浅谈初中数学中的找规律题[1]

合集下载

初中数学找规律解题方法及技巧

初中数学找规律解题方法及技巧

初中数学找规律解题方法及技巧此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。

(三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。

此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。

二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

找出的规律,通常包序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

例如,观察下列各式数:0,3,8,15,24,……。

试按此规律写出的第100个数是 10021- ,第n 个数是 n 12-。

解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。

我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,……。

序列号: 1,2,3, 4, 5,……。

容易发现,已知数的每一项,都等于它的序列号的平方减1。

因此,第n 项是2n -1,第100项是2100—1(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n,或2n 、3n 有关。

例如:1,9,25,49,(81),(121),的第n 项为( 2)12(-n ),1,2,3,4,5.。

,从中可以看出n=2时,正好是2×2-1的平方,n=3时,正好是2×3-1的平方,以此类推。

(三)看例题:A : 2、9、28、65.....增幅是7、19、37....,增幅的增幅是12、18 答案与3有关且是n 的3次幂,即:n 3+1B :2、4、8、16.......增幅是2、4、8.. .....答案与2的乘方有关即:n2(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系。

初中数学找规律题型解题技巧

初中数学找规律题型解题技巧

初中数学找规律题型解题技巧
初中数学中的找规律题型是考察学生观察、归纳和推理能力的一种题目。

这种题目通常会给出一些数列、图形或者操作方式,让学生找出其中的规律,然后根据这个规律继续填写后面的数列或图形。

解题技巧如下:
1.观察和分析:首先要仔细观察给出的数列或图形,尝试找出它们之间的规律。

可以从数
列的项、项与项之间的关系、图形的形状和结构等方面入手。

2.归纳规律:在观察的基础上,尝试归纳出数列或图形的变化规律。

这个规律可以是递增、
递减、周期性变化等。

3.应用规律:根据归纳出的规律,推算出数列或图形中缺失的部分。

4.检验答案:最后,需要检验得出的答案是否符合数列或图形的变化规律,以确保解题正
确。

例如,对于数列“1,2,4,8,16...”,我们可以观察到每一项都是前一项的2倍。

因此,根据这个规律,我们可以推算出接下来的项应该是32(因为16 * 2 = 32)。

再如,对于图形题,如果一个三角形每次增加一条边,那么我们可以根据这个规律画出接下来的图形。

找规律题目的解题关键在于观察、归纳和推理。

通过不断练习这种题目,可以提高自己的数学思维和解决问题的能力。

同时,也要注意耐心和细心,不要因为题目复杂而放弃。

初一找规律经典题型(含部分答案)

初一找规律经典题型(含部分答案)

精心整理图1 图2 图3初一数学规律题应用知识汇总“有比较才有鉴别”。

通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初中数学考试中,经常出现数列的找规律题,下面就此类题的解题方法进行探索:n 个n 位的例:4=6n -2例1(1(2例2共有(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n 位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n 位的增幅;2、求出第1位到第第n 位的总增幅;3、数列的第1位数加上总增幅即是第n 位数。

此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。

例1.古希腊数学家把数1,3,6,10,15,21,……,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为。

妙题赏析:规律类的中考试题,无论在素材的选取、文字的表述、题型的设计等方面都别具一格,令人耳目一新,其目的是继续考察学生的创新意识与实践能力,在往年“数字类”、“计算类”、“图形类”的基础上,今年又推陈出新,增加了“设计类”与“动态类”两种新题型,现将历年来中考规律类中考试题分析如下:1、设计类【例1】(2005年大连市中考题)在数学活动中,小明为了求的值(结果用n表示),设计如图a所示的图形。

(1)请你利用这个几何图形求的值为。

(2)请你利用图b,再设计一个能求的值的几何图形。

【例2】(2005年河北省中考题)观察下面的图形(每一个正方形的边长均为1)和相应的等式,探究其中的规律:(1)写出第五个等式,并在下边给出的五个正方形上画出与之对应的图示;(2)猜想并写出与第n个图形相对应的等式。

初中数学规律题解题技巧

初中数学规律题解题技巧

初中数学规律题解题技巧初中数学规律题的解题技巧如下:一、基本方法——看增幅一如增幅相等此实为等差数列:对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+n-1b,其中a为数列的第一位数,b为增幅,n-1b为第一位数到第n位的总增幅。

然后再简化代数式a+n-1b。

例:4、10、16、22、28……,求第n位数。

分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+n-1×6=6n-2二如增幅不相等,但是,增幅以同等幅度增加即增幅的增幅相等,也即增幅为等差数列。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

举例说明:2、5、10、17……,求第n位数。

分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加。

那么,数列的第n-1位到第n位的增幅是:3+2×n-2=2n-1,总增幅为:[3+2n-1]×n-1÷2=n+1×n-1=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。

三增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.三增幅不相等,且增幅也不以同等幅度增加即增幅的增幅也不相等。

此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。

二、基本技巧一标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

找出的规律,通常包序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

例如,观察下列各式数:0,3,8,15,24,……。

初一找规律经典题型(含部分问题详解)

初一找规律经典题型(含部分问题详解)

实用文档初一数学规律题应用知识汇总“有比较才有鉴别” 。

通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初中数学考试中,经常出现数列的找规律题,下面就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第 n 个数可以表示为: a1+(n-1)b ,其中 a 为数列的第一位数, b 为增幅, (n-1)b为第一位数到第 n 位的总增幅。

然后再简化代数式a+(n-1)b 。

例: 4、 10、16、22、 28⋯⋯,求第 n 位数。

分析:第二位数起,每位数都比前一位数增加6,增幅都是 6,所以,第 n 位数是: 4+(n-1) 6=6n- 2例 1、已知一个面积为S的等边三角形,现将其各边n(n为大于 2 的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如上图所示).( 1)当n= 5 时,共向外作出了个小等边三角形( 2)当n= k时,共向外作出了个小等边三角形(用含 k 的式子表示).⋯⋯n=3n=4n=5例 2、如图,在图1中,互不重叠的三角形共有 4 个,在图 2 中,互不重叠的三角形共有7 个,在图3中,互不重叠的三角形共有10 个,⋯⋯,则在第n 个图形中,互不重叠的三角形共有个(用含 n 的代数式表示)。

图1图2图3(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为 3、5、7、9,说明增幅以同等幅度增加。

此种数列第n 位的数也有一种通用求法。

基本思路是: 1、求出数列的第n-1 位到第 n 位的增幅;2、求出第 1 位到第第 n 位的总增幅;3、数列的第 1 位数加上总增幅即是第n 位数。

初中数学中的找规律题

初中数学中的找规律题

初中数学中的找规律题最近两年,全国多数地市的中招考试都有找规律的题目,人们开始逐渐重视这一类数学题,研究发现数学规律题的解题思想,不但能够提高学生的考试成绩,而且更有助于创新型人才的培养。

但究竟怎样才能把这种题目做好,是一个值得探究的问题,这类问题没有明确的知识方法可套,在现在的教科书上也很少触及这类问题。

这类题目主要考查学生的综合分析问题和解决问题的能力。

下面就解决这类问题作一个初步的探究。

一、代数中的规律“有比较才有鉴别”。

通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

例1观察下列各式数:0,3,8,15,24,……。

试按此规律写出的第100个数是___。

”分析:解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。

我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,……。

序列号: 1,2,3, 4, 5,……。

容易发现,已知数的每一项,都等于它的序列号的平方减1。

因此,第n 项是n2-1,第100项是1002-1。

如果题目比较复杂,或者包含的变量比较多。

解题的时候,不但考虑已知数的序列号,还要考虑其他因素。

例2(1)观察下列运算并填空1×2×3×4+1=24+1=25=522×3×4×5+1=120+1=121=1123×4×5×6+1=360+1=1924×5×6×7+1=+1== 27×8×9×10+1=+1== 2(2)根据(1)猜想(n+1)(n+2)(n+3)(n+4)+1=( )2并用你所学的知识说明你的猜想。

初中数学规律题题型与解题基本方法(初三)

初中数学规律题题型与解题基本方法(初三)

初中数学规律题题型与解题方法(一)数列或数式的找规律一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。

然后再简化代数式a+(n-1)b。

强调:均匀变化的数列规律可用待定系数法来求一次函数的解析式来求解。

例:4、10、16、22、28、……,求第n位数。

分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2 (二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

举例说明:2、5、10、17、……,求第n位数。

分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加。

那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1。

所以,第n位数是2+ n2-1= n2+1。

此解法虽然较烦,却是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出。

强调:增幅不均匀变化的数列规律可尝试用待定系数法来求二次函数的解析式来求解,一定要验证。

(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。

此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。

二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

十道初中数学找规律的题型及解题思路

十道初中数学找规律的题型及解题思路

十道初中数学找规律的题型及解题思路这里有10道初中数学找规律的题目,涵盖了常见的数列、图形等多种类型,希望能帮助学生更好地掌握找规律的技巧:数列找规律1.等差数列:1.1, 4, 7, 10, ... 下一个数是多少?2.100, 97, 94, ... 第10个数是多少?2.等比数列:1.2, 4, 8, 16, ... 第8个数是多少?2.81, 27, 9, ... 第6个数是多少?3.混合数列:1.1, 4, 9, 16, 25, ... 下一个数是多少?(提示:考虑每个数的平方)2.2, 5, 10, 17, ... 下一个数是多少?(提示:观察相邻两数的差)4.周期数列:1.1, 2, 3, 1, 2, 3, ... 第20个数是多少?2.A, B, C, A, B, C, ... 第100个数是多少?图形找规律图形的变化:1.一组图形,每个图形由小方块组成,观察图形的变化规律,画出下一个图形。

图形的旋转:1.一个图形不断旋转,观察旋转的规律,画出旋转后的图形。

图形的翻转:1.一个图形不断翻转,观察翻转的规律,画出翻转后的图形。

数字与图形结合数字与图形对应:1.一组图形,每个图形对应一个数字,找出数字与图形之间的对应关系。

图形中的数字规律:1.一个图形中包含多个数字,找出数字之间的规律。

综合题型1.数字和图形的综合:1.一组图形和数字交替出现,找出数字和图形之间的关系。

解题技巧:•观察:仔细观察数列或图形的变化规律,找出其中的共同点和差异点。

•比较:比较相邻的数或图形,找出它们的递增、递减或其他变化关系。

•联想:将题目与以前学过的知识联系起来,寻找解题思路。

•归纳:根据观察和比较的结果,归纳出一般性的规律。

•验证:将得到的规律代入后面的数或图形中进行验证,确保规律的正确性。

注意事项:•找规律题的答案可能不唯一,只要找到一种合理的规律即可。

•遇到困难时,可以尝试从不同的角度去观察和分析。

初中数学数列找规律题技巧汇总

初中数学数列找规律题技巧汇总

初中数学数列找规律题技巧汇总
数列找规律是初中数学中的重要知识点,也是高中数学的基础。

以下是数列找规律题的一些技巧汇总:
1. 找通项公式
在数列中,如果我们能找到通项公式,就能根据公式求出任意
一项或多项的值。

找通项公式的方法有很多,如通过递推公式、差
分法、倍差法、画图法等。

2. 找首项和公差
如果数列是等差数列,可以通过找到首项和公差,从而求得任
意一项的值。

一些数列也可以通过等比数列的特点来求解。

3. 运用数学方法
有些数列的规律需要用到数学方法才能找出来,如利用余数、
最大公约数、质因数分解等。

4. 找规律
在找规律题中,找规律也是很重要的一步。

可以先列出前几项,观察它们之间的关系,找出规律后再利用规律解题。

5. 多做练
数列找规律需要不断地练才能熟练掌握。

平时多做练,同时认
真培养自己的逻辑思维能力和观察能力,相信你一定能在数列找规
律这方面获得很好的成绩。

记住这些技巧,相信数列找规律题在你心中不再是难题!。

初中数学,找规律的经典题,解题技巧详细讲解,助力中考复习!

初中数学,找规律的经典题,解题技巧详细讲解,助力中考复习!

初中数学,找规律的经典题,解题技巧详细讲解,助力中考复习!规律型--图形题的关键:图形的变化类,解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论。

数字找规律类型总结:在实际解题过程中,根据相邻数之间的关系分为两大类:(1)相邻数之间通过加、减、乘、除、平方、开方等方式发生联系,产生规律,主要有以下几种规律:相邻两个数加、减、乘、除等于第三数;相邻两个数加、减、乘、除后再加或者减一个常数等于第三数;前一个数的平方等于第二个数;前一个数的平方再加或者减一个常数等于第二个数;前一个数乘一个倍数加减一个常数等于第二个数。

(2)数据中每一个数字本身构成特点形成各个数字之间的规律数据中每一个数字都是n 的平方构成或者是n 的平方加减一个常数构成,或者是n的平方加减n构成;每一个数字都是n的立方构成或者是n的立方加减一个常数构成,或者是n的立方加减n;数据中每一个数字都是n的倍数加减一个常数;以上是数字推理的一些基本规律,必须掌握.但掌握这些规律后,这就需要在对各种题型认真练习的基础上,应逐步形成自己的一套解题思路和技巧。

规律型--数字的变化类解题基本技巧:(1)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

找出的规律,通常包序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘;(2)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关;(3)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(1)、(2)、技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来;(4)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来;(5)同技巧(3)、(4)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3).当然,同时加、或减的可能性大一些,同时乘、或除的不太常见;(6)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律。

初中数学规律探究问题

初中数学规律探究问题

初中数学规律探究问题在我们的日常生活中,数学规律无处不在,它们以各种形式出现在我们的生活中,小到日常购物,大到金融市场的运作,都离不开这些看似简单却极其重要的规律。

在初中数学中,我们开始对这些规律进行深入的探究和学习,从而更好地理解和应用它们。

一、数列的规律数列是数学中的一个重要概念,它是按照一定顺序排列的一组数。

我们可以通过寻找数列中的规律,来探究其背后的数学原理。

例如,我们可以观察等差数列和等比数列,前者是每两个连续的数之间的差相等,后者则是每两个连续的数之间的比值相等。

这些规律在解决实际问题中有着广泛的应用,如规划收入和支出、计算利息等。

二、图形的规律图形的规律主要涉及到图形的形状、大小、位置等的变化规律。

例如,我们可以通过平移、旋转、对称等方式来探索图形的规律。

我们还会学习如何通过数理逻辑来推理和解决图形问题,例如在证明三角形全等问题时,就需要用到数学中的公理、定理和推论。

三、代数的规律代数的规律是初中数学中的一个重要部分,它涉及到变量、函数、方程等概念。

我们可以通过对代数式的研究,发现其中的规律和性质。

例如,通过观察多项式的次数和系数,我们可以找到其对称性和一些其他的重要性质。

我们还会学习如何通过代数方法来解决实际问题,例如在解决行程问题时,就需要用到方程的概念。

初中数学中规律探究问题是非常重要的。

它们不仅可以帮助我们更好地理解数学原理和应用,还可以提高我们的逻辑思维能力和解决问题的能力。

因此,我们应该积极参与到规律探究问题中来,不断地发现和学习新的数学规律。

在初中的学习阶段,数学是一门重要的学科,它不仅是我们理解世界,解决问题的重要工具,也是培养我们逻辑思维和抽象思维能力的重要途径。

而在初中数学的学习过程中,探究型问题更是对于我们的思维能力和学习效果有着极大的提升。

探究型问题,通常是一种开放式的问题,它不仅需要我们理解和应用数学的基本概念和公式,更需要我们具备一种探究的精神,去挖掘问题的深层含义,发现问题的规律,寻找解决问题的最佳策略。

初中数学规律探究问题的类型及解题技巧分析

初中数学规律探究问题的类型及解题技巧分析

初中数学规律探究问题的类型及解题技巧分析数学规律探究问题是初中数学学习中常见的一类问题,通过对数学规律的探究和分析,培养学生的逻辑思维和推理能力,提高他们的问题解决能力。

下面将介绍一些常见的数学规律探究问题类型及解题技巧分析。

一、数列规律问题数列规律问题是最常见的数学规律探究问题。

解题时,可以根据给定的数列和规律,通过观察和分析,推算出数列的通项公式或者下一个数的值。

常见的数列规律有等差数列、等比数列、斐波那契数列等。

解题技巧:1.观察相邻项之间的差值或比值,判断是等差数列还是等比数列。

2.求出数列的公差或公比,进而得到数列的通项公式。

3.根据已知条件,利用数列的通项公式求出需要的值。

图形规律问题是指通过观察和分析给定的图形,找出其中的规律,推导出图形的性质或者下一个图形的形状。

常见的图形规律有平移、旋转、翻转等。

解题技巧:1.观察图形的对称性和相邻图形之间的关系,判断是平移、旋转还是翻转。

2.根据已知条件,通过推理和逻辑推断,得出图形的性质。

3.根据已知条件,利用图形的性质,推导下一个图形的形状或者位置。

解题技巧:1.观察方程中的系数和常数项之间的关系,判断方程的类型。

2.根据已知条件,通过代入值,解方程得出结论。

3.利用已知方程和规律,推导出下一个方程的解。

概率规律问题是指通过观察和分析一系列事件的发生概率,找出其中的规律,推导出可能的结果。

常见的概率规律有独立事件、互斥事件等。

总结:解决数学规律探究问题需要学生运用观察、分析、推理和推导等数学思维和方法,不仅要灵活运用各种公式和定理,而且要发挥想象力和创造力,培养学生的数学思维和解决问题的能力。

在教学中,教师应该引导学生多做习题和实际应用,培养学生的观察力、分析力和推理能力,提高他们的问题解决能力。

教师也应该注重培养学生的创造力和创新意识,鼓励学生发散思维和多角度思考问题,使学生在探究数学规律问题中获得乐趣和成长。

浅谈初中数学中的找规律题

浅谈初中数学中的找规律题
起 加 以 比较 :
给 出的数 : 0 , 3 , 8 , 1 5 , 2 4 , …. 序列号 : 1 , 2 , 3 , 4 , 5 , …. 容易发现 , 已知数 的每一项 , 都 等 于它 的序列 号 的
的中间数字为 1 0 0, 所以它的值等于 1 0 0×1 0 0:1 0 0 0 0 . 大家应该听过高斯 的故事吧 , 你 也可 以用 高斯求和 的方法试着证 明等式 1+ 2+… +9 9+1 0 0+9 9+… + 2
例 3 观察下 列 由棱长 为 1的小 立方 体 摆成 的 图 形, 寻找规律 :
律. 所 以, 抓住了变量 , 就等于抓住了解决 问题的关键.
二、 算式规律 例 2 观察下面的几个算式 , 你发 现了什么规律 ?
如图① 中 : 共有 1 l 爪小立 方体 , 其中1 个 看 得见 , 0

利用上 面的规律 , 你能不能迅速计算 出:
1+2+3+… _ +9 9+1 0 0 +9 9+ … +3+2+1=7
解 析 上 述每个 等式左边 各数 的排 列都 是关于 中 间一个数 对称 的 , 中间这 个数 处在特 殊的位 置. 再看 看
等式 右边 , 发现等式左边 中间的数与右边 的数关系为 :
研究发现数学规律题的解题思想 , 不但 能够提 高学生 的 考试成绩 , 而且更有 助于创新 型人 才的培养.

关键词 : 规 律题类 型
中考试 题
得出结论
新课程改革 以来 , 人 们开始逐 渐重视研究 探索类数 学题. 近年各地 中考 热点之 一是 探索 型问题 , 即通过 已
知条件 , 结合数学 经验 , 探索 其 内在 联 系, 发 现规律 , 得 出结论. 研究发现数 学规律 题 的解题 思想 , 不但 能够提 高学生 的考试成 绩 , 而且更 有助 于创 新型人 才 的培养. 下 面就几种探索规律 中考试题进行解法 探讨 :

初中数学找规律解题方法及技巧

初中数学找规律解题方法及技巧

初中数学找规律解题方法及技巧通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。

然后再简化代数式a+(n-1)b。

例:4、10、16、22、28……,求第n位数。

分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1) 6=6n-2(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。

(三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。

此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。

2、基本本领(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

找出的规律,通常包序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

中考数学常见规律题的题型分类及解题策略分析

中考数学常见规律题的题型分类及解题策略分析

中考数学常见规律题的题型分类及解题策略分析
中考数学中,规律题是一种常见的题型。

这类题目要求考生根据给定的一组数据,找
出其中的规律或者推算出未给出的数据。

在解题过程中,考生需要观察、分析,运用一些
数学知识和思维方法进行推理,最终得出正确的答案。

下面,我们将对中考数学常见的规
律题进行题型分类和解题策略分析。

一、数字规律题
数字规律题是指给定一组数字,要求找出其中的规律或者推算出下一个数字。

这类题
目一般可以分为以下几种类型:
1.等差数列
等差数列是一组数字按照一定的规律递增或递减得到的数列。

考生在解答这类题目时,需要观察给定的数字之间的差值是否相等,并用差值推算出下一个数字。

解题策略是:观
察前后两个数字之间的差值,如果差值相等,则下一个数字为当前数字加上差值;如果差
值不等,则需要进一步观察找出规律。

3.特殊规律
在数字规律题中,有些题目的规律可能比较特殊,没有明显的等差或等比关系,考生
需要观察数字之间的其他特征,如数字之间的和、乘积、平方等关系,通过推理找出规
律。

2.图形填空
图形填空是指给定一组图形,有一个图形缺失,要求从选项中选择一个图形填入缺失
的位置,使整个图形序列符合某种规律。

考生在解答这类题目时,需要观察给定的图形,
并根据规律确定缺失图形的特征。

解题策略是:观察给定的图形之间的变化规律,确定缺
失图形应该具有的特征,并从选项中选择符合规律的图形。

初一找规律经典题型(含部分问题详解)

初一找规律经典题型(含部分问题详解)

图1 图2 图3初一数学规律题应用知识汇总“有比较才有鉴别”。

通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初中数学考试中,经常出现数列的找规律题,下面就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n 个数可以表示为:a1+(n-1)b ,其中a 为数列的第一位数,b 为增幅,(n-1)b 为第一位数到第n 位的总增幅。

然后再简化代数式a+(n-1)b 。

例:4、10、16、22、28……,求第n 位数。

分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n 位数是:4+(n-1) 6=6n -2例1、已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如上图所示).(1)当n = 5时,共向外作出了 个小等边三角形(2)当n = k 时,共向外作出了 个小等边三角形(用含k 的式子表示).例2、如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,……,则在第n 个图形中,互不重叠的三角形共有 个(用含n 的代数式表示)。

(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n 位的数也有一n =3 n =4 n =5 ……种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。

浅谈初中数学中的找规律题

浅谈初中数学中的找规律题

浅谈初中数学中的找规律题最近两年,全国多数地市的中考试题都有找规律的题目,人们开始逐渐重视这一类数学题,研究发现数学规律题的解题思想,不但能够提高学生的考试成绩,而且更有助于创新型人才的培养。

但究竟怎样才能把这种题目做好,是一个值得探究的问题,这类问题没有明确的知识方法可套,在现在的教科书上也很少触及这类问题。

主要考查学生的综合分析问题和解决问题的能力。

下面就解决这类问题作一个初步的探究。

一、代数中的规律“有比较才有鉴别”。

通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

例1 观察下列各式数:0,3,8,15,24,……。

试按此规律写出的第100个数是___。

”分析:解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。

我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,……。

序列号: 1,2,3, 4, 5,……。

容易发现,已知数的每一项,都等于它的序列号的平方减1。

因此,第n 项是n-1,第100项是100-1。

如果题目比较复杂,或者包含的变量比较多。

解题的时候,不但考虑已知数的序列号,还要考虑其他因素。

例2 (1)观察下列运算并填空1×2×3×4+1=24+1=25=52×3×4×5+1=120+1=121=1123×4×5×6+1=360+1=1924×5×6×7+1=+1== 27×8×9×10+1=+1== 2(2)根据(1)猜想(n+1)(n+2)(n+3)(n+4)+1=( )2并用你所学的知识说明你的猜想。

初中数学数字找规律题技巧汇总.

初中数学数字找规律题技巧汇总.

初中数学数字找规律题技巧汇总.-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN初中数学数字找规律题技巧汇总通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n 个数可以表示为:a1+(n-1)b,其中a1为数列的第一位数,b为增幅,(n-1)b为第一位数到第n 位的总增幅。

然后再简化代数式a1+(n-1)b。

例:4、10、16、22、28……,求第n位数。

分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1) 6=6n-2(二)、比值相等(等比数列):例:2、4、8、16、…。

第n项为:a n=2n(三)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,即二级等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

举例说明:2、5、10、17……,求第n位数。

分析:数列的增幅分别为:3、5、7,……,增幅以同等幅度增加。

那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:〔3+(2n-1)〕×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。

完整版)初中数学找规律解题方法及技巧

完整版)初中数学找规律解题方法及技巧

完整版)初中数学找规律解题方法及技巧初中数学找规律解题方法及技巧通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号。

因此,将变量和序列号放在一起进行比较,就更容易发现其中的奥秘。

初中数学考试中,数列的找规律题经常出现,本文就此类题的解题方法进行探索。

一、基本方法——看增幅一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。

然后再简化代数式a+(n-1)b。

例如,4、10、16、22、28……,求第n位数。

分析:第二位数起,每位数都比前一位数增加6,增幅都是6,因此,第n位数是:4+(n-1)6=6n-2.二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。

三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9、17增幅为1、2、4、8.四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。

此类题大概没有通用解法,只能用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。

二、基本技巧一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

找出的规律,通常包含序列号。

因此,将变量和序列号放在一起进行比较,就更容易发现其中的奥秘。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈初中数学中的找规律题最近两年,全国多数地市的中招考试都有找规律的题目,人们开始逐渐重视这一类数学题,研究发现数学规律题的解题思想,不但能够提高学生的考试成绩,而且更有助于创新型人才的培养。

但究竟怎样才能把这种题目做好,是一个值得探究的问题,这类问题没有明确的知识方法可套,在现在的教科书上也很少触及这类问题。

这类题目主要考查学生的综合分析问题和解决问题的能力。

下面就解决这类问题作一个初步的探究。

一、代数中的规律
“有比较才有鉴别”。

通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

例1观察下列各式数:0,3,8,15,24,……。

试按此规律写出的第100个数是___。


分析:解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。

我们把有关的量放在一起加以比较:
给出的数:0,3,8,15,24,……。

序列号: 1,2,3, 4, 5,……。

容易发现,已知数的每一项,都等于它的序列号的平方减1。

因此,第n 项是n-1,第100项是100-1。

如果题目比较复杂,或者包含的变量比较多。

解题的时候,不但考虑已知数的序列号,还要考虑其他因素。

例2(1)观察下列运算并填空
1×2×3×4+1=24+1=25=5
2×3×4×5+1=120+1=121=112
3×4×5×6+1=360+1=192
4×5×6×7+1=+1==2
7×8×9×10+1=+1==2
(2)根据(1)猜想(n+1)(n+2)(n+3)(n+4)+1=( )2
并用你所学的知识说明你的猜想。

分析:第(1)题是具体数据的计算,第(2)题在计算的基础上仔细观察。

已知四个数乘积加上1的和与结果中完全平方数的数的关系是猜想的正确性的解释,只要用完全平方数四个数的首尾两数乘积与1的和正好是完全平方数的底数,由此探索其存在的规律,解决猜想公式逆用就可解决
解:(1)4×5×6×7+1=840+1=841=292
7×8×9×10+1=5040+1=5041=712
(2)(n+1)(n+2)(n+3)(n+4)+1
=[(n+1)(n+4)+1]2
=(n2+5n+1)2
二、平面图形中的规律
图形变化也是经常出现的。

作这种数学规律的题目,都会涉及到一个或者几个变化的量。

所谓找规律,多数情况下,是指变量的变化规律。

所以,抓住了变量,就等于抓住了解决问题的关键。

例3用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,
第n个图形中需要黑色瓷砖多少块?(用含n 的代数式表示).
分析:这一题的关键是求第n 个图形中需要几块黑色瓷砖?
在这三个图形中,前边4块黑瓷砖不变,变化的是后面的黑瓷砖。

它们的数量分别是,第一个图形中多出0×3块黑瓷砖,第二个图形中多出1×3块黑瓷砖,第三个图形中多出2×3块黑瓷砖,依次类推,第n个图形中多出(n-1)×3块黑瓷砖。

所以,第n个图形中一共有4+3(n-1)块黑瓷砖,也即(3n+1)块。

有些题目包含着事物的循环规律,找到了事物的循环规律,其他问题就可以迎刃而解。

例4“观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○
○●……
从第1个球起到第2004个球止,共有实心球多少个?”
分析:这些球,从左到右,按照固定的顺序排列,每隔10个球循环一次,循环节是●○○●●○○○○○。

每个循环节里有3个实心球。

我们只要知道 2004包含有多少个循环节,就容易计算出实心球的个数。

因为2004÷10 =200(余4)。

所以,2004个球里有200个循环节,还余4个球。

200个循环节里有200×3=600个实心球,剩下的4个球里有2个实心球。

所以,一共有602个实心球。

例5 平面内的一条直线可以将平面分成两个部分,两条直线最多可以将平面分成四个部分,三条直线最多可以将平面分成七个部分…根据以上这些直线划分平面最初的具体的情况总结规律,探究十条直线最多可以将平面分成多少个部分。

分析:1条直线将平面分成2个部分
2条直线最多可以将平面分成4(=2+2)个部分
3条直线最多可以将平面分成7(=4+3)个部分
4条直线最多可以将平面分成11(=7+4)个部分
可以从中发现每增加1条直线,分平面的部分数就增加,其规律是若原有(n-1)条直线,现增加1条直线,最多将平面分成的平面数就增加n,平面上的10条直线最多将平面分成:
2+2+3+4+5+6+7+8+9+10=56个部分。

一般的平面上的n条中线最多可将平面分成(2+2+3+4+…+n)个部分。

三、空间图形中的规律
例6如图,都是由边长为1的正方体叠成的图形。

例如第①个图形的表面积为6个平方单位,第②个图形的表面积为18个平方单位,第③个图形的表面积是36个平方单位。

依此规律,则第⑤个图形的表面积个平方单位。

分析:应从不同的侧面进行观察
第1个图形的表面积是6(=1×6)个平方单位,
第2个图形的表面积是18(=3×6)个平方单位
第3个图形的表面积是36(=6×6)个平方单位
由此可以看出:每一个图形表面积都是6的倍数,而倍数是呈2,3,4,5…增加,所以可以推出第4个图形的表面积是60(=10×6)个平方单位,因此第5个图形的表面积是90(=15×6)个平方单位。

例7观察下列由棱长为1的小立方体摆成的图形,寻找规律:
如图①中:共有1个小立方体,其中1个看得见,0个看不见;
如图②中:共有8个小立方体,其中7个看得见,1个看不见;
如图③中:共有27个小立方体,其中19个看得见,8个看不见;……,则第⑥个图中,看不见的小立方体有个.
分析:先观察每个图形中有几个小正方体,然后发现每个正方体中看不到的正方体的个数是前面图形的正方体的个数,因此,第⑥个图中,看不见的小立方体有53=125个.
因此,读者在遇到数学问题时应身临其境,从不同的角度去观察,去分析,用最简单的方法去解决.。

相关文档
最新文档