初三数学(下)第一次月考

合集下载

九年级下学期数学第一次月考分析

九年级下学期数学第一次月考分析

九年级数学(下)第一次月考试卷九年级下学期数学第一次月考分析第二单元物质的变化3月20日我校举行了九年级第一次月考,从此次月考情况来看,数学成绩喜忧各半。

喜的是优秀率较自己前不久举行的单元考试稳中有升,达到预期的目标。

忧的是合格率却较之前次单元考试有较大的滑坡,与预期目标差距较大。

通过这次月考充分暴露出相当部分学生对数学这门课程的学习抓得不紧,甚至有放松要求的迹象,造成成绩大幅度的下降。

答:水分和氧气是使铁容易生锈的原因。

一、月考成绩相关数据25、意大利的科学家伽利略发明了望远镜,天文学家的“第三只眼”是天文望远镜,可以分为光学望远镜和射电望远镜两种。

全级参考总人数:59 人。

数学试卷总分:120 分。

其中 102 分及其以上视为优秀,72 分及其以上视为合格。

答:如水资源缺乏,全球气候变暖,生物品种咖快灭绝,地球臭氧层受到破坏,土地荒漠化等世界性的环境问题。

优秀人数:5 人,优秀率:8.47%。

此项数据与命题预期目标相吻合。

合格人数:28 人,合格率:47.46%。

此项数据较预期减少 23%,差距较大。

最高分数:104 分。

二、数学试卷难度分析12、淡水在自来水厂中除了沉淀和过滤之外,还要加入药物进行灭菌处理,这样才能符合我们使用的标准。

此次数学月考试卷总分共 120 分,其中填空和选择占到 54 分,计算(含简单的解答题)达到 39 分,综合题 27 分。

其中容易题比例达到 70%,稍难题比例在 15% 以上,较难题比例在 5% 左右,难题控制在 10% 以内。

整个试卷难度属于中性偏易。

7、将铁钉的一部分浸入硫酸铜溶液中,有什么现象?过一会儿,取出铁钉,我们又观察到了什么现象?(P36)三、学生作答情况分析通过仔细阅读学生作答,发现达到优秀率的学生对于填空、选择、计算等基础知识掌握很牢固,极少出现丢分的现象。

丢分多出现在最后两道综合题上,主要原因是因为平时对综合题的练习不够,思路无法展开,导致做不出或者是思路出现错误。

福建省厦门第一中学2022-2023学年九年级下学期第一次月考数学试题(3月)

福建省厦门第一中学2022-2023学年九年级下学期第一次月考数学试题(3月)

福建省厦门一中2022-2023学年(下)3月阶段性诊断练习初三年数学试卷命题:陈奕;审核:郑辉龙2023.3 (满分:150分,考试时间:120分钟)注意事项:1.答案一律写在答题卡上,否则不得分;2.可直接用2B 铅笔画图.一、选择题(本大题有8小题,每小题4分,共32分) 1.(−2)0=A .1B .-2C .0D .−122.如图1,由四个正方体组成的几何体的左视图是A .B .C .D .3.反比例函数y =4x 的图象经过以下各点中的A .(2,12)B .(3,34)C .(-2,-2)D .(4,-1)4.如图,将△ABC 折叠,使AC 边落在AB 边上,展开后得到折痕l ,则l 是△ABC 的A .中线B .高C .角平分线D .中位线5.当物体表面所受的压力F (N )一定时,物体表面所受的压强P (Pa )与受力面积S (m 2)的函数关系式为P =FS(S ≠0),这个函数的图象大致是A .B .C .D .6.如图,在直角△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,则sin A =A .BC ACB .ACABC .AD ACD .BD BCPSOPSO正面lCBA DCBA7.我国魏晋时期的数学家刘徽首创“割圆术”:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣”,即通过圆内接正多边形割圆,从正六边形开始,每次边数成倍增加,依次可得圆内接正十二边形,内接正二十四边形,…边数越多割得越细,正多边形的周长就越接近圆的周长.再根据“圆周率等于圆周长与该圆直径的比”来计算圆周率.设圆的半径为R ,圆内接正六边形的周长l 6=6R ,则π=l 62R=3,再利用圆的内接正十二边形来计算圆周率,则圆周率π约为 A .12sin15°B .12cos15°C .12sim30°D .12cos30°8.已知抛物线y =2x 2−bx 上有点(m ,n ),且m 是关于x 的方程4x −b =0的解,则下列说法正确的是A .对于任意实数x ,都有y ≤nB .对于任意实数x ,都有y ≥nC .小树于任意实数x ,都有y <nD .对于任意实数x ,都有y >n二、填空题(本大题有8小题,每小题4分,共32分) 9.已知锐角α满足cosα=√32,则α=_______°.10.因式分解:x 2+2x +1=_______.11.写一个常数k =_______,使反比例函数y =kx (k ≠0)图象满足:在同一象限内y 随x 的增大而增大. 12.某校为推荐一项作品参加“科技创新”比赛,对甲、乙、丙、丁四项候选作品进行量化评分,具体成绩(百分制)如表所示.如果按照创新性占60%,实用性占40%计算总成绩,并根据总成绩择优推荐,那么应推荐的作品是_______. 13.如图,某小区门口的栏杆短臂AO =1m ,长臂OB =12m .当短臂端点高度下降AC =0.5m ,则长臂端点高度上升BD 长等于_______m (栏杆的宽度忽略不计).14.如图,以O 为位似中心,将△AOB 放大得到△COD ,其中B (3,0),D (4,0),则△AOB与△COD 的相似比为_______.15.如图,以点O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,点P 为切点,AB =2√3,OP =1,则劣弧⌒AB 的长为_______.A 12A 11A 10A 9A 8A 7A 6A 5A 4A 3A 2M A 1O O FE D C B A 第14题DCB A Oy x第15题第13题16.如图,△OMN是边长为10的等边三角形,反比例函数y=kx(x>0)的图象与边MN、OM分别交于点A、B(点B不与点M重合).若AB⊥OM 于点B,则k的值为_______.三、解答题(共9题,满分86分)17.(本题8分)(1)计算:2sin45°+│−√2+2−1│;(2)解不等式组:{x+3>2①2x−13≤1②.18.(本题8分)如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE⊥AD于点E,CF⊥AD于点F.求证:AF=BE.19.(本题8分)学收为实现垃圾分类投放,准备在校园内摆放大、小两种垃圾桶.购买2个大垃圾桶和4个小垃圾桶共需600元;购买6个大垃圾桶和8个小垃圾桶共需1560元.求大、小两种垃圾桶的单价.20.(本题8分)如图,一次函数y=k+b(k≠0)与反比例面数y=mx(m≠0)的图象相交于A(-3,-2),B(n,6),直线AB与x轴、y轴分别交于C、D两点.(1)求一次函数与反比例函数的解析式;(2)直接写出关于x的不等式kx+b>mx的解集.21.(本题8分)如图,一艘海轮自西向东航行,在点B处时测得海岛A位于北偏东67°,航行12海里到达C点,又测得小岛A在北偏东45°方向上.已知位于海岛A的周围8海里内有暗礁,如果渔船不改变航线继续向东航行,那么它有没有触码的危险?请说明理由.(参考数据:sin67°≈1213,cos67°≈513,tm67°≈125)编号A1A2A3A4A5A6A7每日峰时段用电量占比80%20%50%10%20%50%60%第16题FEDCBA东北45°67°CBA22.(本题10分)已知△ABC 中,∠A =22.5°,∠B =45°.(1)求作:⊙O ,使得圆心O 落在AB 边上,且⊙O 经过A 、C 两点;(尺规作图,保留作图痕迹,不必写作法)(2)在(1)所作的图形中,若与AB 相交于D ,连接CD ,①求证:直线BC 是⊙O 的切线; ②求tan ∠BCD 的值.23.(本题10分)【阅读理解】某市电力公司对居民用电设定如下两种收费方式:方式一:“分档”计算电费(见表一),按电量先计算第一档,超过的部分再计算第二档,依次类推,最后求和即为总电费;方式二:“分档+分时”计算电费(见表一、表二),即总电费等于“分档电费、峰时段增加的电费、谷时段减少的电费的总和”.如:某用户该月用电总量500度,其中峰时段用电量300度,谷时段用电量200度,若该用户选择方式二缴费,则总电费为:[230×0.5+(420-230)×0.55+(500-420)×0.8+300×0.03+200×(-0.2)=252.5(元). 【问题解决】已知小明家4月份的月用电量相当于全年的平均月用电量,现从他家4月份的日用电量数据中随机抽取7天作为样本,制作成如图表:(1)若从上述样本中随机抽取一天,求所抽取的日用电量为15度以上的概率;(2)若每月按30天计,请通过样本数据计算月用电费,帮小明决定选择哪一种方式缴费合算?CBA 0A 7A 6A 5A 4A 3A 2A 1编号日用电量(度)12131444403814102030405024.(本题12分)定义:若三角形有两个内角的差为90°,则这样的三角形叫做“准直角三角形”.(1)若△ABC 是“准直角三角形”,∠C >90°,∠A =50°,则∠B =_______°; (2)如图1,△ABC 中,∠C =90°,AB =6,BC =2.若D 是AC 上的一点,CD =√22,请判断△ABD是否为准直角三角形,并说明理由;(3)如图2,在四边形ABCD 中,CD =CB ,∠ABD =∠BCD ,AB =5,BD =8,且△ABC 是“准直角三角形“,求△BCD 的面积.25.(本题14分)如图,在平面直角坐标系中,抛物线y =−x 2+bx +c 与x 轴交于A (-1,0),B (3,0)两点,与y 轴交于点C . (1)求抛物线的解析式;(2)点D 为第一象限内抛物线上的一动点,作DE ⊥x 轴于点E ,交BC 于点F ,过点F 作BC 的垂线与抛物线的对称轴和y 轴分别交于点G 、H ,设点D 的横坐标为m . ①求DF +HF 的最大值;②连接EG ,若∠GEH =45°,求m 的值.图1D CBA图2DCB AABCD备用图备用图。

人教版数学九年级(下)第一次月考数学试卷(含答案)

人教版数学九年级(下)第一次月考数学试卷(含答案)

九年级(下)第一次月考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.|﹣3|﹣1的值等于()A.4B.﹣4C.±4D.22.下列计算正确的是()A.a2+a2=2a4B.a2•a3=a6C.(a+1)2=a2+1D.(﹣a2)2=a43.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为()A.6.75×103吨B.6.75×104吨C.0.675×105吨D.67.5×103吨4.下列立体图形中,俯视图是正方形的是()A.B.C.D.5.直线a、b、c、d的位置如图所示,如果∠1=58°,∠2=58°,∠3=70°,那么∠4等于()A.58°B.70°C.110°D.116°6.下列命题中,假命题是()A.一组对边相等的四边形是平行四边形B.三个角是直角的四边形是矩形C.四边相等的四边形是菱形D.有一个角是直角的菱形是正方形7.如图,已知AB、AD是⊙O的弦,∠B=20°,点C在弦AB上,连接CO并延长CO交于⊙O于点D,∠D=15°,则∠BAD的度数是()A.30°B.45°C.20°D.35°8.若实数x,y满足条件2x2﹣6x+y2=0,则x2+y2+2x的最大值是()A.14B.15C.16D.不能确定二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.计算:═.10.化简:=.11.分解因式:3x2﹣6x+3=.12.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.6,那么摸出黑球的概率是.13.若关于x的分式方程﹣=1解为非负数,则a的范围.14.已知圆锥的底面半径为1cm,母线长为3cm,则其侧面积为cm2.(结果保留π)15.直角坐标平面上将二次函数y=﹣2(x﹣1)2﹣2的图象向左平移1个单位,再向上平移1个单位,则其顶点为.16.在Rt△ABC中,AD是斜边BC边上的中线,G是△ABC重心,如果BC=6,那么线段AG的长为.17.在关于x,y的二元一次方程组中,若a(2x+3y)=2,则a=.18.如图,矩形ABCD中,AB=2,BC=4,P,Q分别是BC,AB上的两个动点,AE=1,△AEQ沿EQ 翻折形成△FEQ,连接PF,PD,则PF+PD的最小值是.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤)19.(8分)计算(1)|﹣1|﹣﹣(1﹣)0+4sin30°(2)解不等式组:.20.(8分)先化简:(﹣a+1)÷,并从0,﹣1,2中选一个合适的数作为a的值代入求值.21.(8分)初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制了如下两幅不完整的统计图,请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)请将条形图补充完整;(3)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?22.(8分)一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、﹣2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点A的纵坐标.(1)用画树状图或列表等方法列出所有可能出现的结果;(2)求点A落在第四象限的概率.23.(10分)某文化用品商店用1000元购进一批“晨光”套尺,很快销售一空;商店又用1500元购进第二批该款套尺,购进时单价是第一批的倍,所购数量比第一批多100套.(1)求第一批套尺购进时单价是多少?(2)若商店以每套4元的价格将这两批套尺全部售出,可以盈利多少元?24.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=45°,AC=4,求图中阴影部分的面积.25.(10分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.(1)求证:四边形ACDF是平行四边形;(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.26.(10分)一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?27.(12分)平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为梦之点,例如,点(1,1),(﹣2,﹣2),(,)…,都是梦之点,显然梦之点有无数个.(1)若点P(3,b)是反比例函数y=(n为常数,n≠0)的图象上的梦之点,则这个反比例函数解析式为;(2)⊙O的半径是2,①⊙O上的所有梦之点的坐标为;②已知点M(m,3),点Q是(1)中反比例函数y=图象上异于点P的梦之点,过点Q的直线q与y轴交于点A,tan∠OAQ=1.若在⊙O上存在一点N,使得直线MN∥q,求出m的取值范围.28.(12分)如图,矩形ABCD,AB=2,BC=10,点E为AD上一点,且AE=AB,点F从点E出发,向终点D运动,速度为1cm/s,以BF为斜边在BF上方作等腰直角△BFG,以BG,BF为邻边作▱BFHG,连接AG.设点F的运动时间为t秒.(1)试说明:△ABG∽△EBF;(2)当点H落在直线CD上时,求t的值;(3)点F从E运动到D的过程中,直接写出HC的最小值.九年级(下)第一次月考数学试卷参考答案一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.D;2.D;3.B;4.B;5.C;6.A;7.D;8.B;二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.4;10.﹣1;11.3(x﹣1)2;12.0.2;13.a≤﹣4且a≠﹣8;14.3π;15.(0,﹣1);16.2;17.2或﹣1;18.4;三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤)21.560;26.26;27.y=;(,)、(﹣,﹣);。

安徽省蚌埠市怀远实验教育集团2022-2023学年九年级下学期数学第一次月考试题(含答案解析)

安徽省蚌埠市怀远实验教育集团2022-2023学年九年级下学期数学第一次月考试题(含答案解析)

安徽省蚌埠市怀远实验教育集团2022-2023学年九年级下学期数学第一次月考试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形是中心对称图形的是()A .B .C .D .2.已知a b =25,则a b b +的值为().A .25B .35C .75D .233.函数y =1k x+的图象中,在每个象限内y 随x 增大而增大,则k 可能为()A .﹣2B .﹣1C .0D .14.已知一个扇形的半径为6,弧长为2π,则这个扇形的圆心角为()A .60°B .30°C .90°D .120°5.如图,二次函数2(2)y a x k =++的图象与x 轴交于A ,(), 10B -两点,则下列说法正确的是()A .a<0B .点A 的坐标为()4,0-C .当0x <时,y 随x 的增大而减小D .图象的对称轴为直线2x =-6.如图,AB 是O 的直径,OD 垂直于弦AC 于点D ,DO 的延长线交O 于点E .若AC =,4DE =,则BC 的长是()A .1B C .2D .47.如图,四边形ABCD 内接于O ,连接BD .若 AC BC=,50BDC ∠=︒,则ADC ∠的度数是()A .125°B .130°C .135°D .140°8.如图,在Rt ABC 中,90C ∠=︒,BC =,点D 是AC 上一点,连接BD .若1tan2A ∠=,1tan 3ABD ∠=,则CD 的长为()A .B .3CD .29.如图,在矩形ABCD 中,6AB =,4=AD ,点E 、F 分别为BC 、CD 的中点,BF 、DE 相交于点G ,过点E 作EH CD ∥,交BF 于点H ,则线段GH 的长度是()A .56B .1C .54D .5310.如图,在矩形ABCD 中,已知AB =3,BC =4,点P 是BC 边上一动点(点P 不与B ,C 重合),连接AP ,作点B 关于直线AP 的对称点M ,则线段MC 的最小值为()A .2B .52C .3D二、填空题11.已知二次函数()211my m x -=+的图象开口向下,则m 的值是______.12.如图,圆O 的半径为1,ABC 内接于圆O .若60A ∠=︒,75B ∠=︒,则AB =______.13.如图,A ,B 是双曲线y =kx(x >0)上的两点,连接OA ,O B .过点A 作AC ⊥x 轴于点C ,交OB 于点D .若D 为AC 的中点,△AOD 的面积为3,点B 的坐标为(m ,2),则m 的值为_____.14.在平面直角坐标系xOy 中,已知点A (-1,1)在抛物线y =x 2+2bx +c 上(1)c =______(用含b 的式子表示);(2)若将该抛物线向右平移t 个单位(t ≥32),平移后的抛物线仍经过A (-1,1),则平移后抛物线的顶点纵坐标的最大值为_______.三、解答题15()113tan 3020222π-︒⎛⎫+-- ⎪⎝⎭.16.一个二次函数,当=1x -时,函数的最小值为2,它的图象经过点()16,,求这个二次函数的解析式.17.已知关于x 的一元二次方程20x x m +-=.(1)若方程有两个不相等的实数根,求m 的取值范围;(2)二次函数2y x x m =+-的部分图象如图所示,求一元二次方程20x x m +-=的解.18.如图,在平面直角坐标系中,已知ABC 的三个顶点坐标分别是(2,1)A -,(1,2)B -,(3,3)C -.(1)将ABC 绕点O 顺时针旋转90︒得到111A B C △,请画出111A B C △,并求出点C 经过的路径长;(2)以A 为位似中心,将ABC 放大2倍得到222A B C △,请直接写出2B 的坐标.19.如图,三角形花园ABC 紧邻湖泊,四边形ABDE 是沿湖泊修建的人行步道.经测量,点C 在点A 的正东方向,200AC =米.点E 在点A 的正北方向.点B ,D 在点C 的正北方向,100BD =米.点B 在点A 的北偏东30︒,点D 在点E 的北偏东45︒.(1)求步道DE 的长度(精确到个位);(2)点D 处有直饮水,小红从A 出发沿人行步道去取水,可以经过点B 到达点D ,也可以经过点E 到达点D .请计算说明他走哪一条路较近? 1.4≈ 1.7≈)20.如图,四边形ABCD 内接于圆O ,AB 是直径,点C 是 BD的中点,延长AD 交BC 的延长线于点E .(1)求证:CE CD =;(2)若3AB =,BC =,求AD 的长.21.如图,一次函数()0y kx b k =+≠的图象与x 轴、y 轴分别相交于C 、B 两点,与反比例函数()0,0my m x x=≠>的图象相交于点A ,1OB =,tan 2OBC ∠=,:1:2BC CA =.(1)求反比例函数的表达式;(2)点D 是线段AB 上任意一点,过点D 作y 轴平行线,交反比例函数的图象于点E ,连接BE .当BDE 面积最大时,求点D 的坐标.22.如图, ABC 是⊙O 的内接三角形,过点C 作⊙O 的切线交BA 的延长线于点F ,AE 是⊙O 的直径,连接EC(1)求证:ACF B ∠=∠;(2)若AB BC =,AD BC ⊥于点D ,4FC =,2FA =,求AD AE 的值23.为增强民众生活幸福感,市政府大力推进老旧小区改造工程.和谐小区新建一小型活动广场,计划在360m 2的绿化带上种植甲乙两种花卉.市场调查发现:甲种花卉种植费用y (元/m 2)与种植面积x (m 2)之间的函数关系如图所示,乙种花卉种植费用为15元/m 2.(1)当x ≤100时,求y 与x 的函数关系式,并写出x 的取值范围;(2)当甲种花卉种植面积不少于30m 2,且乙种花卉种植面积不低于甲种花卉种植面积的3倍时.①如何分配甲乙两种花卉的种植面积才能使种植的总费用w (元)最少?最少是多少元?②受投入资金的限制,种植总费用不超过6000元,请直接写出甲种花卉种植面积x 的取值范围.参考答案:1.B【分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合,即可解题.【详解】解:选项A 、C 、D 都不能找到这样的一个点,使图形绕某一点旋转180度后与原来的图形重合,所以不是中心对称图形.选项B 能找到这样的一个点,使图形绕某一点旋转180度后与原来的图形重合,所以是中心对称图形.故选:B .【点睛】此题考查的是中心对称图形的识别,掌握中心对称图形的定义是解决此题的关键.2.C【分析】根据比例的性质计算即可;【详解】∵a b =25,∴52755++==a b b ;故答案选C .【点睛】本题主要考查了比例的性质应用,准确计算是解题的关键.3.A【分析】根据反比例函数的性质列出关于k 的不等式,求出k 的取值范围即可.【详解】解:∵反比例函数y =1k x+的图象中,在每个象限内y 随x 增大而增大,∴k +1<0,解得k <﹣1.观察选项,只有选项A 符合题意.故选:A .【点睛】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.4.A【分析】根据弧长公式即可求出扇形的圆心角度数.【详解】解:∵180n r l π=∴1801802606l n r πππ⋅===°故选:A【点睛】本题考查了弧长公式,利用弧长公式求该弧所对的圆心角,必须熟记公式,并能熟练运用.5.D【分析】根据二次函数的图象与性质即可依次判断.【详解】由图可得开口向上,故a >0,A 错误;∵解析式为2(2)y a x k =++,故对称轴为直线x =-2,D 正确∵(), 10B -∴A 点坐标为(-3,0),故B 错误;由图可知当<2x -时,y 随x 的增大而减小,故C 错误;故选D .【点睛】此题主要考查二次函数的图象与性质,解题的关键是熟知二次函数顶点式的特点.6.C【分析】由垂径定理可知,点D 是AC 的中点,则OD 是ABC 的中位线,所以12OD BC =,设OD x =,则2BC x =,则4OE x =-,82AB x =-,在Rt ABC △中,由勾股定理可得222AB AC BC =+,代入求出x 的值即可得出结论.【详解】解:AB 是O 的直径,∴90C ∠=︒,∵OD AC ⊥,∴点D 是AC 的中点,∴OD 是ABC 的中位线,∴∥OD BC ,且12OD BC =,设OD x =,则2BC x =,∵4DE =,∴4OE DE OD x =-=-,∴282AB OE x ==-,在Rt ABC △中,由勾股定理可得,222AB AC BC =+,∴()(()222822x x -=+,解得1x =.∴22BC x ==.故选:C .【点睛】本题主要考查中位线的性质与判定,垂径定理,勾股定理等知识,设出参数,根据勾股定理得出方程是解题关键.7.B【分析】连接OA ,OB ,OC ,根据圆周角定理得出∠BOC=100°,再根据 AC BC=得到∠AOC ,从而得到∠ABC ,最后利用圆内接四边形的性质得到结果.【详解】解:连接OA ,OB ,OC ,∵50BDC ∠=︒,∴∠BOC=2∠BDC=100°,∵ AC BC=,∴∠BOC=∠AOC=100°,∴∠ABC=12∠AOC=50°,∴∠ADC=180°-∠ABC=130°.故选B.【点睛】本题考查了圆周角定理,弧、弦、圆心角的关系,圆内接四边形的性质,关键在于画出半径,构造圆心角.8.C【分析】先根据锐角三角函数值求出AC =再由勾股定理求出5,AB =过点D 作DE AB ⊥于点E ,依据三角函数值可得11,,23DE AE DE BE ==从而得32BE AE =,再由5AE BE +=得AE =2,DE =1,由勾股定理得ADCD .【详解】解:在Rt ABC 中,90C ∠=︒,BC =,∴1tan 2BC A AC ∠==∴2AC BC ==由勾股定理得,5AB =过点D 作DE AB ⊥于点E ,如图,∵1tan 2A ∠=,1tan 3ABD ∠=,∴11,,23DE DE AE BE ==∴11,,23DE AE DE BE ==∴1123AE BE =∴32BE AE =∵5,AE BE +=∴352AE AE +=∴2,AE =∴1DE =,在R t A D E ∆中,222AD AE DE =+∴AD ==∵AD CD AC +==∴CD AC AD =-=故选:C【点睛】本题主要考查了勾股定理,由锐角正切值求边长,正确作辅助线求出DE 的长是解答本题的关键.9.A【分析】根据矩形的性质得出6490DC AB BC AD C ====∠=︒,,,求出132DF CF DC ===,122CE BE BC ===,求出FH BH =,根据勾股定理求出BF ,求出152FH BH ==,根据三角形的中位线求出EH ,根据相似三角形的判定得出EHG DFG ,根据相似三角形的性质得出EH GH DF FG =,再求出答案即可.【详解】解析: 四边形ABCD 是矩形,6AB =,4=AD ,6DC AB ∴==,4BC AD ==,90C ∠=︒,点E 、F 分别为BC 、CD 的中点,132DF CF DC ∴===,122CE BE BC ===,EH CD ∥ ,FH BH ∴=,BE CE = ,1322EH CF ∴==.由勾股定理得:5BF ==,1522BH FH BF ∴===,EH CD ∥ ,EHG DFG ∴ △△,EH GH DF FG∴=,32532GH GH ∴=-,解得:56GH =,故选:A .【点睛】本题考查了矩形的性质和相似三角形的性质和判定,能熟记矩形的性质是解此题的关键.10.A【分析】根据对称性得到动点M 的轨迹是在以A 圆心,3为半径的圆上,根据点圆模型,在矩形中利用勾股定理求出线段长即可.【详解】解:连接AM ,如图所示:∵点B 和M 关于AP 对称,∴AB =AM =3,∴M 在以A 圆心,3为半径的圆上,∴当A ,M ,C 三点共线时,CM 最短,∵在矩形ABCD 中,AC 5=,AM =AB =3,∴CM =5﹣3=2,故选:A .【点睛】本题考查动点最值问题,解题过程涉及到对称性质、圆的性质、矩形性质、勾股定理等知识点,解决问题的关键是准确根据题意得出动点轨迹.11.【分析】根据二次函数的定义可得212m -=及开口向下时10+<m 即可解答.【详解】解:根据题意得:21012m m +<⎧⎨-=⎩解得:m =故答案为【点睛】本题考查的是二次函数的定义及性质,易错点是只考虑其次数是2,没有考虑开口向下时的性质.12【分析】先根据圆的半径相等及圆周角定理得出∠ABO =45°,再根据垂径定理构造直角三角形,利用锐角三角函数解直角三角形即可【详解】解:连接OB 、OC 、作OD ⊥AB∵60A ∠=︒∴∠BOC =2∠A =120°∵OB =OC∴∠OBC =30°又75B ∠=︒∴∠ABO =45°在Rt △OBD 中,OB =1∴BD ==2∵OD ⊥AB∴BD =AD =2∴AB【点睛】本题考查垂径定理、圆周角定理,正确使用圆的性质及定理是解题关键13.6【分析】应用k 的几何意义及中线的性质求解.【详解】解: D 为AC 的中点,AOD ∆的面积为3,∴AOC ∆的面积为6,所以122k m ==,解得:m =6.故答案为:6.【点睛】本题考查了反比例函数中k 的几何意义,关键是利用AOB ∆的面积转化为三角形AOC 的面积.14.2b 716##0.4375【分析】(1)将点代入函数解析式求解即可;(2)根据(1)所求,将点A 和t 代入表达式得到b 、t 的关系,根据t 的取值范围,求出b 的范围,进而即可求解.【详解】解:(1)将点A (-1,1)代入y =x 2+2bx +c 得()()21121b c=-+⋅-+化简得,2c b =,故答案是:2b ;(2)由(1)222y x bx b=++平移后得,()()222y x t b x t b=-+-+将点A (-1,1)代入()()222y x t b x t b=-+-+得,()()211212t b t b=--+--+化简得,()022t t b =+-记得12220t b t =-=,(舍去)将22t b =-代入()()222y x t b x t b=-+-+得()()2222222y x b b x b b=+-++-+化简得,()24242y x b x b =+-+-∵22t b =-,t ≥32∴74b ≥∴平移后抛物线的项点纵坐标为:()()()224142421141b b b ⨯⨯---=--+⨯当74b =时,平移后抛物线的项点纵坐标有最大值为:716,故答案是:716.【点睛】本题主要考查了二次函数的应用,掌握二次函数的相关知识结合不等式并灵活应用是解题的关键.151-【分析】原式利用二次根式性质,特殊角的三角函数值,零指数幂、负整数指数幂法则计算即可求出值.【详解】解:原式3123=⨯-121=-=.【点睛】本题考查了实数的运算,零指数幂、负整数指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.16.()212y x =++【分析】设抛物线顶点式,然后将()16,代入解析式求解.【详解】解:根据题意设()212y a x =++,把()16,代入()212y a x =++得642a =+,解得1a =,∴这个二次函数的解析式为()212y x =++.【点睛】本题考查求二次函数解析式,解题的关键是熟练掌握待定系数法求函数解析式.17.(1)14m >-;(2)11x =,22x =-【分析】(1)根据△>0时,一元二次方程有两个不相等的实数根求解m 的取值范围即可;(2)根据二次函数图象与x 轴的交点的横坐标就是当y =0时对应一元二次函数的解,故将x =1代入方程中求出m 值,再代入一元二次方程中解方程即可求解.【详解】解:(1)由题知140m ∆=+>,∴14m >-.(2)由图知20x x m +-=的一个根为1,∴2110m +-=,∴2m =,即一元二次方程为220x x +-=,解得11x =,22x =-,∴一元二次方程20x x m +-=的解为11x =,22x =-.【点睛】本题考查一元二次方程根的判别式、解一元一次不等式、解一元一次方程、解一元二次方程,会解一元二次方程,熟练掌握一元二次方程根的判别式与根的关系是解答的关键.18.(1)作图见解析;2;(2)(4,1).【分析】(1)利用网格特点和旋转的性质画出点A 、B 、C 的对应点A 1、B 1、C 1的位置,即可得到111A B C △,然后求出OC ,再利用弧长公式即可求出点C 经过的路径长;(2)直接利用位似图形的性质作出222A B C △,即可得出2B 的坐标.【详解】解:(1)111A B C △如图所示:由勾股定理得:OC ==则点C 经过的路径长为:901802π⋅⋅=;(2)222A B C △如图所示,则2B 的坐标为:(4,1).【点睛】此题主要考查了旋转变换、位似变换、勾股定理以及弧长公式的应用,正确得出对应点位置是解题关键.19.(1)283DE =米;(2)经过点B 到达点D 较近.【分析】(1)过D 作DF AE ⊥于F ,由已知可得四边形ACDF 是矩形,则200DF AC ==米,根据点D 在点E 的北偏东45︒,即得DE 的长;(2)由30ABC ∠=︒,即得2400AB AC ==米,BC 的长,再分别求得AB BD +、AE DE +的长,即可得答案.【详解】(1)解:过D 作DF AE ⊥于F ,如图:由已知可得四边形ACDF 是矩形,∴200DF AC ==米,∵点D 在点E 的北偏东45︒,即45DEF ︒∠=,∴DEF 是等腰直角三角形,∴283DE ==≈(米);(2)解:由(1)知DEF 是等腰直角三角形,283DE =米,∴200EF DF ==米,∵点B 在点A 的北偏东30︒,即30EAB ∠=︒,∴30ABC ∠=︒,∵200AC =米,∴2400AB AC ==米,BC ==,∵100BD =米,∴经过点B 到达点D 路程为400100500AB BD +=+=(米),100)CD BC BD =+=(米),∴100)AF CD ==+(米),∴100)200100)AE AF EF =-=+-=-(米),∴经过点E 到达点D 路程为100529AE DE +=+≈(米),∵529500>,∴经过点B 到达点D 较近.【点睛】本题考查解直角三角形-方向角问题,解题的关键是掌握含30︒、45︒角的直角三角形三边的关系.20.(1)见解析(2)1【分析】(1)连接AC ,根据圆周角推论得90ACB ACE ∠=∠=︒,根据点C 是 BD的中点得CAE CAB ∠=∠,CD CB =,用ASA 证明ACE ACB ≌,即可得;(2)根据题意和全等三角形的性质得3AE AB ==,根据四边形ABCD 内接于圆O 和角之间的关系得CDE ABE ∠=∠,即可得ΔΔEDC EBA ∽,根据相似三角形的性质得DE CD BE AB=,即可得【详解】(1)证明:如图所示,连接AC,AB 为直径,90ACB ACE ∴∠=∠=︒,又 点C 是 BD的中点CAE CAB ∴∠=∠,CD CB =,在ACE △和ACB △中,ACE ACB AB AC CAE CAB ∠=∠⎧⎪=⎨⎪∠=∠⎩()ΔΔACE ACB ASA ∴≅,CE CB ∴=,CE CD ∴=;(2)解:ΔΔACE ACB ≅ ,3AB =,3AE AB ∴==,又 四边形ABCD 内接于圆O ,180ADC ABC ∴∠+∠=︒,又180ADC CDE ∠+∠=︒ ,CDE ABE ∴∠=∠,又E E ∠=∠ ,ΔΔEDC EBA ∴∽,∴DE CD BE AB=,=解得:2DE =,1AD AE DE ∴=-=.【点睛】本题考查相似三角形的判定和性质,全等三角形的判定和性质,圆周角定理,理解相关性质定理,正确添加辅助线是解题关键.21.(1)()120y x x=>(2)11,2D ⎛⎫- ⎪⎝⎭【分析】(1)根据正切函数的定义可得出OC 长,过点A 作AF x ⊥轴于点F ,则ACF BCO V V ∽,由相似比可得出CF 和AF 的长,进而可得出点A 的坐标,代入反比例函数可得出m 的值,进而可得结论;(2)由(1)可得直线AB 的解析式.设点D 的横坐标为t ,由此可表达点D ,E 的坐标,根据三角形的面积公式可表达BDE ∆的面积,根据二次函数的性质可得结论.【详解】(1)解:如图,过点A 作AF x ⊥轴于点F ,AF y ∴∥轴,ACF BCO ∴V V ∽,:::1:2BC AC OB AF OC CF ∴===.1OB = ,tan 2OBC ∠=,2OC ∴=,2AF ∴=,4CF =,6OF OC CF ∴=+=,(6,2)A ∴.点A 在反比例函数(0,0)m y m x x=≠>的图象上,2612m ∴=⨯=.∴反比例函数的表达式为:12(0)y x x =>.(2)由题意可知,(0,1)B -,∴直线AB 的解析式为:112y x =-.设点D 的横坐标为t ,则1(,1)2D t t -,12(,)E t t .12112ED t t ∴=-+.BDE ∴ 的面积为:1121(0)(1)22t t t --+211642t t =-++2125(1)44t =--+.104-< ,1t ∴=时,BDE 的面积的最大值为254,此时1(1,)2D -.【点睛】本题主要考查反比例函数与一次函数的交点,待定系数法求反比例函数解析式,三角形的面积,二次函数的性质,得出BDE 的面积与t 函数关系式是解题的关键.22.(1)证明见详解;(2)18.【分析】(1)连接OC ,根据FC 是⊙O 的切线,AE 是⊙O 的直径,可得ACF ECO Ð=Ð,利用OE OC =,得到OEC ECO Ð=Ð,根据圆周角定理可得OEC B Ð=Ð,则可证得ACF B ∠=∠;(2)由(1)可知ACF B ∠=∠,易得AFC CFB V :V ,则有28FC FB FA ==,则可得6AB BC ==,并可求得3FA BC CA FC ==g ,连接BE ,易证ACD AEB V :V ,则有AD AC AB AE =,可得18AD AE AB AC ==g g .【详解】解:(1)连接OC∵FC 是⊙O 的切线,AE 是⊙O 的直径,∴90OCF ACE Ð=Ð=o ,∴90ACF ACO ECO ACO Ð+Ð=Ð+Ð=o∴ACF ECOÐ=Ð又∵OE OC=∴OEC ECOÐ=Ð根据圆周角定理可得:OEC BÐ=Ð∴B ECO Ð=Ð,∴ACF B ∠=∠;(2)由(1)可知ACF B ∠=∠,∵AFC CFB∠=∠∴AFC CFBV :V ∴FC FA FB FC=∴2FC FB FA =,∵4FC =,2FA =,∴22482FC FB FA ===∴826AB FB AF =-=-=∴6AB BC ==又∵AFC CFB V :V 中,CA FA BC FC =∴2634FA BC CA FC ´===g ,如图示,连接BE∵ACD AEB ∠=∠,90ADC ABE Ð=Ð=o∴ACD AEBV :V ∴AD AC AB AE=∴6318AD AE AB AC ==´=g g .【点睛】本题考查了圆的性质,等腰三角形的判定与性质,圆周角定理,切线的性质,三角形相似的判定与性质等知识点,熟悉相关性质是解题的关键.23.(1)()30(040)140401004y x y x x =<≤⎧⎪⎨=-+≤⎪⎩<;(2)①甲种花卉种植90m 2,乙种花卉种植270m 2时,种植的总费用w 最少,最少为5625元;②3040x ≤≤或60360x ≤≤.【分析】(1)根据函数图像分两种情况,40x ≤时y 为常数,0x 40≤≤10时y 为一次函数,设出函数解析式,将两端点值代入求出解析式,将两种情况汇总即可;(2)①设甲种花卉种植面积为m ,则乙种花卉种植面积为360m -,根据乙的面积不低于甲的3倍可求出90m 30≤≤,利用总费用等于两种花卉费用之和,将m 分不同范围进行讨论列出总费用代数式,根据m 的范围解出最小值进行比较即可;②将x 按图像分3种范围分别计算总费用的取值范围即可.【详解】(1)由图像可知,当甲种花卉种植面积40x ≤m 2时,费用y 保持不变,为30(元/m 2),所以此区间的函数关系式为:30(040)y x ≤=<,当甲种花卉种植面积0x 40≤≤10m 2时,函数图像为直线,设函数关系式为:(0)y kx b x =+40≤≤10,∵当x =40时,y =30,当x =100时,y =15,代入函数关系式得:304015100k b k b=+⎧⎨=+⎩,解得:1,404k b =-=,∴140(0)4y x x =-+40≤≤10∴当100x ≤时,y 与x 的函数关系式应为:()30(040)140401004y x y x x =<≤⎧⎪⎨=-+≤⎪⎩<;(2)①设甲种花卉种植面积为30m m ≥(),则乙种花卉种植面积为360m -,∵乙种花卉种植面积不低于甲种花卉种植面积的3倍,∴3603m m -≥,解得:90m ≤,∴m 的范围为:90m 30≤≤当3040m ≤≤时,3015(360)155400w m m m =+-=+,此时当m 最小时,w 最小,即当m =30时,w 有最小值153054005850⨯+=(元),当400m <≤9时,211(40)15(360)(50)602544w m m m m =-++-=--+,此时当m =90时,离对称轴m =50最远,w 最小,即当m =90时,w 有最小值21(9050)602556254--+=(元)∵5625<5850,∴当m =90时种植的总费用w 最少,为5625元,此时乙种花卉种植面积为360m -=270,故甲种花卉种植90m 2,乙种花卉种植270m 2时,种植的总费用w 最少,最少为5625元.②由以上解析可知:(1)当40x ≤时,总费用=155400154054006000x +⨯+=≤(元),(2)当40100x <≤时,总费用=21(50)60254x --+,令21(50)602560004x --+≤,解得:40x ≤或60x ≥,又∵40100x <≤,∴60100x ≤≤(3)当100360x <≤时,总费用=360155400⨯=(元),综上,在3040x ≤≤、60100x ≤≤和100360x <≤时种植总费用不会超过6000元,所以甲种花卉种植面积x 的取值范围为:3040x ≤≤或60360x ≤≤.【点睛】本题考查一次函数的实际应用,解题关键是根据函数图像获取自变量的取值范围,仔细分情况讨论,掌握二次函数在自变量取值范围内求最小值的方法.。

九年级下册数学 第一次月考数学试卷含答案解析

九年级下册数学 第一次月考数学试卷含答案解析

九年级(下)第一次月考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣22.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米4.分式有意义,则x的取值范围是()A.x>1 B.x≠1 C.x<1 D.一切实数5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和108.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:110.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]表示实数a的整数部分,如[2.35]=2;[π]=3,按此规定[2020﹣]=.12.分解因式:4a2﹣16b2=.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是(填序号).三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.16.解不等式:1﹣>.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC 于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.18.如图,马路边安装的路灯由支柱上端的钢管ABCD支撑,AB=25cm,CG⊥AF,FD⊥AF,点G、点F分别是垂足,BG=40cm,GF=7cm,∠ABC=120°,∠BCD=160°,请计算钢管ABCD的长度.(钢管的直径忽略不计,结果精确到1cm.参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图中信息解答下列问题.(1)本次调查的学生人数为人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是(只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?2015-2016学年安徽省池州市九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣2【考点】有理数大小比较.【分析】根据有理数比较大小的法则进行比较即可.【解答】解:∵|﹣3|=3,|﹣2|=2,3>2,∴﹣3<﹣2,∴﹣3<﹣2<0<2,∴最小的数是﹣3.故选B.【点评】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.2.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘除法法则,合并同类项的定义,进行逐项分析解答,用排除法找到正确的答案.【解答】解:A、原式=a6﹣2=a4,故本选项错误,B、原式=(5﹣3)a2=2a2,故本选项错误,C、原式=a2a3=a5,故本选项正确,D、原式中的两项不是同类项,不能进行合并,故本选项错误,故选C.【点评】本题主要考查同底数幂的乘除法法则,合并同类项的定义,关键在于根据相关的法则进行逐项分析解答.3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:20微米=20÷1 000 000米=0.00002米=2×10﹣5米,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.分式有意义,则x的取值范围是()A.x>1 B.x≠1 C.x<1 D.一切实数【考点】分式有意义的条件.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:由分式有意义,得x﹣1≠0.解得x≠1,故选:B.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义⇔分母为零;分式有意义⇔分母不为零;分式值为零⇔分子为零且分母不为零.5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c【考点】平行线的判定与性质.【分析】直接利用平行线的判定方法分别进行判断得出答案.【解答】解:A、若∠3=∠2,则d∥e,故此选项错误,符合题意;B、若∠3+∠5=180°,则a∥c,正确,不合题意;C、若∠1=∠2,则a∥c,正确,不合题意;D、若a∥b,b∥c,则a∥c,正确,不合题意;故选:A.【点评】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,=250;当t=时,乙到达B城,y甲综上可知当t的值为或或或t=时,两车相距50千米,∴④不正确;综上可知正确的有①②共两个,故选B.【点评】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和10【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:6、7、8、9、10、10、12,最中间的数是9,则这组数据的中位数是9;10出现了2次,出现的次数最多,则众数是10;故选C.【点评】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数8.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】由于a≠0,那么a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限,利用这些结论即可求解.【解答】解:∵a≠0,∴a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限.A、图中直线经过直线经过第一、二、四象限,双曲线经过第二、四象限,故A选项错误;B、图中直线经过第第一、二、三象限,双曲线经过第二、四象限,故B选项正确;C、图中直线经过第二、三、四象限,故C选项错误;D、图中直线经过第一、二、三象限,双曲线经过第一、三象限,故D选项错误.故选:B.【点评】此题考查一次函数,反比例函数中系数及常数项与图象位置之间关系.直线y=kx+b、双曲线y=,当k>0时经过第一、三象限,当k<0时经过第二、四象限.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1【考点】相似三角形的判定与性质;平行四边形的性质.【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【解答】解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.故选:B.【点评】本题考查了平行四边形的性质以及相似三角形的判定和性质,注:相似三角形的面积之比等于相似比的平方.10.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.【考点】解直角三角形;等腰直角三角形.【分析】利用等腰直角三角形的判定与性质推知BC=AC,DE=EC=DC,然后通过解直角△DBE来求tan∠DBC的值.【解答】解:∵在△ABC中,∠BAC=90°,AB=AC,∴∠ABC=∠C=45°,BC=AC.又∵点D为边AC的中点,∴AD=DC=AC.∵DE⊥BC于点E,∴∠CDE=∠C=45°,∴DE=EC=DC=AC.∴tan∠DBC===.故选:A.【点评】本题考查了解直角三角形的应用、等腰直角三角形的性质.通过解直角三角形,可求出相关的边长或角的度数或三角函数值.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]表示实数a的整数部分,如[2.35]=2;[π]=3,按此规定[2020﹣]=2015.【考点】估算无理数的大小.【分析】先求出的范围,再求出2020﹣的范围,即可得出答案.【解答】解:∵4<<5,∴﹣4>﹣5,∴2016>2020﹣>2015,∴[2020﹣]=2015,故答案为:2015.【点评】本题考查了估算无理数的大小的应用,解此题的关键是求出2016>2020﹣>2015,难度不是很大.12.分解因式:4a2﹣16b2=4(a+2b)(a﹣2b).【考点】提公因式法与公式法的综合运用.【分析】根据提取公因式,再运用公式法,可分解因式.【解答】解:原式=4(a2﹣4b2)=4(a+2b)(a﹣2b),故答案为:4(a+2b)(a﹣2b).【点评】本题考查了因式分解,先提取公因式,再运用公式,分解到不能再分解为止.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:7250(1+8.5%)(1﹣x%)2=7200.【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设2014、2015两年平均每年降价的百分率是x,那么2014年的房价为7250(1+8.5%)(1﹣x%),2015年的房价为7250(1+8.5%)(1﹣x%)2,然后根据2015年的7200元/m2即可列出方程解决问题.【解答】解:设设两年平均每年降价的百分率为x%,根据题意得:7250(1+8.5%)(1﹣x%)2=7200;故答案为:7250(1+8.5%)(1﹣x%)2=7200.【点评】本题是一道一元二次方程的运用题,是一道降低率问题,与实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是①②④(填序号).【考点】几何变换综合题.【分析】①根据矩形的性质,得∠DAC=∠ACB,再由平移的性质,可得出∠A1=∠ACB,A1D1=CB,从而证出结论;②易得△AC1F∽△ACD,根据面积比等于相似比平方可得出s与x的函数关系式③根据菱形的性质,四条边都相等,可推得当C1在AC中点时四边形ABC1D1是菱形.④当x=2时,点C1与点A重合,可求得BD=DD1=BD1=2,从而可判断△BDD1为等边三角形.【解答】解:①∵四边形ABCD为矩形,∴BC=AD,BC∥AD∴∠DAC=∠ACB∵把△ACD沿CA方向平移得到△A1C1D1,∴∠A1=∠DAC,A1D1=AD,记分1=CC1,在△A1AD1与△CC1B中,,∴△A1AD1≌△CC1B(SAS),故①正确;②易得△AC1F∽△ACD,∴解得:S△AC1F=(x﹣2)2(0<x<2);故②正确;③∵∠ACB=30°,∴∠CAB=60°,∵AB=1,∴AC=2,∵x=1,∴AC1=1,∴△AC1B是等边三角形,∴AB=D1C1,又AB∥BC1,∴四边形ABC1D1是菱形,故③错误;④如图所示:则可得BD=DD1=BD1=2,∴△BDD1为等边三角形,故④正确.综上可得正确的是①②④.故答案为:①②④【点评】本题考查了相似三角形的判定与性质、矩形的性质、等边三角形的判定及解直角三角形的知识,解答本题需要我们熟练掌握全等三角形的判定及含30°角的直角三角形的性质,有一定难度.三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.【考点】分式的化简求值.【分析】先算减法通分,再算除法,由此顺序化简,再进一步代入求得数值即可.【解答】解:原式===.当a=﹣3时,原式=.【点评】此题考查分式的化简求值,掌握运算顺序,化简的方法把分式化到最简,然后代值计算.16.解不等式:1﹣>.【考点】解一元一次不等式.【分析】根据解不等式的基本步骤,依次去分母、去括号、移项、合并同类项、系数化为1可得解集.【解答】解:去分母,得:6﹣(x﹣3)>2x,去括号,得:6﹣x+3>2x,移项,得:﹣x﹣2x>﹣6﹣3,合并同类项,得:﹣3x>﹣9,系数化为1,得:x<9.【点评】本题主要考查解不等式的能力,熟知解不等式的基本步骤是基础,去分母和系数化为1时注意不等号的方向是解不等式易错点.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC 于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.【考点】平行线分线段成比例.【分析】根据PQ∥BC可得,进而得出,再解答即可.【解答】解:∵PQ∥BC,∴,,∴MN∥BC,∴==,∴,∴,∵AP=AQ , ∴PQ=3.【点评】此题考查了平行线段成比例,关键是根据平行线等分线段定理进行解答.18.如图,马路边安装的路灯由支柱上端的钢管ABCD 支撑,AB=25cm ,CG ⊥AF ,FD ⊥AF ,点G 、点F 分别是垂足,BG=40cm ,GF=7cm ,∠ABC=120°,∠BCD=160°,请计算钢管ABCD 的长度.(钢管的直径忽略不计,结果精确到1cm .参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【考点】解直角三角形的应用.【分析】根据直角三角形的解法分别求出BC ,CD 的长,即可求出钢管ABCD 的长度.【解答】解:在△BCG 中,∠GBC=30°,BC=2BG=80cm ,CD=≈41.2,钢管ABCD 的长度=AB+BC+CD=25+80+41.2=146.2≈146cm .答:钢管ABCD 的长度为146cm .【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?【考点】二元一次方程组的应用.【分析】(1)设八年级(一)班有x人、(二)班有y人,根据两个班的购票费之和为1126元和824元建立方程组求出其解即可;(2)根据单独购票的费用大于团体购票的费用确定选择团体购票,可以节省的费用为1126﹣824元.【解答】解:(1)设八年级(一)班有x人、(二)班有y人,由题意,得,解得:.答:八年级(一)班有48人、(二)班有55人;(2)∵1126>824,∴选择团体购票.团体购票节省的费用为:1126﹣824=302元.∴团体购票节省的费用302元.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时建立方程组求出各班的人数是关键.20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.【考点】相似三角形的判定与性质;翻折变换(折叠问题).【分析】(1)根据折叠的性质得出∠C=∠AED=90°,利用∠DEB=∠C,∠B=∠B证明三角形相似即可;(2)由折叠的性质知CD=DE,AC=AE.根据题意在Rt△BDE中运用勾股定理求DE,进而得出AD即可.【解答】证明:(1)∵∠C=90°,△ACD沿AD折叠,∴∠C=∠AED=90°,∴∠DEB=∠C=90°,又∵∠B=∠B,∴△BDE∽△BAC;(2)由勾股定理得,AB=10.由折叠的性质知,AE=AC=6,DE=CD,∠AED=∠C=90°.∴BE=AB﹣AE=10﹣6=4,在Rt△BDE中,由勾股定理得,DE2+BE2=BD2,即CD2+42=(8﹣CD)2,解得:CD=3,在Rt△ACD中,由勾股定理得AC2+CD2=AD2,即32+62=AD2,解得:AD=.【点评】本题考查了相似三角形的判定和性质,关键是根据1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、勾股定理求解.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图中信息解答下列问题.(1)本次调查的学生人数为60人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是ACD(只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?【考点】扇形统计图;条形统计图.【专题】数形结合.【分析】(1)根据完成课外作业时间低于60分钟的学生数占被调查人数的10%.可求出抽查的学生人数;(2)根据总人数,现有人数为补上那12人,画图即可;(3)根据中位数、众数、频率的意义对各选项依次进行判断即可解答;(4)先求出60人里学生每天完成课外作业时间在120分钟以下的人的比例,再按比例估算全校的人数.【解答】解:(1)6÷10%=60(人).(2)补全的频数分布直方图如图所示:(3)A.由图(1)知,学生完成作业所用时间的中位数在第三组内,正确;B.由图(1)知,学生完成作业所用时间的众数不在第三组内,错误;C.图(2)中,90~120数据组所在扇形的圆心角为108°.正确;D.图(1)中,落在第五组内数据的频率为0.15,正确.故答案为:60;ACD.(4)==60%,即样本中,完成作业时间不超过120分钟的学生占60%.∴560×60%=336.答:九年级学生中,课业负担适中的学生约为336人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数、众数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数.给定一组数据,出现次数最多的那个数,称为这组数据的众数.七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.【考点】二次函数的应用.【专题】销售问题.【分析】(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.【解答】解:(1)当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000,当50≤x≤90时,y=(200﹣2x)(90﹣30)=﹣120x+12000,综上所述:y=;(2)当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,=﹣2×452+180×45+2000=6050,当x=45时,y最大当50≤x≤90时,y随x的增大而减小,=6000,当x=50时,y最大综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得20≤x≤70,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=﹣120x+12000≥4800,解得x≤60,因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元.【点评】本题考查了二次函数的应用,利用单价乘以数量求函数解析式,利用了函数的性质求最值.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?【考点】二次函数综合题.【专题】代数综合题;压轴题.【分析】(1)根据有界函数的定义和函数的边界值的定义进行答题;(2)根据函数的增减性、边界值确定a=﹣1;然后由“函数的最大值也是2”来求b的取值范围;(3)需要分类讨论:m<1和m≥1两种情况.由函数解析式得到该函数图象过点(﹣1,1)、(0,0),根据平移的性质得到这两点平移后的坐标分别是(﹣1,1﹣m)、(0,﹣m);最后由函数边界值的定义列出不等式≤1﹣m≤1或﹣1≤﹣m≤﹣,易求m取值范围:0≤m≤或≤m≤1.。

2023长郡集团九年级下第一次月考数学试卷

2023长郡集团九年级下第一次月考数学试卷

自主学习反馈 初三数学问卷考试时长:120分钟 满分:120分一.选择题(共10小题,共30分)1.2023−=( )A .2023B .﹣2023C .±2023D .20231 2.将11300000用科学记数法表示为( )A .1.13×108B .1.13×107C .11.3×106D .0.113×1093.某校6名学生参加课外实践活动的时间分别为:3,3,6,4,3,7(单位:小时),这组数据的众数和中位数分别为( )A .6和7B .3和3.5C .3和3D .3和5 4.要使分式1−x x 有意义,则x 的取值范围是( ) A .x ≠1 B .x ≠0 C .0<x <1 D .x ≠﹣15.一元二次方程2x 2+x ﹣1=0的根的情况是( )A .无实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根6.如图,⊙O 的半径为5,弦AB =8,OC ⊥AB 于点C ,则OC 的长为( )A .1B .2C .3D .47.如图,在△ABC 中,∠C =90°,AB =5,AC =4,下列三角函数表示正确的是( )A .4sin 5A =B .4tan 3A =C .4cos 5A =D .3tan 4B = 8.我国明代数学读本《算法统宗》中有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,还差8两.问银子共有几两?设银子共有x 两,则可列方程为( )A .7x +4=9x ﹣8B .7x ﹣4=9x +8C .9874−=+x xD .9874+=−x x 9.如图,点A 在双曲线y =x k 上,AB ⊥y 轴于B ,S △AOB =3,则k =( ) A .3B .6C .18D .不能确定10.如图所示是抛物线y =ax 2+bx +c (a ≠0)的部分图象,其顶点坐标为(1,n ),且与x 轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①a ﹣b +c >0;②042>ac b −;③3a +c >0;④一元二次方程ax 2+bx +c =n -1没有实数根.其中正确的结论个数是( )A .1个B .2个C .3个D .4个 二.填空题(共6小题,共18分)11.分解因式:m 2﹣2m = .12.不等式组 的解集为 .13.一副三角板如图所示摆放,且AB ∥CD ,则∠1的度数为 .14.如图,在扇形OAB 中,∠AOB =90°,OA =4,则阴影部分的面积是 .15.将二次函数y =2(x +2)2﹣3的图象向左平移1个单位,再向上平移1个单位,得到的新图象函数的表达式为 .16.A ,B ,C ,D ,E 五名同学猜测自己的数学成绩.A 说:“如果我得优,那么B 也得优.”B 说:“如果我得优,那么C 也得优.”C 说:“如果我得优,那么D 也得优.”D 说:“如果我得优,那么E 也得优.”大家都没说错,如果有2人得优,那么他们之中得优的人是____________(填字母).三.解答题(共9小题)17.(6分)计算:;)(2145sin 42142−+−−+︒−18.(6分)先化简再求值:2)())((2)2(b a b a b a b a a −−−++−,其中a=﹣2,b=3;19.(6分)学生社团是指学生在自愿基础上结成的各种群众性文化、艺术、学术团体.不分年级、由兴趣爱好相近的同学组成,在保证学生完成学习任务和不影响学校正常教学秩序的前提下开展各种活动.某校就学生对“篮球社团、动漫社团、文学社团和摄影社团”四个社团选择意向进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整).请根据图中信息,解答下列问题:(1)扇形统计图中m=_________,并补全条形统计图;(2)已知该校有1200名学生,请估计“文学社团”共有多少人?(3)在“动漫社团”活动中,甲、乙、丙、丁四名同学表现优秀,现决定从这四名同学中任选两名参加“中学生原创动漫大赛”,请用列表或画树状图的方法求出恰好选中甲、乙两位同学的概率.⎩⎨⎧≤−−21132x x <20.(8分)春天是放风筝的好季节,如图,张同学在园林生态园B处放风筝,风筝位于A处,风筝线AB 长为50m,从B处看风筝的仰角为37°,张同学的妹妹从C处看风筝的仰角为60°(A,B,C三点位于同一平面).(1)风筝离地面多少米?(2)张同学和妹妹的直线距离BC是多少米?(结果精确到0.1,参考数据:sin37°≈0.6.cos37°≈0.8,tan37°≈0.75,≈1.41,≈1.73)21.(8分)如图,点O为正方形ABCD对角线上一点,以O为圆心,OA的长为半径的⊙O与CD相切于点M.(1)求证:BC与⊙O相切;(2)若⊙O的半径为2,求正方形的边长.22.(9分)益文超市销售A、B两种商品,已知销售一件A种商品可获利润10元,销售一件B种商品可获利润15元.(1)若益文超市销售A、B两种商品共100件,获利润1 350元,则A、B两种商品各销售多少件?(2)根据市场需求,益文超市准备购进A、B两种商品共200件,其中B种商品的件数不多于A种商品件数的3倍.为了获得最大利润,则益文超市应购进A、B两种商品各多少件?可获得最大利润多少元?23.(9分)如图,在矩形ABCD中,AD=λ AB,点E、F分别在边BC、AB上,且AE⊥DF于点H.(1)如图1,当λ=1时,求证:AE=DF;(2)如图2,λ>1,若AF=√5,HD=4,求AH的值;(3)如图3,在第(2)的条件下,连接AC交DF于点G,连接CH,若AG=AF,求tan∠DCH的值.24.(10分)如图1,直线l :y =√33x +b 与x 轴交于点G (−4√3,0),与y 轴交于点H ,点A 是线段OG 上一动点(0<GA <6).以点G 为圆心,GA 长为半径作⊙G 交x 轴于另一点B ,交直线l 于点C 和点D ,连接OC 并延长交⊙G 于点E .(1)如图1,b = ,∠OGH = ;(2)如图2,连接AC ,当AC =CE 时,求证:△OAC ∽△OCG ;(3)当点A 在线段OG 上运动时,求OC •CE 的最大值.25.(10分)定义:如果函数的图象上至少存在不重合的两点(m ,n ),(﹣m ,﹣n ),那么我们称函数为“Q 函数”,这对点叫做“Q 函数”的Q 点.(1)在下列关于x 的函数中,是“Q 函数”的,请在后面的括号中打“√”,不是“Q 函数”的打“×”. ①y =4x ( );②y =3+−x ( );③)0(≠=k x k y ( ). (2)若关于x 的函数a x ax y 42−+=是“Q 函数”,求该函数上的Q 点;(3)若A ,B 记作“Q 函数”y =x 34−的一组Q 点,以AB 为边作等边△ABC ,若点C 在反比例函数x k y =上运动,“Q 函数”y =﹣x 2﹣2bx +c 一个Q 点是(2b ,n ),当2b ≤x ≤2时,“Q 函数”y =﹣x 2﹣2bx +c 的最大值为M ,最小值为N ;是否存在实数b ,使得M -N =k ,若存在,求出b 的值,若不存在,请说明理由.。

沪科版九年级数学下学期第一次月考试卷及答案(2020年安徽版)

沪科版九年级数学下学期第一次月考试卷及答案(2020年安徽版)

2019—2020学年度第二学期九年级质量检测试卷(一)数学注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟。

2.本试卷包括“试题卷”和“答题卷”两部分。

“试题卷”共4页,“答题卷”共6页。

3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的。

4.考试结束后,请将“试题卷”和“答题卷”一并交回。

一、选择题(本大题共10小题,每小题4分,共40分) 1.下列事件中的不可能事件是( )A.三角形的两个内角的和小于第三个内角B.未来3天内将下雨C.经过交通信号灯的路口遇到红灯D.三根长度分别为2cm 、3cm 、5cm 的木棒摆成三角形2.二次函数y =2x 2的图象向右平移3个单位,得到新的图象的函数表达式是( ) A.y =2x 2+3 B.y =-2x 2+3 C.y =2(x -3)2 D.y =-2(x -3)23.如图所示的几何体,从上边看得到的图形是( )4.如图,一个小球由地面沿着坡角为30°的坡面向上前进了10m ,此时小球距离地面的 高度为( ) A.5mB.35mC.355 D.3510 5.下列说法中,不正确的是( )A.圆既是轴对称图形又是旋转对称图形B.一个圆的直径的长是它半径的2倍C.圆的每一条直径都是它的对称轴D.直径是圆的弦,但半径不是弦6.如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,∠ADE =∠B ,已知AE =6,73AB AD , 则EC 的长是( ) A.4.5 B.8 C.10.5 D.147.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BAC=20°,则∠D的度数为()A.100°B.110°C.120°D.130°8.从-2,3,-8,10,12中任意选两个数,记作a和b,那么点(a,b)在函数y=x24-的图象上的概率是()A.41B.51C.52D.619.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为25,AC=4,则sinB的值是()A.53B.54C.85D.6110.如图,在△ABC中,LACB=90°,AC=BC=4,P是△ABC的高CD上一个动点,以B点为旋转中心把线段BP逆时针旋转45°得到BP’,连接DP’,则DP’的最小值是()A.222- B.224- C.222- D.12-二、填空题(本大题共4小题,每小题5分,满分20分)11.已知A(-1,6)与B(2,m-3)是反比例函数xky=图象上的两个点,则m的值是_______。

扬州市梅岭中学九年级下第一次月考数学试卷含答案解析

扬州市梅岭中学九年级下第一次月考数学试卷含答案解析

2022-2023江苏省扬州市梅岭中学九年级(下)第一次月考数学试卷一、选择题(每小题3分,共24分)1.64的立方根是()A.±8 B.±4 C.8 D.42.下列运算中,正确的是()A.a2+a2=2a4B.a2•a3=a6C.a6÷a3=a2D.(ab2)2=a2b43.图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.若等腰三角形的两边是方程x2﹣6x+8=0的两根,则此三角形的周长为()A.8 B.10 C.8或10 D.6或85.若一个多边形的内角和是1080度,则这个多边形的边数为()A.6 B.7 C.8 D.106.如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是()A.70° B.80°C.65°D.60°7.如图,在4×4正方形网格中,任选取一个白色的小正方形并涂红,使图中红色部分的图形构成一个轴对称图形的概率是()A.B.C.D.8.如图,在平面直角坐标系中,∠AOB=90°,∠OAB=30°,反比例函数的图象经过点A,反比例函数的图象经过点B,则下列关于m,n的关系正确的是()A.m=﹣3n B.m=﹣n C.m=﹣n D.m=n二、填空题((每小题3分,共30分)9.单项式﹣2πa2bc的系数是.10.(3分)比例尺1:300 0000的图上,图距为4cm的实际距离约为米(科学记数法表示).11.若反比例函数y=的图象经过点(﹣1,﹣2),则k的值为.12.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为.13.甲、乙、丙三个同学,各有5次数学阶段考试成绩,算得每个同学5次数学成绩的平均成绩都是132分,其方差分别为S甲2=38,S乙2=10,S丙2=26,则在这三个同学中,数学成绩最稳定的是同学.14.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为.15.小明要制作一个圆锥模型,其侧面是由一个半径为9cm,圆心角为240°的扇形纸板制成的,还需要一块圆形纸板做底面,那么这块圆形纸板的半径为cm.16.若α为锐角,且,则m的取值范围是.17.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交AB于点D,交AC的延长于点F,若图中两个阴影部分的面积相等,则AF的长为(结果保留根号).18.如图,直角坐标系中,点P(t,0)是x轴正半轴上的一个动点,过点P作y轴的平行线,分别与直线,直线y=﹣x交于A,B两点,以AB为边向右侧作正方形ABCD.当点(3,0)在正方形ABCD内部时,t的取值范围是.三、解答题19.计算:(﹣)﹣2﹣16÷(﹣2)3+(π﹣tan60°)0﹣2cos30°(2)解方程:﹣=1.20.先化简,再求值:÷(m+2﹣).其中m是方程x2+3x﹣1=0的根.21.一副风景画的长90cm,宽40cm(如图是其尺寸图),现要制作一个画框把它装入其中便于悬挂,制作的画框的四周的宽度一样,且要求风景画的面积是整个挂画面积的72%.(1)在该图基础上画出挂画的大致图;(2)求画框四周的宽度.22.如图,泰州园博园中有一条人工河,河的两岸PQ、MN互相平行,河岸PQ上有一排间隔为50米的彩灯柱C、D、E、…,某人在河岸MN的A处测得∠DAN=21°,然后沿河岸走了175米到达B处,测得∠CBN=45°,求这条河的宽度.(参考数据:,)23.(1)如图1,四边形ABCD是菱形,CE⊥AB交AB延长线于E,CF⊥AD交AD延长线于F,求证:CE=CF.(2)已知:如图2,AB为⊙C的直径,PA、PC是⊙O的切线,A、C为切点,∠BAC=30°.若AB=2,求PA的长.24.元旦期间,甲、乙两家商场都进行了促销活动,如何才能更好地衡量钏销对消费者受益程度的大小呢?某数学小组通过合作探究发现用优惠率p=(其中k代表优惠金额,m代表顾客购买商品的总金额)可以很好地进行衡量,优惠率p越大,消费者受益程度越大;反之就越小.经统计,若顾客在甲、乙两家商场购买商品的总金额都为m(200≤m<400)元时,优惠率分别为与,它们与m的关系图象如图所示,其中其中p甲与m成反比例函数关系,p乙保持定值.(1)求出k甲的值,并用含m的代数式表示k乙.(2)当购买总金额m(元)在200≤m<400的条件下时,指出甲、乙两家商场正在采取的促销方案分别是什么.(3)品牌、质量、规格等都相同的基本种商品,在甲、乙两家商场的标价都是m(200≤m<400)元,你认为选择哪家商场购买该商品花钱少些?请说明理由.25.为了解某校学生的体重情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:体重分组情况组别体重(kg)A x<40B 40≤x<50C 50≤x<60D 60≤x<70E x≥70根据图表提供的信息,回答下列问题:(1)样本中,男生的体重众数在组,中位数在组.(2)样本中,女生体重在E组的人数有人.(3)已知该校共有男生1600人,女生1500人,若男生体重x≥70(kg),女生体重x≥60(kg),则称为超重,请估计该校体重超重的学生约有多少人?26.如图1,A、B、C、D为矩形的四个顶点,AD=4cm,AB=dcm.动点E、F分别从点D、B出发,点E以1cm/s的速度沿边DA向点A移动,点F以1cm/s的速度沿边BC向点C移动,点F移动到点C时,两点同时停止移动.以EF为边作正方形EFGH,点F出发xs时,正方形EFGH的面积为ycm2.已知y与x的函数图象是抛物线的一部分,如图2所示.请根据图中信息,解答下列问题:(1)自变量x的取值范围是;(2)d=,m=,n=;(3)F出发多少秒时,正方形EFGH的面积为16cm2?27.在图1、图2、图3、图4中,点P在线段BC上移动(不与B、C重合),M在BC的延长线上.(1)如图1,△ABC和△APE均为正三角形,连接CE.①求证:△ABP≌△ACE.②∠ECM的度数为°.(2)①如图2,若四边形ABCD和四边形APEF均为正方形,连接CE.则∠ECM的度数为°.②如图3,若五边形ABCDF和五边形APEGH均为正五边形,连接CE.则∠ECM的度数为°.(3)如图4,n边形ABC…和n边形APE…均为正n边形,连接CE,请你探索并猜想∠ECM的度数与正多边形边数n的数量关系(用含n的式子表示∠ECM的度数),并利用图4(放大后的局部图形)证明你的结论.28.小明在课间用橡皮筋将两支规格相同的铅笔垂直放置在桌面上(如图).小明发现:当铅笔左右平行移动时,橡皮筋的交点到桌面的距离保持不变.于是该班数学兴趣小组进行了如下探究:(1)如图①,若四边形ABCD是矩形,对角线AC、BD交点为P,过点P作PQ⊥BC于点Q,连结DQ交AC于点P1,过点P1作P1Q1⊥BC于点Q1,已知AB=CD=a,则PQ=,P1Q1=.(用含a的代数式表示)(2)如图②,在直角梯形ABCD中,AB∥CD,∠ABC=90°,AC、BD交于点P,过点P作PQ⊥BC于点Q.已知AB=a,CD=b,请用含a、b的代数式表示线段PQ的长,写出你的解题过程.(3)如图③,在直角坐标系xOy中,梯形ABCD的腰BC在x轴正半轴上(点B与原点O重合),AB∥CD,∠ABC=60°,AC、BD交于点P,过点P作PQ∥CD交BC于点Q,连结AQ交BD于点P1,过点P1作P1Q1∥CD交BC于点Q1.连结AQ1交BD于点P2,过点P2作P2Q2∥CD 交BC于点Q2,…,已知AB=a,CD=b,则点P1的纵坐标为点P n的纵坐标为(直接用含a、b、n的代数式表示)2022-2023江苏省扬州市梅岭中学九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.64的立方根是()A.±8 B.±4 C.8 D.4【分析】根据开立方的方法,求出的值,即可判断出64的立方根是多少.【解答】解:∵=4,∴64的立方根是4.故选:D.2.下列运算中,正确的是()A.a2+a2=2a4B.a2•a3=a6C.a6÷a3=a2D.(ab2)2=a2b4【分析】根据合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,对各选项分析判断后利用排除法求解.【解答】解:A、应为a2+a2=2a2,故本选项错误;B、应为a2•a3=a5,故本选项错误;C、应为a6÷a3=a3,故本选项错误;D、(ab2)2=a2b4,正确.故选D.3.图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形.故本选项错误;B、是轴对称图形,不是中心对称图形.故本选项错误;C、是轴对称图形,也是中心对称图形.故本选项正确;D、不是轴对称图形,是中心对称图形.故本选项错误.故选C.4.若等腰三角形的两边是方程x2﹣6x+8=0的两根,则此三角形的周长为()A.8 B.10 C.8或10 D.6或8【分析】先解一元二次方程,由于未说明两根哪个是腰哪个是底,故需分情况讨论,从而得到其周长.【解答】解:解方程x2﹣6x+8=0得,x1=2,x2=4;当底为2,腰为4时,4﹣2<4<4+2,能构成三角形,等腰三角形的周长为10;当底为4,腰为2时,2+2=4,不能构成三角形.故此等腰三角形的周长为10.故选B.5.若一个多边形的内角和是1080度,则这个多边形的边数为()A.6 B.7 C.8 D.10【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故选:C.6.如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是()A.70° B.80°C.65°D.60°【分析】首先根据平行线的性质得出∠1=∠4=140°,进而得出∠5的度数,再利用三角形内角和定理以及对顶角性质得出∠3的度数.【解答】解:∵直线l1∥l2,∠1=140°,∴∠1=∠4=140°,∴∠5=180°﹣140°=40°,∵∠2=70°,∴∠6=180°﹣70°﹣40°=70°,∵∠3=∠6,故∠3的度数是70°.故选:A.7.如图,在4×4正方形网格中,任选取一个白色的小正方形并涂红,使图中红色部分的图形构成一个轴对称图形的概率是()A.B.C.D.【分析】由白色的小正方形有12个,能构成一个轴对称图形的有2个情况,直接利用概率公式求解即可求得答案.【解答】解:∵白色的小正方形有12个,能构成一个轴对称图形的有2个情况(第二行中第4个,还有第四行中第3个),∴使图中红色部分的图形构成一个轴对称图形的概率是: =.故选:A8.如图,在平面直角坐标系中,∠AOB=90°,∠OAB=30°,反比例函数的图象经过点A,反比例函数的图象经过点B,则下列关于m,n的关系正确的是()A.m=﹣3n B.m=﹣n C.m=﹣n D.m=n【分析】过点B作BE⊥x轴于点E,过点A作AF⊥x轴于点F,设点B坐标为(a,),点A的坐标为(b,),证明△BOE∽△OAF,利用对应边成比例可求出m、n的关系.【解答】解:过点B作BE⊥x轴于点E,过点A作AF⊥x轴于点F,∵∠OAB=30°,∴OA=OB,设点B坐标为(a,),点A的坐标为(b,),则OE=﹣a,BE=,OF=b,AF=,∵∠BOE+∠OBE=90°,∠AOF+∠BOE=90°,∴∠OBE=∠AOF,又∵∠BEO=∠OFA=90°,∴△BOE∽△OAF,∴==,即==,解得:m=﹣ab,n=,故可得:m=﹣3n.故选A.二、填空题((每小题3分,共30分)9.单项式﹣2πa2bc的系数是﹣2π.【分析】根据单项式系数的定义来判断,单项式中数字因数叫做单项式的系数.【解答】解:根据单项式系数的定义,单项式﹣2πa2bc的系数是﹣2π,故答案为:﹣2π.10.(3分)比例尺1:300 0000的图上,图距为4cm的实际距离约为 1.2×105米(科学记数法表示).【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n是整数数位减1.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字,用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:设实际距离约为x厘米,∵比例尺为1:300 0000,∴4:x=1:3000000,∴x=12000000厘米=120000米=1.2×105米.故答案为:1.2×105.11.若反比例函数y=的图象经过点(﹣1,﹣2),则k的值为2.【分析】由一个已知点来求反比例函数解析式,只要把已知点的坐标代入解析式就可求出比例系数.【解答】解:把点(﹣1,﹣2)代入解析式可得k=2.12.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为90°.【分析】由△COD是由△AOB绕点O按逆时针方向旋转而得,可知旋转的角度是∠BOD的大小,然后由图形即可求得答案.【解答】解:如图:∵△COD是由△AOB绕点O按逆时针方向旋转而得,∴OB=OD,∴旋转的角度是∠BOD的大小,∵∠BOD=90°,∴旋转的角度为90°.故答案为:90°.13.甲、乙、丙三个同学,各有5次数学阶段考试成绩,算得每个同学5次数学成绩的平均成绩都是132分,其方差分别为S甲2=38,S乙2=10,S丙2=26,则在这三个同学中,数学成绩最稳定的是乙同学.【分析】根据方差的意义判断.方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立【解答】解:∵s甲2>s丙2>s乙2,∴成绩相对稳定的是乙.故答案为:乙.14.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为3.【分析】过O作OM⊥AB于M,此时线段OM的长最短,连接OA,根据垂径定理求出AM,根据勾股定理求出OM即可.【解答】解:过O作OM⊥AB于M,此时线段OM的长最短,连接OA,∵OM过O,OM⊥AB,∴AM=AB=×8=4,在Rt△AMO中,由勾股定理得:OM===3,故答案为:3.15.小明要制作一个圆锥模型,其侧面是由一个半径为9cm,圆心角为240°的扇形纸板制成的,还需要一块圆形纸板做底面,那么这块圆形纸板的半径为6cm.【分析】利用底面周长=展开图的弧长可得.【解答】解:,解得r=6.16.若α为锐角,且,则m的取值范围是.【分析】根据余弦值的取值范围,列不等式求解.【解答】解:∵0<cosα<1,∴0<<1,解得,故答案为:.17.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交AB于点D,交AC的延长于点F,若图中两个阴影部分的面积相等,则AF的长为(结果保留根号).【分析】若两个阴影部分的面积相等,那么△ABC和扇形ADF的面积就相等,可分别表示出两者的面积,然后列出方程即可求出AF的长度.【解答】解:∵图中两个阴影部分的面积相等,∴S扇形ADF=S△ABC,即: =×AC×BC,又∵AC=BC=1,∴AF2=,∴AF=.故答案为.18.如图,直角坐标系中,点P(t,0)是x轴正半轴上的一个动点,过点P作y轴的平行线,分别与直线,直线y=﹣x交于A,B两点,以AB为边向右侧作正方形ABCD.当点(3,0)在正方形ABCD内部时,t的取值范围是<t<3.【分析】根据点P的横坐标表示出AB,由点C的横坐标大于3列出不等式求解即可.【解答】解:∵点P(t,0),AB∥y轴,∴点A(t, t),B(t,﹣t),∴AB=|t﹣(﹣t)|=|t|,∵t>0时,点C的横坐标为t+t=t,∵点(3,0)在正方形ABCD内部,∴t>3,且t<3,解得t>且t<3,∴<t<3;故答案为:<t<3.三、解答题19.计算:(﹣)﹣2﹣16÷(﹣2)3+(π﹣tan60°)0﹣2cos30°(2)解方程:﹣=1.【分析】(1)原式利用零指数幂、负整数指数幂法则,乘方的意义,以及特殊角的三角函数值计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=9+2+1﹣3=9;(2)去分母得:2+x2+2x=x2﹣4,解得:x=﹣3,经检验x=﹣3是分式方程的解.20.先化简,再求值:÷(m+2﹣).其中m是方程x2+3x﹣1=0的根.【分析】先通分计算括号里的,再计算括号外的,化为最简,由于m是方程x2+3x﹣1=0的根,那么m2+3m﹣1=0,可得m2+3m的值,再把m2+3m的值整体代入化简后的式子,计算即可.【解答】解:原式=÷=•==;∵m是方程x2+3x﹣1=0的根.∴m2+3m﹣1=0,即m2+3m=1,∴原式=.21.一副风景画的长90cm,宽40cm(如图是其尺寸图),现要制作一个画框把它装入其中便于悬挂,制作的画框的四周的宽度一样,且要求风景画的面积是整个挂画面积的72%.(1)在该图基础上画出挂画的大致图;(2)求画框四周的宽度.【分析】(1)根据题意画出图形即可;(2)设画框四周的宽度为xcm,则整个挂画的长为(90+2x)cm,宽为(40+2x)cm.就可以表示出整个挂画的面积,由风景画的面积是整个挂图面积的72%建立方程求出其解即可.【解答】解:(1)如图所示:(2)设画框四周的宽度为xcm,则整个挂画的长为(90+2x)cm,宽为(40+2x)cm.由题意得(90+2x)×(40+2x)72%=90×40,解得:x1=﹣70(舍去),x2=5.答:画框四周的宽度为5cm.22.如图,泰州园博园中有一条人工河,河的两岸PQ、MN互相平行,河岸PQ上有一排间隔为50米的彩灯柱C、D、E、…,某人在河岸MN的A处测得∠DAN=21°,然后沿河岸走了175米到达B处,测得∠CBN=45°,求这条河的宽度.(参考数据:,)【分析】过点A,C作出21°,45°所在的直角三角形,设出河宽,利用相应的三角函数表示出SE,BT的长,利用等量关系SC=AT,把相关数值代入即可求得河宽.【解答】解:作AS⊥PQ,CT⊥MN,垂足分别为S,T.由题意知,四边形ATCS为矩形,∴AS=CT,SC=AT.设这条河的宽度为x米.在Rt△ADS中,因为,∴.(3分)在Rt△BCT中,∵∠CBT=45°,∴BT=CT=x.(5分)∵SD+DC=AB+BT,∴,(8分)解得x=75,即这条河的宽度为75米.(10分)(其它方法相应给分)23.(1)如图1,四边形ABCD是菱形,CE⊥AB交AB延长线于E,CF⊥AD交AD延长线于F,求证:CE=CF.(2)已知:如图2,AB为⊙C的直径,PA、PC是⊙O的切线,A、C为切点,∠BAC=30°.若AB=2,求PA的长.【分析】(1)连接AC,根据菱形的性质可得AC平分∠DAE,再根据角平分线的性质可得CE=FC;(2)由圆的切线的性质,得∠PAB=90°,结合∠BAC=30°得∠PAC=90°﹣30°=60°.由切线长定理得到PA=PC,得△PAC是等边三角形,从而可得∠P=60°;连结BC,根据直径所对的圆周角为直角,得到∠ACB=90°,结合Rt△ACB中AB=2且∠BAC=30°,得到AC=ABcos∠BAC=.最后在等边△PAC中,可得PA=AC=.【解答】证明:(1)连接AC,∵四边形ABCD为菱形,∴AC平分∠DAC,又∵CE⊥AB,CF⊥AD,∴CE=CF;解:(2)∵PA是⊙O的切线,AB为⊙O的直径,∴PA⊥AB,即∠PAB=90°.∵∠BAC=30°,∴∠PAC=90°﹣30°=60°.又∵PA、PC切⊙O于点A、C,∴PA=PC,可得△PAC是等边三角形,得∠P=60°.如图,连结BC.∵AB是直径,∠ACB=90°,∴在Rt△ACB中,AB=2,∠BAC=30°,可得AC=ABcos∠BAC=2×cos30°=.又∵△PAC是等边三角形,∴PA=AC=.24.元旦期间,甲、乙两家商场都进行了促销活动,如何才能更好地衡量钏销对消费者受益程度的大小呢?某数学小组通过合作探究发现用优惠率p=(其中k代表优惠金额,m代表顾客购买商品的总金额)可以很好地进行衡量,优惠率p越大,消费者受益程度越大;反之就越小.经统计,若顾客在甲、乙两家商场购买商品的总金额都为m(200≤m<400)元时,优惠率分别为与,它们与m的关系图象如图所示,其中其中p甲与m成反比例函数关系,p乙保持定值.(1)求出k甲的值,并用含m的代数式表示k乙.(2)当购买总金额m(元)在200≤m<400的条件下时,指出甲、乙两家商场正在采取的促销方案分别是什么.(3)品牌、质量、规格等都相同的基本种商品,在甲、乙两家商场的标价都是m(200≤m<400)元,你认为选择哪家商场购买该商品花钱少些?请说明理由.【分析】(1)把m=200,p甲=0.5代入中求得得k甲=100,然后根据p乙始终为0.4,得到,从而求得k乙的值即可;(2)当购买总金额都为m元,且在200≤m<400的条件下时,代入可得甲家商场采取的促销方案是:优惠100元;乙家商场采取的促销方案是:打6折促销.(3)根据当200≤m<400时,甲家商场需花(m﹣100)元,乙家商场需花0.6m元.然后据m﹣100=0.6m,得m=250.即当m=250时,在两家商场购买花钱一样多.从而确定哪家更优惠.【解答】解:(1)把m=200,p甲=0.5代入中,得k甲=100.由于p乙始终为0.4,即,∴k乙=0.4m.(2)由(1)及优惠率p的含义可知:当购买总金额都为m元,且在200≤m<400的条件下时,甲家商场采取的促销方案是:优惠100元;乙家商场采取的促销方案是:打6折促销.(3)由上可知,当200≤m<400时,甲家商场需花(m﹣100)元,乙家商场需花0.6m元.据m﹣100=0.6m,得m=250.即当m=250时,在两家商场购买花钱一样多.再由图象易知,当200≤m<250时,甲商场更优惠;当250<m<400时,乙商场更优惠.25.为了解某校学生的体重情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:体重分组情况组别体重(kg)A x<40B 40≤x<50C 50≤x<60D 60≤x<70E x≥70根据图表提供的信息,回答下列问题:(1)样本中,男生的体重众数在B组,中位数在C组.(2)样本中,女生体重在E组的人数有2人.(3)已知该校共有男生1600人,女生1500人,若男生体重x≥70(kg),女生体重x≥60(kg),则称为超重,请估计该校体重超重的学生约有多少人?【分析】(1)根据众数的定义,以及中位数的定义解答即可;(2)先求出女生身高在E组所占的百分比,再求出总人数然后计算即可得解;(3)分别用男、女生的人数乘以C、D两组的频率的和,计算即可得解.【解答】解:∵B组的人数为12,最多,∴众数在B组,男生总人数为4+12+10+8+6=40,按照从低到高的顺序,第20、21两人都在C组,∴中位数在C组;(2)女生身高在E组的频率为:1﹣17.5%﹣37.5%﹣25%﹣15%=5%,∵抽取的样本中,男生、女生的人数相同,∴样本中,女生身高在E组的人数有40×5%=2人;(3)×1600+(15%+5%)×1500=540(人).答:估计该校体重超重的学生约有540人.26.如图1,A、B、C、D为矩形的四个顶点,AD=4cm,AB=dcm.动点E、F分别从点D、B出发,点E以1cm/s的速度沿边DA向点A移动,点F以1cm/s的速度沿边BC向点C移动,点F移动到点C时,两点同时停止移动.以EF为边作正方形EFGH,点F出发xs时,正方形EFGH的面积为ycm2.已知y与x的函数图象是抛物线的一部分,如图2所示.请根据图中信息,解答下列问题:(1)自变量x的取值范围是0≤x≤4;(2)d=3,m=2,n=25;(3)F出发多少秒时,正方形EFGH的面积为16cm2?【分析】(1)根据矩形的对边相等求出BC的长,然后利用路程、速度、时间的关系求解即可;(2)根据点的运动可知,当点E、F分别运动到AD、BC的中点时,正方形的面积最小,求出d、m的值,再根据开始于结束时正方形的面积最大,利用勾股定理求出BD的平方,即为最大值n;(3)过点E作EI⊥BC垂足为点I,则四边形DEIC为矩形,然后表示出EI、IF,再利用勾股定理表示出EF2,根据正方形的面积得到y与x的函数关系式,然后把y=16代入求出x的值,即可得到时间.【解答】解:(1)∵BC=AD=4,4÷1=4,∴0≤x≤4;故答案为:0≤x≤4;(2)根据题意,当点E、F分别运动到AD、BC的中点时,EF=AB最小,所以正方形EFGH的面积最小,此时,d2=9,m=4÷2=2,所以,d=3,根据勾股定理,n=BD2=AD2+AB2=42+32=25,故答案为:3,2,25;(3)如图,过点E作EI⊥BC垂足为点I.则四边形DEIC为矩形,∴EI=DC=3,CI=DE=x,∵BF=x,∴IF=4﹣2x,在Rt△EFI中,EF2=EI2+IF2=32+(4﹣2x)2,∵y是以EF为边长的正方形EFGH的面积,∴y=32+(4﹣2x)2,当y=16时,32+(4﹣2x)2=16,整理得,4x2﹣16x+9=0,解得,x1=,x2=,∵点F的速度是1cm/s,∴F出发或秒时,正方形EFGH的面积为16cm2.27.在图1、图2、图3、图4中,点P在线段BC上移动(不与B、C重合),M在BC的延长线上.(1)如图1,△ABC和△APE均为正三角形,连接CE.①求证:△ABP≌△ACE.②∠ECM的度数为60°.(2)①如图2,若四边形ABCD和四边形APEF均为正方形,连接CE.则∠ECM的度数为45°.②如图3,若五边形ABCDF和五边形APEGH均为正五边形,连接CE.则∠ECM的度数为36°.(3)如图4,n边形ABC…和n边形APE…均为正n边形,连接CE,请你探索并猜想∠ECM的度数与正多边形边数n的数量关系(用含n的式子表示∠ECM的度数),并利用图4(放大后的局部图形)证明你的结论.【分析】(1)①由△ABC与△APE均为正三角形得出相等的角与边,即可得出△ABP≌△ACE.②由△ABP≌△ACE,得出∠ACE=∠B=60°,即可得出∠ECM的度数.(2)①作EN⊥BN,交BM于点N,由△ABP≌△ACE,利用角及边的关系,得出CN=EN,即可得出∠ECM的度数.②作EN⊥BN,交BM于点N,由△ABP≌△PNE,得出角及边的关系,得出CN=EN,即可得出∠ECM的度数.(3)过E作EK∥CD,交BM于点K,由正多边形的性质可得出△ABP≌△PKE,利用角及边的关系,得出CK=KE,即△EKC是等腰三角形,根据多边形的内角即可求出∠ECM的度数.【解答】解:(1)①证明:如图1,∵△ABC与△APE均为正三角形,∴AB=AC,AP=AE,∠BAC=∠PAE=60°,∴∠BAC﹣∠PAC=∠PAE﹣∠PAC即∠BAP=∠CAE,在△ABP和△ACE中,,∴△ABP≌△ACE (SAS).②∵△ABP≌△ACE,∴∠ACE=∠B=60°,∵∠ACB=60°,∠ECM=180°﹣60°﹣60°=60°.故答案为:60.(2)①如图2,作EN⊥BN,交BM于点N∵四边形ABCD和APEF均为正方形,∴AP=PE,∠B=∠ENP=90°,∴∠BAP+∠APB=∠EPM+∠APB=90°,即∠BAP=∠NPE,在△ABP和△PNE中,,∴△ABP≌△ACE (AAS).∴AB=PN,BP=EN,∵BP+PC=PC+CN=AB,∴BP=CN,∴CN=EN,∴∠ECM=∠CEN=45°②如图3,作EN∥CD交BM于点N,∵五边形ABCDF和APEGH均为正五边方形,∴AP=PE,∠B=∠BCD,∵EN∥CD,∴∠PNE=∠BCD,∴∠B=∠PNE∵∠BAP+∠APB=∠EPM+∠APB=180°﹣∠B,即∠BAP=∠NPE,在△ABP和△PNE中,,∴△ABP≌△PNE (AAS).∴AB=PN,BP=EN,∵BP+PC=PC+CN=AB,∴BP=CN,∴CN=EN,∴∠NCE=∠NEC,∵∠CNE=∠BCD=108°,∴∠ECM=∠CEN=(180°﹣∠CNE)=×(180°﹣108°)=36°.故答案为:45,36.(3)如图4中,过E作EK∥CD,交BM于点K,∵n边形ABC…和n边形APE…为正n边形,∴AB=BC AP=PE∠ABC=∠BCD=∠APE=∵∠APK=∠ABC+∠BAP,∠APK=∠APE+∠EPK∴∠BAP=∠KPE∵EK∥CD,∴∠BCD=∠PKE∴∠ABP=∠PKE,在△ABP和△PKE中,,∴△ABP≌△PKE(AAS)∴BP=EK,AB=PK,∴BC=PK,∴BC﹣PC=PK﹣PC,∴BP=CK,∴CK=KE,∴∠KCE=∠KEC,∵∠CKE=∠BCD=∴∠ECK=.28.小明在课间用橡皮筋将两支规格相同的铅笔垂直放置在桌面上(如图).小明发现:当铅笔左右平行移动时,橡皮筋的交点到桌面的距离保持不变.于是该班数学兴趣小组进行了如下探究:(1)如图①,若四边形ABCD是矩形,对角线AC、BD交点为P,过点P作PQ⊥BC于点Q,连结DQ交AC于点P1,过点P1作P1Q1⊥BC于点Q1,已知AB=CD=a,则PQ=a,P1Q1= a.(用含a的代数式表示)(2)如图②,在直角梯形ABCD中,AB∥CD,∠ABC=90°,AC、BD交于点P,过点P作PQ⊥BC于点Q.已知AB=a,CD=b,请用含a、b的代数式表示线段PQ的长,写出你的解题过程.(3)如图③,在直角坐标系xOy中,梯形ABCD的腰BC在x轴正半轴上(点B与原点O重合),AB∥CD,∠ABC=60°,AC、BD交于点P,过点P作PQ∥CD交BC于点Q,连结AQ交BD于点P1,过点P1作P1Q1∥CD交BC于点Q1.连结AQ1交BD于点P2,过点P2作P2Q2∥CD交BC于点Q2,…,已知AB=a,CD=b,则点P1的纵坐标为点P n的纵坐标为(直接用含a、b、n的代数式表示)【分析】(1)根据矩形的对角线互相平分且相等可得BP=PD,再根据在同一平面内,垂直于同一直线的两直线互相平行可得PQ∥CD,然后根据平行线分线段成比例定理列式求解即可得到PQ,同理求出P1Q1∥CD,然后求出的值,再求出的值,然后根据平行线分线段成比例定理可得=,再代入数据进行计算即可求出P1Q1;(2)先根据AB∥CD求出,然后求出,再根据在同一平面内,垂直于同一直线的两直线互相平行可得PQ∥CD,然后根据平行线分线段成比例定理可得=,代入数据进行计算即可得解;(3)根据(2)的结论依次表示出PQ、P1Q1、P2Q2…P n Q n,再根据两直线平行,同位角相等求出∠PQC=∠P1Q1C=∠P2Q2C=…∠P n Q n C=∠ABC=60°,然后利用60°角的正弦值列式计算即可得解.【解答】解:(1)∵四边形ABCD是矩形,∴BP=PD,∵PQ⊥BC,∴PQ∥CD,∴==,∴PQ=CD=a,∵P1Q1⊥BC,∴P1Q1∥CD,∴==,∴==,又∵=,∴P1Q1=a;(2)∵AB∥CD,∴==,∴=,∵AB∥CD,∠ABC=90°,PQ⊥BC,∴PQ∥CD,∴==,∴PQ=•CD=;(3)根据(2)的结论,PQ=,P1Q1==,P2Q2==,P3Q3==,…,依此类推,P n Q n=,∵AB∥CD,PQ∥CD,P1Q1∥CD,P2Q2∥CD,…,∴AB∥PQ∥P1Q1∥P2Q2∥…∥P n Q n∥CD,∴∠PQC=∠P1Q1C=∠P2Q2C=…∠P n Q n C=∠ABC=60°,∴点P1的纵坐标为:P1Q1•sin60°=×=,点P n的纵坐标为为P n Q n•sin60°=×=.故答案为:(1)a, a;(2);(3),.。

初三数学第一次月考试卷

初三数学第一次月考试卷

初三数学第一次月考试卷姓名 班级 学号一、填空题(每小题2分,共20分) 1、一元二次方程012=-x 的根为 .2、若方程mx 2+3x -4=3x 2是关于x 的一元二次方程,则m 的取值范围是 .3、若m +10是整数,则正整数m 的最小值是4、已知2<x<5, 化简22)5()2(-+-x x =___________.5、直线l 过正方形ABCD 的顶点B ,点A 与C 到l 的距离 分别是2和3,则正方形ABCD 的面积是 平方单位。

6、已知a+a 1=10,则a -a 1= 7、=⨯8328 、在实数范围内分解因式:16x 2-7=9、菱形ABCD 的一条对角线长为6,边AB 的长是方程01272=+-x x 的一个根,则菱形ABCD 的周长为 .10、观察下列数据:0,,23,15,32,3,6,3……寻找规律得第10个数是 二、选择题(每题3分,共30分)11、用配方法解下列方程时,配方有错误的是 ( ) A. x 2-2x -99=0化为(x -1)2=100 B. x 2+8x +9=0化为(x +4)2=25 C. 2t 2-7t -4=0化为1681)47(2=-t D. 3y 2-4y -2=0化为910)32(2=-y 12.下列计算正确的是( )(A)=1=(C)(21==13.211+与1-2的关系是( )A .相等B 、互为倒数C 、互为相反数D 、以上都不对 14、若x <0化简xx x2+的结果是( )A 、0B 、-2C 、0或-2D 、2 15、下列四个结论中,正确的是 ( ) A. 32<52<52 B. 54<52<32 C. 32<52<2 D. 1<52<5416、若关于的x 方程022=++k x x 有实根,则k 值为( ) A 、k < 0 B 、k ≤0 C 、k ≤1 D 、k ≥-117、若方程02=++n mx x 中有一根为0,另一个根不等于0,则m 、n 的值是( ) A 、m=0,n=0 B 、m ≠0,n=0 C. m=0,n ≠0 D. mn ≠0 18、在33,98,,,2422yx ba-中最简二次根式的个数是( ) A 、1个 B 、2个 C 、3个 D 、4个 19、下列选项正确的是( ) A 、a a=2B 、)(2a a = C 、32321+=- D 、b aba 4284=20、如图,在长30m ,宽20m 的矩形场地上修筑两条同样宽且互相垂直的道路,余下部分为耕地,要使耕地面积为500m 2,设路宽为xm,可得方程 是( ) A 、(30-x)(20-2x)=500 B. (30-x)(20-x)=500 C. (30-x)(20-x)+x 2=500 D. (30-x)(20-x)-x 2=500三、解答题(共24分) 21、计算:(每题4分,共8分) (1)36316122+- (2)(5155)53÷+22.按要求解方程:(每小题5分,共10分)(1)、3x 2+5(2x+1)=0(用公式法) (2)、3(x -5)2=2(5-x ) (用因式分解法)23.化简求值:221211221++--÷++-x x x x x x ,其中22-=x (6分)四、(共26分)24、先阅读,再填空并解答:(8分)X 2+3x+2=0的解是x 1,x 2,x 1=-2,x 2=-1,则x 1+x 2=-3, x 1x 2=2 X 2-4x-5=0的解是x 1,x 2,x 1=5,x 2=-1,则x 1+x 2=4, x 1x 2=-5X 2+7x+10=0的解是x 1,x 2,x 1= ,x 2= ,则x 1+x 2= , x 1x 2=(1)由上面你能发现什么规律?试写出x 2+px+q=0的两根x 1,x 2的和与积和p,q 之间的关系。

2022-2023学年九年级下学期第一次月考 (数学)(含答案)101906

2022-2023学年九年级下学期第一次月考 (数学)(含答案)101906

2022-2023学年九年级下学期第一次月考 (数学)试卷考试总分:115 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 数轴上的,,,分别表示数,,,,已知在的右侧,在的左侧,在,之间,则下列式子成立的是( )A.B.C.D.2. 化简的结果是 ( )A.B.C.D.3. 下列各组数不能构成一个三角形的三边长的是( )A.,,B.,,C.,,D.,,4. 一个立体图形的三视图如图所示,则这个立体图形是( )A.B.C.A B C D a b c d A B C B D B C b <c <d <ac <d <b <ac <d <a <ba <b <c <d−1x+11x−1x−1x 2−2−1x 22x−1x 2−2x−1x 2123234345456D.5. 下列说法中,正确的有()个.①两直线被第三条直线所截,同旁内角互补;②同位角相等,两直线平行;③内错角相等;④平行于同一条直线的两条直线平行A.B.C.D.6. 下列四个等式:();();();().其中正确的算式有.A.个B.个C.个D.个7. 某一周我市每天的最高温度(单位:)分别为,,,,,,则下列数据不正确的是()A.众数是B.中位数是C.方差是D.平均数是8. 如图所示,中,,.尺规作图如下:作直线,使上的各点到,两点的距离相等;设直线与,分别交于点,,作一个圆,使得圆心在线段上,且与边,相切,则的面积为( )A.B.C.D.9. 一个两位数,十位上的数字比个位上的数字大,若将个位与十位上数字对调,得到新数比原数小1432()C∘745,35655555△ABC BC=AB=445∠ABC=60∘l lB C l AB BC M N OMN AB BC△ABO33–√22–√53–√372–√219. 一个两位数,十位上的数字比个位上的数字大,若将个位与十位上数字对调,得到新数比原数小,设个位上的数字为,十位上的数字为,根据题意,可列方程为( )A.B.C.D.10. 小明家、食堂、图书馆在同一条直线上,且食堂在小明家和图书馆之间.小明先从家出发去食堂吃早餐,接着去图书馆看报,然后回家,所示图象反映了这个过程中,小明离家的距离()与时间()之间的对应关系.由此给出下列说法:小明家与食堂相距,小明从家去食堂用时.食堂与图书馆相距.小明从图书馆回家的速度是其中正确的是( )A.B.C.D.二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11. 计算:________.12. 如果关于的一元二次方程=有实数根,那么的取值范围是________.13. 任意抛掷一枚质地均匀的正方体骰子次,骰子的六个面上分别刻有到的点数,掷得面朝上的点数大于的概率是________.14. 如图,点在上,若,则的长度为________.15. 如图,已知中,,是高和的交点,,则线段的长度为________.19x y {x−y =110x+y =10y+x+9{x−y =110y+x =10x+y+9{y−x =110x+y =10y+x+9{y−x =110y+x =10x+y+9y km x min ①0.6km 8min ②0.2km ③0.08km/min.①②①③②③①②③(π−3−(−=)012)−1x (m−2)−4x−1x 20m 1164C AB ˆAB =1+,AC =,∠BAC =3–√2–√45∘AB ˆ△ABC ∠ABC =45∘F AD BE CD =4DF三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )16. 先化简,再求值:,其中,其中 . 17. 为落实视力保护工作,某校组织七年级学生开展了视力保健活动.活动前随机测查了名学生的视力,活动后再次测查这部分学生的视力.两次相关数据记录如下:活动前被测查学生视力数据:活动后被测查学生视力数据:活动后被测查学生视力频数分布表分组频数根据以上信息回答下列问题:(1)填空:________=________,________=________,活动前被测查学生视力样本数据的中位数是________,活动后被测查学生视力样本数据的众数是________;(2)若视力在及以上为达标,估计七年级名学生活动后视力达标的人数有多少?(3)分析活动前后相关数据,从一个方面评价学校开展视力保健活动的效果.18. 达州市凤凰小学位于北纬,此地一年中冬至日正午时刻,太阳光与地面的夹角最小,约为;夏至日正午时刻,太阳光与地面的夹角最大,约为.已知该校一教学楼窗户朝南,窗户高,如图所示.请你为该窗户设计一个直角形遮阳棚,如图所示,要求最大限度地节省材料,并使其夏至日正午刚好遮住全部阳光,冬至日正午能射入室内的阳光没有遮挡.在图中画出设计草图;求,的长度(结果精确到个位).(参考数据:,,,,,)(1)(−6a −7)−(−3a +3)a 2a 2a =−13(2)5(3b −a )−4(−a +3b)a 2b 2b 2a 2a =1,b =−2304.04.14.14.24.24.34.34.44.44.44.54.54.64.64.64.74.74.74.74.84.84.84.84.84.94.94.95.05.05.14.04.24.34.44.44.54.54.64.64.64.74.74.74.74.84.84.84.84.84.84.84.94.94.94.94.95.05.05.15.14.0≤x <4.214.2≤x <4.424.4≤x <4.6b 4.6≤x <4.874.8≤x <5.0125.0≤x <5.244.860031∘35.5∘82.5∘207cm (1)BCD (2)(1)(3)(2)BC CD sin ≈0.5835.5∘cos ≈0.8135.5∘tan ≈0.7135.5∘sin ≈0.9982.5∘cos ≈0.1382.5∘tan ≈7.6082.5∘19. 如图,过点分别作轴,轴的垂线,交双曲线于,两点.若,求点,的坐标;若,求此双曲线的解析式.20. 如图,已知四边形是正方形.先以为圆心,为半径作,再以的中点为圆心,为半径在正方形的内部作半圆,交于点,连接.证明:与半圆相切;如图,延长交于点,若正方形的边长为,求的长度;如图,连接,,求的度数.21. 学校准备购进一批甲、乙两种办公桌若干张,并且每买张办公桌必须买把椅子,椅子每把元,若学校购进张甲种办公桌和张乙种办公桌共花费了元;购买张甲种办公桌比购买张乙种办公桌多花费元.求甲、乙两种办公桌每张各多少元?若学校购买甲乙两种办公桌共张,且甲种办公桌数量不多于乙种办公桌数量的倍,购买总费用不能超过元,此时共有几种购买方案?哪种方案费用最少?22. 已知抛物线=与轴交于、两点.(1)求的取值范围;(2)若、满足,求的值.23. 如图,在正方形中,点在边上,交于点,于,的平分线分别交,于点,,连接.P(−2,2)x y y=(k>0)kxE F(1)k=2E F(2)EF=52–√1ABCD A AD BD CD E ED ABCD E BD F AF(1)AF E(2)2AF BC G ABCD4BG(3)3BF CF∠BFC12 1002015240001052000(1)(2)40326400y+2(m+1)x+−1x2m2x A(,0)x1B(,0)x2mx1x2mABCD E BC AE BD F DG⊥AE G∠DGEGH BD CD P H FH求证: ;求证: .求:的值.(1)∠DHG =∠DFA (2)FH//BC (3)DG−AG PG参考答案与试题解析2022-2023学年九年级下学期第一次月考 (数学)试卷一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】B【考点】有理数大小比较【解析】依据数轴上右边的数总比左边的数大来比较.【解答】解:由题意得,,,,所以.故选.2.【答案】B【考点】分式的加减运算【解析】【解答】解:原式.故选.3.【答案】A【考点】三角形三边关系【解析】看哪个选项中两条较小的边的和大于最大的边即可.【解答】解:,因为,所以本组数不能构成三角形.故本选项符合题意;,因为,所以本组数能构成三角形.故本选项不符合题意;,因为,所以本组数能构成三角形.故本选项不符合题意;a >bc <b c <d <b c <d <b <a B ==x−1−(x+1)(x+1)(x−1)−2−1x 2B A 1+2=3B 2+3>4C 4+3>5,因为,所以本组数能构成三角形.故本选项不符合题意.故选.4.【答案】D【考点】由三视图判断几何体【解析】根据三视图的定义,可得几何体的形状.【解答】从俯视图是圆环,推出几何体的上下是圆,由此利用推出几何体的选项.5.【答案】D【考点】平行线的判定与性质平行线的性质【解析】此题暂无解析【解答】解:两平行直线被第三条直线所截,同旁内角互补,故①错误;同位角相等,两直线平行,故②正确;两直线平行,内错角相等,故③错误;平行于同一条直线的两条直线平行,故④正确.故选.6.【答案】C【考点】幂的乘方及其应用【解析】由幂的乘方的运算法则得,错误:,正确:错误:正确所以正确的有个.故选.【解答】D 4+5>6A D D (1)=()x 44x 4.=x≠λ14(2)==[]()y 222y 2.2y 3(3)=−+y6(−)y 22y 2(4)=(−x =[−x ])32)4x 62C此题暂无解答7.【答案】C【考点】众数中位数方差【解析】【解答】解:由题意得,,,,,,,,众数为,故选项不符合题意;中位数为,故选项不符合题意;,故选项不符合题意;,故选项符合题意.故选.8.【答案】C【考点】线段垂直平分线的性质角平分线的性质三角形的面积【解析】此题暂无解析【解答】解:如图所示,直线,即为所描述图形.如图所示,过点作于.34555675A 5B ==5x ¯¯7+4+5+3+5+6+57D =[(7−5+(4−5+(5−5+(3−5+(5−5+(6−5+(5−5]=S 217)2)2)2)2)2)2)2107C C 1l ⊙O 2O OE ⊥AB E设.∵,垂直平分线段,∴.∴,∴.故选.9.【答案】D【考点】由实际问题抽象出二元一次方程组【解析】先表示出颠倒前后的两位数,然后根据十位上的数字比个位上的数字大,若颠倒个位与十位数字的位置,得到新数比原数小,列方程组即可.【解答】解:由题意得,.故选.10.【答案】D【考点】函数的图象【解析】根据题意,分析图象,结合简单计算,可以得到答案.【解答】解:根据图象可知:小明家离食堂,小明从家到食堂用了,故正确;小明家离食堂,食堂离图书馆,故正确;小明从图书馆回家的平均速度为,故正确.故选.二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11.OE =ON =r BC =4MN BC BN =CN =2ON=OE =2×tan =30∘23–√3==×5S △ABO AB ⋅OE 212×=23–√353–√3C x y 19{y−x =110y+x =10x+y+9D ①0.6km 8min ①②0.6km 0.8−0.6=0.2(km)②③0.8÷(68−58)=0.08(km/min)③D【考点】零指数幂负整数指数幂【解析】直接利用零指数幂的性质以及负整数指数幂的性质分别化简得出答案.【解答】解:.故答案为:.12.【答案】且【考点】一元二次方程的定义根的判别式【解析】根据方程有实数根得出=,解之求出的范围,结合,即从而得出答案.【解答】∵关于的一元二次方程=有实数根,∴=,解得:,又∵,即,∴且,13.【答案】【考点】概率公式【解析】根据掷得面朝上的点数大于情况有种,进而求出概率即可.【解答】解:掷一枚均匀的骰子时,有种情况,出现点数大于的情况有种,掷得面朝上的点数大于的概率是:.故答案为:.14.3(π−3−(−=1−(−2)=1+2=3)012)−13m≥−2m≠2△(−4−4×(m−2)×(−1)≥0)2m m−2≠0m≠2x (m−2)−4x−1x 20△(−4−4×(m−2)×(−1)≥0)2m≥−2m−2≠0m≠2m≥−2m≠213426424=261313【考点】勾股定理解直角三角形锐角三角函数的定义圆周角定理含30度角的直角三角形弧长的计算等边三角形的性质与判定【解析】如图,设圆心为,连接, , , , 过点作于.证明是等边三角形,求出即可解决问题.【解答】解:如图,设圆心为,连接过点作于,∵∴,∵,∴,∴,∴,∴,,∵,∴是等边三角形,∴,∴的弧长,故答案为:.15.【答案】【考点】三角形内角和定理等腰三角形的判定与性质全等三角形的性质π52–√6O OA OB OC BC C CT ⊥AB T △AOC OA ,∠AOB O OA ,OB ,OC ,BC ,C CT ⊥AB T ∠CTA =,∠CAT =,AC =2,90∘45∘AT =TC =1AB =1+3–√BT =3tan ∠CBT ==BT CT 3–√3∠CBT =30∘∠AOC =2∠CBT =60∘∠COB =2∠CAB =90∘OA =OC ΔAOC OA =,∠AOB =2–√150∘AB ˆ==π150×π×2–√18052–√6π52–√64求出,根据,,推出,根据证,推出即可.【解答】解:∵是的高,∴,∴,∵,∴,∴,∵,∴,∴,,∴,在和中∴,∴.故答案为:.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )16.【答案】解:().当时,原式.(2) 当时,原式【考点】零指数幂、负整数指数幂特殊角的三角函数值负整数指数幂分式的化简求值实数的运算【解析】此题暂无解析【解答】解:().当时,原式.(2) 当时,原式17.【答案】,,,,,估计七年级名学生活动后视力达标的人数有(人);活动开展前视力在及以上的有人,活动开展后视力在及以上的有人,视力达标人数有一定的提升(答案不唯一,合理即可).【考点】AD =BD ∠FBD+∠C =90∘∠CAD+∠C =90∘∠FBD =∠CAD ASA △FBD ≅△CAD CD =DF AD △ABC AD ⊥BC ∠ADB =∠ADC =90∘∠ABC =45∘∠BAD ==∠ABD 45∘AD =BD BE ⊥AC ∠BEC =90∘∠FBD+∠C =90∘∠CAD+∠C =90∘∠FBD =∠CAD △FBD △CAD ∠ADB =∠ADC ,BD =AD ,∠FBD =∠CAD ,△FBD ≅△CAD(ASA)CD =DF =441(−6a −7)−(−3a +3)=−6a −7−+3a −3=a 2a 2a 2a 2−3a −10a =−13=1−10=−95(3b −a )−4(−a +3b)=15b −5a +4a −12b =a 2b 2b 2a 2a 2b 2b 2a 23b −a ,a 2b 2a =1,b =−2=−6−4=−10.1(−6a −7)−(−3a +3)=−6a −7−+3a −3=a 2a 2a 2a 2−3a −10a =−13=1−10=−95(3b −a )−4(−a +3b)=15b −5a +4a −12b =a 2b 2b 2a 2a 2b 2b 2a 23b −a ,a 2b 2a =1,b =−2=−6−4=−10.a 5b44.654.8600600×=32012+4304.811 4.816用样本估计总体频数(率)分布表频数(率)分布直方图中位数众数【解析】(1)根据已知数据可得、的值,再根据中位数和众数的概念求解可得;(2)用总人数乘以对应部分人数所占比例;(3)可从及以上人数的变化求解可得(答案不唯一).【解答】由已知数据知=,=,活动前被测查学生视力样本数据的中位数是,活动后被测查学生视力样本数据的众数是,故答案为:,,,;估计七年级名学生活动后视力达标的人数有(人);活动开展前视力在及以上的有人,活动开展后视力在及以上的有人,视力达标人数有一定的提升(答案不唯一,合理即可).18.【答案】解:如图所示:由题意可得出:,,设,则,∴,∴在中,,解得:,∴,答:的长度是,的长度是.【考点】解直角三角形的应用-坡度坡角问题【解析】根据题意结合入射角度进而画出符合题意的图形即可;首先设,则,表示出的长,进而利用求出的长,进而得出答案.【解答】解:如图所示:a b 4.8a 5b 4=4.654.6+4.724.854 4.65 4.8600600×=32012+4304.811 4.816(1)(2)∠CDB =35.5∘∠CDA =82.5∘CD =x tan =35.5∘BC CD BC =0.71x Rt △ACD tan ===7.682.5∘AC CD 207+0.71x x x ≈30BC =0.71×30≈21(cm)BC 21cm CD 30cm (1)(2)CD =x tan =35.5∘BC CD BC tan =82.5∘AC CDDC (1)由题意可得出:,,设,则,∴,∴在中,,解得:,∴,答:的长度是,的长度是.19.【答案】解:若,则双曲线为,当时,,当时,,∴,.根据题意得:,,且,∴,∴,解得:或(舍去),∴此双曲线的解析式为.【考点】反比例函数图象上点的坐标特征待定系数法求反比例函数解析式勾股定理【解析】此题暂无解析【解答】解:若,则双曲线为,当时,,当时,,∴,.根据题意得:,,且,∴,∴,解得:或(舍去),(2)∠CDB =35.5∘∠CDA =82.5∘CD =x tan =35.5∘BC CD BC =0.71x Rt △ACD tan ===7.682.5∘AC CD 207+0.71x x x ≈30BC =0.71×30≈21(cm)BC 21cm CD 30cm (1)k =2y =2x x =−2y ==−12−2y =2x ==122E(−2,−1)F (1,2)(2)E(−2,−)k 2F (,2)k 2∠P =90∘P +P =E E 2F 2F 2+=(5(2+)k 22(+2)k 222–√)2k =6k =−14y =6x(1)k =2y =2xx =−2y ==−12−2y =2x ==122E(−2,−1)F (1,2)(2)E(−2,−)k 2F (,2)k 2∠P =90∘P +P =E E 2F 2F 2+=(5(2+)k 22(+2)k 222–√)2k =6k =−14=6∴此双曲线的解析式为.20.【答案】解:连接,.在和中,,,与半圆相切.,是半圆的切线,.设,则.在直角中,,,解得,.连接,∵,∴,.在四边形中,,∴.∵为圆的直径,∴,∴.【考点】全等三角形的性质与判定切线的判定勾股定理切线长定理圆周角定理多边形的内角和等腰三角形的性质y =6x(1)AE EF △ADE △AFE AD =AF,AE =AE,DE =FE,∴△ADE ≅△AFE ∴∠AFE =∠ADE =90∘∴AF E (2)∵CG ⊥CE ∴CG E ∴CG =CF CG =CF =x BG =BC −CG =4−x△ABG A +B =A B 2G 2G 2∴+=42(4−x)2(4+x)2x =1∴BG =3(3)FD AB =AD =AF ∠ABF =∠AFB ∠ADF =∠AFD ABFD ∠BAD+∠ABF +∠BFD+∠AFD=+2∠BFD =90∘360∘∠BFD =135∘CD E ∠CFD =90∘∠BFC =−∠BFD−∠CFD =360∘135∘【解析】()连接,,,得出,根据切线的判定定理解答;()首先证明是半圆的切线,根据切线长定理得出,然后设,在直角中,由勾股定理得出,代入数值列方程解答;【解答】解:连接,.在和中,,,与半圆相切.,是半圆的切线,.设,则.在直角中,,,解得,.连接,∵,∴,.在四边形中,,∴.∵为圆的直径,∴,∴.21.【答案】解:设甲种办公桌每张元,乙种办公桌每张元,根据题意,得:解得:答:甲种办公桌每张元,乙种办公桌每张元.1AE EF 证明△ADE ≅△AFE ∠AFE =∠ADE =90∘2CG E CG =CF CG =CF =x △ABG A +B =A B 2G 2G 2(1)AE EF △ADE △AFE AD =AF,AE =AE,DE =FE,∴△ADE ≅△AFE ∴∠AFE =∠ADE =90∘∴AF E (2)∵CG ⊥CE ∴CG E ∴CG =CF CG =CF =x BG =BC −CG =4−x△ABG A +B =A B 2G 2G 2∴+=42(4−x)2(4+x)2x =1∴BG =3(3)FD AB =AD =AF ∠ABF =∠AFB ∠ADF =∠AFD ABFD ∠BAD+∠ABF +∠BFD+∠AFD=+2∠BFD =90∘360∘∠BFD =135∘CD E ∠CFD =90∘∠BFC =−∠BFD−∠CFD =360∘135∘(1)x y {20x+20×2×100+15y+15×2×100=24000,10x+10×2×100−2000=5y+5×2×100{x =400,y =600400600设甲种办公桌购买张,则购买乙种办公桌张,则,,解得:,,即有种购买方案.,即乙种办公桌单价甲种办公桌单价,∴甲种办公桌数量越多,总费用越少,∴当时,费用最少.答:共有种购买方案,当甲种办公桌购买张乙种购买张时费用最少.【考点】二元一次方程组的应用——销售问题一次函数的性质【解析】本题考查二元一次方程组的实际应用.设甲种办公桌每张元,乙种办公桌每张元,根据“甲种桌子总钱数+乙种桌子总钱数+所有椅子的钱数,张甲种桌子钱数+对应椅子的钱数张乙种桌子钱数+对应椅子的钱数”列方程组求解可得.设甲种办公桌购买张,则购买乙种办公桌张,根据已知条件列一元一次不等式即可求解.【解答】解:设甲种办公桌每张元,乙种办公桌每张元,根据题意,得:解得:答:甲种办公桌每张元,乙种办公桌每张元.设甲种办公桌购买张,则购买乙种办公桌张,则,,解得:,,即有种购买方案.,即乙种办公桌单价甲种办公桌单价,∴甲种办公桌数量越多,总费用越少,∴当时,费用最少.答:共有种购买方案,当甲种办公桌购买张乙种购买张时费用最少.22.【答案】根据题意得:==,解得;根据题意得=,,∵,∴,即,∴=,整理得=,解得=,=,而;∴的值为.【考点】(2)a (40−a)a ≤3(40−a)400a +200a +600(40−a)+200(40−a)≤2640028≤a ≤30∴a =28,29,30,40−a =12,11,103∵600>400>a =3033010(1)x y =2400010−2000=5(2)a (40−a)(1)x y {20x+20×2×100+15y+15×2×100=24000,10x+10×2×100−2000=5y+5×2×100{x =400,y =600400600(2)a (40−a)a ≤3(40−a)400a +200a +600(40−a)+200(40−a)≤2640028≤a ≤30∴a =28,29,30,40−a =12,11,103∵600>400>a =3033010△4(m+1−4(−3))3m 28m+8>8m>−1+x 1x 4−2(m+1)4(m+2−3(−1))2m 716+2m−9m 20m 7−9m 27m>−1m 1抛物线与x 轴的交点二次函数图象与系数的关系【解析】此题暂无解析【解答】此题暂无解答23.【答案】证明:∵四边形是正方形,∴,∵,∴,∵平分,∴,∴,∵,∴ .证明:由可知:,,∴,∴,∴,又∵,∴,∴ ,又∵,∴,∴ .解:连接,过点作于,于,交于 . 由证法,易证,∵,,平分,∴,,∴,∵四边形是正方形,,∴,∴,∴,∴,∵ ,∴是等腰直角三角形,∴,∴,∴ . 【考点】勾股定理正方形的性质相似三角形的性质与判定全等三角形的性质与判定【解析】(1)∵四边形是正方形,∴,(1)ABCD ∠BDC =45∘DG ⊥AE ∠DGE =90∘GH ∠DGE ∠DGH =∠EGH =45∘∠BDC =∠EGH =45∘∠DPH =∠GPF ∠DHG =∠DFA (2)(1)∠BDC =∠EGH =45∘∠DPH =∠GPF △GPF ∽DPH =PG PD PF PH =PG PF PD PH ∠GPD =∠FPH △GPD ∽△FPH ∠DGP =∠HFP =45∘∠DBC =45∘∠DBC =∠DFH FH//BC (3)PA P PM ⊥AE M PN ⊥DG N QP ⊥GP GD Q (2)∠PAG =∠PDG PM ⊥AE PN ⊥DG GH ∠DGE PM =PN Rt △PMA ≅Rt △PND PA =PD ABCD ∠ADB =45∘∠APD ==∠GPQ 90∘∠APG =∠DPQ △APG ≅△DPQ QD =AG ∠PGQ =45∘△PGQ GQ =PG 2–√DG−AG =DG−DQ =GQ =PG 2–√=DG−AG PG2–√ABCD ∠BDC =45∘∵,∴,∵平分,∴,∴,∵,∴ .(2)由(1)可知:,,∴,∴,∴,又∵,∴,∴ ,又∵,∴,∴ .(3)连接,过点作于,于,交于 . 由(2)证法,易证,∵,,平分,∴,,∴,∵四边形是正方形,,∴,∴,∴,∴,∵ ,∴是等腰直角三角形,∴,∴,∴ . 【解答】证明:∵四边形是正方形,∴,∵,∴,∵平分,∴,∴,∵,∴ .证明:由可知:,,∴,∴,∴,又∵,∴,∴ ,又∵,∴,∴ .解:连接,过点作于,于,交于 . 由证法,易证,∵,,平分,∴,,∴,∵四边形是正方形,,∴,∴,∴,∴,∵ ,∴是等腰直角三角形,∴,∴,∴ . DG ⊥AE ∠DGE =90∘GH ∠DGE ∠DGH =∠EGH =45∘∠BDC =∠EGH =45∘∠DPH =∠GPF ∠DHG =∠DPA ∠BDC =∠EGH =45∘∠DPH =∠GPF △GPF ∽DPH =PG PD PF PH =PG PF PD PH ∠GPD =∠FPH △GPD ∼△FPH ∠DGP =∠HPP =45∘∠DBC =45∘∠DBC =∠DFH FH//BC PA P PM ⊥AE M PN ⊥DG N QP ⊥GP GD Q ∠PAG =∠PDG PM ⊥AE PN ⊥DG GH ∠DGE PM =PN Rt △PMA ≅Rt △PND PA =PD ABCD ∠AOB =45∘∠APD ==∠GPQ 90∘∠APG =∠DPQ △APG =△DPQ QD =AG ∠PGQ =45∘△PGQ GQ =PG 2–√DG−AG =DG−DQ =GQ =PG 2–√=DG−AG FG2–√(1)ABCD ∠BDC =45∘DG ⊥AE ∠DGE =90∘GH ∠DGE ∠DGH =∠EGH =45∘∠BDC =∠EGH =45∘∠DPH =∠GPF ∠DHG =∠DFA (2)(1)∠BDC =∠EGH =45∘∠DPH =∠GPF △GPF ∽DPH =PG PD PF PH =PG PF PD PH ∠GPD =∠FPH △GPD ∽△FPH ∠DGP =∠HFP =45∘∠DBC =45∘∠DBC =∠DFH FH//BC (3)PA P PM ⊥AE M PN ⊥DG N QP ⊥GP GD Q (2)∠PAG =∠PDG PM ⊥AE PN ⊥DG GH ∠DGE PM =PN Rt △PMA ≅Rt △PND PA =PD ABCD ∠ADB =45∘∠APD ==∠GPQ 90∘∠APG =∠DPQ △APG ≅△DPQ QD =AG ∠PGQ =45∘△PGQ GQ =PG 2–√DG−AG =DG−DQ =GQ =PG 2–√=DG−AG PG 2–√。

九年级下学期第一次月考数学试卷

九年级下学期第一次月考数学试卷

九年级(下)第一次月考数学试卷一.选择题(共10小题,30分)1.﹣9的绝对值等于()A.﹣9 B.9 C.D.2.如图,某江段江水流向经过B、C、D三点拐弯后与原来方向相同,若∠ABC=125°,∠BCD=75°,则∠CDE的度数为()A.20°B.25°C.35°D.50°3.下列各式正确的是()A.6a2﹣5a2=a2B.(2a)2=2a2C.﹣2(a﹣1)=﹣2a+1 D.(a+b)2=a2+b24.如图是由若干个完全相同的小正方体组合而成的几何体,若将小正方体①移动到小正方体②的正上方,下列关于移动后几何体的三视图说法正确的是()A.左视图发生变化B.俯视图发生变化C.主视图发生改变D.左视图、俯视图和主视图都发生改变5.如图,四边形ABCD的对角线AC,BD相交于点O,且AB∥CD,添加下列条件后仍不能判断四边形ABCD是平行四边形的是()A.AB=CD B.AD∥BC C.OA=OC D.AD=BC6.关于x的分式方程的解为负数,则a的取值范围为()A.a>1 B.a<1 C.a<1且a≠2 D.a>1且a≠2 7.如图,⊙O中,ABDC是圆内接四边形,∠BOC=110°,则∠BDC的度数是()A.110°B.70°C.55°D.125°8.掷一枚质地均匀的硬币5次,其中3次正面朝上,2次正面朝下,则再次掷出这枚硬币,正面朝下的概率是()A.1 B.C.D.9.如图,△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠CAA′的度数是()A.50°B.70°C.110°D.120°10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,分析下列四个结论,其中正确结论的个数有()①abc<0;②3a+c>0;③(a+c)2<b2;④4ac﹣8a<b2.A.1个B.2个C.3个D.4个二.填空题(共6小题,18分)11.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.4960亿km.用科学记数法表示1个天文单位是km.12.已知圆锥的底面半径为1cm,高为cm,则它的侧面展开图的面积为cm2.13.《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?”则物价为.14.某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数关系式是y=40x﹣2才能停下来.15.已知菱形ABCD在平面直角坐标系的位置如图所示,A(1,1),B(6,1),AC=4,点P是对角线AC上的一个动点,E(0,3),当△EPD 周长最小时,点P的坐标为.16.在菱形ABCD中,∠B=60°,BC=2cm,M为AB的中点,N为BC上一动点(不与点B重合),将△BMN沿直线MN折叠,使点B落在点E处,连接DE,CE,当△CDE为等腰三角形时,线段BN的长为.三.解答题(共9小题,72分)17.先化简,再求值:(﹣x+1)÷,其中x=﹣2.18.已知关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.19.如图,某数学兴趣小组在活动课上测量学校旗杆的高度.已知小亮站着测量,眼睛与地面的距离AB是1.7米,看旗杆顶部E的仰角为30°;小敏蹲着测量,眼睛与地面的距离CD是0.7米,看旗杆顶部E的仰角为45°.两人相距7米且位于旗杆同侧(点B、D、F在同一直线上).(1)求小敏到旗杆的距离DF;(结果保留根号)(2)求旗杆EF的高度.(结果保留整数,参考数据: 1.4, 1.7)20.某学校计划利用一片空地建一个花圃,花圃为矩形,其中一面靠墙,这堵墙的长度为12米,另三面用总长28米的篱笆材料围成,且计划建造花圃的面积为80平方米.那么这个花圃的长和宽分别应为多少米?21.如图,在平面直角坐标系xOy中,一次函数y1=ax+b(a,b为常数,且a≠0)与反比例函数y2=(m为常数,且m≠0)的图象交于点A (﹣2,1)、B(1,n).(1)求反比例函数和一次函数的解析式;(2)连结OA、OB,求△AOB的面积;(3)直接写出当y1<y2<0时,自变量x的取值范围.22.如图,AB为⊙O的直径,C为⊙O上一点,AD与过点C的切线互相垂直,垂足为点D,AD交⊙O于点E,连接CE,CB.(1)求证:CE=CB;(2)若AC=,CE=2,求CD的长.23.襄阳市某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜.某超市看好甲、乙两种有机蔬菜的市场价值,经调查,这两种蔬菜的进价和售价如表所示:有机蔬菜种类进价(元/kg)售价(元/kg)甲m 16乙n 18(1)该超市购进甲种蔬菜10kg和乙种蔬菜5kg需要170元;购进甲种蔬菜6kg和乙种蔬菜10kg需要200元.求m,n的值;(2)该超市决定每天购进甲、乙两种蔬菜共100kg进行销售,其中甲种蔬菜的数量不少于20kg,且不大于70kg.实际销售时,由于多种因素的影响,甲种蔬菜超过60kg的部分,当天需要打5折才能售完,乙种蔬菜能按售价卖完.求超市当天售完这两种蔬菜获得的利润额y(元)与购进甲种蔬菜的数量x(kg)之间的函数关系式,并写出x的取值范围;(3)在(2)的条件下,超市在获得的利润额y(元)取得最大值时,决定售出的甲种蔬菜每千克捐出2.5a元,乙种蔬菜每千克捐出a元给当地福利院,若要保证捐款后的盈利率不低于20%,求a的最大值(精确到十分位).24.【探究证明】(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明:如图①,在矩形ABCD中,EF⊥GH,EF分别交AD、BC于点E、F,GH分别交AB、DC于点G、H,求证:=;【结论应用】(2)如图②,将矩形ABCD沿EF折叠,使得点B和点D 重合,若AB=2,BC=3.求折痕EF的长;【拓展运用】(3)如图③,将矩形ABCD沿EF折叠.使得点D落在AB 边上的点G处,点C落在点P处,得到四边形EFPG,若AB=2,BC=3,EF=,请求BP的长.25.如图,抛物线y=ax2+bx+12与x轴交于A,B两点(B在A的右侧),且经过点C(﹣1,7)和点D(5,7).(1)求抛物线的函数表达式;(2)连接AD,经过点B的直线l与线段AD交于点E,与抛物线交于另一点F.连接CA,CE,CD,△CED的面积与△CAD的面积之比为1:7,点P为直线l上方抛物线上的一个动点,设点P的横坐标为t.当t为何值时,△PFB的面积最大?并求出最大值;(3)在抛物线y=ax2+b≤﹣n的取值范围.(直接写出结果即可)。

初三数学第一次月考试卷

初三数学第一次月考试卷

一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √-1B. πC. 0.1010010001…(无限循环小数)D. √42. 已知实数a、b满足a + b = 5,ab = 6,则a² + b²的值为()A. 25B. 26C. 29D. 303. 在直角坐标系中,点A(-2,3)关于原点的对称点是()A. (2,-3)B. (-2,-3)C. (-2,3)D. (2,3)4. 若等腰三角形底边长为6,腰长为8,则该三角形的周长为()A. 22B. 24C. 26D. 285. 已知函数y = kx + b(k ≠ 0),当x = 1时,y = 3;当x = 2时,y = 5,则该函数的解析式为()A. y = 2x + 1B. y = 2x + 3C. y = 3x + 1D. y = 3x + 36. 下列各式中,正确的是()A. (-3)² = -9B. (-2)³ = -8C. (-1)⁴ = -1D. (-3)⁴ = 97. 在等腰三角形ABC中,AB = AC,AD为底边BC上的高,若∠BAC = 45°,则∠BAD的度数为()A. 45°B. 90°C. 135°D. 180°8. 若等比数列{an}中,a₁ = 2,q = 3,则第4项a₄的值为()A. 18B. 27C. 54D. 1629. 已知函数y = x² - 4x + 4,则该函数的图像是()A. 双曲线B. 抛物线C. 直线D. 圆10. 在△ABC中,若∠A = 90°,AB = 6,AC = 8,则BC的长度为()A. 10B. 12C. 14D. 16二、填空题(每题5分,共50分)11. 若实数x满足不等式2x - 1 < 3,则x的取值范围是__________。

12. 若等腰三角形底边长为8,腰长为10,则该三角形的面积是__________。

九年级数学下册第一次月考试卷(附答案)

九年级数学下册第一次月考试卷(附答案)

九年级数学下册第一次月考试卷(附答案)一.单选题。

(共40分)1.﹣2的相反数是()A.12B.﹣12C.2D.﹣22.如图所示几何体的左视图是()A. B. C. D.3.一个数是890 000,这个数用科学记数法表示为()A.0.89×106B.89×104C.8.9×106D.8.9×1054.下列计算正确的是()A.x2+x3=x5B.x2•x3=x6C.x6÷x3=x3D.(x3)2=x95.下列图形中,是中心对称图形的是()A. B. C. D.6.如图,将三角尺的直角顶点放在直尺的一边上,若∠1=30°,∠2=50°,则∠3等于()A.20°B.30°C.50°D.80°(第6题图)(第8题图)7.在一次学生运动会上,参加男子跳高的15名运动员成绩如下表所示:则这些运动员成绩的中位数、众数分别是( )A.1.70,1.75B.1.70,1.70C.1.65,1.75D.1.65,1.708.如图,某同学利用标杆BE 测量建筑物的高度,测得标杆BE 为1.2m ,而且该同学测得AB :BC=1:8,则建筑物CD 的高是( )A.9.6mB.10.8mC.12mD.14m9.如图,BD 是菱形ABCD 的对角线,CE ⊥AB 交于点E ,交BD 于点F ,且点E 是AB 中点,则cos ∠BFE 的值是( )A.√3B.√32 C.√33 D.12(第9题图) (第10题图)10.如图,二次函数y=ax 2+bx+c 图象的一部分,对称轴为x=12,且经过点(2,0),下列说法:①abc <0;②﹣2b+c=0;③4a+2b+c <0;④若(﹣52,y 1),(52,y 2)是抛物线上的两点,则y 1<y 2;⑤14b >m (am+b ),(m ≠12),其中说法正确的是( ) A.①②④⑤ B.①②④ C.①④⑤ D.③④⑤ 二.填空题。

烟台市九年级下学期数学第一次月考试卷

烟台市九年级下学期数学第一次月考试卷

烟台市九年级下学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)小丽做了四道题目,正确的是()。

A .B .C .D .2. (2分)下列交通标志图案中,是中心对称图形的是()A .B .C .D .3. (2分) (2019九下·揭西月考) “十二五”期间,将新建保障性住房约37000000套,用于解决中低收入人群和新参加工作的大学生住房的需求,把37000000用科学记数法表示应是()A . 37×106B . 3.7×106C . 3.7×107D . 0.37×1084. (2分) (2019九下·揭西月考) 如图,AB∥CD,O为CD上一点,且∠AOB=90°.若∠B=33°,则∠AOC的度数是().A . 33°5. (2分)一组数据:2,﹣1,0,3,﹣3,2.则这组数据的中位数和众数分别是()A . 0,2B . 1.5,2C . 1,2D . 1,36. (2分)(2016·十堰) 如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC的面积比为()A . 1:3B . 1:4C . 1:5D . 1:97. (2分) (2019九下·揭西月考) 若3x>﹣3y ,则下列不等式中一定成立的是()A .B .C .D .8. (2分) (2019九下·揭西月考) 若实数m,n满足,且m,n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A . 12B . 8C . 10D . 10或89. (2分)(2018·白银) 关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是()A . k≤﹣410. (2分)(2017·沂源模拟) 如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE= AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A . ①②B . ②③C . ①③D . ①④二、填空题 (共6题;共7分)11. (1分)(2016·天津) 计算(2a)3的结果等于________.12. (1分)已知菱形的周长是20cm,一条对角线长为8cm,则菱形的另一条对角线长为________13. (1分) (2019九下·揭西月考) 若3<a<5,则|5﹣a|+|3﹣a|=________.14. (1分) (2019九下·揭西月考) 如图,△ABC内接于⊙O,∠C=45°,半径OB的长为3,则AB的长为________15. (2分)(2019·邹平模拟) 如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形DAB的面积为________.16. (1分) (2019九下·揭西月考) 如图,直线x=t(t>0)与反比例函数的图象分别交于B,C两点,A为y轴上的任意一点,则△ABC的面积为________.三、解答题 (共9题;共77分)17. (5分)计算:(1)3﹣6×;(2)﹣42÷(﹣2)3﹣×.18. (5分)(﹣15)+(﹣6).19. (5分) (2019九下·揭西月考) 某商场将某种商品的售价从原来的每件40元经两次调价后调至每件32.4元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学(下)第一次月考
八年级数学试题
(全卷共28个小题,满分150分,1完卷)
一、选择题(每小题3分,共30分)
1. 把不等式组 ⎩
⎨⎧<-≤-420
1x x 的解集表示在数轴上,正确的是( )
A. B. C. D.
2. 下列多项式,不能运用平方差公式分解的是( )
A.42
+-m B.22y x -- C.12
2-y x D.()()2
2a m a m +--
3. 分式
x
--11
的值为负数,则x 的取值范围是( ) A.x <0 B.x ≥1 C. x <1 D. x >1 4. 下列各式中从左到右的变形,是因式分解的是( )
A.(a +3)(a -3)=a 2-9
B.x 2
+x -5=(x -2)(x +3)+1
C.a 2
b +ab 2
=ab (a +b ) D.x 2
+1=x (x +
x
1) 5. 若3x-2y=0,则
y
x
等于( ) A.
32 B.23 C.32- D. 3
2
或无意义 6. 下列各式错误的是( )
A.(a -b )3 =-(b -a )3
B.(a -b )2 =(b -a )2

C.(a-b )(b -a )=-(a-b )2
D.(-a -b )2=-(a+b )2
7. 如果关于x 的不等式 (a +1) x >a +1的解集为x <1,那么a 的取值范围是( ) A.a >0 B.a <0 C.a >-1
D.a <-1
8. 下列约分正确的是( )
A.3
26x x x = B.0=++y x y x ; C.x
xy x y x 12=++; D.y x y x -=-122.
9. 若a 为整数,且点M (3a -9,2a -10)在第四象限,则a 2
+1的值为( )
A .17
B .16
C .5
D .4
10. 有若干张如图所示的正方形和长方形卡片, 表中所列四种方案能拼成边长
为()b a +的正方形的是( )
二、解答题(每小题4分,共40分)
11. 请写出一个三项式,使它能先提公因式,在运用公式来分解。

你编写的三项式是_______________,分解因式的结果是________________。

12. 计算:=⎪⎪⎭

⎝⎛÷⎪⎭⎫ ⎝⎛2
2
3
42x y x y 。

13. 两根木棒的长分别为7cm 和10cm ,要选择第三根木棒,将它们钉成一个三角形框架,
那么,第三根木棒x (cm )的取值范围是______________ 。

14. 已知一个矩形的面积为4a 2
-2ab +
4
1b 2
,其中一边长为4a -b ,则其周长为 。

15. 已知:1
1
+-=
y y x 用含x 的代数式表示y ,则______=y 。

16. 若不等式组⎩⎨
⎧<>a
2x
x 无解,则a 的取值范围是 。

17. 如图是用四张全等的矩形纸片拼成的图形,请利用图中空白部分的面积的不同表示
方法写出一个关于a 、b 的恒等式 。

18. 已知2-=x 时,分式
a
x b
x +-无意义,4=x 时此分式值为0,则_____=+b a 。

19. 数轴上点A 和点B 表示的数分别是m (m <2且m 不为整数)和2.4,若线段AB 上包
含的整数有5个,则m 的取值范围是 。

20. 在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,
方便记忆.原理是:如对于多项式44y x -,因式分解的结果是))()((22y x y x y x ++-,
(3)
(2)
(1)
a b
b b
a a
若取x =9,y =9时,则各个因式的值是:(x -y )=0,(x +y )=18,(x 2+y 2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式234xy x -,取x =10,y =10时,用上述方法产生的密码是: (写出一个即可)。

三、解答题
21. 分解因式:(每小题4分,共16分)
(1)()()a p a p -+-112 (2)x 2

3
1
222
1
21)3(y xy x +- (4)2-8(a -b )2
22. 计算:(每小题6分,共12分)
①112---m m m ②2
)22444(22-÷+-++--a a
a a a a a
23. 解分式方程:
2
4212x
x x -=-- (8分)
24. 已知222211
111x x x x y x x x
-+-=
÷-+-+,试说明在右边代数式有意义的条件下,不论x 为何值,y 的值不变。

(8分)
25. 已知方程3(2x-5)-a-4=ax 的解适合不等式组⎪⎩
⎪⎨⎧≤-≥-0
54082
x x
求代数式a
a 3152
-的值。

(8分)
26. 如图,直线1l 、2l 相交于点1A l x ,与轴的交点坐标为2(10)l y -,,与轴的交点坐标为
(02)-,,结合图象解答下列问题:
(1)求出直线2l 表示的一次函数的表达式; (2)当x 为何值时,1l 、2l 表示的两个一
次函数的函数值都大于0?(8分)
四、解答题(每小题10分,共
27. 某人拿100元人民币先到集市上买了一袋米,用去60元,然后他又买了4kg 土豆,
每千克3元,买了5kg 青椒,付钱后尚有结余。

如果他买6kg 土豆和6kg 青椒,则所带款就不够用。

求青椒的价格是多少元? (青椒的价格取整数)
28. 据了解,火车票价按“
总里程数
实际乘车里程数
全程参考价⨯”的方法来确定.已知A 站至
H 站总里程数为1 500千米,全程参考价为180元.下表是沿途各站至H 站的里程数:
例如,要确定从B 站至E 站火车票价,其票价为8736.871500
4021130180≈=-⨯(元).
(1) 求A 站至F 站的火车票价(结果精确到1元);
(2) 旅客王大妈乘火车去女儿家,上车过两站后拿着火车票问乘务员:我快到站了
吗?乘务员看到王大妈手中票价是66元,马上说下一站就到了.请问王大妈是在哪一站下车的?(要求写出解答过程)。

相关文档
最新文档