12原子核式模型

合集下载

原子核式结构模型

原子核式结构模型
根据汤姆孙模型计算的结果:电子 质量很小,对 α 粒子运动的影响 完全可以忽略不计;1 由于正电荷均 匀分布在原子内,α 粒子穿过原子 时受到的各方向正电荷的斥力基本 上会相互平衡,因此对α 粒子运动 的影响不会很大。
创新微课
原子核式结构模型
五、卢瑟福核式结构模型
创新微课
在原子的中心有一个很小的核,叫做原子核。原子的全 部正电荷和几乎全部质量都集中在原子核里,带负电的 电子在核外空1间绕着核旋转。
原子核式结构模型
根据卢瑟福的原子核式结构模型,原子内部是十 分“空旷”的,举一个简微课
原子核
原子核式结构模型
创新微课
六、原子核的电荷和大小
根据卢瑟福的原子核式结构模型和 α 粒子散射实验数据,可以推算 出各种元素原子核的电荷数,还可以估计出原子核的大小。 (1)原子半径的数量1 级为 10 ─ 10 m、原子核半径的数量级为 10 ─14 m, 原子核的体积只占原子体积的万亿分之一。 (2)原子核所带正电荷数与核外电子数以及该元素在周期表内的原子 序数相等。 (3)电子绕核旋转所需向心力就是核对它的库仑力。
创新微课 现在开始
原子核式结构模型
原子核式结构模型
创新微课
一、汤姆孙的原子模型
在汤姆孙的原子模型中,原子是一个球体,正电荷均匀分布在 整个球体内,电子镶嵌其中。
1
电子
英国物理学家 汤姆孙
汤姆孙原子模型 (枣糕模型)
原子核式结构模型
二、α粒子散射实验
1909~1911年,英国物理学家卢瑟福和他的 助手们进行了 α 粒子散射实验。
同学,下节再见
1
创新微课
原子核式结构模型
1
创新微课
原子核式结构模型

原子的核式结构模型课件

原子的核式结构模型课件
它集中了全部的正电荷和几乎全部的质量,电子在核外空间运动。
原子的核式结构模型
5
预习交流 2
如何用原子的核式结构模型对 α 粒子散射实验结果进行解释?
答案:(1)当 α 粒子穿过原子时,如果离核较远,受到原子核的斥力
很小,α 粒子就像穿过“一片空地”一样,无遮无挡,运动方向改变很小,
因为原子核很小,所以绝大多数 α 粒子不发生偏转。
11
原子的核式结构模型
12
在α粒子散射实验中,我们并没有考虑α粒子跟电子碰撞,这是因
为(
)
A.电子体积非常小,以至于α粒子碰不到它
B.α粒子跟电子碰撞时,损失的能量很小,可以忽略
C.α粒子跟各个电子碰撞的效果相互抵消
D.电子在核外均匀分布,所以α粒子受电子作用的合外力为零
解析:α粒子与电子相碰就如同飞行的子弹与灰尘相碰,α粒子几
附近时的示意图,A、B、C 三点分别位于两个等势面上,则以上说法
正确的是(
)
A.α 粒子在 A 处的速度比在 B 处的速度小
B.α 粒子在 B 处的速度最大
C.α 粒子在 A、C 处的速度大小相等
D.α 粒子在 B 处的速度比在 C 处的速度小
原子的核式结构模型
21
解析:由能量守恒定律可知,对于 A、B、C 三点,A、C 位于原子
否定了。
原子的核式结构模型
2
预习交流 1
汤姆孙发现电子之后,人们立刻进行建立各种原子模型的尝试,
你都知道有哪些典型的模型呢?
原子是由质子、中子和电子组成的
原子的核式结构模型
3
答案:(1)勒纳德的动力子模型:原子内部的电子与相应的正电荷
组成一个中性的“刚性配偶体”,他取名为动力子,无数动力子漂浮于

物理学 原子的核式模型结构

物理学 原子的核式模型结构

. 由于金箔原子中的带电粒子对 粒子的库仑力作用,
发生了 粒子的散射。统计散射到各个方向的 粒
子所占的比例,可以推知原子内电荷的分布情况。
汤姆孙模型中的散射
侧视图
俯视图
粒子散射实验装置
(1) 大角度的偏转不可能是电子造成的;
(2) 离球心越近,所受力越小; (3) 不可能产生大角散射的,只有小角
度散射。
• 一般的原子核,实验确定的核半径的数量级为 10-14m ,而整个原子半径的数量级是 10-10m,两 者相差十万倍之多,可见原子内部是十分“空” 的。
测验
1. 物质是原子构成的,原子半径的数量级为埃米 (10-10m),原子核半径的数量级为飞米 (10-15m), 下列说法 哪个正确? (1)原子大小之于苹果相当于苹果大小之于月球; (2)原子大小是原子核大小的一万多倍; (3)不同物质的原子及原子核,其大小也千差万别; (4)物质的固、液、气相均可由原子概念来统一描述。
3. 卢瑟福核式结构模型
• 1911 年卢瑟福提出另外一种模型:原子中带正 电部分很小,电子在带正电部分的外边。
核式模型中的散射
• 正电体(称之为原子核)很小,所受的力就可 以很大,就能产生大角度散射-----核式结构模型。
4. 原子核的电荷与大小
• 粒子到达离原子核最小的距离,就是原子核半 径的理论上限。
12.2 原子的核式模型结构
1. 汤姆孙的模型 2. 粒子散射实验 3. 卢瑟福核式结构模型 4. 原子核的电荷与大小
1. 汤姆孙的模型
• 1903年,汤姆孙假设,原子的是电子镶嵌在一个正 电荷均匀分布、具有原子大小、弹性冻胶状的球内 或球上-----“西瓜模型”。
汤姆孙的原子模型,小圆点代表正 电荷,大圆点代表电子。

原子核式结构模型

原子核式结构模型

原子核式结构模型
1 什么是原子核式结构模型
原子核式结构模型是指以原子核为中心,以其结构核素为外围组成的一种模型,是现代物理学提出的一种量子力学模型。

根据这种模型,原子核由质子和中子构成,其外围有质子、中子和费米子存在,使原子核具有特殊的结构。

2 原子核式结构模型的特点
1、核子的发明:今年是发现原子核的百年纪念,由爱因斯坦和玻尔在1905年提出核子模型,只有由正质子、负质子和中子组成。

2、结构特性:原子核由核子和核质子共同构成,核子质量极小,要比中子大2000倍以上,构成原子核的核质子的构成数量为其质量的比例,有的原子核还带有中性的费米子。

3、区别:原子核式结构模型与物理学里的分子模型完全不同,分子模型是以分子的中心的分子键为中心的,原子核式结构模型是以原子核的结构核素构成一个完整的模型。

3 原子核式结构模型的应用
原子核模型对物理学、化学、核物理学等多领域有重大影响,它可以解释原子中核子的形成、核素的变异等现象,为大规模原子核研究奠定了坚实的理论基础。

此外,它还可以用来解释原子构型的形成
以及其价态间的相互作用等,广泛应用于原子核反应和量子表现、原子与微粒子的测定等。

原子的核式结构模型 课件

原子的核式结构模型 课件
分类例析
实验结论 (1)绝大多数的α粒子穿过金箔后 仍沿原来的方向前进; (2)少数α粒子发生了 较大的偏转; (3)极少数α粒子的偏转角θ超过 9,0°甚至有极个别α粒子被 反弹回来. 实验意义 (1)否定了 汤姆孙 的原子结构模型. (2)提出了 原子核式结构 模型,明确了 原子核大小 的数量 级.
分类例析
一、α粒子散射实验与核式结构模型 α粒子散射实验与汤姆孙的原子模型的冲突分析 (1)分析否定的原因 ①由于电子质量远小于α粒子质量,所以电子不可能使α粒 子发生大角度偏转.
分类例析
②使α粒子发生大角度偏转的只能是原子中带正电的部分, 按照汤姆孙原子模型,正电荷在原子内是均匀分布的,α粒 子穿过原子时,它受到的两侧斥力大部分抵消,因而也不 可能使α粒子发生大角度偏转,更不可能使α粒子反向弹回, 这与α粒子的散射实验相矛盾. ③实验现象表明原子绝大部分是空的,除非原子的几乎全 部质量和所有正电荷都集中在原子中心的一个很小的核上, 否则,α粒子大角度散射是不可能的.
分类例析
2.α粒子穿过金箔,受到电荷的作用力后,沿哪些方向前进的 可能性较大,最不可能沿哪些方向前进. 点拨 按照汤姆孙的模型,正电荷是均匀分布在整个原子 中的,当α粒子穿过原子时受到的各个方向上的正电荷的斥 力会相互抵消很多,沿直线运动的可能性最大,最不可能 沿着很大的角度甚至180°角发生偏转.除非原子核的大部 分质量和电荷集中在一个很小的核上,否则要发生大角度 的偏转是不可能的.
分类例析
解析 α粒子散射实验现象:绝大多数α粒子沿原方向前 进,少数α粒子有大角度散射.所以A处观察到的粒子多, B处观察到的粒子少,所以选项A、B错误.α粒子发生散 射的主要原因是受到原子核库仑斥力的作用,所以选项D 错误、C正确. 答案 C

原子核式结构模型

原子核式结构模型

原子核式结构模型原子核是原子的核心部分,由质子和中子组成。

原子核的结构可以使用原子核式结构模型来描述。

该模型最早由曼谷教授鲁特福德于1911年提出,通过实验验证得到了广泛认可。

本文将详细介绍原子核式结构模型及其主要特点。

原子核式结构模型的核心概念是原子核的存在和构成方式。

根据实验结果,鲁特福德提出了原子核中心存在着正电荷和质量集中的核,质子和中子是核的基本组成部分。

质子带有正电荷,中子没有电荷,两者的质量几乎相等。

原子核的直径约为10^-15米,而整个原子的直径约为10^-10米,原子核占据原子体积只有极小的比例。

在原子核式结构模型中,原子核由质子和中子组成。

质子和中子存在于核的特定位置,形成一个紧密排列的结构。

质子和中子通过强相互作用力紧紧地束缚在一起,使得原子核保持了相对稳定的结构。

质子和中子的数量决定了原子核的质量数,在同位素中,质子数相同而质量数不同的原子核被称为同位素。

原子核的正电荷主要来自于质子,而质子数量决定了原子核的电荷数。

原子核的电荷数和质量数不同构成了不同元素的原子核,以及同位素的不同核。

原子的核电荷数决定了原子的化学性质,是元素之间发生化学反应的重要因素。

由于原子核的直径极小,通过实验观察原子核结构是非常困难的。

鲁特福德利用了阿尔法粒子散射实验,发现阿尔法粒子在经过薄金属膜时会被散射。

根据散射角的测量结果,鲁特福德得出了原子核式结构模型。

通过计算散射粒子的运动和能量,他得出了原子核的直径和正电荷的分布情况。

原子核式结构模型的主要特点是原子核中心存在着具有正电荷和质量集中的核,质子和中子是原子核的基本组成部分。

原子核质量数通过质子和中子的数量决定,而电荷数通过质子的数量决定。

原子核的直径约为10^-15米,是原子体积的一小部分。

原子核通过强相互作用力将质子和中子紧密地束缚在一起,保持着相对稳定的结构。

总结起来,原子核式结构模型是对原子核的结构和构成方式的描述。

它通过实验证据得到了广泛认可,成为了解释原子核性质和行为的重要模型。

原子的核式结构模型

原子的核式结构模型

原子的核式结构模型一、背景在深入研究原子的内部结构后,科学家们得出了一种关于原子构造的理论,即核式结构模型。

这个模型揭示了原子中心的秘密,为我们打开了理解物质世界的新视角。

二、核式结构模型的提出19世纪末,卢瑟福通过α粒子散射实验,发现原子中心有一个密集的原子核,其体积仅占据原子体积的几千分之一。

同时,他发现原子核周围环绕着电子,这些电子沿着轨道运动,就像行星围绕太阳运动一样。

这一发现,彻底改变了我们对原子的理解。

三、核式结构模型的内容核式结构模型的主要内容是:原子由一个位于中心的原子核和核外电子组成,电子在特定轨道上运动,并受到原子核的吸引。

原子核由质子和中子组成,其质量约占原子质量的99.9%,而电子的质量几乎可以忽略不计。

因此,原子的大部分体积是由原子核占据的。

四、核式结构模型的意义核式结构模型的提出,为我们理解原子的性质和行为提供了基础。

它解释了为什么原子在化学反应中会形成稳定的化合物,为什么元素之间会有不同的化学亲和力等等。

这一模型成为了现代化学的基础,为我们的科技发展提供了重要的理论基础。

五、结论总的来说,原子的核式结构模型是科学史上的一个重大突破,它为我们打开了理解物质世界的新视角。

然而,随着科技的发展,我们还需要更深入的研究和探索,以揭示原子内部的更多秘密。

让我们期待更多的科学发现,以更好地理解这个美丽的物质世界。

原子的核式结构模型一、背景在深入研究原子的内部结构后,科学家们得出了一种关于原子构造的理论,即核式结构模型。

这个模型揭示了原子中心的秘密,为我们打开了理解物质世界的新视角。

二、核式结构模型的提出19世纪末,卢瑟福通过α粒子散射实验,发现原子中心有一个密集的原子核,其体积仅占据原子体积的几千分之一。

同时,他发现原子核周围环绕着电子,这些电子沿着轨道运动,就像行星围绕太阳运动一样。

这一发现,彻底改变了我们对原子的理解。

三、核式结构模型的内容核式结构模型的主要内容是:原子由一个位于中心的原子核和核外电子组成,电子在特定轨道上运动,并受到原子核的吸引。

原子的核式结构模型

原子的核式结构模型
薛定谔方程
描述微观粒子运动的基本方程, 用于求解原子中电子的波函数和
能量。
原子轨道
由量子力学计算得出的电子在原子 中的概率分布区域,决定了元素的 化学性质。
自旋和磁矩
电子自旋和轨道运动产生的磁矩是 原子磁性的来源。
多电子原子中电子排布规律研究进展
泡利原理
确定每个电子状态的独特性,保证电子排布的稳 定性。
原子中心有一个带正电的原子核,电子绕核旋转。该模型预测了α粒子散射实 验的结果,即大多数α粒子穿过原子时不受影响,少数α粒子受到大角度偏转, 极少数α粒子被反弹回来。
实验结果与预测一致
α粒子散射实验结果与卢瑟福的核式结构模型预测相符,从而验证了该模型的正 确性。同时,其他相关实验结果也支持了核式结构模型的理论预测。
局限性
玻尔理论虽然成功地解释了氢原子光谱和类氢离子光谱,但对于复杂原子(多电 子原子)的光谱现象却无法解释。此外,玻尔理论也无法解释原子的化学性质和 化学键的形成。
03
原子核式结构模型具体内容
原子核组成与性质
原子核位于原子的中心,由质子和中 子组成。
原子核的半径约为原子半径的万分之 一,但质量却占原子总质量的99.9% 以上。
04
电子云密度越大,表明 电子在该区域出现的概 率越高。
能量层级
原子中的电子按照能量高低分 布在不同的能级上,每个能级 对应一定的电子云形状和取向

当电子从一个能级跃迁到另一 个能级时,会吸收或释放能量 ,表现为光的吸收或发射。
电子跃迁遵循一定的选择定则 ,如偶极跃迁选择定则、自旋
原子核的发现
卢瑟福根据α粒子散射实验现象提出了原子核式结构模型。在 原子的中心有一个很小的核,叫原子核,原子的全部正电荷 和几乎全部质量都集中在原子核里,带负电的电子在核外空 间里绕着核旋转。

原子的核式结构模型(高中物理教学课件)完整版

原子的核式结构模型(高中物理教学课件)完整版
电子的发现是物理学史上的重要事Байду номын сангаас。人们由此认识 到原子不是组成物质的最小微粒,原子本身也有结构。
二.原子的核式结构模型
1.枣糕模型:J.J.汤姆孙本人于1898 年提出了一种 模型。他认为,原子是一个球体,正电荷弥漫性 地均匀分布在整个球体内,电子镶嵌其中。有人 形象地把他的这个模型称为“西瓜模型”或“枣 糕模型”。
中发射出来的快速运动的粒子,质量为氢原子质量的4倍、 电子质量的7300倍。统计散射到各个方向的α粒子所占的 比例,可以推知原子中电荷的分布情况。除了金箔,当 时的实验还用了其他重金属箔,例如铂箔。现在我们知 道α粒子就是氦原子核。
二.原子的核式结构模型
3.实验现象: ①绝大多数α粒子穿过金箔后基本上仍沿原来的 方向前进 ②少数粒子(约占1/8000)发生了大角度偏转 ③极少数偏转的角度甚至大于90度,甚至反弹
mv
B
qB
联立求得比荷:q m
E B2R
一.电子的发现
4.电子的发现:1897年,J.J.汤姆孙发现电子
1897年,J.J.汤姆孙根据阴极射线在电场和磁场中的偏转情况断 定,它的本质是带负电的粒子流,并求出了这种粒子的比荷。
他进一步发现,用不同材料的阴极做实验,所得比荷的数值都 是相同的。这说明不同物质都能发射这种带电粒子,它是构成各 种物质的共有成分。
03.原子的核式结构模型
这种从阴极发射出来的射线称为 阴极射线。
对这种射线本质的认识有两种观 点:一种观点认为,它是一种电 磁辐射;另一种观点认为,它是 带电微粒。
一.电子的发现
1.电子的发现:英国物理学家J. J. 汤姆孙认为阴 极射线是带电粒子流。为了证实这一点,从1890 年起他和他的助手进行了一系列实验研究。于 1897年,发现电子。

原子的核式结构模型(24张ppt)

原子的核式结构模型(24张ppt)

汤姆生的原子模型
十九世纪末,汤姆生发现了电子,并知道电 子是原子的组成部分.由于电子是带负电的, 而原子又是中性的,因此推断出原子中还有带 正电的物质.那么这两种物质是怎样构成原子 的呢?
了汤 枣姆 糕生 模提 型出
汤姆生
汤姆生的原子模型
在汤姆生的原子 模型中,原子是一个 球体;正电核均匀分 布在整个球内,而电 子都象枣核那样镶嵌 在原子里面.
质子
中子 质子数
核子
电荷数
四.原子核的电荷与尺度
原子核的电荷和大小 根据卢瑟福的原子核式模型和α粒子散射 的实验数据,可以推算出各种元素原子核 的电荷数,还可以估计出原子核的大小。 (1)原子的半径约为10-10m、原子核半径 约是10-15m,原子核的体积只占原子的体积 的万亿分之一。 (2)原子核所带正电荷数与核外电子数以 及该元素在周期表内的原子序数相等。 (3)电子绕核旋转所需向心力就是核对它 的库仑力。
2.2 原子的核式结构模型
1897年,汤姆孙对阴极 射线研究,发现了电子, 说明原子是可再分,原 子是中性,可推断出原 子中还有带正电的物 质.那么这两种物质是 怎样构成原子的呢?
汤姆孙
19世纪末到20世纪的三十年代,对于电子、光 谱的深入研究以及放射性现象、中子、质子的 发现,引起物理观念的重大变革,创立了新的 理论,导致人们对原子和原子核认识的升华.
第一条现象说明,原子中绝大部分是空的 第二、三现象可看出,α 粒子受到较大的库仑力作用 第四条现象可看出,α粒子在原子中碰到了比他质量大的多 的东西
粒子散射实验
对α 粒子的运动方向不会发生明显影响;由于正 电荷均匀分布,α 粒子所受库仑力也很小,故α 粒子偏转角度不会很大.
原子的核式结构

汤姆生的原子模型

汤姆生的原子模型

5. 半衰期 放射性元素的原子核有半数 半数发生衰变所需要 放射性元素的原子核有半数发生衰变所需要 的时间,叫做这种元素的半衰期 的时间,叫做这种元素的半衰期 衰变为钋218半衰期为 天 半衰期为3.8天 例 氡222衰变为钋 衰变为钋 半衰期为 衰变为氡222半衰期为 半衰期为1620年 镭226衰变为氡 衰变为氡 半衰期为 年 衰变为钍234半衰期为 × 109年 半衰期为4.5× 铀238衰变为钍 衰变为钍 半衰期为 半衰期表示放射性元素衰变的快慢, 半衰期表示放射性元素衰变的快慢,其值 只由原子核本身因素决定, 只由原子核本身因素决定,与原子所处的 物理或化学状态然放射现象显示出[ A.原子不是单一的基本粒子 B.原子核不是单一的基本粒子 C.原子内部大部分是空的 D.原子有一定的能级 答案:B ]
2.β衰变中所放出的电子,来自[ A.原子核外内层电子 B.原子核内所含电子
]
C.原子核内中子衰变为质子放出的电子 D.原子核内质子衰变为中子放出的电子
3.放射性与元素存在形式(单质或化合物)无关, 放射性与元素存在形式(单质或化合物)无关,
射线来源于原子核
4、衰变:原子核放出α粒子或 粒子后, 、衰变:原子核放出 粒子或 粒子后, 粒子或β粒子后 变成新的原子核 A α衰变 衰变 X → A− 4Y + 4He
Z Z −2 2
例 β衰变 衰变 例
6、放射性的应用与防护 、 <1>应用 应用 A 利用它的射线 B 作为示踪原子 <2> 放射性污染和防护
7. 衰变次数的计算
A Z
X 经过m次α衰变和n 次β衰变 变成 Y
A' Z'
A = A + 4m
'

原子核模型

原子核模型
模型
3. 密度泛函理论 ( 平均场理论)
描述原子核的微观理论
ab initio 方法:采用拟合核子散射数据得到两
体和三体力, 来直接计算其基态和激发态性质
现代壳模型的基本思想是在由价核子的各种占据 方式所构成的组态空间中对角化系统的哈密顿量, 其组态空间的维数会随着价核子数增加而迅速增加, 这就导致壳模型在研究质量数较大的原子核时计算 量会急剧增加,超过目前计算机的运算能力
1.幻数存在的实验根据
(2)在所有的稳定核素中,中子数N等于20 ,28,50和82的同中子素最多。
(3)当质子数Z=8,20,28,50和82时,稳 定同位素的数目同样要比邻近的元素多。
2.结合能的变化 原子核的结合能,是原子核稳定性的一种表征
。结合能的相对值越大,表示原子核结合得 越紧密,稳定性就越好。 (1)中子结合能 (2)总结合能
描述原子核的微观理论
密度泛函理论(平均场理论)
自洽场的思想:
势场
波函数
波函数:多体波函数 势场: 相互作用形式及波函数求得
1. 费米气体模型
费米气体模型
费米气体模型把核子看作几乎没有相互作 用的气体分子,由于核子是费米子,原子 核就可以是为费米气体。
对核内核子运动起约束作用的主要因素只 有泡利不相容原理.
为了求得费米能量EF,就要知道在EF能级以及
比EF低的能级上一共有多少状态。或者,有
多少组(n x , n y , n z),满足
(n2x、+n2 y+n2 z) ≦
8mEF d 2 h2
=
2. 费米能级
假如我们定义
2 =
8mEF d 2 h2
(n2x、+n2 y+n2 z) ≦ 2

2024年度原子的核式结构模型

2024年度原子的核式结构模型

2024/2/2
电子云性质
电子云具有弥漫性、动态性和统计性。它不像宏观物体那样 有确定的形状和边界,而是以一种概率分布的形式存在。
19
电子云形状和大小变化规律
形状
电子云的形状取决于原子轨道的类型。例如,s轨道呈球形对称,p轨道呈纺锤形,d轨道和f轨道则具有更复杂的 形状。
大小
电子云的大小反映了电子活动范围的大小,它与主量子数n有关。一般来说,n越大,电子云扩展的范围越广,电 子的活动范围也越大。
30
其他相关验证实验介绍
氢原子光谱实验
通过观测氢原子光谱的分裂情况,推断出原子内部存在能级结构,进一步验证了原子的 核式结构模型。
电子衍射实验
利用电子的波动性,通过电子衍射实验观察到原子的晶格结构,从而证实了原子内部结 构的存在。
2024/2
粒子加速器
利用粒子加速器产生高能粒子,可以更精确地模 拟散射实验,提高实验的精度和可靠性。
2024/2/2
20
电子云在化学反应中作用
化学键形成
电子云的重叠程度决定了化学键的强弱和性质。当两个原子的电子云发生有效重叠时,可以形成稳定 的化学键。
反应活性判断
根据电子云的分布和密度,可以预测分子的反应活性。例如,具有高电子云密度的原子或分子更容易 发生亲核反应。
2024/2/2
21
量子力学对电子云解释
26
激光技术中原子光谱应用
激光原理与原子光谱
激光的产生基于原子能级跃迁时释放的光子,因此原子光谱对激 光技术具有重要意义。
激光冷却与原子陷阱
利用激光技术可以实现对原子的冷却和囚禁,进而研究原子光谱 和量子物理现象。
激光光谱技术
激光光谱技术具有高分辨率和高灵敏度等特点,广泛应用于环境 监测、生物医学和材料科学等领域。

原子核式结构模型

原子核式结构模型
为何?
12
一、对物质构成和微观构造旳认识过程
4、1923年,卢瑟福 粒子散射试验
试验成果分析: (1)绝大多数α粒子穿过金箔后,与原来 旳运动方向偏离不多(平均2º-3º)。 (2)少数α粒子发生了大角度旳偏转。 (3)极少数α粒子产生超出90º旳大角 度偏转,个别α粒子甚至被弹回。 讨论2:α粒子大角度偏转是不是撞到了
例2:试估算氢原子核旳密度(氢原子核半径为R=1.210-15m)。
例3:请根据卢瑟福旳原子核式构造思索 粒子在穿过原子核时旳轨
迹有何特点,并画出其轨迹示意图。
四、作业
练习册:P22-P23
4、1923年,卢瑟福 粒子散射试验
试验成果分析: (1)绝大多数α粒子穿过金箔后,与原来 旳运动方向偏离不多(平均2º-3º)。 (2)少数α粒子发生了大角度旳偏转。 (3)极少数α粒子产生超出90º旳大角 度偏转,个别α粒子甚至被弹回。
讨论1:按照汤姆逊旳葡萄干蛋糕原子模 型,会不会出现试验成果(2)和(3)?
培养12位诺奖得主旳“核子科学之父”
1923年,卢瑟福取得该年度旳诺贝尔化学奖 1923年,卢瑟福旳助手索迪获诺贝尔化学奖; 1923年,卢瑟福旳学生阿斯顿获诺贝尔化学奖; 1923年,卢瑟福旳学生玻尔获诺贝尔物理奖; 1927年,卢瑟福旳助手威尔逊获诺贝尔物理奖; 1935年,卢瑟福旳学生查德威克获诺贝尔物理奖 1948年,卢瑟福旳助手布莱克特获诺贝尔物理奖 1951年,卢瑟福旳学生科克拉夫特和瓦耳顿,共同取 得诺贝尔物理奖; 1978年,卢瑟福旳学生卡皮茨获诺贝尔物理奖。
14
一、对物质构成和微观构造旳认识过程
4、1923年,卢瑟福 粒子散射试验
1923年,卢瑟福旳原子核式构造模型(假说): (1)原子旳中心有一种很小旳核,叫做原子核 (2)原子旳全部正电荷和几乎全部质量都集中

原子的核式结构模型(课件)

原子的核式结构模型(课件)

四.原子核的电荷与尺度
根据卢瑟福的原子结构模型,原子内部是十分 “空旷”的,举一个简单的例子:露珠和体育场
体育场 原子
原子核
【卢瑟福有核原子模型的优越性】 -正确地回答了原子的组成问题; - 成功解释了粒子散射实验, 为人类 认识原子结构增添了光辉的一页。
【但是】人们很快意识到卢瑟夫的有核模型同
原子核的组成
1919年,卢瑟福用粒子轰击氮核,得到了质子, 进而猜想原子核内存在不带电的中子,这一猜 想被他的学生查德威克用实验证实,并得到公 认. 质子 核子 中子 质子数 电荷数
四.原子核的电荷与尺度 根据卢瑟福的原子核式模型和α粒子散射的 实验数据,可以推算出各种元素原子核的 电荷数,还可以估计出原子核的大小。 (1)原子的半径约为10-10m、原子核半径约 是10-15m,原子核的体积只占原子的体积 的万亿分之一。 (2)原子核所带正电荷数与核外电子数以 及该元素在周期表内的原子序数相等。
从经典物理学的角度看,汤姆孙的模型是很成功的。 解释原子是电中性的,电子在原子里是怎样分布的,解释 原子为什么会发光,能估计出原子的大小约为一亿分之一 厘米。
以汤姆孙为首的英国剑桥学派,在原子物理学上 所取得的这些惊人成就,使欧洲大陆上的物理学 家都拜倒在他们的脚下。他的学生卢瑟福也接受 了汤姆孙的原子模型,1909年卢瑟福建议其学生 兼助手盖革和罗斯顿用α粒子轰击金箔去验证汤姆 孙原子模型。
情况。
思考:如果原子的结构确实如汤姆生所假设的葡萄干 布丁模型,用α粒子轰击原子应得到怎样的结果?
根据汤姆生模型计算 的结果:电子质量很 小,对α 粒子的运动方 向不会发生明显影响; 由于正电荷均匀分布, α 粒子所受库仑力也很 小,故α 粒子偏转角度 不会很大.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

? 粒子散射实验 1909年,Geiger 和Marsden 发现? 粒子 (M? ? 7300me ) 经原 子散射后散射角大于 90 的概率约为1/8000,甚至达到180?
“就像一枚15英寸的炮弹打在一张纸上又被反射回来一 样”
粒子源 真空室 散射箔
闪烁计数器
E. Rutherford
?
(1871-1937)

气 管
α粒子源
金 Geiger计数器 箔
俯视图
Thomson模型大于90度角散射概率估算
电子的质量很小,对α 粒子(2e)运动的影响可以忽略;
只考虑原子中均匀分布的正电荷对α 粒子的影响 ?
P? ?
R
?? ? ? P
P ? mv 0
F ? 1 2eZe
? ? ?P
4?? 0
R2
P0
1 2 Ze 2 R
问题: 组分? 结构和相互作用? 内部运动?
二 卢瑟福核式模型
1. 电子(electron )的发现 真空放电管中阴极射线在电场、磁场中的偏转 1894年,Stoney (戈德斯坦)命名阴极射线粒子为电子 1897年,Thomson 证实阴极射线由负电微粒组成
真空放电管中阴极射线在电场、磁场中的偏转 ? 测出了阴极射 线的荷质比:e/me ;(e/me)>1000(eH/mH),阴极射线不是 离子束,而是电子束。这种粒子是 各种元素的原子都有的 ,共 同的,是物质的一个组成部分
2
而实验上却不小于1/8000
Thomson 原子模型 ? Rutherford 核式模型
T模型
? 2Ze2r
Fc
?
? ? ? ?
4π? 0 R3
2 Ze 2
?? 4π?0r 2
r? R r? R
易穿过原子,只能发生小角度散射。
R模型
2Ze2
Fc ? 4π?0r 2
距核愈近力愈大,可能被大角度散射。
正电部分和电子如何分布与相对运动?
原子的模型 之 Thomson 原子模型:面包(枣糕)模型
汤姆逊 (Thomson )发现电子之后 ,对于原子中正负电荷的分布他 提出了一个模型: 原子中带正电荷均匀分布在整个原子空间 ,电 子镶嵌在其中。 同时该模型还进一步假定,电子分布在分离 的同心环上,每个环上的电子容量都不相同, 电子在各自的平衡位置附近做微振动。可以 发射电磁辐射,而且各层电子绕球心转动时 也会发光。这对于解释当时已有的实验结果、 元素的周期性以及原子的线光谱,似乎是成 功的。 Thomson 模型的失败:与α粒子散射实验结果不符合。
19世纪末 三大发现——X射线 (1895)、放射性(1896 Becquerel 、1903N)和电子
原子是物质结构的一个层次,介于分子和原子核之间。 原子本身也是有结构的。
1911年 Rutherford 原子核式结构模型 1913年 Bohr 原子量子理论 解释氢光谱 1924-1927 量子力学诞生 成功解释原子现象
的角动量守恒
v0
y
? v
mv b ? mr 2 d?
0
dt
F?
r
在y方向动量的改变
?
? 2mv0
cos ?
??
2
?
?
F cos ? dt
0
? ? ??
2
两式相乘?
? 2mv02b
sin
?
2、卢瑟福散射公式
库仑散射公式
具有确定能量的一? 粒子均匀入射,研究散射? 粒子的角分布
大角度散射:只要考虑? 粒子与原子核的相互作用
E
?
1 2
mv02
b 瞄准距离
?
? 散射角
b
O
? ? π 粒子反射
2
v
? v 0 ? 粒子
b : 瞄准距离
? 散射角
? Ze 原子核
有心力作用, ? 粒子对原点(原子核) ?
me ? 9.109534(47) ? 10?28 g
The Nobel Prize in Physics 1906
J. J. Thomson (1856-1940)
in recognition of the great merits of his theoretical and experimental investigations on the conduction of electricity by gases
? P ? F? t ?
4?? 0
R2
v
?
?
?P P0
?
1
4?? 0
2 Ze 2 R2
R v
1 mv
e2 Z
e2 Z
?
4?? 0 R
1 m v2 2
?
4?? 0
E?
R
?
R ~1A
? 1.5 ? 10 ? 5
Z
E?
对Au,Z=79,取Eq=5MeV ? ? 10?4
可以看出,散射角是非常小的
理论上, ? ? ? 的几率小于10? 2000
1-2 原子的核模型
一 原子结构
古代原子学说:
不可无限分割,存在的最小的结构单元 : B. C. 4世纪 希腊 德谟克利特(Democritus ) 原子(Atom ) 组成物质的最小单元 “其小无内,谓之小一” ------- 惠子
可以无限分割,物质是连续的: 一尺之棰,日取其半,万世不竭 ----------公孙龙 物质是连续的,可以无限地分割 -------亚里士多德
化学原子学说:
1803年 Dalton 化学反应中,原子不可分解,性质不变; 不同元素的原子不同,每种原子有确定原子量。
1811年 Avogadro 气体由分子组成,分子由原子组成。 同温同压的同体积气体含相同数目的分子。
1869年 Mendeleev 原子量大小 发现元素周期律,预 言新元素
现代原子学说:
The Nobel Prize in Physics 1923
Байду номын сангаас
for his work on the elementary charge of electricity and on the photoelectric effect
R. Millikan (1868-1953)
原子中存在一定数量的电子,带负电。 因为原子电中性,必定带有相同电量的正电 荷,同时承担了绝大部分质量。
P1
S
A
O
P2
P
阴极射线实验装置示意图
阴极射线管
1899年,Thomson 利用云雾室测量 e 和 me
e ? 1.6 ? 10?19 c me ? 1 1836氢原子质量
1909年,Millikan 油滴实验精确测定 e Millikan 油滴实验测出单个电子的电荷
e ? 4.803242(14) ? 10?10 esu ? 1.6021892(46) ? 10?19 c
相关文档
最新文档