Evaluation of CO2 Injectivity From Waterflood Values

合集下载

制取二氧化碳作文

制取二氧化碳作文

制取二氧化碳作文The extraction of carbon dioxide from the atmosphere is a pressing issue in today's world. 二氧化碳在大气中的提取成为当今世界上一个紧迫的问题。

With the increasing levels of CO2 in the atmosphere from human activities such as burning fossil fuels and deforestation, it has become imperative to develop efficient methods for capturing and storing this greenhouse gas. 随着燃烧化石燃料和森林砍伐等人类活动导致大气中二氧化碳水平的不断上升,开发高效的二氧化碳捕捉和储存方法已成为当务之急。

Furthermore, the need to combat climate change and reduce the impact of global warming has put a spotlight on the importance of carbon sequestration. 此外,需要应对气候变化和减少全球变暖的影响也突显了碳固定的重要性。

One method for extracting carbon dioxide from the atmosphere is through direct air capture. 从大气中提取二氧化碳的一种方法是通过直接空气捕集。

This technology involves using large-scale facilities equipped with specialized chemical filters that can capture CO2 directly from the air. 这项技术涉及使用配备专门化学过滤器的大型设施,能够直接从空气中捕捉二氧化碳。

二氧化碳含量的测定实验改良与评估

二氧化碳含量的测定实验改良与评估

二氧化碳含量的测定实验改良与评估一、实验背景二氧化碳是一种重要的温室气体,它的浓度直接影响着地球的气候变化。

因此,对于二氧化碳含量的准确测定具有重要意义。

目前常用的二氧化碳含量测定方法有多种,包括红外线吸收法、导电法、光学法等。

本文将主要介绍红外线吸收法。

二、实验原理本实验采用红外线吸收法来测定样品中二氧化碳的含量。

当样品通过红外光束时,其中的二氧化碳会吸收特定波长的红外线,因此检测到光束经过样品后残留下来的光强就可以计算出样品中二氧化碳的含量。

三、实验步骤1. 准备实验设备和试剂:红外线吸收仪、样品瓶、标准溶液等。

2. 样品制备:将待测样品加入到样品瓶中,并加入适量蒸馏水稀释至一定比例。

3. 样品测试:将样品瓶放入红外线吸收仪中进行测试,并记录测试结果。

4. 标准曲线的绘制:根据标准溶液的浓度和吸收值绘制标准曲线。

5. 样品中二氧化碳含量的计算:根据样品测试结果和标准曲线计算出样品中二氧化碳的含量。

四、实验改良1. 优化样品制备过程:在样品制备过程中,应尽可能避免空气中的二氧化碳进入到样品瓶中,以免对测定结果产生影响。

因此,在样品瓶盖上应该尽可能紧密地封闭,并在加入蒸馏水时要避免产生大量气泡。

2. 标准曲线的优化:为了提高测定精度,可以在绘制标准曲线时使用多个不同浓度的标准溶液进行测试,并通过拟合得到更加精确的标准曲线。

3. 实验环境控制:在进行实验时,应尽可能控制实验室内外环境条件的稳定性,以免外部因素对测定结果产生影响。

同时,在进行测试时也要确保红外线吸收仪处于稳定状态。

五、实验评估本实验采用红外线吸收法来测定样品中二氧化碳的含量,具有操作简单、测定精度高等优点。

通过对实验步骤的改良和环境控制的优化,可以进一步提高实验结果的准确性和可靠性。

因此,本实验是一种有效的二氧化碳含量测定方法,具有广泛的应用前景。

二氧化碳捕集电催化研究进展分享

二氧化碳捕集电催化研究进展分享

二氧化碳捕集电催化研究进展分享
二氧化碳捕集电催化研究是一项重要的研究领域,致力于寻找高效、经济、可持续的二氧化碳捕集和转化技术。

其主要目标是通过电化学反应将二氧化碳转化为有用的化学品或燃料,以减少二氧化碳排放并利用废弃二氧化碳资源。

在二氧化碳捕集电催化研究中,关键的课题之一是开发高效的催化剂。

催化剂的设计和开发可以提高催化反应的速率和选择性,从而提高二氧化碳的转化效率。

一些已有的催化剂包括金属或金属氧化物纳米颗粒、碳基催化剂、有机小分子催化剂等。

另一个重要的研究方向是改进反应体系和反应条件,以优化二氧化碳的捕集和转化过程。

例如,通过调节反应温度、压力、电流密度和反应物的组成等条件,可以提高反应的效率和选择性。

此外,引入辅助材料或电场等外部因素也可以改善催化反应的性能。

除了催化剂和反应条件的优化外,研究人员还致力于寻找新的催化机制和反应途径。

例如,一些研究表明,将二氧化碳与水或氢气组合,可以产生一氧化碳或甲烷等有机物。

此外,一些研究还尝试利用太阳能等可再生能源提供光能,驱动二氧化碳的电化学反应。

总的来说,二氧化碳捕集电催化研究已取得了一些重要进展,但仍面临诸多挑战。

未来的研究方向可能包括寻找更高效的催化剂、优化反应条件、开发新的反应机制等。

这些研究将为减少二氧化碳排放和利用废弃二氧化碳资源提供重要支持。

相变吸收剂捕集二氧化碳工艺流程

相变吸收剂捕集二氧化碳工艺流程

英文回答:The process of capturing carbon dioxide using phase change absorbents epasses several intricate steps. Initially, the gas stream containing carbon dioxide is introduced to the absorbent material. This absorbent materialmonly takes theform of a liquid with a pronounced affinity for carbon dioxide, often an amine-based solution. Upon contact, the carbon dioxide is preferentially absorbed into the liquid phase, resulting in a gas stream that is predominantly devoid of carbon dioxide. This absorption process is propelled by the disparity in carbon dioxide concentration between the gas and liquid phases, as well as the chemical attraction between the absorbent and the carbon dioxide molecules.利用相位变化吸收剂捕获二氧化碳的过程经过了若干复杂的步骤。

最初,含二氧化碳的气流被引入吸收材料中。

这种只吸收物质的形式是具有显著的二氧化碳亲和性的液体,往往是一种以地雷为基础的溶液。

接触后,二氧化碳优先被吸收到液态阶段,导致气流主要没有二氧化碳。

离子交换电雾检测测定CO2吸收液中一乙醇胺、二乙醇胺、N-甲基二乙醇胺

离子交换电雾检测测定CO2吸收液中一乙醇胺、二乙醇胺、N-甲基二乙醇胺
2 Shan . ghaiLa b., D i n x Chi a oe n Co L TD , Sha nghai 01 03, Chi 2 2 na; 3 H angz u Vo ato al an . ho c i n d Te hn c l c ia
Co lge le ,H a g h u 3 0 1 ,Ch n ) n z o 1 0 8 ia
De e m iato fm o e h noam i t r n in o no t a l ne,d eha l m i nd d eha l e h a i n h s r in lqud f C02 y in i t no a nea it nom t ylm ne i t e ab o pto i i o b o
基 金 项 目 : 江 省 自然 科 学 基 金 资 助 项 目( 2 1 95 R4 8 1 4 Y5 7 5 ) 浙 江 省分 析 测试 基 金 资 助 项 目 (0 7 7 0 1 浙 Y 10 4 , 0 0 2 , 0 2 2 ; 20F 06) 作 者 简 介 : 明 立 ( 9 8 ) 男 , 士 , 要从 事 分析 测 试 方 法 的研 究 . 叶 17一 , 硕 主 *通 信 作 者 , — i:h n u 5 1 1 3 cr E malce y 0 7 @ 6 .o n
关 系数 分 别 为 0 9 960 9 93和 0 9 92 加 标 回 收 率 为 8 %~ 9 . 所 建 立 的 方 法 测 定 了 C 2吸 收 液 中有 机 . 9 、. 9 .9 , 7 8 用 O
胺 质 量 浓 度 , 果 令人 满 意 . 结


词 : 离子 交换 ;电 雾检 测 器 ;有 机 醇 胺 阳

药用二氧化碳气体取样方法

药用二氧化碳气体取样方法

药用二氧化碳气体取样方法English: One common method for sampling medicinal carbon dioxide gas is through a technique known as direct sampling. This involves using a sampling device, such as a gas syringe or a glass impinger, to directly collect the gas from the source. The gas syringe method is relatively simple, where a syringe is connected to the gas outlet and the gas is withdrawn into the syringe by pulling back the plunger. This method is suitable for collecting smaller volumes of gas and is often used for laboratory analysis or research purposes. On the other hand, the glass impinger method allows for larger sample volumes to be collected and is commonly employed for industrial or manufacturing applications. In this method, the gas is bubbled through a liquid medium, typically an absorber, contained within the impinger. The absorber can be a liquid solvent or a solid adsorbent, depending on the specific requirements. The gas is then collected by removing the liquid or solid from the impinger and extracting the carbon dioxide for further analysis or processing. Both of these techniques provide reliable methods for sampling medicinal carbon dioxide gas and can be adapted to suit different samplingrequirements depending on the purpose and scale of the sampling process.中文翻译:药用二氧化碳气体取样的常见方法之一是通过直接取样技术。

光学瓦斯鉴定器检测瓦斯与二氧化碳 校验公式

光学瓦斯鉴定器检测瓦斯与二氧化碳 校验公式

光学瓦斯鉴定器检测瓦斯与二氧化碳校验公式近年来,随着科技的不断发展,光学瓦斯鉴定器作为一种新型的气体检测技术逐渐受到人们的关注。

它具有快速、准确、无损伤、无需接触被检测物等优点,因此在工业领域的气体检测中得到了广泛的应用。

在光学瓦斯鉴定器中,对瓦斯和二氧化碳的检测尤为重要。

瓦斯和二氧化碳是工业生产中常见的有害气体,如果浓度超标,将对人体造成危害。

对瓦斯和二氧化碳进行准确、可靠的检测至关重要。

光学瓦斯鉴定器检测瓦斯和二氧化碳的原理是基于气体分子与特定波长的光子发生吸收或发射光子的量级关系。

通过这种方式可以测量出气体的浓度。

校验公式在此具有重要意义,能够确保检测结果的准确性和可靠性。

对于瓦斯的检测,校验公式一般会包括气体浓度、温度、压力和湿度等参数。

以甲烷为例,其校验公式可以表示为:CH4 = (K1 * (Igas / Iref) * (Pref / Pgas) * (Tgas / Tref) * (Hgas/Href))^0.5其中,CH4代表甲烷浓度,K1为校验常数,Igas和Iref分别为气体样品和参比气体在检测时的吸收光强,Pref和Pgas分别为参比气体和样品气体的压力,Tgas和Tref分别为样品气体和参比气体的温度,Hgas和Href分别为样品气体和参比气体的湿度。

而对于二氧化碳的检测,其校验公式也可以根据具体的参数来确定。

一般包括与温度、大气压、湿度等相关的校准公式,以保证检测结果的准确性。

在实际应用中,校验公式起着至关重要的作用,它能够对仪器进行标定和修正,使得检测结果更加准确可靠。

校验公式的选取和使用也需要根据具体的检测要求和仪器特性来确定,以确保检测结果符合实际情况。

光学瓦斯鉴定器作为一种新型的气体检测技术,在工业生产中具有广阔的应用前景。

而校验公式的制定和应用,对于保证检测结果的准确性和可靠性至关重要。

未来,随着技术的不断进步,相信光学瓦斯鉴定器将会在工业领域发挥出更大的作用。

烟道气中co2养小球藻固碳量的计算方法及标准 翻译

烟道气中co2养小球藻固碳量的计算方法及标准 翻译

烟道气中co2养小球藻固碳量的计算方法及标准翻译
CO2固碳是指将烟道气中的二氧化碳(CO2)固定到水溶液中,通过水溶液结合、溶解或吸附方式,将二氧化碳保持在大气层中用18O标记水样品,然后使用质谱仪分析18O比例,小球藻(CO2固碳细菌)利用二氧化碳固碳计算的方法实施的一种。

该方法具有准确性高、数据准确可控等优势。

小球藻(co2)固碳有一种统一的标准,即采用一定量的烟道气的CO2的浓度作为一个参考值,通过水中的小球藻或菌群来进行固碳计算。

该基准可以用于比较和计算CO2在不同浓度下的固碳量,也可以用于不同浓度烟道气的CO2固碳量计算。

小球藻(CO2固碳)计算的标准包括:CO2溶液的浓度要足够,只有当该浓度达到一定水平时,才能活性小球藻固碳效果最好;小球藻本身的抗压能力要足够,确保该生物不会被压迫性因素损伤或影响固碳能力;小球藻的培养液的ph值必须符合要求,最好在中性状态下,以保证小球藻的繁殖;此外,必须确保固碳期间,空气分压量也要充足,足以来支撑小球藻固碳效果。

因此,小球藻(CO2固碳)计算的标准是确保小球藻固碳效率与稳定性,计算CO2在烟道气中的固碳量的重要因素,并为维护室内空气环境的稳定提供科学依据。

新型二氧化碳储能验证项目

新型二氧化碳储能验证项目

新型二氧化碳储能验证项目随着全球能源需求的增长以及可再生能源的发展,新型二氧化碳储能技术成为了一个备受关注的研究领域。

这种技术通过将二氧化碳气体捕集和储存起来,既能减少温室气体的排放,又能为能源储备提供一种可持续的解决方案。

为了验证新型二氧化碳储能技术的可行性和效果,我们开展了一项有意义的实验项目。

该项目通过构建一个小型化的二氧化碳储存系统,对该技术的关键参数进行了测试和分析,以获得生动、全面和有指导意义的结果。

在实验过程中,我们选择了一种高效的二氧化碳捕集方法,将大气中的二氧化碳气体通过化学吸收技术转化为液体,并将其注入到高压储罐中。

通过密封和保温处理,我们成功地将二氧化碳气体储存下来,并确保其长期稳定。

这项技术能够实现对二氧化碳的有效利用和封存,为人类应对气候变化提供了一种崭新的思路。

实验中,我们还对二氧化碳的储能效率进行了评估。

通过测量储罐内二氧化碳的压力和体积变化,我们发现该系统具有较高的储存效率,能够实现大规模的能量储备。

这意味着新型二氧化碳储能技术在应对能源需求波动和电力储备方面具有很大的潜力。

除了对技术本身进行验证外,我们还对该技术的环境影响进行了评估。

实验结果显示,新型二氧化碳储能技术不会产生二氧化碳的渗漏和泄露,具有较低的环境风险。

与传统能源储备方式相比,这种技术更加环保、可持续,并能够对大气中的二氧化碳进行有效的减排。

综上所述,我们的实验项目为新型二氧化碳储能技术的可行性提供了充分的验证。

这项技术在能源领域具有广阔的应用前景,不仅可以提供可持续的能源储备方案,还有助于减少温室气体排放和应对气候变化。

我们鼓励更多的科研人员和工程师对该技术进行进一步研究和开发,以加速能源转型和可持续发展的进程。

co2使用当量值英文说明书

co2使用当量值英文说明书

co2使用当量值英文说明书CO2使用当量值英文说明书1. 产品概述The product is a CO2 detection device that uses the equivalent value method to measure and indicate the concentration of CO2 in the air. It is suitable for applications such as air quality monitoring, greenhouse cultivation, and scientific research.2. Operating PrinciplesThe device measures the concentration of CO2 by detecting the absorption of infrared light by CO2 molecules in the air. The absorption rate is directly proportional to the concentration of CO2 in the air. By comparing the absorption rate with a standard curve, the device can calculate the CO2 concentration in the air.3. Product FeaturesThe product has a compact size, easy to install and operate, and can be used in various environments. It has a long service life and low power consumption. The display screen shows the measured CO2concentration in real time, and the data can be remotely monitored and analyzed through a computer or mobile device.4. Operating StepsStep 1: Install the device according to the user manual, ensuring that it is placed in an environment without strong magnetic fields or dust. Step 2: Connect the power supply and turn on the power switch. The display screen will show the startup logo.Step 3: After the device starts up, it will automatically enter the standby mode. The measured CO2 concentration will be displayed on the screen.Step 4: If necessary, you can adjust the sensitivity and other parameters through the settings menu on the device.Step 5: Regularly clean and maintain the device to ensure accurate measurement results and extend its service life.5. Precautionsa. Do not expose the device to strong magnetic fields or high temperatures, which may affect its measurement accuracy.b. Do not install or use the device in an environment with high levels of dust or smoke, which may affect its performance and accuracy.c. Regularly check and replace the filter to ensure accurate measurement results and extend the service life of the device.d. Do not disconnect or modify any wiring connections during operation, which may cause damage to the device or personal injury.。

二氧化碳储能发电验证工程

二氧化碳储能发电验证工程

二氧化碳储能发电验证工程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!近年来,随着全球能源需求的不断增长和气候变化问题的日益严重,人们对清洁能源的需求也越来越迫切。

二氧化碳捕获和利用技术的研究进展

二氧化碳捕获和利用技术的研究进展

二氧化碳捕获和利用技术的研究进展随着全球温室气体排放不断增加,气候变化已成为人类面临的重大挑战之一。

其中,二氧化碳(CO2)被认为是主要的温室气体之一,其排放量的增加导致了地球温度升高和气候异常变化。

因此,研究和发展二氧化碳捕获和利用技术,成为了解决温室气体问题的重要途径。

二氧化碳捕获技术是指通过各种方法将二氧化碳从工业排放源或空气中分离出来,避免其直接释放到大气中,以减少温室效应。

目前,已经有多种二氧化碳捕获技术被提出和研究。

第一种技术是化学吸收法,这种方法是通过将待捕获的二氧化碳溶解在化学溶剂中,使其与溶剂发生反应形成化合物。

目前袋装氨法、酒石酸法和氯化铵法等化学吸收法已经在实际应用中取得了一定的成果。

然而,这些方法存在着溶剂回收和再生、能耗高和装置腐蚀等问题,需要进一步改进和研究。

第二种技术是物理吸附法,这种方法是利用吸附材料将二氧化碳从气流中吸附下来。

目前已有氧化锌、沸石和活性炭等吸附材料被用于二氧化碳捕获。

物理吸附法具有操作简单、能耗低和回收利用方便等优点,但吸附材料的选择和再生问题仍然需要解决。

第三种技术是膜分离法,这种方法是通过膜的渗透和选择性吸附来实现二氧化碳的分离。

具有选择性吸附和膜渗透性能的聚合物膜和无机膜已经得到广泛应用。

膜分离法具有操作简单、能耗低和生产成本较低等优点,但膜的稳定性和寿命问题仍待解决。

除了二氧化碳捕获技术,二氧化碳的利用也是当前的研究热点之一。

一种常见的利用方法是将二氧化碳转化为化学品,如氨、甲醇和有机酸等。

这些化学品在工业生产中具有广泛的应用,通过将二氧化碳转化为这些有用化学品,可以实现二氧化碳的资源化和再利用。

此外,光催化、生物固定和地质封存等技术也被广泛研究和应用于二氧化碳的捕获和利用领域。

通过利用太阳能、光催化剂和微生物等,可以将二氧化碳转化为有用的能源或化学品,实现了对二氧化碳的高效利用。

尽管二氧化碳捕获和利用技术在近年来取得了一些进展,但仍存在一些挑战和难题。

单位co2捕集质量

单位co2捕集质量

单位co2捕集质量
单位CO2捕集质量是指每单位时间内,通过某种技术或设备,从大气中捕获的二氧化碳的质量。

这是一个衡量碳捕获效率的重要指标。

目前,主要的碳捕获技术包括燃烧后处理、化学吸附和生物转化等。

其中,燃烧后处理是最常见的方法,主要是在燃烧过程中注入氧气,使二氧化碳与水反应生成碳酸,然后通过冷却和压缩将其固化为固态。

这种方法的优点是成本低,但缺点是只能捕获新产生的二氧化碳,对已经排放到大气中的二氧化碳无效。

化学吸附则是利用特定的化学物质吸附二氧化碳,然后通过加热或其他方式将其释放出来。

这种方法可以捕获已经排放到大气中的二氧化碳,但成本较高。

生物转化则是利用特定的微生物将二氧化碳转化为有机物,如甲烷或甲醇。

这种方法的优点是可以将二氧化碳永久地储存起来,但缺点是需要大量的能源来维持微生物的生长。

总的来说,单位CO2捕集质量是一个复杂的问题,需要综合考虑各种因素,如技术成熟度、成本、环境影响等。

目前,全球正在积极研发新的碳捕获技术,以应对日益严重的气候变化问题。

二氧化碳检验方法

二氧化碳检验方法

二氧化碳检验方法二氧化碳检验对于空气质量的监控以及空气污染的防治起着至关重要的作用。

近年来,随着环境污染的加重,对于实验室检测中的空气污染物实行监测分析,尤其是二氧化碳检测分析,更是受到了高度重视。

一、测量原理二氧化碳检测是根据空气中二氧化碳产生的电离平衡原理。

当空气中的二氧化碳进入水中,水中的离子受到二氧化碳的吸引,交换了部分的离子,产生了电离平衡,这就是测量二氧化碳含量的原理。

二、检测设备二氧化碳检测是一个复杂的实验,它要求操作者具备专业的实验技术,所以必须要有专门的仪器设备进行检测。

一般采用的仪器设备有,酸盐电极、滴定管、校准液、通气桶、冻干机、PH值计、蒸馏器、电离源等,可以根据实验需要选择不同的仪器设备。

三、检测步骤1、校准:将校准液放入滴定管中,连接电极,调节电极传感器,让其达到一定的校准值,将校准后的结果记录下来,以备使用时用到。

2、溶液的准备:将溶液放入滴定管中,并将滴定管安装在通气桶中,用冻干机冻干液体中的气体,以使液体中的除去气体减少对溶液的干扰。

3、测量:把滴定管安装在仪器上,调节蒸馏器,将溶液改变到指定的电位,再调节pH值,测量出二氧化碳在溶液中的含量。

4、计算:将测量值乘以校准值,得出二氧化碳实际含量。

四、注意事项1、在操作过程中,应穿检测服,及时清洁服装,以确保实验结果的准确性。

2、二氧化碳对人体有害,检测时应留意防护。

3、根据实验环境的不同,选择合适的仪器设备,以确保测量结果的准确性。

4、实验室应严格遵守安全规定,确保实验安全。

五、总结实验室检验二氧化碳是一项复杂的实验,需要实验者掌握专业技术,并要求使用合适的仪器设备,以确保检测结果的准确性,确保实验安全。

本文介绍了二氧化碳检测的测量原理、检测设备、检测步骤及相关的注意事项,旨在为读者介绍二氧化碳检测的方法,并让读者能够正确、有效地进行检测实验。

吸磷过程中电子受体峰值浓度探讨

吸磷过程中电子受体峰值浓度探讨

吸磷过程中电子受体峰值浓度探讨彭赵旭;彭永臻;刘旭亮;于振波;柴同志【期刊名称】《土木建筑与环境工程》【年(卷),期】2011(033)004【摘要】为了探讨NO3- -N和DO分别作为吸磷过程电子受体时的峰值浓度,采用序批式间歇反应器(SBR)进行静态平行试验,在按照厌氧/好氧方式运行的EBPR 系统中,分别考察了在NO3- -N初始浓度为50 mg·L-1、75 mg· L-1和100 mg·L-1时以及曝气量为16 L·h-1、28 L· h-1和40L·h-1条件下的吸磷过程.结果表明,在内碳源充足的情况下,决定吸磷速率快慢的主要因素不是电子受体的浓度,而是能否及时地向系统中提供足够的电子受体.与DO相比,NO3- -N作为吸磷过程电子受体时的效率偏低,且被反硝化掉的NO3-N量与被吸收的PO43- -P量近似成正比.这说明采用厌氧/好氧方式运行的EBPR系统中也存在反硝化除磷菌,计算发现其占总聚磷菌的比例为17.70%.利用pH变化曲线作为吸磷过程的控制手段实用性不大,以NO3- -N和DO作为吸磷过程电子受体的峰值浓度分别为50.00 mg· L-1和0.4 mg· L-1.【总页数】5页(P162-166)【作者】彭赵旭;彭永臻;刘旭亮;于振波;柴同志【作者单位】哈尔滨工业大学城市水资源与水环境国家重点实验室,哈尔滨,150090;哈尔滨工业大学城市水资源与水环境国家重点实验室,哈尔滨,150090;北京工业大学环境与能源学院,北京100022;哈尔滨工业大学城市水资源与水环境国家重点实验室,哈尔滨,150090;哈尔滨工业大学城市水资源与水环境国家重点实验室,哈尔滨,150090;哈尔滨工业大学城市水资源与水环境国家重点实验室,哈尔滨,150090【正文语种】中文【中图分类】X703.1【相关文献】1.不同电子受体对聚磷菌吸磷性能的影响研究 [J], 郭春艳;徐立杰;李夕耀;袁志国;彭永臻2.亚硝氮为电子受体缺氧吸磷的试验研究 [J], 张晓洁;周少奇;朱明石3.NO_2^-作为缺氧吸磷电子受体的试验研究 [J], 张小玲;王磊;王志盈4.不同电子受体对反硝化除磷菌缺氧吸磷的影响 [J], 刘建广;付昆明;杨义飞;张维健5.NO2^-作为电子受体对反硝化吸磷影响动力学研究 [J], 侯红勋;彭永臻;殷芳芳;刘秀红因版权原因,仅展示原文概要,查看原文内容请购买。

CO2注入实验报告

CO2注入实验报告

CO2注入实验报告关于各家实验内容及其结论和优缺点的调研1 林李—注二氧化碳开采煤层气模拟实验研究该实验利用注二氧化碳开采煤层气模拟实验装置,研究了注气压力、注汽速度等因素对煤层气采收率的影响,为煤田开展注二氧化碳开采煤层气提供理论依据。

1.1实验材料与实验装置实验材料包括煤样、甲烷(瓶装,纯度99.99%)、二氧化碳(瓶装,纯度99.99%)、蒸馏水、氢氧化钠等。

实验装置如图1所示,它主要由气瓶、标准容器、煤样管、回压阀、真空泵、二氧化碳吸收装置、量筒等组成。

1-气瓶 2-标准容器 3-减压阀 4-压力表 5-煤样 6-二氧化碳吸收装置 7-真空泵8-量筒 9-回压阀图1 实验装置示意图1.2 实验方法1.2.1 煤样制备将块状煤样粉碎、过筛、烘干、称质量,然后装入填煤管中,边填边压实。

1.2.2 煤样吸附特性评价实验步骤(1) 关闭填煤管和标准容器的出口阀门,将填煤管抽真空2小时。

(2) 打开气瓶阀门,将气体充入标准容器中,记录压力为P1,关闭气瓶阀门。

(3) 打开填煤管入口阀门,连通标准容器和填煤管,在压力表读数稳定时,记录平衡压力P2。

(4) 改变充入标准容器中的气体的压力,重复步骤(2)和(3),得到一系列的平衡压力值。

1.2.3 注二氧化碳开采煤层气实验步骤(1) 关闭填煤管和标准容器的出口阀门,将填煤管抽真空2小时。

(2) 打开甲烷气瓶阀门,将甲烷充入标准容器中,记录压力为P1,关闭气瓶阀门。

(3) 打开填煤管入口阀门,连通标准容器和填煤管,在压力表读数稳定时,记录平衡压力P2。

(4) 调节回压阀压力P2,以一定的流量向填煤管中注入二氧化碳气体,产出的二氧化碳气体由碱液吸收,记录时间和采出的甲烷气量。

1.3 实验结果与分析煤样对甲烷、氮气和二氧化碳的吸附等温线如图2所示。

由图2可见,煤样对二氧化碳、甲烷、氮气的吸附规律都近似符合Langmuir 等温吸附方程。

图2 不同气体的等温吸附曲线氮气)339.01/(638.2p p V a += 95.2=L P 78.7=L V (1)甲烷)328.01/(676.7p p V a += 05.3=L P 42.23=L V (2)二氧化碳)702.01/(313.36p p V a += 42.1=L P 72.51=L V (3)二氧化碳的吸附曲线位于CH 4的吸附曲线之上,煤样对二氧化碳的吸附量大约是对甲烷吸附量的3倍左右,而氮气的吸附性能要低于甲烷的吸附性,这说明在相同压力下,CO 2对煤样的吸附能力大于CH 4对煤样的吸附能力,二氧化碳注入煤层中后就会与煤基质微孔中的甲烷发生竞争吸附,由于其吸附能力较煤层甲烷强从而将原吸附在煤层中的甲烷置换出来,达到增产煤层气的效果。

二氧化碳测定方法气相色谱法

二氧化碳测定方法气相色谱法

二氧化碳测定方法气相色谱法1.原理空气中的二氧化碳用注射器采集,直接进样,经GDX-102柱分离,热导监测器检测,以保留时间定性,峰高或峰面积定量。

本法适用于工作场所空气中二氧化碳浓度的测定。

2. 仪器2.1 注射器,1ml,2ml。

2.2气相色谱仪,热导检测器。

仪器操作条件:色谱柱:3mx4mm , GDX-102 ;柱温:室温;汽化室温度:室温:检测室温度:室温:载气(氢气)流量:50ml/min。

3. 试剂3.1 GDX-102 , 60-80 目。

3.2二氧化碳标准气:采用二氧化碳气体标准物质。

4样品的采集,远精和保存在采样点,用空气样品抽洗1 ml注射器3次,然后抽取1ml空气样品,立即封闭进气后,垂直放置,置于清洁容器内运藉和保存。

尽快测定。

5.分析步骤5.1样品处理:将采过样的注射器放在测定标准系列同样的环境中,供测定。

5.2标准曲线的制备用氮气或清洁空气稀释标准气成0.0、0.36、0.72、1.44、2.88 和5. 76ng/ml 二氧化碳的标准系列。

进样1.0ml,分别测定各标准管,每个浓度重复测定3次。

以测得的峰高或峰面积均值对相应的二氧化碳含量(ng)绘制标准曲线。

5.3样品测定:用测定标准管的操作条件测定样品气和空白对照气,测得的样品峰高或峰面积值减去空白对照的峰高或峰面积值后,由标准曲线得二氧化碳的含量(ng)。

6.计算按式(4-3)计算空气中一氧化碳或二氧化碳的浓度:C= m (4-3)式中:C--空气中二氧化碳的浓度,Vmg/m3 ; m一测得的二氧化碳含量,ng ; v进样体积,ml。

7说明7.1本法的最低检出浓度为O. 75 mg/m3 ,;测定范围为O.75 - 32.4 mg/m37.2本法采用GBl-01-02公共场所空气中二氧化碳卫生检验标准方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SPE 132624Evaluation of CO 2 Injectivity from Waterflood ValuesVenu Nagineni, SPE, and Richard G. Hughes, SPE, Louisiana State University; David D'Souza, SPE, and Kenneth M. Deets, SPE, Denbury Resources Inc.Copyright 2010, Society of Petroleum EngineersThis paper was prepared for presentation at the SPE Western Regional Meeting held in Anaheim, California, USA, 27–29 May 2010.This paper was selected for presentation by an SPE program committee following review of information contained in an abstract submitted by the author(s). Contents of the paper have not been reviewed by the Society of Petroleum Engineers and are subject to correction by the author(s). The material does not necessarily reflect any position of the Society of Petroleum Engineers, its officers, or members. Electronic reproduction, distribution, or storage of any part of this paper without the written consent of the Society of Petroleum Engineers is prohibited. Permission to reproduce in print is restricted to an abstract of not more than 300 words; illustrations may not be copied. The abstract must contain conspicuous acknowledgment of SPE copyright.AbstractCarbon dioxide flooding is a common IOR method employed in fields which have relatively easy access to CO 2. In some cases, estimating the CO 2 injection rate is the most important design parameter which decides the planning, field implementation and eventual success of a flood. This paper presents a method for evaluating this important parameter from data that should be readily available for a field.Water injectivity index values from fields which have undergone waterflood operations are compared to injectivity index values for the same field while undergoing CO 2 flood operations. Different methods for evaluating the indices are presented as is a process for estimating the CO 2 injectivity value from data from secondary operations.The correlation developed has been verified on injectors which were converted in the same field. Initial injection rates calculated from this correlation were in closer agreement to actual injection rates than those predicted by other theoretical formulas.BackgroundDuring the planning of a waterflood or enhanced oil recovery operation, an engineer has to estimate injection rates at a specified injection pressure in order to size equipment and evaluate flood performance and economics. Often these estimates are obtained from simulation studies or from analytic or semi-analytic solutions published for the flood pattern being proposed.A broad method to estimate injection rates for CO 2 injection wells is using relative rate ratios. A ratio of an average of the CO 2 injection rates to an average of the water injection rates is calculated for each well in a field and an average of these ratios is used to calculate the CO 2 injection rate for a new well using the available water injection data from that well.Theoretical relationships to calculate injection rate for different flood patterns have been presented by Muskat (1949). These mathematical models were derived considering steady-state flow in a homogenous formation. As an extension of these analytical models, Prats, et al (1959) presented a method to predict water injection rate for a reservoir having wide range of permeability values. However, these relationships are applicable only for a flood with unit mobility ratio. Most gas floods have a mobility ratio much greater than one, so these relations do not work well for gas injection. Caudle and Witte (1959) used experimental models to develop a correlation between injection rate, mobility ratio and areal sweep efficiency. They studied the variation of conductance with mobility ratio and flood front advance. These models are very well applied and verified for waterflood systems.For a five-spot flood, Muskat (1949) presented analytical solutions for injectivity in unit mobility ratio floods as2688.0log 001538.0,−∆=winj water r dPh q λ(1)Deppe (1961) presented a semi-analytical solution for essentially the same problem but which can be applied for systems with non-unit mobility ratio. For the five-spot pattern, the injectivity is given by()wpep wi ei wp wi u inj water r r r rP P h q loglog 003076.0,+−=λ(2)2 SPE 132624When the producer and injector radii are equal, the Deppe (1961) injectivity equation differs from the Muskat (1949) equation by a small change in the constant term in the denominator. One notable advantage of Deppe’s model is the flexibility of being able to use different well radii for injection and production wells. In addition, λu (the mobility of the reservoir fluid) allows the application of this relationship to fluid systems with different mobility ratios. Deppe (1961) also showed the application of his methodology to other flood patterns with similar results.Rearranging Eqn. 2 in the form of an injectivity index yields()wpep wi ei uwp wiinjwater r r r rh P Pq loglog 003076.0,+=−λ (3)For a given reservoir, pattern and fluid system, the right hand side of Eqn. 3 should be approximately constant afterbreakthrough. Hence, plotting the left hand side (injectivity index) over time should result in an approximately constant value. However, P wi and P wp are not always measured during field operations; hence the denominator can be altered in terms of an average reservoir pressure which can either be measured or estimated. The injectivity index would then be().,res wiinjwater P Pq y Index Injectivit −=(4)All these relationships are for a waterflood using reservoir volumes or assume water is incompressible. In order to apply these relationships to a gas flood system some modifications need to be made to account for the properties exhibited by gases, mainly the lower viscosity and higher compressibility values. One way to account for these factors, similar to productivity evaluation, would be to assume the product of the gas viscosity and z-factor terms are approximately constant yielding the traditional P 2 technique (Lee and Wattenbarger, 1996). Thus injectivity index, computed through()2res2fbhpconditionsreservoir gas,gas ..P Pq I I −=(5)plotted against time should be approximately constant. Lee and Wattenbarger (1996) showed that the P 2 technique is viable at fairly low pressures. A better approach would be to use the pseudo-pressure technique (Al-Hussainy, et al., 1966). This would yield())()(..res fbhpconditionsreservoir gas,gas P m Pm q I I −=(6)where the m(P) terms are the real gas pseudo-pressures defined by (Al-Hussainy, et al., 1966)()∫=PP bdp Z p P m µ2(7)A simple ratio of the waterflood flow rate to the gas injection flow rate would neglect both the viscosity differences betweenthe water and the gas and the density changes that occur through the P 2 or m(P) contributions and should not be expected to yield reasonable results. The P 2 formulation takes into account some of the compressibility changes that occur with gas systems, but does so accurately only at low pressures. Thus we would expect that the appropriate form of the injectivity index should be Eqn. 6.MethodologyTo confirm our assumption that the pseudo-pressure calculated injectivity index would yield more accurate estimates of the injectivity values for CO 2 systems, the following steps were used in this work:1. Field data of surface injection pressure, volume injected and estimated average reservoir pressures were obtained forwells which were initially water injectors and were later converted to CO 2 injection.2. Water and CO 2 injectivity indices (using Equations 4, 5 and 6) were calculated and plotted versus time to observeany trend. In order to calculate CO 2 injectivity index, the surface injection pressure for the well was converted to a bottomhole pressure using a Microsoft Excel ® macro.3. Trends of water and CO 2 injectivity indices from this process were cross plotted to obtain a correlation.All the equations to calculate injectivity index need an input of flowing bottomhole pressure (FBHP). For a water injection well, FBHP can be calculated by the addition of the hydrostatic head to the wellhead pressure, and subtracting any frictional losses. However for gases density varies with temperature and pressure. Hence, density needs to be accounted for in all ensuing equations to calculate FBHP.SPE 132624 3 Lee and Wattenbarger (1996) describe the average temperature and z-factor method used to calculate the FBHP. This method uses an iterative calculation to obtain pressure at the end of selected depth intervals. A Microsoft Excel® macro was built to estimate FBHP by dividing the entire well depth into a number of smaller depth intervals. Pressure changes were then calculated for each interval, beginning from the top. Density and z-factor of CO2 in each interval were estimated using the average temperature and pressure in the interval. The summation of pressure changes over all such depth intervals and subtracting frictional losses gives the FBHP. Values of FBHP calculated using the macro were compared to measured FBHP data available for some of the wells. A small error ranging between -0.25% and 2% was observed between the two as shown in Table 1.Injection data were collected from two oil fields in Mississippi. Field-1 had data from 5 wells that were water injection wells which were later converted to CO2 injectors. Of these five wells, data from four wells are discussed at length in this paper. The fifth well was excluded because it had similar injectivity index trends as one of the other four wells. Field-2 had data from 8 wells that were converted from water injection to CO2 injection. Injectivity indices from six of the wells from Field-2 were used to build a correlation while the other two wells were used to verify the correlation. Wells from each field have been designated as Well-1a, Well-1b and so on for wells from Field-1, and similarly Well-2a, Well-2b and so on for wells from Field-2. Figures 1 through 8 show well and field plots of water and CO2 injectivity indices for the two selected fields. Only monthly injection data were available so injectivity indices are plotted on a common time axis in order to make trend comparison easier.Field-1For Field-1, CO2 injection pressure data were not available for the initial several years of injection. Therefore data for CO2 injectivity index in Figures 1 through 6 starts from the first month of the availabile pressure data. For instance Well-1b had no injection pressure data available for the first 7 years of injection, while Well-1d had no injection pressure data available for nearly 13 years.Figure 1 is a plot of all injectivity indices for Well-1a. Water injectivity indices (WII) lie approximately on a straight line parallel to the x-axis and hence can be assumed to be an approximately constant value. Similar observation can be made for CO2 injectivity indices (CII) calculated using the pseudo-pressure technique whereas CO2 injectivity indices calculated using the P2technique are much more scattered and do not really follow any trend. Well-1b (Figure 2) has similar characteristics, but with much less scatter in the CO2injectivity indices calculated using the P2technique which have an approximately constant value. This is the only case where an almost constant value was found using the P2 technique. Well-1c (Figure 3) and Well-1d (Figure 4) again show scattered data for the P2 technique with much less scatter for both the water injectivity indices and the CO2 injectivity indices using the pseudo-pressure technique. The water injectivity plots for Well-1d shown in Figure 4 have a greater variation in the values for WII than the other wells and could be approximated as either a decreasing trend or multiple constant values that varied in time. As with the other wells in the field, a mean value for the water injectivity was calculated.The figures described above show that water injectivity indices are approximately uniform during the period the field was under waterflood. However, CO2injectivity indices calculated using different equations show different trends. CO2 injectivity index values were almost uniform with time when calculated using the pseudo-pressure relationship whereas CO2 injectivity index calculated using the P2 relationship were more scattered. Based on these observations it was concluded that obtaining a correlation between water and CO2 injectivity indices would be more useful if the pseudo-pressure relationship (Eqn. 6) was used for CO2 injectivity index.These same graphs for the wells in Field-1 were re-plotted without the P2 technique values. Wells 1a, 1b and 1c were plotted separately from Well-1d to highlight some differences between their WII. Well-1d has greater variation of WII, ranging between 0 - 7 bbl/day/psi (Figure 6), whereas the other three wells combined have WII ranging between 0 - 2.5 bbl/day/psi (Figure 5). Table 2 lists the mean and standard deviation values for the Water and pseudo-pressure CO2 injectivity indices for all wells in Field-1.An average of these injectivity indices for each well can be calculated, cross-plotted, and used for a correlation. However, as this particular field has no recent CO2 conversions with which we could verify the correlation’s usefulness. We use the data from this field primarily to explain the observed uniform trends in injectivity indices and also to suggest that these indices could be correlated. Another field, Field-2, was selected precisely for the purpose of generating a correlation and verifying it.Field-2Plots similar to the ones described above were constructed using injection data from wells in Field-2. Data from six different injection wells were used in constructing these plots. Unlike Field-1, CO2injection data for the wells in Field-2 were available from the beginning of the CO2 flood. Including water and CO2 injectivity indices of all six wells in one plot would make it hard to observe trends of the data points; hence the plots are separated into two groups, each with injectivity indices of three wells. Figures 7 and 8 show the injectivity indices of Wells-2a, 2d, 2f, and Wells-2b, 2c, 2e, respectively. Well 2c (Figure 8) and Well 2d (Figure 7) have a large scatter to the water injectivity data and both show a drastic drop in the final few months of injection. The remaining wells have a much smaller spread. For several of the wells, it is unclear as to whether an approximately constant value should be used to represent the data or some trend. Wells 2a and 2f appear to have a similar constant value (Figure 7) but Well 2a has an almost step change in WII during the last 20 months of injection. Wells 2b and4 SPE 1326242e have what appear to be inclined trends for much of their data, but both drop to values that are approximately at the mean during their last several months of injection.Field-2 has significantly less CO 2 injection data available when compared to Field-1. Due to the small number of data points, long-term trends cannot be clearly identified in any of the CO 2 injectivity index data. An average value of these CII was calculated to represent each well’s CO 2 injectivity index. Though this may not be a good representation for CII as the flood progresses, this approximation should be reasonable for the evaluation of the initial CO 2 injectivity for wells being converted from water injection. Table 2 lists the mean and standard deviation for Water and CO 2 injectivity indices for the wells in Field-2.Correlation and VerificationThe average reservoir pressure for Field-2 was estimated from the measured well bottomhole pressure data if it was available or a value of 2400 psia as an estimate of the field average reservoir pressure if it was not. This pressure was used in all ensuing calculations for WII and CII. The averages of water and CO 2 injectivity indices for all six wells from Field-2 were cross plotted in order to build a correlation. The correlation coefficient (R 2) for a linear trend line from these data was low. In an attempt to increase the R 2 value, the average reservoir pressure for each well was iteratively modified. We assumed that errors in the estimated values of the average reservoir pressure around each well were ±10% of the original 2400 psia value. The resulting adjusted average reservoir pressure values for each well lie between 2250 and 2550 psia (±6.25% of the initial estimate of average reservoir pressure).Figure 9 shows the final cross plot and the resulting linear trend line through the data. The linear trend equation relates water and CO 2 injectivity indices for Field-2 and is given by56109983.5105044.3−−×+×=WII CII(8)The value of the correlation coefficient (0.646), although not as high as we would like it to be, suggests that a correlation exists between injectivity indices and that a linear trend captures nearly 65% of the variability in the releationship. A correlation coefficient of 0.646 can be interpreted as a moderate relationship between the variables. For Field-2, in the future, if any water injectors are converted into CO 2 injectors, one can use this correlation to calculate a CO 2 injectivity index from the average of the water injectivity indices for the well and thereby estimate the initial CO 2 injection rate.The next step in the process was to verify this correlation on one or more of the wells which were recently converted into CO 2 injectors. Two wells in Field-2 were converted to CO 2 injectors and each had six months of injection data. The correlation was then used to estimate the initial injection rate (the average injection rate for the first 5 days) for these two wells. The two wells that were chosen to verify the correlation will be referred as ‘Verification Well #1’ and ‘Verification Well #2’. In order to verify the correlation, water injectivity indices for these two wells were plotted (Figure 10) and an average of these values was calculated. By substituting this average water injectivity index into the correlation equation obtained above (Eqn. 8), the estimated CO 2 injectivity index values for the two wells were calculated.Calculating Injection Rate from Injectivity IndexOnce the estimated value for CO 2 injectivity index for both the Verification Wells were computed, the equation for CO 2 injectivity index (Equation 6) now has two known values and two unknown values. The known values are CO 2 injectivity index and average reservoir pressure whereas, the unknown values are CO 2 injection rate and flowing bottomhole pressure. If the wellbore parameters for a well are known both these unknown values can be related by the well tubing performance relationship (TPR). Figures 11 and 12 show the tubing performance curves for Verification Well #1 and Verification Well #2, respectively. These were plotted by assuming a constant wellhead pressure and using the wellbore data available for these wells. The wellhead pressures used were the recorded wellhead pressures for the two wells, averaged over the first five days.Selecting any point on this TPR curve and by substituting its corresponding flowing bottomhole pressure into the injectivity equation will result in a theoretical flow rate. Repeating this step a number of times for different points on the TPR curve would give several theoretical injection rates. The locus of these theoretical injection rates intersects the TPR curve at a single point. This intersection point is the estimated injection rate for each Verification Well. In case of Verification Well #1, the initial injection rate obtained from the graph (Figure 11) was 2.74 MMSCFD whereas the actual average injection rate was 2.19 MMSCFD (a 25% relative error). For Verification Well #2, the initial injection rate obtained from the calculation procedure was 4.87 MMSCFD and the actual average injection rate was 4.97 MMSCFD (a 2% relatve error). These two estimated values are reasonably close to the measured initial injection values especially considering that the estimated rates obtained by the relative ratio method gives 8 MMSCFD and 12 MMSCFD for the two wells.ConclusionsBased on this work, the following conclusions can be made:1. CO 2 injectivity index values calculated through the pseudo-pressure technique were found to have correlation withwater injectivity index values.2. The trend found for Field-2 may not be robust when applied to another field, but it is easy to apply and seems to dowell. The correlation between the CO 2 and water injectivity index values was verified for two field cases.SPE 132624 5 ReferencesAl-Hussainy, R., Ramey, H. J. Jr., & Crawford, P. B.: “The Flow of Real Gases Through Porous Media”, Journal of Petroleum Technology, May, 1966, 624-636.Caudle, B. H., & Witte, M. D.: “Production Potential changes during Sweep-out in a Five-Spot System”, Journal of Petroleum Technology, December, 1959, 63-65.Deppe, J. C.: “Injection Rates - The Effect of Mobility Ratio, Area Swept, and Pattern”, SPE Journal, June, 1961, 81-91. Lee, J., & Wattenbarger, R. A.: Gas Reservoir Engineering, SPE Textbook Series Vol. 5, 1996.Muskat, M.: Physical Principles of Oil Production, New York: McGraw-Hill Book Company, (1949).Prats, M., Matthews, C. S., Jewett, R. L., & Baker, J. D.: “Prediction of Injection Rate and Production History for Multifluid Five-Spot Floods”, Trans. AIME, Vol. 216, 98-105, 1959.TablesWellInjectionRate,MMSCFDMeasuredBHP, psiaCalculatedBHP, psiaDifference,psia% error#1 5.8 3503 3497 -6 -0.1712 #2 4.5 3329 3381 52 1.5620 #3 4.3 3389 3380 -9 -0.2656 #4 1.6 3829 3896 67 1.750 #5 1.6 3770 3844 74 1.963 #6 4.3 3636 3659 23 0.6326 #7 3.3 3462 3479 17 0.4910 Table 1: Verification of macro with FBHP measured in injection wells6 SPE 132624 FiguresFigure 1. Plot of all Injectivity Indices for Well-1a Figure 2. Plot of all Injectivity Indices for Well-1bFigure 3. Plot of all Injectivity Indices for Well-1c Figure 4. Plot of all Injectivity Indices for Well-1dSPE 132624 7Figure 5. Well Injectivity plots for Field-1 (Mean and Standard Deviation values for the wells are given in Table 2)Figure 6. Well Injectivity plots for Field-1 (Mean and Standard Deviation values for the wells are given in Table 2)8 SPE 132624Figure 7. Well Injectivity Plots for Field-2 (Mean and Standard Deviation values for the wells are given in Table 2)Figure 8. Well Injectivity Plots for Field-2 (Mean and Standard Deviation values for the wells are given in Table 2)SPE 132624 9Figure 9. Crossplot of Water Injectivity Index and CO 2 Injectivity Index obtained from different wells in Field-2Figure 10. Water Injectivity index plot for Verification Well. Average value from this plot is used to estimate CO 2Injectivity IndexFigure 11. Graphical solution to calculate CO 2 injectionrate from injectivity indexFigure 12. Graphical solution to calculate CO 2 injectionrate from injectivity index。

相关文档
最新文档