模糊数学理论建模专题训练题1

合集下载

最新模糊数学考试题

最新模糊数学考试题

西北工业大学研究生院学 位 研 究 生 课 程 考 试 试 题考试科目:模糊数学 课程编号:105012 考试时间:2014年1月13日说 明:所有答案必须写在答题册上,否则无效。

共4页 第1页一.填空题 (14空×2分,共28分)1、设~~B A ,是论域U 上的模糊子集,则~~B A 和~~B A 的隶属函数分别是 =)(~~u B A μ ,=)(~~u B A μ 。

2、设[]10,=U ,~A ,2)(u u =则=)(u A c ~____________,( ~A c A ~)(u )=_____________,~(A c A ~)(u )=________________,~(A cA ~)(21)=_________。

3、设给定模糊矩阵R=(r ij ), 对于任意的λ∈[0,1],记R λ=(λr ij ) , 其中λr ij = ,则称R λ=(λr ij )为R 的λ截矩阵。

4、模糊矩阵R=n n ij r ⨯)(如果满足自反性 ,对称性 ,传递性 , 就称R 是一个 。

5、设论域U={n u u u ,...,,21},~A ,~B ∈)(U F ,其绝对欧氏距离、相对欧氏距离及欧氏模糊度分别定义为e(~A ,~B )= ,ε(~A ,~B )= ,=)(~A D 。

二、计算题(3题×10分,共30分)1、 设},,,,{54321u u u u u U =,)8.0,1.0,3.0,4.0,7.0(~=A ,)6.0,5.0,1.0,9.0,2.0(~=B , 请分别求出c A ~与~A c B ~。

2、设~A =ed c b a 17.06.05.03.0++++,求5.0A 与1A 。

3、已知论域},,{z y x U =,)1.0,7.0,4.0(~=A ,)8.0,6.0,5.0(~=B ,分别求出绝对海明距离),(~~B A d 和相对海明距离),(~~B A δ。

模糊数学 习题答案

模糊数学 习题答案

模糊数学习题答案模糊数学习题答案模糊数学是一门研究不确定性和模糊性的数学分支,它的应用涵盖了各个领域,例如控制理论、人工智能、经济学等。

在学习模糊数学的过程中,习题是不可或缺的一部分。

下面是一些常见的模糊数学习题及其答案,希望对你的学习有所帮助。

1. 什么是模糊集合?答:模糊集合是一种用来描述不确定性和模糊性的数学工具。

与传统的集合论不同,模糊集合中的元素可以具有不同的隶属度,即某个元素可以同时属于多个集合。

2. 什么是隶属函数?答:隶属函数是用来描述元素与模糊集合之间的隶属关系的函数。

它将一个元素映射到一个隶属度的值,表示该元素在模糊集合中的隶属程度。

3. 什么是模糊关系?答:模糊关系是一种用来描述事物之间模糊联系的数学工具。

与传统的关系不同,模糊关系中的元素可以具有不同的隶属度,表示它们之间的模糊程度。

4. 什么是模糊逻辑?答:模糊逻辑是一种用来处理模糊命题的逻辑系统。

在传统的逻辑中,命题只有真和假两种取值,而在模糊逻辑中,命题的取值可以是一个介于0和1之间的隶属度值。

5. 什么是模糊推理?答:模糊推理是一种用来从模糊事实中得出模糊结论的推理方法。

它基于模糊逻辑和模糊关系,通过对隶属度的运算和推理规则的应用,得出模糊结论。

6. 什么是模糊控制?答:模糊控制是一种用来处理模糊输入和输出的控制方法。

它基于模糊逻辑和模糊关系,通过对输入和输出的模糊化和去模糊化处理,实现对复杂系统的控制。

7. 什么是模糊聚类?答:模糊聚类是一种用来对数据进行模糊分类的方法。

它基于模糊集合和模糊关系,通过对数据的隶属度进行计算和调整,将相似的数据归为同一类别。

8. 什么是模糊优化?答:模糊优化是一种用来处理模糊目标和约束的优化方法。

它基于模糊集合和模糊关系,通过对目标函数和约束条件的模糊化和去模糊化处理,寻找最优解。

9. 什么是模糊神经网络?答:模糊神经网络是一种结合了神经网络和模糊逻辑的计算模型。

它通过对输入和输出的模糊化和去模糊化处理,实现对复杂问题的建模和求解。

东北大学模糊数学试题

东北大学模糊数学试题

东北大学考试试卷(A B 卷) 2007 — 2008学年 第2学期课程名称:模糊数学┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 2分 共计10分) 12345{,,,,}U u u u u u =,F 模糊集(0.5,0.1,0,1,0.8)A =,(0.1,0.4,0.9,0.7,0.2)B =,(0.8,0.2,1,0.4,0.3)C =。

则_________A B ⋃=___________A B ⋂=()____________A B C ⋃⋂=_________c A =2. 设论 域{,,,,}U a b c d e =,有{}0.70.8{,}0.50.7{,,}0.30.5{,,,}0.10.3{,,,,}00.1d c d A c d e b c d e a b c d e λλλλλλ<≤⎧⎪<≤⎪⎪=<≤⎨⎪<≤⎪≤≤⎪⎩F 集A =_________________5小题,每题12分) 设[0,10]U =为论域,对[0,1]λ∈,若F 集A 的λ截集分别为 [0,10]0[3,10]00.6[5,10]0.61[5,10]1A λλλλλλ=⎧⎪<≤⎪=⎨<<⎪⎪=⎩,求出:(1)(),[0,10]A x x ∈;(2)SuppA ;(3)KerA 2. 设F 集112340.20.40.50.1A x x x x =+++,212340.20.50.30.1A x x x x =+++,312340.20.30.40.1A x x x x =+++, 12340.60.30.1B x x x =++,21230.20.30.5B x x x =++,试用格贴近度判断12,i B B A 与哪个最接近。

3.设120.100.80.70.20.40.90.50,0.30.10.600.40.310.50.2R R ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,求12121,,cR R R R R ⋃⋂4.设12345{,,,,}U u u u u u =,在U 上存在F 关系,使10.800.10.20.810.400.900.41000.10010.50.20.900.51R ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,求ˆR,并由此进行聚类分析,画出聚类分析图。

模糊数学例题大全

模糊数学例题大全

模糊数学例题大全标题:模糊数学例题大全模糊数学,又称为模糊性数学或者弗晰数学,是一个以模糊集合论为基础的数学分支。

它不仅改变了过去精确数学的观念,而且广泛应用于各个领域,从物理学、生物学到社会科学,甚至。

下面,我们将通过一些具体的例题来展示模糊数学的应用。

例1:模糊逻辑门在经典的逻辑门中,我们使用AND、OR和NOT等操作符来处理布尔值(0或1)。

然而,在现实世界中,很多情况并不是绝对的0或1。

例如,我们可以将“温度高”定义为大于25度,但24度是否算高呢?模糊逻辑门提供了更广泛的定义方式,允许我们使用模糊集合来描述这些边界情况。

例2:模糊聚类分析在统计学中,聚类分析是一种将数据集分类成几个组的方法,其中同一组内的数据点相似度高。

然而,在某些情况下,我们无法用精确的数值来描述数据点的相似度。

这时,模糊聚类分析就派上用场了。

它允许我们使用模糊矩阵来表示数据点之间的相似度,从而更准确地分类数据。

例3:模糊决策树在机器学习中,决策树是一种用于分类和回归的算法。

然而,在某些情况下,我们无法用精确的规则来描述决策过程。

这时,模糊决策树就派上用场了。

它允许我们在决策节点使用模糊规则来代替传统的布尔值规则,从而更好地模拟人类的决策过程。

例4:模糊控制系统在控制系统中,我们通常需要设计一个控制器来控制系统的行为。

然而,在某些情况下,系统的输入和输出并不是绝对的0或1。

这时,模糊控制系统就派上用场了。

它允许我们使用模糊集合来描述系统的输入和输出,从而更准确地控制系统的行为。

例5:模糊图像处理在图像处理中,我们通常需要分类、识别或分割图像中的对象。

然而,在某些情况下,图像中的对象边界并不清晰。

这时,模糊图像处理就派上用场了。

它允许我们使用模糊集合来描述图像中的对象边界,从而更准确地分类、识别或分割图像中的对象。

以上只是模糊数学众多应用的一小部分。

这个领域仍在不断发展,为解决各种复杂的现实问题提供了新的工具和方法。

通过学习模糊数学,我们可以更好地理解和处理那些边界模糊、难以用传统数学方法描述的问题。

2013-2014模糊数学练习题

2013-2014模糊数学练习题

2013-2014模糊数学练习题
1、设模糊集合123456
0.50.70.20.80.40.6A u u u u u u =+++++,计算截集A 0.3与
A 0.6. 2、设论域U = {u 1, u 2, u 3, u 4},设{}{}{}{}1234123131
,,,00.3,,0.30.5,0.50.80.81
u u u u u u u A u u u λλλλλ?≤≤?<≤??=<≤??<≤
,试计算模糊集合A . 3、设X = Y = {1, 2, 3, 4, 5},模糊集合A = “重”=
0.10.20.40.70.912345++++模糊集合 B = “轻”= 0.90.70.60.40.112345
++++。

(1)若A(很)轻,则B 重;问若A 很轻,则B 如何?
(2)若A 轻,则B 重,否则B 不重。

问若A 不很轻,则问B 如何?
4、某企业生产茶叶,茶叶的质量有3个指标确定,茶叶的级别分别为一级,二级,三级,外等。

其中,根据上述4个等级给定的单因素评判矩阵如下:
=12.026.022.040.023.025.032.020.027.013.024.036.01R 设三个指标的权重为A = (0.3, 0.42, 0.28),采用模型M(∧, ∨)对该产品进行模糊综合评价,并按最大隶属度原则判断该产品属于哪一级?
5、模糊推理(重点的书上例7,8)、模糊决策(重点是ppt 上模糊二元对比决策例题)、模糊综合评价(一级模糊综合评价方法)、模糊聚类分析(按等价关系聚类)、模糊模式识别PPT 上出现的所有例题。

模糊数学练习题ppt课件

模糊数学练习题ppt课件

1
2.设“年老”的隶属函数为:
0
B
(
x)
1
1
(
x
5 50
)
2
0 x 50 50 x 100
1)作出隶属函数曲线; 2)求 A I B, A U B, A, B 的隶属函数 ; 3)对x=30,40,45,分别求出对上述模糊集合
的隶属度;
2
3.设模糊集合为:
A 0.2 0 0.1 0.6 1 0.4 0.8 abc de f g
2)若 A 1 0.4 1 , B 0.7 0.4 0.1 ,求 C ;
a1 a2 a3
b1 b2 b3
5
8.试写出下列模糊规则的关系矩阵表达式: 1)如果x为A或者B,则y为C; 2)如果x为A且B,则y为C; 3)如果x为A且y为B,则z为C或D;
6
4
7.设有论域X={a1,a2,a3},Y={b1,b2,b3}, Z={c1,c2,c3},
已知模糊集合: A 0.4 1 0.4 A X
a1 a2 a3
0.1 0.4 0.7
B
BY
b1 b2 b3
C 0.9 0.6 0.3 C Z c1 c2 c3
1)求“若Leabharlann 为A且y为B,则z为C”的模糊关系矩阵;
3
5.已知模糊关系矩阵
0 0.5 1 R1 0.5 1 0
1 0.5 0
1 0.5 0 R2 0 1 0.5
0.5 0 1
求 R1 U R2 , R1 I R2 , R1 U R2 , R1 oR2 , R2 oR1 ;
6.设
0.8 1 0.1
R 0
0.4
0
0.3 0 0.2

大学模糊数学试题

大学模糊数学试题

⎪⎪⎭⎫⎝⎛3.05.08.01.0⎪⎪⎭⎫⎝⎛5.05.08.05.0大学模糊数学期末试题命题人:控制与计算机工程学院 测控技术与仪器 测控1003班 吴国勋 1101160319一、 选择题(共2小题,每题5分,共10分) 1、设集合A={1,2,3,4,5,6},f 是如下定义的:f:x ∈A →f(x)=6/x ∈A.则f 的定义域( ) A 、(1,2,3,6) B 、(1,2,5,6) C 、(2,3,4,6) A 、(1,3,4,6) 2、设A= 则t(A)=( )A⎪⎪⎭⎫ ⎝⎛2.05.08.05.0 B ⎪⎪⎭⎫ ⎝⎛5.08.08.05.0 C ⎪⎪⎭⎫⎝⎛5.02.08.05.0 D二、 填空题(共5小题,每空2分,共20分) 1、已知下列各集合A={y|y=2x+1,x>0},B={y|y=-3x+9} 则A ∩B=_______;A ∪B=_________. 2、(A ∩B )∪C=(A ∪C)________(B ∪C). 3、设},,,,{54321u u u u u U =,)8.0,1.0,3.0,4.0,7.0(~=A ,)6.0,5.0,1.0,9.0,2.0(~=B ,则=c A ~,~A=c B ~。

4、若模糊概念a 在论域U 上的模糊集为~A ,则判断句“u 是a ”的真值为 。

5、模糊矩阵R=nn ijr⨯)(如果满足自反性 ,对称性 ,传递性 , 就称R 是一个 。

三、 判断题(共5小题,每题2分,共10分)101918178.066.054.042.0++++++52.044.036.028.011++++1、λ)(CA 和C A )(λ是相等的。

( )2、设A,B 是模糊对称矩阵,则A ∪B,A ∩B ,A 。

B 都是模糊对称矩阵。

( )3、设A,B 是模糊自反矩阵,则A ∪B,A ∩B, A 。

B 都是模糊自反矩阵。

( )4、设a=(a1,a2,…,an ),b=(b1,b2,…,bn)。

模糊数学考试习题

模糊数学考试习题

模糊数学考试习题第一篇:模糊数学考试习题一、填空(每空3分)1.经典集合是论域U到集合的映射.2.模糊集合是论域U到集合的映射.3.经典集合的关系矩阵是.4.模糊集合的模糊关系矩阵是.5.模糊的不确定性即使时间过去了(或者实际作了一次试验)仍然是6.模糊数学把数学的应用范围从精确现象扩大到领域.7.模糊矩阵运算关于交的分配律.8.模糊集的隶属函数是专家给出的.9.模糊集强调的是集合边界的定义.10.模糊聚类方法给出的分类结果不是说事物绝对的属于或绝对的不属于类.11.集合U、V的直积U⨯V的子集R称为U到V的关系.12.U⨯V的一个模糊子集R称为U到V的关系.~13.经典集合的值域是.14.模糊集合的值域是.15.经典集合YI c的排中(互补)律.16.模糊集合YI c的排中(互补)律.17.模糊集的隶属函数是存在.18.模糊聚类方法给出的分类结果.19.模糊模式识别的最大隶属原则有个.20.模糊集的λ截集将模糊集的隶属函数转化为普通集合的二、简述题(每小题15分)1.简述模糊集的一种表示方法,并进行说明.2.简述模糊聚类的编网法.3.写出三种模糊分布函数.4.简述模糊集的一种运算,并进行说明.5.简述模糊聚类的最大树法.6.简述分解定理与扩张原理。

三、举一应用模糊数学方法解决实际问题的例子(25分)第二篇:数学考试一、聪明的你来填一填:(每空0.5分,共12分)1.在()里填上合适的单位:一块玻璃的厚度大约是3()骑自行车每小时行驶15()李明体重35()一辆汽车载重5()2、在()里填上合适的数:5厘米=()毫米2千米=()米()米=50分米4000千克=()吨6千克=()克8吨=()千克1600千克-600千克=()吨14厘米 + 26厘米 =()分米3、在○里填上“>、<或=”:70厘米○90毫米5千米○4500米990克○1千克1500千克○2吨4、把序号填在下面的括号内:5、括号里最大能填几?()×6<498×()<63()×5<446、用0、1、2组成最大的三位数是(),最小的三位数是(),他们的差是()。

模糊数学试题试卷答案

模糊数学试题试卷答案

1.设~A 的隶属函数2~2()()1,x a A x x R σ-=-∈,其中,0a R σ∈>。

①对任意的[0,1]λ∈,求~A λ ②1λ=时,求~A λ解:①2~~2(){|()}{|1}{|x a A x A x x x a x a λλλσ-=≥=-≥=-≤+②当1λ=时,~{}A a λ=2.设论域123{,,}U x x x =在U 定义模糊集~1230.90.50.1A x x x =++表示“质量好”,~1230.10.20.9B x x x =++表示“质量差”, ①写出模糊集“质量不好”的表达式②分析“质量好”与“质量差”是否为相同的模糊集解:①~1230.10.50.9cA x x x =++ ②很明显~~cA B ≠,所以“质量不好”与“质量差”不是相同的模糊集。

3.设~A 是一个模糊阵,证明~()ccA A =证明:设~()ij m n A a ⨯=,则~(1)c ij m n A a ⨯=-,同理~()[1(1)]()cc ij m n ij m n A a a ⨯⨯=--=4.设~~10.70.40.70,0.40.610.80.500.3A B ⎛⎫⎛⎫ ⎪== ⎪ ⎪⎝⎭ ⎪⎝⎭解:①~~0.40.610.7A B ⎛⎫=⎪⎝⎭②~~11 00.41101 0.4<0.6 11()00 0.6<0.71100 0.7<110A B λλλλλ⎧⎫⎛⎫≤≤⎪⎪ ⎪⎝⎭⎪⎪⎪⎪⎛⎫⎪⎪≤ ⎪⎪⎪⎝⎭=⎨⎬⎛⎫⎪⎪≤ ⎪⎪⎪⎝⎭⎪⎪⎪⎪⎛⎫≤⎪⎪ ⎪⎝⎭⎩⎭5.设~1:R X Y ⨯上模糊关系,其隶属函数2~()1(,)x y R x y e --=,~2:R Y Z ⨯上的模糊关系,其隶属函数2~()2(,)y z R x y e--=,求~~12R R解:22~~~~()()1212(,)[(,)(,)][]x y y z y Yy YR R x z R x y R y z e e ----∈∈=∨∧=∨∧,对于固定的,x z ,可以分别画出2()x y e--,2()y z e--的图像,交点即为所求的值。

模糊数学基础练习题

模糊数学基础练习题

模糊数学基础练习题模糊数学基础练习题在现代数学中,模糊数学是一门研究不确定性和模糊性的数学分支。

它通过引入模糊集合和模糊逻辑,为处理现实世界中模糊和不确定的问题提供了一种有效的工具。

为了更好地理解和应用模糊数学,下面将给出一些模糊数学基础练习题。

1. 模糊集合:给定一个模糊集合A = {(x, μA(x))},其中x是集合的元素,μA(x)是元素x的隶属度。

请计算集合A的支持度和核。

2. 模糊逻辑运算:假设有两个模糊集合A = {(x, μA(x))}和B = {(x, μB(x))},请计算它们的模糊交、模糊并和模糊补运算。

3. 模糊关系:考虑一个模糊关系R = {(x, y, μR(x, y))},其中x和y是集合的元素,μR(x, y)是元素x和y之间的关系强度。

请计算关系R的模糊合成和模糊反关系。

4. 模糊推理:假设有一个模糊规则库,包含多个模糊规则,如“If x is A and y is B, then z is C”,其中A、B和C分别是模糊集合。

请利用模糊推理方法,根据给定的输入模糊集合,推导出输出模糊集合。

通过解答以上练习题,我们可以更好地理解和应用模糊数学。

模糊数学的应用领域广泛,包括模糊控制、模糊决策、模糊优化等。

它在处理不确定性和模糊性问题时具有很强的适应性和灵活性,能够更好地反映现实世界中的复杂性和模糊性。

总之,模糊数学是一门重要的数学分支,它为处理现实世界中模糊和不确定的问题提供了一种有效的工具。

通过不断练习和应用,我们能够更好地掌握模糊数学的基础知识和技巧,为解决实际问题提供更准确和可靠的方法。

模糊数学考试题

模糊数学考试题

模糊数学考试题一、选择题(每题1分,共30分)1. 模糊集合最早由哪位数学家引入?A. George KlirB. Lotfi ZadehC. Zadeh LotfiD. George Boole2. 模糊逻辑的基本操作是?A. 与、或、非B. 加、减、乘、除C. 并、交、差D. 集合的包含与被包含3. 模糊集合的隶属函数的取值范围是?A. [0,1]B. [0,∞)C. (0,1)D. (0,∞)4. 以下哪个是模糊推理的方法?A. BP神经网络B. 遗传算法C. 最大似然估计D. 模糊推理算法5. 模糊数学最初的应用领域是?A. 人工智能B. 控制理论C. 图像处理D. 统计学...二、填空题(每题2分,共20分)1. 模糊数学是基于()集合理论的一种数学理论。

2. 模糊逻辑中,非真即()。

3. 模糊集合的隶属函数可用()函数来表示。

4. 模糊数学中,我们用模糊关系来描述()。

5. 模糊数学最重要的应用之一是在()理论中。

...三、问题解答题(每题15分,共60分)1. 简述模糊集合的定义和特点。

模糊集合是指在给定的范围内,每个元素都具有一定的隶属度,是介于完全属于和完全不属于之间的中间状态。

模糊集合的隶属度用隶属函数表示。

与传统集合不同,模糊集合的元素可以部分属于集合,这种模糊边界的概念反映了现实世界中存在的不确定性和模糊性。

2. 简述模糊逻辑的基本原理。

模糊逻辑是基于模糊集合理论的一种逻辑系统。

它以真值不再是二值(0或1)为基础,而是用模糊集合的隶属度来表示概率。

模糊逻辑中,逻辑运算包括模糊与、模糊或、模糊非等。

与传统逻辑相比,模糊逻辑更能应对真实世界中存在的不确定性和模糊性。

3. 简述模糊推理的基本方法。

模糊推理是根据给定的模糊规则和事实,通过运用模糊逻辑的方法进行推理推断。

模糊推理的基本方法包括模糊匹配、模糊推理和模糊控制。

其中,模糊匹配是将模糊规则中的条件与已知事实进行匹配;模糊推理是根据匹配的程度和隶属度进行推理;模糊控制是将推理的结果转化为对系统的控制动作。

模糊数学习题

模糊数学习题

(2.1) 给出下列各个集合的幂集(1) A={1} (2) B={a ,b} (3) C={a ,b ,c} (4) D={1,Ф} (2.2) 设A={a ,b},B={m ,n},C=Ф,求:(1)A ⨯B (2)A ⨯C (2.3) X={1,2,3,4,5,6,7},∈A F (X),其隶属度)(x A μ如下:1.0)1(=A μ, 3.0)2(=A μ, 8.0)3(=A μ, 1)4(=A μ, 8.0)5(=A μ,3.0)6(=A μ,0)7(=A μ(1) 分别别用查德法、向量法、序偶法表示A ; (2) 求c A ;(3) 指出A 的意义。

(2.4) 已知模糊集 “老年” O 和“年轻”Y 的隶属函数分别为⎪⎩⎪⎨⎧>-+≤≤=--时。

当时。

,当50,])550(1[5000)(12x x x x O μ ⎪⎩⎪⎨⎧≤<-+≤≤=-时。

当时。

,当20025,])525(1[2501)(12x x x x Y μ 试写出模糊集“不老”和“既不老又不年轻”的隶属函数。

(2.5) 设∈C B A ,,F (X),如下表:求;)(;)(;;ccB A B A B A B A ⋂⋃⋂⋃C B A C B A C B A cc cc⋃⋂⋃⋃⋂⋃)(;)(;)( (2.6) 设X=[0,1],x x A =)(μ,x x c A -=1)(μ;试证(F (X),c,,⋂⋃)不满足互补律。

(2.7) 已知∈B A ,F (X),试证)()(C B A C B A ⋃⋃=⋃⋃ (2.8) 设},,,,{54321x x x x x X =,543213.08.017.02.0x x x x x A ++++=543216.011.017.0x x x x x B ++++=,求B A B A ⋃⋂; (2.9) 任取Fuzzy 集],[X F A ∈ 若存在X x ∈0, 使)1,0()(0∈=a x A μ,证明:对任意][X F B ∈,X B A B A =Φ= ,至少有一个不成立。

模糊数学试题精选全文

模糊数学试题精选全文

可编辑修改精选全文完整版华南理工大学研究生课程考试《 模糊数学 》样卷注意事项:1. 所有答案请按要求填写在答题纸上; 2. 课程代码:(S0003006)3.考试形式:闭卷( √ ) 开卷( ) 开闭卷结合( ) 4. 考试类别:博士研究生(√ ) 硕士研究生(√ )5. 试卷共 十二大题,满分100分,考试时间150分钟。

一、填空题1.设论域U={u 1,u 2,u 3,u 4,u 5},F 集A=(0.5,0.1,0,1,0.8), B=(0.1,0.4,0.9,0.7,0.2),则(A ⋃B)C =_______________。

2.设论域R=[0,3],且01112(),()213323xx x x A x B x x x x x ≤≤-≤≤⎧⎧==⎨⎨-<≤-<≤⎩⎩则它们的黎曼贴近度N(A,B)=_______________________。

3.0.410.70.510.62,323=_______123234=++=++⨯设,则。

4. 设A =[3,9], B =[7,10],则A +B = ,A ⨯B = 。

5.设论域U={1,2,…,10},且 0.20.40.60.811110.80.60.40.2[],[]4567891012345=++++++=++++大小 则[不大也不小]=_____________________________。

二、判断题(请在每小题的括号内认为正确的打“√”错误的打“⨯”) 1.λ≤μ ⇒ A λ ⊇A μ ( )2(A λ)c =(A c )λ ( ) 3 若A ⊆ B ⊆ C , 则N (A ,C ) ≤ N (A ,B )∨N (B ,C ) ( ) 4 若R 1⊆S 1, R 2⊆S 2,则 R 1∪R 2 ⊆ S 1∪S 2 ( ) 5 R∪R c = E ( )三、简答题(10分)1. 请写出隶属度函数的确定有哪几种方法。

建模数学试题及答案

建模数学试题及答案

建模数学试题及答案一、选择题(每题3分,共30分)1. 以下哪个选项是线性方程的标准形式?A. \( ax + by = c \)B. \( ax^2 + by^2 = c \)C. \( ax^3 + by^3 = c \)D. \( ax + by + cz = d \)答案:A2. 函数 \( f(x) = x^2 \) 的导数是什么?A. \( 2x \)B. \( x^2 \)C. \( x \)D. \( 1 \)答案:A3. 以下哪个是二阶微分方程?A. \( y' = 2x \)B. \( y'' = 2x \)C. \( y = 2x \)D. \( y' + y = 2x \)答案:B4. 积分 \( \int x^2 dx \) 的结果是?A. \( \frac{x^3}{3} + C \)B. \( x^3 + C \)C. \( 2x^2 + C \)D. \( 3x^2 + C \)答案:A5. 以下哪个是矩阵?A. \( [a] \)B. \( (a, b) \)C. \( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \)D. \( \{a, b\} \)答案:C6. 以下哪个是概率论中的随机变量?A. 一个固定的数字B. 一个确定的函数C. 一个可能取不同值的变量D. 一个常数答案:C7. 以下哪个是线性代数中的基本概念?A. 函数B. 微分C. 向量空间D. 积分答案:C8. 函数 \( f(x) = \sin(x) \) 的不定积分是什么?A. \( -\cos(x) + C \)B. \( \cos(x) + C \)C. \( \sin(x) + C \)D. \( \tan(x) + C \)答案:B9. 以下哪个是微分方程?A. \( y = 2x \)B. \( y' = 2x \)C. \( y'' = 2x \)D. \( y''' = 2x \)答案:B10. 以下哪个是统计学中的基本概念?A. 函数B. 微分C. 样本D. 积分答案:C二、填空题(每题2分,共20分)1. 线性方程 \( ax + by = c \) 的斜率是 _______。

2013-2014模糊数学练习题

2013-2014模糊数学练习题

1、设模糊集合123456
0.50.70.20.80.40.6A u u u u u u =+++++,计算截集A 0.3与A 0.6. 2、设论域U = {u 1, u 2, u 3, u 4},设{}{}{}{}1234123131
,,,00.3,,0.30.5,0.50.80.81
u u u u u u u A u u u λλλλλ⎧≤≤⎪<≤⎪⎪=<≤⎨⎪<≤⎪⎪⎩
,试计算模糊集合A . 3、设X = Y = {1, 2, 3, 4, 5},模糊集合A = “重”=
0.10.20.40.70.912345++++模糊集合B = “轻”= 0.90.70.60.40.112345
++++。

(1)若A(很)轻,则B 重;问若A 很轻,则B 如何?
(2)若A 轻,则B 重,否则B 不重。

问若A 不很轻,则问B 如何?
4、某企业生产茶叶,茶叶的质量有3个指标确定,茶叶的级别分别为一级,二级,三级,外等。

其中,根据上述4个等级给定的单因素评判矩阵如下:
⎪⎪⎪⎭
⎫ ⎝⎛=12.026.022.040.023.025.032.020.027.013.024.036.01R 设三个指标的权重为A = (0.3, 0.42, 0.28),采用模型M(∧, ∨)对该产品进行模糊综合评价,并按最大隶属度原则判断该产品属于哪一级?
5、模糊推理(重点的书上例7,8)、模糊决策(重点是ppt 上模糊二元对比决策例题)、模糊综合评价(一级模糊综合评价方法)、模糊聚类分析(按等价关系聚类)、模糊模式识别PPT 上出现的所有例题。

数学建模模拟试题及答案(2020年整理).doc

数学建模模拟试题及答案(2020年整理).doc

数学建模模拟试题及答案一、填空题(每题5分,共20分) 1. 若,,x z z y ∝∝则y 与x 的函数关系是.2. 在超级市场的收银台有两条队伍可选择,队1有1m 个顾客,每人都买了1n 件商品,队2有2m 个顾客,每人都买了2n 件商品,假设每个人付款需p 秒,而扫描每件商品需t 秒,则加入较快队1的条件是 .3. 马尔萨斯与罗捷斯蒂克两个人口增长模型的主要区别是假设了4. 在研究猪的身长与体重关系时,我们通过与已知其相关性质的的弹性梁作 的方法建立了模型.二、分析判断题(每小题15分,满分30分)1. 要为一所大学编制全校性选修课程表,有哪些因素应予以考虑?试至少列出5种.2. 一起交通事故发生3个小时后,警方测得司机血液中酒精的含量是),ml /mg (100/56 又过两个小时,含量降为),ml /mg (100/40试判断,当事故发生时,司机是否违反了酒精含量的规定(不超过80/100)ml /mg (.(提示:不妨设开始时刻为)(,0t C t =表示t 时刻血液中酒精的浓度,则依平衡原理,在时间间隔],[t t t ∆+内酒精浓度的改变量为t t kC t C t t C ∆-=-∆+)()()(其中0>k 为比例常数,负号则表示了浓度随时间的推移是递减的.) 三、计算题(每题25分,满分50分)1. 一个毛纺厂使用羊毛、兔毛和某种纤维生产甲、乙两种混纺毛料,生产一个单位产品甲需要的三种原料依次为3、2、8个单位,产值为580元;生产一个单位产品乙需要的三种原料依次为2、3、5个单位,产值为680元,三种原料在计划期内的供给量依次为90、30和80单位.试建立线性规划模型以求一个生产方案,使得总产值达到最大,并由此回答:(1) 最优生产方案是否具有可选择余地?若有请至少给出两个,否则说明理由. (2) 原材料的利用情况.2. 三个砖厂321,,A A A 向三个工地321,,B B B 供应红砖.各砖厂的供应量与各工地的需求量以及各砖厂调运红砖到各工地的单价见表.试安排调运方案,使总费用最小?数学建模模拟试题(一)参考答案一、填空题(每题5分,共20分) 1. k kx y ,=是比例常数; 2. )()(2211t n p m t n p m +<+; 3. 增长率是常数还是人口的递减函数; 4. 类比.二、分析判断题(每小题15分,满分30分)1. 问题涉及到时间、地点和人员三大因素,故应该考虑到的因素至少有以下几个: (1)教师:是否连续上课,对时间的要求,对多媒体的要求和课程种类的限制等; (2)学生:是否连续上课,专业课课时与公共基础课是否冲突,选修人数等; (3)教室:教室的数量,教室的容纳量,是否具备必要的多媒体等条件; (每个因素3分)2. 设)(t C 为t 时刻血液中酒精的浓度,则浓度递减率的模型应为,/kC C -=其通解是,e)0()(ktC t C -=而)0(C 就是所求量.由题设可知,40)5(,56)3(==C C 故有56e )0(3=-k C 和 ,40e )0(5=-k C由此解得.94e 56)0(17.040/56e 32≈=⇒≈⇒=k k C k可见在事故发生时,司机血液中酒精的浓度已经超出了规定. 三、计算题(每题25分,满分50分) 1. 设21,x x 表示甲、乙两种产品的产量,则有 原材料限制条件: ,902321≤+x x,303221≤+x x ,805821≤+x x目标函数满足 ,680580m ax 21x x z += 合在一起便是所求线性规划模型:,680580m ax 21x x z +=⎪⎪⎩⎪⎪⎨⎧=≥≤+≤+≤+.2,1,0,8058,3032,9023212121j x x x x x x x j (1)使用图解法易得其最优生产方案只有一组(这是因为所有约束条件所在直线的斜率与目标函数直线的斜率均不相等),从而最优方案没有可选择余地.计算知:最优解为,)740,745(T*=X 目标值为753300max =z (万元).(2)利用图解法求解中只用到了后两个约束条件,故羊毛有剩余量,将解代入可检验而知羊毛有7259单位的剩余量. 2. 本问题是一个产销平衡的运输问题,可以利用表上作业法直接求解, 首先确定初始方案:其次对方案进行最优性检验:λ11 = 10-4+6-7=5 > 0, λ12 = 6-4+6-5=3 > 0, λ31 = 8-7+5-3=3 > 0,λ33 = 9-3+5-6=5 > 0,故上述方案已是最优方案,即总运费最低的调运方案为:21503310223021160231701,,,,B A B A B A B A B A −→−−→−−→−−→−−→− 总费用为2460150310630516071704=⨯+⨯+⨯+⨯+⨯(百元).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A 最佳投资企业的优选问题
某投资银行拟对某市4家企业(记为X1, X2, X3, X4)进行投资, 抽取5项主要指标进行评估: C1: 年产值(单位:千万元);C2:社会效益(单位:千万元);C3:生产能力;C4:管理能力;C5:技术能力。

评估专家组考察了4家企业2003年-2005年三个年度在5个指标下的具体情况,考察的指标值见表1 其中前2个指标信息是各企业的精确数据, 后3个指标信息是评估专家组经考察后的定性结论。

(1) 各评价指标权重已知)2.0,1.0,2.0,2.0,3.0(
W。

试建立数学模型确定投资银行的最佳投资企业。

(2) 如果各评价指标权重是未知的,请你给出合理的确定指标权重的方法,并考虑此时的投资银行的最佳投资企业。

表1 各企业分年度指标信息情况表
B题: 工程评标问题
某建设单位组织一项工程项目的招标,现组建成评标专家组对4个投标单位的标书进行评标。

4个标书的指标信息见表4,其中前三个指标信息是各投标单位给定的精确数据,后三个指标信息是评标专家组经考察后的定性结论。

(1) 请你帮评标专家组设计一个工程评标模型,以确定最后中标单位。

(2) 如果各评价指标权重是未知的,请你给出合理的确定指标权重的方法,并考虑此时的投资银行的最佳投资企业。

表4 各投标单位基本信息表
注:请严格按照《数学建模竞赛论文格式规范》的要求, 在A、B两题中任选一题在规定时间内提交一篇完整的数学建模论文。

数学建模竞赛论文格式规范
●论文应包含“摘要、问题的简述(重述) 、模型的假设、符号说明、问题的分析、模型的建立、模型
的求解、模型分析与检验、模型的改进、模型评价、模型的推广、参考文献、附录”等完整结构体系。

●论文(答卷)用白色A4纸,上下左右各留出2.5厘米的页边距。

●论文题目、摘要和关键词作为第一部分,第二部分是论文正文。

●论文从首页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。

●论文加上页眉,页眉中注明“论文题目,作者”两方面的信息。

●论文题目用3号黑体字、一级标题用4号黑体字,并居中。

论文中其他汉字一律采用小4号黑色宋
体字,行距用单倍行距。

●提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要
权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。

全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。

●引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在
正文引用处和参考文献中均明确列出。

正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。

参考文献按正文中的引用次序列出,其中:
参考文献中书籍的表述方式为:
[编号] 作者,书名,出版地:出版社,出版年。

参考文献中期刊杂志论文的表述方式为:
[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。

参考文献中网上资源的表述方式为:
[编号] 作者,资源标题,网址,访问时间(年月日)。

相关文档
最新文档