生物量测定方法
生物量
测定群落的生物量, 可以反映群落利用自然潜力的能力, 衡量群落生产力的高低, 也是研究森林生态系统物质循环的基础。
准确估计森林生态系统的生物量是测定森林系统的碳储存密度、吸收二氧化碳量的研究基础样地清查法:是指通过设立典型样地,准确测定森林生态系统中的植被、枯落物或土壤等碳库的碳储量,并可通过连续观测来获知一定时期内的储量变化情况的推算方法。
归纳起来主要分为三种方法,即平均生物量法,平均换算因子法和换算因子连续函数法,这三种方法具有相同的数学推理方法基础,即都是在推算出生物量的基础上再乘以一个换算系数求得碳储量的方法。
样地清查法也可分为:生物量法、蓄积量法及生物量清单法平均生物量法:是指基于野外实测样地的平均生物量与该类型森林面积来求取森林生物量的方法。
获得样地林分平均生物量的方式主要有三种,即皆伐法、标准木法和相关曲线法一皆伐法:是将单位面积上的林木,逐个的伐倒后测定其各部分(树干、枝、叶、果和根系等)的鲜重,并换算成干重,将各部分的重量合计,即为单株树木的生物量,将单株树木的生物量累计相加后除以相应的株数即可得到平均生物量。
参考文献1、森林碳汇的估算方法及其发展趋势曹吉鑫—田赟、王小平、孙向阳2、基于森林资源清查资料的生物量估算模式及其发展趋势—赵敏周广胜3、李意德, 曾庆波, 吴仲民, 等. 尖峰岭热带山地雨林生物量的初步研究[J]. 植物生态与地植物学报, 1992, 16(4): 293-300.}标准木法是根据样地每木调查的数据计算出全部树木的平均胸径、树高值或其它测树因子的平均值,然后选出样地中等于或接近这个平均值的数株树木作为标准木,将标准木伐倒后求出生物量,再乘以该样地内单位面积的树木株树,从而获得单位面积上的林木生物量即平均生物量。
另叙:推算林分生物量有两种途径:一是根据每一块标准地标准木推算林分生物量,用标准木各组成(干、枝、叶、根) 的生物量乘以该标准地的树木株数,这种方法比较适用于林木大小具有小的或中等离散度的正态频率分布的林分, 例如人工林[ 40参考文献1、基于森林资源清查资料的生物量估算模式及其发展趋势—赵敏周广胜2、森林生物量研究综述——薛立, 杨鹏3、杨丽韫, 罗天祥, 吴松涛. 长白山原始阔叶红松林不同演替阶段地下生物量与碳、氮贮量的比较[J]. 应用生态学报, 2005, 16(7):1195-1199.4、罗辑, 杨忠, 杨清伟. 贡嘎山森林生物量生产力的研究[J]. 植物生态学报, 2000, 24(2): 191-196.相关曲线法采取的步骤是先在样地内伐倒少许树木, 确定生物量与胸径或树高的回归关系,然后利用回归关系和所有树木的实测胸径或树高推算样地的生物量。
微生物量的测定方法
微生物量的测定方法
常见的微生物量测定方法包括:
1. 平皿计数法:将样品按一定稀释倍数加入琼脂平皿中,培养后通过计数器统计微生物在平皿上的数量,以此计算原样品中微生物的数量。
2. 滤膜计数法:将样品过滤后将滤膜放在富含营养的琼脂平板上培养,通过计数器统计滤膜上微生物的数量,以此计算原样品中微生物的数量。
3. 光密度法:利用菌落浑浊作用测定微生物规模大小的方法,称为“比色法”,并以光密度来表示菌落数量的多少。
4. 电极测定法:利用特定的氧化还原反应来测定微生物量,例如,生物化学需氧量(BOD)和化学需氧量(COD)。
5. 溶解氧测定法:利用溶解氧在水中的含量来推算微生物的存在量。
6. 分子生物学方法:利用PCR、DNA芯片等技术检测微生物数量,也可通过它们的遗传物质(如rRNA)来推算微生物的存在量。
生物量测定方法
。
V
其中:是实际烘干的重量;是实际浸泡体积;M样品总干重;V样品总体积。
②全称重法
所谓全称重法就是将树木伐倒,摘除全部枝叶称其树干鲜重,采样烘干得到样品干重与鲜重之比(PW),从而计算样木树干的干重。这种方法是测定树木干重最基本的方法,它的工作量极大,但获得的数据可靠。本方法干重比可用很多方法进行估计,视不同情况而定。另外,还可将树木的鲜重根据相应的含水率,换算出树木的绝干重。根据国内一些研究表明(张治强1981),树干以鲜重为基础的气干含水率Pf为
回归估计法
林木生物量回归估计法是以模拟林分内每株树木各分量(干、枝、叶、皮、根等)干物质重量为基础的一种估计方法。它是通过样本观测值建立树木各分量干重与树木其它测树因子之间的一个或一组数学表达式,该数学表达式也称林木生物量模型。表达式一定要尽量反映和表征树木各分量干重与其它测树因子之间内在关系,从而达到用树木易测因子的调查结果,来估计不易测因子的目的。
林木生物量模型的方程很多,概括起来有三种基本类型:线性模型,非线性模型,多项式模型。线性模型和非线性模型根据自变量的多少,又可分为一元或多元模型。非线性模型应用最为广泛,其中相对生长模型最具有代表性,是所有模型中应用最为普遍的一类模型。(1).相对生长模型(非线性模型)
相对生长模型是指用指数或对数关系反映林木维量之间按比例协调增长(Harmonious growth)的模型。作为比例变化协调增长的这些指数或对数关系被称为相对生长。
木材干重=木材体积×基本密度(I)
木材干重=木材体积×绝干密度×绝干收缩率(II)
微生物生物量
微生物生物量微生物生物量是指在特定环境中存在的微生物的总量。
微生物是一类微小的生物体,包括细菌、真菌、病毒等。
它们广泛存在于地球上的各个环境中,如土壤、水体、大气等。
微生物生物量的研究对于了解生态系统的结构和功能具有重要意义。
微生物生物量的测定方法有多种,常用的方法包括直接计数法、间接计数法和生物量估算法。
直接计数法是通过显微镜观察和计数微生物来测定其数量,适用于微生物生物量较低的样品。
间接计数法是通过测定微生物的代谢产物或特定标志物来推测其数量,如菌落计数法、蛋白质含量测定法等。
生物量估算法是通过测定微生物的生物量指标来估算其生物量,如细胞质量、DNA含量、膜脂含量等。
微生物生物量的大小受到多种因素的影响,包括环境因素和生物因素。
环境因素包括温度、湿度、营养物质的供应等,这些因素会影响微生物的生长和繁殖。
生物因素包括微生物的种类、代谢活性等,不同种类的微生物在不同环境条件下生物量的变化也不同。
微生物生物量在生态系统中起着重要的作用。
首先,微生物是生态系统中的重要生物转化者。
它们能够分解有机物质,促进有机物质的循环和再利用。
例如,细菌和真菌能够分解植物残体和动物尸体,将有机物质转化为无机物质,并释放出二氧化碳和营养盐。
其次,微生物还参与了生态系统中的能量流动和营养物质循环。
微生物通过光合作用和化学合成作用,能够将太阳能和无机物质转化为有机物质,为生态系统的能量来源和营养物质提供。
此外,微生物还能够参与土壤形成和水体净化等过程,对维持生态系统的平衡和稳定起着重要作用。
微生物生物量的变化对生态系统的稳定性和功能具有重要影响。
当微生物生物量过高或过低时,都可能对生态系统的结构和功能产生负面影响。
例如,当水体中的藻类生物量过高时,会引起水华现象,导致水体富营养化和氧气缺乏,进而影响水生生物的生存。
另外,微生物生物量的变化还会影响生态系统的稳定性。
微生物在分解有机物质和转化无机物质的过程中产生了一系列的酶和代谢产物,这些物质能够影响生态系统中其他生物的生长和繁殖。
生物量测定方法
b.生材密度=生材质量/生材(或饱和水)体积
c.气干密度=气干材质量/气干材体积
d.绝干密度=绝干材重/绝干材体积
以上四种木材密度以基本密度和气干密度两种最为常用。基本密度常常用于树干干重的计算,气干密度常泛指气干木材任意含水率时的计算,因所处地区木材平衡含水率或气干程度不同,并有一个范围,如通常含水率在8-20%时试验的木材密度,均称为气干密度。在我国常将木材气干密度作为材性比较和生产应用的基本依据。木材密度测定方法通常有:直接量测法、水银测容器法、排水法、快速测定方和饱和含水率法,具体测定方法详见木材学(成俊卿,1985,木材学)。在木材密度已知的条件下,计算树干及大枝干重的方法一般称为木材密度法,常采用两种基本模式:
首先将样品一分为二,分别称重记作,然后将第一块样品进行烘干,将第二块样品进行浸泡,这样做能保证样品绝干重量和浸泡体积不产生系统偏差。设其对应绝干重和饱和水的体积分别为。
。
V
其中:是实际烘干的重量;是实际浸泡体积;M样品总干重;V样品总体积。
②全称重法
所谓全称重法就是将树木伐倒,摘除全部枝叶称其树干鲜重,采样烘干得到样品干重与鲜重之比(PW),从而计算样木树干的干重。这种方法是测定树木干重最基本的方法,它的工作量极大,但获得的数据可靠。本方法干重比可用很多方法进行估计,视不同情况而定。另外,还可将树木的鲜重根据相应的含水率,换算出树木的绝干重。根据国内一些研究表明(张治强1981),树干以鲜重为基础的气干含水率Pf为
与材积测定相比,生物量测定的对象更为复杂,测定的部分也多,因而使得生物量的测定工作即复杂又困难。但是树木生物量与树木胸径、树高等测树因子之间也有着密切的关系,这些关系也为树木生物量测定提供了依据。在树木生物量测定中,树冠量的大小与形状对枝、叶量的多少有着显着的影响,因此,在实际工作中,要研究反映冠形和冠量的因子,常用的因子有冠长率、树冠圆满度、树冠投影比等因子,这些因子的意义如下:
生物量的测定方法
生物量的测定方法
有以下几种常见的生物量测定方法:
1. 直接测量法:直接将生物体进行称量或计数,如称重法、计数法等。
2. 尺度法:通过对生物体或其一部分的长度、体积、表面积等尺度进行测量,再根据预先建立的标准曲线或公式,计算出生物体的生物量。
3. 捕获回收法:对某一生境中的生物体进行捕获或采集,然后通过称重或计数等方法,估算该生境中所有生物体的生物量。
4. 化学分析法:通过将生物体或其部分进行化学处理,然后经过反应后生成的产物进行测量,从而计算出生物体的生物量。
5. 定标法:通过施加一定数量或浓度的标准物质于生物体,然后测量生物体与标准物质之间的关系,推算出实际生物体的生物量。
6. 间接测量法:通过测量与生物体生长或代谢有关的其他参数,如光合作用速率、呼吸速率等,再通过相关公式或模型计算出生物体的生物量。
需要注意的是,不同的生物体和研究目的可能需要采用不同的测量方法,以确保测量结果的准确性和可靠性。
土壤微生物生物量的测定方法
土壤微生物生物量的测定方法1.直接计数法:直接计数法是通过显微镜观察土壤样品中微生物数量来测定土壤微生物生物量。
常用的直接计数法包括滴定法、薄层计数法和电镜计数法。
滴定法是将土壤样品溶解后,通过滴定法来计数微生物细胞的数量。
滴定法主要包括用荧光假单胞菌(Pseudomonas fluorescens)作为参比菌,将细菌与土壤样品混合,经一系列稀释后进行滴定。
通过观察滴定液中菌落的数量,可以推算出原始土壤样品中微生物的生物量。
薄层计数法是将土壤样品制成薄层,然后在显微镜下进行计数。
这种方法可以直接观察微生物的形态特征,通过计算单位面积上微生物的数量来估算微生物生物量。
电镜计数法是利用电镜的高分辨率特性,观察土壤样品中微生物的形态和数量。
这种方法可以观察到更小的微生物和微生物的形态细节,但是操作复杂,成本较高。
2.间接测定法:间接测定法通过测定土壤中微生物活性代谢产物来估算微生物生物量。
常用的间接测定法包括ATP测定法、细胞膜脂肪酸测定法和氮素代谢产物测定法等。
ATP测定法是通过测定土壤中的三磷酸腺苷(ATP)含量来估算微生物生物量。
微生物的ATP含量与其生物量有一定的关系,因此可以通过测定ATP含量来间接估算土壤微生物生物量。
细胞膜脂肪酸测定法是通过测定土壤样品中微生物细胞膜中的脂肪酸含量来估算微生物生物量。
微生物细胞膜中的脂肪酸种类和含量与微生物群落的组成和数量有关,因此可以通过测定脂肪酸的含量来间接估算微生物生物量。
氮素代谢产物测定法是通过测定土壤样品中微生物氮素代谢产物的含量来估算微生物生物量。
微生物的氮素代谢活动与其生物量有关,因此可以通过测定氮素代谢产物的含量来间接估算微生物生物量。
3.分子生物学方法:分子生物学方法是利用PCR技术对土壤样品中微生物的DNA或RNA进行扩增和测定来估算微生物生物量。
常用的分子生物学方法包括引物扩增法、荧光原位杂交法和高通量测序法等。
引物扩增法是通过设计特定的引物对微生物的DNA或RNA进行扩增,并通过PCR反应的产物数量来估算微生物生物量。
发酵液生物量
发酵液生物量
3、比浊法:又称光密度测定法。
微生物的生长引起培养物浑浊度的增高。通过紫外 分光光度计测定一定波长下的吸光值,判断微生物 的生长状况。
该法主要用于细菌、酵母生长监测。如在波长 600nm处用比色管定时测定发酵液的吸光光度值 OD600,以此监控E.Coli的生长。
发酵液生物量
发酵液生物量
现在比较新的测量方法有电容法、近红外光谱法、 电阻光谱法。
电容法根据活细胞具有密闭的细胞膜系统的特点,在交变 电场作用下活细胞内带电细胞质迁移,使活细胞成为极化 细胞,形成电容,根据测得的电容大小可计算出活细胞的 量。而死细胞( 细胞膜破裂) 、气泡、细胞碎片以及固体培 养基颗粒( 如玉米粉/黄豆饼粉等) 或微载体颗粒等因不能 形成密闭的电容,不会被检测到,因此电容电极测得的信 号值与发酵罐中活细胞量的值有较好的相关性。
可用离心或过滤法测定。 一般干重为湿重的10-20%。在离心法中,将一定体 积待测培养液在一定的离心时间和转速下离心,并 用清水离心洗涤。在过滤法中,丝状真菌可用滤纸 过滤,细菌可用醋酸纤维膜等滤膜过滤,过滤后用 少量水洗涤。
发酵液生物量
沉淀干燥可用烘箱在1050C或1000C下烘干,或采用 红外线烘干,也可在800C或400C下真空干燥,干燥 后称重。 干重法较为烦琐,耗时长,难以满足控制分析的需要。 通常获取的微生物产品为菌体时,常采用这种方法。
4、计数法:
a、血球计数板法: 通过油镜观察血球计数板,统计一定大格内微生物 的数量,即可算出1毫升菌液中所含的菌体数。这种 方法简便,直观,快捷,但只适宜于单细胞状态的 微生物或丝状微生物所产生的孢子进行计数,并且 所得结果是包括死细胞在内的总菌数。 为了弥补一些微生物在油镜下不易观察计数,而直 接用血球计数板法又无法区分死细胞和活细胞的不 足,人们发明了染色计数法。借助不同的染料对菌 体进行适当的染色,可以更方便的在显微镜下则称静置沉降体积。 PMV是大规模工业发酵生产上微生物生长的一个重 要监测指标。这种方法比较粗放,简便,快速,但 需要设定一致的处理条件,否则偏差很大,由于离 心沉淀物中常夹杂有一些非菌体的固体成分,结果 会有一定偏差。
微生物数量测定
微生物数量测定在生物学和医学领域,微生物的数量测定是一个重要的实验技术。
通过对微生物数量的测定,我们可以了解生物体在不同环境中的适应性和生存能力,评估环境的健康状态,以及监测和治疗疾病等。
微生物数量测定的基本原理是利用单位体积或单位面积上的微生物细胞数,通过统计和计算得到微生物的数量。
常用的方法包括显微镜计数法、比浊法、平板计数法等。
显微镜计数法是一种直接计数法,通过显微镜观察并计数样品中的微生物数量。
该方法需要将样品均匀涂布在载玻片上,干燥后进行染色和固定,然后使用显微镜观察并计数。
该方法的优点是简单易行,适用于微生物数量较少的样品,但不适用于大量样品。
比浊法是一种通过测量样品的浊度来测定微生物数量的方法。
该方法是通过将样品与标准曲线进行比较,得出微生物的数量。
该方法的优点是快速、简便、准确度高,适用于大量样品的测定。
但是,该方法需要使用标准曲线,对于某些微生物可能不太准确。
平板计数法是一种通过培养微生物并计数菌落数量来测定微生物数量的方法。
该方法是将样品稀释后涂布在培养基上,培养一定时间后统计菌落数量,然后计算出微生物的数量。
该方法的优点是准确度高,适用于各种微生物的测定,但需要一定的培养时间和人力。
微生物数量测定的应用领域非常广泛,包括环境科学、医学、食品科学、农业科学等。
例如,在环境科学中,微生物数量测定可以用来评估污染物的毒性对生态环境的影响;在医学中,微生物数量测定可以用来监测和治疗疾病;在食品科学中,微生物数量测定可以用来控制食品的质量和安全;在农业科学中,微生物数量测定可以用来了解土壤的健康状况和作物的生长情况等。
微生物数量测定是一种重要的实验技术,广泛应用于生物学和医学等领域。
通过对微生物数量的测定,我们可以更好地了解生物体的适应性和生存能力,评估环境的健康状态,监测和治疗疾病等。
未来随着科技的不断进步和应用领域的不断拓展,微生物数量测定的方法和应用将更加多样化和精准化。
在生物学和医学领域,微生物的大小和数量的测定对于研究生命过程、疾病诊断和治疗等方面都具有重要的意义。
土壤微生物生物量的测定方法氯仿熏蒸
土壤微生物生物量的测定方法氯仿熏蒸氯仿熏蒸法是一种在实验室中用氯仿处理土壤样品,然后测定氯仿处理前后土壤微生物生物量差异的方法。
通过加入氯仿,能够杀死土壤中的微生物,从而减少微生物的数量,然后利用一些生物学或化学方法来测定残留的微生物生物量。
氯仿熏蒸法的步骤如下:1.准备土壤样品:将采集到的土壤样品经过干燥和破碎,使其能够尽可能均匀地参与后续的熏蒸过程。
2.加入氯仿溶液:将准备好的土壤样品分装到烧杯或烧瓶中,加入一定比例的氯仿溶液。
氯仿的浓度一般为10%~30%,取决于土壤类型和研究目的。
3.熏蒸土样:将装有土壤和氯仿溶液的容器密封,熏蒸一定的时间。
通常熏蒸时间为24~48小时。
4.蒸发氯仿:打开容器,在通风条件良好的环境中将氯仿挥发,一直蒸发到气味完全消失。
5.提取微生物细胞:将氯仿处理后的土壤样品用适当的提取剂提取,以从土壤中提取微生物细胞。
6.测定微生物生物量:使用适当的方法,如直接计数法、生物量焦磷酸法或基于生物标记物的测定法,来测定氯仿处理前后土壤样品中微生物生物量的差异。
氯仿熏蒸法的优点是操作简单、成本低廉,并且对土壤样品中的细菌、真菌和原生动物等各类微生物都具有较好的破壁效果,能够有效地杀灭土壤中的微生物。
同时,氯仿处理还可以去除土壤样品中的有机物质,从而减少后续测定中的干扰。
然而,氯仿熏蒸法也存在一些局限性。
首先,由于氯仿是一种有机溶剂,熏蒸过程中可能对土壤样品的结构和性质造成一定的改变。
其次,氯仿处理只能杀灭土壤中的微生物,对于土壤中的其他生物物种如线虫、螨虫等则不具备同样的杀灭效果。
此外,氯仿熏蒸法只能提供微生物生物量的总量信息,无法区分不同类群的微生物。
总结起来,氯仿熏蒸法是测定土壤微生物生物量的一种常用方法,其操作简便、费用低廉,且能够有效地杀灭土壤中的微生物。
但需要注意的是,在实际应用中要综合考虑其局限性,并根据研究目的选择合适的测定方法。
测定生物量的方法
测定生物量的方法
测定生物量的方法是一项重要的生物学实验技术,常用于生态学、农学、林学、水产学等领域的研究。
以下是几种常用的测定生物量的方法:
1. 直接称重法:将样品从生物群落中随机采集,去除多余的部分,称量后计算生物量。
2. 面积法:对于植物生物量的测定,可以使用面积法。
在样地
内选定一个面积,将面积内的所有植物进行测定,计算植物生物量。
3. 标记重捕法:将样品中随机选择一部分进行标记,然后将其
放回生境,等待一段时间后再次采集样品,并检查标记的比例,计算生物量。
4. 估算法:对于大型生物样品的测定,可以使用估算法。
根据
体积、长度、重量等测定参数,进行推算得出生物量。
以上是测定生物量的几种常用方法,实验人员可根据实际情况选择合适的方法进行生物量的测定。
- 1 -。
生物量的测定方法
生物量的测定方法Biomass is a measure of the total amount of living material in a given area. It includes all living organisms, from the tiniest bacteria to the largest trees. Different methods can be used to determine the biomass of a particular ecosystem, and the choice of method depends on the specific characteristics of the ecosystem.生物量是指在特定区域内生物体的总量。
它包括从最微小的细菌到最大的树木的所有生物。
不同的方法可以用来确定特定生态系统的生物量,而方法的选择则取决于生态系统的具体特征。
One commonly used method for measuring biomass is through the use of transects. Transects are straight lines that are established to cross a particular area, and vegetation within a certain distance on either side of the transect is measured. This method is especially useful for studying the biomass of plant communities, such as forests or grasslands. By measuring the vegetation along the transect, scientists can estimate the biomass of the entire area.一个常用的测量生物量的方法是通过使用样线。
生物量测定方法
生物量测定方法
生物量咋测?嘿,先选好要测的对象呀,就像挑个好选手参加比赛。
然后用合适的工具,比如秤啊啥的。
哇,这就像给生物量称体重。
注意啥呢?可不能瞎测,得准确。
就像做饭不能乱放调料,不然味道就怪啦。
安全不?只要你小心操作,没啥问题。
就像走路小心点就不会摔跤。
稳定性嘛,方法对了就挺稳的。
啥时候用这方法?研究生态的时候呗。
优势可不少呢,能知道生物的多少,就像数自己有多少宝贝。
我见过有人测生物量,那数据可准啦。
就像找到了宝藏的密码。
生物量测定不难,只要用心就能做好。
你还等啥呢?赶紧试试吧!。
一种真菌菌丝生物量的测定方法
一种真菌菌丝生物量的测定方法
真菌菌丝生物量的测定方法是研究真菌群体大小和增长速率的重要手段。
下面是一种可行的真菌菌丝生物量测定方法,包括准备样品、菌丝提取和生物量测定步骤。
1.准备样品
首先,选择合适的真菌菌株,并进行预培养。
将真菌培养基均匀涂抹于培养皿上,接种真菌菌株并培养在适合的温度和湿度下。
2.菌丝提取
当真菌在培养基形成较为均匀的菌丝生长时,可进行菌丝提取。
可以采用刮取法或破碎法来收集菌丝。
刮取法:使用均匀的刮取器或铲子刮取培养皿上的菌丝。
将收集到的菌丝转移到称量瓶或称量纸上,记录初始重量。
破碎法:将真菌菌丝从培养皿上取下,并使用理化方法将其破碎成均匀的小颗粒。
将菌丝颗粒放入称量瓶或称量纸上,记录初始重量。
3.生物量测定
将称量瓶或称量纸放入微波炉中加热烘干,以去除菌丝中的水分。
关闭微波炉并记录重量。
一般来说,需要在中低功率下进行微波炉加热,以避免过度加热引起的样品损失。
在多次加热和称量之后,直到样品重量保持稳定不再变化,即达到恒重。
4.数据处理
将最终得到的样品重量与初始重量进行比较,可以计算出真菌菌丝的生物量。
生物量的计算可以使用以下公式:
生物量=(样品重量-初始重量)÷样品量
需注意的是,由于真菌菌丝中可能含有其他物质,如细胞壁、细胞器等,这些物质的质量也会被计算在菌丝生物量中。
因此,在样品处理和数据处理过程中,需要进行相应的控制和校正。
此外,需要注意的是,该方法仅适用于真菌菌丝的生物量测定,对于其他形态结构的真菌部分(如子实体),则需要使用其他方法进行测定。
生物量测定法的原理与应用
生物量测定法的原理与应用生物量测定法是一种用于测定生物体、生态系统和生物群落中生物量的方法。
通过生物量测定法,可以对生物体和生态系统的结构、生产力和生态效能等方面进行深入了解。
该方法的应用范围广泛,包括农业、林业、渔业、环境保护和生态研究等领域。
本文将从生物量测定法的原理、方法和应用方面进行探讨。
生物量测定法的原理生物量测定法的原理基于生物体的质量和代谢率之间的关系。
生物体的质量是通过代谢作用获得的,因此生物体质量与代谢率之间存在着一定的关系。
在测定生物量的过程中,可以根据生物体代谢率的高低来推算出其质量。
生物量测定法的原理与代谢罐法、同位素稀释法和生物地球化学法等方法存在相互联系和交叉应用的关系。
生物量测定法的方法生物量测定法的方法包括直接采用量表、计数和计算发育期营养物质积累和生长区域体积或面积,以及间接测定代谢率等。
这些方法可以通过实测或逆推来确定生物体的质量。
其中,直接采用量表的方法适用于测量宏观生物体,如树木的根、茎、叶等部分。
而采用计数法的方法适用于微观生物体,如细菌、真菌、轮虫等。
最常见的测定方法是采用测量农作物和森林生态系统中的生物体积和干物质来估算其生物量。
因为生物量与其体积和干物质呈正相关, 所以通过测量体积和干物质可以反推出生物量的大小。
生物量测定法的应用生物量测定法的应用涉及到农业、林业、渔业、环境保护和生态研究等领域。
在农业生产中,生物量测定法被广泛应用于作物产量的测算和生产力评估。
在林业中,生物量测定法可以用于估算森林生态系统中的生物量和生产力。
在渔业中,生物量测定法可以帮助估算湖泊、河流和海洋中的鱼群生物量。
在环境保护方面,生物量测定法可以用于评估土壤、水和空气中生物质的含量和状况。
在生态研究中,生物量测定法可以帮助科学家更清楚地了解生物体和生态系统的组成和功能特性, 从而推断出其潜在的生产力和生态功能。
总之,生物量测定法是一种重要的生态学研究方法,其应用范围涉及到农业、林业、渔业、环境保护和生态研究等领域。
生物量的测定及其在生态学中的应用
生物量的测定及其在生态学中的应用生物量是生物学研究中非常重要的一个指标。
它是指一个生态系统中所有生命体的总质量,包括植物、动物、微生物等。
因为生物量可以反映生态系统中的能量转化和物质轮换,所以其测定及分析在生态学研究中具有非常重要的意义。
一、生物量的测定方法生物量的测定方法主要有直接方法和间接方法两种。
直接方法是通过实地采样测量生物体重或生物体积来计算生物量。
它主要适用于较小的生态系统,如产湖、草地等。
具体方法包括:物种数目计数方法、直接称量法、水中抽提法、标志植物法等。
间接方法则是通过其他指标,如生产力、生长速率、光合作用速率等来估算生物量。
这种方法适用于大尺度的生态系统,如森林、海洋生态系统等。
具体方法包括:利用接近一级生产力计算、底物有机物的含量来计算和营养状况估算等。
二、生物量的意义和应用1. 生态系统结构和演替研究生物量可以反映一个生态系统的物质和能量转化情况。
通过测量不同层次的生物体的生物量,可以反映生态系统的结构层次。
生态学家可以通过研究不同生态系统的生物量数据,来了解生态系统的演替和生态环境的演变。
2. 生态系统功能评价生物量也是生态系统功能评价的重要指标之一。
例如,森林林下植被生物量的变化可以评估森林生态系统的土壤保持、水土保持和水源涵养功能。
海洋生态系统中浮游植物的生物量变化则可以反映海洋生态系统的营养状态和生产力水平。
3. 环保和资源管理生物量信息的采集和分析也对环保和资源管理方面有着重要的意义。
例如,用生物量数据估算生态系统中的生物多样性,并通过监测其变化,以制定对环境资产的保护管理计划。
此外,通过生物量数据对资源的可持续利用做出科学评估,能够更好地掌握人类对自然资源的使用和保护平衡的关系。
综上所述,生物量的测定及其在生态学研究中的应用对于掌握生态系统的功能和特性有着非常重要的作用。
通过生物量数据的采集和分析,我们可以更好地管理和保护环境,促进可持续发展。
微生物量碳氮测定方法
微生物量碳氮测定方法微生物量、碳氮测定方法是研究微生物数量和代谢活性的关键手段,可用于土壤、水体和生物体等环境中的微生物研究。
常用的微生物量、碳氮测定方法包括显微镜计数法、流式细胞术、气体产量法、碳氮比测定法等。
下面将详细介绍这些方法的原理和操作步骤。
一、显微镜计数法显微镜计数法通过显微镜观察和计数微生物的数量来测定微生物量。
其原理是将样品置于显微镜下,在显微镜下观察样品中的微生物数量,并进行计数。
根据计数结果以及标定样品数量的因数,可以推算出样品中微生物的数量。
显微镜计数法的操作步骤如下:1.获取样本并制备薄片。
根据需要采集样本,并将样本制备成薄片或涂片。
可以使用高温固定、化学固定或热固定等方法固定样本。
2.显微镜观察和计数。
将固定的样本放入显微镜下,通过放大镜头观察样本中的微生物,并进行计数。
为了避免重复计数和遗漏计数,可以使用方格计数器。
3.根据计数结果计算微生物量。
根据计数结果以及标定样品数量的因数,可以推算出样品中的微生物数量。
通常计算结果以每克(或每升)样品中的微生物数量表示。
二、流式细胞术流式细胞术是用于计数、分类和分析微生物的一种高通量、高精读的方法。
其原理是将样品中的微生物通过细胞色素或抗原标记,通过流式细胞仪进行激光扫描,扫描到的细胞信号通过计算机进行分析,从而得到微生物的数量、大小和类型等信息。
流式细胞术的操作步骤如下:1.准备样品和染色。
根据需要采集样本,并给样本进行染色。
染色可以使用细胞色素或抗原标记法,将需要测定的微生物区分出来。
2.流式细胞仪扫描。
将染色的样品装入流式细胞仪中,通过激光扫描仪器扫描染色的细胞,并记录扫描到的细胞信号。
3.数据分析。
通过计算机分析扫描到的细胞信号,得到微生物的数量、大小和类型等信息。
三、气体产量法气体产量法是通过测定微生物代谢过程中产生的气体来间接测定微生物的数量和代谢活性。
常用的气体产量法有氧呼吸测定法和甲烷产量测定法。
气体产量法的操作步骤如下:1.准备培养基和反应器。
生物量测定方法
D——林木胸径
H——林木树高
a、b——回归常数
(2).多项式模型
W=a+bD+cD2(11-27)
式中符号意义同前
在实践工作中,为了简便和提高估计精度,经常分别林木组成的分量与测树因子的关系,建立各分量的回归估计模型。各分量生物量之和即为林木生长量的估计值。建立树干生物量估计模型时,常选用的林木胸径(D)、树高(H)及(D2H)为自变量。建立树冠生物量估计模型时,常选用林木胸径、树高、冠幅、冠长率、冠下径(即树冠基径)等因子为自变量。建立树根生物量估计模型时,常选用林木胸径及根径等因子为自变量。
生物量测定方法
1树木生物量测定方法
1.1树木生物量的组成
一木树的生物量可以分为地下及地上两部分,地下部分是指树根系的生物量(WR);地上部分主要包括树干生物量(WS)、枝生物量(WB)和叶生物量(WL)。在生物量的测定中,除称量各部分生物量的干重量外,有时还要计算它们占全树总生物量干重的百分数,此百分数称为分配比。树干占地上部分的分配比最大(一般为65~70%),而枝叶部分的分配比约各占15%左右。
根重量的测定从每个区划中仔细地挖出根清除泥土按标准分级小根及细根所带泥土较多应放于土壤筛中筛去泥土将清理后的根带回室内用水冲洗阴干至初始状称鲜重采样烘干求得林分生物量测定方法21皆伐实测法为较准确地测定林分生物量或者为检验其他测定方法的精度往往采用小面积皆伐实测法即在林分内选择适当面积的林地将该林地内所有乔灌草等皆伐测定所有植物的生物量wi它们生物量之和wi即为皆伐林地生物量并接下式计算全林分生长量w
S——皆伐林地面积
该方法对林分中的灌木、草本等植物生物量的测定更为适合。
2.2标准木法
(1).平均标准木法
常见生物量的统计方法(干重DCW、体积、比浊OD、细胞数N、黏度、核酸、代谢物P、总氮)及...
常见生物量的统计方法(干重DCW、体积、比浊OD、细胞数N、黏度、核酸、代谢物P、总氮)及...生物量(biomass)是指某一时刻单位面积内实存生活的有机物质(包括生物体内所存食物的重量)总量,通常用kg/m2或t/hm2表示。
广义的生物量是生物在某一特定时刻单位空间的个体数、重量或其含能量,可用于指某种群、某类群生物的(如浮游动物)或整个生物群落的生物量。
狭义的生物量仅指以重量表示的,可以是鲜重或干重。
与生产力是不同的概念,某一特定时刻的生物量是一种现存量(standing crop)。
本文主要针对微生物发酵过程中生物量的检测方法,进行整理和分析,具体如下:1、体积测量法通过测定一定体积培养液中所含菌丝的体积来反映微生物的生长状态。
取一定量的待测培养基体积为V1,放在有刻度的离心管内,设定一定的离心时间t和转速r,离心完成后到,倒出上清液并测得体积为V,则离心机压缩体积:PMV∣(t,r)=V1-V/V1特点:粗放、简便、快速、偏差大、常含有非菌体固形物,对于醪液发酵培养基不适用。
2、细胞干重法 DCW将单位体积的微生物培养液经离心收集并用水反复洗涤菌体,经常压或真空干燥后精确称重,即可计算出培养物的总生物量。
一般1mg细菌干重约等于4~5mg湿菌鲜重或相当于4×109~5×109 个细胞,可以以此作标准从干重做需要的转换。
特点:繁琐、耗时,不方便在线分析,本法适用于含菌量高、不含或少含非菌颗粒性杂质的环境或培养条件。
3、比浊法OD微生物的生长引起培养物浊度的增高、通过紫外分光光度计测定固定波长下的吸光值则可判断该微生物的生长状况。
通常在600nm处,测得吸光值(OD值)。
特点:常用与细菌、酵母,方便、快捷、在线监测反馈;对于浑浊程度较高的发酵醪液因超出检测范围需要进行稀释操作,稀释溶液最好为培养基。
4、细胞计数N(直接计数法)常用计数法包括:血球计数板法、平板菌落法,或者用电子计数器计数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物量测定方法
1树木生物量测定方法
1.1树木生物量的组成
一木树的生物量可以分为地下及地上两部分,地下部分是指树根系的生物量(WR);地上部分主要包括树干生物量(WS)、枝生物量(WB)和叶生物量(WL)。
在生物量的测定中,除称量各部分生物量的干重量外,有时还要计算它们占全树总生物量干重的百分数,此百分数称为分配比。
树干占地上部分的分配比最大(一般为65~70%),而枝叶部分的分配比约各占15%左右。
与材积测定相比,生物量测定的对象更为复杂,测定的部分也多,因而使得生物量的测定工作即
或地理位置变化,则重量也随着变化,但变化极少,在应用上一般可以忽略,而将质量和重量的数值视为相等。
因此单位体积的质量和重量也视为相等(成俊卿,1985,木材学)。
根据含水状况不同,木材密度通常分为四种:
a.基本密度=绝干材质量/生材(或饱和水)体积
b.生材密度= 生材质量/生材(或饱和水)体积
c.气干密度= 气干材质量/气干材体积
d.绝干密度= 绝干材重/绝干材体积
以上四种木材密度以基本密度和气干密度两种最为常用。
基本密度常常用于树干干重的计算,气干密度常泛指气干木材任意含水率时的计算,因所处地区木材平衡含水率或气干程度不同,并有一个范围,如通常含水率在8-20%时试验的木材密度,均称为气干密度。
在我国常将木材气干
密度作为材性比较和生产应用的基本依据。
木材密度测定方法通常有:直接量测法、水银测容器法、排水法、快速测定方和饱和含水率法,具体测定方法详见木材学(成俊卿,1985,木材学)。
在木材密度已知的条件下,计算树干及大枝干重的方法一般称为木材密度法,常采用两种基本模式: 木材干重=木材体积×基本密度(I)
木材干重=木材体积×绝干密度×绝干收缩率(II)
(II)式中绝干收缩率不易确定,因此,多采用(I)式。
在测定基本密度时,常常会碰到一对矛盾:若先测定物体绝干重量时,该物体的体积由于烘干后发生收缩,体积变小,浸泡后很难恢复原体积,使得体积测定系统偏小;若先测定物体饱和水体积时,一方面测定绝干重量的时间大大延长,另一方面由于木材和树皮经长时间浸泡后,其部分木材冷水浸提物如:单宁、碳水化合物、无机物等被浸泡出物体外,使得物体绝干重减轻,造成基本密度系统偏低。
为了解决这一矛盾,可采用如下处理方法:
测定林木枝、叶生物量有两种主要方法。
一种标准枝法;另一种方法是全称重法。
①标准枝法
所谓标准枝法是指在树木上选择具有平均枝基径与平均枝长的枝条,测其枝、叶重用于推算整株树枝、叶的重量。
根据标准枝的抽取方式,该法又可分为:平均标准枝法和分级标准枝法。
a.平均标准枝法
(i)树木伐倒后,测定所有枝的基径和枝长,求二者的算术平均值即和。
(ii)以和为标准,选择标准枝,标准枝的个数根据调查精度确定,同时要求标准枝上的叶量是中等水平。
(iii)分别称其枝、叶鲜重,并取样品。
(iv)按下式计算全树的枝重和叶重。
(11-12)
式中:--全树的枝数;
---- --标准枝数;
-----标准枝的枝鲜重或叶鲜重;
b.分层标准枝法
在树冠上部与下部的枝粗长度、叶量变动较大时,可将树冠分为上、中、下三层,在每一层抽取标准枝,根据每层标准枝算出各层枝、叶的鲜重重量,然后将各层枝、叶重量相加,得到树木枝、叶鲜重。
由于将树冠分为上、中、下三层分别抽取标准枝,因此该方法能够较好地反映出树冠上、中、下枝和叶的重量,对树冠枝和叶的重量估计较平均标准枝法准确。
另外,在测算过程中,可以通过烘干的方法,测得枝、叶生物量的干重。
②全称重法
),
中根
大根
粗根
直径(cm)
<0.2
0.2-0.5
0.5-2.0
2.0-5.0
>5.0
c.根重量的测定
从每个区划中仔细地挖出根,清除泥土,按标准分级,小根及细根所带泥土较多,应放于土壤筛中筛去泥土,将清理后的根带回室内,用水冲洗阴干至初始状称鲜重,采样,烘干求得干重。
2林分生物量测定方法
2.1皆伐实测法
为较准确地测定林分生物量,或者为检验其他测定方法的精度,往往采用小面积皆伐实测法,即在林分内选择适当面积的林地,将该林地内所有乔、灌、草等皆伐,测定所有植物的生物量(Wi),它们生物量之和(∑Wi)即为皆伐林地生物量,并接下式计算全林分生长量(W):
(11-13)
式中:A——全林分面积
S——皆伐林地面积
该方法对林分中的灌木、草本等植物生物量的测定更为适合。
),
g)
(非线性模型)
相对生长模型是指用指数或对数关系反映林木维量之间按比例协调增长(Harmonious growth)的模型。
作为比例变化协调增长的这些指数或对数关系被称为相对生长。
(11-18)
式中:E为随机误差
(11-18)式两边取对数为
(11-19)
假设:和的生长率成比例,即其中b称为相对生长系数,两边积分结果为:(为积分常数)
则Y=aXb (11-20)
在(11-18)式中b为相对生长系数,当b>1时,与表示为正的相对生长关系,的生长快于
生长;当b<1时,则表示为负的相对生长关系,的生长慢于生长;当b=1时,为等速生长。
Kittredgt(1944)首次将相对生长模型引入到树木上,并成功地估计了叶的重量。
随后许多研究者纷纷应用该模型估计林木其它器官的重量,直到Ruard(1987)等人对该模型提出了不同见解。
他们认为林木各维量之间相对生长率随林木大小的变化有可能不是一个常数,提出和的生长率与大小呈线性关系,即
两边积分得
lnY+K1=blnX+CX+K2
即(11-21)
令时
则有Y=aXbeCX (11-22)
在林分生物量估测中,经常采用林木胸径(D)、树高(H)等测树因子建立林木生物量回归估。