 ,则5-x+2y= 。
6、写出一个方程组,使它的解为 x=1 ,这样的方程组你能写出几个?y=2五、想一想:(学习什么,会了什么,不会什么,不会怎么办)二、忆一忆:1、什么叫一元一次方程?什么叫一元一次方程的解?如何检验?2、已知方程3x-a=8的解是x=3,则a= 。
三、学一学:1、含有个未知数,并且的次数是1的方程,叫做二元一次方程。
例1、下列方程中,是二元一次方程的是()A、0.7x+2=0.4B、2xy=1+xC、2x+7y2 =3D、3x+3y=152、使二元一次方程左右两边的值相等的个未知数的值,叫做二元一次方程的一个解,一般地,二元一次方程有个解。
例如:把x=3、y=1 代入方程3x-2y=7,左边=;右边=,左边右边,所以x=3、y=1方程3x-2y=7的一个解。
表示为:例2:已知方程2x+y=7 ,(1)当x=1 时,y= ;(2)当y=7时,x= 。
七年级数学导学案第七章
第七章二元一次方程组导学案7.1二元一次方程组和它的解一、学习目标:1、能说出二元一次方程、二元一次方程组和它的解的概念,会检验所给的一组未知数的值是否是二元一次方程、二元一次方程组的解。
2、能设两个未知数并列方程组表示实际问题中的两种相关的等量关系。
二、学习重难点:重点:二元一次方程、二元一次方程组及其解的含义。
难点:弄懂二元一次方程组解的含义。
三、学习过程: (一)、带着以下问题,自主学习课本第22页,第23页。
1、思考问题1,试着列一元一次方程求解。
若设两个未知数又会怎样呢?2、什么是二元一次方程?你能举出一些二元一次方程的例子吗?3、什么是二元一次方程组?举例说明。
4、什么是二元一次方程组的解?如何检验?(二)、巩固练习 1、下列方程3x-5y=1,x=3y+1, 3x -12=y ,xy+2x-y=0,x=4,2x 2-y=9, 01=+y x中二元一次方程有___个。
2、已知方程组:(1)⎩⎨⎧=-=+4302y x y x (2)⎩⎨⎧==+5723xy y x (3)⎩⎨⎧=+=+212z x y x (4)⎪⎩⎪⎨⎧=+=-243134y x yx其中是二元一次方程组的是____________3、判断下列各组数是否是方程组⎩⎨⎧-==+-y x x y 213032的解。
(1)⎪⎩⎪⎨⎧-==221y x (2)⎩⎨⎧-==11y x 4、如果(m-1)x +(1+m)y+4=0是关于x 、y 的二元一次方程,则m 必须满足的条件是_________5、若⎪⎩⎪⎨⎧-==121y x 是方程组⎩⎨⎧=-=-1253by x y ax 的解,那么a 2+b 2=_________ (三)、课后作业1. 教材第24页习题第1,2题。
2. 选做题:请你用方程组⎩⎨⎧=-=+1228y x y x 编一道具有实际意义的题。
四、巩固检测: 1.有效训练(1)下列方程中,是二元一次方程的是( )A .2x-y=z B. 3xy+1=0 C. 0.5+y=3 D. x=0.5y (2)以⎩⎨⎧==13y x 为解建立一个二元一次方程,不正确的是( ) A. 3x-4y=5 B.031=-y x C. 32-=+y x D. 65322=-y x (3)若方程组⎩⎨⎧=-=+a by x b y x 2的解是⎩⎨⎧==01y x ,那么b a -=_________(4)我国古代数学名著《孙子算经》上有这样一道题:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几只?(只列方程组)2.经典检测(1)已知下列三对数值: ⎩⎨⎧-==10y x ⎩⎨⎧==415y x ⎩⎨⎧==15y x ① 哪几对数值是方程x-3y=3的解,哪几对数值是方程3x-10y=5的解? ② 哪一对数值是方程组⎩⎨⎧=-=-510333y x y x 的解?(2)若⎩⎨⎧==21y x 是方程ax-y=3的解,则a=__________. ( 3 )根据下列条件,列出二元一次方程组:小亮的储蓄罐里有面值0.5元和1元的两种硬币共20枚,合计15元。
初中数学7.1 二元一次方程组和它的解 教学反思
7.1 二元一次方程组和它的解
教学反思
本节从学生感兴趣的问题入手,意在让学生经历一个实际背景,激发学生自觉探究数学问题,体验发现问题的乐趣.学生通过自己去分析、探索、认识二元一次方程组,初步体会用二元一次方程组来刻画实际问题中的数量关系.在本节课的学习中让学生运用自主学习、观察猜想、合作交流、抽象概括、总结归纳等方法.学生的角色从学会转变为会学,本节课,学生不是停留在学会课本知识的层面上,而是与老师一起站在探究者的角度深入其境,体验探究的氛围与真谛.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
请你根据题意列一个方程组。
如图,画出示意图.若设应拆除旧校舍 xm2,建造新校舍ym2,请你根据题意列 一个方程组.
{
y=4x
y-x=20000×30%
完成 教材P26
练习 第1题
课堂小结
1、这节课你有什么收获?.
2、弄懂二元一次方程、二元一次方程 组和它的解的含义,会检验一对数值是 不是某个二元一次方程组的解. 3、中考热点:中考中有时会出现检验 某一对数值是否是一个二元一次方程的 解的问题.
72.什么叫方程的解?
3.什么是一元一次方程?
你能举一个一元一次方程的例子吗?
探究新知 自主学习 教材P24 — P25 。
1、回答“思考”提出的问题。
2、完成“探索”中的表格。
3、找出方程①、②的共同特点。
4、理解二元一次方程及二元一次方程
与它对应。 2、二元一次方程组的解 使二元一次方程组的两个方程左右 两边的值都相等的两个未知数的值,叫 做二元一次方程组的解.
已知下面的三对数值:
x 10, x 8, ① ② y 1. y 10;
x 0, ③ y 6;
1 (1) 哪几对数值使方程 x y 6 左、右 2 两边的值相等?
组的概念。
在下表的空格中填入数字或式子.
9-2
3x
y
17
设勇士队胜了x场,平了y场,那么根据填表 的结果可知 x+y=7, ① 和 3x+y=17. ②
二元一次方程 x+y=7, 3x+y=17.
.
① ②
每个方程都有两个未知数,并且含未 知数项的次数都是1.像这样的方程,我们 把它叫做二元一次方程
3、填表,使上下每对x,y的值满足方程 3x+y=17
x
y
-2
23
0
17
3
8
5
2
6
7
8
-1
-4
-7
已知x求y,用含x的代数式表示y为
y=17-3x
17 y X= 3
已知y求x,用含y的代数式表示x为
1、二元一次方程的解 二元一次方程有无限多解,其中一
个未知数(x或y)每取一个值,另一个
未知数(y或x)都有唯一一个确定的值
2
2 1 3y x
⑤ ⑥
3x 4 y c
4x y 7
2、判别下列方程组是否为二元一次方程组?
①
xy 2 x 3 y 4 ② x y 3 2 x 5 y 7
③
x y 5 y 7 z
④
5 y 15 3 x 2 y 8
三个特点: 1、两个未知数
2、项的次数是1 3、整式方程
二元一次方程组
x y 7 3x y 17
把这两个二元一次方程合在一起, 就组成了一个二元一次方程组.
新知应用
1、判断下列方程是否为二元一次方程,并说明理由.
① ② ③ ④
3x 2 y 3x xy 2
x y6
1 x y 6 (2)哪几对数值是方程组 2 的解? 2 x 31y 11
2.判断
x 3 y 5.5
是不是二元一次方程组
y 1.5 x 1 y 0.5 x 4
① ②
的解。
问题2
某校现有校舍20000 ㎡ ,计划拆除部分 旧校舍,改建新校舍,使校舍总面积增加30%. 若建造新校舍的面积为被拆除的旧校舍面积的 4倍,那么应该拆除多少旧校舍,建造多少新 校舍?(单位为㎡) 若设应该拆除x㎡旧校舍,建造y㎡新校舍,