专题23 解三角形综合练习(文)(原卷版).pdf

合集下载

专题23等腰三角形与等边三角形(优选真题60道)-学易金卷:三年(2021-2023)中考

专题23等腰三角形与等边三角形(优选真题60道)-学易金卷:三年(2021-2023)中考
A.8cmB.13cmC.8cm或13cmD.11cm或13cm
14.(2022•天津)如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x轴,若AB=6,OA=OB=5,则点A的坐标是( )
A.(5,4)B.(3,4)C.(5,3)D.(4,3)
15.(2022•海南)如图,直线m∥n,△ABC是等边三角形,顶点B在直线n上,直线m交AB于点E,交AC于点F,若∠1=140°,则∠2的度数是( )
A.85°B.75°C.65°D.30°
20.(2021•广西)如图,⊙O的半径OB为4,OC⊥AB于点D,∠BAC=30°,则OD的长是( )
A. B. C.2D.3
21.(2021•辽宁)如图,在△ABC中,AB=BC,由图中的尺规作图痕迹得到的射线BD与AC交于点E,点F为BC的中点,连接EF,若BE=AC=2,则△CEF的周长为( )
A.14°B.16°C.24°D.26°
6.(2023•河北)四边形ABCD的边长如图所示,对角线AC的长度随四边形形状的改变而变化.当△ABC为等腰三角形时,对角线AC的长为( )
A.2B.3C.4D.5
7.(2023•金昌)如图,BD是等边△ABC的边AC上的高,以点D为圆心,DB长为半径作弧交BC的延长线于点E,则∠DEC=( )
(1)如图1,求证:DE=BF;
(2)如图2,若AD=2,BF的延长线恰好经过DE的中点G,求BE的长.
56.(2022•温州)如图,BD是△ABC的角平分线,DE∥BC,交AB于点E.
(1)求证:∠EBD=∠EDB.
(2)当AB=AC时,请判断CD与ED的大小关系,并说明理由.
57.(2021•淄博)如图,在△ABC中,∠ABC的平分线交AC于点D,过点D作DE∥BC交AB于点E.

部编数学九年级下册专题23网格中求正切(解析版)含答案

部编数学九年级下册专题23网格中求正切(解析版)含答案

专题23 网格中求正切【法一】构造直角三角形求Ð=________.如图是由边长为1的小正方形组成的44´网格,则tan BAC【法二】转移角后再求如图,A,B,C,D均为网格图中的格点,线段AB与CD相交于点P,则∠APD的正切值为()A.3B.2C.D.【法三】等面积法求Ð如图,网格中小正方形的边长均为1,点A,B、O都在格点(小正方形的顶点)上,则tan AOB 的值是______.【综合演练】1.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2B C D.12【答案】DÐ的正切【分析】连接AC,根据网格图不难得出=90CABа,求出AC、AB的长度即可求出ABC值.【详解】连接AC,2.如图所示的方格纸中,△ABC的顶点都在格点上,则tan∠BAC的值为()A.1B C D.223.如图,△ABC的顶点都在正方形网格的格点上,则tan∠ACB的值为()A .13B .35C .23D .124.如图,正方形网格中每个小正方形的边长都是1,若点A 、B 、C 都在格点上,则tan ∠BAC 的值是_____.【答案】1【分析】根据已知图形得出45CAD Ð=°,再求解即可.【详解】5.如图,A,B,C三点在正方形网格线的交点处,将△ACB绕着点A逆时针旋转得到△AC′B′,若A,C,B′三点共线,则tan∠B′CB=________.【点睛】本题考查了勾股定理、勾股定理的逆定理和锐角三角函数关系,得出BD⊥CB′是解题的关键.6.如图,在边长相同的小正方形组成的网格中,点A、B、C都在这些小正方形的顶点上,则∠ABC的正切值是.【答案】2【详解】试题分析:设小正方形边长为a,链接AC,那么因为所以考点:勾股定理点评:本题是锐角三角函数与勾股定理的结合,难度适中,解题关键是注意转化思想和数形结合思想的应用.V的顶点都在格点上,则7.如图,在44´的正方形方格图形中,小正方形的顶点称为格点,ABCÐ的正切值是______.ABC【答案】2【分析】先根据勾股定理的逆定理判断出△ABC的形状,再由锐角三角函数的定义即可得出结论.【详解】解:由图可知,AC2=22+42=20,BC2=12+22=5,AB2=32+42=25,8.如图,在1×3的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交Ð=_____________于点P,则tan APC9.如图,每个小正方形的边长都为1,点A、B、C都在小正方形的顶点上,则∠ABC的正切值为_____.【答案】1【分析】根据勾股定理求出△ABC的各个边的长度,根据勾股定理的逆定理求出∠ACB=90°,再解直角三角形求出即可.【详解】如图:长方形AEFM,连接AC,∵由勾股定理得:AB2=32+12=10,BC2=22+12=5,AC2=22+12=5∴AC2+BC2=AB2,AC=BC,即∠ACB=90°,∴∠ABC=45°∴tan∠ABC=1【点睛】本题考查了解直角三角形和勾股定理及逆定理等知识点,能求出∠ACB=90°是解此题的关键.10.如图所示,在44´的网格中,每个小正方形的边长为1,线段AB、CD的端点均为格点.(1)CD的长度为______;(2)CD与网格线交于E,则DE=______;(3)若AB与CD所夹锐角为a,则tan a=______..11.如图所示,在边长相同的小正方形组成的网格中,AB 与CD 交于点P ,那么tan APD Ð=__________.【答案】2【分析】要求∠APD 的正切值,要把∠APD 放在直角三角形中,构造直角三角形,连结正方形的对角线AE ,EF 、FB ,故有AE =EF=FB=CD ,直角三角形构成△AEG ,下面解决AE 与EG 的关系,发现G 在EF 上,EF=AE ,只要G 为EF 中点,为此证△AGE ≌△BGF ,在Rt △AGE 中tan ∠AGE 可求即可.【详解】如图连结AE 、EF 、FB ,EF 与AB 交于G ,由正方形知AE=EF=EB=DC ,∠AEG=∠GFB=90º,∠AGE=∠BGF,【点睛】本题考查网格中求角的正切值问题,关键是把给的角转移到三角形中,掌握正方形性质,12.如图,在8×4的矩形网格中,每个小正方形的边长都是1,若△ABC的三个顶点在图中相应的格点上则tan A的值为______.Ð的值为13.如图,每一个小方格的边长都相等,点A、B、C三点都在格点上,则tan BAC________.Ð的值为________.14.如图,点A、B、C在正方形网格的格点上,则tan BAC三、解答题15.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,请按要求完成下列各题:(1)用2B铅笔画AD∥BC(D为格点),连接CD;(2)线段CD的长为 ;(3)请你在△ACD的三个内角中任选一个锐角,若你所选的锐角是 ,则它所对应的正弦函数值是 ;(4)若E为BC中点,则tan∠CAE的值是 .三边的长分别为,求∠A的正切值.小华是这样解决问题的:如图2所示,先在一个正方形网格(每个小正方形的边长均为1)中画出格点△ABC(△ABC三个顶点都在小正方形的顶点处),然后在这个正方形网格中再画一个和△ABC相似的格点△DEF,从而使问题得解.(1)图2中与A Ð相等的角为 , A Ð的正切值为 ;(2)参考小华解决问题的方法,利用图4中的正方形网格(每个小正方形的边长均为1)解决问题:如图3,在△GHK 中,HK=2,HG=KG=HK ,求+a b ÐÐ的度数.17.如图,在边长为1的小正方形方格纸中,有线段AB 、CD ,点A 、B 、C 、D 均在小正方形的顶点上.(1)在图中画一个以线段AB 为斜边的等腰直角三角形ABE ,点E 在小正方形的顶点上,并直接写出BE 的长;(2)在图中画一个钝角三角形CDF ,点F 在小正方形的顶点上,并且三角形CDF 的面积为92,3tan 4DCF Ð=.。

解三角形的综合训练题含答案

解三角形的综合训练题含答案

解三角形1、△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,asinAsinB+bcos 2A=a 2,则=ab( D )A. B. CD2、在∆ABC 中.222sin sin sin sin sin B C B C ≤+-.则A 的取值范围是( C ) (A)(0,6π] (B)[ 6π,π) (c)(0,3π] (D) [ 3π,π) 22222222211cos 023b c a a b c bc b c a bc A A bc π+-≤+-⇒+-≥⇒≥⇒≥⇒<≤3、在ABC ∆中,角,,A B C 所对的边分,,a b c .若cos sin a A b B =,则2s i n c o s c o s A A B += (D )(A)- 12 (B) 12(C) -1 (D) 1【解析】∵B b A a sin cos =,∴B A A 2sin cos sin =,∴1cos sin cos cos sin 222=+=+B B B A A .4、若△ABC 的内角,,,A B C 满足6sin 4sin 3sin A B C ==,则cos B =( D )AB .34CD .11165、在△ABC 中,若222sin sin sin A B C +<,则△ABC 的形状是(A )A 、钝角三角形B 、直角三角形C 、锐角三角形D 、不能确定 6、在△ABC 中,,BC=2,B =60°,则BC 边上的高等于BA7、在△ABC 中,若60A ∠=,45B ∠=,BC =AC = BA.B.C.D.28、已知ABC ∆中,C B A ∠∠∠,,的对边分别为a,b,c 若a=c=26+且75A ∠=o ,则b= AA. 2 B .4+ C .4— D-【解析】0sin sin 75sin(3045)sin 30cos 45sin 45cos304A ==+=+= 由a=c=26+可知,075C ∠=,所以030B ∠=,1sin 2B =由正弦定理得1sin 2sin 2ab B A=⋅==,故选A二:填空题1、在△ABC 中,若a=3,b=3,∠A=3π,则∠C 的大小为_________。

解三角形小题综合 原卷版--高一下学期备战期末专题训练

解三角形小题综合 原卷版--高一下学期备战期末专题训练

期末专题04 解三角形小题综合一、单选题1.(2022春·江苏常州·高一校联考期末)在ABC 中,5AB =,6BC =,8AC =,则ABC的形状是( ) A .锐角三角形B .直角三角形C .钝角三角形D .无法判断2.(2022春·江苏连云港·高一统考期末)在锐角三角形ABC 中,2sin a b A =,则B =( )A .6πB .4π C .3πD .712π 3.(2022春·江苏泰州·高一统考期末)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,csin A =,则sin B =( )A B C D .134.(2022春·江苏淮安·高一统考期末)在ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若cos a c B =,则ABC 的形状( ) A .锐角三角形B .直角三角形C .钝角三角形D .不能确定5.(2022春·江苏淮安·高一统考期末)在ABC 中,45B =°,点D 是边BC 上一点,5AD =,7AC =,3DC =,则边AB 的长是( )A .BCD .6.(2022秋·江苏南京·高一南京市第九中学校考期末)中国早在八千多年前就有了玉器,古人视玉为宝,玉佩不再是简单的装饰,而有着表达身份、感情、风度以及语言交流的作用.不同形状、不同图案的玉佩又代表不同的寓意.如图1所示的扇形玉佩,其形状具体说来应该是扇形的一部分(如图2),经测量知4ABCD ==,3BC =,7AD =,则该玉佩的面积为( )A .496πB .493πC .496πD .493π7.(2022秋·江苏南通·高一统考期末)图1是南北方向、水平放置的圭表(一种度量日影长的天文仪器,由“圭”和“表”两个部件组成)示意图,其中表高为h ,日影长为l .图2是地球轴截面的示意图,虚线表示点A 处的水平面.已知某测绘兴趣小组在冬至日正午时刻(太阳直射点的纬度为南纬2326′°)在某地利用一表高为2dm 的圭表按图1方式放置后,测得日影长为2.98dm ,则该地的纬度约为北纬( )(参考数据:tan 340.67°≈,tan 56 1.49°≈)A .2326′°B .3234′°C .34°D .56°8.(2022春·江苏镇江·高一扬中市第二高级中学校考期末)设()2πsin cos cos 4f x x x x =−+,在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若02A f=,1a =,则ABC 面积的最大值为( )A BC D 9.(2022春·江苏扬州·在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,下列各组条件中,使得ABC 恰有一个解的是( )A .π2,4,3ab A == B .π4,3a b A=C .2π4,3a b A === D .2π4,3a b A === 10.(2022春·江苏南通·高一统考期末)已知ABC 为锐角三角形,2AC =,π6A =,则BC 的取值范围为( )A .()1,+∞B .()1,2C .D .211.(2022春·江苏镇江·高一统考期末)已知A ,B 两地的距离为10km ,B ,C 两地的距离为20km ,且测得点B 对点A 和点C 的张角为120°,则点B 到AC 的距离为( )km .A B C D 12.(2022春·江苏无锡·高一统考期末)设ABC 内角A ,B ,C 所对的边分别为a ,b ,c .若2b =,2sin 6sin a C A =,则ABC 面积的最大值为( )AB C D .313.(2022春·江苏南通·高一金沙中学校考期末)ABC 中,,,A B C 的对边分别为a b c ,,,则( )A .若a b c <<,则cos sinBC < B .,A B ∃使得sin()sin sin A B A B +=+ C .,B C ∀都有tan tan tan()1tan tan B CB C B C++=−⋅D .若sin cos A A +A 是钝角 14.(2022春·江苏南通·高一统考期末)在ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,若8,sin 2sin cos 0ac B C A =+=,则ABC 面积的最大值为( ) A .1 B .3 C .2 D .415.(2022春·江苏扬州·高一期末)△ABC 的三内角A 、B 、C 所对边的长分别是a 、b 、c ,设向量()()p a c b q b a c a =+=−−,,,,若p q ∥,则角C 的大小为( )A .π6B .π3C .π2D .2π316.(2022春·江苏苏州·高一校考期末)如图所示,为了测量A ,B 处岛屿的距离,小明在D 处观测,A ,B 分别在D 处的北偏西15°、北偏东45°方向,再往正东方向行驶40海里至C 处,观测B 在C A 在C 处的北偏西60°方向,则A ,B 两处岛屿间的距离为 ( )A .B .C .20(1+海里D .40海里17.(2022春·江苏苏州·高一统考期末)已知锐角三角形ABC 中,角,,A B C 所对的边分别为,,,a b c ABC 的面积为S ,且()22sin 2b c B S −⋅=,若a kc =,则k 的取值范围是( ) A .()1,2 B .()0,3 C .()1,3 D .()0,2二、多选题18.(2022春·江苏南京·高一南京市中华中学校考期末)在ABC 中,下列结论中,正确的是( )A .若cos2cos2AB =,则ABC 是等腰三角形B .若sin sin A B >,则A B >C .若222AB AC BC +<,则ABC 为钝角三角形D .若60A = ,4AC =,且结合BC 的长解三角形,有两解,则BC 长的取值范围是)+∞19.(2022春·江苏南京·高一统考期末)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知45,2A c =°=,下列说法正确的是( )A .若a ABC = 有两解B .若3,a ABC = 有两解C .若ABC 为锐角三角形,则b 的取值范围是D .若ABC 为钝角三角形,则b 的取值范围是20.(2022春·江苏宿迁·高一沭阳县修远中学校考期末)在三角形ABC 中,π3A ∠=,若三角形有两解,则ca的可能取值为( )A B .1.1 C D .1.0121.(2022春·江苏南通·高一统考期末)设ABC 的内角A ,B ,C 的对边分别为a ,b ,.c若c =,30B = ,则角A 可能为( )A .135B .105C .45D .1522.(2022春·江苏苏州·高一校联考期末)在ABC 中,角,,A B C 对边分别为,,a b c ,设向量()(),,,m c a b n a c =+= ,且//m n,则下列选项正确的是( ) A .2A B =B .2C A =C .12ca<<D .若ABC 的面积为24c ,则2C π=23.(2022春·江苏泰州·高一统考期末)在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .若b =2c =cos 2cos 33A AC +=,则下列说法正确的有( )A .3A C π+=B .sinC =C .2a =D .ABC S =24.(2022春·江苏扬州·高一统考期末)如图所示,ABC 中,324AB AC BC ===,,,点M 为线段AB 中点,P 为线段CM 的中点,延长AP 交边BC 于点N ,则下列结论正确的有( ).A .1142AP AB AC =+ B .3BN NC =C .||AN =D .AP 与AC 25.(2022春·江苏徐州·高一统考期末)已知ABC 内角A ,B ,C 所对的边分别为a ,b ,c ,以下结论中正确的是( )A .若AB >,则sin sin A B >B .若2a =,b =3B π=,则该三角形有两解 C .若cos cos a A b B =,则ABC 一定为等腰三角形 D .若222sin sin sin C A B >+,则ABC 一定为钝角三角形26.(2022春·江苏无锡·高一统考期末)ABC 的内角A ,B ,C 所对边分别为a ,b ,c ,下列说法中正确的是( )A .若sin sin AB >,则A B >B .若2220a b c +−>,则ABC 是锐角三角形 C .若cos cos a B b A a +=,则ABC 是等腰三角形D .若sin cos cos a b c A B C==,则ABC 是等边三角形27.(2022春·江苏苏州·高一江苏省昆山中学校考期末)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,则下列说法正确的是( ) A .cos cos ca Bb A +B .若cos cos a A b B =,则ABC 为等腰或直角三角形 C .若22tan tan a B b A =,则a b =D .若333a b c +=,则ABC 为锐角三角形28.(2022春·江苏苏州·高一校考期末)在△ABC 中,角,,A B C 所对的边分别是,,a b c ,下列说法正确的是( )A .若acosA=bcosB ,则ABC 是等腰三角形B .若45,3AB B AC °==,则满足条件的三角形有且只有一个C .若ABC 不是直角三角形,则tan tan tan tan tan tan A B C A B C ++=D .若0BC AB ⋅<,则ABC 为钝角三角形三、填空题29.(2022春·江苏连云港·高一统考期末)曲柄连杆机构的示意图如图所示,当曲柄OA 在水平位置OB 时,连杆端点P 在Q 的位置,当OA 自OB 按顺时针方向旋转角α时,P 和Q 之间的距离是cm x ,若3cm OA =,7cm AP =,120α°=,则x 的值是_________.30.(2022春·江苏南京·高一江苏省江浦高级中学校联考期末)已知轮船A 和轮船B 同时离开C 岛,A 船沿北偏东30°的方向航行,B 船沿正北方向航行(如图).若A 船的航行速度为40n mile /h ,1小时后,B 船测得A 船位于B 船的北偏东45°的方向上,则此时A ,B 两船相距_______________n mile .31.(2022春·江苏无锡·高一统考期末)ABC 的内角A ,B ,C 所对边分别为a ,b ,c,已知60C =°,1a =,c =b =___________.32.(2022春·江苏扬州·高一期末)《后汉书·张衡传》:“阳嘉元年,复造候风地动仪.以精铜铸成,员径八尺,合盖隆起,形似酒尊,饰以篆文山龟鸟兽之形.中有都柱,傍行八道,施关发机.外有八龙,首衔铜丸,下有蟾蜍,张口承之.其牙机巧制,皆隐在尊中,覆盖周密无际.如有地动,尊则振龙,机发吐丸,而蟾蜍衔之.振声激扬,伺者因此觉知.虽一龙发机,而七首不动,寻其方面,乃知震之所在.验之以事,合契若神.”如图为张衡地动仪的结构图,现在相距120km 的A ,B 两地各放置一个地动仪,B 在A 的东偏北75°方向,若A 地地动仪正东方向的铜丸落下,B 地地动仪东南方向的铜丸落下,则地震的位置距离B 地______km33.(2022春·江苏泰州·高一统考期末)如图所示,该图由三个全等的BAD 、ACF △、CBE △构成,其中DEF 和ABC 都为等边三角形.若2DF =,12DAB π∠=,则AB =_______.34.(2022春·江苏常州·高一统考期末)在ABC 中,AB =3BC =,45B =°,点D 在边BC 上,且cos ADC ∠tan DAC ∠的值为___________.35.(2022春·江苏南通·高一统考期末)设ABC 的内角A ,B ,C 的对边分别为a ,b ,.c 已知6a =,2b =,要使ABC 则c 的大小可取__________(取整数值,答案不唯一).36.(2022春·江苏南京·高一南京市中华中学校考期末)拿破仑是十九世纪法国伟大的军事家、政治家,对数学也很有兴趣,他发现并证明了著名的拿破仑定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个等边三角形的中心恰为另一个等边三角形的顶点”,在△ABC 中,以AB ,BC ,CA 为边向外构造的三个等边三角形的中心依次为D ,E ,F ,若30,4BACDF ∠== ,利用拿破仑定理可求得AB +AC 的最大值为___.。

专题23利用一次函数解决实际问题(原卷版)

专题23利用一次函数解决实际问题(原卷版)

专题23 利用一次函数解决实际问题(原卷版)类型一最大利润问题1.(2021•福建)某公司经营某种农产品,零售一箱该农产品的利润是70元,批发一箱该农产品的利润是40元.(1)已知该公司某月卖出100箱这种农产品共获利润4600元,问:该公司当月零售、批发这种农产品的箱数分别是多少?(2)经营性质规定,该公司零售的数量不能多于总数量的30%.现该公司要经营1000箱这种农产品,问:应如何规划零售和批发的数量,才能使总利润最大?最大总利润是多少?类型二方案设计问题2.(2022•新田县一模)某商场准备购进A,B两种型号电脑,每台A型号电脑进价比每台B型号电脑多500元,用40000元购进A型号电脑的数量与用30000元购进B型号电脑的数量相同,请解答下列问题:(1)A,B型号电脑每台进价各是多少元?(2)若每台A型号电脑售价为2500元,每台B型号电脑售价为1800元,商场决定用不超过35000元同时购进A,B两种型号电脑20台,且全部售出,请写出所获的利润y(单位:元)与A型号电脑x(单位:台)的函数关系式并求此时的最大利润.(3)在(2)问的条件下,将不超过所获得的最大利润再次购买A,B两种型号电脑捐赠给某个福利院,问有多少种捐赠方案?最多捐赠多少台电脑?类型三运费最少问题3.(2021•巴东县模拟)学校计划组织七年级学生到金果坪乡红色教育基地参加“追寻红色足迹传承革命精神”的活动.在此活动中,若每位老师带队14名学生,则还有10名学生没有老师带;若每位老师带队15名学生,就有一位老师少带6名学生.甲型客车乙型客车载客量(人/辆)3530租金(元/辆)400320(1)参加此次活动的老师和学生各多少名?(2)现有甲乙两种大型客车,其载客量和租金如表所示.①若所有师生都有车坐,且每辆车上不少于2名老师,则租车的总数应为多少?②学校计划此次活动的租金总费用不超过3000元,学校共有几种租车方案?最少租车费用是多少?类型四运用图像信息解决行程问题4.(2022•竞秀区二模)A,B,C三地在同一条公路上,C地在A,B两地之间,且到A,B两地的路程相等.甲、乙两车分别从A,B两地同时出发,匀速行驶.甲车到达C地并停留1小时后以原速继续前往B地,到达B地后立即调头(调头时间忽略不计),并按原路原速返回,到达C地停止行驶;乙车经C 地到达A地停止行驶.在两车行驶的过程中,甲、乙两车距C地的路程y(单位:千米)与甲车所用时间x(单位:小时)之间的函数图象如图所示,请结合图象信息解答下列问题:(1)乙车的速度为千米/时;(2)求乙车从C地到A地的过程中,y与x的函数关系式(不用写自变量的取值范围);(3)请直接写出x为何值时两车距C地的路程之和为120千米?第二部分专题提优训练1.(2021春•广安期末)为积极响应垃圾分类的号召,某街道决定在街道内的所有小区安装垃圾分类的温馨提示牌和垃圾箱.已知购买3个垃圾箱和2个温馨提示牌需要280元,购买2个垃圾箱和3个温馨提示牌需要270元.(1)每个垃圾箱和每个温馨提示牌各多少元?(2)若购买垃圾箱和温馨提示牌共100个(两种都买),且垃圾箱的个数不少于温馨提示牌个数的3倍,请写出总费用w(元)与垃圾箱个数m(个)之间的函数关系式,并说明当购买垃圾箱和温馨提示牌各多少个时,总费用最低,最低费用为多少元?2.(2021•德阳)今年,“广汉三星堆”又有新的文物出土,景区游客大幅度增长.为了应对暑期旅游旺季,方便更多的游客在园区内休息,景区管理委员会决定向某公司采购一批户外休闲椅.经了解,该公司出售弧形椅和条形椅两种类型的休闲椅,已知条形椅的单价是弧形椅单价的0.75倍,用8000元购买弧形椅的数量比用4800元购买条形椅的数量多10张.(1)弧形椅和条形椅的单价分别是多少元?(2)已知一张弧形椅可坐5人,一张条形椅可坐3人,景区计划共购进300张休闲椅,并保证至少增加1200个座位.请问:应如何安排购买方案最节省费用?最低费用是多少元?3.(2022春•枣阳市期末)某公司现有一批270吨物资需要运送到A地和B地,公司决定安排大、小货车共20辆,运送这批物资,每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资,已知这两种货车的运费如下表:A地(元/辆)B地(元/辆)目的地车型大货车8001000小货车500600现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数解析式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.4.一辆快车和一辆慢车分别从甲、乙两地同时出发匀速相向而行,快车到达乙地后,原路原速返回甲地.图1表示两车行驶过程中离甲地的路程y(km)与行驶时间x(h)的函数图象.(1)直接写出快慢两车的速度;(2)在行驶过程中,慢车出发多长时间,两车相遇?(3)若两车之间的距离为skm,在图2的直角坐标系中画出s(km)与x(h)的函数图象.。

高考数学考点冲刺《23与三角函数有关的应用题》(含解析)

高考数学考点冲刺《23与三角函数有关的应用题》(含解析)

专题23 与三角函数有关的应用题【自主热身,归纳总结】1、如图,两座建筑物AB ,CD 的高度分别是9 m 和15 m ,从建筑物AB 的顶部A 看建筑物CD 的张角∠CAD=45°,则这两座建筑物AB 和CD 的底部之间的距离BD =________m.【答案】 18【解析】:设BD =x m ,作AH⊥CD,垂足为H ,记∠HAC=α,∠HAD =β,则α+β=45°. 因为tan α=6x ,tan β=9x ,且tan (α+β)=1,得6x +9x 1-6x ·9x =1,即x 2-15x -54=0,即(x +3)(x -18)=0,解得x =18.解后反思 在解方程的过程中,若记3x =t ,则5t =1-6t 2,因为方程中出现的系数较小,所以更易解出方程的根.2.如图1,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°以及∠MAC =75°;从C 点测得∠MCA =60°.已知山高BC =100 m ,则山高MN =________m.【答案】 150【解析】 根据图示,AC =100 2 m.在△MAC 中,∠CMA =180°-75°-60°=45°.由正弦定理得AC sin 45°=AM sin 60°⇒AM =100 3 m.在△AMN 中,MNAM=sin 60°,∴MN =1003×32=150(m). 3.如图2,某住宅小区的平面图呈圆心角为120°的扇形AOB ,C 是该小区的一个出入口,且小区里有一条平行于AO 的小路CD .已知某人从O 沿OD 走到D 用了2分钟,从D 沿着DC 走到C 用了3分钟.若此人步行的速度为每分钟50米,则该扇形的半径为________米.【答案】 7504、如图,某城市有一块半径为40 m 的半圆形绿化区域(以O 为圆心,AB 为直径),现计划对其进行改建.在AB 的延长线上取点D ,OD =80 m ,在半圆上选定一点C ,改建后的绿化区域由扇形区域AOC 和三角形区域COD 组成,其面积为S m 2.设∠AOC =x rad.(1) 写出S 关于x 的函数关系式S (x ),并指出x 的取值范围; (2) 试问∠AOC 多大时,改建后的绿化区域面积S 取得最大值?思路分析 对于(1),面积S 由两部分组成,一个是扇形面积,根据扇形面积公式S =12αr 2可得,另一个是△OCD 的面积,根据三角形的面积公式12ab sin C 可得;对于(2),注意到所研究的函数不是基本初等函数,因此,采用导数法来研究它的最值.【解析】: (1) 因为扇形AOC 的半径为40 m ,∠AOC =x rad ,所以扇形AOC 的面积S 扇形AOC =x ·OA 22=800x,0<x <π.(2分)在△COD 中,OD =80,OC =40,∠COD =π-x ,所以△COD 的面积S △COD =12OC ·OD ·sin∠COD =1 600sin(π-x )=1 600sin x ,(4分)从而S =S △COD +S 扇形AOC =1600sin x +800x,0<x <π.(6分)【问题探究,变式训练】例1、如图,准备在墙上钉一个支架,支架由两直杆AC 与BD 焊接而成,焊接点D 把杆AC 分成AD ,CD 两段,其中两固定点A ,B 间距离为1米,AB 与杆AC 的夹角为60°,杆AC 长为1米.若制作AD 段的成本为a 元/米,制作CD 段的成本是2a 元/米,制作杆BD 的成本是4a 元/米.设∠ADB=α,制作整个支架的总成本记为S 元.(1) 求S 关于α的函数表达式,并指出α的取值范围;(2) 问AD 段多长时,S 最小?【解析】: (1) 在△ABD 中,由正弦定理得1sin α=BD sin π3=ADsin ⎝ ⎛⎭⎪⎫2π3-α,(1分)所以BD =32sin α,AD =3cos α2sin α+12,(3分)则S =a ⎝ ⎛⎭⎪⎫3cos α2sin α+12+2a ⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫3cos α2sin α+12+4a ⎝ ⎛⎭⎪⎫32sin α=a ⎝⎛⎭⎪⎫43-3cos α2sin α+32,α∈⎝ ⎛⎭⎪⎫π3,2π3.(7分)(2) 令S′=3a ·1-4cos α2sin 2α=0,设cos α0=14.(9分)(11分)所以当cos α=14时,S 最小,此时sin α=154,AD =3cos α2sin α+12=5+510.(12分)答:(1)S 关于α的函数表达式为S =a ⎝⎛⎭⎪⎫43-3cos α2sin α+32,且α∈⎝ ⎛⎭⎪⎫π3,2π3;(2)当AD =5+510时,S 最小.(14分)【变式1】、 如图,某景区内有一半圆形花圃,其直径AB 为6,O 是圆心,且OC⊥AB.在OC 上有一座观赏亭Q ,其中∠AQC=2π3.计划在BC ︵上再建一座观赏亭P ,记∠POB=θ⎝ ⎛⎭⎪⎫0<θ<π2.(1) 当θ=π3时,求∠OPQ 的大小;(2) 当∠OPQ 越大时,游客在观赏亭P 处的观赏效果越佳,求游客在观赏亭P 处的观赏效果最佳时,角θ的正弦值.思路分析 设∠OPQ=α,在△POQ 中,用正弦定理可得含α,θ的关系式. 【解析】: 因为∠AQC=2π3,所以∠AQO=π3.又OA =OB =3,所以OQ = 3.(2分)在△OPQ 中,OQ =3,OP =3,∠POQ =π2-θ,设∠OPQ=α,则∠PQO=π2-α+θ.由正弦定理,得3sin ⎝ ⎛⎭⎪⎫π2-α+θ=3sin α,即3sin α=cos (α-θ).(4分) 展开并整理,得tan α=cos θ3-sin θ,其中θ∈⎝ ⎛⎭⎪⎫0,π2.(8分)(1) 当θ=π3时,tan α=33.因为α∈(0,π),所以α=π6.答:当θ=π3时,∠OPQ =π6.(10分)(2) 解法1 设f(θ)=cos θ3-sin θ,θ∈⎝ ⎛⎭⎪⎫0,π2.则f′(θ)=-sin θ(3-sin θ)+cos 2θ(3-sin θ)2=1-3sin θ(3-sin θ)2.令f′(θ)=0,得sin θ=33,记锐角θ0满足sin θ0=33.(13分) 列表如下:由上表可知,f(因为tan α=f(θ)>0,且α∈(0,π),所以当tan α取最大值22时,α也取得最大值. 答:游客在观赏亭P 处的观赏效果最佳时,sin θ=33.(16分) 解法2 记T =cos θ3-sin θ,θ∈⎝ ⎛⎭⎪⎫0,π2,则3T =cos θ+T sin θ=(1,T )·(cos θ,sin θ)≤1+T 2,得T≤22,当且仅当tan θ=22,即sin θ=33时取等号.(13分) 所以tan α的最大值为22.显然tan α>0,所以当tan α=22时,α取最大值. 答:游客在观赏亭P 处的观赏效果最佳时,sin θ=33.(16分) 【变式2】、 ))(2017苏锡常镇调研(一))(C13,17. (本小题满分14分) 某单位将举办庆典活动,要在广场上竖立一形状为等腰梯形的彩门BADC (如图).设计要求彩门的面积为S (单位:m 2),高为h (单位:m)(S ,h 为常数).彩门的下底BC 固定在广场底面上,上底和两腰由不锈钢支架构成,设腰和下底的夹角为α,不锈钢支架的长度之和记为l . (1) 请将l 表示成关于α的函数l =f (α); (2) 问:当α为何值时l 最小,并求最小值.(2) f ′(α)=h ·⎝⎛⎭⎪⎫-2cos αsin 2α--1sin 2α=h ·1-2cos αsin 2α,(8分)令f ′(α)=h ·1-2cos αsin 2α=0,得α=π3.(9分) 当α变化时,f ′(α),f (α)的变化情况如下表:所以l min =f ⎝ ⎛⎭⎪⎫π3=3h +h .(12分)答:(1) l 表示成关于α的函数为l =f (α)=S h +h ⎝ ⎛⎭⎪⎫2sin α-1tan α⎝ ⎛⎭⎪⎫0<α<π2; (2) 当α=π3时,l 有最小值,为3h +Sh.(14分)【变式3】、 在一水域上建一个演艺广场.演艺广场由看台Ⅰ,看台Ⅱ,三角形水域ABC ,及矩形表演台BCDE 四个部分构成(如图).看台Ⅰ,看台Ⅱ是分别以AB ,AC 为直径的两个半圆形区域,且看台Ⅰ的面积是看台Ⅱ的面积的3倍;矩形表演台BCDE 中,CD =10米;三角形水域ABC 的面积为4003平方米.设∠BAC =θ.(1)求BC 的长(用含θ的式子表示);(2)若表演台每平方米的造价为0.3万元,求表演台的最低造价.【解析】:(1)因为看台Ⅰ的面积是看台Ⅱ的面积的3倍,所以AB =3AC . 在△ABC 中,S △ABC =12AB •AC •sin θ=4003,所以AC 2=800sin θ . …………………… 3分由余弦定理可得BC 2=AB 2+AC 2-2AB •AC •cos θ, =4AC 2-23AC 2cos θ. =(4-23cos θ) 800sin θ,即BC =(4-23cos θ)•800sin θ =402-3cos θsin θ.所以 BC =402-3cos θsin θ,θ∈(0,π). …………………… 7分(2)设表演台的总造价为W 万元.因为CD =10m ,表演台每平方米的造价为0.3万元, 所以W =3BC =1202-3cos θsin θ,θ∈(0,π). …………………… 9分记f (θ)=2-3cos θsin θ,θ∈(0,π).则f ′(θ)=3-2cos θsin 2θ. …………………… 11分 由f ′(θ)=0,解得θ=π6. 当θ∈(0,π6)时,f ′(θ)<0;当θ∈(π6,π)时,f ′(θ)>0.故f (θ)在(0,π6)上单调递减,在(π6,π)上单调递增,从而当θ=π6 时,f (θ)取得最小值,最小值为f (π6)=1.所以W min =120(万元).答:表演台的最低造价为120万元. …………………… 14分例2、如图,海上有A ,B 两个小岛相距10km ,船O 将保持观望A 岛和B 岛所成的视角为60°,现从船O 上派下一只小艇沿BO 方向驶至C 处进行作业,且OC =BO .设AC =x km. (1) 用x 分别表示OA 2+OB 2和OA ·OB ,并求出x 的取值范围;(2) 晚上小艇在C 处发出一道强烈的光线照射A 岛,B 岛至光线CA 的距离为BD ,求BD 的最大值.【解析】: (1) 在△OAC 中,∠AOC =120°,AC =x . 由余弦定理得OA 2+OC 2-2OA ·OC ·cos120°=x 2. 又OC =BO ,所以OA 2+OB 2-2OA ·OB ·cos120°=x 2 ①.(2分)在△OAB 中,AB =10,∠AOB =60°.由余弦定理得OA 2+OB 2-2OA ·OB ·cos60°=100 ②.(4分)①+②得OA 2+OB 2=x 2+1002.①-②得4OA ·OB ·cos60°=x 2-100,即OA ·OB =x 2-1002.(6分)又OA 2+OB 2≥2OA ·OB ,所以x 2+1002≥2×x 2-1002,即x 2≤300.又OA ·OB =x 2-1002>0,即x 2>100,所以10<x ≤10 3.(8分) (2) 易知S △OAB =S △OAC ,故S △ABC =2S △OAB =2·12·OA ·OB sin60°=3x 2-4.(10分)又S △ABC =12·AC ·BD ,设BD =f (x ),所以f (x )=3x 2-2x,x ∈(10,103].(12分)又f ′(x )=32⎝ ⎛⎭⎪⎫1+100x 2>0,(14分) 则f (x )在(10,103]上是单调增函数,所以f (x )的最大值为f (103)=10,即BD 的最大值为10.(16分) (利用单调性定义证明f (x )在(10,103上是单调增函数,同样给满分;如果直接说出f (x )在(10,103]上是增函数,但未给出证明,扣2分)【变式1】、如图,某生态农庄内有一直角梯形区域ABCD ,AB ∥CD ,AB BC ⊥,3AB =百米,2CD =百米.该区域内原有道路AC ,现新修一条直道DP (宽度忽略不计),点P在道路AC 上(异于A C ,两点),.(1)用θ表示直道DP 的长度;(2)计划在△ADP 区域内种植观赏植物,在△CDP 区域内种植经济作物.已知种植 观赏植物的成本为每平方百米2万元,种植经济作物的成本为每平方百米1万元, 新建道路DP 的成本为每百米1万元,求以上三项费用总和的最小值.【解析】: (1)过点D 作DD '垂直于线段AB ,垂足为D '.在直角ABC △中,因为AB ⊥BC ,π6BAC =∠,3AB =,所以BC =在直角ADD '△中,因为1AD '=,DD '=2AD =,则,故π3DAD '=∠,又π6BAC =∠,所以π6DAP =∠.…… 2分在ADP △中,由正弦定理得sin πsin 6AD DP θ=,所以1sin DP θ=,π5π66θ<<. …… 6分(2)在ADP △中,由正弦定理得,所以.所以.又.所以. (8)分设三项费用总和为()f θ,则,π5π66θ<<,,π5π66θ<<.………………………………… 10分 CBA(第17题)DPD '所以,令()0f '=θ,则2π3θ=.列表:所以2π3θ=时,.答:以上三项费用总和的最小值为 14分【变式2】、如图,经过村庄A 有两条夹角为60°的公路AB ,AC ,根据规划拟在两条公路之间的区域内建一工厂P ,分别在两条公路边上建两个仓库M ,N (异于村庄A ),要求PM =PN =MN =2(单位:km).如何设计,使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离最远)?(第17题)答:设计∠AMN为60°时,工厂产生的噪声对居民的影响最小.(14分)解法2 (构造直角三角形)设∠PMB =θ.当0<θ<π2时,在△PMD 中,因为PM =2,所以PD =2sin θ,MD =2cos θ. (2分)在△AMN 中,∠ANM =∠PMB =θ,所以MN sin60°=AM sin θ,AM =433sin θ,所以AD =433sin θ+2cos θ⎝ ⎛⎭⎪⎫θ≥π2时,结论也正确.(6分)AP 2=AD 2+PD 2=⎝⎛⎭⎪⎫433sin θ+2cos θ2+(2sin θ)2=163sin 2θ+1633sin θcos θ+4cos 2θ+4sin 2θ(8分)=163·1-cos2θ2+833sin2θ+4=833sin2θ-83cos2θ+203=203+163sin ⎝ ⎛⎭⎪⎫2θ-π6,θ∈⎝⎛⎭⎪⎫0,2π3. (12分)当且仅当2θ-π6=π2,即θ=π3时,AP 2取得最大值12,即AP 取得最大值2 3.此时AM =AN =2,∠PAB =30°.(14分) 解法3 设AM =x ,AN =y ,∠AMN =α. 在△AMN 中,因为MN =2,∠MAN =60°, 所以MN 2=AM 2+AN 2-2 AM ·AN ·cos∠MAN , 即x 2+y 2-2xy cos60°=x 2+y 2-xy =4.(2分)因为MN sin60°=AN sin α,即2sin60°=y sin α,所以sin α=34y ,cos α=x 2+4-y 22×2×x =x 2+x 2-xy 4x =2x -y 4.(6分)cos ∠AMP =cos(α+60°)=12cos α-32sin α=12·2x -y 4-32·34y =x -2y4.(8分)在△AMP 中,AP 2=AM 2+PM 2-2 AM ·PM ·cos∠AMP ,即AP 2=x 2+4-2×2×x ×x -2y4=x 2+4-x (x -2y )=4+2xy .(12分)因为x 2+y 2-xy =4,4+xy =x 2+y 2≥2xy ,即xy ≤4.所以AP 2≤12,即AP ≤2 3.当且仅当x =y =2时,AP 取得最大值2 3.答:设计AM =AN =2 km 时,工厂产生的噪声对居民的影响最小.(14分)例3、某景区修建一栋复古建筑,其窗户设计如图所示.圆O 的圆心与矩形ABCD 对角线的交点重合,且圆与矩形上下两边相切(E 为上切点),与左右两边相交(F ,G 为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m ,且12AB AD ≥.设EOF θ∠=,透光区域的面积为S .(1)求S 关于θ的函数关系式,并求出定义域;(2)根据设计要求,透光区域与矩形窗面的面积比值越大越好.当该比值最大时,求边AB 的长度. 【解析】(1)过点O 作OH FG ⊥于点H ,则,所以,.……………………………2分所以sin22θθ=+,………………………………6分因为12AB AD ≥,所以1sin 2θ≥,所以定义域为ππ[,)62.……………………8分(2)矩形窗面的面积为.则透光区域与矩形窗面的面积比值为.…10分设,ππ62θ<≤.则A BCDFEOG θH,………………………………………………12分因为ππ62θ<≤,所以11sin222θ≤,所以,故'()0f θ<,所以函数()f θ在ππ[,)62上单调减.所以当π6θ=时,()f θ有最大值π6+,此时(m). …14分答:(1)S 关于θ的函数关系式为,定义域为ππ[,)62;(2)透光区域与矩形窗面的面积比值最大时,AB 的长度为1m .………16分【变式1】、如图,某自来水公司要在公路两侧排水管,公路为东西方向,在路北侧沿直线l 1排,在路南侧沿直线l 2排,现要在矩形区域ABCD 内沿直线将l 1与l 2接通.已知AB =60m ,BC =80m ,公路两侧排管费用为每米1万元,穿过公路的部分的排管费用为每米2万元,设EF 与AB 所成的小于90°的角为α. (1) 求矩形区域ABCD 内的排管费用W 关于α的函数关系式; (2) 求排管的最小费用及相应的角α.【解析】 (1) 如图,过E 作EM ⊥BC ,垂足为点M .由题意得∠MEF =α⎝⎛⎭⎪⎫0≤tan α≤43,故有MF =60tan α,EF =60cos α,AE +FC =80-60tan α.(4分) 所以W =(80-60tan α)×1+60cos α×2(5分) =80-60sin αcos α+120cos α=80-α-cos α.(8分)(2) 解法1 设f (α)=sin α-2cos α其中0≤α≤α0<π2,tan α0=43,则f ′(α)=cos αcos α--sin αα-cos 2α=1-2sin αcos 2α.(10分) 令f ′(α)=0得1-2sin α=0,即sin α=12,得α=π6.(11分)列表所以当α=π6时有f (α)max =-3,此时有W min =80+60 3.(15分)答:排管的最小费用为(80+603)万元,相应的角α=π6.(16分) 解法2 f (α)=2-sin αcos α=32-sin α+12+sin αcos α≥32-sin α12+sin αcos α=32, 当且仅当32(1-sin α)=12(1+sin α)时成立,此时sin α=12,α=π6.(11分)以下同解法1.【变式2】、如图,一块弓形薄铁片EMF ,点M 为EF 的中点,其所在圆O 的半径为4 dm(圆心O 在弓形EMF 内),∠EOF =2π3.将弓形薄铁片裁剪成尽可能大的矩形铁片ABCD (不计损耗),AD ∥EF ,且点A ,D 在EF上,设∠AOD =2θ.(1) 求矩形铁片ABCD 的面积S 关于θ的函数关系式; (2) 当裁出的矩形铁片ABCD 面积最大时,求cos θ的值.(第18题)【解析】 (1) 设矩形铁片的面积为S ,∠AOM =θ. 当0<θ<π3时(如图1),AB =4cos θ+2,AD =2×4sin θ,S =AB ×AD =(4cos θ+2)(2×4sin θ)=16sin θ(2cos θ+1).(3分)当π3≤θ<π2时(如图2),AB =2×4cos θ,AD =2×4sin θ,故S =AB ×AD =64sin θcos θ=32sin 2θ. 综上得,矩形铁片的面积S 关于θ的函数关系式为 S =⎩⎪⎨⎪⎧16sin θθ+,0<θ<π3,32sin2θ,π3≤θ<π2.(7分)【变式3】、如图,某城市小区有一个矩形休闲广场,AB =20 m ,广场的一角是半径为16 m 的扇形BCE 绿化区域,为了使小区居民能够更好地在广场休闲放松,现决定在广场上安置两排休闲椅,其中一排是穿越广场的双人靠背直排椅MN (宽度不计),点M 在线段AD 上,并且与曲线CE 相切;另一排为单人弧形椅沿曲线CN (宽度不计)摆放.已知双人靠背直排椅的造价为2a 元/m ,单人弧形椅的造价为a 元/m ,记锐角∠NBE =θ,总造价为W 元.(1) 试将W 表示为θ的函数W (θ),并写出cos θ的取值范围; (2) 如何选取点M 的位置,能使总造价W 最小?【解析】;: (1) 过点N 作AB 的垂线,垂足为F ;过M 作NF 的垂线,垂足为G .在Rt △BNF 中,BF =16cos θ,则MG =20-16cos θ. 在Rt △MNG 中,MN =20-16cos θsin θ.(4分)由题意易得CN =16⎝ ⎛⎭⎪⎫π2-θ,(6分)因此,W (θ)=2a ·20-16cos θsin θ+16a ⎝ ⎛⎭⎪⎫π2-θ,(7分) 当点M 与点A 重合时,cos θ=1620=45;当点M 与点D 重合时,cos θ=0,故cos θ∈⎝ ⎛⎭⎪⎫0,45.(9分) (2) W ′(θ)=-16a +8a ·4-5cos θsin 2θ =8a ·θ-θ-sin 2θ.令W ′(θ)=0,cos θ=12,因为θ∈⎝⎛⎭⎪⎫0,π2,所以θ=π3.(12分)设锐角θ1满足cos θ1=45, θ1∈⎝ ⎛⎭⎪⎫0,π3.当θ∈⎝⎛⎭⎪⎫θ1,π3时,W ′(θ)<0,W (θ)单调递减; 当θ∈⎝ ⎛⎭⎪⎫π3,π2时,W ′(θ)>0,W (θ)单调递增.(14分)所以当θ=π3时,总造价W 最小,最小值为⎝ ⎛⎭⎪⎫163+8π3a 元,此时MN =83,NG =43,NF =83,因此当AM =4 3 m 时,总造价最小.(16分)易错警示 解决应用题问题,以下几个方面是很容易导致失分的地方,要引起高度重视.一是函数的定义域不能忘;二是有单位的问题,单位不能丢;三是要注意回到实际问题中去,即“答”不可少.。

2021年中考数学真题(全国通用)专题23 锐角三角函数(共65题)-(原卷版)

2021年中考数学真题(全国通用)专题23 锐角三角函数(共65题)-(原卷版)

专题23锐角三角函数(共65题)一、单选题1.(2021·湖南中考真题)下列计算正确的是( )A .B .CD .0(3)1π-=1tan 302=︒2=±236a a a ⋅=2.(2021·福建中考真题)如图,某研究性学习小组为测量学校A 与河对岸工厂B 之间的距离,在学校附近选一点C ,利用测量仪器测得.据此,可求得学校与工厂之间的距离60,90,2km A C AC ∠=︒∠=︒=等于( )ABA .B .C .D .2km 3km 4km3.(2021·浙江金华市·中考真题)如图是一架人字梯,已知米,AC 与地面BC 的夹角为2AB AC ==α,则两梯脚之间的距离BC 为( )A .米B .米C .米D .米4cos α4sin α4tan α4cos α4.(2021·湖北随州市·中考真题)如图,某梯子长10米,斜靠在竖直的墙面上,当梯子与水平地面所成角为时,梯子顶端靠在墙面上的点处,底端落在水平地面的点处,现将梯子底端向墙面靠近,使梯子αA B 与地面所成角为,已知,则梯子顶端上升了( )β3sin cos 5αβ==A .1米B .1.5米C .2米D .2.5米5.(2021·湖南衡阳市·中考真题)如图是某商场营业大厅自动扶梯的示意图.自动扶梯的倾斜角为AB ,大厅两层之间的距离为6米,则自动扶梯的长约为(37︒BC AB )( ).sin 370.6,cos370.8,tan 370.75︒≈︒≈︒≈A .7.5米B .8米C .9米D .10米6.(2021·天津中考真题)的值等于()tan 30︒ABC .1D .27.(2021·湖南株洲市·中考真题)某限高曲臂道路闸口如图所示,垂直地面于点,与水平线AB 1l A BE 2l 的夹角为,,若米,米,车辆的高度为(单位:米),()090αα︒≤≤︒12////EF l l 1.4AB =2BE =h 不考虑闸口与车辆的宽度.①当时,小于3.3米的车辆均可以通过该闸口;90α=︒h ②当时,等于2.9米的车辆不可以通过该闸口;45α=︒h ③当时,等于3.1米的车辆不可以通过该闸口.60α=︒h 则上述说法正确的个数为( )A .0个B .1个C .2个D .3个8.(2021·重庆中考真题)如图,在建筑物AB 左侧距楼底B 点水平距离150米的C 处有一山坡,斜坡CD 的坡度(或坡比)为,坡顶D 到BC 的垂直距离米(点A ,B ,C ,D ,E 在同一平面1:2.4i =50DE =内),在点D 处测得建筑物顶A 点的仰角为50°,则建筑物AB 的高度约为(参考数据:;sin 500.77︒≈;)cos500.64︒≈tan 50 1.19︒≈A .69.2米B .73.1米C .80.0米D .85.7米9.(2021·浙江中考真题)如图,已知在矩形中,,点是边上的一个动ABCD 1,AB BC ==P AD 点,连结,点关于直线的对称点为,当点运动时,点也随之运动.若点从点运动BP C BP 1C P 1C P A 到点,则线段扫过的区域的面积是()D 1CCA .B .CD .ππ2π10.(2021·浙江丽水市·中考真题)如图,是的直径,弦于点E ,连结.若AB O A CD OA ⊥,OC OD 的半径为,则下列结论一定成立的是( )O A ,m AOD α∠=∠A .B .C .D .tan OE m α=⋅2sin CD m α=⋅cos AE m α=⋅2sin CODS m α=⋅A 11.(2021·浙江宁波市·中考真题)如图,在中,于点D ,ABC A 45,60,B C AD BC ∠=︒∠=︒⊥.若E ,F 分别为,的中点,则的长为()BD =AB BCEF ABC .1D12.(2021·云南中考真题)在中,,若,则的长是ABC A 90ABC ∠=︒s n 3100,5i A A C ==AB ( )A .B .C .60D .805003503513.(2021·山东泰安市·中考真题)如图,为了测量某建筑物的高度,小颖采用了如下的方法:先从与BC 建筑物底端B 在同一水平线上的A 点出发,沿斜坡行走130米至坡顶D 处,再从D 处沿水平方向继AD 续前行若干米后至点E 处,在E 点测得该建筑物顶端C 的仰角为60°,建筑物底端B 的俯角为45°,点A 、B 、C 、D 、E 在同一平面内,斜坡的坡度.根据小颖的测量数据,计算出建筑物的AD 1:2.4i =BC 高度约为( ))1.732≈A .136.6米B .86.7米C .186.7米D .86.6米14.(2021·江苏连云港市·中考真题)如图,中,,、相交于点D ,ABC A BD AB ⊥BD AC ,,,则的面积是( )47AD AC =2AB =150ABC ∠=︒DBC△ABCD15.(2021·浙江绍兴市·中考真题)如图,中,,,点D 是边BC 的中Rt ABC A 90BAC∠=︒1cos 4B =点,以AD 为底边在其右侧作等腰三角形ADE ,使,连结CE,则的值为( )ADE B ∠=∠CEAD A .B C D .32216.(2021·重庆中考真题)如图,相邻两个山坡上,分别有垂直于水平面的通信基站MA 和N D .甲在山脚点C 处测得通信基站顶端M 的仰角为60°,测得点C 距离通信基站MA 的水平距离CB 为30m ;乙在另一座山脚点F 处测得点F 距离通信基站ND 的水平距离FE 为50m ,测得山坡DF 的坡度i =1:1.25.若,点C ,B ,E ,F 在同一水平线上,则两个通信基站顶端M 与顶端N 的高度差为( )58ND DE =)1.73≈≈A .9.0m B .12.8m C .13.1m D .22.7m17.(2021·四川南充市·中考真题)如图,在矩形ABCD 中,,,把边AB 沿对角线BD 15AB =20BC =平移,点,分别对应点A ,B .给出下列结论:①顺次连接点,,C ,D 的图形是平行四边'A 'B 'A 'B 形;②点C 到它关于直线的对称点的距离为48;③的最大值为15;④的最'AA ''A C B C -''A C B C +小值为)A .1个B .2个C .3个D .4个18.(2021·浙江温州市·中考真题)图1是第七届国际数学教育大会(ICME )的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形.若.OABC 1AB BC ==AOB α∠=,则的值为( )2OCA .B .C .D .211sin α+2sin 1α+211cos α+2cos 1α+19.(2021·四川南充市·中考真题)如图,在菱形ABCD 中,,点E ,F 分別在边AB ,BC 上,60A ∠=︒,的周长为,则AD 的长为()2AE BF ==DEFA A B.CD.11-20.(2021·湖北荆州市·中考真题)如图,在菱形中,,,以为圆心、长ABCD 60D ∠=︒2AB=B BC 为半径画,点为菱形内一点,连接,,.当为等腰直角三角形时,图中阴影部AAC P PA PBPC BPC △分的面积为( )A .B .C .D.23π-23π2π2π21.(2021·吉林长春市·中考真题)如图是净月潭国家森林公园一段索道的示意图.已知A 、B 两点间的距离为30米,,则缆车从A 点到达B 点,上升的高度(BC 的长)为( )A α∠=A .米B .米C .米D .米30sin α30sin α30cos α30cos α22.(2021·湖北黄冈市·中考真题)如图,为矩形的对角线,已知,.点P 沿AC ABCD 3AD =4CD =折线以每秒1个单位长度的速度运动(运动到D 点停止),过点P 作于点E ,则C A D --PE BC ⊥的面积y 与点P 运动的路程x 间的函数图象大致是( )CPE △A .B .C .D .23.(2021·四川达州市·中考真题)在平面直角坐标系中,等边如图放置,点的坐标为,每AOB ∆A ()1,0一次将绕着点逆时针方向旋转,同时每边扩大为原来的2倍,第一次旋转后得到,AOB ∆О60︒11A OB ∆第二次旋转后得到,…,依次类推,则点的坐标为( )22A OB ∆2021AA .B .()202020202,2-()202120212,2-C .D.()202020202,2()201120212,2-24.(2021·湖北十堰市·中考真题)如图,小明利用一个锐角是的三角板测量操场旗杆的高度,已知他30°与旗杆之间的水平距离为,为(即小明的眼睛与地面的距离),那么旗杆的高度是BC 15m AB 1.5m ()A .B .C .D.3m 2⎛⎫+ ⎪⎝⎭3m 2⎛⎫+ ⎪⎝⎭25.(2021·浙江台州市·中考真题)如图,将长、宽分别为12cm ,3cm 的长方形纸片分别沿AB ,AC 折叠,点M ,N 恰好重合于点P .若∠α=60°,则折叠后的图案(阴影部分)面积为()A .(36)cm 2B .(36)cm 2C .24 cm 2D .36 cm2--26.(2021·湖南怀化市·中考真题)如图,菱形ABCD 的四个顶点均在坐标轴上,对角线AC 、BD 交于原点O ,于E 点,交BD 于M 点,反比例函数的图象经过线段DC 的中点N ,若AE BC⊥0)y x =>,则ME 的长为( )4BD =A .B .53ME =43=ME C .D .1ME =23ME =27.(2021·湖北十堰市·中考真题)如图,内接于是的直ABC A ,120,,O BAC AB AC BD ∠=︒=A O A 径,若,则( )3AD =BC=A .B .C .3D .4二、填空题28.(2021·江苏无锡市·中考真题)一条上山直道的坡度为1:7,沿这条直道上山,则前进100米所上升的高度为________米.29.(2021·广东中考真题)如图,在中,.过点D 作,垂ABCD A 45,12,sin 5AD AB A ===DE AB ⊥足为E ,则______.sin BCE ∠=30.(2021·安徽中考真题)如图,圆O 的半径为1,内接于圆O .若,,则ABC A 60A ∠=︒75B ∠=︒______.AB =31.(2021·海南中考真题)如图,的顶点的坐标分别是,且ABC A B C 、(1,0)、,则顶点A 的坐标是_____.90,30ABC A ∠=︒∠=︒32.(2021·甘肃武威市·中考真题)如图,在矩形中,是边上一点,ABCD E BC 是边的中点,,则________.90,30,AED EAD F ∠=︒∠=︒AD 4cm EF =BE =cm33.(2021·四川广元市·中考真题)如图,在的正方形网格图中,已知点A 、B 、C 、D 、O 均在格点44⨯上,其中A 、B 、D 又在上,点E 是线段与的交点.则的正切值为________.O A CD O A BAE ∠34.(2021·湖南中考真题)如图,在中,,,,交于点ABC A 5AB =4AC =4sin 5A =BD AC ⊥AC .点为线段上的动点,则的最小值为________.D P BD 35PC PB +35.(2021·湖北武汉市·中考真题)如图,海中有一个小岛,一艘轮船由西向东航行,在点测得小岛A B 在北偏东方向上;航行到达点,这时测得小岛在北偏东方向上.小岛到航线A 60︒12n mile C A 30°A的距离是__________,结果用四舍五入法精确到0.1).BC n mile 1.73≈36.(2021·四川乐山市·中考真题)如图,为了测量“四川大渡河峡谷”石碑的高度,佳佳在点处测得石碑C 顶点的仰角为,她朝石碑前行5米到达点处,又测得石顶点的仰角为,那么石碑的高度A 30°D A 60︒的长________米.(结果保留根号)AB =37.(2021·四川乐山市·中考真题)如图,已知点,点为直线上的一动点,点,(4,3)A B 2y =-()0,C n ,于点,连接.若直线与正半轴所夹的锐角为,那么当的值23n -<<AC BC ⊥C AB AB x αsin α最大时,的值为________.n38.(2021·浙江衢州市·中考真题)图1是某折叠式靠背椅实物图,图2是椅子打开时的侧面示意图,椅面CE 与地面平行,支撑杆AD ,BC 可绕连接点O 转动,且,椅面底部有一根可以绕点H 转动的OA OB =连杆HD ,点H 是CD 的中点,FA ,EB 均与地面垂直,测得,,.54cm FA =45cm EB =48cm AB =(1)椅面CE 的长度为_________cm .(2)如图3,椅子折叠时,连杆HD 绕着支点H 带动支撑杆AD ,BC 转动合拢,椅面和连杆夹角CHD ∠的度数达到最小值时,A ,B 两点间的距离为________cm (结果精确到0.1cm ).(参考数据:30°,,)sin150.26︒≈cos150.97︒≈tan150.27︒≈39.(2021·浙江中考真题)如图,已知在中,,则的值是Rt ABC A 90,1,2ACB AC AB ∠=︒==sin B ______.40.(2021·浙江宁波市·中考真题)如图,在矩形中,点E 在边上,与关于直ABCD AB BEC △FEC A 线对称,点B 的对称点F 在边上,G 为中点,连结分别与交于M ,N 两点,若EC AD CD BG ,CE CF ,,则的长为________,的值为__________.BM BE =1MG =BN sin AFE ∠41.(2021·四川乐山市·中考真题)在中,.有一个锐角为,.若点在Rt ABC A 90C ∠=︒60︒4AB =P 直线上(不与点、重合),且,则的长为________.AB A B 30PCB ∠=︒CP 42.(2021·湖北荆州市·中考真题)如图1是一台手机支架,图2是其侧面示意图,,可分别绕点AB BC ,转动,测量知,.当,转动到,时,点A B 8cm BC =16cm AB =AB BC 60=︒∠BAE 50ABC ∠=︒到的距离为_____________cm .(结果保留小数点后一位,参考数据:C AE sin 700.94︒≈ 1.73≈)43.(2021·山西中考真题)太原地铁2号线是山西省第一条开通运营的地铁线路,于2020年12月26日开通.如图是该地铁某站扶梯的示意图,扶梯的坡度(为铅直高度与水平宽度的比).王老师AB 5:12i =i 乘扶梯从扶梯底端以0.5米/秒的速度用时40秒到达扶梯顶端,则王老师上升的铅直高度为A B BC __________米.44.(2021·湖北宜昌市·中考真题)“莱洛三角形”是工业生产中加工零件时广泛使用的一种图形.如图,以边长为2厘米的等边三角形的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的图形就是“莱洛ABC 三角形”,该“莱洛三角形”的面积为____________平方厘米.(圆周率用表示)π45.(2021·湖北黄冈市·中考真题)如图,建筑物上有一高为的旗杆,从D 处观测旗杆顶部A BC 8m AB 的仰角为,观测旗杆底部B 的仰角为,则建筑物的高约为_____(结果保留小数点后一53︒45︒BC m 位).(参考数据,,)sin 530.80︒≈cos530.60︒≈tan 53 1.33︒≈46.(2021·四川眉山市·中考真题)如图,在菱形中,,对角线、相交于点ABCD 10AB AC ==AC BD ,点在线段上,且,点为线段上的一个动点,则的最小值是O M AC 3AM =P BD 12MP PB +______.47.(2021·江苏苏州市·中考真题)如图,射线、互相垂直,,点位于射线的上OM ON 8OA =B OM 方,且在线段的垂直平分线上,连接,.将线段绕点按逆时针方向旋转得到对应OA l AB 5AB =AB O 线段,若点恰好落在射线上,则点到射线的距离______.A B ''B 'ON A 'ON d ≈48.(2021·新疆中考真题)如图,已知正方形ABCD 边长为1,E 为AB 边上一点,以点D 为中心,将按逆时针方向旋转得,连接EF ,分別交BD ,CD 于点M ,N .若,则DAE △DCF A 25AE DN =__________.sin EDM ∠=49.(2021·四川达州市·中考真题)如图,在边长为6的等边中,点,分别是边,上ABC ∆E F AC BC 的动点,且,连接,交于点,连接,则的最小值为___________.AE CF =BE AF P CP CP三、解答题50.(2021·广东中考真题)如图,在中,,作的垂直平分线交于点D ,延长Rt ABC A 90A ∠=︒BC AC 至点E ,使.AC CE AB =(1)若,求的周长;1AE =ABD △(2)若,求的值.13AD BD =tan ABC ∠51.(2021·内蒙古通辽市·中考真题)计算;101(3)2cos30|3|2π-⎛⎫+--︒+ ⎪⎝⎭52.(2021·湖南中考真题)“2021湖南红色文化旅游节——重走青年毛泽东游学社会调查之路”启动仪式于4月29日在安化县梅城镇举行.该镇南面山坡上有一座宝塔,一群爱好数学的学生在研学之余对该宝塔的高度进行了测量.如图所示,在山坡上的A 点测得塔底B 的仰角,塔顶D 的仰角13BAC ∠=︒,斜坡米,求宝塔的高(精确到1米)(参考数据:38DAC ∠=︒50AB =BD )sin130.22,cos130.97,tan130.23,sin 380.62,cos380.79,tan 380.78︒≈︒≈︒≈︒≈︒≈︒≈53.(2021·湖南中考真题)已知锐角中,角A ,B ,C 的对边分别为a ,b ,c ,边角总满足关系ABC A 式:.sin sin sin a b c A B C==(1)如图1,若,求b 的值;6,45,75a B C =∠=∠=︒︒(2)某公园准备在园内一个锐角三角形水池中建一座小型景观桥(如图2所示),若ABC CD 米,米,,求景观桥的长度.,14CD AB AC ⊥=10AB=sin ACB ∠=CD54.(2021·湖南张家界市·中考真题)张家界大峡谷玻璃桥是我市又一闻名中外的五星景点.某校初三年级在一次研学活动中,数学研学小组设计以下方案测量桥的高度.如图,在桥面正下方的谷底选一观测点A ,观测到桥面,的仰角分别为,测得长为320米,求观测点到桥面的距离.(结B C 30,60︒︒BC A BC)1.73≈55.(2021·黑龙江绥化市·中考真题)一种可折叠的医疗器械放置在水平地面上,这种医疗器械的侧面结构如图实线所示,底座为,点在同一条直线上,测得ABC A B C D 、、,,其中一段支撑杆,另一段支撑杆90,60,32cm ACB ABC AB ∠=︒∠=︒=75BDE ∠=︒84cm CD =,求支撑杆上的点到水平地面的距离是多少?(用四舍五入法对结果取整数,参考数据70cm DE =E EF)sin150.26,cos150.97,tan15 1.732︒≈︒≈︒≈≈56.(2021·浙江宁波市·中考真题)我国纸伞的制作工艺十分巧妙.如图1,伞不管是张开还是收拢,伞柄始终平分同一平面内两条伞骨所成的角,且,从而保证伞圈D 能沿着伞柄滑动.如AP BAC ∠AB AC =图2是伞完全收拢时伞骨的示意图,此时伞圈D 已滑动到点的位置,且A ,B ,三点共线,D ¢D ¢,B 为中点,当时,伞完全张开.40cm AD '=AD '140BAC ∠=︒(1)求的长.AB (2)当伞从完全张开到完全收拢,求伞圈D 沿着伞柄向下滑动的距离.(参考数据:)sin 70094,cos700.34,tan 70 2.75︒≈︒≈︒≈57.(2021·江西中考真题)图1是疫情期间测温员用“额温枪”对小红测温时的实景图,图2是其侧面示意图,其中枪柄与手臂始终在同一直线上,枪身与额头保持垂直量得胳膊,BC MC BA 28cm MN =,肘关节与枪身端点之间的水平宽度为(即的长度),枪身42cm MB =M A 25.3cm MP 8.5cm BA =.图1(1)求的度数;ABC ∠(2)测温时规定枪身端点与额头距离范围为.在图2中,若测得,小红与测A 3~5cm 68.6BMN ∠=°温员之间距离为问此时枪身端点与小红额头的距离是否在规定范围内?并说明理由.(结果保留50cm A 小数点后一位)(参考数据:,,)sin 66.40.92︒≈cos 66.40.40=°sin 23.60.40︒≈ 1.414≈58.(2021·甘肃武威市·中考真题)如图1是平凉市地标建筑“大明宝塔”,始建于明嘉靖十四年(1535年),是明代平凉韩王府延恩寺的主体建筑.宝塔建造工艺精湛,与崆峒山的凌空塔遥相呼应,被誉为平凉古塔“双璧”.某数学兴趣小组开展了测量“大明宝塔的高度”的实践活动,具体过程如下:方案设计:如图2,宝塔垂直于地面,在地面上选取两处分别测得和的度数(CD ,A B CAD ∠CBD ∠在同一条直线上).,,A D B 数据收集:通过实地测量:地面上两点的距离为.,A B 58m,42,58CAD CBD ∠=︒∠=︒问题解决:求宝塔的高度(结果保留一位小数).CD 参考数据:,sin 420.67,cos 420.74,tan 420.90︒≈︒=︒≈sin 580.85,cos580.53,tan 58 1.60︒=︒=︒=.根据上述方案及数据,请你完成求解过程.59.(2021·青海中考真题)如图1是某中学教学楼的推拉门,已知门的宽度米,且两扇门的大小2AD =相同(即),将左边的门绕门轴向里面旋转,将右边的门绕门轴AB CD =11ABB A 1AA 35︒11CDD C 1DD 向外面旋转,其示意图如图2,求此时与之间的距离(结果保留一位小数).(参考数据45︒B C,).sin 350.6︒≈cos 350.8︒≈ 1.4≈60.(2021·四川成都市·中考真题)越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极落实节能环保的举措.某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度.如图,已知测倾器的高度为1.6米,在测点A 处安置测倾器,测得点M 的仰角,在与点A 相距3.5米的测点33MBC ∠=︒D 处安置测倾器,测得点M 的仰角 (点A ,D 与N 在一条直线上),求电池板离地面的高45MEC ∠=︒度的长.(结果精确到1米;参考数据:)MN sin 330.54,cos330.84,tan 330.65︒≈︒≈︒≈61.(2021·山东聊城市·中考真题)时代中学组织学生进行红色研学活动.学生到达爱国主义教育基地后,先从基地门口A 处向正南方向走300米到达革命纪念碑B 处,再从B 处向正东方向走到党史纪念馆C处,然后从C 处向北偏西37°方向走200米到达人民英雄雕塑D 处,最后从D 处回到A 处.已知人民英雄雕塑在基地门口的南偏东65°方向,求革命纪念碑与党史纪念馆之间的距离(精确到1米).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)62.(2021·四川广元市·中考真题)如图,某无人机爱好者在一小区外放飞无人机,当无人机飞行到一定高度D 点处时,无人机测得操控者A 的俯角为,测得小区楼房顶端点C 处的俯角为.已知操控75︒BC 45︒者A 和小区楼房之间的距离为45米,小区楼房的高度为米.BCBC(1)求此时无人机的高度;(2)在(1)条件下,若无人机保持现有高度沿平行于的方向,并以5米/秒的速度继续向前匀速飞AB 行.问:经过多少秒时,无人机刚好离开了操控者的视线?(假定点A ,B ,C ,D 都在同一平面内.参考数据:.计算结果保留根号)tan 752︒=tan152︒=63.(2021·四川资阳市·中考真题)资阳市为实现5G 网络全覆盖,2020-2025年拟建设5G 基站七千个.如图,在坡度为的斜坡上有一建成的基站塔,小芮在坡脚C 测得塔顶A 的仰角为1:2.4i =CB AB ,然后她沿坡面行走13米到达D 处,在D 处测得塔顶A 的仰角为(点A 、B 、C 、D 均在同45︒CB 53︒一平面内)(参考数据:)434sin 53,cos53,tan 53553︒≈︒≈︒≈(1)求D 处的竖直高度;(2)求基站塔的高.AB 64.(2021·江苏连云港市·中考真题)我市的前三岛是众多海钓人的梦想之地.小明的爸爸周末去前三岛钓鱼,将鱼竿摆成如图1所示.已知,鱼竿尾端A 离岸边,即.海面与AB 4.8m AB =0.4m 0.4m AD =地面平行且相距,即.AD 1.2m 1.2m DH =(1)如图1,在无鱼上钩时,海面上方的鱼线与海面的夹角,海面下方的鱼线BC HC 37BCH ∠=︒CO 与海面垂直,鱼竿与地面的夹角.求点O 到岸边的距离;HC AB AD 22BAD ∠=︒DH (2)如图2,在有鱼上钩时,鱼竿与地面的夹角,此时鱼线被拉直,鱼线,53BAD ∠=︒ 5.46m BO =点O 恰好位于海面.求点O 到岸边的距离.(参考数据:,DH 3sin 37cos535︒=︒≈,,,,)4cos37sin 535=︒︒≈3tan 374︒≈3sin 228︒≈15cos 2216︒≈2tan 225︒≈65.(2021·四川凉山彝族自治州·中考真题)王刚同学在学习了解直角三角形及其应用的知识后,尝试利用所学知识测量河对岸大树AB 的高度,他在点C 处测得大树顶端A 的仰角为,再从C 点出发沿斜坡走45︒米到达斜坡上D 点,在点D 处测得树顶端A 的仰角为,若斜坡CF 的坡比为(点30︒1:3i =在同一水平线上).E C H ,,(1)求王刚同学从点C 到点D 的过程中上升的高度;(2)求大树AB 的高度(结果保留根号).。

(完整版)解三角形经典练习题集锦(附答案)

(完整版)解三角形经典练习题集锦(附答案)

(完整版)解三角形经典练习题集锦(附答案)解三角形一、选择题1.在△ABC中,若0030,6,90BaC,则bc 等于() A.1 B.1 C.32 D.32 2.若A为△ABC的内角,则下列函数中一定取正值的是()A.Asin B.Acos C.Atan D.Atan1 3.在△ABC中,角,AB均为锐角,且,sincosBA则△ABC的形状是()A.直角三角形 B.锐角三角形 C.钝角三角形 D.等腰三角形 4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为() A.2 B.23 C.3 D.32 5.在△ABC中,若Babsin2,则A等于() A.006030或 B.006045或 C.0060120或 D.0015030或6.边长为5,7,8的三角形的最大角与最小角的和是()A.090 B.0120 C.0135 D.0150 二、填空题 1.在Rt△ABC中,090C,则BAsinsin的最大值是_______________。

2.在△ABC中,若Acbcba 则,222_________。

3.在△ABC中,若aCBb则,135,30,200_________。

4.在△ABC中,若sinA∶sinB∶sinC7∶8∶13,则C_____________。

5.在△ABC中,,26AB030C,则ACBC的最大值是________。

三、解答题1.在△ABC中,若,coscoscosCcBbAa则△ABC的形状是什么?2.在△ABC中,求证:)coscos(aAbBcabba 3.在锐角△ABC中,求证:CBACBAcoscoscossinsinsin。

4.在△ABC中,设,3,2CAbca求Bsin的值。

解三角形一、选择题1.在△ABC中,::1:2:3ABC,则::abc等于() A.1:2:3 B.3:2:1 C.1:3:2 D.2:3:1 2.在△ABC 中,若角B为钝角,则sinsinBA的值()A.大于零B.小于零C.等于零D.不能确定3.在△ABC中,若BA2,则a等于()A.Absin2 B.Abcos2 C.Bbsin2 D.Bbcos2 4.在△ABC中,若2lgsinlgcoslgsinlgCBA,则△ABC的形状是()A.直角三角形B.等边三角形C.不能确定D.等腰三角形5.在△ABC中,若,3))((bcacbcba则A ( ) A.090 B.060 C.0135 D.0150 6.在△ABC中,若1413cos,8,7Cba,则最大角的余弦是() A.51 B.61 C.71 D.81 7.在△ABC中,若tan2ABabab,则△ABC的形状是()A.直角三角形B.等腰三角形 C.等腰直角三角形 D.等腰三角形或直角三角形二、填空题1.若在△ABC中,060,1,3,ABCAbS则CBAcbasinsinsin=_______。

(完整版)解三角形综合复习包含练习题(答案)

(完整版)解三角形综合复习包含练习题(答案)

重庆学乐教育vip 一对二教学方案课时数:2小时 学生: 主讲人:沈老师解三角形教学目的:教学重点/难点: 教学内容:正弦定理和余弦定理基础梳理1.正弦定理:a sin A =b sin B =csin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R 等形式,以解决不同的三角形问题.2.余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab .3.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (R 是三角形外接圆半径,r 是三角形内切圆的半径),并可由此计算R ,r .考向一 利用正弦定理解三角形【例1】►在△ABC 中,a =3,b =2,B =45°.求角A ,C 和边c . 解 由正弦定理得a sin A =b sin B ,3sin A =2sin 45°, ∴sin A =32.∵a >b ,∴A =60°或A =120°.当A =60°时,C =180°-45°-60°=75°, c =b sin Csin B =6+22;当A =120°时,C =180°-45°-120°=15°, c =b sin Csin B =6-22.考向二 利用余弦定理解三角形【例2】►在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos B cos C =-b2a +c .(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积. 解 (1)由余弦定理知:cos B =a 2+c 2-b 22ac , cos C =a 2+b 2-c 22ab .将上式代入cos B cos C =-b2a +c 得:a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b2a +c , 整理得:a 2+c 2-b 2=-ac . ∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12. ∵B 为三角形的内角,∴B =23π. (2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B , 得b 2=(a +c )2-2ac -2ac cos B , ∴13=16-2ac ⎝ ⎛⎭⎪⎫1-12,∴ac =3. ∴S △ABC =12ac sin B =334.【训练2】 (2011·桂林模拟)已知A,B,C为△ABC的三个内角,其所对的边分别为a,b,c,且2cos2A2+cos A=0.(1)求角A的值;(2)若a=23,b+c=4,求△ABC的面积.解(1)由2cos2A2+cos A=0,得1+cos A+cos A=0,即cos A=-1 2,∵0<A<π,∴A=2π3.(2)由余弦定理得,a2=b2+c2-2bc cos A,A=2π3,则a2=(b+c)2-bc,又a=23,b+c=4,有12=42-bc,则bc=4,故S△ABC =12bc sin A= 3.【训练3】在△ABC中,若acos A=bcos B=ccos C;则△ABC是().A.直角三角形B.等边三角形C.钝角三角形D.等腰直角三角形解析由正弦定理得a=2R sin A,b=2R sin B,c=2R sin C(R为△ABC外接圆半径).∴sin Acos A=sin Bcos B=sin Ccos C.即tan A=tan B=tan C,∴A=B=C.考向三正、余弦定理的综合应用【例3】►在△ABC中,内角A,B,C对边的边长分别是a,b,c,已知c=2,C=π3.(1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积. 解 (1)由余弦定理及已知条件,得a 2+b 2-ab =4.又因为△ABC 的面积等于3,所以12ab sin C =3,得ab =4,联立方程组⎩⎨⎧ a 2+b 2-ab =4,ab =4,解得⎩⎨⎧a =2,b =2.(2)由题意,得sin(B +A )+sin(B -A )=4sin A cos A , 即sin B cos A =2sin A cos A . 当cos A =0,即A =π2时,B =π6, a =433,b =233;当cos A ≠0时,得sin B =2sin A , 由正弦定理,得b =2a . 联立方程组⎩⎨⎧a 2+b 2-ab =4,b =2a ,解得⎩⎪⎨⎪⎧a =233,b =433.所以△ABC 的面积S =12a b sin C =233.【训练3】 (2011·北京西城一模)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且cos B =45,b =2.(1)当A =30°时,求a 的值;(2)当△ABC 的面积为3时,求a +c 的值. 解 (1)因为cos B =45,所以sin B =35.由正弦定理a sin A =b sin B ,可得a sin 30°=103, 所以a =53.(2)因为△ABC 的面积S =12ac ·sin B ,sin B =35, 所以310ac =3,ac =10.由余弦定理得b 2=a 2+c 2-2ac cos B ,得4=a 2+c 2-85ac =a 2+c 2-16,即a 2+c 2=20. 所以(a +c )2-2ac =20,(a +c )2=40. 所以a +c =210. 练习题:1.已知△ABC 中,30A =o ,105C =o ,8b =,则等于 ( 2 )A 4B 42C 43D 452. △ABC 中,45B =o,60C =o,1c =,则最短边的边长等于 ( 1 )A 63B 62C 12 D 323.长为5、7、8的三角形的最大角与最小角之和为 ( 2 )A 90°B 120°C 135°D 150°4. △ABC 中,cos cos cos a b cA B C ==,则△ABC 一定是 ( 4 )A 直角三角形B 钝角三角形C 等腰三角形D 等边三角形5. △ABC 中,60B =o,2b ac =,则△ABC 一定是 ( 4 )A 锐角三角形B 钝角三角形C 等腰三角形D 等边三角形6.△ABC 中,∠A=60°, a= 6 , b=4, 那么满足条件的△ABC ( 3 )A 有 一个解B 有两个解C 无解D 不能确定7. △ABC 中,8b =,83c =,163ABC S =V ,则A ∠等于 ( 3 )A 30oB 60oC 30o或150oD 60o或120o8.△ABC 中,若60A =o,3a =,则sin sin sin a b cA B C +-+-等于 ( 1 )A 2B 12 C3 D 329. △ABC 中,:1:2A B =,C 的平分线CD 把三角形面积分成3:2两部分,则cos A =( 3)角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两邻边对应成比例A 13B 12C 34D 0 10.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为 ( 1 )画图解题A 锐角三角形B 直角三角形C 钝角三角形D 由增加的长度决定11 在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°则塔高为( 1 )A.3400米 B. 33400米 C. 2003米 D. 200米12 海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是 ( 3 )A.10 海里B.5海里C. 56 海里D.53 海里13.在△ABC 中,如果sin :sin :sin 2:3:4A B C =,那么cos C 等于 14- 。

专题22 解三角形(同步练习)(文)(原卷版).pdf

专题22 解三角形(同步练习)(文)(原卷版).pdf

专题22 解三角形(同步练习)题型一 利用正余弦定理求角、边长1-1.(10分)在中,角、、的对边分别为、、,已知。

ABC ∆A B C a b c A b b c cos 2⋅=-(1)若,,求;62=a 3=b c (2)若角,求角。

2π=C B 1-2.(10分)在中,、、分别为角、、所对的边,已知。

ABC ∆a b c A B C b a c B C A -=-2cos cos 2cos (1)求的值;AC sin sin (2)若,的周长为,求的长。

41cos =B ABC ∆5b1-3.(12分)中,是上的点,平分,是面积的倍。

ABC ∆D BC AD BAC ∠ABD ∆ACD ∆2(1)求;C B∠∠sin sin (2)若,,求和的长。

1=AD 22=CD BD AC 1-4.(12分)在中,、、分别是角、、的对边,向量,向量ABC ∆a b c A B C ),2(b c a m +=,且。

)cos ,(cos C B n =n m ⊥(1)求的大小;B (2)若,求的最小值。

3=b ||BC BA +题型二 解三角形面积与周长问题2-1.(10分)已知、、分别为的内角、、的对边,。

a b c ABC ∆A B C C A B sin sin 2sin 2⋅=(1)若,求;b a =B cos (2)若,且,求的面积。

90=B 2=a ABC ∆2-2.(10分)设的内角、、所对的边分别为、、,且,。

ABC ∆A B C a b c 3cos =⋅B a 33sin =⋅A b (1)求角;B (2)若,求的周长。

36=∆ABC S ABC ∆2-3.(10分)在中,内角、、所对边分别为、、,若,且ABC ∆A B C a b c )cos(sin 2)sin(B A A C A +⋅=+。

43π=C (1)求证:、、成等比数列;a b a 2(2)若的面积是,求边的长。

ABC ∆2c 2-4.(12分)在中,、、分别是角、、的对边,的外接圆半径为,ABC ∆a b c A B C ABC ∆1+⋅-B a c cos )2(。

专题23 二次函数抛物线与三角形的综合-2023年中考数学二轮复习核心考点拓展训练(原卷版)

专题23 二次函数抛物线与三角形的综合-2023年中考数学二轮复习核心考点拓展训练(原卷版)

专题23 二次函数抛物线与三角形的综合(原卷版)第一部分 典例剖析+针对训练类型一 二次函数与直角三角形的综合1.(2022秋•利川市期末)如图1,抛物线y =ax 2+bx ﹣3交x 轴于点A (4,0)和点B (﹣1,0),交y 轴于点C .(1)求此抛物线的解析式;(2)点P 为直线AC 下方抛物线上一动点,连接PA ,PC ,求△ACP 面积的最大值;(3)如图2直线l 为该抛物线的对称轴,在直线l 上是否存在一点M 使△BCM 为直角三角形,若存在,请求出点M 的坐标,若不存在,请说明理由.针对训练1.(2022秋•渝中区期末)抛物线y =12x 2+bx +c 与x 轴交于点A (﹣2,0)和B (4,0),与y 轴交于点C ,连接BC .点P 是线段BC 下方抛物线上的一个动点(不与点B ,C 重合),过点P 作y 轴的平行线交BC 于M ,交x 轴于N ,设点P 的横坐标为t .(1)求该抛物线的解析式;(2)用关于t 的代数式表示线段PM ,求PM 的最大值及此时点M 的坐标;(3)过点C 作CH ⊥PN 于点H ,S △BMN =9S △CHM ,①求点P 的坐标;②连接CP ,在y 轴上是否存在点Q ,使得△CPQ 为直角三角形,若存在,求出点Q 的坐标;若不存在,请说明理由.类型一 二次函数与等腰三角形的综合典例2(2021秋•重庆期末)如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.针对训练1.(2022秋•代县期末)综合与探究如图,抛物线y=ax2+bx+4经过A(﹣1,0),B(2,0)两点,与y轴交于点C,作直线BC.(1)求抛物线和直线BC的函数解析式.(2)D是直线BC上方抛物线上一点,求△BDC面积的最大值及此时点D的坐标.(3)在抛物线对称轴上是否存在一点P,使得以点P,B,C为顶点的三角形是等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.2.(2022秋•宁陵县期中)如图,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由.类型三二次函数与等腰直角三角形的综合典例3(2022秋•洛川县校级期末)已知抛物线L₁:y=﹣x2+bx+c与x轴交于A(﹣5,0),B(﹣1,0)两点.(1)求抛物线L1的表达式;(2)平移抛物线L1得到新抛物线L2,使得新抛物线L2经过原点O,且与x轴的正半轴交于点C,记新抛物线L2的顶点为P,若△OCP是等腰直角三角形,求出点P的坐标.针对训练1.(2022秋•铁西区校级期末)已知:如图,抛物线y =ax 2+bx +c (a ≠0)与坐标轴分别交于点A (0,6),B (6,0),C (﹣2,0),点P 是线段AB 上方抛物线上的一个动点.(1)求抛物线的解析式.(2)当△PAB 的面积最大时,求点P 的坐标.(3)过点P 作x 轴的垂线,交线段AB 于点D ,再过点P 作PE ∥x 轴交抛物线于点E ,连接DE ,请问是否存在点P 使△PDE 为等腰直角三角形?请直接写出点P 的坐标.第二部分 专题提优训练1.(2022秋•渝中区校级期末)如图,在平面直角坐标系中,抛物线y =ax 2+bx +c 与x 轴交于点A (﹣33,0),B (3,0),与y 轴的交点为C ,且tan ∠CAO =233.(1)求该抛物线的函数表达式;(2)点D 为AB 的中点,过点D 作AC 的平行线交y 轴于点E ,点P 为抛物线上第二象限内的一动点,连接PC ,PD ,求四边形PDEC 面积的最大值及此时点P 的坐标;(3)将该抛物线y =ax 2+bx +c 向左平移得到抛物线y ',使y '经过原点,y '与原抛物线的交点为F ,点M 为抛物线y '对称轴上的一点,若以点F ,B ,M 为顶点的三角形是直角三角形,请直接写出所有满足条件的点M 的坐标,并把求其中一个点M 的坐标的过程写出来.2.(2022秋•鞍山期末)在平面直角坐标系xOy中,抛物线C1:y=ax2+bx+c(a≠0)经过(0,2),(﹣2,2)两点.(1)若抛物线C1:y=ax2+bx+c经过(1,0),求抛物线解析式;(2)抛物线C1:y=ax2+bx+c与直线y=x+2有M,N两个交点,O为坐标原点,若△MNO是以MN为腰的等腰三角形,请直接写出a的值;(3)直线y=x+2分别与抛物线C1:y=ax2+bx+c,抛物线C2:y=﹣ax2﹣bx+c恰好有三个公共点,若其中一个公共点是另外两个公共点连接线段的中点,求a的值.3.(2022秋•前郭县期末)如图,抛物线y=ax2﹣ax﹣12a经过点C(0,4),与x轴交于A,B两点,连接AC,BC,M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(1)直接写出a的值以及A,B的坐标:a= ,A( , ),B( , );(2)过点P作PN⊥BC,垂足为点N,设M点的坐标为M(m,0),试求PQ+2PN的最大值;(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.4.(2022•台山市校级一模)如图,抛物线y=ax2+x+6的图象与直线y=kx+b有唯一交点A(﹣1,4).(1)求抛物线和直线的解析式;(2)若抛物线与x轴的交点分别为点M、N,抛物线的对称轴上是否存在一点P,使PA+PM的值最小?如果有,请求出这个最小值,如果没有,请说明理由.(3)直线y=kx+b与x轴交于点B,点Q是x轴上一动点,请你写出使△QAB是等腰三角形的所有点Q 的横坐标.5.(2022秋•通州区期末)如图,抛物线y1=ax2﹣2x+c的图象与x轴交点为A和B,与y轴交点为D(0,3),与直线y2=﹣x﹣3交点为A和C.(1)求抛物线的解析式;(2)在直线y2=﹣x﹣3上是否存在一点M,使得△ABM是等腰直角三角形,如果存在,求出点M的坐标,如果不存在,请说明理由;(3)若点E是x轴上一个动点,把点E向下平移4个单位长度得到点F,点F向右平移4个单位长度得到点G,点G向上平移4个单位长度得到点H,若四边形EFGH与抛物线有公共点,请直接写出点E的横坐标x E的取值范围.6.(2022秋•临湘市期末)如图,抛物线y=―12x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,求出P点的坐标;如果不存在,请说明理由;(3)点F是第一象限抛物线上的一个动点,当点F运动到什么位置时,△CBF的面积最大?求出△CBF 的最大面积及此时F点的坐标.7.(2022•甘井子区校级模拟)已知抛物线y=ax2+bx+c的顶点A在x轴上.P(x1,y1),Q(x2,y2)是抛物线上两点,若x1<x2<m,则y1>y2;若x1>x2>m,则y1>y2,且当y的绝对值为1时,△APQ为等腰直角三角形(其中∠PAQ=90°).(1)求抛物线的解析式;(用含有m的式子表示)(2)当m>0,x1<m,x2>m,过点Q作QF⊥x轴,若y1•y2=1,探究∠PAO与∠AQF之间数量关系;(3)直线x=m+1(1≤m≤3)交抛物线y=ax2+bx+c于点D,将抛物线y=ax2+bx+c以直线x=m+1为对称轴向右翻折得到新抛物线,直线y=kx经过点D,交原抛物线y=ax2+bx+c的对称轴于点E,交新抛物线于另一点H,问△EAH的面积是否存在最大值或最小值,若存在,求出面积最值和m的值,若不存在,请说明理由.。

2023学年八年级数学上册高分突破必练专题(人教版) 三角形综合能力提升训练(原卷版)

2023学年八年级数学上册高分突破必练专题(人教版) 三角形综合能力提升训练(原卷版)

三角形综合能力提升训练一.选择题(共17小题)1.某零件的形状如图所示,按照要求∠B=20°,∠BCD=110°,∠D=30°,那么∠A 的度数是()A.50°B.60°C.70°D.80°2.如图,在△ABC中,∠ACB=80°,点D在AB上,将△ABC沿CD折叠,点B落在边AC的点E处.若∠ADE=24°,则∠A的度数为()A.24°B.32°C.38°D.48°3.如图,BP平分∠ABC交CD于点F,DP平分∠ADC交AB于点E,若∠A=45°,∠P =40°,则∠C的度数为()A.30°B.35°C.40°D.45°4.如图,已知AB∥DC,Rt△FEG直角顶点在CD上,已知∠FEC=35°,则∠GHB=()A.35°B.45°C.55°D.65°5.如图,△ABC中,CD平分∠ACB,点M在线段CD上,且MN⊥CD交BA的延长线于点N.若∠B=30°,∠CAN=96°,则∠N的度数为()A.22°B.27°C.30°D.37°6.如图①、②中,∠A=42°,∠1=∠2,∠3=∠4,则∠O1+∠O2的度数为()A.111B.174C.153D.1327.如图,∠AOB=60°,点M、N分别在OA、OB上运动(不与点O重合),ME平分∠AMN,ME的反向延长线与∠MNO的平分线交于点F,在M、N的运动过程中,∠F的度数()A.变大B.变小C.等于45°D.等于30°8.如图,BE、CF都是△ABC的角平分线,且∠BDC=115°,则∠A=()A.50°B.45°C.65°D.70°9.如图,在△ABC中,AD是BC边上的高,AE,BF分别是∠BAC,∠ABC的平分线.∠BAC=50°,∠ABC=60°.则∠DAE+∠ACD等于()A.75°B.80°C.85°D.90°10.如图,在△ABC中,设∠A=x°,∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC 与∠A1CD的平分线相交于点A2,得∠A2;…;∠A2021BC与∠A2021CD的平分线相交于点A2022,得∠A2022,则∠A2022是()度.A.x B.x C.x D.x11.如图,在△ABC中,∠C=90°,∠B=70°,点D、E分别在AB、AC上,将△ADE 沿DE折叠,使点A落在点F处.则∠BDF﹣∠CEF=()A.20°B.30°C.40°D.50°12.如图,在△ABC中,∠A=60°,∠B=70°,CD是∠ACB的平分线,CH⊥AB于点H,则∠DCH的度数是()A.5°B.10°C.15°D.20°13.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AC上一点,将△ABD沿线段BD翻折,使得点A落在A'处,若∠A'BC=30°,则∠CBD=()A.5°B.10°C.15°D.20°14.如图,图①是四边形纸条ABCD,其中AB∥CD,E,F分别为AB、CD上的两个点,将纸条ABCD沿EF折叠得到图②,再将图②沿DF折叠得到图③,若在图③中,∠FEM =24°,则∠EFC为()A.48°B.72°C.108°D.132°15.如图,在△ABC中,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,∠D=15°,则∠A的度数为()A.30°B.45°C.20°D.22.5°16.如图,点D在△ABC内,且∠BDC=120°,∠1+∠2=55°,则∠A的度数为()A.50°B.60°C.65°D.75°17.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为()A.15°B.20°C.25°D.30°二.填空题(共5小题)18.如图,将△ABC纸片沿DE折叠,使点A落在点A'处,且A'B平分∠ABC,A'C平分∠ACB,若∠BA'C=120°,则∠1+∠2的度数为.19.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=°.20.在△ABC中,∠ABC,∠ACB的平分线交于点O,∠ACB的外角平分线所在直线与∠ABC的平分线相交于点D,与∠ABC的外角平分线相交于点E,则下列结论一定正确的是.(填写所有正确结论的序号)①;②;③∠E=∠A;④∠E+∠DCF=90°+∠ABD.21.用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE.图中,∠BAC=度.22.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是.三.解答题(共8小题)23.如图所示,D是△ABC边BC的中点,E是AD上一点,满足AE=BD=DC,F A=FE.求∠ADC的度数.24.在△ABC中,AE平分∠BAC,∠C>∠B.(1)课本原题再现:如图1,若AD⊥BC于点D,∠ABC=40°,∠ACB=60°,求∠EAD的度数.(写出解答过程)(2)如图1,根据(1)的解答过程,猜想并写出∠B、∠C、∠EAD之间的数量关系.(3)小明继续探究,如图2在线段AE上任取一点P,过点P作PD⊥BC于点D,请尝试写出∠B、∠C、∠EPD之间的数量关系,并说明理由.25.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)求∠AFC的度数;(2)求∠EDF的度数.26.如图,将长方形纸片ABCD(四个内角均为直角,两组对边分别平行)沿EF折叠后,点C、D分别落在点M、N的位置,EN的延长线交BC于点G.(1)若∠EFG=68°,求∠AEN、∠BGN的度数;(2)若点P是射线BA上一点(点P不与点A重合),过点P作PH⊥EG于H,PQ平分∠APH,PQ与EF有怎样的位置关系?为什么?27.(1)阅读并填空:如图①,BD、CD分别是△ABC的内角∠ABC、∠ACB的平分线.试说明∠D=90°+∠A的理由.解:因为BD平分∠ABC(已知),所以∠1=(角平分线定义).同理:∠2=.因为∠A+∠ABC+∠ACB=180°,∠1+∠2+∠D=180°,(),所以∠D=(等式性质).即:∠D=90°+∠A.(2)探究,请直接写出结果,并任选一种情况说明理由:(i)如图②,BD、CD分别是△ABC的两个外角∠EBC、∠FCB的平分线.试探究∠D 与∠A之间的等量关系.答:∠D与∠A之间的等量关系是.(ii)如图③,BD、CD分别是△ABC的一个内角∠ABC和一个外角∠ACE的平分线.试探究∠D与∠A之间的等量关系.答:∠D与∠A之间的等量关系是.28.如图①,△ABC中,BD平分∠ABC,且与△ABC的外角∠ACE的角平分线交于点D.(1)若∠ABC=75°,∠ACB=45°,求∠D的度数;(2)若把∠A截去,得到四边形MNCB,如图②,猜想∠D、∠M、∠N的关系,并说明理由.29.a,b,c分别为△ABC的三边,且满足a+b=3c﹣2,a﹣b=2c﹣6.(1)求c的取值范围;(2)若△ABC的周长为18,求c的值.30.问题情景如图1,△ABC中,有一块直角三角板PMN放置在△ABC上(P点在△ABC 内),使三角板PMN的两条直角边PM、PN恰好分别经过点B和点C.试问∠ABP与∠ACP是否存在某种确定的数量关系?(1)特殊探究:若∠A=50°,则∠ABC+∠ACB=度,∠PBC+∠PCB=度,∠ABP+∠ACP=度;(2)类比探索:请探究∠ABP+∠ACP与∠A的关系.(3)类比延伸:如图2,改变直角三角板PMN的位置;使P点在△ABC外,三角板PMN 的两条直角边PM、PN仍然分别经过点B和点C,(2)中的结论是否仍然成立?若不成立,请直接写出你的结论.。

高三培优专题三角函数与解三角形大题归类 (原卷版)

高三培优专题三角函数与解三角形大题归类 (原卷版)

高三培优专题三角函数与解三角形大题归类目录重难点题型归纳...............................................................................................................................................................................................1【题型一】恒等变形.....................................................................................................................................................................................1【题型二】零点与对称性..........................................................................................................................................................................2【题型三】恒成立求参.................................................................................................................................................................................2【题型四】图像与解析式型.....................................................................................................................................................................3【题型五】利用正弦定理求角................................................................................................................................................................4【题型六】利用余弦定理求角型..............................................................................................................................................................4【题型七】最值1:面积最值型...............................................................................................................................................................5【题型八】最值2:锐钝角限制型最值...............................................................................................................................................5【题型九】最值3:周长最值型...............................................................................................................................................................6【题型十】最值3:比值最值型...............................................................................................................................................................6【题型十一】最值4:系数不一致型......................................................................................................................................................7【题型十二】最值5:角非对边型...........................................................................................................................................................7【题型十三】最值6:四边形面积型......................................................................................................................................................7【题型十四】图形1:外接圆型...............................................................................................................................................................8【题型十五】图形2:角平分线型...........................................................................................................................................................8【题型十六】图形3:中线型....................................................................................................................................................................9【题型十七】图形4:三角形高型........................................................................................................................................................10【题型十八】图形5:双三角形型........................................................................................................................................................11好题演练.....................................................................................................................................................................错误!未定义书签。

专题23-二次函数与等边三角形存在问题-2022中考数学之二次函数重点题型专题(全国通用版)(解析版

专题23-二次函数与等边三角形存在问题-2022中考数学之二次函数重点题型专题(全国通用版)(解析版

专题23 二次函数与等边三角形存在问题1.(2021·浙江鄞州·中考一模)如图,点A 是二次函数y 2图象上的一点,且位于第一象限,点B 是直线y 上一点,点B ′与点B 关于原点对称,连接AB ,AB ′,若△ABB ′为等边三角形,则点A 的坐标是( )A .(13B .(23C .(1D .(43 【答案】B【分析】 连接OA ,作AM ⊥x 轴于M ,BN ⊥x 轴于N ,根据题意∠ABO =60°,AO ⊥BB ′,即可得到tan∠ABO =OA OB 设A (m 2),通过证得△AOM ∽△OBN ,得到B (﹣m 2),代入直线y 即可得到关于m 的方程,解方程即可求得A 的坐标. 【详解】 解:连接OA ,作AM ⊥x 轴于M ,BN ⊥x 轴于N ,∵点B ′与点B 关于原点对称,∴OB =OB ′,∵△ABB ′为等边三角形,∴∠ABO =60°,AO ⊥BB ′,∴∠BON +∠AOM =90°,tan ∠ABO =OA OB∴OA OB ∵∠BON +∠OBN =90°,∴∠AOM =∠OBN ,∵∠BNO =∠AMO =90°,∴△AOM ∽△OBN ,∴BN ON OBOM AM OA==,设A(m2),∴OM=m,AM2,∴BN,ON=m2,∵点A在第一象限内,∴B(﹣m2),∵点B是直线y上一点,(﹣m2),解得m=23或m=0(舍去),当m=232∴A(23),故选:B.【点睛】本题考查二次函数上的点的坐标特征、等边三角形的性质、相似三角形的判定与性质及三角函数的定义,熟练掌握相关性质并熟记特殊角的三角函数值是解题关键.2.(2021·辽宁朝阳·中考真题)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x 轴分别交于点A(﹣1,0)和点B,与y轴交于点C(0,3).(1)求抛物线的解析式及对称轴;(2)如图1,点D与点C关于对称轴对称,点P在对称轴上,若∠BPD=90°,求点P的坐标;(3)点M是抛物线上位于对称轴右侧的点,点N在抛物线的对称轴上,当BMN为等边三角形时,请直接写出点M的坐标.【答案】(1)y=﹣x2+2x+3,对称轴x=1;(2)P(1,1)或(2,1);(3)M或(1【分析】(1)利用待定系数法求解即可.(2)如图1中,连接BD,设BD的中点T,连接PT,设P(1,m).求出PT的长,构建方程求出m即可.(3)分两种情形:当点M在第一象限时,△BMN是等边三角形,过点B作BT⊥BN交NM的延长线于T,设N(1,t),设抛物线的对称轴交x轴于E.如图3﹣2中,当点M在第四象限时,设N(1,n),过点B作BT⊥BN交NM的延长线于T.分别利用相似三角形的性质求出点M的坐标,再利用待定系数法求解.【详解】解:(1)把A(﹣1,0),点C(0,3)的坐标代入y=﹣x2+bx+c,得到310cb c=⎧⎨--+=⎩,解得23bc=⎧⎨=⎩,∴抛物线的解析式为y=﹣x2+2x+3,对称轴x=﹣22-=1.(2)如图1中,连接BD,设BD的中点T,连接PT,设P(1,m).∵点D与点C关于对称轴对称,C(0,3),∴D (2,3),∵B (3,0),∴T (52,32),BD∵∠NPD =90°,DT =TB ,∴PT =12BD∴(1﹣52)2+(m ﹣32)22, 解得m =1或2,∴P (1,1),或(2,1).(3)当点M 在第一象限时,△BMN 是等边三角形,过点B 作BT ⊥BN 交NM 的延长线于T ,设N (1,t ),作TJ ⊥x 轴于点J ,设抛物线的对称轴交x 轴于E .∵△BMN 是等边三角形,∴∠NMB =∠NBM =60°,∵∠NBT =90°,∴∠MBT =30°,BT ,∵∠NMB =∠MBT +∠BTM =60°,∴∠MBT =∠BTM =30°,∴MB =MT =MN ,∵∠NBE +∠TBJ =90°,∠TBJ +∠BTJ =90°,∴∠NBE =∠BTJ ,∵∠BEN =∠TJB =90°, ∴△BEN ∽△TJB ,∴TJ BJ BT EB EN BN ==∴BJ ,TJ =∴T (3,,∵NM=MT,∴M),∵点M在y=﹣x2+2x+3上,)2++3,整理得,3t2+(2)t﹣12+0,解得t=﹣∴M.如图3﹣2中,当点M在第四象限时,设N(1,n),过点B作BT⊥BN交NM的延长线于T.同法可得T(3,﹣,M,)2++3,整理得,3n2+(2﹣n﹣12﹣0,解得n,∴M(1,综上所述,满足条件的点M1.【点睛】本题主要考查了二次函数综合,结合等边三角形的判定与性质、勾股定理和一元二次方程求解计算是解题的关键.3.(2021—2022江苏射阳九年级月考)如图,在平面直角坐标系中,O是坐标原点,抛物线y=ax2+bx经过A(﹣4,0),B(﹣3AB,BO.(1)求抛物线表达式和直线OB 解析式;(2)点C 是第二象限内直线OB 上方抛物线上的一个动点,是否存在一点C 使△COB 面积最大?若存在请求出点C 坐标及最大面积,若不存在请说明理由;(3)若点D 从点O 出发沿线段OA 向点A 作匀速运动,速度为每秒1个单位长度,同时线段OA 上另一个点H 从点A 出发沿线段AO 向点O 作匀速运动,速度为每秒2个单位长度(当点H 到达点O 时,点D 也同时停止运动).过点D 作x 轴的垂线,与直线OB 交于点E ,延长DE 到点F ,使得EF =DE ,以DF 为边,在DF 左侧作等边△DGF (当点D 运动时点G 、点F 也随之运动).过点H 作x 轴的垂线,与直线AB 交于点L ,延长HL 到点M ,使得LM =HL ,以HM 为边,在HM 的右侧作等边△HMN (当点H 运动时,点M 、点N 也随之运动).当点D 运动t 秒时,△DGF 有一条边所在直线恰好过△HMN 的重心,直接写出此刻t 的值.【答案】(1)抛物线解析式2y =,直线OB 解析式y x =;(2)存在,点32C ⎛- ⎝⎭(3)t 的值为4s 5或4s 11时,△DGF 有一条边所在直线恰好过△HMN 的重心.【分析】(1)利用待定系数法分别把点A 、B 的坐标代入抛物线解析式,设直线OB 解析式为y kx =,进而代点求解即可;(2)过点C 作CQ ∥y 轴,交OB 于点Q ,由(1)可设点2,,,C m Q m ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则有2CQ =,然后根据铅垂法可进行求解; (3)由题意可分两种情况:①当直线DF 经过△HMN 的重心P 时,②当直线DG 经过△HMN 的重心P 时,然后根据相似三角形的性质与判定及三角函数可进行求解.【详解】解:(1)由题意得:把点A 、B 的坐标代入抛物线解析式y =ax 2+bx 得:164093a b a b -=⎧⎪⎨-=⎪⎩a b ⎧=⎪⎪⎨⎪=⎪⎩∴抛物线解析式为2y x =, 设直线OB 解析式为y kx =,∴3k -k =, ∴直线OB解析式为y =; (2)过点C 作CQ ∥y 轴,交OB 于点Q ,如图所示:由(1)可设点2,,,C m Q m ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,∴22CQ ==, ∵点B (﹣3,∴△COB 的水平宽为3,∴2213322COB S m ⎛⎫⎫=⨯⨯=+ ⎪⎪ ⎪⎝⎭⎝⎭,∵0<, ∴当32m =-时,△COB, 把32m =-代入抛物线解析式得:y =,∴点32C ⎛- ⎝⎭;(3)由题意可分两种情况:①当直线DF 经过△HMN 的重心P 时,如图2,连接NL ,∵LM LH =,且△HMN 是等边三角形,∴点P 在NL 上,由题意得:,2OD t AH t ==,2,4,AB OA OB ==∴222AB OB OA +=,且12AB OA =, ∴30,60AOB BAO ∠=︒∠=︒,∵MH ⊥x 轴,∴∠ALH =30°,∴LH =,∴2HN HM HL ===,∵∠LHN =60°,∴sin606LN HN t =⋅︒=,∵FD ⊥x 轴,MH ⊥x 轴,∴90LHD PDH PLH ∠=∠=∠=︒,∴四边形PLHD 是矩形,∵点P 是重心,∴123PL DH LN t ===, ∵4OA AH HD OD =++=,∴224t t t ++=,解得:45t =; ②当直线DG 经过△HMN 的重心P 时,如图3,连接NL ,∵//DP MN,∴12 LP LKPN KM==,∵LH LM=,∴14 KLKH=,∵//LP DH,∴14KL LPKH DH==,即21434tt=-,解得:411t=,综上所述:t的值为4s5或4s11时,△DGF有一条边所在直线恰好过△HMN的重心.【点睛】本题主要考查二次函数的综合、相似三角形的性质与判定及三角函数,熟练掌握二次函数的综合、相似三角形的性质与判定及三角函数是解题的关键.4.(2021·重庆市育才中考模拟预测)如图,抛物线y=ax2﹣2x+c与x轴相交于A(﹣1,0),B(3,0)两点.(1)求抛物线的函数表达式;(2)点C在抛物线的对称轴上,且位于x轴的上方,将ABC沿直线AC翻折得到AB C',点B'恰好落在抛物线的对称轴上.若点G为直线AC下方抛物线上的一点,求当AB G'△面积最大时点G的横坐标;(3)点P是抛物线上位于对称轴右侧的一点,在抛物线的对称轴上存在一点Q使得BPQ为等边三角形,请直接写出此时直线AP的函数表达式.【答案】(1)y=x2﹣2x﹣3;(2;(3)y或y=x【分析】(1)根据待定系数法,把点A(﹣1,0),C(3,0)的坐标代入y=ax2﹣2x+c得到方程组求解即可;(2)设抛物线的对称轴与x轴交于点H,则H点的坐标为(1,0),AH=2,由翻折得AB′=AB=4,求出B′H的长,可得点B′的坐标,设点G(t,r),且r=t2﹣2t﹣3,设直线AG 解析式为y=kx+b,对称轴与AG交于点D,先求得AG解析式,再求得点D的坐标,将△AB'G 面积表示成关于t的函数,利用二次函数的最值即可.(3)由题意可知△B′BA为等边三角形,分两种情况讨论:①当点P在x轴的上方时,点Q在x轴上方,连接BQ,B′P.证出△BAQ≌△BB′P,可得AP垂直平分BB′,则C点在直线AP 上,可求出直线AP的解析式,②当点P在x轴的下方时,点Q在x轴下方.同理可求出另一直线解析式.【详解】解:(1)由题意得:02096a ca c=++⎧⎨=-+⎩,解得:13ac=⎧⎨=-⎩,∴抛物线的函数表达式为y=x2﹣2x﹣3.(2)∵抛物线与x轴交于A(﹣1,0),B(3,0),∴AB=4,抛物线的对称轴为直线x=1,如图,设抛物线的对称轴与x轴交于点H,则H点的坐标为(1,0),AH=2,由翻折得AB′=AB=4,在Rt△AB′H中,由勾股定理,得B′H==∴点B′的坐标为(1,,设点G(t,r),且r=t2﹣2t﹣3,设直线AG解析式为y=kx+b,对称轴与AG交于点D,则:0tk b r k b +=⎧⎨-+=⎩,解得:11r k t r b t ⎧=⎪⎪+⎨⎪=⎪+⎩, ∴直线AG 解析式为y =11r r x t t +++, ∴D (1,21r t +), ∴B ′D =21r t +, ∴AB G AB D GB D SS S ''+'= =12•B ′D •2+12•B ′D •(t ﹣1) =12•B ′D •(t +1) =12(21r t +)(t +1)t +1)﹣(t 2﹣2t ﹣3)=﹣t 2+(2t +3∵﹣1<0,∴当t时,S △AB ′G 的值最大,此时点G134-); (3)取(2)中的点B ′,B ,连接BB ′,∵AB ′=AB ,∠B ′AB =60°,∴△ABB ′为等边三角形.分类讨论如下:①当点P 在x 轴的上方时,点Q 在x 轴上方,连接BQ ,B ′P .∵△PBQ ,△ABB ′为等边三角形,∴BQ =BP ,AB =BB ′,∠PBQ =∠B ′BA =60°,∴∠ABQ =∠B ′BP ,∴△ABQ ≌△B ′BP (SAS ),∴AQ =B ′P .∵点Q 在抛物线的对称轴上,∴AQ =BQ ,∴B ′P =BQ =BP ,又∵AB ′=AB ,∴AP 垂直平分BB ′,由翻折可知AC 垂直平分BB ′,∴点C 在直线AP 上,设直线AP 的函数表达式为y =k 1x +b 1,则1110k b k b -+=⎧⎪⎨+=⎪⎩11k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线AP 的函数表达式为y②当点P 在x 轴的下方时,点Q 在x 轴下方.∵△PBQ ,△ABB ′为等边三角形,∴BP =BQ ,AB =BB ′,∠BB ′A =∠QBP =∠B ′BA =60°.∴∠ABP =∠B ′BQ ,∴△ABP ≌△B ′BQ (SAS ),∴∠BAP =∠BB ′Q ,∵AB ′=BB ′,B ′H ⊥AB ,∴∠BB ′Q =12∠BB ′A =30°,∴∠BAP =30°,设AP 与y 轴相交于点E ,在Rt △AOE 中,OE =OA •tan ∠BAP =OA •tan30°=∴点E 的坐标为(0. 设直线AP 的函数表达式为y =mx +n ,则0m n n =-+⎧⎪⎨=⎪⎩,解得:m n ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线AP 的函数表达式为y=. 综上所述,直线AP 的函数表达式为yx +或y=.【点睛】本题考查了二次函数的综合题,涉及的知识点有:待定系数法求二次函数解析式,待定系数法求一次函数解析式,二次函数最值的应用,轴对称的性质,全等三角形的判定和性质,等边三角形的判定与性质,锐角三角函数等知识,综合性较强,有一定的难度.5.(2021·广西柳南·中考三模)如图,抛物线y=﹣x2+bx+c过点A(﹣1,0)和点B(3,0),与y轴交于点C,抛物线的对称轴交x轴于点N,交抛物线于点M,点D为线段MN上一动点.(1)求抛物线的表达式及C点坐标;(2)若△ACD是以∠DCA为底角的等腰三角形,求点D的坐标;(3)连接BD,在BD左侧构造等边△BDH,求当点D从点M运动到点N的过程中,H运动的路径长.【答案】(1)y =−x 2+2x +3,(0,3);(2)(1,1)或(1);(3)4【分析】(1)用待定系数法求出函数解析式,进而求出C 的坐标;(2)分CD =AD 、AC =AD 两种情况,利用勾股定理求出边的长度,分别求解即可;(3)设点H 的坐标为(x ,y ),点D (1,m ),过点H 作HE ⊥BD ,过点E 作x 轴的平行线GR ,交过点B 与y 轴的平行线于点R ,交过点H 与y 轴的平行线于点G ,证明△EGH ∽△BRE,可得212x y m ⎧=⎪⎪⎨⎪=⎪⎩,从而确定点H的轨迹为:y x = 【详解】解:(1)∵抛物线y =﹣x 2+bx +c 过点A (﹣1,0)和点B (3,0),把A ,B 两点的坐标代入关系式,得01093b c b c =--+⎧⎨=-++⎩,解得23b c =⎧⎨=⎩, ∴抛物线的关系式为:y =−x 2+2x +3,把x =0代入y =−x 2+2x +3得y =3,∴C 点坐标为(0,3);(2)由抛物线的表达式知,其对称轴为:直线x =1,设D 点坐标为(1,m ),①当CD =AD 时,由题意得:1+(3−m )2=22+m 2,解得:m =1,∴D 点坐标为(1,1);②当AC =AD 时,由题意得:12+32=22+m 2,解得:m=,故m,∴D 点坐标为(1,∴D 点坐标为(1,1)或(1);(3)设点H 的坐标为(x ,y ),点D (1,m ),过点H 作HE ⊥BD ,∵△DBH 为等边三角形,∴则点E 是BD 的中点且BD ⊥EH ,则EH :BE =E 为BD 的中点,则点E 的坐标为(2,12m ), 过点E 作x 轴的平行线GR ,交过点B 与y 轴的平行线于点R ,交过点H 与y 轴的平行线于点G ,∵∠REB +∠GEH =90°,∠GEH +∠GHE =90°,∴∠REB =∠GHE ,∴△EGH ∽△BRE ,∴EG GH HE BR ER BE=== 则GH =12m −y ,ER =3−2=1,GE =2−x ,BR =12m ,即122112m y x m --==212x y m ⎧=⎪⎪⎨⎪=⎪⎩,整理得:y x = 即点H 的轨迹为直线,当点D 在点M 处时,则m =4,则2x ==2x =-122y m =即此时点H的坐标为(2-,2,当点D在点N处时,则m=2,同理可得,此时点H'的坐标为(2,,则H运动的路径长为H H'4=.【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.6.如图,已知抛物线y=x2﹣2x﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,该抛物线顶点为D,对称轴交x轴于点H.(1)求A,B两点的坐标;(2)设点P在x轴下方的抛物线上,当∠ABP=∠CDB时,求出点P的坐标;(3)以OB为边最第四象限内作等边△OBM.设点E为x轴的正半轴上一动点(OE>OH),连接ME,把线段ME绕点M顺时针旋转60°得MF,求线段DF的长的最小值.【答案】(1)A(﹣1,0),B(3,0);(2)P(2,﹣3);(3)线段DF的长的最小值存在,最小值是2+.【详解】试题分析:(1)令y=0,求得关于x的方程x2﹣2x﹣3=0的解即为点A、B的横坐标;(2)设P(x,x2﹣2x﹣3),根据抛物线解析式求得点D的坐标为D(1,﹣4);结合坐标与图形的性质求得线段CD=,CB=3,BD=2;所以根据勾股定理的逆定理推知∠BCD=90°,则易推知相似三角形△BCD∽△PNB,由该相似三角形的对应边成比例来求x的值,易得点P的坐标;(3)正确做出等边△OBM和线段ME所对应的旋转线段MF,如图2.过点B,F作直线交对称轴于点G.构建全等三角形:△EOM≌△FBM,由该全等三角形的性质和图形中相关角间的和差关系得到:∠OBF=120°为定值,即BF所在直线为定直线.过D点作DK⊥BF,K为垂足线段DF的长的最小值即为DK的长度.解:(1)令y=0,得x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0)(2)设P(x,x2﹣2x﹣3),如图1,过点P作PN⊥x轴,垂足为N.连接BP,设∠NBP=∠CDB.令x=0,得y=x2﹣2x﹣3=﹣3,∴C(0,﹣3)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴D(1,﹣4).由勾股定理,得CD=,CB=3,BD=2.∴BD2=BC2+CD2,∴∠BCD=90°.∵∠BCD=∠PNB=90°,∠NBP=∠CDB.∴△BCD∽△PNB.∴=,=,即x2﹣5x+6=0,解得x1=2,x2=3(不合题意,舍去).∴当x=2时,y=﹣3∴P(2,﹣3);(3)正确做出等边△OBM和线段ME所对应的旋转线段MF,如图2.过点B,F作直线交对称轴于点G.由题意可得:,∴△EOM≌△FBM,∴∠MBF=∠MOB=60°.∵∠OBF=∠OBM+∠MBF=60°+60°=120°为定值,∴BF所在直线为定直线.过D点作DK⊥BF,K为垂足.在Rt△BGH中,∠HBG=180°﹣120°=60°,∴∠HGB=30°.∵HB=3,∴BG=4,HG=2.∵D(1,﹣4),∴DH=4,∴DG=2+4.在Rt△DGK中,∠DGK=30°.∴DK=DG=2+.∵当点E与点H重合时,这时BF=OH=1,则GF=4+1=5.而GK=DK=3+2>5,即点K在点F运动的路径上,所以线段DF的长的最小值存在,最小值是2+.考点:二次函数综合题.7.如图,抛物线2=--+经过点A和点B.已知点A的坐标是(2,4),点B的横坐标y a x(1)5是-2.(1)求a 的值及点B 的坐标;(2)设点D 为线段AB 上的一个动点,过D 作x 轴的垂线,垂足为点H .在DH 的右侧作等边△DHG . 将过抛物线顶点M的直线记为l ,设l 与x 轴交于点N .① 如图1,当动点D 的坐标为(1,2)时,若直线l 过△DHG 的顶点G .求此时点N 的横坐标是多少?② 若直线l 与△DHG 的边DG 相交,试求点N 横坐标的取值范围.【答案】(1)a=1,B(-2,-4);(2)1;②23x -≤≤【分析】(1)由于抛物线经过A 、B 两点,将A 点坐标代入抛物线中,即可求得待定系数的值,进而可求出B 点的坐标.(2)①已知点D 的坐标,即可求得正△DGH 的边长,过G 作GE ⊥DH 于E ,易求得DE 、EH 、EG 的长;根据(1)题所求得抛物线的解析式,即可求出点M 的坐标,也就能得到ME 、MH 的长,易证△MEG ∽△MHN ,根据相似三角形所得比例线段,即可求得N 点的横坐标.②求点N 横坐标的取值范围,需考虑N 点横坐标最大、最小两种情况:①当点D 、A 重合,且直线l 经过点G 时,N 点的横坐标最大;解法可参照(2)的思路,过点G 作GQ ⊥x 轴于Q ,过点M 作MF ⊥x 轴于F ,设出点N 的横坐标,然后分别表示出NQ 、NF 的长,通过证△NQG ∽△NFM ,根据所得比例线段,即可求得此时N 点的横坐标; ②当点D 、B 重合,直线l 过点D 时,N 点的横坐标最小,解法同①.【详解】(1)∵点A (2,4)在抛物线2(1)5y a x =--+上,∴代入得a=1 ,于是抛物线的解析式为224y x x =-++,又∵点B 的横坐标为-2,代入得y=-4,∴B (-2,-4) ;(2)①由题意M (1,5),D (1,2),且DH ⊥x 轴,∴点M 在DH 上,MH =5,过点G 作GE ⊥DH ,垂足为E .∵△DHG 是正三角形,可得EG EH =1,∴ME =4.设N (x ,0 ),则NH =x -1,由△MEG ∽△MHN ,得ME EG MH HN =,∴45=解得1x =,∴点N 1 ; ②如图,当点D 运动至与点A 重合时,直线与DG 交于点G ,此时点N 的横坐标最大. 过点G ,M 作x 轴的垂线,垂足分别为点Q ,F .设N (x ,0),∵A (2, 4),∴G (2+∴NQ =2x --NF =x -1,GQ =2,MF =5.由题意,△NGQ ∽△NMF , ∴NQ GQ NF MF =,25=.∴x =, 如图,当点D 运动至与点B 重合时,直线与DG 交于点D (即点B )此时点N 的横坐标最小.∵B (-2, -4) ,∴H (-2, 0),D (-2, -4).设N (x ,0).由题意△BHN ∽△MFN , ∴NH BH FN MF =, ∴()2415x x --=-, ∴23x =-,综上,点N 的横坐标取值范围是23x -≤≤ 【点睛】 二次函数的综合题,主要考查二次函数解析式的确定、等边三角形的性质以及相似三角形的判定和性质;在解答(2)题时,关键是正确地作图,构造出与所求相关的相似三角形,然后利用相似三角形的性质来求解.8.(2021·江西寻乌·九年级期末)如图,已知抛物线1C 与x 轴交于(4,0),(1,0)A B -两点,与y 轴交于点(0,2)C .将抛物线1C 向右平移(0)m m >个单位得到抛物线22C C ,与x 轴交于D ,E 两点(点D 在点E 的左侧),与抛物线1C 在第一象限交于点M .(1)求抛物线1C 的解析式,并求出其对称轴;(2)①当1m =时,直接写出抛物线2C 的解析式;②直接写出用含m 的代数式表示点M 的坐标;(3)连接DM AM ,.在抛物线1C 平移的过程中,是否存在ADM △是等边三角形的情况?若存在,请求出此时m 的值;若不存在,请说明理由.【答案】(1)213222y x x =-++,其中对称轴是直线32x =;(2)①21522=-+y x x ;②点M 的坐标为2325,28m m ⎛⎫+- ⎪⎝⎭;(3)存在,5m =. 【分析】(1)直接利用待定系数法即可求得抛物线解析式,继而根据解析式即可求得抛物线的对称轴; (2)①利用抛物线平移规律即可求得C 2解析式;②利用抛物线平移规律即可求得M 的横坐标,进而代入C 1抛物线解析式即可;(3)过点M 做MN AD ⊥于点N ,分别表示出点D 、M 、N 、A 的坐标,根据两点间的坐标公式可得DN 、MN ,根据等边三角形的性质列方程,解方程即可求解.【详解】解:(1)设抛物线1C 的解析式为()20y ax bx c a =++≠.则164002a b c a b c c ++=⎧⎪-+=⎨⎪=⎩解得12322a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩抛物线1C 的解析式为213222y x x =-++, 其中对称轴是直线32x =(2)①由(1)知:抛物线1C 的解析式为213222y x x =-++, 即21325228y x ⎛⎫=--+ ⎪⎝⎭, 当1m =时,根据抛物线平移规律可得: 抛物线2C 解析式为:22132515122822y x x x ⎛⎫=---+=-+ ⎪⎝⎭ ②根据抛物线平移规律可得,抛物线1C 向右平移(0)m m >个单位得到抛物线解析式为: 213225228m y x +⎛⎫=--+ ⎪⎝⎭, 其对称轴为:322m x += ∴交点M 横坐标为:3233332222222m m m +⎛⎫- ⎪+⎝⎭+=+= 将其代入1C 抛物线解析式可得:2258m y -= ∴点M 的坐标为2325,28m m ⎛⎫+- ⎪⎝⎭; (3)存在m 值使ADM △是等边三角形.理由如下:过点M 做MN AD ⊥于点N∵()()()232531,0,,,,0,4,004282m m m D m M N A m ⎛⎫+-+⎛⎫-<< ⎪ ⎪⎝⎭⎝⎭, ∴()35122m m DN m +-=--= 2258m MN -= 若ADM △是等边三角形,则30DMN ∠=︒,∴MN =即225582m m --=解得55m m ==,(不合题意,舍去),∴当5m =时,ADM △是等边三角形.【点睛】本题考查二次函数的有关知识,解题的关键是熟练掌握抛物线的性质、待定系数法求解析式、抛物线平移规律、等边三角形的性质.9.如图1,已知在平面直角坐标系xOy 中,四边形OABC 是矩形点,A C 分别在x 轴和y 轴的正半轴上,连结AC ,3OA =,an t OAC =∠,D 是BC 的中点. (1)求OC 的长和点D 的坐标;(2)如图2,M 是线段OC 上的点,OM OC =,点P 是线段OM 上的一个动点,经过,,P D B 三点的抛物线交x 轴的正半轴于点E ,连结DE 交AB 于点F①将DBF ∆沿DE 所在的直线翻折,若点B 恰好落在AC 上,求此时BF 的长和点E 的坐标; ②以线段DF 为边,在DF 所在直线的右上方作等边DFG ∆,当动点P 从点O 运动到点M 时,点G 也随之运动,请直接写出点G 运动路径的长.【答案】(1) OC D 的坐标为3(2;(2) ①点E 的坐标为9(,0)2 【分析】(1)由OA=3,tan ∠OAC=OC OA =得,由四边形OABC 是矩形,得BC=OA=3,所以CD=12 BC=32,求得D (32); (2)①由易知得ACB=∠OAC=30°,设将△DBF 沿DE 所在的直线翻折后,点B 恰好落在AC 上的B'处,则DB'=DB=DC ,∠BDF=∠B'DF ,所以∠BDB'=60°,∠BDF=∠B'DF=30°,所以BFD=∠AEF ,所以∠B=∠FAE=90°,因此△BFD ≌△AFE ,AE=BD=32,点E 的坐标(92 ,0);②动点P 在点O 时,求得此时抛物线解析式为y=229x -,因此E (92,0),直线DE :y =+F 1(3;当动点P 从点O 运动到点M 时,求得此时抛物线解析式为2y x =++,所以E (6,0),直线DE :y =+,所以F 2(3;所以点F 运动路径的长为12F F ==,即G 运动路径的长. 【详解】(1) ∵3,t an AO OA OC OA C ===∠∴OC∵四边形OABC 是矩形,∴3BC AO ==.∵D 是BC 的中点, ∴1322CD BC ==,∴点D 的坐标为3(2.(2) ①∵tan OAC =, ∴30OAC ∠=︒, ∴30ACB OAC ∠=∠=︒.设将DBF ∆翻折后,点B 落在AC 上的'B 处,则','DB DB DC BDF BD F ==∠=∠,∴'30DB C ACB ∠=∠=︒,∴60BDB ∠=︒,∴'30BDF B DF ∠=∠=︒.∵90B ∠=︒,∴tan 30BF BD =⋅︒=∵AB =∴AF BF == ∵,90BFD AFE B FAE ∠=∠∠=∠=︒,∴BFD AFE ∆∆≌.∴32AE BD ==. ∴92OE OA AE =+=,∴点E 的坐标为9(,0)2. ②动点P 在点O 时,∵抛物线过点P (0,0)、3,2D B ⎛ ⎝求得此时抛物线解析式为y=229x - ∴E (92,0),∴直线DE : y =+,∴F 1(3; 当动点P 从点O 运动到点M 时,∵抛物线过点3,,2P D B ⎛⎛ ⎝⎝⎭求得此时抛物线解析式为2y =+ ∴E (6,0),∴直线DE :y=-y =+∴F 2(3∴点F 运动路径的长为12F F ==, ∵△DFG 为等边三角形,∴G 【点睛】 本题考查了二次函数,熟练掌握二次函数的性质、特殊三角函数以及三角形全等的判定与性质是解题的关键.10.如图1,矩形OABC 的顶点A 的坐标为(4,0),O 为坐标原点,点B 在第一象限,连接AC , tan ∠ACO=2,D 是BC 的中点,(1)求点D 的坐标;(2)如图2,M 是线段OC 上的点,OM=23OC ,点P 是线段OM 上的一个动点,经过P 、D 、B三点的抛物线交x轴的正半轴于点E,连接DE交AB于点F.①将△DBF沿DE所在的直线翻折,若点B恰好落在AC上,求此时点P的坐标;②以线段DF为边,在DF所在直线的右上方作等边△DFG,当动点P从点O运动到点M时,点G也随之运动,请直接写出点G运动的路径的长.【答案】(1)D(2,2);(2)①P(0,0);②1 3【分析】(1)根据三角函数求出OC的长度,再根据中点的性质求出CD的长度,即可求出D点的坐标;(2)①证明在该种情况下DE为△ABC的中位线,由此可得F为AB的中点,结合三角形全等即可求得E点坐标,结合二次函数的性质可设二次函数表达式(此表达式为交点式的变形,利用了二次函数的平移的特点),将E点代入即可求得二次函数的表达式,根据表达式的特征可知P点坐标;②可得G点的运动轨迹为'GG,证明△DFF'≌△FGG',可得GG'=FF',求得P点运动到M点时的解析式即可求出F'的坐标,结合①可求得FF'即GG'的长度.【详解】解:(1)∵四边形OABC为矩形,∴BC=OA=4,∠AOC=90°,∵在Rt△ACO中,tan∠ACO=OAOC=2,∴OC=2,又∵D为CB中点,∴CD=2,∴D(2,2);(2)①如下图所示,若点B 恰好落在AC 上的'B 时,根据折叠的性质1'','2BDF B DF BDB BD B D ∠=∠=∠=, ∵D 为BC 的中点,∴CD=BD,∴'CD B D =, ∴1''2BCA DB C BDB ∠=∠=∠, ∴BCA BDF ∠=∠,∴//DF AC ,DF 为△ABC 的中位线,∴AF=BF,∵四边形ABCD 为矩形∴∠ABC=∠BAE=90°在△BDF 和△AEF 中,∵ABC BAE BF AFBFD AFE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BDF ≌△AEF ,∴AE=BD=2,∴E(6,0),设(2)(4)2y a x x ,将E (6,0)带入,8a+2=0∴a=14-,则二次函数解析式为21342y x x =-+,此时P (0,0); ②如图,当动点P 从点O 运动到点M 时,点F 运动到点F',点G 也随之运动到G'.连接GG'.当点P 向点M 运动时,抛物线开口变大,F 点向上线性移动,所以G 也是线性移动.∵OM=23OC=43∴4(0,)3M , 当P 点运动到M 点时,设此时二次函数表达式为1(2)(4)2y a x x ,将4(0,)3M 代入得14823a ,解得1112a ,所以抛物线解析式为1(2)(4)212y x x ,整理得21141223y x x =-++. 当y=0时,211401223x x -++=,解得x=8(已舍去负值), 所以此时(8,0)E ,设此时直线'DF 的解析式为y=kx+b ,将D (2,2),E (8,0)代入2208k b k b =+⎧⎨=+⎩解得1383k b ⎧=-⎪⎪⎨⎪=⎪⎩, 所以1833y x =-+, 当x=4时,43y =,所以4'3AF =, 由①得112AF AB ==, 所以1''3FF AF AF =-=, ∵△DFG 、△DF'G'为等边三角形,∴∠GDF =∠G'DF'=60°,DG =DF ,DG'=DF',∴∠GDF ﹣∠GDF'=∠G'DF'﹣∠GDF',即∠G'DG =∠F'DF,在△DFF'与△FGG'中,''''DF DG F DF G DG DF DG =⎧⎪∠=∠⎨⎪=⎩,∴△DFF'≌△FGG'(SAS ),∴GG'=FF',即G 运动路径的长为13. 【点睛】本题考查二次函数综合,解直角三角形,全等三角形的性质与判定,三角形中位线定理,一次函数的应用,折叠问题.(1)中能根据正切求得OC 的长度是解决此问的关键;(2)①熟练掌握折叠前后对应边相等,对应角相等是解题关键;②中能通过分析得出G 点的运动轨迹为线段GG',它的长度等于FF',是解题关键.11.(2020—2021辽宁和平九年级月考)如图,在平面直角坐标系中,O 是坐标原点,抛物线2y ax bx =+经过()5,0A -,154B ⎛- ⎝⎭两点,连接AB ,BO .(1)求抛物线表达式;(2)点C 是第三象限内的一个动点,若AOC △与AOB 全等,请直接写出点C 坐标______;(3)若点D 从点O 出发沿线段OA 向点A 作匀速运动,速度为每秒1个单位长度,同时线段OA 上另一个点H 从点A 出发沿线段AO 向点O 作匀速运动,速度为每秒2个单位长度(当点H 到达点O 时,点D 也同时停止运动).过点D 作x 轴的垂线,与直线OB 交于点E ,延长DE 到点F ,使得EF DE =,以DF 为边,在DF 左侧作等边三角形DGF (当点D 运动时,点G 、点F 也随之运动).过点H 作x 轴的垂线,与直线AB 交于点L ,延长HL 到点M ,使得LM HL =,以HM 为边,在HM 的右侧作等边三角形HMN (当点H 运动时,点M 、点N 也随之运动).当点D 运动t 秒时,DGF △有一条边所在直线恰好过HMN △的重心,直接写出此刻t 的值____________.【答案】(1)2y x =-;(2)54⎛- ⎝⎭或154⎛- ⎝⎭;(3)107或2519【分析】(1)将A 、B 两点坐标代入解析式,可求得;(2)存在2种情况,一种是△AOB ≌△AOC ,则点B 与点C 关于x 轴对称,可求得C 点坐标;另一种是△AOB ≌△OAC ,则OC ∥AB ,AC ∥BO ,联立直线AC 和OC 的解析式,可求得点C 的坐标;(3)有2大类情况,一种是点D 在点H 的左侧,还有一种是点D 在点H 的右侧,画图可得出只有点D 在点H 的左侧有可能.又分为3种情况,一种是DF 过△HMN 的重心,第二种是GF 过△HMN 的重心,第三种是GD 过△HMN 的重心.【详解】(1)∵抛物线过点A(-5,0),B(154-∴0255a b =-21515()44a b =⋅--解得:a =b =∴抛物线解析式为:2y =; (2)情况一:△AOB ≌△AOC ,图形如下从图形易知,点C 与点B 关于x 轴对称∵B(154-),∴C(154-,; 情况二:△AOB ≌△OBC ,图形如下∴∠BAO=∠AOC ,∠BOA=∠CAO∴AB ∥CO ,BO ∥AC∵A(-5,0),B(154-)∴直线AB 的解析式为:+直线OB 的解析式为:y=∴OC 的解析式为:AC 的解析式设为:y=b +,将点A 代入得:y=x联立OC 和AC 的解析,解得:x=54-,y=∴C(54-,); (3)当点D 在点H 的左侧时,即5>3t ,t <53时,图形如下根据题意可知D(-t ,0),H(2t -5,0)∵OB 的解析式为:y=x∴E(-t),F(-t),L(2t-5,M(2t-5)∴HD=5-3t,∵△GFD是等边三角形,∴易知FD∥MH,FG∥HN,GD∥MN情况一:当DF过△MHN的重心时,图形如下,连接LN,交FD于点O则点O为△MHN的重心∴ON:OL=2:1,∴OL=13 LN∵△HMN是等边三角形∴2-t∵OL=HD=5-3t∴5-3t=52t 3 -解得:t=107(成立);情况二:FG过△HMN的重心,如下图,GF交HM于点P,过点P作FD的垂线,交FD于点Q,过点M作HN的垂线,交GF于点O,交HN于点R则点O为△HNM的中线,∴MO:OR=2:1易知△MOP∽△MRH,∴MP:PH=2:1∴PH=13MH =由题意可知,PQ=HD=5-3t ,∠FPQ=30°∴在Rt △FPQ 中,∴QD=FD -=∴= 解得:t=2519(成立); 情况三:DG 过△MHN 的重心,如下图,HN 与GD 交于点S ,过点S 作x 轴的垂线,交x 轴于点T易知∠SDH=∠SHD=30°,∠HSD=120°,HD=5-3t则在Rt △SHR 中,HT=53t 2-,同理:SH=2233HN MH ===t=-5(舍)综上得:t=107或t=2519. 【点睛】本题考查二次函数的综合,注意第(2)、(3)问都存在多种情况,第(3)问解题关键是利用重心的性质,即重心到顶点的距离与重心到对边中点的距离之比为2:1,从而转化为边长之比进行求解.。

专题训练:全等三角形性质与判定的综合(原卷版)—2024-2025学年八年级数学上册单元(浙教版)

专题训练:全等三角形性质与判定的综合(原卷版)—2024-2025学年八年级数学上册单元(浙教版)

全等三角形的性质与判定的综合1.(2023春•浙江期末)如图1,两个大小不同的三角板叠放在一起,图2是由它得到的抽象几何图形,已知AB=AC,AE=AD,∠CAB=∠DAE=90°,且点B,C,E在同一条直线上,BC=10cm,CE=4cm,连接DC.现有一只壁虎以2cm/s的速度沿B﹣C﹣D的路线爬行,则壁虎爬到点D所用的时间为( )A.10s B.11s C.12s D.13s2.(2023春•金华期末)如图,AB∥CD,BE平分∠ABC,BE⊥CE,下列结论:①CE平分∠BCD;②AB+CD=AD;③CE•BE=S;④AE=DE.其中正确的有( )四边形ABCDA.①③B.③④C.①③④D.②③④3.(2024春•秦都区校级月考)如图,在四边形ABCD中,AD∥BC,∠C=90°,∠ABC和∠BAD的平分线交于点P,点P在CD上,PE⊥AB于点E,若四边形ABCD的面积为78,AB=13,则CD的长为( )A.6B.10C.12D.184.(2023秋•西湖区校级月考)如图,在△ABC中,∠BAC和∠ABC的平分线AE,BF相交于点O,AE交BC于E,BF交AC于F,过点O作OD⊥BC于D,下列四个结论:①∠AOB=90°+∠C;②当∠C=60°时,AF+BE=ab.其中正确的是( )=AB;③若OD=a,AB+BC+CA=2b,则S△ABCA.①②B.②③C.①②③D.①③5.(2023秋•黄石港区期末)如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②PF=PA;③AH+BD=AB;④S四边形ABDE=S△ABP,其中正确的是( )A.①③B.①②④C.①②③D.②③6.(2023秋•宿迁月考)如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是 .7.(2023秋•慈溪市期末)如图,点C、D在线段AB上,AC=BD,AE=BF,∠A=∠B,CF与DE交于点G,若∠CGE=94°,则∠GCD的度数为 .8.(2023秋•衢江区期末)如图,在△ABC中,AC=BC,点D在边AB上,E,F分别是射线CD上的两点,且∠AFC=∠BEC,∠ACB+∠AFC=180°,AF=5,BE=2.则EF的值是 ;若DF=2CF,△AFD的面积为4,则△DEB的面积是 .9.(2022春•海曙区期末)如图,一块含45°的三角板的一个顶点A与矩形ABCD的顶点重合,直角顶点E落在边BC上,另一顶点F恰好落在边CD的中点处,若BC=12,则AB的长为 .10.(2023秋•海曙区期中)已知:如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.11.(2023秋•上城区期末)已知:如图,AC与DB相交于点O,∠1=∠2,∠3=∠4,求证:AB=DC.12.(2023秋•婺城区期末)如图,在△ABC中,∠ABC=45°,F是高AD和高BE的交点.(1)求证:∠1=∠2.(2)写出图中的一对全等三角形,并给出证明.13.(2022秋•余杭区月考)如图,点A,B在射线CA,CB上,CA=CB.点E,F在射线CD上,∠BEC=∠CFA,∠BEC+∠BCA=180°.(1)求证:△BCE≌△CAF;(2)试判断线段EF,BE,AF的数量关系,并说明理由.14.(2023秋•宁波期末)如图,∠CBE=∠DBF,∠A=∠D,AC=DE.求证:AB=DB.15.(2022秋•萧山区期中)如图,在四边形ABCD中,点E为对角线BD上一点,∠A=∠BEC,AD∥BC,且AD =BE.(1)证明:△ABD≌△ECB;(2)若BC=15,AD=6,请求出DE的长度.16.(2023秋•嵊州市期中)已知:如图,在△ABC中,AD平分∠BAC.在AB上截取AE=AC,连结DE.若BC=6cm,BE=3cm.(1)求证:△AED≌△ACD;(2)求△BED的周长.17.(2023秋•临平区月考)如图,点A,B,C在一条直线上,△ABD、△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q.(1)求证:△ABE≌△DBC;(2)求∠DMA的度数.18.(2023秋•鄞州区期末)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE与BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠2=40°,求∠BDE的度数.19.(2023秋•江北区期末)如图,∠ACB=90°,AC=BC,AD⊥MN,BE⊥MN,垂足分别是D,E.(1)求证:△ADC≌△CEB;(2)猜想线段AD,BE,DE之间具有怎样的数量关系,并说明理由.20.(2022秋•拱墅区期中)如图,在△ABC中,∠C=90°,AD是∠CAB的角平分线,DE⊥AB于E,点F在边AC上,连接DF.(1)求证:AC=AE;(2)若DF=DB,试说明∠B与∠AFD的数量关系;(3)在(2)的条件下,若AB=m,AF=n,求BE的长(用含m,n的代数式表示).21.(2023秋•北仑区期末)如图,已知AB=AD,∠BAD=∠CAE,∠B=∠D,AD与BC交于点P,点C在DE 上.(1)求证:AC=AE;(2)若∠B=36°,∠APC=72°.①求∠E的度数;②求证:CP=CE.22.(2021秋•新化县期末)(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=a,其中a为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.23.(2023秋•金华期中)根据以下素材,探索完成任务.荡秋千问题素材1如图1,小丽与爸妈在公园里荡秋千,开始时小丽坐在秋千的起始位置,且起始位置与地面垂直.素材2如图2,小丽从秋千的起始位置A处,两脚在地面上用力一蹬,妈妈在距地面1m高的B处接住她后用力一推,爸爸在C处接住她.若妈妈与爸爸到OA的水平距离BD、CE分别为1.4m和1.8m,∠BOC=90°.问题解决任务1△OBO与△COE全等吗?请说明理由;任务2当爸爸在C处接住小丽时,小丽距离地面有多高?24.(2023秋•桐乡市月考)阅读与思考下面是小明同学的数学学习笔记,请您仔细阅读并完成相应的任务:构造全等三角形解决图形与几何问题在图形与几何的学习中,常常会遇到一些问题无法直接解答,需要添加辅助线才能解决.比如下面的题目中出现了角平分线和垂线段,我们可以通过延长垂线段与三角形的一边相交构造全等三角形,运用全等三角形的性质解决问题.例:如图1,D是△ABC内一点,且AD平分∠BAC,CD⊥AD,连接BD,若△ABD的面积为10,求△ABC的面积.该问题的解答过程如下:解:如图2,过点B作BH⊥CD交CD延长线于点H,CH、AB交于点E,∵AD平分∠BAC,∴∠DAB=∠DAC.∵AD⊥CD,∴∠ADC=∠ADE=90°.在△ADE和△ADC中,,∴ED =CD (依据2),S △ADE =S △ADC ,∵,.…任务一:上述解答过程中的依据1,依据2分别是  , ;任务二:请将上述解答过程的剩余部分补充完整;应用:如图3,在△ABC 中,∠BAC =90°,AB =AC ,BE 平分∠CBA 交AC 于点D ,过点C 作CE ⊥BD 交BD 延长线于点E .若CE =6,求BD 的长.25.(2023秋•利川市校级月考)如图,AB ⊥AD ,AB =AD ,AC ⊥AE ,AC =AE .(1)如图1,∠BAC 、∠ADE 、∠AED 之间的数量关系为 ;(2)如图2,点F 为DE 的中点,连接AF .①求证:BC =2AF .②判断BC 与AF 的位置关系,并说明理由.。

解三角形及数列综合练习题-精品.pdf

解三角形及数列综合练习题-精品.pdf

综合练习 2一、选择题1.在ABC 中,角,,A B C 所对的边分别为,,a b c ,若222abbc ,sin 3sin C B ,则A( )A .6B .3 C.23 D.562.在ABC,内角,,A B C所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab ,ab B且则A .6B .3C .23D .563.在△ABC 中,一定成立的等式是()A. a A b B sin sinB. a Ab Bcos cos C. a Bb Asin sin D. a B b Acos cos 4.若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C ,则△ABCA .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形5.设△ABC 的内角A,B,C 的对边分别为,,a b c 若()cos a b c C ,则△ABC 的形状是()A.等腰三角形B.等边三角形 C.直角三角形 D.锐角三角形6.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若22245b cb c 且222abcbc ,则△ABC 的面积为()A.3 B.32C.22D.27.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为()A .185 B .43 C.23 D .878.已知三角形的两边长分别为4,5,它们夹角的余弦是方程2x 2+3x -2=0的根,则第三边长是( )A .20B .21C .22D .619.在ABC 中,角,,A B C 所对的边分,,a b c .若co s s i n a A b B ,2sin cos cos A ABA .-12B .12C .-1D .110.在ABC 中,若边长和内角满足2,1,45b c B,则角C 的值是()A .60B .60或120 C.30D .30或15011.设△ABC 中角A 、B 、C 所对的边分别为,,a b c ,且sin cos sin cos sin2A B BA C ,若,,a b c 成等差数列且18CA CB ,则 c 边长为()A .5B.6C.7D .812.数列1,-3,5,-7,9,……的一个通项公式为A .21na n B.(1)(12)nn a n C .(1)(21)nna n D.(1)(21)nna n 13.把正整数按下图所示的规律排序,则从2003到2005的箭头方向依次为14.已知n a 为等差数列,若8951a a a ,则)cos(73a a 的值为()A .32B .32C .12D .1215.已知{}n a 为等差数列,其前n 项和为n S ,若36a ,312S ,则公差d 等于()(A )1(B )53(C )2(D )316.在等差数列{}n a 中,2a 4+a 7=3,则数列{}n a 的前9项和等于( )(A )9(B )6(C )3(D )1217.公差不为0的等差数列{n a }的前21项的和等于前8项的和.若80k a a +=,则k =( )A .20 B.21 C.22 D.2318.已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B ,且7453n nA nB n,则使得n na b 为整数的正整数n 的个数是()A .2B .3C .4D .519.等差数列{}n a 的前n 项和为n S ,若14611,6,a a a 则当n S 取最小值时,n()A.6B.7C.8D.920.已知公差不为零的等差数列n a 的前n 项和为n S ,若104a S ,则89S a 。

高考数学二轮复习专题23 解三角形综合练习(文)(原卷版)

高考数学二轮复习专题23 解三角形综合练习(文)(原卷版)

专题23 解三角形综合练习一、选择题(本题共12小题,每小题5分,共60分)1.已知a 、b 、c 分别为ABC ∆的内角A 、B 、C ,且C B A 2cos 22cos 2cos =+,则C cos 的最小值为( )。

A 、21-B 、21C 、22D 、232.锐角ABC ∆中C A B sin sin sin 2⋅=,则B cos 的取值范围是( )。

A 、)10(,B 、)121(,C 、]2221[,D 、)121[,3.在ABC ∆中,3=AB ,13=BC ,4=AC ,则边AC 上的高为( )。

A 、332B 、233C 、32D 、334.在ABC ∆中,内角A 、B 、C 所对的边分别是a 、b 、c ,已知c b 58=,B C 2=,则=C cos ( )。

A 、257-B 、257±C 、257D 、2524 5.已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,且32π=A ,a c b 2)(3=+,则角C 的大小为( )。

A 、12π B 、6π C 、4π D 、3π 6.在ABC Rt ∆中, 90=∠C ,那么2cos 2sin )245(cos sin 2A A B A ⋅--⋅ 满足( )。

A 、有最大值41和最小值为0 B 、有最大值41,但无最小值 C 、既无最大值,也无最小值D 、有最大21,但无最小值 7.在ABC ∆中,内角A 、B 、C 所对的边分别为a 、b 、c ,已知ab c b a c b a 3)()(=++⋅-+,且4=c ,则ABC ∆面积的最大值为( )。

A 、3B 、32C 、34D 、388.在ABC ∆中内角A 、B 、C 的对边分别为a 、b 、c ,若函数1)(31)(2223+-+++=x ac c a bx x x f 无极值点,则角B 的最大值是( )。

A 、6π B 、4πC 、3π D 、2π 9.在锐角ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若A c C B c b sin )sin (sin )(⋅=+⋅-,则角C 的取值范围是( )。

(完整word版)解三角形练习题和答案

(完整word版)解三角形练习题和答案

解三角形练习题1.在ABC ∆中,a ,b ,c 分别为角A ,B ,C 所对边,若C b a cos 2=,则此三角形一定是( )A.等腰直角三角形B. 直角三角形C. 等腰三角形D. 等腰或直角三角形2. 在△ABC 中,角,,A B C 的对边边长分别为3,5,6a b c ===,则cos cos cos bc A ca B ab C ++的值为A .38B .37C .36D .353.有四个关于三角函数的命题:1p :∃x ∈R, 2sin 2x +2cos 2x =12 2p : ,x y R ∃∈, sin()sin sin x y x y -=- 3p : ∀x ∈[]0,π1cos 2sin 2x x -= 4p : sin cos 2x y x y π=⇒+= 其中假命题的是 (A )1p ,4p (B )2p ,4p (3)1p ,3p (4)2p ,3p4.已知ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c ,若31sin =A ,B b sin 3=,则a 等于 . 5.在△ABC 中,已知边10c =,cos 4cos 3A bB a ==,求边a 、b 的长。

6.已知A 、B 、C 为ABC ∆的三内角,且其对边分别为a 、b 、c ,若21sin sin cos cos =-C B C B . (Ⅰ)求A ;(Ⅱ)若4,32=+=c b a ,求ABC ∆的面积.7.已知△ABC 的内角C B A ,,的对边分别为c b a ,,,其中2=c ,又向量m )cos ,1(C =,n )1,cos (C =,m ·n =1.(1)若45A =︒,求a 的值;(2)若4=+b a ,求△ABC 的面积.8.已知:△ABC 中角A 、B 、C 所对的边分别为a 、b 、c 且sin cos sin cos sin 2A B B A C ⋅+⋅=.(1)求角C 的大小;(2)若,,a c b 成等差数列,且18CA CB ⋅=,求c 边的长.9.已知ABC ∆的三个内角A 、B 、C 所对的边分别为a b c 、、,向量(4,1),m =-2(cos ,cos 2)2A n A =,且72m n ⋅= . (1)求角A 的大小;(2)若a =b c ⋅取得最大值时ABC ∆的形状.10.在ABC ∆中,54sin ,135cos =-=B A . (Ⅰ)求C cos 的值; (Ⅱ)设15=BC ,求ABC ∆的面积.11..已知31cos 32cos sin 2)(2--+=x x x x f ,]2,0[π∈x ⑴ 求)(x f 的最大值及此时x 的值;⑵ 求)(x f 在定义域上的单调递增区间。

解三角形单元测试题及答案-精品.pdf

解三角形单元测试题及答案-精品.pdf

5,
BC=
7,则
sin sin
B的值为 C
(
)
8
5
5
3
A. 5
B. 8
C.3
D.5
6.已知锐角三角形的边长分别为 2,4, x,则 x 的取值范围是 ( )
A . 1<x< 5
B. 5<x< 13 C.1<x<2 5
7.在△ ABC 中, a= 15, b= 10, A= 60°,则 cos B 等于 (
13.在△ ABC
中,若
sin a
A=
cos b
B,则
B= ________.
14.在△ ABC 中, A= 60°, AB= 5, BC= 7,则△ ABC 的面积为 ________.
15.一船自西向东匀速航行, 上午 10 时到达一座灯塔 P 的南偏西 75°距塔 64 海里的 M
处,下午 2 时到达这座灯塔的东南方向的 N 处,则这只船的航行速度为 ________海里 /小时.
3,
2
3
2
1 即 cos B cos B
2
由 A ,知 B
3
6
3
3
sin B
,即得 sin B
2
2
6
5
, . 于是 B
,或 B
66
63
3 .
2 2 .
63
所以 B ,或 B .
6
2
若B
,则C
. 在直角△ ABC中, sin
1 ,解得 c
6
2
3c
若B
, 在直角△ ABC中, tan
1 , 解得 c
3.

专题23 三角板转动求角和角平分线结合(原卷版)

专题23 三角板转动求角和角平分线结合(原卷版)

专题23 三角板转动求角和角平分线结合1.直角三角形纸板COE 的直角顶点O 在直线AB 上.(1)如图1,当∠AOE =165°时,∠BOE = °;(2)如图2,OF 平分∠AOE ,若∠COF =20°,则∠BOE = °;(3)将三角形纸板COE 绕点O 逆时针方向转动至如图3的位置,仍有OF 平分∠AOE ,若∠COF =56°,求∠BOE 的度数.2.如图1,某校七年级数学学习小组在课后综合实践活动中,把一个直角三角尺AOB 的直角顶点O 放在互相垂直的两条直线PQ 、MN 的垂足O 处,并使两条直角边落在直线PQ 、MN 上,将AOB 绕着点O 顺时针旋转()0180αα︒︒<<︒.(1)如图2,若26α=︒,则BOP ∠=_____________,AOM BOQ ∠+∠=_____________;(2)若射线OC 是BOM ∠的角平分线,且POC β∠=︒.①若AOB 旋转到图3的位置,BON ∠的度数为多少?(用含β的代数式表示)②AOB 在旋转过程中,若∠AOC =2∠AOM ,求此时β的值.3.如图1,点O 为直线AB 上一点,过点O 作射线OC ,使∠BOC =50°.现将一直角三角板的直角顶点放在点O 处,一边OD 与射线OB 重合,如图2.(1)∠EOC = ;(2)如图3,将三角板DOE 绕点O 逆时针旋转一定角度,此时OC 是∠EOB 的角平分线,求∠BOD 的度数;(3)将三角板DOE 绕点O 逆时针旋转,在OE 与OA 重合前,是否有某个时刻满足∠DOC =13∠AOE ,求此时∠BOD 的度数.4.已知,如图,把直角三角形MON 的直角顶点O 放在直线AB 上,射线OC 平分AON ∠. (1)如图,若28MOC ∠=︒,求BON ∠的度数;(2)若MOC m ∠=︒,则BON ∠的度数为 ;(3)由(1)和(2),我们发现MOC ∠和BON ∠之间有什么样的数量关系?(4)若将三角形MON 绕点O 旋转到如图所示的位置,试问MOC ∠和BON ∠之间的数量关系是否发生变化?请说明理由.5.如图1,点A 、O 、B 在同一直线上,∠AOC=60°,在直线AB 另一侧,直角三角形DOE 绕直角顶点O 逆时针旋转(当OD 与OC 重合时停止),设∠BOE=α:(1)如图1,当DO 的延长线OF 平分∠BOC ,∠α=______度;(2)如图2,若(1)中直角三角形DOE 继续逆时针旋转,当OD 位于∠AOC 的内部,且∠AOD=13∠AOC ,∠α=__度; (3)在上述直角三角形DOE 的旋转过程中,(∠COD+∠α)的度数是否改变?若不改变,请求出其度数;若改变,请说明理由.6.如图1,将一块含60角的三角板ABO 的一边BO 放在直线MN 上,AB 边在直线MN 的上方,其中A 60∠=,另一块含45角的三角板POQ 的一边OQ 在直线MN 上,另一边OP 在直线MN 的下方.()1现将图1中的三角板POQ 绕点O 按顺时针方向旋转,当直线MN 恰好为POQ ∠的平分线时,如图2所示,则AOP ∠的度数______度;()2继续将图2中的三角板绕点O 按顺时针方向旋转至图3的位置,使得边OA 落在QOB ∠的内部,且AO 恰好为POQ ∠的平分线时,求BOP ∠的度数;()3在上述直角三角板从图1按顺时针方向旋转至图位置为止,这个过程中,若三角板POQ 绕点O 以每秒15的速度匀速旋转,当三角板POQ 的OP 边或OQ 边所在直线平分AOB ∠,则求此时三角板POQ 绕点O 旋转的时间t 的值(请直接写出答案).7.将一三角板中的两块直角三角尺的直角顶点O 按如图方式叠放在一起.(1)如图1,若∠BOD =35°,则∠AOC =______°;若∠AOC =135°,则∠BOD =_____°; (2)如图2,若∠AOC =140°,则∠BOD =_____°;(3)猜想∠AOC 与∠BOD 的大小关系,并结合图1说明理由;(4)三角尺AOB 不动,将三角尺COD 的OD 边与OA 边重合,然后绕点O 按顺时针或逆时针方向任意转动一个角度,当∠AOD (0°<∠AOD <90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD 角度所有可能的值,不用说明理由.8.如图1,将三角板如图放置,∠AOC =60°.将另一把直角三角尺的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方,其中∠OMN =45°.(1)将图1中的三角尺MON绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,求∠CON的度数;(2)将图1中的三角尺MON绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,在第____秒时,直线MN恰好与直线OC垂直;在第__秒时,直线ON恰好平分锐角∠AOC.(直接写出结果);(3)将图1中的三角尺MON绕点O顺时针旋转使ON在∠AOC的内部,请探究∠AOM与∠NOC之间的数量关系,并说明理由.(4)通过操作我们发现,将图1中三角形AOC绕点O顺时针旋转一定角度α(0<α<180°)时,三角形AOC会被直线AB或ON分成两个三角形,其中一个三角形有两个角相等,请直接写出所有符合条件的旋转角度α.9.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM平分∠BOC时,求∠BON的度数;(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系,并说明理由.10.已知直角三角板ABC和直角三角板DEF,∠ACB=∠EDF=90°,∠ABC=60°,∠DEF=45°.(1)如图1.将顶点C和顶点D重合.保持三角板ABC不动,将三角板DEF绕点C旋转,当CF平分∠ACB 时,则∠ACE = ;(2)在(1)的条件下,继续旋转三角板DEF ,猜想∠ACE 与∠BCF 有怎样的数量关系?并利用图2所给的情形说明理由;(3)如图3,将顶点C 和顶点E 重合,保持三角板ABC 不动,将三角板DEF 绕点C 旋转.写出∠ACD 与∠BCF 之间的数量关系并说明理由.11.将两块直角三角板的顶点A 叠在一起,已知∠BAC =30°,∠DAE =90°,将三角板ADE 绕点A 旋转,在旋转过程中,保持∠BAC 始终在∠DAE 的内部.(1)如图①,若∠BAD =25°,求∠CAE 的度数.(2)如图①,∠BAE 与∠CAD 有什么数量关系,请说明理由.(3)如图②,若AM 平分∠BAD ,AN 平分∠CAE ,问在旋转过程中,∠MAN 的大小是否发生改变?若不变,请说明理由;若改变,请求出变化范围.12.如图1,O 为直线AB 上一点,过点O 作射线OC ,30AOC ∠=︒,将一直角三角板(30M ∠=︒)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(1)将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周,如图2,经过t 秒后,OM 恰好平分BOC ∠.①t 的值是_________;②此时ON 是否平分AOC ∠?说明理由;(2)在(1)的基础上,若三角板在转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋∠?请说明理由;转一周,如图3,那么经过多长时间OC平分MON(3)在(2)的基础上,经过多长时间,10∠=︒?请画图并说明理由.BOC13.一副三角板按如图1方式拼接在一起,其中边OA、OC与直线EF重合,∠AOB=45°,∠COD =60°.(1)求图1中∠BOD的度数.(2)如图2,三角板COD固定不动,将三角板AOB绕点O按顺时针方向旋转一个角度α(即∠AOE =α),在转动过程中两个三角板一直处于直线EF的上方.①当OB平分OA、OC、OD其中的两边组成的角时,求满足要求的所有旋转角度α的值;②在转动过程中是否存在∠BOC=2∠AOD?若存在,求此时α的值;若不存在,请说明理由.14.如图1,O为直线AB上一点,过点O作射线OC,30∠=︒,将一直角三角板(∠M=30°)AOC的直角顶点放在点O处,另一边OM与OC都在直线AB的上方,将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.(1)几秒后ON与OC重合?(2)如图2,经过秒后,MN∥AB;(3)若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间OC 与OM 重合?请并说明理由.(4)在(3)的条件下,求经过多长时间OC 平分∠MOB ?请说明理由.15.点O 直线AB 上一点,过点O 作射线OC ,使得∠BOC =65°,将一直角三角板的直角顶点放在点O 处.(1)如图1,将三角板MON 的一边ON 与射线OB 重合时,求∠MOC 的度数;(2)如图2,将三角板MON 绕点O 逆时针旋转一定角度,此时OC 是∠MOB 的平分线,求∠BON 和∠CON 的度数;(3)将三角板MON 绕点O 逆时针旋转至图3时,∠NOC =14∠AOM ,求∠NOB 的度数. 16.如图1,已知50ABC ∠=︒,有一个三角板BDE 与ABC ∠共用一个顶点B ,其中45EBD ∠=︒.(1)若BD 平分ABC ∠,求EBC ∠的度数;(2)如图2,将三角板绕着点B 顺时针旋转α度(090α︒<<︒),当AB BD ⊥时,求EBC ∠的度数. 17.直角三角板ABC 的直角顶点C 在直线DE 上,CF 平分∠BCD .(1)在图1中,若∠BCE =40°,∠ACF = ;(2)在图1中,若∠BCE =α,∠ACF = (用含α的式子表示);(3)将图1中的三角板ABC 绕顶点C 旋转至图2的位置,若∠BCE =150°,试求∠ACF 与∠ACE 的度数.18.如图,以直线AB 上一点O 为端点作射线OC ,使80BOC ∠=︒,将一个直角三角形的直角顶点放在点O 处(注:90DOE ∠=︒)()1如图①,若直角三角板DOE 的一边OD 放在射线OB 上,则COE ∠= .()2如图②,将直角三角板DOE 绕点O 逆时针方向转动到某个位置,若OC 恰好平分∠BOE ,求COD ∠的度数;()3如图③,将直角三角板DOE 绕点O 转动,如果OD 始终在BOC ∠的内部,试猜想BOD ∠与COE ∠有怎样的数量关系?并说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
22
1 A、有最大值 和最小值为 0
4
B、有最大值 1 ,但无最小值 4
C、既无最大值,也无最小值
D、有最大 1 ,但无最小值 2
7.在 ABC 中,内角 A 、 B 、 C 所对的边分别为 a 、 b 、 c ,已知 (a b c) (a b c) 3ab ,且 c 4 ,则
ABC 面积的最大值为( )。
18.(12分)在 ABC 中, A 、 B 、 C 的对边分别为 a 、 b 、 c ,若 b cosC (2a c) cos B 。
4
(1)求 B 的大小; (2)若 a c 5 ,且 a c , b 7 ,求 AB AC 的值。
19.(12分)已知 ABC 的内角 A 、 B 、 C 满足 2cos(A C) 4cos A cosC 1 。 (1)求角 B ; (2)若 BC 2 , A ,求 ABC 的面积。
A、 3
B、 2 3
C、 4 3
D、 8 3
8.在 ABC 中内角 A 、 B 、 C 的对边分别为 a 、 b 、 c ,若函数 f (x) 1 x3 bx2 (a2 c2 ac)x 1 3
无极值点,则角 B 的最大值是( )。
A、 6
B、 4
C、 3
D、 2
9.在锐角 ABC 中,角 A 、 B 、 C 的对边分别为 a 、 b 、 c ,若 (b c) (sin B sin C) c sin A ,则角 C
4
20.(12分)已知 ABC 的内角 A 、 B 、 C 对应的边分别为 a 、 b 、 c , 3a 3c cos B b sin C 。
5
(1)求角 C 的大小; (2)如图,设 P 为 ABC 内一点, PA 1 , PB 2 ,且 APB ACB ,求 AC BC 的最大值。
21.(12分)在锐角 ABC 中,已知角 A 、 B 、 C 的对边分别为 a 、 b 、 c ,且 4cos( A B) 2cos 2C 3
6
。 (1)求角 C 的大小; (2)若 ABC 的外接圆半径为 2 ,角 A 与角 B 的平分线交于点 D ,求 ABD 周长的最大值。
7
22.(12分)已知在锐角 ABC 中,三个内角 A 、 B 、 C 所对的边分别为 a 、 b 、 c ,满足 tan A 1 2c 。
2 sin2 A cos2 B 1,④ cos2 A cos2 B sin2 C ;其中正确的是( )。
A、①③ B、①④ C、②④ D、②③ 12.已知 ABC 的三个内角 A 、 B 、 C 所对的边分别为 a 、 b 、 c ,若 b 1 、 c 3 , a ( )。
3.在 ABC 中, AB 3 , BC 13 , AC 4 ,则边 AC 上的高为( )。 23
A、 3
B、 3 3 2
C、 2 3 D、 3 3 4.在 ABC 中,内角 A 、 B 、 C 所对的边分别是 a 、 b 、 c ,已知 8b 5c , C 2B ,则 cosC ( )。 A、 7
3
15.若满足 ABC 60 , AC 12 , BC k 的三角形恰有一个,则 k 的取值范围是 。 16.如图所示,在一个坡度一定的山坡 AC 的山顶上有一座高度为 25 m 的建筑物 CD ,为了测量该山坡相对于水平地面的坡角 ,在山坡的 A 处测得 CAD 15 ,沿山坡前进 50 m 到达 B 处,又测得 CBD 45 ,根据以上数据可得 cos 。 三、解答题(本大题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤) 17.(10分)在 ABC 内,角 A 、 B 、 C 所对的边分别为 a 、 b 、 c ,且 b cos A c cos B (c a) cos B 。 (1)求角 B 的值; (2)若 ABC 的面积为 3 3 , b 13 ,求 a c 的值。
25 B、 7
25 7 C、 25 D、 24 25
5.已知 ABC 的内角 A 、 B 、 C 的对边分别为 a 、 b 、 c ,且 A 2 , 3(b c) 2a ,则角 C 的大小为( )。 3
A、
12
B、
6
C、
4
D、
3
6.在 RtABC 中, C 90 ,那么 sin A cos2 (45 B ) sin A cos A 满足( )。
2
的取值范围是( )。
A、 ( , ) 64
B、 ( , ) 63
C、 ( ,) 43
D、 ( ,) 32
10.在 ABC 中, tan A B sin C ,若 AB 2 ,则 ABC 周长的取值范围是( )。 2
A、 (2,2 2] B、 (2 2,4] C、 (4,2 2 2] D、 (2 2 2,6] 11.在 ABC 中,已知 tan A B sin C ,给出以下四个论断:① tan A cot B 1 ,②1 sin A sin B 2 ,③
专题23 解三角形综合练习
一、选择题(本题共12小题,每小题5分,共60分) 1.已知 a 、 b 、 c 分别为 ABC 的内角 A 、 B 、 C ,且 cos 2A cos 2B 2cos 2C ,则 cosC 的最小值为( )。
A、 1 2
1 B、
2 2
C、 2 3
D、 2
2.锐角 ABC 中 sin2 B sin A sin C ,则 cos B 的取值范围是( )。 A、 (0,1) B、 ( 1 ,1) 2 C、[ 1 , 2 ] 22 D、[ 1 ,1) 2
2 A、1或 2 B、1或 2 C、 2 或 3 D、 3 或 2 二、填空题(本题共4小题,每小题5分,共20分。把参考答案填在题中横线上) 13.斜 ABC 的三个内角分别记为 A 、 B 、 C ,若 tan A tan B tan A tan B 1 ,则 cos(A B) 。
14.在平面四边形 ABCD 中, A B C 75 , BC 2 ,则 AB 的取值范围是 。
相关文档
最新文档