第10讲 函数模型及其应用 小测(1)

合集下载

考点10 高中数学-函数模型及其应用-考点总结及习题

考点10 高中数学-函数模型及其应用-考点总结及习题

考点10函数模型及其应用【命题趋势】从近几年高考可以看出,越来越注重对应用问题的理解以及阅读能力的考查,而对函数模型的考查可以涉及此部分知识点,所以我们要引起重视,具体掌握以下几点:(1)了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义.(2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.【重要考向】一、二次函数模型的应用二、指数函数、对数函数模型的应用三、分段函数模型的应用四、函数模型的比较二次函数模型的应用函数模型函数解析式一次函数模型()f x ax b =+(,a b 为常数,0a ≠)反比例函数模型()kf x b x=+(,k b 为常数且0k ≠)二次函数模型2()f x ax bx c =++(,,a b c 均为常数,0a ≠)指数函数模型()x f x ab c =+(,,a b c 均为常数,0a ≠,0b >,1b ≠)对数函数模型()log a f x m x n =+(,,m n a 为常数,0,0,1m a a ≠>≠)幂函数模型()n f x ax b =+(,,a b n 为常数,0,1a n ≠≠)解函数应用题的一般步骤,可分以下四步进行:(1)认真审题:弄清题意,分清条件和结论,理顺数量关系,初步选择模型;(2)建立模型:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型;(3)求解模型:求解数学模型,得出数学结论;(4)还原解答:将利用数学知识和方法得出的结论,还原到实际问题中.用框图表示如下:建模审题、转化、抽象问题解决解模运算还原结合实际意义【巧学妙记】1.某电动小汽车生产企业,年利润=(出厂价-投入成本)⨯年销售量.已知上年度生产电动小汽车的投入成本为1万元/辆,出厂价为1.2万/辆,年销售量为10000辆,本年度为打造绿色环保电动小汽车,提高产品档次,计划增加投入成本,若每辆电动小汽车投入成本增加的比例为x (01x <<),则出厂价相应提高的比例为0.75x .同时年销售量增加的比例为0.6x .(1)写出本年度预计的年利润y (万元)与投入成本增加的比例x 的函数关系式;(2)为了使本年度的年利润最大,每辆车投入成本增加的比例应为多少?最大年利润是多少?【答案】(1)26002002000y x x =-++(01x <<);每辆车投入成本增加的比例为16时,本年度的年利润最大,且最大年利润是60503万元.【解析】(1)由题意,得()()()1.210.75111000010.6y x x x ⎡⎤=⨯+-⨯+⨯⨯+⎣⎦(01x <<),即26002002000y x x =-++(01x <<).实际问题数学问题数学问题答案实际问题结论(2)2216050600200200060063y x x x ⎛⎫=-++=--+ ⎪⎝⎭.∴当16x =时,y 取得最大值,为60503,∴每辆车投入成本增加的比例为16时,本年度的年利润最大,且最大年利润是60503万元.2.因新冠肺炎疫情影响,呼吸机成为紧缺商品,某呼吸机生产企业为了提高产品的产量,投入90万元安装了一台新设备,并立即进行生产,预计使用该设备前()n n ∈*N 年的材料费、维修费、人工工资等共为(2552n n +)万元,每年的销售收入55万元.设使用该设备前n 年的总盈利额为()f n 万元.(1)写出()f n 关于n 的函数关系式,并估计该设备从第几年开始盈利;(2)使用若干年后,对该设备处理的方案有两种:案一:当总盈利额达到最大值时,该设备以10万元的价格处理;方案二:当年平均盈利额达到最大值时,该设备以50万元的价格处理;问哪种方案处理较为合理?并说明理由.【解析】(1)由题意得:2255()5590(5)509022f n n n n n n =--+=-+-由()0f n >得25509002n n -+->即220360n n -+<,解得218n <<由n ∈*N ,设备企业从第3年开始盈利.(2)方案一总盈利额25()(10)1602f n n =--+,当10n =时,max ()160f n =故方案一共总利润16010170+=,此时10n =方案二:每年平均利润()536550()502022f n n n n =-+-⨯=≤,当且仅当6n =时等号成立故方案二总利润62050170⨯+=,此时6n =比较两种方案,获利都是170万元,但由于第一种方案只需要10年,而第二种方案需要6年,故选择第二种方案更合适.【名师点睛】本小题主要考查一元二次不等式的解法,考查基本不等式求最值,属于中档题.(1)利用n 年的销售收入减去成本,求得()f n 的表达式,由()0f n >,解一元二次不等式求得从第3年开始盈利.(2)方案一:利用配方法求得总盈利额的最大值,进而求得总利润;方案二:利用基本不等式求得6n =时年平均利润额达到最大值,进而求得总利润.比较两个方案获利情况,作出合理的处理方案.指数函数、对数函数模型的应用(1)在实际问题中,有关人口增长、银行利率、细胞分裂等增长率问题常用指数函数模型表示.通常可以表示为()1xy N p =+(其中N 为基础数,p 为增长率,x 为时间)的形式.求解时可利用指数运算与对数运算的关系.(2)已知对数函数模型解题是常见题型,准确进行对数运算及指数与对数的互化即可.【巧学妙记】3.国家规定某行业征税如下:年收入在280万元及以下的税率为p %,超过280万元的部分按(p +2)%征税,有一公司的实际缴税比例为(p +0.25)%,则该公司的年收入是()A .560万元B .420万元C .350万元D .320万元【答案】D【解析】设该公司的年收入为x 万元(x >280),则有280×p %+(x -280)(p +2)%x =(p +0.25)%,解得x =320.故该公司的年收入为320万元.4.某大型民企为激励创新,计划逐年加大研发资金投入.若该民企2016年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该民企全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)()A .2017年B .2018年C .2019年D .2020年【答案】D 【解析】设从2016年起,过了n (n ∈N *)年该民企全年投入的研发资金超过200万元,则130×(1+12%)n ≥200,则n ≥lg2013lg 1.12≈0.30-0.110.05=3.8,由题意取n =4,则n +2016=2020.故选D.5.一片森林原来面积为a ,计划每年砍伐一些树,且使森林面积每年比上一年减少p %,10年后森林面积变为2a .为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林面积为22a .(1)求p %的值;(2)到今年为止,该森林已砍伐了多少年?(3)今后最多还能砍伐多少年?【解析】(1)由题意得()101%2a a p -=,即()1011%2p -=,解得1101%1()2p =-.(2)设经过m 年,森林面积变为22a ,则()1%2ma p a -=,即1102111())2210,2(m m ==,解得m =5,故到今年为止,已砍伐了5年.(3)设从今年开始,以后还可砍伐n 年,则n 年后的森林面积为()21%2na p -,令()211%24n a p a -≥,即()21%4np -≥,3102(11())22n≥,3102n ≤,解得n ≤15,故今后最多还能砍伐15年.分段函数模型的应用(1)在现实生活中,很多问题的两变量之间的关系,不能用同一个关系式给出,而是由几个不同的关系式构成分段函数.如出租车票价与路程之间的关系,就是分段函数.(2)分段函数主要是每一段上自变量变化所遵循的规律不同,可以先将其作为几个不同问题,将各段的规律找出来,再将其合在一起.要注意各段变量的范围,特别是端点.(3)构造分段函数时,要力求准确、简洁,做到分段合理,不重不漏.【巧学妙记】6.已知某公司生产某款手机的年固定成本为40万美元,每生产1万只还需另投入16万美元.设该公司一年内共生产该款手机x 万只并全部销售完,每万只的销售收入为R (x )万美元,且R (x )x ,0<x ≤40,-40000x2,x >40.(1)写出年利润W (万美元)关于年产量x (万只)的函数解析式;(2)当年产量为多少万只时,该公司在该款手机的生产中所获得的年利润最大?并求出最大年利润.【解析】(1)当0<x ≤40时,W =xR (x )-(16x +40)=-6x 2+384x -40,当x >40时,W =xR (x )-(16x +40)=-40000x-16x +7360.所以W 6x 2+384x -40,0<x ≤40,-40000x-16x +7360,x >40.(2)①当0<x ≤40时,W =-6(x -32)2+6104,所以W max =W (32)=6104;②当x >40时,W =-40000x -16x +7360,由于40000x+16x ≥240000x×16x =1600,当且仅当40000x=16x ,即x =50∈(40,+∞)时,取等号,所以W 取最大值5760.综合①②,当年产量为32万只时,W 取最大值6104万美元.7.某公司利用APP 线上、实体店线下销售产品,产品在上市20天内全部售完.据统计,线上日销售量、线下日销售量(单位:件)与上市时间∈∗天的关系满足:= 10s 1≤≤10,−10+200, 10<≤20,op =−2+20o1≤≤20),产品每件的销售利润为ℎ(p =40, 1≤≤15,20, 15<≤20(单位:元)(日销售量=线上日销售量+线下日销售量).(1)设该公司产品的日销售利润为op ,写出op 的函数解析式;(2)产品上市的哪几天给该公司带来的日销售利润不低于5000元?【解析】(1)由题意可得:当1≤≤10时,日销售量为10+−2+20=−2+30,日销售利润为:40−2+30;当10<≤15时,日销售量为−10+200+−2+20=−2+10+200,日销售利润为:40−2+10+200;当15<≤20时,日销售量为−10+200+−2+20=−2+10+200,日销售利润为:20−2+10+200.综上可得:op =40⋅(−2+30p , 1≤≤10,40⋅(−2+10+200), 10<≤15,20⋅(−2+10+200),15<≤20.(2)当1≤≤10时,由40(−2+30p ≥5000,解得5≤≤10;当10<≤15时,由40(−2+10+200)≥5000,解得10<≤15;当15<≤20时,20(−2+10+200)≥5000,无解.故第5天至第15天给该公司带来的日销售利润不低于5000元.函数模型的比较函数性质()1x y a a =>()log 1a y x a =>()0n y x n =>在(0,+∞)上的增减性单调递增单调递增单调递增增长速度先慢后快,指数爆炸先快后慢,增长平缓介于指数函数与对数函数之间,相对平稳图象的变化随x 的增大,图象与y 轴接近平行随x 的增大,图象与x 轴接近平行随n 值变化而各有不同值的比较存在一个0x ,当0x x >时,有log n xa x x a <<【巧学妙记】10.某工厂第一季度某产品月生产量依次为10万件,12万件,13万件,为了预测以后每个月的产量,以这3个月的产量为依据,用一个函数模拟该产品的月产量y (单位:万件)与月份x 的关系.模拟函数1:by ax c x=++;模拟函数2:x y m n s =⋅+.(1)已知4月份的产量为13.7万件,问选用哪个函数作为模拟函数较好?(2)受工厂设备的影响,全年的每月产量都不超过15万件,请选用合适的模拟函数预测6月份的产量.【解析】(1)若用模拟函数1:by ax c x=++,则有1012221333a b c b a c b a c ⎧⎪=++⎪⎪=++⎨⎪⎪=++⎪⎩,解得125,3,22a b c ==-=,即32522x y x =-+,当4x =时,13.75y =.若用模拟函数2:xy m n s =⋅+,则有23101213mn smn s mn s=+⎧⎪=+⎨⎪=+⎩,解得18,,142m n s =-==,即3142xy -=-,当4x =时,13.5y =.所以选用模拟函数1较好.(2)因为模拟函数1:32522x y x =-+是单调增函数,所以当12x =时,生产量远大于他的最高限量;模拟函数2:3142xy -=-也是单调增函数,但生产量14y <,所以不会超过15万件,所以应该选用模拟函数2:3142xy -=-好.当6x =时,3614213.875y -=-=,所以预测6月份的产量为13.875万件.一、单选题1.下列四个图象中,与所给三个事件吻合最好的顺序为()①我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;②我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;③我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.其中y 表示离开家的距离,t 表示所用时间.A .④①②B .③①②C .②①④D .③②①2.某地区植被破坏,土地沙化越来越严重,最近三年测得沙漠增加值分别为0.2万公顷、0.4万公顷和0.76万公顷,则沙漠增加值y (万公顷)关于年数x (年)的函数关系较为近似的是()A .y =0.2xB .210=x yC .y =110x 2+2x D .160.2log y x =+3.2021年初我国脱贫攻坚战取得了全面胜利,现行标准下区域性整体贫困得到解决,完成了消除绝对贫困的艰巨任务.经过数据分析得到某山区贫困户年总收入与各项投入之间的关系是:贫困户年总收入y (元)=1200+4.1⨯年扶贫资金(元)+4.3⨯年自投资金(元)900+⨯自投劳力(个).若一个贫困户家中只有两个劳力,2016年自投资金5000元,以后每年的自投资金均比上一年增长10%,2016年获得的扶贫资金为30000元,以后每年获得的扶贫资金均比上一年减少5000元,则该贫困户在2021年的年总收入约为()51.1 1.6≈()A .48100元B .57900元C .58100元D .64800元4.“喊泉”是一种地下水的毛细现象,人们在泉口吼叫或发出其他声音时,声波传入泉洞内的储水池,进而产生“共鸣”等作用,激起水波,形成涌泉,声音越大,涌起的泉水越高.已知听到的声强I 与标准声强0I (0I 约为1210-,单位:2W /m )之比的常用对数称作声强的声强级,记作L (贝尔),即0lg I L I =.取贝尔的10倍作为响度的常用单位,简称为分贝,已知某处“喊泉”的声音强度y (分贝)与喷出的泉水高度x (m )之间满足关系式2y x =,甲、乙两名同学大喝一声激起的涌泉的最高高度分别为70m ,60m .若甲同学大喝一声的声强大约相当于n 个乙同学同时大喝一声的声强,则n 的值约为()A .10B .100C .200D .10005.已知声音强弱的等级()f x (单位:dB)由声音强度x (单位:2W/m )决定.科学研究发现,()f x 与lg x 成线性关系,如喷气式飞机起飞时,声音强度为2100W/m 声音强弱的等级为140dB ;某动物发出的鸣叫,声音强度为21W/m ,声音强弱的等级为120dB .若某声音强弱等级为90dB ,则声音强度为()2W/m A .0.001B .0.01C .0.1D .16.单位时间内通过道路上指定断面的车辆数被称为“道路容量”,与道路设施、交通服务、环境、气候等诸多条件相关.假设某条道路一小时通过的车辆数N 满足关系2010000.70.3v N v v d =++,其中0d 为安全距离,v 为车速()m /s .当安全距离0d 取30m 时,该道路一小时“道路容量”的最大值约为()A .135B .149C .165D .1957.当x 越来越大时,下列函数中增长速度最快的是()A .100y x =B .e 2x y ⎛⎫= ⎪⎝⎭C .2log y x=D .100y x =二、解答题8.某企业为努力实现“碳中和”目标,计划从明年开始,通过替换清洁能源减少碳排放量,每年减少的碳排放量占上一年的碳排放量的比例均为(01)<<x x ,并预计8年后碳排放量恰好减少为今年碳排放量的一半.(1)求x 的值;(2)若某一年的碳排放量为今年碳排放量的2,按照计划至少再过多少年,碳排放量不超过今年碳排放量的116?9.上海市某地铁项目正在紧张建设中,通车后将给更多市民出行带来便利,已知该线路通车后,地铁的发车时间间隔t (单位:分钟)满足220t ≤≤,*t N ∈,经测算,在某一时段,地铁载客量与发车时间间隔t 相关,当1020t ≤≤时地铁可达到满载状态,载客量为1200人,当210t ≤<时,载客量会减少,减少的人数与(10)t -的平方成正比,且发车时间间隔为2分钟时载客量为560人,记地铁载客量为()p t .(1)求()p t 的解析式;(2)若该时段这条线路每分钟的净收益为6()3360360p t Q t-=-(元),问当发车时间间隔为多少时,该时段这条线路每分钟的净收益最大?10.新冠肺炎疫情发生以后,口罩供不应求,某口罩厂日夜加班生产,为抗击疫情做贡献.生产口罩的固定成本为200万元,每生产x 万箱,需另投入成本()p x 万元,当产量不大于90万箱时,()991708p x x =--;当产量超过90万箱时,()1001002000p x x x =+--,若每箱口罩售价100元,通过市场分析,该口罩厂生产的口罩可以全部销售完.(Ⅰ)求口罩销售利润y (万元)关于产量x (万箱)的函数关系式;(Ⅱ)当产量为多少万箱时,该口罩生产厂在生产中所获得利润最大?11.杭州市将于2022年举办第19届亚运会,本届亚运会以“绿色、智能、节位、文明”为办赛理念,展示杭州生态之美、文化之韵,充分发挥国际重大赛事对城市发展的牵引作用,从而促进经济快速发展,筹备期间,某公司带来了一种智能设备供采购商洽谈采购,并决定大量投放当地市场,已知该种设备年固定研发成本为50万元,每生产一台需另投入80元,设该公司一年内生产该设备x 万台且全部售完,每万台的销售收入()G x (万元)与年产量x (万台)满足如下关系式:()()()()1802,0202000900070,201x x G x x x x x ⎧-<≤⎪=⎨+->⎪+⎩(1)写出年利润()W x (万元)关于年产量x (万台)的函数解析式:(利润=销售收入-成本)(2)当年产量为多少万台时,该公司获得的年利润最大?并求最大利润.12.某公司生产某种电子产品的固定成本为2万元,每生产一台该产品需增加投入100元,已知总收入R (单位:元)关于月产量x (单位:台)满足函数:21400,0400280000,400x x x R x ⎧-≤≤⎪=⎨⎪>⎩(1)将利润()f x (单位:元)表示成月产量x 的函数(2)当月产量x 为何值时,公司所获利润最大,最大利润是多少?(利润+总成本=总收入)一、单选题1.(2007·湖南高考真题(文))设2:40p b ac ->(0a ≠),:q 关于x 的方程20ax bx c ++=(0a ≠)有实数,则p 是q 的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件2.(2015·四川高考真题(文))某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系e kx b y +=( 2.718...e =为自然对数的底数,,k b 为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是A .16小时B .20小时C .24小时D .21小时3.(2015·北京高考真题(文))某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.加油时间加油量(升)加油时的累计里程(千米)2015年5月1日12350002015年5月15日4835600注:“累计里程“指汽车从出厂开始累计行驶的路程在这段时间内,该车每100千米平均耗油量为()A .6升B .8升C .10升D .12升4.(2014·北京高考真题(文))加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”,在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据,根据上述函数模型和实验数据,可以得到最佳加工时间为A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟二、填空题5.(2009·上海高考真题(文))某地街道呈现东——西、南——北向的网络状,相邻街距都为1,两街道相交的点称为格点.若以相互垂直的两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3,4),(-2,3),(4,5)为报刊零售店,请确定一个格点______为发行站,使5个零售点沿街道发行站之间路程的和最短.三、解答题6.(2008·广东高考真题(文))某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积)7.(2013·全国高考真题(文))经销商经销某种农产品,在一个销售季度内,每售出1t 该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如右图所示.经销商为下一个销售季度购进了130t该农产品.以x(单位:t,100≤x≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(Ⅰ)将T 表示为x 的函数;(Ⅱ)根据直方图估计利润T 不少于57000元的概率.8.(2015·上海高考真题(文))如图,O ,P ,Q 三地有直道相通,3OP =千米,4PQ =千米,5OQ =千米.现甲、乙两警员同时从O 地出发匀速前往Q 地,经过小时,他们之间的距离为(单位:千米).甲的路线是OQ ,速度为5千米/小时,乙的路线是OPQ ,速度为8千米/小时.乙到达Q 地后原地等待.设时乙到达P 地.2t t =时乙到达Q 地.(1)求与的值;(2)已知警员的对讲机的有效通话距离是3千米.当时,求的表达式,并判断在上得最大值是否超过3?说明理由.9.(2009·湖北高考真题(文))围建一个面积为360m 2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m 的进出口,如图所示,已知旧墙的维修费用为45元/m ,新墙的造价为180元/m ,设利用的旧墙的长度为x (单位:元).设修建此矩形场地围墙的总费用为y.(Ⅰ)将y表示为x的函数;(Ⅱ)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.10.(2011·湖北高考真题(文))提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(1)当0≤x≤200时,求函数v(x)的表达式;(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时).一、单选题1.(2021·江西高三其他模拟(文))科学家以里氏震级来度量地震的强度,若设I 为地震时所散发出来的相对能量程度,则里氏震级γ可定义为0.6lg I γ=.2021年3月13日下午江西鹰潭余江区发生里氏3.1级地震,2020年1月1日四川自贡发生里氏4.3级地震,则自贡地震所散发出来的能量是余江地震所散发出来的能量的()倍.A .2B .10C .100D .10002.(2021·江苏南京市·高三三模)声音的强弱可以用声波的能流密度来计算,叫做声强.通常人耳能听到声音的最小声强为12010I -=(瓦/平方米).对于一个声音的声强I ,用声强I 与0I 比值的常用对数的10倍表示声强I 的声强级,单位是“分贝”,即声强I 的声强级是010lg I I (分贝).声音传播时,在某处听到的声强I 与该处到声源的距离s 的平方成反比,即2k I s=(k 为常数).若在距离声源15米的地方,听到声音的声强级是20分贝,则能听到该声音(即声强不小于0I )的位置到声源的最大距离为()A .100米B .150米C .200米D .1510米3.(2021·内蒙古包头市·高三二模(文))地震的震级越大,以地震波的形式从震源释放出的能量就越大,震级M 与所释放的能量E 的关系如下: 4.81.510M E +=(焦耳)10 3.16≈),那么8级地震释放的能量是7级地震释放的能量的()A .30.6倍B .31.6倍C .3.16倍D .3.06倍4.(2021·湖北武汉市·高三三模)2020年我国832个贫困县全部“摘帽”,脱贫攻坚战取得伟大胜利.湖北秭归是“中国脐橙之乡”,全县脐橙综合产值年均20亿元,被誉为促进农民增收的“黄金果”.已知某品种脐橙失去的新鲜度h 与其采摘后的时间t (天)满足关系式:t h m a =⋅.若采摘后10天,这种脐橙失去的新鲜度为10%,采摘后20天失去的新鲜度为20%,那么采摘下来的这种脐橙在多长时间后失去50%的新鲜度()(已知lg 20.3≈,结果四舍五入取整数)A .23天B .33天C .43天D .50天5.(2021·全国高三其他模拟)生物学家为了了解滥用抗生素对生态环境的影响,常通过检测水中生物体内抗生素的残留量来作出判断.已知水中某生物体内抗生素的残留量y (单位:mg )与时间t (单位:年)近似满足数学函数关系式()1t y eλλ-=-,其中λ为抗生素的残留系数.经测试发现,当23t =时,910y λ=,则抗生素的残留系数λ的值约为()()ln10 2.3≈A .10B .110C .100D .11006.(2021·湖北武汉市·高三其他模拟)地震震级根据地震仪记录的地震波振幅来测定,一般采用里氏震级标准.震级M 用距震中100千米处的标准地震仪所记录的地震波最大振幅值的对数来表示.里氏震级的计算公式为:max 0lg A M A =(其中常数0A 是距震中100公里处接收到的0级地震的地震波的最大振幅;max A 是指我们关注的这次地震在距震中100公里处接收到的地震波的最大振幅).地震的能量E 是指当地震发生时,以地震波的形式放出的能量. 4.8 1.51010M E =⨯(单位:焦耳),其中M 为地震震级.已知甲地地震产生的能量是乙地地震产生的能量的310倍,若乙地地震在距震中100公里处接收到的地震波的最大振幅为A ,则甲地地震在距震中100公里处接收到的地震波的最大振幅为()A .2A B .10A C .100A D .1000A7.(2021·全国高三其他模拟)在新冠肺炎疫情初期,部分学者利用逻辑斯蒂增长模型预测某地区新冠肺炎患者数量()P t (t 的单位:天),逻辑斯蒂增长模型具体为()0.420.4211tt e P t e K =⎛⎫+- ⎪⎝⎭,其中K 为环境最大容量.当()027.31K P t K K e =-+时,标志着已初步遏制疫情,则0t 约为()A .63B .65C .66D .698.(2021·全国高三其他模拟)大西洋鲑鱼每年都要逆流而上,游回到自己出生的淡水流域产卵.记鲑鱼的游速为v (单位:m /s ),鲑鱼的耗氧量的单位数为Q .科学研究发现v 与3log 100Q 成正比,且当1m /s v =时,鲑鱼的耗氧量的单位数为900.现有如下说法:①v 与3log 100Q 的正比例系数为13k =;②当2m /s v =时,鲑鱼的耗氧量的单位数为2700;③当鲑鱼的耗氧量的单位数为100时,游速1m /s v e=.则说法正确的个数为()A .0B .1C .2D .39.(2021·江西南昌市·高三三模(文))某电影票单价30元,相关优惠政策如下:①团购10张票,享受9折优惠:②团购30张票,享受8折优惠;③购票总额每满500元减80元.每张电影票只能享受一种优惠政策,现需要购买48张电影票,合理设计购票方案,费用最少为()A .1180元B .1230元C .1250元D .1152元10.(2021·上海市七宝中学高三一模)Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数()I t (t 的单位:天)的Logistic 模型:0.23(50)()1t KI t e --=+,其中K 为最大确诊病例数.当()*0.95I tK =时,标志着己初步遏制疫情,则*t 约为()A .59B .61C .63D .65二、填空题11.(2021·湖南高三其他模拟)2019年,公安部交通管理局下发《关于治理酒驾醉驾违法犯罪行为的指导意见》,对治理酒驾醉驾违法犯罪行为提出了新规定,根据国家质量监督检验检疫总局下发的标准,车辆驾驶人员饮酒后或者醉酒后驾车血液中的酒精含量阈值见下表.经过反复试验,一般情况下,某人喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图"见图.。

函数模型及其应用

函数模型及其应用

函数模型及其应用一、构建函数模型的基本步骤:1、审题:弄清题意,分析条件和结论,理顺数量关系;2、建模:引进数学符号,一般地,设自变量为x ,函数为y ,必要时引入其他相关辅助变量,并用x 、y 和辅助变量表示各相关量,然后根据已知条件建立关系式,即所谓的数学模型;3、求模:利用数学方法将得到的常规函数问题予以解答,求得结果;4、还原:将所得的结果还原为实际问题的意义,再转译成具体问题的回答。

二、常见函数模型:1、一次函数模型;2、二次函数模型;3、分段函数模型;4、指数函数模型;5、对数函数模型;6、对勾函数模型;7、分式函数模型。

题型1:一次函数模型因一次函数y kx b =+(0k ≠)的图象是一条直线,因而该模型又称为直线模型,当0k >时,函数值的增长特点是直线上升;当0k <时,函数值则是直线下降。

例1:某工厂在甲、乙两地的两个分工厂各生产同一种机器12台和6台。

现销售给A 地10台,B 地8台。

已知从甲地到A 地、B 地的运费分别是400元和800元,从乙地到A 地、B 地的运费分别是300元和500元,(1)设从乙地运x 台至A 地,求总运费y 关于x 的函数解析式; (2)若总运费不超过9000元,共有几种调运方案; (3)求出总运费最低的方案和最低运费。

题型2:二次函数模型二次函数2y ax bx c =++(0a ≠)为生活中最常见的一种数学模型,因二次函数可求其最大值(或最小值),故常常最优、最省等最值问题是二次函数的模型。

例2:渔场中鱼群的最大养殖量为m 吨,为保证鱼群的生长空间,实际养殖量不能达到最大养殖量,必须留下适当的空闲量,已知鱼群的年增长量y 吨和实际养殖量x 吨与空闲率的乘积成正比,比例系数为(0)k k >。

(1)写出y 关于x 的函数关系式,并指出这个函数的定义域; (2)求鱼群年增长量的最大值;(3)当鱼群的年增长量达到最大值时,求k 的取值范围。

函数模型及其应用

函数模型及其应用

函数模型及其应用【知识要点】建立函数模型就是将实际问题转化为数学问题,是数学地解决问题的关键.运用数学模型方法的过程,一般可分为三步:(1)建立模型:将实际问题数学抽象化,运用掌握的基本函数建立数学模型;(2)数学求解:运用各种相应的数学方法及计算工具求解,得出数学结论;(3)问题求解:将数学结论代入实际问题进行验证. 【典型例题】例1 一种产品年产量原来是a 件,在今后的m 年内,计划使年产量平均比上一年增加P%,写出产量随经过年数变化的函数关系式.例2 某工厂拟建一座平面图为矩形且面积为200m 2的污水处理池,由于地形限制长宽不能超过16m ,如果池外围壁造单价每半400元,中间池壁造价每半280元,池底造价年平方米80元.(1)写出总造价y (元)与污水池长x (米)的函数关系式;(2)当污水池长、宽为多少米时,总造价最低,并求出最低价.实际问题 数学化 数学问题 数学解答数学问题讨论 符合实际 实际问题结论 问题解决例3 某地现有耕地104公顷,规划10年后,粮食年产比现有增加22%,人均粮食产量比现在提高10%,如果人口增长率为1%,那么耕地每年至多只能减少多少公顷(精确到1公顷).例4 某工厂生产某种零件,每个零件的成本40元,出厂单价定为60元,该厂为鼓励销售商订购决定当一次订购量超过100个时,每多订购一个,订购的全部零件单价0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少时,实际出厂价恰为51元;(2)设一次订购量为x个时,零件实际出厂单价为P元,写出函数)P=的表达式;f(x (3)当销售一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个利润又是多少元?例5某蓄水池原有400吨水,当日零时同时打开进水闸和出水闸,出水闸流出的水量w吨与时间t小时的函数关系是:)=tw≤t120≤6240(,(1)若使次日零时蓄水池的水量仍有400吨,问每小时进水闸进水多少吨?(2)在(1)的情况下,问当日几点时,蓄水池的水量最少,最少为多少吨?例6 某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图a 所示的一条折线所示,西红柿的种植成本与上市时间的关系用图b 的抛物线表示.(1)由图a 写出市场售价与时间的函数关系)(t f P =,用图b 写出种植成本与时间的函数关系)(t g C =.(2)认定市场定价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?【课后练习】1.因电力紧缺,某地通过电价差来控制用电量,规定如下:用户每个月电量不超过100kwh ,则年kwh 的电价为0.5元,若超过100kwh ,则超过部100kwh ,则超过部分的电价为a 元/kwh (5.0>a )。

第二章 第十节 函数的模型与应用 解析版-备战2022年(新高考)数学一轮复习考点讲解+习题练习

第二章 第十节 函数的模型与应用   解析版-备战2022年(新高考)数学一轮复习考点讲解+习题练习

第十节函数模型及其应用知识回顾1.几类函数模型2.三种函数模型的性质1.【2019年浙江丽水高一上学期期末考试数学试卷统测】某种放射性元素的原子数N随时间t的变化规律是N=N0eλt,其中N0,λ是正的常数.当N=2N0时,t=________ .ln⁡2【答案】1λ【解析】【解答】某种放射性元素的原子数N随时间t的变化规律是N=N0eλt,其中N0,λ是正的常数.当N= 2N0时,则N=N0eλt=2N0≠0,化为:eλt=2,ln⁡2.解得t=1λ故答案为1λln⁡2.【分析】由题意可得:N =N 0e λt =2N 0≠0,化为:e λt =2,化为对数式即可得出. 【备注】【点评】本题考查了指数式化为对数式,考查了推理能力与计算能力,属于基础题.2.某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为________. 答案p +1q +1-1解析 设年平均增长率为x ,则(1+x )2=(1+p )(1+q ), ∴x =1+p1+q -1.3.某公司租地建仓库,已知仓库每月占用费y 1与仓库到车站的距离成反比,而每月车载货物的运费y 2与仓库到车站的距离成正比.据测算,如果在距离车站10千米处建仓库,这两项费用y 1,y 2分别是2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站________千米处. 答案 5解析 由题意得,y 1=k 1x ,y 2=k 2x ,其中x >0,当x =10时,代入两项费用y 1,y 2分别是2万元和8万元,可得k 1=20,k 2=45,y 1+y 2=20x +45x ≥220x ·45x =8,当且仅当20x =45x ,即x =5时取等号.4.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x ,y 应为________. 答案 15,12解析 由三角形相似得24-y 24-8=x 20,得x =54(24-y ),∴S =xy =-54(y -12)2+180,∴当y =12时,S 有最大值,此时x =15.5.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt +c (a 、b 、c 是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为________分钟.答案 3.75解析 根据图表,把(t ,p )的三组数据(3,0.7),(4,0.8),(5,0.5)分别代入函数关系式,联立方程组得⎩⎪⎨⎪⎧0.7=9a +3b +c ,0.8=16a +4b +c ,0.5=25a +5b +c ,消去c 化简得⎩⎪⎨⎪⎧7a +b =0.1,9a +b =-0.3,解得⎩⎪⎨⎪⎧a =-0.2,b =1.5,c =-2.0.所以p =-0.2t 2+1.5t -2.0=-15(t 2-152t +22516)+4516-2=-15(t -154)2+1316,所以当t =154=3.75时,p 取得最大值,即最佳加工时间为3.75分钟.6.(多选)某工厂生产一种溶液,按市场要求杂质含量不得超过0.1%,而这种溶液最初的杂质含量为2%,现进行过滤,已知每过滤一次杂质含量减少13,则使产品达到市场要求的过滤次数可以为(参考数据:lg2≈0.301,lg 3≈0.477)( ) A .6 B .9 C .8 D .7 答案 BC解析 设经过n 次过滤,产品达到市场要求, 则2100×⎝⎛⎭⎫23n ≤11 000,即⎝⎛⎭⎫23n ≤120, 由n lg 23≤-lg 20,即n (lg 2-lg 3)≤-(1+lg 2),得n ≥1+lg 2lg 3-lg 2≈7.4,故选BC.课中讲解考点一.函数图像刻画变化过程例1.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是( )解析:选C 小明匀速行驶时,图象为一条直线,且距离学校越来越近,故排除A.因交通堵塞停留了一段时间,与学校的距离不变,故排除D.后来为了赶时间加快速度行驶,故排除B.故选C.变式1.如图,四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其中,注满为止.用下面对应的图象表示该容器中水面的高度h 和时间t 之间的关系,其中不正确的个数为( )A.1B.2C.3 D.4解析:选A将水从容器顶部一个孔中以相同的速度注入其中,容器中水面的高度h和时间t之间的关系可以从高度随时间的变化率上反映出来.图①应该是匀速的,故下面的图象不正确;②中的变化率应该是越来越慢的,正确;③中的变化率是先快后慢再快,正确;④中的变化率是先慢后快再慢,也正确,故只有①是错误的.例2.设甲、乙两地的距离为a(a>0),小王骑自行车匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图象为()答案 D解析y为“小王从出发到返回原地所经过的路程”而不是位移,故排除A,C.又因为小王在乙地休息10分钟,故排除B,故选D.变式2.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)的影响.根据近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据得到下面的散点图.则下列哪个作为年销售量y关于年宣传费x的函数模型最适合()A.y=ax+b B.y=a+b xC.y=a·b x D.y=ax2+bx+c答案 B解析根据散点图可知,选择y=a+b x最适合.考点二.应用所给的模型解决实际问题例1.候鸟每年都要随季节的变化而进行大规模迁徙,研究某种候鸟的专家发现,该种候鸟的飞行速度 v (单位:m ⋅s −1)与其耗氧量 Q 之间的关系为 v =a +blog 3⁡Q10(其中 a 、b 是常数).据统计,该种鸟类在静止时的耗氧量为 30 个单位,而其耗氧量为个 90 单位时,飞行速度为 1m ⋅s −1.若这种候鸟为赶路程,飞行的速度不能低于 2m ⋅s −1,求其耗氧量至少要多少个单位. 【答案】270 个单位【解析】由题意,知 {a +blog 3⁡3010=0a +blog 3⁡9010=1,即 {a +b =0a +2b =1,解得 {a =−1b =1,所以 v =−1+log 3⁡Q 10, 要使飞行速度不能低于 2m ⋅s −1,则有 v ⩾2,即 −1+log 3⁡Q 10⩾2,即 log 3⁡Q10⩾3,解得 Q10⩾27,即 Q10⩾270,所以耗氧量至少要 270 个单位.变式1.数据显示,某 IT 公司 2018 年上半年五个月的收入情况如下表所示:月份 2 3 4 5 6月收入(万元)1.42.565.311121.3根据上述数据,在建立该公司 2018 年月收入 y (万元)与月份 x 的函数模型时,给出两个函数模型 y =x 12 与 y =2x 3供选择.(1) 你认为哪个函数模型较好,并简单说明理由; 【答案】函数 y =2x 3这一模型较好【解析】画出散点图由图可知点 (2,1.4);(3,2.56);(4,5.31);(5,11);(6,21.3) 基本上是落在函数 y =2x 3的图像的附近,因此用函数 y =2x 3这一模型较好.(2) 试用你认为较好的函数模型,分析大约从第几个月份开始,该公司的月收入会超过 100 万元?(参考数据 lg⁡2=0.3010,lg⁡3=0.4771) 【答案】大约从第 9 月份开始 【解析】当2x 3>100 时,2x >300,∴lg⁡2x >lg⁡300即 xlg⁡2>2+lg⁡3∴x >2+lg⁡3lg 2=2+0.47710.3010≈8.23故大约从第 9 月份开始,该公司的月收入会超过 100 万元. 当2x 3>100 时,2x >30028=256<300;29=512>300故大约从第 9 月份开始,该公司的月收入会超过 100 万元.例2.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式y =⎝⎛⎭⎫116t -a(a 为常数),如图所示,根据图中提供的信息,回答下列问题:①从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为________________________________________________________________________.②据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过________小时后,学生才能回到教室. 答案 ①y =⎩⎪⎨⎪⎧10t ,0≤t ≤0.1,⎝⎛⎭⎫116t -0.1,t >0.1②0.6解析 ①设y =kt ,由图象知y =kt 过点(0.1,1), 则1=k ×0.1,k =10,∴y =10t (0≤t ≤0.1). 由y =⎝⎛⎭⎫116t -a过点(0.1,1),得1=⎝⎛⎭⎫1160.1-a , 解得a =0.1,∴y =⎝⎛⎭⎫116t -0.1(t >0.1).②由⎝⎛⎭⎫116t -0.1≤0.25=14,得t ≥0.6. 故至少需经过0.6小时学生才能回到教室.变式2.拟定甲、乙两地通话m 分钟的电话费(单位:元)由f (m )=1.06(0.5[m ]+1)给出,其中m >0,[m ]是不超过m 的最大整数(如[3]=3,[3.7]=3,[3.1]=3),则甲、乙两地通话6.5分钟的电话费为______元. 答案 4.24解析 ∵m =6.5,∴[m ]=6, 则f (6.5)=1.06×(0.5×6+1)=4.24. 考点三.构建函数模型解决实际问题1.二次函数模型例1.某企业为打入国际市场,决定从A ,B 两种产品中只选择一种进行投资生产,已知投资生产这两种产品的有关数据如下表(单位:万美元):预计m ∈[6,8],另外,年销售x 件B 产品时需上交0.05x 2万美元的特别关税,假设生产出来的产品都能在当年销售出去.(1)写出该厂分别投资生产A ,B 两种产品的年利润y 1,y 2与生产相应产品的件数x 1,x 2之间的函数关系式,并指明定义域;(2)如何投资才可获得最大年利润?请你做出规划.[解] (1)由题意得y 1=10x 1-(20+mx 1)=(10-m )x 1-20(0≤x 1≤200且x 1∈N),y 2=18x 2-(40+8x 2)-0.05x 22=-0.05x 22+10x 2-40=-0.05(x 2-100)2+460(0≤x 2≤120且x 2∈N). (2)∵6≤m ≤8,∴10-m >0, ∴y 1=(10-m )x 1-20为增函数. 又0≤x 1≤200,x 1∈N ,∴当x 1=200时,生产A 产品的最大利润为(10-m )×200-20=1 980-200m (万美元). ∵y 2=-0.05(x 2-100)2+460(0≤x 2≤120,且x 2∈N), ∴当x 2=100时,生产B 产品的最大利润为460万美元. (y 1)max -(y 2)max =(1 980-200m )-460=1 520-200m . 易知当6≤m <7.6时,(y 1)max >(y 2)max .即当6≤m <7.6时,投资生产A 产品200件可获得最大年利润;当m =7.6时,投资生产A 产品200件或投资生产B 产品100件,均可获得最大年利润; 当7.6<m ≤8时,投资生产B 产品100件可获得最大年利润.变式1. 某城市对一种售价为每件160元的商品征收附加税,税率为R %(即每销售100元征税R 元),若每年销售量为⎝⎛⎭⎫30-52R 万件,要使附加税不少于128万元,则R 的取值范围是( ) A .[4,8] B .[6,10] C .[4%,8%] D .[6%,10%]答案 A解析 根据题意,要使附加税不少于128万元,需⎝⎛⎭⎫30-52R ×160×R %≥128, 整理得R 2-12R +32≤0,解得4≤R ≤8,即R ∈[4,8].2. 指对数函数模型例2.某公司为激励创新,计划逐年加大研发资金投入.若该公司2016年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30) A .2018年 B .2019年 C .2020年D .2021年变式2.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是( )A .16小时B .20小时C .24小时D .28小时[解析] (1)设第n (n ∈N *)年该公司全年投入的研发资金开始超过200万元. 根据题意得130(1+12%)n -1>200, 则lg[130(1+12%)n -1]>lg 200, ∴lg 130+(n -1)lg 1.12>lg 2+2, ∴2+lg 1.3+(n -1)lg 1.12>lg 2+2, ∴0.11+(n -1)×0.05>0.30,解得n >245,又∵n ∈N *,∴n ≥5,∴该公司全年投入的研发资金开始超过200万元的年份是2020年.故选C. (2)由已知得192=e b ,① 48=e 22k +b =e 22k ·e b ,②将①代入②得e 22k =14,则e 11k =12,当x =33时,y =e 33k +b =e 33k ·e b =⎝⎛⎭⎫123×192=24,所以该食品在33 ℃的保鲜时间是24小时.故选C. [答案] (1)C (2)C3. 对勾函数模型例3 某汽车运输公司购买了一批豪华大客车投入营运,据市场分析,每辆客车营运的总利润y (万元)与营运年数x 的关系如图所示(抛物线的一段),则为使其营运年平均利润最大,每辆客车营运年数为________.答案 5解析 根据图象求得y =-(x -6)2+11, ∴年平均利润yx=12-⎝⎛⎭⎫x +25x , ∵x +25x ≥10,当且仅当x =5时等号成立.∴要使平均利润最大,客车营运年数为5.变式3.某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边夹角为60°(如图),考虑防洪堤坚固性及石块用料等因素,设计其横断面要求面积为9 3 平方米,且高度不低于 3 米.记防洪堤横断面的腰长为x 米,外周长(梯形的上底线段BC 与两腰长的和)为y 米.要使防洪堤的上面与两侧面的水泥用料最省(即横断面的外周长最小),则防洪堤的腰长x =________米.答案 2 3解析 由题意可得BC =18x -x2(2≤x <6),∴y =18x +3x 2≥218x ×3x2=6 3. 当且仅当18x =3x2(2≤x <6),即x =23时等号成立.4. 分段函数模型例4.某市营业区内住宅电话通话费用为前 3 分钟 0.20 元,以后每分钟 0.10 元(前 3 分钟不足 3 分钟按 3 分钟计,以后不足 1 分钟按 1 分钟计).(1) 在直角坐标系内,画出一次通话在 6 分钟内(包括 6 分钟)的话费 y (元)关于通话时间 t (分钟)的函数图象; 【答案】见解析 【解析】如下图所示.(2) 如果一次通话t分钟(t>0),写出话费y(元)关于通话时间t(分钟)的函数关系式(可用[t]表示不小于t的最小整数).【答案】y={0.2,0<t⩽30.2+[t−3]×0.1,t>3【解析】由(1)知,话费y与时间t的关系是分段函数.当0<t⩽3时,话费y为0.2元;当t>3时,话费y应为(0.2+[t−3]×0.1)元.所以y={0.2,0<t⩽30.2+[t−3]×0.1,t>3.变式4.在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3600元后,逐步偿还转让费(不计息).在甲提供的资料中:①这种消费品的进价为每件14元;①该店月销量Q(百件)与销量价格P(元)的关系如图所示;①每月需各种开支2000元.(1) 当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;【答案】当P=19.5元时,月利润余额最大,为450元【解析】设该店月利润余额为L元,则由题设得L=Q(P−14)×100−3600−2000①由销量图易得Q={−2P+50,14⩽P⩽20−32P+40,20<P⩽26,代入①式得L={(−2P+50)(P−14)×100−5600,14⩽P⩽20(−32P+40)(P−14)×100−5000,20<P⩽26当14⩽P⩽20时,L max=450元,此时P=19.5元;当20<P⩽26时,L max=12503元,此时P=613元.故当P=19.5元时,月利润余额最大,为450元.(2) 企业乙只依靠该店,最早可望在几年后脱贫?【答案】最早可望在20年后脱贫【解析】设可在n年后脱贫,依题意有12n×450−50000−58000⩾0,解得n⩾20.即最早可望在20年后脱贫.课后习题一.单选题1.(2018·北京石景山联考)小明在如图1所示的跑道上匀速跑步,他从点A出发,沿箭头方向经过点B跑到点C,共用时30 s,他的教练选择了一个固定的位置观察小明跑步的过程,设小明跑步的时间为t(s),他与教练间的距离为y(m),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的()A.点M B.点NC.点P D.点Q解析:选D假设这个位置在点M,则从A至B这段时间,y不随时间的变化改变,与函数图象不符,故A选项错误;假设这个位置在点N,则从A至C这段时间,A点与C点对应y的大小应该相同,与函数图象不符,故B选项错误;假设这个位置在点P,则由函数图象可得,从A到C的过程中,会有一个时刻,教练到小明的距离等于经过30 s时教练到小明的距离,而点P不符合这个条件,故C选项错误;经判断点Q符合函数图象,故D选项正确,选D.2.(2019·洛阳模拟)某校为了规范教职工绩效考核制度,现准备拟定一函数用于根据当月评价分数x(正常情况下0≤x≤100,且教职工平均月评价分数在50分左右,若有突出贡献可以高于100分)计算当月绩效工资y(元).要求绩效工资不低于500元,不设上限,且让大部分教职工绩效工资在600元左右,另外绩效工资越低或越高时,人数要越少.则下列函数最符合要求的是()A.y=(x-50)2+500 B.y=10x25+500C .y =11 000(x -50)3+625D .y =50[10+lg(2x +1)]解析:选C 由题意知,拟定函数应满足:①是单调递增函数,且增长速度先快后慢再快;②在x =50左右增长速度较慢,最小值为500.A 中,函数y =(x -50)2+500先减后增,不符合要求;B 中,函数y =10x25+500是指数型函数,增长速度是越来越快,不符合要求;D 中,函数y =50[10+lg(2x +1)]是对数型函数,增长速度是越来越慢,不符合要求;而C 中,函数y =11 000(x -50)3+625是由函数y =x 3经过平移和伸缩变换得到的,符合要求.故选C.3.(2019·邯郸名校联考)某企业准备投入适当的广告费对甲产品进行促销宣传,在一年内预计销售量y (万件)与广告费x (万元)之间的函数关系为y =1+3x x +2(x ≥0).已知生产此产品的年固定投入为4万元,每生产1万件此产品仍需再投入30万元,且能全部售完. 若每件甲产品售价(元)定为“平均每件甲产品所占生产成本的150%”与“年平均每件甲产品所占广告费的50%”之和,则当广告费为1万元时,该企业甲产品的年利润为( )A .30.5万元B .31.5万元C .32.5万元D .33.5万元解析:选B 由题意,产品的生产成本为(30y +4)万元,销售单价为30y +4y ×150%+xy ×50%,故年销售收入为z =⎝⎛⎭⎫30y +4y ×150%+xy ×50%·y =45y +6+12x .∴年利润W =z -(30y +4)-x =15y +2-x 2=17+45x x +2-x 2(万元).∴当广告费为1万元时,即x =1,该企业甲产品的年利润为17+451+2-12=31.5(万元).故选B. 4.一种放射性元素的质量按每年10%衰减,这种放射性元素的半衰期(剩余质量为最初质量的一半所需的时间叫作半衰期)是(精确到0.1,已知lg 2≈0.301 0,lg 3≈0.477 1)( ) A .5.2 B .6.6 C .7.1 D .8.3 答案 B解析 设这种放射性元素的半衰期是x 年, 则(1-10%)x =12,化简得0.9x =12,即x =log 0.912=lg12lg 0.9=-lg 22lg 3-1≈-0.301 02×0.477 1-1≈6.6(年).故选B. 5.某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过10 m 3的,按每立方米m 元收费;用水超过10 m 3的,超过部分加倍收费.某职工某月缴水费16m 元,则该职工这个月实际用水为( ) A .13 m 3 B .14 m 3 C .18 m 3 D .26 m 3答案 A解析 设该职工用水x m 3时,缴纳的水费为y 元,由题意得y =⎩⎪⎨⎪⎧mx ,0<x ≤10,10m +x -10·2m ,x >10,则10m +(x -10)·2m =16m ,解得x =13.6.(2020·青岛模拟)某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x ,y 应为( )A .x =15,y =12B .x =12,y =15C .x =14,y =10D .x =10,y =14答案 A解析 由三角形相似得24-y 24-8=x 20,得x =54(24-y ),所以S =xy =-54(y -12)2+180,所以当y =12时,S 有最大值,此时x =15.检验符合题意.二.多选题7.(多选)在一次社会实践活动中,某数学调研小组根据车间持续5个小时的生产情况画出了某种产品的总产量y (单位:千克)与时间x (单位:小时)的函数图象,则以下关于该产品生产状况的正确判断是( )A .在前三小时内,每小时的产量逐步增加B .在前三小时内,每小时的产量逐步减少C .最后一小时内的产量与第三小时内的产量相同D .最后两小时内,该车间没有生产该产品 答案 BD解析 由该车间5小时来某种产品的总产量y (千克)与时间x (小时)的函数图象,得前三小时的年产量逐步减少,故A 错误,B 正确;后两小时均没有生产,故C 错误,D 正确.三.填空题 8.(2019·唐山模拟)某人计划购买一辆A 型轿车,售价为14.4万元,购买后轿车每年的保险费、汽油费、车检费、停车费等约需2.4万元,同时汽车年折旧率约为10%(即这辆车每年减少它的价值的10%),试问,大约使用________年后,用在该车上的费用(含折旧费)达到14.4万元.解析:设使用x 年后花费在该车上的费用达到14.4万元,依题意可得,14.4(1-0.9x )+2.4x =14.4. 化简得x -6×0.9x =0. 令f (x )=x -6×0.9x ,易得f (x )为单调递增函数,又f (3)=-1.374<0,f (4)=0.063 4>0,所以函数f (x )在(3,4)上有一个零点. 故大约使用4年后,用在该车上的费用达到14.4万元. 答案:49.某地区要建造一条防洪堤,其横断面为等腰梯形ABCD ,腰与底边夹角为60°(如图),考虑防洪堤坚固性及石块用料等因素,设计其横断面面积为93平方米,且高度不低于3米.记防洪堤横断面的腰长为x 米,外周长(梯形的上底线段BC 与两腰长的和)为y 米.要使防洪堤横断面的外周长不超过10.5米,则其腰长x 的取值范围为________.解析:根据题意知,93=12(AD +BC )h ,其中AD =BC +2×x 2=BC +x ,h =32x ,所以93=12(2BC +x )32x ,得BC =18x -x2,由⎩⎨⎧h =32x ≥3,BC =18x -x2>0,得2≤x <6.所以y =BC +2x =18x +3x2(2≤x <6),由y =18x +3x2≤10.5,解得3≤x ≤4.因为[3,4] ⊆[2,6),所以腰长x 的取值范围为[3,4]. 答案:[3,4]10.(2019·皖南八校联考)某购物网站在2019年11月开展“全部6折”促销活动,在11日当天购物还可以再享受“每张订单金额(6折后)满300元时可减免100元”.某人在11日当天欲购入原价48元(单价)的商品共42件,为使花钱总数最少,他最少需要下的订单张数为________. 答案 3解析 为使花钱总数最少,需使每张订单满足“每张订单金额(6折后)满300元时可减免100元”,即每张订单打折前原金额不少于500元.由于每件原价48元,因此每张订单至少11件,又42=11×3+9,所以最少需要下的订单张数为3.11.某市用37辆汽车往灾区运送一批救灾物资,假设以v km/h 的速度直达灾区,已知某市到灾区公路线长400 km ,为了安全起见,两辆汽车的间距不得小于⎝⎛⎭⎫v 202 km ,那么这批物资全部到达灾区的最少时间是______ h .(车身长度不计) 答案 12解析 设全部物资到达灾区所需时间为t h ,由题意可知,t 相当于最后一辆车行驶了⎣⎡⎦⎤36×⎝⎛⎭⎫v 202+400 km 所用的时间,因此,t =36×⎝⎛⎭⎫v 202+400v =36v 400+400v≥236v 400×400v=12, 当且仅当36v 400=400v ,即v =2003时取等号.故这些汽车以2003 km/h 的速度匀速行驶时,所需时间最少,最少时间为12 h.四.解答题12.某城市现有人口总数为 100 万,如果年自然增长率为 1.2%,试解答下面的问题: (1) 写出 x 年后该城市的人口总数 y (万人)与年数 x (年)的函数关系式; 【答案】y =100×(1+1.2%)x ,x ∈N ∗【解析】1 年后该城市人口总数为 y =100+100×1.2%=100×(1+1.2%);2 年后该城市人口总数为 y =100×(1+1.2%)+100×(1+1.2%)×1.2%=100×(1+1.2%)2;3 年后该城市人口总数为 y =100×(1+1.2%)3;…; x 年后该城市人口总数为 y =100×(1+1.2%)x ,x ∈N ∗.(2) 计算 10 年以后该城市人口总数(精确到 0.1 万); 【答案】112.7 万【解析】10 年后该城市人口总数为 y =100×(1+1.2%)10=100×1.01210≈112.7(万).(3) 计算大约多少年以后该城市人口总数将达到 120 万(精确到 1 年). 【答案】16 年【解析】令 y =120,则有 100×(1+1.2%)x =120,解方程可得 15<x <16. 故大约 16 年后该城市人口总数将达到 120 万.13.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压 p (千帕)是气球的体积 V (立方米)的反比例函数,其图象如图所示.(千帕是一种压强单位)(1) 写出这个函数的解析式;【答案】p=96V【解析】设p与V的函数的解析式为p=k,把点A(1.5,64)代入,解得k=96.V∴这个函数的解析式为p=96.V(2) 当气球的体积为0.8立方米时,气球内的气压是多少千帕?【答案】120千帕【解析】把V=0.8代入p=96,p=120,V当气球的体积为0.8立方米时,气球内的气压是120千帕.(3) 当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?立方米【答案】气球的体积应不小于23,【解析】由p=144时,V=23∴p⩽144时,V⩾2,3当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于2立方米314.如图所示,已知边长为8米的正方形钢板有一个角被锈蚀,其中AE=4米,CD=6米.为合理利用这块钢板,在五边形ABCDE内截取一个矩形BNPM,使点P在边DE上.设MP=x米,PN=y米,将y表示成x的函数,求该函数的解析式及定义域.【答案】y=−12x+10,定义域为[4,8]【解析】作PQ⊥AF于Q,∴PQ=(8−y)米,EQ=(x−4)米.又△EPQ∼△EDF,∴EQPQ =EFFD,即x−48−y=42.∴y=−12x+10,定义域为[4,8].15.大西洋鲑鱼每年都要逆流而上,游回产地产卵,研究鲑鱼的科学家发现鲑鱼的游速可以表示为函数v=1 2log3⁡O100,单位是m/s,其中O表示鱼的耗氧量的单位数,(1) 当一条鱼的行氧量是2700个单位时,它的游速是多少?【答案】当一条鱼的行氧量是2700个单位时,它的游速是32(m/s)【解析】由题意得v=12log3⁡2700100=32(m/s)当一条鱼的行氧量是2700个单位时,它的游速是32(m/s).(2) 计算一条鱼静止时耗氧量的单位数.【答案】当一条鱼静止时耗氧量的单位数是100【解析】当一条鱼静止时,即v=0,则0=12log3⁡O100,解得O=100当一条鱼静止时耗氧量的单位数是100.。

高考一轮复习第2章函数导数及其应用第10讲函数模型及其应用

高考一轮复习第2章函数导数及其应用第10讲函数模型及其应用

第十讲 函数模型及其应用知识梳理·双基自测ZHI SHI SHU LI SHUANG JI ZI CE 知识梳理知识点 函数模型及其应用 1.几类常见的函数模型函数模型 函数解析式一次函数模型f(x)=ax +b(a ,b 为常数,a≠0)反比例函数模型 f(x)=kx +b(k ,b 为常数且k≠0)二次函数模型 f(x)=ax 2+bx +c(a ,b ,c 为常数,a≠0)指数函数模型 f(x)=ba x+c(a ,b ,c 为常数,b≠0,a >0且a≠1) 对数函数模型 f(x)=blog a x +c(a ,b ,c 为常数,b≠0,a >0且a≠1) 幂函数模型f(x)=ax n +b(a ,b 为常数,a≠0)2.三种函数模型的性质函数性质y =a x(a>1)y =log a x(a>1) y =x n(n>0)在(0,+∞) 上的增减性 单调递增 单调递增 单调递增 增长速度 越来越快越来越慢相对平稳 图象的变化 随x 的增大逐渐表现为与y 轴平行随x 的增大逐渐表现为与x 轴平行随n 值变化而各有不同值的比较存在一个x 0,当x>x 0时,有log a x<x n<a x3.解函数应用问题的步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识建立相应的数学模型;(3)解模:求解数学模型,得出数学结论; (4)还原:将数学问题还原为实际问题. 以上过程用框图表示如下:重要结论1.函数f(x)=x a +bx (a>0,b>0,x>0)在区间(0,ab]内单调递减,在区间[ab ,+∞)内单调递增.2.直线上升、对数缓慢、指数爆炸双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数y =2x的函数值比y =x 2的函数值大.( × )(2)“指数爆炸”是指数型函数y =a·b x+c(a≠0,b>0,b≠1)增长速度越来越快的形象比喻.( × ) (3)幂函数增长比直线增长更快.( × ) (4)不存在x 0,使ax 0<x a0<log a x 0.( × ) [解析] (1)当x =-1时,2-1<(-1)2.(2)“指数爆炸”是针对b>1,a>0的指数型函数g(x)=a ·b x+c.(3)幂函数增长速度是逐渐加快的,当变量较小时,其增长很缓慢,题目说的太绝对,也没有任何条件限制.(4)当a∈(0,1)时存在x 0,使ax 0<x a0<log a x 0. 题组二 走进教材2.(必修1P 107BT1改编)某工厂一年中各月份的收入、支出情况的统计图如图所示,则下列说法中错误的是( D )A .收入最高值与收入最低值的比是3∶1B .结余最高的月份是7月C .1至2月份的收入的变化率与4至5月份的收入的变化率相同D .前6个月的平均收入为40万元3.(必修1P 107A 组T1改编)在某个物理实验中,测量得变量x 和变量y 的几组数据,如下表:x 0.50 0.99 2.01 3.98 y-0.990.010.982.00则对x ,y 最适合的拟合函数是( D ) A .y =2x B .y =x 2-1 C .y =2x -2D .y =log 2x[解析] 根据x =0.50,y =-0.99,代入计算,可以排除A ;根据x =2.01,y =0.98,代入计算,可以排除B 、C ;将各数据代入函数y =log 2x ,可知满足题意,故选D .4.(必修1P 104例5改编)某种动物繁殖量y 只与时间x 年的关系为y =alog 3(x +1),设这种动物第2年有100只,到第8年它们将发展到( A )A .200只B .300只C .400只D .500只[解析] ∵繁殖数量y 只与时间x 年的关系为y =alog 3(x +1),这种动物第2年有100只, ∴100=alog 3(2+1),∴a=100,∴y=100log 3(x +1), ∴当x =8时,y =100log 3(8+1)=100×2=200.故选A .5.(必修1P 107AT2改编)生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x 万件时的生产成本为C(x)=12x 2+2x +20(万元).一万件售价为20万元,为获取更大利润,该企业一个月应生产该商品数量为18万件.[解析] 利润L(x)=20x -C(x)=-12(x -18)2+142,当x =18时,L(x)有最大值. 题组三 走向高考6.(2020·全国Ⅲ,4)Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t 的单位:天)的Logistic 模型:I(t)=K1+e -0.23(t -53),其中K 为最大确诊病例数.当I(t *)=0.95K 时,标志着已初步遏制疫情,则t *约为(ln 19≈3)( C )A .60B .63C .66D .69[解析] 本题以Logistic 模型和新冠肺炎为背景考查指数、对数的运算.由题意可得I(t *)=K 1+e -0.23(t *-53)=0.95K ,化简得e -0.23(t *-53)=119,即0.23(t *-53)=ln 19,所以t *=ln 190.23+53≈30.23+53≈66.故选C .考点突破·互动探究KAO DIAN TU PO HU DONG TAN JIU 考点 函数模型及应用考向1 利用函数图象刻画实际问题的变化过程——自主练透例1 (1)(2017·全国卷Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( A )A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳(2)(多选题)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5 ℃.下面叙述正确的是( ABC )A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个(3)有一个盛水的容器,由悬在它的上空的一条水管均匀地注水,最后把容器注满,在注水过程中时间t与水面高度y之间的关系如图所示.若图中PQ为一线段,则与之对应的容器的形状是( B )[解析] (1)通过题图可知A 不正确,并不是逐月增加,但是每一年是递增的,所以B 正确.从图观察C 是正确的,D 也正确,1月至6月比较平稳,7月至12月波动比较大.故选A .(2)由图形可得各月的平均最低气温都在0 ℃以上,A 正确;七月的平均温差约为10 ℃,而一月的平均温差约为5 ℃,故B 正确;三月和十一月的平均最高气温都在10 ℃左右,基本相同,C 正确;平均最高气温高于20 ℃的月份只有2个,D 错误.故选A 、B 、C .(3)由函数图象可判断出该容器必定有不同规则的形状,且函数图象的变化先慢后快,所以容器下边粗,上边细.再由PQ 为线段,知这一段是均匀变化的,所以容器上端必是直的一段,故排除A 、C 、D ,选B .名师点拨 MING SHI DIAN BO 1.用函数图象刻画实际问题的解题思路将实际问题中两个变量间变化的规律(如增长的快慢、最大、最小等)与函数的性质(如单调性、最值等)、图象(增加、减少的缓急等)相吻合即可.2.判断函数图象与实际问题变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象. (2)验证法:当根据题意不易建立函数模型时,则根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.考向2 已知函数模型解决实际问题——师生共研例2 (2020·北京十一中月考)已知14C 的半衰期为5 730年(是指经过5 730年后,14C 的残余量占原始量的一半).设14C 的原始量为a ,经过x 年后的残余量为b ,残余量b 与原始量a 的关系为b =ae-kx,其中x 表示经过的时间,k 为一个常数.现测得湖南长沙马王堆汉墓女尸出土时14C 的残余量约占原始量的76.7%.请你推断一下马王堆汉墓修建距今约2_292年.(参考数据:log 20.767≈-0.4).[解析] 由题意可知,当x =5 730时,ae -5 730k=12a ,解得k =ln 25 730.现测得湖南长沙马王堆汉墓女尸出土时14C 的残余量约占原始量的76.7%.所以76.7%=e -ln 25 730x ,得ln 0.767=-ln 25 730x ,x =-5 730×ln 0.767ln 2=-5 730×log 2 0.767≈2 292.〔变式训练1〕(2020·山西太原模拟)某公司为了业务发展,制定了一项激励销售人员的奖励方案:销售额为8万元时,奖励1万元;销售额为64万元时,奖励4万元,若公司拟定的奖励模型为y =alog 4x +b(其中x 为销售额,y 为相应的奖金).某业务员要得到8万元奖励,则他的销售额应为1_024万元.[解析] 依题意得⎩⎪⎨⎪⎧alog 48+b =1,alog 464+b =4,即⎩⎪⎨⎪⎧32a +b =1,3a +b =4,解得⎩⎪⎨⎪⎧a =2,b =-2.所以y =2log 4x -2,当y =8时,有2log 4x -2=8,解得x =1 024. 考向3 构建函数模型解决实际问题——多维探究 角度1 一次函数、二次函数分段函数模型例3 某校学生研究学习小组发现,学生上课的注意力指标随着听课时间的变化而变化,老师讲课开始时,学生的兴趣激增;接下来学生的兴趣将保持较理想的状态一段时间,随后学生的注意力开始分散,设f(t)表示学生注意力指标.该小组发现f(t)随时间t(分钟)的变化规律(f(t)越大,表明学生的注意力越集中)如下: f(t)=⎩⎪⎨⎪⎧100a t10-60(0≤t≤10),340(10<t≤20),-15t +640(20<t≤40)(a>0且a≠1).若上课后第5分钟时的注意力指标为140,回答下列问题: (1)求a 的值;(2)上课后第5分钟和下课前第5分钟比较,哪个时间注意力更集中?并请说明理由; (3)在一节课中,学生的注意力指标至少达到140的时间能保持多长? [解析] (1)由题意得,当t =5时,f(t) =140, 即100·a 510-60=140,解得a =4.(2)因为f(5)=140,f(35)=-15×35+640=115,所以f(5)>f(35),故上课后第5分钟时比下课前第5分钟时注意力更集中.(3)①当0<t≤10时,由(1)知,f(t)=100·4t10-60≥140,解得5≤t≤10; ②当10<t≤20时,f(t) =340>140恒成立;③当20<t≤40时,f(t)=-15t +640≥140,解得20<t≤1003.综上所述,5≤t≤1003.故学生的注意力指标至少达到140的时间能保持1003-5=853分钟.名师点拨 MING SHI DIAN BO (1)分段函数主要是每一段自变量变化所遵循的规律不同,可以先将其当作几个问题,将各段的变化规律分别找出来,再将其合到一起,要注意各段自变量的范围,特别是端点值.(2)构造分段函数时,要力求准确、简洁,做到分段合理,不重不漏. (3)分段函数的最大(小)值是各段最大(小)值中的最大(小)值. 角度2 指数函数与对数函数模型例4 候鸟每年都要随季节的变化进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v(单位:m/s)与其耗氧量Q 之间的关系为:v =a +blog 3Q10(其中a ,b 是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1 m/s.(1)求出a ,b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要多少个单位? [分析](1)根据已知列出方程组→解方程组求a ,b 的值 (2)由(1)列出不等式→解不等式求Q 的最小值[解析] (1)由题意可知,当这种鸟类静止时,它的速度为0 m/s ,此时耗氧量为30个单位,则a +blog 33010=0,即a +b =0;当耗氧量为90个单位时,速度为1 m/s , 则a +blog 39010=1,整理得a +2b =1.解方程组⎩⎪⎨⎪⎧a +b =0,a +2b =1,得⎩⎪⎨⎪⎧a =-1,b =1. (2)由(1)知,v =a +blog 3Q 10=-1+log 3Q10.所以要使飞行速度不低于2 m/s ,则v ≥2,所以-1+log 3Q 10≥2,即log 3Q 10≥3,解得Q10≥27,即Q ≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要270个单位.名师点拨 MING SHI DIAN BO指数函数与对数函数模型的应用技巧(1)与指数函数、对数函数两类函数模型有关的实际问题,在求解时,要先学会合理选择模型,在两类模型中,指数函数模型是增长速度越来越快(底数大于1)的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型.(2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函数解析式,再借助函数的图象求解最值问题.〔变式训练2〕(1)(角度1)某城市对一种售价为每件160元的商品征收附加税,税率为R%(即每销售100元征税R 元),若每年销售量为⎝⎛⎭⎪⎫30-52R 万件,要使附加税不少于128万元,则R 的取值范围是( A )A .[4,8]B .[6.10]C .[4%,8%]D .[6%,10%](2)(角度2)一个容器装有细沙a cm 3,细沙从容器底部一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =ae-bt(cm 3),经过8 min 后发现容器内还有一半的沙子,则再经过16min ,容器中的沙子只有开始时的八分之一.[解析] (1)根据题意,要使附加税不少于128万元,需⎝ ⎛⎭⎪⎫30-52R ×160×R%≥128,整理得R 2-12R +32≤0,解得4≤R≤8,即R∈[4,8]. (2)当t =0时,y =a ,当t =8时,y =ae -8b=12a ,∴e -8b =12.令y =18a ,即ae -bt =18a ,e -bt =18=(e -8b )3=e-24b,则t =24,∴再经过16 min ,容器中的沙子只有开始时的八分之一.名师讲坛·素养提升MING SHI JIANG TAN SU YANG TI SHENG函数y =x +ax(a>0)模型及应用例5 (2021·烟台模拟)小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x 万件,需另投入流动成本为W(x)万元.在年产量不足8万件时,W(x)=13x 2+x(万元);在年产量不小于8万件时,W(x)=6x +100x -38(万元).每件产品售价为5元.通过市场分析,小王生产的商品当年能全部售完.(1)写出年利润L(x)(万元)关于年产量x(万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少? [解析] (1)因为每件产品售价为5元,则x 万件产品的销售收入为5x 万元,依题意得: 当0<x<8时,L(x)=5x -⎝ ⎛⎭⎪⎫13x 2+x -3=-13x 2+4x -3.当x≥8时,L(x)=5x -⎝ ⎛⎭⎪⎫6x +100x -38-3=35-⎝ ⎛⎭⎪⎫x +100x .所以L(x)=⎩⎪⎨⎪⎧-13x 2+4x -3,0<x<8,35-⎝ ⎛⎭⎪⎫x +100x ,x≥8.(2)当0<x<8时,L(x)=-13(x -6)2+9,此时,当x =6时,L(x)取得最大值L(6)=9(万元).当x≥8时,L(x)=35-⎝⎛⎭⎪⎫x +100x ≤35-2x ·100x=35-20=15(万元).此时,当且仅当x =100x,即x =10时,L(x)取得最大值15万元.因为9<15,所以当年产量为10万件时,小王在这一商品的生产中所获利润最大,最大利润为15万元. 名师点拨 MING SHI DIAN BO (1)解决此类问题时一定要关注函数的定义域.(2)利用模型f(x)=ax +bx 求解最值时,注意取得最值时等号成立的条件.〔变式训练3〕某村计划建造一个室内面积为800 m 2的矩形蔬菜温室、在矩形温室内,沿左、右两侧与后侧内墙各保留1 m 宽的通道,沿前侧内墙保留3 m 宽的空地.当矩形温室的边长各为40_m ,20_m 时,蔬菜的种植面积最大?最大面积是648_m 2.[解析] 设矩形温室的左侧边长为x m ,则后侧边长为800x m ,所以蔬菜种植面积y =(x -4)·⎝ ⎛⎭⎪⎫800x -2=808-2⎝⎛⎭⎪⎫x +1 600x (4<x<400). 因为x +1 600x≥2x ·1 600x=80,所以y≤808-2×80=648.当且仅当x =1 600x ,即x =40时取等号,此时800x=20,y max =648.即当矩形温室的相邻边长分别为40 m ,20 m 时,蔬菜的种植面积最大,最大面积是648 m 2.。

函数模型及其应用

函数模型及其应用
关闭
设出租车行驶了 x km 时,付费 y 元,则 9,0 < ������ ≤ 3, y= 8 + 2.15(������-3) + 1,3 < ������ ≤ 8, 8 + 2.15 × 5 + 2.85(������-8) + 1,������ > 8, 由 y=22.6,解得 x=9. 9
2.9
函数模型及其应用
-2知识梳理 考点自测
1.常见的函数模型 (1)一次函数模型:f(x)=kx+b(k,b为常数,k≠0); (2)二次函数模型:f(x)=ax2+bx+c(a,b,c为常数,a≠0); ������ (3)反比例函数模型:f(x)= (k 为常数,k≠0); ������ (4)指数型函数模型:f(x)=abx+c(a,b,c为常数,a≠0,b>0,b≠1); (5)对数型函数模型:f(x)=mlogax+n(m,n,a为常数,m≠0,a>0,a≠1); (6)幂型函数模型:f(x)=axn+b(a,b,n为常数,a≠0);
-5知识梳理 考点自测
1
2
3
4
5
1.判断下列结论是否正确,正确的画“ ”,错误的画“×”. (1)幂函数增长比一次函数增长更快.( ) (2)在(0,+∞)内,随着x的增大,y=ax(a>1)的增长速度会超过并远远 大于y=xα(α>0)的增长速度.( ) (3)指数型函数模型,一般用于解决变化较快,短时间内变化量较 大的实际问题.( ) (4)f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,恒有h(x)<f(x)<g(x).( ) (5)“指数爆炸”是指数型函数y=a· bx+c(a>0,b>1)增长速度越来 越快的形象比喻.( ) 关闭

函数模型及其应用 知识点总结及典例

函数模型及其应用  知识点总结及典例

函数模型及应用一.知识梳理1.解决实际问题的解题过程(1)对实际问题进行抽象概括:研究实际问题中量与量之间的关系,确定变量之间的主、被动关系,并用x、y分别表示问题中的变量;(2)建立函数模型:将变量y表示为x的函数,在中学数学内,我们建立的函数模型一般都是函数的解析式;(3)求解函数模型:根据实际问题所需要解决的目标及函数式的结构特点正确选择函数知识求得函数模型的解,并还原为实际问题的解.二、典例解析【例1】某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?【变式训练2】某集团公司在2000年斥巨资分三期兴建垃圾资源化处理工厂,如下表:如果每期的投次从第二年开始见效,且不考虑存贷款利息,设2000年以后的x年的总收益为f(x)(单位:千万元),试求f(x)的表达式,并预测到哪一年能收回全部投资款。

巩固练习 A 组1.在一定范围内,某种产品的购买量y 吨与单价x 元之间满足一次函数关系.如果购买1 000吨,每吨为800元;购买2 000吨,每吨为700元.一客户购买400吨,单价应该是( )A .820元B .840元C .860元D .880元2.2()f x x =,()2x g x =,2()log h x x =,当(4,)x ∈+∞时,三个函数增长速度比较,下列选项中正确的是( )A. ()f x >()g x >()h xB. ()g x >()f x >()h xC. ()g x >()h x >()f xD. ()f x >()h x >()g x 2.某人2003年1月1日到银行存入一年期存款a 元,若按年利率为x ,并按复利计算,到2008年1月1日可取回款( ).A. a (1+x )5元B. a (1+x )6元C. a (1+x 5)元D. a (1+x 6)元 某工厂生产总值月平均增长率为p ,则年平均增长率为().A. pB. 12pC. (1+p )12D. (1+p )12-13.用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为( )A .3B .4C .6D .12 4.电视台播出的一档节目中有这样一道抢答题:小蜥蜴体长15 cm,体重15 g,已知小蜥蜴的体积与体长的立方成正比,问:当小蜥蜴长到体长为20 cm 时,它的体重大约是( )A.20 gB.25 gC.35 gD.40 g5.进货单价为80元的商品400个,按90元一个可以全部卖出,已知这种商品每涨价1元,其销售量就减少20个,问售价多少元时获得的利润最大?( )A .85B .90C .95D .1005.某产品的总成本y (万元)与产量x (台)之间的函数关系式是y =3 000+20x -0.1x 2,x ∈(0,240).若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量为_ _____台.6.在国内投寄平信,每封信不超过20克重付邮资80分,超过节20克重而不超过40克重付邮资160分,将每封信的应付邮资(分)表示为信重(040)x x <≤克的函数,其表达式为()f x = .7.(2010年浙江)某商家一月份至五月份累计销售额达3 860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等.若一月至十月份销售总额至少达7 000万元,则x 的最小值是______.8.某商场宣传在节假日对顾客购物实行一定的优惠,商场规定:①如一次购物不超过200元,不予以折扣;②如一次购物超过200元,但不超过500元,按标价予以九折优惠; ③如一次购物超过500元的,其中500元给予九折优惠,超过500元的给予八五折优惠;某人两次去购物,分别付款176元和432元,如果他只去一次购买同样的商品,则应付款__ ______ 元.9.如图K3-8-1(1)是反映某条公共汽车线路收支差额(即营运所得票价收入与付出成本的差)y 与乘客量x 之间关系的图象.由于目前该条公交线路亏损,公司有关人员提出了两种调整的建议,如图K3-8-1(2)(3)所示.图K3-8-1给出以下说法:(1) 图(2)的建议是:提高成本,并提高票价;(2) 图(2)的建议是:降低成本,并保持票价不变; (3) 图(3)的建议是:提高票价,并保持成本不变; (4) 图(3)的建议是:提高票价,并降低成本. 其中所有说法正确的序号是_______.10.某商店计划投入资金20万元经销甲或乙两种商品.已知经销甲商品与乙商品所获得的利润分别为P 和Q(万元),且它们与投入资金x(万元)的关系是P=42,Q x ax (a>0).若不管资金如何投放,经销这两种商品或其中的一种商品所获得的纯利润总不小于5万元,求 a 的最小值B 组1.为了得到函数y =3×3x 的图象,可以把函数y =3x的图象( ) A .向左平移3个单位长度 B .向右平移3个单位长度 C .向左平移1个单位长度 D .向右平移1个单位长度 2.函数y =ln(1-x )的大致图象为( )3.设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x +2)=f (x ),则函数y =f (x )的图象是( )A BC D4.函数f (x )=1x-x 的图象关于( )A .y 轴对称B .直线y =-xC .坐标原点对称D .直线y =x5.一般地,家庭用电量(千瓦时)与气温(℃)有一定的关系,如图2—1所示,图(1)表示某年12个月中每月的平均气温.图(2)表示某家庭在这年12个月中每个月的用电量.根据这些信息,以下关于该家庭用电量与其气温间关系的叙述中,正确的是( )A .气温最高时,用电量最多B .气温最低时,用电量最少C .当气温大于某一值时,用电量随气温增高而增加D .当气温小于某一值时,用电量随气温渐低而增加6.函数()y f x =与()y g x =的图像如下图:则函数()()y f x g x =⋅的图像可能是( )y=f(x)oyxy=g(x)o yxoyxo yxoyxo yxA B C D7.关于x 的方程|x 2-4x +3|-a =0有三个不相等的实数根,则实数a 的值是_ _. 8.已知下列曲线:以下编号为①②③④的四个方程:①x -y =0;②|x |-|y |=0;③x -|y |=0;④|x |-y =0.请按曲线A 、B 、C 、D 的顺序,依次写出与之对应的方程的编号_ _______. 9 作函数()11f x x =-的简图 10.使2log ()1x x -<+成立的x 德取值范围是 。

函数模型及其应用

函数模型及其应用

函数模型及其应用[考纲传真]1.了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义.2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.【知识通关】1.常见的几种函数模型(1)一次函数模型:y=kx+b(k≠0).(2)反比例函数模型:y=kx+b(k,b为常数且k≠0).(3)二次函数模型:y=ax2+bx+c(a,b,c为常数,a≠0).(4)指数函数模型:y=a·b x+c(a,b,c为常数,b>0,b≠1,a≠0).(5)对数函数模型:y=m log a x+n(m,n,a为常数,a>0,a≠1,m≠0).(6)幂函数模型:y=a·x n+b(a≠0).2.三种函数模型之间增长速度的比较(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)解模:求解数学模型,得出数学结论;(4)还原:将数学问题还原为实际问题.以上过程用框图表示如下:[常用结论]形如f(x)=x+ax(a>0)的函数模型称为“对勾”函数模型:(1)该函数在(-∞,-a]和[a,+∞)内单调递增,在[-a,0]和(0,a]上单调递减.(2)当x>0时,x=a时取最小值2a,当x<0时,x=-a时取最大值-2a.【基础自测】1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数y=2x与函数y=x2的图象有且只有两个公共点.()(2)幂函数增长比直线增长更快.()(3)不存在x0,使ax0<x n0<log a x0.()(4)f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,恒有h(x)<f(x)<g(x).() [答案](1)×(2)×(3)×(4)√2.在某个物理实验中,测量得变量x和变量y的几组数据,如下表,则x,y最适合的函数是()x 0.500.992.013.98y -0.990.010.982.00C.y=2x-2 D.y=log2xD3.一个工厂生产一种产品的总成本y(单位:万元)与产量x(单位:台)之间的函数关系是y=0.1x2+10x+300(0<x≤240,x∈N),若每台产品的售价为25万元,生产的产品全部卖出,则该工厂获得最大利润(利润=销售收入-产品成本)时的产量是()A.70台B.75台C.80台D.85台B4.某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格比较,变化的情况是( ) A .减少7.84% B .增加7.84% C .减少9.5% D .不增不减A5.某城市客运公司确定客票价格的方法是:如果行程不超过100 km ,票价是0.5元/k m ,如果超过100 k m ,超过100 k m 的部分按0.4元/km 定价,则客运票价y (元)与行驶千米数x (km)之间的函数关系式是________. y =⎩⎨⎧0.5x ,0<x ≤1000.4x +10,x >100【题型突破】用函数图象刻画变化过程1.如图,在不规则图形ABCD 中,AB 和CD 是线段,AD 和BC 是圆弧,直线l ⊥AB 于E ,当l 从左至右移动(与线段AB 有公共点)时,把图形ABCD 分成两部分,设AE =x ,左侧部分面积为y ,则y 关于x 的大致图象为( )A B C DD2.物价上涨是当前的主要话题,特别是菜价,我国某部门为尽快实现稳定菜价,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T 内完成预测的运输任务Q 0,各种方案的运输总量Q 与时间t 的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是( )A B C DB3.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油D[方法总结]判断函数图象与实际问题中两变量变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象.(2)验证法:当根据题意不易建立函数模型时,则根据实际问题中两变量的变化特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.应用所给函数模型解决实际问题【例1】小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x万件,需另投入流动成本为W(x)万元,在年产量不足8万件时,W(x)=13x2+x(万元).在年产量不小于8万件时,W(x)=6x+100x-38(万元).每件产品售价为5元.通过市场分析,小王生产的商品能当年全部售完.(1)写出年利润L(x)(万元)关于年产量x(万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?[解](1)因为每件商品售价为5元,则x万件商品销售收入为5x万元,依题意得,当0<x <8时,L (x )=5x -⎝ ⎛⎭⎪⎫13x 2+x -3=-13x 2+4x -3;当x ≥8时,L (x )=5x -⎝ ⎛⎭⎪⎫6x +100x -38-3=35-⎝ ⎛⎭⎪⎫x +100x .所以L (x )=⎩⎪⎨⎪⎧-13x 2+4x -3,0<x <8,35-⎝ ⎛⎭⎪⎫x +100x ,x ≥8.(2)当0<x <8时,L (x )=-13(x -6)2+9.此时,当x =6时,L (x )取得最大值L (6)=9万元, 当x ≥8时,L (x )=35-⎝ ⎛⎭⎪⎫x +100x ≤35-2x ·100x =35-20=15,此时,当且仅当x =100x ,即x =10时,L (x )取得最大值15万元.因为9<15,所以当年产量为10万件时,小王在这一商品的生产中所获利润最大,最大利润为15万元. [方法总结] 求解所给函数模型解决实际问题的关注点 (1)认清所给函数模型,弄清哪些量为待定系数. (2)根据已知利用待定系数法,确定模型中的待定系数. (3)利用该模型求解实际问题.易错警示:(1)解决实际问题时要注意自变量的取值范围.(2)利用模型f (x )=ax +bx 求解最值时,注意取得最值时等号成立的条件.(1)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt +c (a ,b ,c 是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( ) A .3.50分钟 B .3.75分钟 C .4.00分钟D .4.25分钟(2)(2019·沈阳模拟)一个容器装有细沙a cm 3,细沙从容器底部一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =a e -bt (cm 3),经过8 min 后发现容器内还有一半的沙子,则再经过________min ,容器中的沙子只有开始时的八分之一. (1)B (2)16构建函数模型解决实际问题【例2】 某旅游区提倡低碳生活,在景区提供自行车出租.该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超出1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x (元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y (元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得). (1)求函数y =f (x )的解析式及其定义域;(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多? [解] (1)当x ≤6时,y =50x -115. 令50x -115>0,解得x >2.3. ∵x ∈N *,∴3≤x ≤6,x ∈N *. 当x >6时,y =[50-3(x -6)]x -115.令[50-3(x -6)]x -115>0,有3x 2-68x +115<0. 又x ∈N *,∴6<x ≤20(x ∈N *),故y =⎩⎨⎧50x -115(3≤x ≤6,x ∈N *),-3x 2+68x -115(6<x ≤20,x ∈N *). (2)对于y =50x -115(3≤x ≤6,x ∈N *),显然当x =6时,y max =185. 对于y =-3x 2+68x -115=-3⎝⎛⎭⎪⎫x -3432+8113(6<x ≤20,x ∈N *), 当x =11时,y max =270.又∵270>185,∴当每辆自行车的日租金定为11元时,才能使一日的净收入最多. [方法总结] 构建函数模型解决实际问题的常见类型与求解方法 (1)构建二次函数模型,常用配方法、数形结合、分类讨论思想求解. (2)构建分段函数模型,应用分段函数分段求解的方法.(3)构建f (x )=x +ax (a >0)模型,常用基本不等式、导数等知识求解. 易错警示:求解过程中不要忽视实际问题是对自变量的限制.该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)( )A .2018年B .2019年C .2020年D .2021年B函数模型的选择【例3】 (2019·沈阳模拟)某种特色水果每年的上市时间从4月1号开始仅能持续5个月的时间.上市初期价格呈现上涨态势,中期价格开始下降,后期价格在原有价格基础之上继续下跌.现有三种价格变化的模拟函数可供选择:①f (x )=p ·q x ;②f (x )=px 2+qx +7;③f (x )=log q (x +p ).其中p ,q 均为常数且q >1.(注:x 表示上市时间,f (x )表示价格,记x =0表示4月1号,x =1表示5月1号,…,以此类推x ∈[0,5])(1)在上述三个价格模拟函数中,哪一个更能体现该种水果的价格变化态势,请你选择,并简要说明理由;(2)对(1)中所选的函数f (x ),若f (2)=11,f (3)=10,记g (x )=f (x )-2x -13x +1,经过多年的统计发现,当函数g (x )取得最大值时,拓展外销市场的效果最为明显,请预测明年拓展外销市场的时间是几月1号?[解] (1)根据题意,该种水果价格变化趋势是先单调递增后一直单调递减,基本符合开口向下的二次函数变化趋势, 故应该选择②f (x )=px 2+qx +7.(2)由f (2)=11,f (3)=10解得f (x )=-x 2+4x +7. g (x )=f (x )-2x -13x +1=-x 2-2x +6x +1=-⎣⎢⎡⎦⎥⎤9x +1+(x +1)-4.因为-⎣⎢⎡⎦⎥⎤9x +1+(x +1)-4≤-2,当且仅当x +1=3,即x =2时等号成立. 所以明年拓展外销的时间应为6月1号.[方法总结] 根据实际问题选择函数模型时应注意以下几点:(1)若能够根据实际问题作出满足题意的函数图象,可结合图象特征选择. (2)当研究的问题呈现先增长后减少的特点时,可以选用二次函数模型y =ax 2+bx+c(a,b,c均为常数,a<0);当研究的问题呈现先减少后增长的特点时,可以选用二次函数模型y=ax2+bx+c(a,b,c均为常数,a>0).(3)对数函数(底数大于1时)增长越来越慢,而指数函数(底数大于1时)增长越来越快.列四个函数中,能较准确地反映商场月销售额f(x)与月份x的关系且满足f(1)=8,f(3)=2的函数为()A.f(x)=20×⎝⎛⎭⎪⎫12xB.f(x)=-6log3x+8C.f(x)=x2-12x+19D.f(x)=x2-7x+14D。

高考数学一轮专题复习 第二章 第10讲 函数模型及其应用

高考数学一轮专题复习 第二章 第10讲 函数模型及其应用

考点二 函数 y=x+ax(a>0)模型
某养殖厂需定期购买饲料,已知该厂每天需要饲料 200 千克,每千克饲料的价格为 1.8 元,饲料的保管费与其 他费用平均每千克每天 0.03 元,购买饲料每次支付运费 300 元. (1)求该厂多少天购买一次饲料才能使平均每天支付的总费 用最少; (2)若提供饲料的公司规定,当一次购买饲料不少于 5 吨时, 其价格可享受八五折优惠(即为原价的 85%).问:该厂是否 应考虑利用此优惠条件?请说明理由.
增长速度 _越__来__越__快___ _越__来__越__慢___
相对平稳
图象的 变化
随x值增大,
图象与 ____y_轴_____ 接近平行
随x值增大,图象 与___x_轴______接
近平行
随n值变化而 不同
[做一做]
1.下列函数中,随 x 的增大,y 的增长速度最快的是( A )
A.y=1100ex
1.(2015·湖南岳阳模拟)一个工厂生产某种产品 每年需要固定投资 100 万元,此外每生产 1 件该产品还需 要增加投资 1 万元,年产量为 x(x∈N*)件.当 x≤20 时, 年销售总收入为(33x-x2)万元;当 x>20 时,年销售总收入 为 260 万元.记该工厂生产并销售这种产品所得的年利润 为 y 万元,则 y(万元)与 x(件)的函数关系式为 ____y_=___1-_6_0x_-2_+_x_3,_2_xx_->_2_10_0._0_,__0_<_x_≤__2_0_._(x_∈__N__*)____________, 该工厂的年产量为__1_6____件时,所得年利润最大.(年利润 =年销售总收入-年总投资)
∵xy≥300,∴x(40-x)≥300, ∴x2-40x+300≤0,∴10≤x≤30.

《函数模型的应用实例》测试题

《函数模型的应用实例》测试题

《3.2.2 函数模型的应用实例》测试题一、选择题1.某种细胞在正常培养过程中,时刻(单位:分)与细胞数(单位:个)的部分数据如下:1 2 8 128根据表中数据,推测繁殖到1000个细胞时的时刻最接近于( )A.200B.220C.240D.260考查目的:考查观察分析能力、函数建模能力和运用指数函数的性质解决实际问题的能力.答案:A.解析:由表中数据可以看出,与的函数关系式为.令,则,而,∴繁殖到1000个细胞时,时刻最接近200分,故答案应选A.2.(2011北京)据统计,一名工人组装第件某产品所用的时间(单位:分钟)为(为常数).已知工人组装第4件产品用时30分钟,组装第A件产品时用时15分钟,那么的值分别是( ).A.75,25B.75,16C.60,25 D.60,16考查目的:考查读题审题能力和分段函数模型的应用能力.答案:D.解析:由条件可知,时所用时间为常数,所以组装第4件产品用时必然满足第一个分段函数,即,∴,,∴,故答案应选D.3.如果在今后若干年内,我国国民经济生产总值都控制在平均每年增长8%的水平,那么要达到国民经济生产总值比2009年翻两番的年份大约是( ).(,,,)A.2018年B.2025年C.2027年D.2028年考查目的:考查增长率问题和指数、对数的相互转化及其运算.答案:C.解析:设2009年总值为,经过年翻两番,则,∴,∴,故答案应选C.二、填空题4.某商品零售价2012年比2011年上涨了25%,欲控制该商品零售价2013年比2011年只上涨10%,则2013年应比2012年降价________%.考查目的:考查读题审题能力、增长率问题解决能力和函数思想.答案:12.解析:设该商品零售价2011年为元,2013年应比2012年降价,则2012年零售价为元,而2013年零售价为元,∴,解得.5.某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元.当用水超过4吨时,超过的部分按每吨3.00元计算.若甲、乙两户某月共交水费元,且甲乙两户某月用水量分别为吨、吨,则关于的函数关系式为.考查目的:考查分段函数模型应用能力和分类讨论思想.答案:.解析:由题意知,当甲乙两户用水量都不超过4吨时,即当时,;当甲户用水量超过4吨,乙户用水量不超过4吨时,即当时,;当甲乙两户用水量都超过4吨时,即当时,.6.A市和B市分别有某种库存机器12台和6台,现决定支援C村10台,D村8台.已知从A市调运一台机器到C村和D村的运费分别是400元和800元;从B市调运一台机器到C村和D村的运费分别是300元和500元.设B市运往C村机器台,若要求运费W不超过9000元,则共有种调运方案.考查目的:考查函数建模与实际应用能力.答案:3.解析:由于B市运往C村机器台,则B市运往D村机器台,A市运往C村机器台,则A市运往D村机器台,∴,由得.∵是自然数,∴可取0,1,2,∴共有3种调运方案.三、解答题7.(2012上海春)某环线地铁按内、外环线同时运行,内、外环线的长均为30千米(忽略内、外环线长度差异).⑴当9列列车同时在内环线上运行时,要使内环线乘客最长候车时间为10分钟,求内环线列车的最小平均速度;⑵新调整的方案要求内环线列车平均速度为25千米/小时,外环线列车平均速度为30千米/小时.现内、外环线共有18列列车全部投入运行,要使内、外环线乘客的最长候车时间之差不超过1分钟,问:内、外环线应各投入几列列车运行?考查目的:考查读题审题能力、函数建模能力,以及函数与不等式的综合应用能力.答案:⑴20;⑵10.解析: ⑴设内环线列车运行的平均速度为千米/小时,由题意得,解得,∴要使内环线乘客最长候车时间为10分钟,列车的最小平均速度是20千米/小时.⑵设内环线投入列列车运行,则外环线投入列列车运行,内、外环线乘客最长候车时间分别为分钟,则,故,可化为,解得,∴.又∵,∴,∴当内环线投入列,外环线投入8列列车运行,内、外环线乘客最长候车时间之差不超过1分钟.8.(2011湖南)如图,长方形物体E在雨中沿面P(面积为S)的垂直方向作匀速移动,速度为,雨速沿E移动方向的分速度为.E移动时单位时间内的淋雨量包括两部分:①P或P的平行面(只有一个面淋雨)的淋雨量,假设其值与成正比,比例系数为;②其它面的淋雨量之和,其值为,记为E移动过程中的总淋雨量,当移动距离,面积时.⑴写出的表达式;⑵设,,试根据的不同取值范围,确定移动速度,使总淋雨量最少.考查目的:考查读题审题能力、函数建模能力和函数性质的综合应用,以及分类讨论思想.答案:⑴;⑵当时,是关于的减函数,故当时,.当时,在上,是关于的减函数;在上,是关于的增函数;故当时,.解析:⑴由题意知,E移动时单位时间内的淋雨量为,故.⑵由⑴知,当时,当时,,故.当时,是关于的减函数,故当时,.当时,在上,是关于的减函数;在上,是关于的增函数;故当时,.。

高中数学:函数模型及其应用

高中数学:函数模型及其应用

应用函数模型解决实际问题通常有四个步骤:①阅读理解,认真审题;②引进数学符号,建立数学模型;③利用数学的方法,得到数学结果;④转译成具体问题作出解答。

其中关键是建立数学模型,下面谈一谈函数模型的应用。

一、二次函数模型例1、如图所示,某房地产公司在矩形拆迁地ABCD中规划一块矩形地面PQCR建造住宅小公园,为了保护文物,公园又不能超越文物保所区的界线EF,由实地测量知,米,米,米,米,问:怎样设计矩形公园的长和宽,才能使其面积最大?最大面积是多少?分析:由题意可知,点Q、R必定在边BC、CD上。

若点P在DF上,则矩形PQCR应为具有最大面积的矩形PQCD;若点P在BE上,则矩形PQCR应为具有最大面积的矩形EBCR。

因此只需求出点P在EF上时矩形PQCR的最大面积,然后加以比较便知。

解析:设点P在EF上,PQ=x,则。

延长QP交AF于G,则。

因为∽,故。

所以。

x,当时,最大,此时最大值约为24067。

而,所以。

故设计矩形公园的长PQ为190米,宽PR约为126.67米时,其面积最大,最大面积约为24067平方米。

说明:根据几何图形的形状,对点P的位置进行分类讨论,比较不同位置下面积的大小,从而求出最大面积时点P的位置。

此题借助于二次函数的最值研究方法,求出了矩形PQCR面积的最大值。

二、分段函数模型例2、一家报刊摊点,从报社买进报纸价格是每份0.24元,卖出是每份0.40元,卖不掉的报纸还可以每份0.08元的价格退回报社,在一个月的30天里,有20天每天可卖出300份,其余10天,每天卖出200份,但这30天里,每天从报社买进的份数必须相同,这家报刊摊点应该每天从报社进多少份报纸,才能获得最大利润?一个月可赚多少钱?解析:设这家报刊摊点第天从报社买进x份报纸,一个月可赚y元。

①当时,。

②当时,。

③当时,。

综上知,这家报刊摊点应该每天从报社进300份报纸,才能获得最大利润,一个月可赚1120元。

说明:函数模型为分段函数,求分段函数的最值,应先求出函数在各分段的最值,然后取各分段的最值中的最大者为整个函数的最大值,取各分段最值中的最小者为整个函数的最小值。

函数模型及应用(1)

函数模型及应用(1)

4.函数建模的基本程序
基础自测
1.我国为了加强对烟酒生产的宏观调控,除了应征税 外还要征收附加税,已知某种酒每瓶售价为70元, 不收附加税时,每年大约销售100万瓶,若每销售 100元国家要征收附加税为x元(税率x%),则每年销 售量减少10x万瓶,为了使每年在此项经营中收取的 附加税额不少于112万元,则x的最小值为__2__. 解析 依题意(100 10x) • 70 • x 112, 100 解得2≤x≤8,则x的最小值为2.
(3)设x年后该城市人口将达到120万人,
即100× (1+1.2%)x=120,
x
log1.012
120 100
log1.012
1.20
15(年)
(4)由100× (1+x%)20≤120,得(1+x%)20≤1.2,
两边取对数得20lg(1+x%)≤lg 1.2=0.079,
所以lg(1+x%)≤ 0.079 =0.003 95, 20
2.已知光线每通过一块玻璃板,光线的强度要损失
10%,要使通过玻璃板的光线的强度减弱到原来强
度的 1 以下,则至少需要重叠_1_1__块玻璃板.
3
解析 由 题 设 知(110% )x 1 ,
3
即0.9 x
1, 3
x
log0.9
1 3
10.4.
3.某企业去年销售收入1 000万元,年成本为生产成 本500万元与年广告成本200万元两部分.若年利润 必须按p%纳税,且年广告费超出年销售收入2%的部 分也按p%纳税,其他不纳税.已知该企业去年共纳税 120万元.则税率p%为_2_5_%__. 解析 利润300万元,纳税300·p%万元, 年广告费超出年销售收入2%的部分为 200-1 000× 2%=180(万元),

2025优化设计一轮第10节 函数的应用

2025优化设计一轮第10节  函数的应用
1
A.(0,4)
1 1
B.( 4 , 2)
1
C.(2,1)
D.(1,2)
解析 由已知得函数 f(x)连续且单调递增,
因为
所以
1
1
7
1
1
1
f(4)= 2 + 4-2= 2 − 4<0,f(2)=2+2-2=2>0,
1 1
1 1
f( )f( )<0,由零点存在定理可知存在 x0∈( , )使得
4 2
4 2
液中,在注射期间,血液中的药物含量呈线性增加;停止注射后,血液中的药
物含量呈指数衰减,能反映血液中药物含量Q随时间t变化的图象是( B )
解析 依题意,在2 h内,药物含量线性增加,排除A,又药物含量不可能为负值,
排除D,停止注射后,药物含量指数衰减,排除C,故选B.
6.(人教B版必修第一册习题3-2 B第3题改编)若函数f(x)=x3+ax2+bx+c有三
2025
高考总复习优化设计
GAO KAO ZONG FU XI YOU HUA SHE JI
第10节 函数的应用
1.结合学过的函数图象,了解函数的零点与方程解的关系.会判
断函数零点所在区间及零点个数.
2.结合具体连续函数及其图象的特点,了解函数零点存在定理.
3.能借助计算工具用二分法求方程近似解,了解用二分法求方程
一分为二
零点
__________,进而得到零点近似值的方法叫做二分法.
4.指数、对数、幂函数模型性质的比较
函数
性质
在(0,+∞)内的
单调性
增长速度
图象的
变化

函数模型及其应用复习讲义

函数模型及其应用复习讲义

要点梳理1.几类函数模型及其增长差异(1)几类函数模型(2) 三种增长型函数之间增长速度的比较①指数函数y=a x( a>1) 与幂函数y=x n( n>0)在区间(0 ,+∞) ,无论n 比a 大多少,尽管在x 的一定范围内a x会小于x n,但由于y=a x的增长速度快于y=x n的增长速度,因而总存在一个x0,当x>x0 时有②对数函数y=log a x ( a>1) 与幂函数y=x n( n>0)对数函数y=log a x ( a>1)的增长速度,不论 a 与n 值的大小如何总会慢于y=x n的增长速度,因而在定义域内总存在一个实数x0,使x>x0 时有__________ .由①②可以看出三种增长型的函数尽管均为增函数,但它们的增长速度不同,且不在同一个档次上,因此在(0 ,+∞)上,总会存在一个x0,使x>x0时有.2.解函数应用问题的步骤( 四步八字)2 审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;3 建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;4 求模:求解数学模型,得出数学结论;(4) 还原:将数学问题还原为实际问题的意义.以上过程用框图表示如下:注意:解决函数应用问题重点解决以下问题(1)阅读理解、整理数据:通过分析、画图、列表、归类等方法,快速弄清数据之间的关系,数据的单位等等;(2)建立函数模型:关键是正确选择自变量将问题的目标表示为这个变量的函数,建立函数的模型的过程主要是抓住某些量之间的相等关系列出函数式,注意不要忘记考察函数的定义域;(3)求解函数模型:主要是研究函数的单调性,求函数的值域、最大( 小) 值,计算函数的特殊值等,注意发挥函数图像的作用;(4)回答实际问题结果:将函数问题的结论还原成实际问题,结果明确表述出来.基础自测1.某物体一天中的温度T(单位:℃ ) 是时间t ( 单位:h) 的函数:T( t ) =t3-3t+60,t =0 表示中午12∶ 00,其后t 取正值,则下午___ 3 时的温度为.2.某工厂生产某种产品固定成本为 2 000 万元,并且每生产一单位产品,成本增加1210 万元.又知总收入K是单位产品数Q的函数,K(Q)=40Q-20Q2,则总利润L(Q) 的最大值是______ 万元.3.( 课本改编题) 某种储蓄按复利计算利息,若本金为 a 元,每期利率为r,存期是x ,本利和( 本金加利息) 为y 元,则本利和y 随存期x 变化的函数关系式是4.某公司租地建仓库,已知仓库每月占用费y1 与仓库到车站的距离成反比,而每月车载货物的运费y2与仓库到车站的距离成正比.据测算,如果在距离车站10 千米处建仓库,这两项费用y1,y2分别是2 万元和8 万元,那么要使这两项费用之和最小,仓库应建在离车站( )A.5 千米处B.4千米处 C .3 千米处D.2 千米处5.某企业第三年的产量比第一年的产量增长44%,若每年的平均增长率相同( 设为x) ,则以下结论正确的是( )A.x>22% B.x<22% C .x=22% D.x 的大小由第一年的产量确定题型分类题型一一次函数、二次函数模型1 某企业生产A,B 两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图1;B 产品的利润与投资的算术平方根成正比,其关系如图2(注:利润和投资单位:万元).(1)分别将A、B 两种产品的利润表示为投资的函数关系式;(2)已知该企业已筹集到18 万元资金,并将全部投入A,B 两种产品的生产.①若平均投入生产两种产品,可获得多少利润②问:如果你是厂长,怎样分配这18 万元投资,才能使该企业获得最大利润其最大利润约为多少万元探究提高(1) 在实际问题中,有很多问题的两变量之间的关系是一次函数模型,其增长特点是直线上升( 自变量的系数大于0) 或直线下降( 自变量的系数小于0) ,构建一次函数模型,利用一次函数的图像与单调性求解.(2)有些问题的两变量之间是二次函数关系,如面积问题、利润问题、产量问题等.构建二次函数模型,利用二次函数图像与单调性解决.(3)在解决二次函数的应用问题时,一定要注意定义域.变式训练1 用一根长为12 m的铝合金条做成一个“目”字形窗户的框架( 不计损耗) ,要使这个窗户通过的阳光最充足,则框架的高与宽应各为多少题型二分段函数模型2 为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为13x 3-80x2+5 040 x,x∈ [120 ,144 ,y=且每处理一吨二氧化碳得到可利12x2-200x+80 000 ,x∈ [144 ,500] ,用的化工产品价值为200 元,若该项目不获利,国家将给予补偿.(1)当x∈ [200,300] 时,判断该项目能否获利如求出最大利润;如果不获利,果获利,则国家每月至少需要补贴多少元才能使该项目不亏损(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低探究提高本题的难点是函数模型是一个分段函数,由于月处理量在不同范围内,处理的成本对应的函数解析式也不同,故此类最值的求解必须先求出每个区间内的最值,然后将这些区间内的最值进行比较确定最值.变式训练2 某市居民自来水收费标准如下:每户每月用水不超过 4 吨时,每吨为元,当用水超过4 吨时,超过部分每吨元.某月甲、乙两户共交水费y 元,已知甲、乙两户该月用水量分别为5x, 3x(吨) .(1)求y 关于x 的函数;(2)若甲、乙两户该月共交水费元,分别求出甲、乙两户该月的用水量和水费.题型三指数函数、幂函数模型3 某城市现有人口总数为100 万人,如果年自然增长率为%,试解答以下问题:(1)写出该城市人口总数y(万人)与年份x(年)的函数关系式;(2)计算10 年以后该城市人口总数(精确到万人);(3)计算大约多少年以后,该城市人口将达到120 万人(精确到1 年);(4)如果20 年后该城市人口总数不超过120 万人,年自然增长率应该控制在多少(参考数据:≈, ≈,lg ≈,lg 2≈ 0 ,lg ≈,lg ≈ 9)探究提高此类增长率问题,在实际问题中常可以用指数函数模型y=N(1 +p)x(其中N 是基础数,p 为增长率,x 为时间)和幂函数模型y=a(1 +x)n(其中 a 为基础数,x 为增长率,n 为时间)的形式.解题时,往往用到对数运算,要注意与已知表格中给定的值对应求解.变式训练 3 已知某物体的温度θ (单位:摄氏度)随时间t (单位:分钟)的变化规律是:θ =m·2t+21-t(t ≥ 0,并且m>0).(1)如果m=2,求经过多少时间,物体的温度为5 摄氏度;(2)若物体的温度总不低于2 摄氏度,求m的取值范围.函数建模及函数应用问题的一般程序:第一步:审题——弄清题意,分清条件和结论,理顺数量关系;第二步:建模——将文字语言转化成数学语言,用数学知识建立相应的数学模型;第三步:求模——求解数学模型,得到数学结论;第四步:还原——将用数学方法得到的结论还原为实际问题的意义.第五步:反思回顾——对于数学模型得到的数学解,必须验证这个数学解对实际问题的合理性.方法与技巧解答数学应用题关键有两点:一是认真审题,读懂题意,理解问题的实际背景,将实际问题转化为数学问题;二是灵活运用数学知识和方法解答问题,得到数学问题中的解,再把结论转译成实际问题的答案.。

第二章 第十节 函数模型及其应用

第二章  第十节  函数模型及其应用

返回
4.为了保证信息安全,传输必须使用加密方式,有一种 方式其加密、解密原理如下: 明文―加―密→ 密文―发―送→ 密文―解―密→明文
返回
5.某公司欲投资13亿元进行项目开发,现有以下6个项目 可供选择.
项目
A BCDEF
投资额(亿元) 5 2 6 4 6 1
利润(亿元) 0.55 0.4 0.6 0.5 0.9 0.1 设计一个投资方案,使投资13亿元所获利润大于1.6亿元,
答案:582.6
返回
1.几类函数模型
函数模型
函数解析式
一次函数模型
f(x)=ax+b(a、b为常数,a≠0)
二次函数模型 f(x)=ax2+bx+c(a,b,c为常数,a≠0)
指数函数模型
f(x)=bax+c (a,b,c为常数,b≠0,a>0且a≠1)
对数函数模型
f(x)=blogax+c
(a,b,c为常数,b≠0,a>0且a≠1,x>0)
D.y=2.61cos x
答案:B
返回
4.一高为H,满缸水量为V的鱼缸截面如图所示, 其底部破了一个小洞 ,满缸水从洞中流出. 若鱼缸水深为h时的水的体积为v,则函数 v=f(h)的大致图象可能是图中的________.
答案:②
返回
5.某商场宣传在节假日对顾客购物实行一定的优惠,商 场规定: ①如一次购物不超过200元,不予以折扣; ②如一次购物超过200元,但不超过500元,按标价予 以九折优惠; ③如一次购物超过500元的,其中500元给予九折优惠, 超过500元的给予八五折优惠; 某人两次去购物,分别付款176元和432元,如果他只 去一次购买同样的商品,则应付款________元.
元?(总收益=总成本+利润)

函数模型及其应用

函数模型及其应用

解析:设矩形宽为xm,
则矩形长为(200-4x)m, 则矩形面积为 S=x(200-4x) (0<x<50) ∴ S 4( x 25)2 2500 ∴x=25时,S有最大值2500m2.
4. 指数函数模型的应用
例1 人口问题是当今世界各国普遍关注的问题. 认识人口数量的变化规律,可以为有效控制人 口增长提供依据.早在1798年,英国经济学家马 尔萨斯(T.R.Malthus,1766—1834)就提出了自然 状态下的人口增长模型:y=y0ert,其中t表示经 过的时间,y0表示t=0时的人口数,r表示人口 的年平均增长率.
1 (t 50) 2 100, 所以当 当 0 t 200 时,配方整理得 h(t ) 200 t 50 时, h(t ) 取得 [0, 200] 上的最大值100 ;当 200 t 300
时,配方整理得 (200,300] 上的最大值 87.5
h(t )
(2) 若体重超过相同身高男性体重平均值的1.2 倍为偏胖,低于0.8倍为偏瘦,那么这个地区 一名身高为175cm,体重为78kg的在校男生 的体重是否正常?
小 结:
用已知的函数模型刻画实际的问题 时,由于实际问题的条件与得出已知模 型的条件会有所不同,因此往往需要对 模型进行修正.
补充作业:
1、提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况 下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/ 千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时 车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小 时,研究表明:当20 x 200 时,车流速度v时车流密度x的一次函数. (1)当20 x 200时,求函数v(x)的表达式; (2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆 数,单位:辆/小时) f ( x) x v( x) 可以达到最大,并求出最大值.(精确到 1辆/小时) 2、围建一个面积为360㎡的矩形场地,要求矩形场地的一面利用旧墙(利 用的旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一 个宽度为2m的进出口,已知旧墙的维修费用为45元/m,新墙的造价为 180元/m,设利用的旧墙长度为x(单位:m),修建次矩形场地围墙 的总费用为y(单位:元) (1)将y表示为x的函数; (2)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档