【志鸿优化】2015高考数学(人教,理)一轮课时规范练2 命题及其关系、充分条件与必要条件]
2015届广东高考生物复习优化设计课时规范练讲评课件(二)细胞中的元素和化合物、细胞中的无机物
称为“保滩护堤、促淤造陆的最佳植物”。来自美国东海岸的互花米草在引入我国后,
②将长势相同、生长良好的互花米草幼苗平均分成5组,分别在每天进行0h、3h、
6h、12h和24h的水淹处理。Байду номын сангаас③在处理50d后,采取整株植株并测定自由水与结 合水含量,计算自由水与结合水的比值。实验结果 如下表所示:
D. 缺水时,动物体的负反馈调节能促使机体减少水的散失
答案: CD
解析: 贮藏的种子含有自由水和结合水;通过导管由根系向地上部分运输的水
分,是自由水;植物能通过提高结合水的比例来适应干旱环境; 缺水时,动
物体的负反馈调节能促使机体减少水分的散失,维持水盐平衡。
10. (双选)小明同学的不良反应引起了父母的担忧:感冒频繁,口腔溃殇反复发作,
C. 通过对斐林试剂乙液进行稀释可获得双缩脲试剂B液
D. 脂肪鉴定中使用体积分数为50%酒精的目的是洗去浮色
答案: CD 解析: 由于西瓜瓤中含有色素会影响颜色反应,所以不能用于还原性糖的鉴定; 因为甜菜的块根中所含的糖主要是蔗糖,所以也不能用于还原糖的鉴定。
9. (双选)下列关于生物体与水分的关系,叙述正确的是() A. 贮藏中的种子不含自由水,以保持休眠状态 B. 从根系向地上部分运输的水主要是结合水 C. 适应干旱环境的植物体内的结合水比例较大
5. 下表表示人体肌细胞受剌激后,细胞内钙含量和肌肉收缩力量随时间的变
化关系。表中数据可以说明( )
A. 细胞内钙含量越高肌肉收缩力量越大
B. 肌肉在达到最大收缩力前有钙的释放
C. 钙元素在肌细胞内以碳酸钙的形式存在
D. 肌肉收缩力量随时间不断增强
答案: B 解析: 由题表数据可看出:在肌肉力量未达到最大时,钙含量已经达到 最大。当肌肉力量达到最大时,钙含量下降了,说明肌肉力量达到最
志鸿优化设计高考数学人教版
------精品文档!值得拥有!------课时规范练20解三角形的应用举例一、选择题1.有一长为1的斜坡,它的倾斜角为20°,现高不变,将倾斜角改为10°,则斜坡长为()A.1B.2sin10°C.2cos10°D.cos20°答案:C2.如图,两座相距60m的建筑物AB,CD的高度分别为20m,50m,BD为水平面,则从建筑物AB的顶端)A看建筑物CD的张角为(A.30°B.45°C.60°D.75°答案:B3.在某次测量中,在A处测得同一平面方向的B点的仰角是50°,且到A的距离为2,C点的俯角为70°,且到A的距离为3,则B,C间的距离为()A.B.C.D.答案:D解析:∵∠BAC=120°,AB=2,AC=3,222-2AB·AC cos∠BAC=4+9-2×2×∴BC=AB+AC3×cos120°=19.∴BC=.4.在地上画了一个角∠BDA=60°,某人从角的顶点D出发,沿角的一边DA行走10米后,拐弯往另一边的方向行走14米正好到达∠BDA的另一边BD上的一点,我们将该点记为点N,则N与D之间的距离为()A.14米B.15米C.16米D.17米答案:C解析:如图,设DN=x米,222, cos×10×x 60°则14=10+x-22x-96=0.∴x-10 6)=0.(∴x-16)(x+6(.舍去)∴x=16或x=-.16米∴N与D之间的距离为的仰角测得点A,使C在塔底B的正东方向上,,5.如图为测得河对岸塔AB的高,先在河岸上选一点C)AB的高是(,方向走C沿北偏东15°10米到位置D,测得∠BDC=45°则塔再由点为60°,B.10米A.10米D.10米C.10米D答案: 10.DBC=30°,,BC==,+,10,CD=∠BDC=45°∠BCD=15°90°=105°∠,BCD在解析:△中, 60°=ABC在Rt△中,tan 10=.60°tan AB=BC------值得收藏!!珍贵文档------------精品文档!值得拥有!------6.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A测得水柱顶端的仰角为45°,沿点A向北偏东30°前进100m到达点B,在B点测得水柱顶端的仰角为30°,则水柱的高度是()A.50mB.100mC.120mD.150m答案:A解析:设水柱高度是h m,水柱底端为C,则在△ABC中,A=60°,AC=h,AB=100,BC=h,2222根据余弦定理得(h)=h+100-2·h·100·cos60°,即h+50h-5000=0,即(h-50)(h+100)=0,即h=50,故水柱的高度是50m.二、填空题7.一船以每小时15km的速度向东航行,船在A处看到一个灯塔M在北偏东60°方向,行驶4h后,船到达B处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为km.答案:30解析:如图所示,依题意有AB=15×4=60(km),∠MAB=30°,∠AMB=45°,在△AMB中,由正弦定理得,解得BM=30(km).8.如图,在坡角为15°的体育场看台上,某一列座位所在直线AB与旗杆所在直线MN共面,在该列的第一个座位A和最后一个座位B测得旗杆顶端N的仰角分别为60°和30°,且座位A,B的距离为10米,则旗杆的高度为米.30答案: MN=20sin AMN中,20(AN=米).在Rt△解析:由题可知∠BAN=105°,∠BNA=30°,由正弦定理得,解得米..故旗杆的高度为3060°=30(米)向山顶前进,C对于山坡的斜度为15°的顶端如图,在坡度一定的山坡A处测得山顶上一建筑物CD9. cosθ,则CD=50米,山坡对于地平面的坡角为45°100米到达B后,又测得C对于山坡的斜度为,若. θ=1-答案:50(),BC==中,解析:在△ABC1,BDC=-,sin∠在△BCD中1.ADE=sin∠BDC=- 由图知cosθ=sin∠. 上,则==-已知△ABC的顶点A(5,0)和C(5,0),顶点B在椭圆1中10.在平面直角坐标系xOy,:答案12, 10,a+c=由题易知ABC的三边长,b=b:由正弦定理知,其中a,,c是△解析所以.处Bm海里后在M 的方位角为北偏东α角,前进处测得某岛一船在海上自西向东航行11.如图,,在Aα当,有暗礁现该船继续东行,(,测得该岛的方位角为北偏东β角已知该岛周围n海里范围内包括边界) 该船没有触礁危险,. 时β与满足条件------值得收藏!!珍贵文档------------精品文档!值得拥有!------)α-βαcosβ>n sin(答案:m cos要使该船没有触礁危险需满足BM=,中,根据正弦定理得,解得解析:由题可知,在△ABM该船没有触礁危险.β)时,αcos cosβ>n sin(α-BM sin(90°-β)=>n,所以当α与β的关系满足m三、解答题C在,,30分钟后到达B处A处出发,以每小时40海里的速度沿东偏南50°方向直线航行12.一艘海轮从C,65°,求B其方向是东偏南20°,在B处观察灯塔,其方向是北偏东处有一座灯塔,海轮在A处观察灯塔, .两点间的距离.20(海里)ABC=105°,即AB=40×=CAB=解:如图所示,由已知条件可得∠30°,∠.∠BCA=45°故, 又由正弦定理可得.10(海里)因此,BC==北偏东,某时刻测得一艘匀速直线行驶的船只位于点A如图所示,某海域内一观测站A,如图所示13.A90°且与θ+θ,0°<<相距80海里的位置B,经过1小时又测得该船已行驶到点A北偏东50°A50°且与海里的位置C.相距60;(1)求该船的行驶速度的最近距离.(2)若该船不改变航行方向继续向前行驶,求船在行驶过程中离观测站A=.θ,sinθAC=80海里,60海里,∠BAC=:解(1)如图,AB=, 90°0°<θ<由于=.cosθ所以), 海里由余弦定理得BC==40( /时.所以船的行驶速度为40海里, 中,由正弦定理得(2)在△ABC,所以sin B=.的长是船离观测站的最近距离D,则AD,过A作BC的垂线交BC的延长线于点海里15().,中AD=AB·sin B=80×=Rt在△ABD 15海里.故船在行驶过程中离观测站A的最近距离为BO,测得立柱顶端的仰角和立柱底部BA.14如图,摄影爱好者在某公园处,发现正前方处有一立柱按米处理SA).距地面的距离将眼睛已知摄影爱好者的身高约为米30°的俯角均为,(S------值得收藏!!珍贵文档------------精品文档!值得拥有!------(1)求摄影爱好者到立柱的水平距离AB和立柱的高度OB.(2)立柱的顶端有一长为2米的彩杆MN,且MN绕其中点O在摄影爱好者与立柱所在的平面内旋转.在彩杆转动的任意时刻,摄影爱好者观察彩杆MN的视角∠MSN(设为θ)是否存在最大值?若存在,请求出∠MSN取最大值时cosθ的值;若不存在,请说明理由.解:(1)如图,作SC⊥OB于C,依题意∠CSB=30°,∠ASB=60°.),米可求得AB==3(Rt△SAB中,故在又SA=, .为3米即摄影爱好者到立柱的水平距离AB, 米30°=OC=SC30°,·tan△SCO中,SC=3米,∠CSO=在Rt .2米米,即立柱的高度OB为又BC=SA=米,故OB=2, NOS cos∠.∵cos∠MOS=-(2)存在=-.∴22=. θ=26,于是得SM从而+SN cos =. θ∠MSN 取最大值时,cos又∠MSN为锐角,故当视角四、选做题甲船处有一艘渔船遇险等待营救,在其正东方向相距20海里的B1.如图所示,当甲船位于A处时获悉,角乙船立即朝北偏东θ海里C处的乙船,立即前往营救,同时把消息告知在甲船的南偏西30°相距10) (处营救,则sinθ的值为的方向沿直线前往B D. C. B.A.D答案:222-2AB·AC+AB·cos得10,AB=20,∠BAC=120°,由余弦定理,BC =ACBC.解析:连接在△ABC 中,AC=120°=700,∴BC=10,再由正弦定理,得,∴sin∠ACB=.∴cos∠ACB=.∴sinθ=sin(∠ACB+30°)=.2.如图,在某点B处测得建筑物AE的顶端A的仰角为θ,沿BE方向前进30米至C处测得顶端A 的仰角为2θ,再继续前进10米至D处,测得顶端A的仰角为4θ,则θ的值为.15°答案:,4θ∠,ADC=180°-ADC:由条件知△中,∠ACD=2θ解析10, 30,AD=CD=AC=BC=,,∴则由正弦定理得15°.∴30°,θ=θ为锐角=.cos∴2θ∵2θ,∴2=若沿途测得塔的最大仰角,,望见塔在东北方向米后某人在塔的正东沿着南偏西3.60°的方向前进40 .求塔高为30°,,:解依题意画出图------值得收藏!!珍贵文档------------精品文档!值得拥有!------,45°∠DBF=CD=40米,此时C处,AB为塔高,他沿CD前进,某人在ABAEB=,,这是因为tan∠到测试点的距离最短时到D沿途测塔的仰角,只有B,仰角才最大从C ).(或BCBE,而要求BE,需先求BD.为定值,BE最小时,仰角最大要求出塔高AB,必须先求.∠DBC=135°CD=40,∠BCD=30°,在△BCD中,, 得由正弦定理, .BD==20∴, =15°-135°-30°,在Rt△BED中∠BDE=180°.1)(米)20 15°==10(-sin BE=BD, AEB=∠30°Rt△ABE中,在.)(米)=AB=BE∴tan30°(3-.)所求的塔高为(3-米∴------值得收藏!!珍贵文档------。
【高考复习方案】(全国卷地区专用)2015届高考数学第一轮总复习 第2讲 命题及其关系、充分条件与必
课时作业(二)[第2讲命题及其关系、充分条件与必要条件](时间:30分钟分值:80分)1.有下列四个命题:①“若xy=1,则x,y互为倒数”的逆命题;②“面积相等的三角形全等”的否命题;③“若m≤1,则x2-2x+m=0有实数解”的逆否命题;④“若A∩B=B,则A⊆B”的逆否命题.其中为真命题的是()A.①②B.②③C.④D.①②③2.[2013·某某卷]“(2x-1)x=0”是“x=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.[2013·某某卷] 设点P(x,y),则“x=2且y=-1”是“点P在直线l:x+y-1=0上”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.“a=1”是“复数a2-1+(a+1)i(a∈R,i为虚数单位)是纯虚数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.[2013·某某五校协作体一联] 命题“∃x0∈R,x20+ax0-4a<0”为假命题,是“-16≤a≤0”的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件6.已知a,b,c都是实数,则命题“若a>b,则ac2>bc2”与它的逆命题、否命题、逆否命题这四个命题中,真命题的个数是()A.4 B.2 C.1 D.07.已知a,b∈R,则“a=b”是“a2+b2≥-2ab”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.[2013·乌鲁木齐三模] 设全集U=R+,集合A={x|log0.5x≥-1},B={x||x|>1},则“x∈A”是“x∈∁U B”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.“sinα≠sin β”是“α≠β”的________条件.10.已知命题p:若x>0,y>0,则xy>0,则p的否命题是________________________.11.在空间中,①“若四点不共面,则这四点中任何三点都不共线”;②“若两条直线没有公共点,则这两条直线是异面直线”.以上两个命题中,逆命题为真命题的是________.12.(13分)已知关于x 的方程x 2+(2k -1)x +k 2=0,求使该方程有两个大于1的实数根的充要条件.13.(1)(6分)设x =a +2b 3,y =2a +b 3.条件p :a ≠b ;条件q :ab <xy ,则条件p 是条件q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)(6分)若非空集合A ,B ,C 满足A ∪B =C ,且B 不是A 的子集,则( )A .“x ∈C ”是“x ∈A ”的充分条件但不是必要条件B .“x ∈C ”是“x ∈A ”的必要条件但不是充分条件C .“x ∈C ”是“x ∈A ”的充要条件D .“x ∈C ”既不是“x ∈A ”的充分条件也不是“x ∈A ”的必要条件课时作业(二)1.D 2.B 3.A 4.C 5.A 6.B 7.A 8.B9.充分不必要 10.若x ,y 至少有一个小于或等于0,则xy ≤011.② 12.k <-2 13.(1)C (2)B。
高三数学(基础+难点)《第2讲 命题及其关系、充分条件与必要条件课时训练卷 理 新人教A版
[第2讲 命题及其关系、充分条件与必要条件](时间:35分钟 分值:80分)基础热身1.有下列四个命题:①“若xy =1,则x ,y 互为倒数”的逆命题. ②“面积相等的三角形全等”的否命题;③“若m ≤1,则x 2-2x +m =0有实数解”的逆否命题; ④“若A ∩B =B ,则A ⊆B ”的逆否命题. 其中真命题为( ) A .①② B .②③ C .④ D .①②③2.已知命题p :若x >0,y >0,则xy >0,则p 的否命题是( ) A .若x >0,y >0,则xy ≤0 B .若x ≤0,y ≤0,则xy ≤0C .若x ,y 至少有一个不大于0,则xy <0D .若x ,y 至少有一个小于或等于0,则xy ≤03.设命题p :sin αtan α=cos α,命题q :sin α=cos α,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.[2013·唐山模拟] 设a ,b ∈R ,则“a >1且0<b <1”是“a -b >0且a b>1”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要的条件能力提升5.[2013·商丘模拟] 直线x -y +m =0与圆x 2+y 2-2x -1=0有两个不同交点的一个充分不必要条件是( )A .-3<m <1B .-4<m <2C .0<m <1D .m <16.[2013·山东卷] 设a >0且a ≠1,则“函数f (x )=a x在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.已知a,b,c都是实数,则命题“若a>b,则ac2>bc2”与它的逆命题、否命题、逆否命题这四个命题中,真命题的个数是( )A.4 B.2 C.1 D.08.[2013·石家庄模拟] 已知向量a=(1,2),b=(2,3),则λ<-4是向量m=λa +b与向量n=(3,-1)夹角为钝角的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要的条件9.[2013·东北三省四市联考] 等比数列{a n}的首项为a,公比为q,其前n项和为S n,则数列{S n}为递增数列的充分必要条件是________.10.设p:xx-2<0,q:0<x<m,若p是q成立的充分不必要条件,则m的取值范围是________.11.若“∀x∈R,ax2+2ax+1>0”为真命题,则实数a的取值范围是________.12.(13分)已知关于x的方程x2+(2k-1)x+k2=0,求使方程有两个大于1的实数根的充要条件.难点突破13.(12分)已知下列三个方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0,至少有一个方程有实数根,求实数a的取值范围.课时作业(二)【基础热身】 1.D [解析] ①的逆命题为:“若x ,y 互为倒数,则xy =1”是真命题;②的否命题为:“面积不相等的三角形不是全等三角形”是真命题;命题③是真命题,所以它的逆否命题也是真命题.命题④是假命题,所以它的逆否命题也是假命题.2.D [解析] 否命题应在否定条件的同时否定结论,而原命题中的条件是“且”的关系,所以条件的否定形式是“x ≤0或y ≤0”.3.B [解析] 命题p 成立时sin 2α=cos 2α,得sin α=±cos α,由此可得p 是q 的必要不充分条件.4.A [解析] 显然a >b >0,故a >1且0<b <1⇒a -b >0且a b >1;反之,a -b >0且a b>1⇒a >b 且a -b b >0⇒a >b 且b >0,推不出a >1且0<b <1.故“a >1且0<b <1”是“a -b >0且ab>1”的充分不必要条件. 【能力提升】5.C [解析] 圆心坐标为(1,0),半径为2,直线x -y +m =0与圆有两个不同交点的充要条件是|1+m |2<2,即-3<m <1,充分不必要条件的m 的范围是这个范围的真子集,故只能是选项C 中的范围.6.A [解析] 因为函数f (x )=a x 在R 上是减函数,所以0<a <1,由函数g (x )=(2-a )x 3在R 上是增函数可得2-a >0,即a <2.所以若0<a <1,则a <2,而若a <2推不出0<a <1.所以“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的充分不必要条件.7.B [解析] 原命题是一个假命题,因为当c =0时,不等式的两边同乘上一个0得到的是一个等式;原命题的逆命题是一个真命题,因为当ac 2>bc 2时,一定有c 2≠0,所以必有c 2>0,两端同除一个正数,不等式方向不变,即若ac 2>bc 2,则a >b 成立.根据命题的等价关系,四个命题中有2个真命题.8.A [解析] m =(λ+2,2λ+3),m ,n 的夹角为钝角的充要条件是m ·n <0且m ≠μn (μ<0).m ·n <0,即3(λ+2)-(2λ+3)<0,即λ<-3;若m =μn ,则λ+2=3μ,2λ+3=-μ,解得μ=17,故m =μn (μ<0)不可能,所以,m ,n 的夹角为钝角的充要条件是λ<-3,λ<-4是m ,n 的夹角为钝角的充分不必要条件.9.a >0且q >0 [解析] 由S n +1>S n 得,当q =1时,S n +1-S n =a >0;当q ≠1时,S n +1-S n =aq n>0,即a >0,1≠q >0.综合可得数列{S n }为递增数列的充分必要条件是a >0且q >0.10.(2,+∞) [解析] 命题p 成立时,0<x <2,命题p 是q 成立的充分不必要条件,说明(0,2)是(0,m )的真子集,故m >2,即m 的取值范围是(2,+∞).11.[0,1) [解析] 问题等价于对任意实数x ,不等式ax 2+2ax +1>0恒成立.当a =0时,显然成立;当a ≠0时,只能是a >0且Δ=4a 2-4a <0,即0<a <1.故a 的取值范围是[0,1).12.解:令f (x )=x 2+(2k -1)x +k 2,方程有两个大于1的实数根⇔⎩⎪⎨⎪⎧Δ=(2k -1)2-4k 2≥0,-2k -12>1,f (1)>0,即k <-2.所以使方程x 2+(2k -1)x +k 2=0有两个大于1的实数根的充要条件为k <-2.【难点突破】13.解:假设三个方程:x 2+4ax -4a +3=0,x 2+(a -1)x +a 2=0,x 2+2ax -2a =0都没有实数根,则⎩⎪⎨⎪⎧Δ1=(4a )2-4(-4a +3)<0,Δ2=(a -1)2-4a 2<0,Δ3=(2a )2-4(-2a )<0,即⎩⎪⎨⎪⎧-32<a <12,a >13或a <-1,-2<a <0,得-32<a <-1,∴根据题意知a ≤-32或a ≥-1.。
人教版高三数学一轮复习优质课件:第3讲 充分条件、必要条件与命题的四种形式
解析 由f(x)=ex-mx在(0,+∞)上是增函数,则f′(x)=ex -m≥0恒成立, ∴m≤1. 因此原命题是真命题,所以其逆否命题“若m>1,则函 数f(x)=ex-mx在(0,+∞)上不是增函数”是真命题. 答案 D
考点二 充分条件与必要条件的判定
【例2】 (1)函数f(x)在x处导数存在.若p:f′(x)=0;q:x是f(x)的
∵綈 P 是綈 S 的必要不充分条件,∴P 是 S 的充分不必要条件,
∴P⇒S 且 S P. ∴[-2,10]∈[1-m,1+m]. ∴11-+mm≤>1-0 2,或11-+mm<≥-102,, ∴m≥9,则 m 的取值范围是[9,+∞).
规律方法 充分条件、必要条件的应用,一般表现在参 数问题的求解上.解题时需注意: (1)把充分条件、必要条件或充要条件转化为集合之间的 关系,然后根据集合之间的关系列出关于参数的不等式 (或不等式组)求解; (2)要注意区间端点值的检验.
α≠1,綈
π p:α≠ 4 ,所以该命题的逆否命题是“若
tan
α≠1,则
π α≠ 4 ”.
答案 C
3.(2016·天津卷)设x>0,y∈R,则“x>y”是“x>|y|”的( )
A.充要条件
B.充分不必要条件
C.必要不充分条件
D.既不充分也不必要条件
解析 x>y x>|y|(如x=1,y=-2). 但x>|y|时,能有x>y.
诊断自测 1.判断正误(在括号内打“√”或“×”) 精彩PPT展示
(1)命题“若p,则q”的否命题是“若p,则綈q”.( ) (2)当q是p的必要条件时,p是q的充分条件.( ) (3)“若p不成立,则q不成立”等价于“若q成立,则p成 立”.( )
【志鸿优化设计】高考数学一轮总复习 11.2 排列与组合课件(含高考真题)文 新人教版
不同排法.
考点一
考点二
考点三
第十一章
11.2 排列与组合 15 -15-
(2)先将男生排好,共有A4 4 种排法,再在这 4 个男生的中间及两头的 5 个 4 3 空当中插入 3 个女生有A3 种方案 , 故符合条件的排法共有 A 4 A 5 =1 440 种不 5 同排法. (3)甲、乙两人先排好,有A2 2 种排法,再从余下 5 人中选 3 人排在甲、乙 两人中间,有A3 5 种排法,这时把已排好的 5 人视为一整体,与最后剩下的两人 2 3 3 再排,又有A3 3 种排法,这样总共有A 2 A 5 A 3 =720 种不同排法. (4)先排甲、乙和丙 3 人以外的其他 4 人,有A4 4 种排法;由于甲、乙要相 邻,故再把甲、乙排好,有A2 2 种排法;最后把甲、乙排好的这个整体与丙分 4 2 2 别插入原先排好的 4 人的空当中有A2 5 种排法.这样,总共有A 4 A 2 A 5 =960 种 不同排法. (5)从 7 个位置中选出 4 个位置把男生排好,则有A4 7 种排法.然后再在余 下的 3 个空位置中排女生,由于女生要按身体高矮排列,故仅有一种排法.这 样总共有A4 7 =840 种不同排法.
������ 要借助于排列数公式,公式C������
=
排列数A������ ������ 相同,分母是 m 个元素的全排列数.当 m,n 较小时,可利用该公式
������ 计数;组合数公式还可以表示成C������ =
A������ ������(������-1)(������-2)…(������-������+1) ������ ������ = A������ ������! ������! ������!(������-������)!
高考数学一轮复习 题组层级快练3(含解析)
题组层级快练(三)1.(2015·衡水调研)下列命题中正确的是( )A.若p∨q为真命题,则p∧q为真命题B.“x=5”是“x2-4x-5=0”的充分不必要条件C.命题“若x<-1,则x2-2x-3>0”的否定为:“若x≥-1,则x2-2x-3≤0”D.已知命题p:∃x∈R,x2+x-1<0,则綈p:∃x∈R,x2+x-1≥0答案 B解析若p∨q为真命题,则p,q有可能一真一假,此时p∧q为假命题,故A错;易知由“x=5”可以得到“x2-4x-5=0”,但反之不成立,故B正确;选项C错在把命题的否定写成了否命题;特称命题的否定是全称命题,故D错.2.若命题p:x∈A∩B,则綈p:( )A.x∈A且x∉B B.x∉A或x∉BC.x∉A且x∉B D.x∈A∪B答案 B3.(2015·郑州二模)已知命题p:∀x>2,x3-8>0,那么綈p是( )A.∀x≤2,x3-8≤0 B.∃x>2,x3-8≤0C.∀x>2,x3-8≤0 D.∃x≤2,x3-8≤0答案 B解析由“∀→∃,>→≤”,可知綈p是:∃x>2,x3-8≤0,选B.4.命题p:∀x∈[0,+∞),(log32)x≤1,则( )A.p是假命题,綈p:∃x0∈[0,+∞),(log32)x0>1B.p是假命题,綈p:∀x∈[0,+∞),(log32)x≥1C.p是真命题,綈p:∃x0∈[0,+∞),(log32)x0>1D.p是真命题,綈p:∀x∈[0,+∞),(log32)x≥1答案 C解析因为0<log32<1,所以∀x∈[0,+∞),(log32)x≤1.p是真命题,綈p:∃x0∈[0,+∞),(log32)x0>1.5.(2014·重庆理)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件.则下列命题为真命题的是( )A.p∧q B.綈p∧綈qC.綈p∧q D.p∧綈q答案 D解析依题意,命题p是真命题.由x>2⇒x>1,而x>1 x>2,因此“x>1”是“x>2”的必要不充分条件,故命题q是假命题,则綈q是真命题,p∧綈q是真命题,选D.6.(2015·潍坊一模)已知命题p,q,“綈p为真”是“p∧q为假”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析因为綈p为真,所以p为假,那么p∧q为假,所以“綈p为真”是“p∧q为假”的充分条件;反过来,若“p∧q为假”,则“p真q假”或“p假q真”或“p假q假”,所以由“p∧q为假”不能推出綈p为真.综上可知,“綈p为真”是“p∧q为假”的充分不必要条件.7.若“綈(p∨q)”为假命题,则( )A.p,q均为真命题B.p,q均为假命题C.p,q中至少有一个为真命题D.p,q中至多有一个为真命题答案 C解析綈(p∨q)为假命题,则p∨q为真命题,所以,根据真值表,故选C.8.已知命题p:∃x∈R,mx2+1≤0,命题q:∀x∈R,x2+mx+1>0,若p∧q为真命题,则实数m的取值范围是( )A.(-∞,-2) B.[-2,0)C.(-2,0) D.(0,2)答案 C解析由题可知若p∧q为真命题,则命题p和命题q均为真命题,对于命题p为真,则m<0,对于命题q为真,则m2-4<0,即-2<m<2,所以命题p和命题q均为真命题时,实数m的取值范围是(-2,0).故选C.9.已知命题p:|x-1|≥2,命题q:x∈Z,若“p且q”与“非q”同时为假命题,则满足条件的x 为( )A.{x|x≥3或x≤-1,x∈Z}B.{x|-1≤x≤3,x∈Z}C.{0,1,2}D.{-1,0,1,2,3}答案 C解析由题意知q真,p假,∴|x-1|<2.∴-1<x<3且x∈Z.∴x=0,1,2.10.已知p:1x2-x-2>0,则綈p对应的x的集合为________.答案{x|-1≤x≤2}解析p:1x2-x-2>0⇔x>2或x<-1,∴綈p:-1≤x≤2.11.已知命题p ,若ab =0,则a =0,则綈p 为________;命题p 的否命题为________. 答案 若ab =0,则a ≠0;若ab ≠0,则a ≠0.12.命题“存在实数x 0,y 0,使得x 0+y 0>1”,用符号表示为________;此命题的否定是________(用符号表示),是________(填“真”或“假”)命题.答案 ∃x 0,y 0∈R ,x 0+y 0>1;∀x ,y ∈R ,x +y ≤1;假13.若命题“存在实数x ,使x 2+ax +1<0”的否定是假命题,则实数a 的取值范围为________. 答案 a <-2或a >2解析 因为命题“存在实数x ,使x 2+ax +1<0”的否定是假命题,所以命题“存在实数x ,使x 2+ax +1<0”是真命题,所以a 2-4>0,解得a <-2或a >2.14.已知命题p 1:函数y =2x -2-x 在R 上为增函数,p 2:函数y =2x +2-x在R 上为减函数. 则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是________. 答案 q 1,q 4解析 p 1是真命题,则綈p 1为假命题;p 2是假命题,则綈p 2为真命题. ∴q 1:p 1∨p 2是真命题,q 2:p 1∧p 2是假命题.∴q 3:(綈p 1)∨p 2为假命题,q 4:p 1∧(綈p 2)为真命题. ∴真命题是q 1,q 4.15.若f (x )=x 2-2x ,g (x )=ax +2(a >0),∀x 1∈[-1,2],∃x 0∈[-1,2],使g (x 1)=f (x 0),则实数a 的取值范围是________.答案 (0,12]解析 由于函数g (x )在定义域[-1,2]内是任意取值的,且必存在x 0∈[-1,2],使得g (x 1)=f (x 0),因此问题等价于函数g (x )的值域是函数f (x )值域的子集.函数f (x )的值域是[-1,3],函数g (x )的值域是[2-a,2+2a ],则有2-a ≥-1且2+2a ≤3,即a ≤12.又a >0,故a 的取值范围是(0,12].16.已知a >0,设命题p :函数y =a x 在R 上单调递增;命题q :不等式ax 2-ax +1>0对∀x ∈R 恒成立.若p 且q 为假,p 或q 为真,求实数a 的取值范围.答案 (0,1]∪[4,+∞)解析 ∵y =a x在R 上单调递增,∴p :a >1. 又不等式ax 2-ax +1>0对∀x ∈R 恒成立, ∴Δ<0,即a 2-4a <0,∴0<a <4. ∴q :0<a <4.而命题p 且q 为假,p 或q 为真,那么p ,q 中有且只有一个为真,一个为假. (1)若p 真,q 假,则a ≥4; (2)若p 假,q 真,则0<a ≤1.所以a 的取值范围为(0,1]∪[4,+∞).17.(2015·吉林大学附中一模)设a 为实常数,y =f (x )是定义在R 上的奇函数,当x <0时,f (x )=9x +a 2x+7.若“∃x ∈[0,+∞),f (x )<a +1”是假命题,求实数a 的取值范围.答案 a ≤-87解析 y =f (x )是定义在R 上的奇函数,故可求解析式为f (x )=⎩⎪⎨⎪⎧9x +a 2x-7,x >0,0,x =0,9x +a 2x +7,x <0.又“∃x ≥0,f (x )<a +1”是假命题,则∀x ≥0,f (x )≥a +1是真命题,①当x =0时,0≥a +1,解得a ≤-1;②当x >0时,9x +a 2x -7≥a +1,结合基本不等式有6|a |-7≥a +1,得a ≥85或a ≤-87,①②取交集得a 的取值范围是a ≤-87.1.设命题p :∀x ∈R ,x 2+1>0,则綈p 为( ) A .∃x 0∈R ,x 20+1>0 B .∃x 0∈R ,x 20+1≤0 C .∃x 0∈R ,x 20+1<0 D .∀x ∈R ,x 2+1≤0答案 B解析 由已知,该命题是一个全称命题,故其否定是一个特称命题,则綈p :∃x 0∈R ,x 20+1≤0.故选B.2.命题“∃x 0∈∁R Q ,x 30∈Q ”的否定是( ) A .∃x 0∉∁R Q ,x 30∈Q B .∃x 0∈∁R Q ,x 30∈Q C .∀x ∉∁R Q ,x 3∈Q D .∀x ∈∁R Q ,x 3∉Q答案 D解析 该特称命题的否定为“∀x ∈∁R Q ,x 3∉Q ”.3.若∀a ∈(0,+∞),∃θ∈R ,使a sin θ≥a 成立,则cos(θ-π6)的值为________.答案 12解析 因为∀a ∈(0,+∞),∃θ∈R ,使a sin θ≥a 成立,所以sin θ≥1.又sin θ∈[-1,1],所以sin θ=1,故θ=π2+2k π(k ∈Z ).所以cos(θ-π6)=cos[(π2+2k π)-π6]=cos(π3+2k π)=cosπ3=12. 4.对于中国足球队参与的某次大型赛事,有三名观众对结果作如下猜测:甲:中国非第一名,也非第二名;乙:中国非第一名,而是第三名;丙:中国非第三名,而是第一名.竞赛结束后发现,一人全猜对,一人猜对一半,一人全猜错,则中国足球队得了第________名.答案 一解析 由上可知:甲、乙、丙均为“p 且q ”形式,所以猜对一半者也说了错误“命题”,即只有一个为真,所以可知是丙是真命题,因此中国足球队得了第一名.5.设命题p :若a >b ,则1a <1b ;命题q :1ab<0⇔ab <0.给出下面四个复合命题:①p ∨q ;②p ∧q ;③(綈p )∧(綈q );④(綈p )∨(綈q ).其中真命题的个数有________个.答案 2解析 p 假,q 真,故①④真.。
2015年高考全国卷_解析几何试题的深入思考_李鸿昌
m ) ( 延长线段 OM 与C 交于 m , Ⅱ )若l 过点 ( , 3 四边 形 O 点 P, 求 A P B 能 否 为 平 行 四 边 形? 若 能,
出此l 的斜率 ; 若不能 , 说明理由 . ) 一、 第( 问的探究 Ⅰ 1.解法探究
值. 点评 : 解 法 1 是 常 规 方 法, 也是经典的“ 设而不 ; , 解法 2 用 “ 是求解与斜率有关问题的 点差法” 求” 有效方法 , 可避免直线与椭圆方程的联立 , 减少计算 , 把复杂的椭圆经过伸缩变 量; 解法 3 是 “ 伸缩变换 ” 换为简单的圆 , 再从圆的性质入手 , 起点高 , 落点低 , 高屋建瓴 . 拓展推广 2. 由解法 3 可得到 启 示 : 直 线 OM 的 斜 率 与l 的 斜率的乘积为定值 , 那么这个定值与椭圆的哪些量 有关 ? 这个结论与 圆 的 垂 径 定 理 有 什 么 样 的 联 系 ? 经过探究 , 得到如下结论 .
-1. 寻根溯源 3. , “ 这道考题 问渠那得清如许 , 为有源头活水来 ” 的原形在哪里呢 ? 我 们 翻 翻 课 本 , 做做往年的高考 试题就知道了 . 源头 1 ( 人 教 A 版 选 修 教 材 2—1 中 第 2. 2 椭 圆》 节 P4 中 的 例 3)设 点 A, B 的坐标分别为 1《 ) , ( ) ( 且它们 直线 AM , BM 相交于点 M , 0 5, 0 . -5, 求点 M 的轨迹方程 . 的斜率之积是 - 4 , 9
2 2 2 2 2 2 两式相减得 9 x x 9 y y 1+ 1 =m , 2+ 2 =m ,
那么 , 在双曲线中 , 是否有类似的结论呢 ? 答案 是肯定的 .
2011高三数学一轮精品复习学案:命题及其关系、充分条件与必要条件
2011版高三数学一轮精品复习学案:命题及其关系、充分条件与必要条件【高考目标定位】一、考纲点击1、理解命题的概念;2、了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系;3、理解必要条件、充分条件与充要条件的意义。
二、热点、难点提示1、充分必要条件的判断和四种命题及其关系是本节考查的热点;2、多以选择题、填空题的形式出现,由于知识载体丰富,具有较强的综合性,属于中、低档题目;有时也在解答题中出现,考查对概念的理解与应用,难度不会太大。
【考纲知识梳理】1、命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。
2、四种命题及其关系(1)四种命题(3)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题互为逆命题或互为命题,它们的真假性没有关系;注:否命题是命题的否定吗?答:不是。
命题的否命题既否定命题的条件,又否定命题的结论,而命题的否定只否定命题的结论。
3、充分条件与必要条件(1)“若p ,则q ”为真命题,记p q ⇒,则p 是q 的充分条件,q 是p 的必要条件。
(2)如果既有p q ⇒,又有q p ⇒,记作p q ⇔,则p 是q 的充要条件,q 也是p 的充要条件。
【热点难点突破】一、命题的关系与真假的判断 1、相关链接(1)对于命题真假的判定,关键是分清命题的条件与结论,只有将条件与结论分清,再结合所涉及的知识才能正确地判断命题的真假。
(2)四种命题的关系的应用掌握原命题和逆否命题,否命题和逆命题的等价性,当一个命题直接判断它的真假不易进行时,可以转而判断其逆否命题的真假。
注:当一个命题有大前提而写出其他三种命题时,必须保留大前提,大前提不动。
2、例题解析〖例1〗设原命题是“已知p 、q 、m 、n 是实数,若p=q ,m=n ,则p +m=q +n”写出它的逆命题、否命题、逆否命题,并判断其真假.解:逆命题:“已知p 、q 、m 、n ∈R ,若p +m=q +n ,则p=q ,m=n(假).原命题:“已知p 、q 、m 、n ∈R ,若p≠q ,m≠n ,则p +m≠q +n”(假)逆否命题:“已知p 、q 、m 、n∈R,若p +m≠q+n ,则p≠q 或m≠n”(真) 注,否命题“若p≠q,m≠n”应理解为“p≠q 或m≠n”即是指:①p≠q,但m=n ,②p=q 但m≠n,而不含p≠q 且m≠n.因为原命题中的条件:“若p=q ,m=n .”应理解为“若p=q 且m=n ,”而这一语句的否定应该是“p≠q 或m≠n”.〖例2〗写出下列命题的逆命题、否命题、逆否命题并判断其真假。
高考数学大一轮复习 第一章 第2节 命题及其关系、充分条件与必要条件课件
精品
2
一、四种命题及其关系 1.四种命题间的相互关系
若q则p
若綈p则綈q
若綈q则綈p
精品
3
2.四种命题的真假关系 (1)两个命题互为逆否命题,它们有相同 的真假性; (2)两个命题互为逆命题或互为否命题,它们的真假性 没 有关系 .
精品
4
二、充分条件与必要条件 1.如果 p⇒q,则 p 是 q 的_充__分_条件,q 是 p 的_必__要_条件. 2.如果 p⇔q,那么 p 与 q 互为_充__要__条__件_. 3.如果 p q,且 q ⇒p,则 p 是 q 的_既__不__充__分__又__不__必__ __要__条__件__._____
2.判定命题为真,必须推理证明;若说明为假,只需举 出一个反例.互为逆否命题是等价命题,根据需要,可相互 转化.
精品
15
对点训练 以下关于命题的说法正确的有________(填 写所有正确命题的序号).
①命题“若 x>y,则 x>|y|”的逆命题是真命题; ②命题“若 x=1,则 x2+x-2=0”的否命题是真命题; ③命题“若 x2+y2=0,则 x=y=0”的逆否命题为“若 x≠0 或 y≠0,则 x2+y2≠0”; ④命题“若 a∈M,则 b∉M”与命题“若 b∈M,则 a∉M” 等价.
【答案】 (1)B (2)B
精品
21
考向三 [006] 充分条件与必要条件的应用 设命题 p:2x2-3x+1≤0;
命题 q:x2-(2a+1)x+a(a+1)≤0,若綈 p 是綈 q 的必 要不充分条件,则实数 a 的取值范围是________.
【答案】 0,12
精品
22
规律方法 3 1.借助命题间的等价关系直接建立参数 a 的 不等关系,避免了繁琐转换计算,将失误降到最低.
高考数学一轮复习测试卷2-人教版高三全册数学试题
2015届高三一轮复习测试卷二文科数学考查X 围:集合、逻辑、函数、导数、复数、圆锥曲线、概率第Ⅰ卷一、选择题(本大题共12小题,每小题5分,满分60分.) 1.复数z=ii++-23 的共轭复数是( ) A .2+i B .2-i C .-1+i D .-1-i 2.若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于( ) A.M N ⋃ B.M N ⋂ C.()()U U C M C N ⋃ D.()()U U C M C N ⋂ 3.下列命题中,真命题是 ( )A .2,x R x x ∀∈≥ B .命题“若21,1x x ==则”的逆命题C .2,x R x x ∃∈≥ D .命题“若,sin sin x y x y ≠≠则”的逆否命题4.函数21()4ln(1)f x x x =+-+的定义域为( )(A)[2,0)(0,2]- (B)(1,0)(0,2]- (C)[2,2]- (D)(1,2]-5.已知()1-x f =x x 62+,则()x f 的表达式是( )A .542-+x xB .782++x xC .322-+x xD .1062-+x x 6.定义在R 上的偶函数f (x ),对任意x 1,x 2∈[0,+∞)(x 1≠x 2),有f x 2-f x 1x 2-x 1<0,则( ).A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)7.设a =log 0.50.8,b =log 1.10.8,c =1.10.8,则a ,b ,c 的大小关系为( ). A .a <b <c B .b <a <c C .b <c <a D .a <c <b8.函数()()14214xx f x f x x ⎧⎛⎫≥⎪ ⎪=⎝⎭⎨⎪+<⎩则f (log 23)等于().A .1 B.18 C.116D.1249.函数13y x x =-的图象大致为().10. 与椭圆1422=+y x 共焦点且过点P )1,2(的双曲线方程是:( ) A .1422=-y x B .1222=-y x C .13322=-y x D .1222=-y x 11.“a =-1”是“函数2()21f x ax x =+-只有一个零点”的( ) A .充分必要条件 B .充分不必要条件C .必要不充分条件D .非充分必要条件12.已知函数()y f x =的周期为2,当[1,1]x ∈-时2()f x x =,那么函数()y f x =的图象与函数|lg |y x =的图象的交点共有( )A.10个B.9个C.8个D.1个第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.将答案填在答题卷相应位置上.13.已知2x =5y=10,则1x +1y=________.14.设函数()3cos 1f x x x =+,若()11f a =,则()f a -=15.设抛物线的顶点在原点,其焦点F 在x 轴上,抛物线上的点(2,)P k 与点F 的距离为3,则抛物线方程为。
【志鸿优化设计】高考数学(人教版,文科)一轮总复习:课时规范练2 命题及其关系、充分条件与必要条件
课时规范练2命题及其关系、充分条件与必要条件一、选择题1.设原命题:若a+b≥2,则a,b中至少有一个不小于1,则原命题与其逆命题的真假情况是()A.原命题真,逆命题假B.原命题假,逆命题真C.原命题与逆命题均为真命题D.原命题与逆命题均为假命题答案:A解析:可以考虑原命题的逆否命题,即a,b都小于1,则a+b<2,显然为真.其逆命题,即a,b中至少有一个不小于1,则a+b≥2,为假,如a=1.2,b=0.2,则a+b<2.2.下面四个条件中,使a>b成立的充分而不必要的条件是()A.a>b+1B.a>b-1C.a2>b2D.a3>b3答案:A解析:A选项中a>b+1>b,所以充分性成立,但必要性不成立,所以a>b+1为a>b成立的充分不必要条件,故选A.3.命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是()A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数答案:C解析:由于“x,y都是偶数”的否定表达是“x,y不都是偶数”,“x+y是偶数”的否定表达是“x+y不是偶数”,故原命题的逆否命题为“若x+y不是偶数,则x,y不都是偶数”,故选C.4.设p:log2x<0,q:>1,则p是q的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件答案:B解析:由题可知p:log2x<0,解得0<x<1;q:>1,解得x<1.所以p是q的充分不必要条件,故选B.5.(2013福建高考)已知集合A={1,a},B={1,2,3},则“a=3”是“A⊆B”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案:A解析:若a=3,则A={1,3}⊆B,故a=3是A⊆B的充分条件;而若A⊆B,则a不一定为3,当a=2时,也有A⊆B.故a=3不是A⊆B的必要条件.故选A.6.“≤-2”是“a>0且b<0”的()A.必要不充分条件B.充要条件C.充分不必要条件D.既不充分又不必要条件答案:A解析:+2=≤0⇒ab<0⇒故选A.二、填空题7.命题“若m>0,则关于x的方程x2+x-m=0有实数根”与它的逆命题、否命题、逆否命题中,真命题的个数为.答案:2解析:先写出原命题的逆命题、否命题、逆否命题,逐一判断.或只写出逆命题,判断原命题和逆命题的真假即可,原命题为真,逆命题为假.8.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是. 答案:若a+b+c≠3,则a2+b2+c2<39.设有如下三个命题:甲:m∩l=A,m,l⊂α,m,l⊄β;乙:直线m,l中至少有一条与平面β相交;丙:平面α与平面β相交.当甲成立时,乙是丙的条件.答案:充要解析:由题意乙⇒丙,丙⇒乙.故当甲成立时,乙是丙的充要条件.10.已知p是r的充分不必要条件,q是r的充分条件,s是r的必要条件,q是s的必要条件.现有下列命题:①s是q的充要条件;②p是q的充分条件而不是必要条件;③r是q的必要条件而不是充分条件;④p 是s的必要条件而不是充分条件;⑤r是s的充分条件而不是必要条件.则正确命题的序号是.答案:①②④解析:由题意知∴s⇔q,①正确;p⇒r⇒s⇒q,∴p⇒q,但qp,②正确;同理判断③⑤不正确,④正确.11.给定下列几个命题:①“x=”是“sin x=”的充分不必要条件;②若“p∨q”为真,则“p∧q”为真;③“等底等高的三角形是全等三角形”的逆命题.其中为真命题的是.(填上所有正确命题的序号)答案:①③解析:①中,若x=,则sin x=,但sin x=时,x=+2kπ或+2kπ(k∈Z).故“x=”是“sin x=”的充分不必要条件,故①为真命题;②中,令p为假命题,q为真命题,有“p∨q”为真命题,而“p∧q”为假命题,故②为假命题;③为真命题.三、解答题12.已知p:≤0,q:4x+2x-m≤0,若p是q的充分条件,求实数m的取值范围.解:由≤0,得0<x≤1;由4x+2x-m≤0,得m≥4x+2x=,因为0<x≤1,所以m≥=6,即m≥6.13.指出下列各组命题中,p是q的什么条件?(1)p:a+b=2,q:直线x+y=0与圆(x-a)2+(y-b)2=2相切;(2)p:|x|=x,q:x2+x≥0;(3)设l,m均为直线,α为平面,其中l⊄α,m⊂α,p:l∥α,q:l∥m.解:(1)若a+b=2,圆心(a,b)到直线x+y=0的距离d==r,∴直线与圆相切.反之,若直线与圆相切,则|a+b|=2,∴a+b=±2,故p是q的充分不必要条件.(2)若|x|=x,则x2+x=x2+|x|≥0成立.反之,若x2+x≥0,即x(x+1)≥0,则x≥0或x≤-1.当x≤-1时,|x|=-x≠x,因此,p是q的充分不必要条件.(3)∵l∥α无法得到l∥m,但l∥m,l⊄α,m⊂α⇒l∥α,∴p是q的必要不充分条件.14.求证:关于x的方程ax2+bx+c=0有一个根为1的充要条件是a+b+c=0.证明:必要性:若方程ax2+bx+c=0有一个根为1,则x=1满足方程ax2+bx+c=0,∴a+b+c=0.充分性:若a+b+c=0,则b=-a-c,∴ax2+bx+c=0可化为ax2-(a+c)x+c=0,∴(ax-c)(x-1)=0,∴当x=1时,ax2+bx+c=0,∴x=1是方程ax2+bx+c=0的一个根.15.设函数f(x)=lg(x2-x-2)的定义域为集合A,函数g(x)=的定义域为集合B.已知α:x∈A∩B,β:x满足2x+p≤0,且α是β的充分条件,求实数p的取值范围.解:依题意,得A={x|x2-x-2>0}=(-∞,-1)∪(2,+∞),B==(0,3],所以A∩B=(2,3].设集合C={x|2x+p≤0},则x∈.因为α是β的充分条件,所以(A∩B)⊆C.则需满足3≤-⇒p≤-6.故实数p的取值范围是(-∞,-6].四、选做题1.(2013浙江高考)若α∈R,则“α=0”是“sinα<cosα”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:A解析:当α=0时,sinα<cosα成立;若sinα<cosα,α可取等值,所以“α=0”是“sinα<cosα”的充分不必要条件.故选A.2.已知下列四个命题:①a是正数;②b是负数;③a+b是负数;④ab是非正数.选择其中两个作为题设,一个作为结论,写出一个逆否命题是真命题的复合命题.答案:若a是正数且a+b是负数,则一定有b是负数解析:逆否命题为真命题,即原命题为真.a是正数且a+b是负数,则一定有b是负数.3.已知数列{a n}的前n项和S n=p n+q(p≠0且p≠1),求证:数列{a n}是等比数列的充要条件是p≠0,p≠1且q=-1.证明:先证充分性:当p≠0,p≠1,且q=-1时,S n=p n-1.∴S1=p-1,即a1=p-1.又n≥2时,a n=S n-S n-1,∴a n=(p-1)p n-1(n≥2).又n=1时也满足,∴a n=(p-1)·p n-1(n∈N+),∴{a n}是等比数列.再证必要性:当n=1时,a1=S1=p+q,当n≥2时,a n=S n-S n-1=(p-1)·p n-1.由于p≠0,p≠1,∴当n≥2时,{a n}是等比数列.要使{a n}(n∈N+)是等比数列,则=p,即(p-1)p=p(p+q),∴q=-1,即{a n}是等比数列的充要条件是p≠0且p≠1且q=-1.。
2020届高三数学一轮复习人教版通用教师讲义:第2讲命题及其关系含详细答案
第2讲命题及其关系、充分条件与必要条件1.命题(1)命题的概念:数学中把用语言、符号或式子表达的,能够判断的陈述句叫作命题.其中的语句叫作真命题, 的语句叫作假命题.(2)四种命题及其相互关系图1-2-1特别提醒:若两个命题互为逆否命题,则它们有相同的真假性.2.充分条件、必要条件与充要条件(1)如果p⇒q,则p是q的条件.(2)如果q⇒p,则p是q的条件.(3)如果既有p⇒q,又有q⇒p,记作p⇔q,则p是q的条件.常用结论1.充要条件的两个结论:(1)若p是q的充分不必要条件,q是r的充分不必要条件,则p是r的充分不必要条件;(2)若p是q的充分不必要条件,则q是p的充分不必要条件.2.题组一常识题1.[教材改编]对于下列语句:①垂直于同一直线的两条直线必平行吗?②作△ABC∽△A'B'C'.③x2+2x-3<0.④四边形的内角和是360°.其中是命题的是.(填序号)2.[教材改编]有下面4个命题:①集合N中最小的数是1;②若-a不属于N,则a 属于N;③若a∈N,b∈N,则a+b的最小值为2;④x2+1=2x的解集可表示为{1,1}.其中真命题的个数为.3.[教材改编]命题“若整数a不能被2整除,则a是奇数”的逆否命题是.4.[教材改编]“点P(x,y)在第一象限”是“x+y>1”的条件. 题组二常错题◆索引:命题的条件与结论不明确;含有大前提的命题的否命题易出现否定大前提的情况;真、假命题的推理考虑不全面;对充分必要条件判断错误.5.命题“若a2+b2=0,a,b∈R,则a=b=0”的逆否命题是.6.已知命题“对任意a,b∈R,若ab>0,则a>0”,则它的否命题是.7.若命题“ax2-2ax-3>0不成立”是真命题,则实数a的取值范围是.8.条件p:x>a,条件q:x≥2.①若p是q的充分不必要条件,则a的取值范围是;②若p是q的必要不充分条件,则a的取值范围是.9.已知p是r的充分不必要条件,s是r的必要条件,q是s的必要条件,那么p是q 的条件.探究点一四种命题及其相互关系例1 (1)对于命题“单调函数不是周期函数”,下列说法正确的是( )A.逆命题为“周期函数不是单调函数”B.否命题为“单调函数是周期函数”C.逆否命题为“周期函数是单调函数”D.以上都不正确(2)给出以下四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤-1,则x2+x+q=0有实根”的逆否命题;④若ab是正整数,则a,b都是正整数.其中为真命题的是.(写出所有真命题的序号)[总结反思](1)求一个命题的其他三种命题时,需注意:①对于不是“若p,则q”形式的命题,需先改写为“若p,则q”的形式;②若命题有大前提,写其他三种命题时需保留大前提.(2)判断一个命题为真命题,要给出推理证明;判断一个命题为假命题,只需举出反例.(3)当不易直接判断一个命题的真假时,根据互为逆否命题的两个命题同真同假,可转化为判断其等价命题的真假.变式题(1)已知命题p:正数a的平方不等于0,命题q:若a不是正数,则它的平方等于0,则q是p的( )A.逆命题B.否命题C.逆否命题D.否定(2)以下关于命题的说法正确的是.(填写所有正确说法的序号)①“若log2(a+1)>1,则函数f(x)=logax(a>0,a≠1)在其定义域内是增函数”是真命题;②命题“若a≠0,则a(b+1)≠0”的否命题是“若a=0,则a(b+1)=0”;③命题“若x,y都是偶数,则(x+1)(y+1)是偶数”的逆命题为真命题;④命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”等价.探究点二充分、必要条件的判定例2 (1)[2018·北京卷]设a,b均为单位向量,则“|a-3b|=|3a+b|”是“a⊥b”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件(2)“函数f(x)=a+ln x(x≥e)存在零点”是“a<-1”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[总结反思]充分条件、必要条件的判定方法有定义法、集合法和等价转化法.三种不同的方法适用于不同的类型:定义法适用于定义、定理的判断问题;集合法多适用于命题中涉及参数的取值范围的推断问题;等价转化法适用于条件和结论中带有否定性词语的命题.变式题(1)[2018·深圳一模]已知数列{a n}是等比数列,则“a2>a1”是“数列{a n}为递增数列”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件(2)“α=”是“sin 2α-cos 2α=1”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件探究点三充分、必要条件的应用例3 方程ax2+2x+1=0至少有一个负实根的充要条件是( )A.0<a≤1B.a<1C.a≤1D.0<a≤1或a<0[总结反思]充分条件、必要条件的应用一般表现在参数问题的求解上,解题时通常把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.解题过程中要注意检验区间端点值.变式题(1)下面四个条件中,使a>b成立的必要而不充分条件是( )A.a-1>bB.a+1>bC.|a|>|b|D.a3>b3(2)[2018·衡阳4月调研]已知p:实数m满足m2+12a2<7am(a>0),q:方程-+-=1表示焦点在y轴上的椭圆,且p是q的充分不必要条件,则a的取值范围为.第2讲命题及其关系、充分条件与必要条件考试说明 1.理解命题的概念;2.了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系;3.理解必要条件、充分条件与充要条件的含义.【课前双基巩固】知识聚焦1.真假判断为真判断为假2.(1)充分(2)必要(3)充要对点演练1.④[解析]①是疑问句,不是命题;②是祈使句,不是命题;③不能判断真假,不是命题;④是命题.2.0[解析]①为假命题,集合N中最小的数是0;②为假命题,如a=不满足;③为假命题,如a=0,b=1,则a+b=1,比2小;④为假命题,所给集合中的元素不满足互异性.3.若整数a不是奇数,则a能被2整除[解析]以原命题结论的否定作条件、原命题条件的否定作结论得出逆否命题.4.既不充分也不必要[解析]取x=,y=,知充分性不成立;取x=-1,y=3,知必要性不成立.故为既不充分也不必要条件.5.若a≠0或b≠0,a,b∈R,则a2+b2≠0[解析]“若p,则q”的逆否命题为“若q,则p”,又a=b=0的实质为a=0且b=0,故其否定为a≠0或b≠0.6.对任意a,b∈R,若ab≤0,则a≤0[解析]“对任意a,b∈R”是大前提,在否命题中不变,又因为ab>0,a>0的否定分别为ab≤0,a≤0,所以原命题的否命题为“对任意a,b∈R,若ab≤0,则a≤0”.7.[-3,0] [解析]由已知可得ax2-2ax-3≤0恒成立.当a=0时,-3≤0恒成立;当a≠0时,得解得-3≤a<0.故-3≤a≤0.8.①a≥2②a<2[解析]①因为p是q的充分不必要条件,所以{x|x>a}⫋{x|x≥2},则a的取值范围是a≥2.②因为p是q的必要不充分条件,所以{x|x≥2}⫋{x|x>a},则a的取值范围是a<2.9.充分不必要[解析]依题意有p⇒r,r⇒s,s⇒q,∴p⇒r⇒s⇒q.又∵r⇒/ p,∴q⇒/ p.故p是q的充分不必要条件.【课堂考点探究】例1[思路点拨](1)根据四种命题的构成判断即可.(2)对于①②,按照要求写出相应的逆命题、否命题,再判断真假;对于③,可直接利用原命题与逆否命题的等价性判断原命题的真假;对于④,直接判断.(1)D(2)①③[解析](1)根据四种命题的构成可知,选项A,B,C均不正确.故选D.(2)①“若x+y=0,则x,y互为相反数”的逆命题为“若x,y互为相反数,则x+y=0”,显然为真命题;②否命题为“不全等的三角形的面积不相等”,而不全等的三角形的面积也可能相等,故为假命题;③原命题为真,所以它的逆否命题也为真,故③为真命题;④ab是正整数,但a,b不一定都是正整数,例如a=-1,b=-2,故④为假命题.所以答案是①③.变式题(1)B(2)①②④[解析](1)“正数a的平方不等于0”即“若a是一个正数,则它的平方不等于0”,其否命题为“若a不是正数,则它的平方等于0”,所以选B.(2)①正确,由log2(a+1)>1,得a+1>2,所以a>1,所以f(x)=log a x在其定义域内是增函数.②正确,由命题的否命题的定义知,该说法正确.③不正确,原命题的逆命题为“若(x+1)(y+1)是偶数,则x,y都是偶数”,是假命题,如(3+1)×(4+1)=20为偶数,但x=3,y=4.④正确,两者互为逆否命题,因此两命题等价.例2[思路点拨](1)将已知等式两边同时平方,可得出向量a,b的关系,从而得出结论;(2)通过研究单调性,求出函数存在零点的充要条件为a≤-1,从而得出结论.(1)C(2)B[解析](1)将|a-3b|=|3a+b|两边平方,得a2-6a·b+9b2=9a2+6a·b+b2.∵a,b均为单位向量,∴a·b=0,即a⊥b.反之,由a ⊥b可得|a-3b|=|3a+b|.故为充分必要条件.(2)因为f'(x)=>0,所以若函数f(x)=a+ln x(x≥e)存在零点,则f(e)≤0,即a≤-1,因此“函数f(x)=a+ln x(x≥e)存在零点”是“a<-1”的必要不充分条件,故选B.变式题(1)B(2)A[解析](1)当a1=-1,a2=2,公比q=-2时,虽然有a1<a2,但是数列{a n}不是递增数列,所以充分性不成立;反之,当数列{a n}是递增数列时,必有a1<a2,因此必要性成立.故选B.(2)由sin 2α-cos 2α=1得sin-=,所以2α-=2kπ+,k∈Z或2α-=2kπ+,k∈Z,即α=kπ+,k∈Z或α=kπ+,k∈Z,所以“α=”是“sin 2α-cos 2α=1”的充分而不必要条件,故选A.例3[思路点拨]直接法,分情况讨论;特例法,结合选项取特殊值验证.C[解析]方法一(直接法):当a=0时,x=-,符合题意.当a≠0时,若方程的两根为一正一负,则-⇒ ⇒a<0;若方程的两根均为负,则--⇒ ⇒0<a≤1.综上所述,所求充要条件是a≤1.方法二(排除法):当a=0时,原方程有一个负实根,可以排除A,D;当a=1时,原方程有两个相等的负实根,可以排除B.所以选C.变式题(1)B(2)[解析](1)“a>b”不能推出“a-1>b”,故选项A不是“a>b”的必要条件,不满足题意;“a>b”能推出“a+1>b”,但“a+1>b”不能推出“a>b”,故满足题意;“a>b”不能推出“|a|>|b|”,故选项C不是“a>b”的必要条件,不满足题意;“a>b”能推出“a3>b3”,且“a3>b3”能推出“a>b”,故是充要条件,不满足题意.故选B.(2)由a>0,m2-7am+12a2<0,得3a<m<4a,即p:3a<m<4a,a>0.由方程-+-=1表示焦点在y轴上的椭圆,可得2-m>m-1>0,解得1<m<,即q:1<m<.因为p是q的充分不必要条件,所以或解得≤a≤,所以实数a的取值范围是.【备选理由】例1考查对命题真假的判断,是一个开放式命题,答案不唯一,有利于学生发散思维;例2强化了充分、必要条件的判断方法和余弦定理、基本不等式的应用;例3主要考查了充要条件的判断;例4是以简单不等式的方式考查充分、必要条件的应用.例1[配合例1使用][2018·北京通州区三模]能够说明“设a,b,c是任意实数,若a>b>c,则a2>ab>c2”是假命题的一组整数a,b,c的值依次为.[答案] 1,0,-1(此题答案不唯一)[解析]当a=1,b=0,c=-1时,满足a>b>c,不满足a2>ab>c2,∴命题是假命题.故答案可以为1,0,-1.例2[配合例2使用][2018·武汉4月调研]在△ABC中,内角A,B,C的对边分别为a,b,c.已知条件p:a≤,条件q:A≤,那么p是q成立的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件[解析] A由条件p:a≤,知cos A=-≥-=-≥-=,当且仅当b=c=a时取等号,又A∈(0,π),∴0<A≤,∴A≤,即q成立.取A=,C=,B=,满足条件q,但是a>.∴p是q成立的充分而不必要条件.故选A.例3[配合例2使用][2018·莆田六中三模]在等比数列{a n}中,a2=-2,则“a4,a12是方程x2+3x+1=0的两根”是“a8=-1”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件[解析] C因为a4,a12是方程x2+3x+1=0的两根,所以a4a12=1,因此=1,又因为a2=-2<0,所以a8<0,即a8=-1.从而“a4,a12是方程x2+3x+1=0的两根”是“a8=-1”的充要条件,故选C.例4[配合例3使用][2018·南昌模拟]在实数范围内,使得不等式>1成立的一个充分而不必要条件是( )A.x>0B.x<1C.0<x<1D.0<x<[解析]D∵>1,∴-<0,∴0<x<1.∵ ⫋(0,1),∴0<x<为不等式>1成立的一个充分而不必要条件,故选D.。
《志鸿优化设计》2022年高考数学人教A版理科一轮复习教学案:4-4坐标系与参数方程
《志鸿优化设计》2022年高考数学人教A 版理科一轮复习教学案:4-4坐标系与参数方程 考纲要求1.明白得坐标系的作用.2.了解在平面直角坐标系伸缩变换作用下平面图形的变化情形.3.能在极坐标系中用极坐标表示点的位置,明白得在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标与直角坐标的互化.4.能在极坐标系中给出简单图形的方程,通过比较这些图形在极坐标系与直角坐标系中的方程,明白得用方程表示平面图形时选择适当坐标系的意义.5.了解参数方程,了解参数的含义.6.能选择适当的参数写出直线、圆和椭圆的参数方程.1.极坐标系在平面内取一个定点O ,叫做____;自极点O 引一条射线Ox ,叫做____;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),如此就建立了一个极坐标系.设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的____,记为ρ;以极轴Ox 为始边,射线O M 为终边的角xOM 叫做点M 的极角,记为θ,有序数对(ρ,θ)叫做点M 的极坐标,记作________.极坐标系的四要素:(1)极点;(2)极轴;(3)长度单位;(4)角度单位和它的正方向,四者缺一不可.由极径的意义知ρ≥0,当极角θ的取值范畴是[0,2π)时,平面上的点(除去极点)与极坐标(ρ,θ)(ρ≠0)建立________关系,约定极点的极坐标是极径______,极角可取任意角.2.直角坐标与极坐标的互化把直角坐标系的原点作为极点,x 轴正半轴作为极轴,并在两坐标系中取相同的长度单位.设M 是平面内的任意一点,它的直角坐标、极坐标分别为(x ,y)和(ρ,θ),则x =ρcos θ,y =ρsin θ;也可化为关系式ρ2=x2+y2,tan θ=y x(x ≠0).3.直线的参数方程(1)过点P0(x0,y0),倾斜角为α的直线l 的参数方程是⎩⎪⎨⎪⎧x =x0+tcos α,y =y0+tsin α(t 为参数),通常称该方程为直线l 的参数方程的标准形式,其中t 表示P0(x0,y0)到l 上一点P(x ,y)的有向线段P0P →的数量.t >0时,P0P →的方向向上;t <0时,P0P →的方向向下;t =0时,P 与P0重合. (2)直线l 的参数方程的一样形式是⎩⎪⎨⎪⎧x =x0+at ,y =y0+bt (t 为参数),该直线倾斜角α的正切为tan α=b a (α=0°或α=90°时例外).当且仅当a2+b 2=1且b >0时,上式中的t 才具有(1)中的t 所具有的几何意义. 4.圆的参数方程圆心在M0(x0,y0),半径为r 的圆的参数方程为______________________.[来源:1]5.椭圆的参数方程椭圆x2a2+y2b2=1的参数方程为__________________. 1.若直线⎩⎪⎨⎪⎧ x =1-2t ,y =2+3t (t 为参数)与直线4x +ky =1垂直,求常数k 的值. 2.已知直线l :⎩⎪⎨⎪⎧x =a +4t ,y =-1-2t (t 为参数),圆C 的极坐标方程为ρ=22cos ⎝⎛⎭⎪⎫θ+π4. (1)求圆心C 到直线l 的距离;(2)若直线l 被圆C 截得的弦长为655,求a 的值.3.已知圆O1和圆O2的极坐标方程分别为ρ=2,ρ2-22ρcos ⎝⎛⎭⎪⎫θ-π4=2. (1)把圆O1和圆O2的极坐标方程化为直角坐标方程; (2)求通过两圆交点的直线的极坐标方程.一、平面直角坐标系下的伸缩变换【例1】 在同一直角坐标系中,将直线x -2y =2变成直线2x ′-y ′=4,求满足图象变换的伸缩变换.方法提炼求满足图象变换的伸缩变换,可先求出变换公式,分清新旧坐标,代入对应的曲线方程,然后比较系数可得变换规则.请做演练巩固提升1二、如何求曲线的极坐标方程【例2】过原点的一动直线交圆x2+(y-1)2=1于点Q,在直线OQ上取一点P,使P到直线y=2的距离等于|PQ|.用极坐标法求动直线绕原点一周时P点的轨迹方程.方法提炼求曲线极坐标方程的差不多步骤是:(1)建立适当的极坐标系;(2)在曲线上任取一点P(ρ,θ);(3)依照曲线上的点所满足的条件写出等式;(4)用极坐标ρ,θ表示上述等式,并化简得极坐标方程;(5)证明所得的方程是曲线的极坐标方程.请做演练巩固提升2三、极坐标方程的应用【例3】已知极坐标系的极点是直角坐标系的原点,极轴与直角坐标系中x轴的正半轴重合.曲线C的极坐标方程为ρ=2cos θ-2sin θ,曲线l的极坐标方程是ρ(cos θ-2sin θ)=2.(1)求曲线C和l的直角坐标方程并画出草图;(2)设曲线C和l相交于A,B两点,求|AB|.方法提炼1.极坐标与直角坐标互化公式:x=ρcos θ,y=ρsin θ成立的条件是直角坐标的原点为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位.2.用极坐标法可使几何中的一些问题得出更直截了当、简单的解法,但解题的关键是选取适当极坐标系,如此能够简化运算过程,转化为直角坐标时也容易一些.专门提醒:极坐标与直角坐标的区别有:多值性:在直角坐标系中,点与直角坐标是“一对一”的关系.在极坐标系中,由于终边相同的角有许多个,即点的极角不唯独,因此点与极坐标是“一对多”的关系.但不同的极坐标能够写出统一的表达式.假如(ρ,θ)是点M 的极坐标,那么(ρ,θ+2k π)或(-ρ,θ+(2k +1)π)(k ∈Z)都能够作为点M 的极坐标.请做演练巩固提升3四、参数方程及其应用 【例4】在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧ x =1+45t ,y =-1-35t (t 为参数),若以O 为极点,x 轴正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为ρ=2cos ⎝ ⎛⎭⎪⎫θ+π4,求直线l 被曲线C 所截得的弦长. 方法提炼1.直线的参数方程的应用专门广泛,要紧用来解决直线与圆锥曲线的位置关系问题.在解决这类问题时,充分利用直线参数方程中参数t 的几何意义,能够幸免通过解方程组找交点等繁琐的运算,使问题得到简化.直线的参数方程有多种形式,只有标准式中的参数才具有明确的几何意义.2.把参数方程化为一般方程,消参数的方法有:代入消去法、加减消去法、恒等式(三角的或代数的)消去法等.一般方程化为参数方程:关键是如何引入参数.若动点坐标x ,y 与旋转角有关时,通常选择角为参数;与运动有关的问题,通常选择时刻为参数等.在参数方程与一般方程的互化中,必须使x ,y 的取值范畴保持一致.提醒:将曲线的参数方程化为一般方程要紧消去参数,简称为“消参”.把参数方程化为一般方程后,专门容易改变变量的取值范畴,从而使得两种方程所表示的曲线不一致,因此我们要注意参数方程与一般方程的等价性.请做演练巩固提升4极坐标与参数方程的综合应用【典例】 (10分)已知曲线C 的极坐标方程是ρ=1,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎨⎧x =1+t 2,y =2+32t(t 为参数). (1)写出直线l 与曲线C 的直角坐标方程; (2)若将曲线C 上任意一点保持纵坐标不变,横坐标缩为原先的12后,得到曲线C ′,设曲线C ′上任一点为M(x ,y),求x +2y 的最小值.规范解答:(1)直线l 的直角坐标方程为3x -y -3+2=0,曲线C 的一般方程为x2+y2=1.(4分)(2)曲线C ′的一般方程为4x2+y2=1.令x =12cos θ,y =sin θ,∴x +2y =12cos θ+2sin θ=172sin(θ+φ).(8分)[来源:学,科,网]∴x +2y 的最小值为-172.(10分)答题指导:1.研究含有极坐标方程和参数方程的题目时,可先将它们同时化为直角坐标方程,再借助于直角坐标方程研究它们的性质.2.本题第(2)问还可利用线性规划及直线与椭圆相切等知识来解决. 1.设平面上的伸缩变换的坐标表达式为⎩⎨⎧x ′=12x ,y ′=3y ,求在这一坐标变换下正弦曲线y =sin x 的方程. 2.将极坐标系的极轴与直角坐标系的x 轴的非负半轴重合,并取相同的单位长度和角度,求过曲线ρcos θ+ρsin θ=1和曲线⎩⎪⎨⎪⎧y =t +1,x =t (t 为参数)的交点且与极轴平行的直线的极坐标方程. 3.已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x 轴的正半轴重合,且两个坐标系的单位长度相同,已知直线l 的参数方程为⎩⎪⎨⎪⎧ x =-1+tcos α,y =1+tsin α(t 为参数),曲线C 的极坐标方程为ρ=4cos θ. (1)若直线l 的斜率为-1,求直线l 与曲线C 交点的极坐标;(2)若直线l 与曲线C 相交弦长为23,求直线l 的参数方程. 4.已知直线l 的参数方程为⎩⎨⎧x =12t ,y =2+32t (t 为参数),曲线C 的极坐标方程为ρ=sin θ1-sin2θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,M 点坐标为(0,2),直线l 与曲线C 交于A ,B 两点. (1)写出直线l 的一般方程与曲线C 的直角坐标方程;(2)线段MA ,MB 长度分别记|MA|,|MB|,求|MA|·|MB|的值.参考答案基础梳理自测知识梳理1.极点 极轴 极径 M(ρ,θ) 一一对应 ρ=0 4.⎩⎪⎨⎪⎧ x =x0+rcos θ,y =y0+rsin θ(θ为参数) 5.⎩⎪⎨⎪⎧ x acos θ,y =bsin θ(θ为参数) 基础自测 1.解:将⎩⎪⎨⎪⎧x =1-2t ,y =2+3t 化为一般方程y =-32x +72,该直线的斜率为k 1=-32;当k ≠0时,直线4x +ky =1的斜率为k2=-4k ,由k1·k2=-1,得k =-6.当k =0时,明显不成立. 2.解:(1)把⎩⎪⎨⎪⎧x =a +4t ,y =-1-2t 化为一般方程为x +2y +2-a =0,把ρ=22cos ⎝ ⎛⎭⎪⎫θ+π4化为一般方程为x2+y2-2x +2y =0, ∴圆心到直线的距离为5|1-a|5. (2)由已知,⎝ ⎛⎭⎪⎫352+⎝ ⎛⎭⎪⎫|a -1|52=(2)2, ∴a2-2a =0,a =0或a =2. 3.解:(1)∵ρ=2,∴ρ2=4,即x2+y2=4.∵ρ2-22ρcos ⎝ ⎛⎭⎪⎫θ-π4=2, ∴ρ2-22ρ⎝ ⎛⎭⎪⎫cos θcos π4+sin θsin π4=2. ∴x2+y2-2x -2y -2=0.(2)将两圆的直角坐标方程相减,得通过两圆交点的直线方程为x +y =1.化为极坐标方程为ρcos θ+ρsin θ=1,即ρsin ⎝⎛⎭⎪⎫θ+π4= 22. 考点探究突破【例1】 解:设伸缩变换为⎩⎪⎨⎪⎧ x ′=λ·x ,λ>0,y ′=μ·y ,μ>0,可将其代入第二个方程,得2λx -μy =4,把x -2y =2化为2x -4y =4,比较系数得λ=1,μ=4. 现在,⎩⎪⎨⎪⎧ x ′=x ,y ′=4y ,即把直线x -2y =2图象上所有点的横坐标不变,纵坐标扩大到原先的4倍可得到直线2x ′-y ′=4.【例2】 解:以O 为极点,Ox 为极轴,建立极坐标系,如图所示,过P 作PR 垂直直线y =2,[来源:学,科,网]则|PQ|=|PR|. 设P(ρ,θ),Q(ρ0,θ),则有ρ0=2sin θ.∵|PR|=|PQ|,∴|2-ρsin θ|=|ρ-2sin θ|.[来源:Z,xx,k ]∴ρ=±2或sin θ=±1.即为点P 的轨迹的极坐标方程,化为直角坐标方程为x2+y2=4或x =0.【例3】 解:(1)由ρcos θ=x ,ρsin θ=y ,得曲线C 直角坐标方程(x -1)2+(y +1)2=2,l 的直角坐标方程x -2y -2=0.(2)设圆C 的圆心C(1,-1)到直线l 的距离为d , 则d =|1-2×(-1)-2|5=55, 因此|AB|=2(2)2-⎝ ⎛⎭⎪⎫552=655. 【例4】 解:将方程⎩⎪⎨⎪⎧x =1+45t ,y =-1-35t (t 为参数)化为一般方程3x +4y +1=0,将方程ρ=2cos ⎝ ⎛⎭⎪⎫θ+π4化为一般方程x2+y2-x +y =0,此圆的圆心为⎝ ⎛⎭⎪⎫12,-12,半径为22,则圆心到直线的距离d =110,弦长=2r2-d2=212-1100=75. 演练巩固提升 1.解:由⎩⎨⎧ x ′=12x ,y ′=3y ,得⎩⎨⎧x =2x ′,y =13y ′.将其代入y =sin x ,得13y ′=sin 2x ′,即y ′=3sin 2x ′. 2.解:曲线ρcos θ+ρsin θ=1在直角坐标系下的方程为x +y =1,曲线⎩⎪⎨⎪⎧y =t +1,x =t 的一般方程为y =x +1,两直线的交点坐标为⎩⎪⎨⎪⎧y =x +1,y =-x +1,即得(0,1),与极轴平行的方程为y =1,则该直线的极坐标方程为ρsin θ=1. 3.解:(1)直线l 的方程:y -1=-1(x +1),即y =-x , C :ρ=4cos θ,即x2+y2-4x =0,联立方程得2x2-4x =0,∴A(0,0),B(2,-2);极坐标为A(0,0),B ⎝ ⎛⎭⎪⎫22,7π4. (2)d =r2-⎝ ⎛⎭⎪⎫2322=1, C :(x -2)2+y2=4,[来源:Z&xx&k ]设直线l 的方程为kx -y +k +1=0,∴|2k +k +1|k2+1=1. ∴k =0或k =-34. ∴l :⎩⎪⎨⎪⎧ x =-1+t ,y =1(t 为参数)或⎩⎪⎨⎪⎧ x =-1-45t ,y =1+35t (t 为参数).4.解:(1)直线l 的一般方程为3x -y +2=0. ∵ρcos2θ=sin θ,∴ρ2cos2θ=ρsin θ.∴曲线C 的直角坐标方程为y =x2. (2)将⎩⎨⎧ x =12t ,y =2+32t 代入y =x2得t2-23t -8=0, 由参数t 的几何意义知|MA|·|MB|=|t1t2|=8.。
2021届高考数学一轮必备 1.2《命题及其关系、充分条件与必要条件》考情分析学案(1)
命题及其关系、充分条件与必要条件考情分析1.考查四种命题的意义及彼此关系.2.考查对充分条件、必要条件、充要条件等概念的明白得.基础知识1.命题的概念在数学顶用语言、符号或式子表达的,能够判定真假的陈述句叫做命题.其中判定为真的语句叫真命题,判定为假的语句叫假命题.2.四种命题及其关系1.命题:一样地,咱们把用语言、符号或式子表达的,能够判定真假的语句叫做命题.2.四种命题:(1) “若p,则q”是数学中常见的命题形式,其中p叫做命题的条件,q叫做命题的结论.(2)假设原命题为“若p,则q”,那么它的逆命题为“若q,则p”;否命题为“若p⌝,则q⌝”,它的逆否命题为“若q⌝,则p⌝”.(3)互为逆否的命题是等价的,它们同真同假.在同一个命题的四种命题中,真命题的个数可能为0,2,4个.(4)否命题与命题的否定的区别:第一,只有“若p,则q”形式的命题才有否命题,其形式为“若p⌝,则q⌝”,而这种形式的命题的否定是只否定结论,即“若p,则q⌝”;第二,命题的否定与原命题一真一假,而否命题与原命题的真假可能相同也可能相反.注意事项(1)逆命题与否命题互为逆否命题;(2)互为逆否命题的两个命题同真假.(3)概念法:直接判定“假设p则q”、“假设q则p”的真假.并注意和图示相结合,例如“p⇒q”为真,那么p是q的充分条件.(4)等价法:利用p ⇒q 与綈q ⇒綈p ,q ⇒p 与綈p ⇒綈q ,p ⇔q 与綈q ⇔綈p 的等价关系,关于条件或结论是不是定式的命题,一样运用等价法.(5)集合法:假设A ⊆B ,那么A 是B 的充分条件或B 是A 的必要条件;假设A =B ,那么A 是B 的充要条件.典型例题题型一 命题正误的判定【例1】设命题p :函数sin 2y x =的最小正周期为2π;命题q : 函数cos y x =的图象关于直线2x π=对称.那么以下判定正确的选项是( )(A)p 为真 (B)q ⌝为假 (C)p q ∧为假 (D)p q ∨为真【答案】C【解析】函数x y 2sin =的周期为ππ=22,因此命题p 为假;函数x y cos =的对称轴为 Z k k x ∈=,π,因此命题q 为假,因此q p ∧为假,选C.【变式1】 给出如下三个命题:①四个非零实数a ,b ,c ,d 依次成等比数列的充要条件是ad =bc ;②设a ,b ∈R ,且ab ≠0,假设a b<1,那么ba >1; ③若f (x )=log 2x ,那么f (|x |)是偶函数.其中不正确命题的序号是( ).A .①②③B .①②C .②③D .①③解析 关于①,可举反例:如a ,b ,c ,d 依次取值为1,4,2,8,故①错;关于②,可举反例:如a 、b 异号,尽管a b<1,但ba <0,故②错;关于③,y =f (|x |)=log 2|x |,显然为偶函数,应选B.答案 B题型二四种命题的真假判定例2.(2021年高考辽宁卷文科5)已知命题p:∀x1,x2∈R,(f(x2)-f(x1)(x2-x1)≥0,那么⌝p是()(A) ∃x1,x2∈R,(f(x2)-f(x1)(x2-x1)≤0(B) ∀x1,x2∈R,(f(x2)-f(x1)(x2-x1)≤0(C) ∃x1,x2∈R,(f(x2)-f(x1)(x2-x1)<0(D) ∀x1,x2∈R,(f(x2)-f(x1)(x2-x1)<0【变式2】已知命题“函数f(x)、g(x)概念在R上,h(x)=f(x)·g(x),若是f(x)、g(x)均为奇函数,那么h(x)为偶函数”的原命题、逆命题、否命题、逆否命题中正确命题的个数是( ).A.0 B.1 C.2 D.3解析由f(x)、g(x)均为奇函数,可得h(x)=f(x)·g(x)为偶函数,反之那么不成立,如h(x)=x2是偶函数,但函数f(x)=x2e x,g(x)=e x都不是奇函数,故逆命题不正确,故其否命题也不正确,即只有原命题和逆否命题正确.答案C题型三充要条件的判定【例3】(2021年高考天津卷文科5)设x∈R,那么“x>12”是“2x2+x-1>0”的()(A)充分而没必要要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也没必要要条件【答案】A【解析】不等式0122>-+x x 的解集为21>x 或1-<x ,因此“21>x ”是“0122>-+x x ”成立的充分没必要要条件,选A.【变式3】 (2013山东模拟)设{a n }是首项大于零的等比数列,那么“a 1<a 2”是“数列{a n }是递增数列”的( ).A .充分而没必要要条件B .必要而不充分条件C .充分必要条件D .既不充分也没必要要条件解析 a 1<a 2且a 1>0,那么a 1(1-q )<0,a 1>0且q >1,那么数列{a n }递增;反之亦然. 答案:C高考题赏析:一、充要条件与不等式的解题策略【例1】设x ,y ∈R ,那么“x ≥2且y ≥2”是“x 2+y 2≥4”的( ).A .充分而没必要要条件B .必要而不充分条件C .充分必要条件D .既不充分也没必要要条件二、充要条件与方程结合的解题策略【例2】设n ∈N *,一元二次方程x 2-4x +n =0有整数根的充要条件是n =________.三、充要条件与数列结合的解题策略【例3】设{a n }是等比数列,那么“a 1<a 2<a 3”是“数列{a n }是递增数列”的( ).A .充分而没必要要条件B .必要而不充分条件C .充分必要条件D .既不充分也没必要要条件四、充要条件与向量结合的解题策略【例4】假设向量a =(x,3)(x ∈R ),那么“x =4”是“|a |=5”的 ( ).A .充分而没必要要条件B .必要而不充分条件C .充要条件D .既不充分又没必要要条件五、充要条件与三角函数结合的解题策略【例5】 “x =2k π+π4(k ∈Z )”是“tan x =1”成立的( ). A .充分没必要要条件B .必要不充分条件C .充要条件D .既不充分也没必要要条件巩固提高1.以下三个命题:①“a >b ”是“a 2>b 2”的充分条件;②“|a |>|b |”是“a 2>b 2”的必要条件;③“a >b ”是“a +c >b +c ”的充要条件.其中真命题的序号是________. 解析 ①由2>-3⇒/ 22>(-3)2知,该命题为假;②a 2>b 2⇒|a |2>|b |2⇒|a |>|b |,该命题为真;③a >b ⇒a +c >b +c ,又a +c >b +c ⇒a >b ;∴“a >b ”是“a +c >b +c ”的充要条件为真命题.答案 ②③2.设a ,b 是向量,命题“假设a =-b ,那么|a |=|b |”的逆命题是( ).\A .假设a ≠-b ,那么|a |≠|b | B .假设a =-b ,那么|a |≠|b |C .假设|a |≠|b |,那么a ≠-bD .假设|a |=|b |,那么a =-b解析 “假设a =-b ,那么|a |=|b |”的逆命题是“假设|a |=|b |,那么a =-b ”. 答案 D3.关于函数y =f (x ),x ∈R ,“y =|f (x )|的图象关于y 轴对称”是“y =f (x )是奇函数”的( ).A .充分而没必要要条件B .必要而不充分条件C .充要条件D .既不充分也没必要要条件 解析 假设y =f (x )是奇函数,那么f (-x )=-f (x ),∴|f (-x )|=|-f (x )|=|f (x )|,∴y =|f (x )|的图象关于y 轴对称,但假设y =|f (x )|的图象关于y 轴对称,如y =f (x )=x 2,而它不是奇函数,应选B.答案B4.命题“所有能被2整除的整数都是偶数”的否定是( ).A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数解析原命题是全称命题,那么其否定是特称命题,应选D.答案D5.命题“假设a>b,那么2a>2b-1”的否命题为 .答案若a≤b,那么有2a≤2b-1。
通用版2019版高考数学一轮复习第一章集合与常用逻辑用语第二节命题及其关系充分条件与必要条件实用课件
2. [考点二]已知“x>k”是“x+3 1<1”的充分不必要条件,则k的
取值范围是
()
A.[2,+∞)
B.[1,+∞)
C.(2,+∞)
D.(-∞,-1]
解析:由
3 x+1
<1,得
3 x+1
-1=
-x+2 x+1
<0,解得x<-1或
x>2.因为“x>k”是“
3 x+1
<1”的充分不必要条件,所以
k≥2. 答案:A
②命题α是命题β的逆命题,且命题γ是命题β的否命题;
③命题β是命题α的否命题,且命题γ是命题α的逆否命题.
A.①③
B.②
C.②③ D.①②③
解析:命题的四种形式,逆命题是把原命题中的条件和结论
互换,否命题是把原命题的条件和结论都加以否定,逆否命
题是把原命题中的条件与结论先都否定,然后交换条件与结
论所得,因此①正确,②错误,③正确,故选A. 答案:A
题三个命题中,真命题只有一个.
答案:C
4.[考点一、二]有下列四个命题: ①“若xy=1,则x,y互为倒数”的逆命题; ②“面积相等的三角形全等”的否命题; ③“若m≤1,则x2-2x+m=0有实数解”的逆否命题; ④“若A∩B=B,则A⊆B”的逆否命题. 其中为真命题的是________(填写所有真命题的序号).
[全析考法]
充分条件与必要条件的判断
[例1] (1)(2017·浙江高考)已知等差数列{an}的公差为d,前
n项和为Sn,则“d>0”是“S4+S6>2S5”的
()
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
2025年高考数学总复习优化设计一轮 第一章-第一节-集合【课件】
7 5 3 1 1
3 1 1 1 1 3
M={…,-4,-4,-4,-4 , 4,…},N={…,-4,-2,-4,0,4 , 2 , 4,…},则
的元素都是N的元素,反之不然,所以M⊆N,故选A.
M中
(2)(2024·福建漳州模拟)已知U是全集,集合A,B满足(∁UA)∩B=∁UA,则下列
重点涉及充分、必要条件的判断,试题难度取决于结合的知识的难度.
复习策略:
1.明晰重要概念:子集、真子集、交集、并集、补集、充分、必要条件
等概念是解题的基础,应明晰这些概念.
2.注意数学思想方法的合理运用:分类讨论、数形结合、等价转化等数
学思想方法在解题中应用广泛.
3.善于列举反例:涉及充分、必要条件以及命题真假的判断等问题,要善
7.(2023·新高考Ⅱ,2)设集合A={0,-a},B={1,a-2,2a-2},若A⊆B,则a=( B )
2
A.2
B.1
C.
D.-1
3
解析 ∵A⊆B,∴a-2=0或2a-2=0.若a-2=0,则a=2,A={0,-2},B={1,0,2},显然
A⊈B;若2a-2=0,则a=1,A={0,-1},B={1,-1,0},A⊆B成立.故选B.
A.( ,+∞)
2
5 10
B.( , ]
2 3
5 10
C.[ , )
2 3
10
D.(-∞, ]
3
解析 由题意可得,2 -2a+1<0 且 3
2
5
10
-3a+1≥0,解得2<a≤ 3 ,故选
2
B.
考点二集合间的基本关系
高考数学一轮复习命题及其关系、充分条件与必要条件练习含答案
第2讲命题及其关系、充分条件与必要条件一、选择题1.(2015·山东卷)设m∈R, 命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是()A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤0解析根据逆否命题的定义,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是“若方程x2+x-m=0没有实根,则m≤0”.答案 D2.“x=1”是“x2-2x+1=0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析因为x2-2x+1=0有两个相等的实数根为x=1,所以“x=1”是“x2-2x+1=0”的充要条件.答案 A3.设α,β是两个不同的平面,m是直线且mα,则“m∥β”是“α∥β”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析mα,m∥βα∥β,但mα,α∥β⇒m∥β,∴“m∥β”是“α∥β”的必要不充分条件.答案 B4.(2017·安徽江南十校联考)“a=0”是“函数f(x)=sin x-1x+a为奇函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析 显然a =0时,f (x )=sin x -1x 为奇函数;当f (x )为奇函数时,f (-x )+f (x )=0.又f (-x )+f (x )=sin(-x )-1-x +a +sin x -1x +a =0. 因此2a =0,故a =0.所以“a =0”是“函数f (x )为奇函数”的充要条件. 答案 C5.下列结论错误的是( )A.命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”B.“x =4”是“x 2-3x -4=0”的充分条件C.命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D.命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”解析 C 项命题的逆命题为“若方程x 2+x -m =0有实根,则m >0”.若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m >0.所以不是真命题. 答案 C6.设x ∈R ,则“1<x <2”是“|x -2|<1”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件解析 由|x -2|<1,得1<x <3,所以1<x <2⇒1<x <3;但1<x <3⇒/ 1<x <2. 所以“1<x <2”是“|x -2|<1”的充分不必要条件. 答案 A7.已知命题p :x 2+2x -3>0;命题q :x >a ,且綈q 的一个充分不必要条件是綈p ,则a 的取值范围是( ) A.[1,+∞)B.(-∞,1]C.[-1,+∞)D.(-∞,-3]解析由x2+2x-3>0,得x<-3或x>1,由綈q的一个充分不必要条件是綈p,可知綈p是綈q的充分不必要条件,等价于q是p的充分不必要条件.故a≥1.答案 A8.(2017·汉中模拟)已知a,b都是实数,那么“a>b”是“ln a>ln b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析由ln a>ln b⇒a>b>0⇒a>b,故必要性成立.当a=1,b=0时,满足a>b,但ln b无意义,所以ln a>ln b不成立,故充分性不成立.答案 B二、填空题9.“若a≤b,则ac2≤bc2”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是________.解析其中原命题和逆否命题为真命题,逆命题和否命题为假命题.答案 210.“sin α=cos α”是“cos 2α=0”的________条件.解析cos 2α=0等价于cos2α-sin2α=0,即cos α=±sin α.由cos α=sin α得到cos 2α=0;反之不成立.∴“sin α=cos α”是“cos 2α=0”的充分不必要条件.答案充分不必要11.已知命题p:a≤x≤a+1,命题q:x2-4x<0,若p是q的充分不必要条件,则a的取值范围是________.解析令M={x|a≤x≤a+1},N={x|x2-4x<0}={x|0<x<4}.∵p是q的充分不必要条件,∴M N,∴⎩⎪⎨⎪⎧a >0,a +1<4,解得0<a <3. 答案 (0,3) 12.有下列几个命题:①“若a >b ,则a 2>b 2”的否命题;②“若x +y =0,则x ,y 互为相反数”的逆命题;③“若x 2<4,则-2<x <2”的逆否命题. 其中真命题的序号是________.解析 ①原命题的否命题为“若a ≤b ,则a 2≤b 2”错误.②原命题的逆命题为:“若x ,y 互为相反数,则x +y =0”正确.③原命题的逆否命题为“若x ≥2或x ≤-2,则x 2≥4”正确. 答案 ②③13.(2016·四川卷)设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎨⎧y ≥x -1,y ≥1-x ,y ≤1,则p 是q 的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析 如图作出p ,q 表示的区域,其中⊙M 及其内部为p 表示的区域,△ABC 及其内部(阴影部分)为q 表示的区域. 故p 是q 的必要不充分条件.答案 A14.(2017·南昌十所省重点中学联考)已知m ∈R ,“函数y =2x +m -1有零点”是“函数y =log m x 在(0,+∞)上为减函数”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析 由y =2x +m -1=0,得m =1-2x ,则m <1. 由于函数y =log m x 在(0,+∞)上是减函数, 所以0<m <1.因此“函数y =2x +m -1有零点”是“函数y =log m x 在(0,+∞)上为减函数”的必要不充分条件. 答案 B 15.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12<2x <8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.解析 A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12<2x <8,x ∈R ={x |-1<x <3},∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴A B ,∴m +1>3,即m >2. 答案 (2,+∞)16.(2017·临沂模拟)下列四个结论中正确的是________(填序号).①“x 2+x -2>0”是“x >1”的充分不必要条件;②命题:“任意x ∈R ,sin x ≤1”的否定是“存在x 0∈R ,sin x 0>1”;③“若x =π4,则tan x =1”的逆命题为真命题;④若f (x )是R 上的奇函数,则f (log 32)+f (log 23)=0. 解析 ①中“x 2+x -2>0”是“x >1”的必要不充分条件,故①错误.对于②,命题:“任意x ∈R ,sin x ≤1”的否定是“存在x 0∈R ,sin x 0>1”,故②正确.对于③,“若x =π4,则tan x =1”的逆命题为“若tan x =1,则x =π4”,其为假命题,故③错误.对于④,若f(x)是R上的奇函数,则f(-x)+f(x)=0,∵log32=1≠-log32,log23∴log32与log23不互为相反数,故④错误.答案②。
高考数学一轮总复习 专题1.2 命题及其关系、充分条件与必要条件练习(含解析)理-人教版高三全册数学
专题1.2 命题及其关系、充分条件与必要条件真题回放1.【2017年全国一卷理数(3)】设有下面四个命题1p :若复数满足1z ∈R ,则z ∈R ;2p :若复数满足2z ∈R ,则z ∈R ; 3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .其中的真命题为 A.13,p pB .14,p pC .23,p pD .24,p p【答案】B2.【2017年卷理数第6题】设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件【答案】A 【解析】试题分析:若0λ∃<,使m n λ=,即两向量反向,夹角是0180,那么0cos1800m n m n m n ⋅==-<T ,若0m n ⋅<,那么两向量的夹角为(0090,180⎤⎦ ,并不一定反向,即不一定存在负数λ,使得λ=m n ,所以是充分不必要条件,故选A. 3.【2017年某某卷理数第4题】设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件【答案】A4.【2017年某某数学第6题】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 +S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C 【解析】试题分析:由d d a d a S S S =+-+=-+)105(22110211564,可知当0>d ,则02564>-+S S S ,即5642S S S >+,反之,02564>⇒>+d S S S ,所以为充要条件,选C .【考点】 等差数列、充分必要性 考点分析考点 了解A 掌握B 灵活运用C命题的概念 A 四种命题的相互关系 B 全称命题与特称命题 B 充分条件与必要条件C高考对命题及其关系和充分条件、必要条件的考查主要是以小题的形式来考查,由于知识载体丰富,因此题目有一定综合性,属于中、低档题.命题重点主要有两个:一是考查命题的四种形式以及真假判断,考查等价转化数学思想;二是以函数、方程、不等式、立体几何线面关系为背景的充分条件和必要条件的判定以及由充分条件和必要条件探求参数的取值X 围. 融会贯通题型一 四种命题的关系及真假判断【典例1】【2017届某某某某市高三理一诊】命题“若a b >,则a c b c +>+”的否命题是( ).A .若a b ≤,则a c b c +≤+B .若a c b c +≤+,则a b ≤C .若a c b c +>+,则a b >D .若a b >, 则a c b c +≤+ 【答案】A 【解析】试题分析:“若p 则”的否命题是“若p ⌝则q ⌝”,所以原命题的否命题是“若b a ≤,则c b c a +≤+”,故选A.考点:四种命题【例2】有下列几个命题:①“若a >b ,则a 2>b 2”的否命题;②“若x +y =0,则x ,y 互为相反数”的逆命题;③“若x 2<4,则-2<x <2”的逆否命题,其中真命题的序号是________.【答案】②③解题方法与技巧:(1)由原命题写出其他三种命题,关键要分清原命题的条件和结论,如果命题不是“若p ,则q ”的形式,应先改写成“若p ,则q ”的形式;如果命题有大前提,写其他三种命题时需保留大前提不变.(2)判断一个命题为真命题,要给出推理证明;判断一个命题为假命题,只需举出反例. (3)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.(4) 否命题与命题的否定是两个不同的概念:①否命题是将原命题的条件否定作为条件,将原命题的结论否定作为结论构造的一个新的命题;②命题的否定只是否定命题的结论,常用于反证法. 【变式训练】【2017届某某抚州市七校高三理上学期联考】,,A B C 三个学生参加了一次考试,,A B 的得分均为70分,C 的得分为65分.已知命题:p 若及格分低于70分,则,,A B C 都没有及格.在下列四个命题中,为p 的逆否命题的是( ) A .若及格分不低于70分,则,,A B C 都及格 B .若,,A B C 都及格,则及格分不低于70分 C .若,,A B C 至少有一人及格,则及格分不低于70分D .若,,A B C 至少有一人及格,则及格分高于70分 【答案】C考点:原命题与它的逆否命题之间的关系. 知识: 一.命题的概念在数学中把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题. 二.四种命题及其关系 1.四种命题 命题 表述形式 原命题 若p ,则q 逆命题 若q ,则p 否命题 若p ⌝,则q ⌝逆否命题若q ⌝,则p ⌝即:如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互为逆命题;如果一个命题的条件和结论分别是原命题的条件和结论的否定,那么这两个命题叫做互否命题,这个命题叫做原命题的否命题;如果一个命题的条件和结论分别是原命题的结论和条件的否定,那么这两个命题叫做互为逆否命题,这个命题叫做原命题的逆否命题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时规范练2命题及其关系、充分条件与必要条件
课时规范练第3页
一、选择题
1.设原命题:若a+b≥2,则a,b中至少有一个不小于1,则原命题与其逆命题的真假情况是()
A.原命题真,逆命题假
B.原命题假,逆命题真
C.原命题与逆命题均为真命题
D.原命题与逆命题均为假命题
答案:A
解析:可以考虑原命题的逆否命题,即a,b都小于1,则a+b<2,显然为真.
其逆命题,即a,b中至少有一个不小于1,则a+b≥2,为假,如a=1.2,b=0.2,则a+b<2.
2.下面四个条件中,使a>b成立的充分而不必要的条件是()
A.a>b+1
B.a>b-1
C.a2>b2
D.a3>b3
答案:A
解析:A选项中a>b+1>b,所以充分性成立,但必要性不成立,所以a>b+1为a>b成立的充分不必要条件,故选A.
3.命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是()
A.若x+y是偶数,则x与y不都是偶数
B.若x+y是偶数,则x与y都不是偶数
C.若x+y不是偶数,则x与y不都是偶数
D.若x+y不是偶数,则x与y都不是偶数
答案:C
解析:由于“x,y都是偶数”的否定表达是“x,y不都是偶数”,“x+y是偶数”的否定表达是“x+y不是偶数”,故原命题的逆否命题为“若x+y不是偶数,则x,y不都是偶数”,故选C.
4.(2014湖南长沙实验中学月考)已知a,b∈R,则“log3a>log3b”是“”的()
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分又不必要条件
答案:A
5.(2013福建高考)已知集合A={1,a},B={1,2,3},则“a=3”是“A⊆B”的()
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
答案:A
解析:若a=3,则A={1,3}⊆B,故a=3是A⊆B的充分条件;而若A⊆B,则a不一定为3,当a=2时,也有A⊆B.故a=3不是A⊆B的必要条件.故选A.
6.“≤-2”是“a>0且b<0”的()
A.必要不充分条件
B.充要条件
C.充分不必要条件
D.既不充分又不必要条件
答案:A
解析:+2=≤0⇒ab<0⇒故选A.
二、填空题
7.命题“若m>0,则关于x的方程x2+x-m=0有实数根”与它的逆命题、否命题、逆否命题中,真命题的个数
为.
答案:2
解析:先写出原命题的逆命题、否命题、逆否命题,逐一判断.或只写出逆命题,判断原命题和逆命题的真假即可,原命题为真,逆命题为假.
8.设有如下三个命题:
甲:m∩l=A,m,l⊂α,m,l⊄β;
乙:直线m,l中至少有一条与平面β相交;
丙:平面α与平面β相交.
当甲成立时,乙是丙的条件.
答案:充要
解析:由题意乙⇒丙,丙⇒乙.
故当甲成立时,乙是丙的充要条件.
9.已知p是r的充分不必要条件,q是r的充分条件,s是r的必要条件,q是s的必要条件.现有下列命题:
①s是q的充要条件;②p是q的充分条件而不是必要条件;③r是q的必要条件而不是充分条件;④p是s的必要条件而不是充分条件;⑤r是s的充分条件而不是必要条件.
则正确命题的序号是.
答案:①②④
解析:由题意知
∴s⇔q,①正确;p⇒r⇒s⇒q,
∴p⇒q,但q p,②正确;
同理判断③⑤不正确,④正确.
三、解答题
10.设p:|4x-3|≤1,q:x2-(2a+1)x+a(a+1)≤0,若p是q的必要不充分条件,求实数a的取值范围.
解:p:由|4x-3|≤1,解得-1≤4x-3≤1,
∴≤x≤1;
q:由x2-(2a+1)x+a(a+1)≤0,
解得(x-a)[x-(a+1)]≤0,
∴a≤x≤a+1.
由题意知p是q的充分不必要条件,故有则0≤a≤.
11.求证:关于x的方程ax2+bx+c=0有一个根为1的充要条件是a+b+c=0.
解:必要性:
若方程ax2+bx+c=0有一个根为1,
则x=1满足方程ax2+bx+c=0,
∴a+b+c=0.
充分性:
若a+b+c=0,则b=-a-c,
∴ax2+bx+c=0可化为ax2-(a+c)x+c=0,
∴(ax-c)(x-1)=0,
∴当x=1时,ax2+bx+c=0,
∴x=1是方程ax2+bx+c=0的一个根.
12.设函数f(x)=lg(x2-x-2)的定义域为集合A,函数g(x)=的定义域为集合B.已知α:x∈A∩B,β:x满足2x+p≤0,且α是β的充分条件,求实数p的取值范围.
解:依题意,得A={x|x2-x-2>0}=(-∞,-1)∪(2,+∞),
B==(0,3],
所以A∩B=(2,3].
设集合C={x|2x+p≤0},
则x∈.
因为α是β的充分条件,
所以(A∩B)⊆C.
则需满足3≤-⇒p≤-6.
故实数p的取值范围是(-∞,-6].。