2020年高考文科数学模拟试题及答案(解析版) (3)
2020年高考全真模拟卷文科数学03(含解析)
2020年高考全真模拟卷(3)数学(文)(考试时间:120分钟 试卷满分:150分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}2560A x x x =-+≥,{}10B x x =-≤,则A B =I ( ) A .(],1-∞B .[]2,1-C .[]3,1--D .[)3,+∞2.复数2(1)41i z i -+=+的虚部为( )A .—1B .—3C .1D .23.新中国成立70周年以来,党中央、国务院高度重视改善人民生活,始终把提高人民生活水平作为一切工作的出发点和落脚点、城乡居民收入大幅增长,居民生活发生了翻天覆地的变化.下面是1949年及2015年~2018年中国居民人均可支配收入(元)统计图.以下结论中不正确的是( ) A .20l5年-2018年中国居民人均可支配收入与年份成正相关 B .2018年中居民人均可支配收入超过了1949年的500倍 C .2015年-2018年中国居民人均可支配收入平均超过了24000元 D .2015年-2018年中围居民人均可支配收入都超过了1949年的500倍4.下列说法正确的是( )A .在频率分布直方图中,众数左边和右边的直方图的面积相等;B .为调查高三年级的240名学生完成作业所需的时间,由教务处对高三年级的学生进行編号,从001到240抽取学号最后一位为3的学生进行调查,则这种抽样方法为分层抽样;C .“1x =”是“2320x x -+=”的必要不充分条件;D .命题p :“0x R ∃∈,使得200320x x -+<”的否定为:“x R ∀∈,均有2320x x -+≥”.5.已知21533122,,log 355a b c ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则( )A .c a b <<B .c b a <<C .b c a <<D .a b c <<6.某种饮料每箱装6罐,每箱中放置2罐能够中奖的饮料,若从一箱中随机抽取2罐,则能中奖的概率为( ) A .115 B .13 C .25 D .357.已知双曲线C 的中心在坐标原点,一个焦点0)到渐近线的距离等于2,则C 的渐近线方程为( ) A .12y x =±B .23y x =±C .32y x =±D .2y x =±8.鸡兔同笼,是中国古代著名的趣味题之一.《孙子算经》中就有这样的记载:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各有几何?设计如右图的算法来解决这个问题,则判断框中应填入的是( ) A .94m >B .94m =C .35m =D .35m ≤9.函数ln||()xf x xx=+的图象大致为()A.B.C.D.10.将函数sin 2y x =的图象向左平移512π个单位长度,得到函数()y f x '=的图象,则下列说法正确的是( )①函数()y f x '=的图象关于直线6x π=-对称;②函数()y f x '=的图象关于点,03π⎛⎫⎪⎝⎭对称; ③函数()y f x '=的图象在区间,66ππ⎛⎫-⎪⎝⎭上单调递减; ④函数()y f x '=的图象在区间2,63ππ⎛⎫⎪⎝⎭上单调递增. A .①④B .②③C .①③D .②(④11.鲁班锁(也称孔明锁、难人木、六子联方)起源于古代中国建筑的榫卯结构.这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙.鲁班锁类玩具比较多,形状和内部的构造各不相同,一般都是易拆难装.如图1,这是一种常见的鲁班锁玩具,图2是该鲁班锁玩具的直观图,每条棱的长均为2,则该鲁班锁的表面积为( )A .8(6+B .6(8+C .8(6+D .6(8+ 12.已知定义在R 上的可导函数()f x 的导函数为'()f x ,对任意实数x 均有(1)()'()0x f x xf x -+>成立,且(1)y f x e =+-是奇函数,不等式()0xxf x e ->的解集是( )A .()1,+∞B .(),e +∞C .(),1-∞D .(),e -∞二、填空题:(本大题共4小题,每小题5分,共20分)13.已知向量(,3),(1,3)a m b =-=.若//a b ,则m = .14.中国古代数学名草《周髀算经》曾记载有“勾股各自乘,并而开方除之”,用符号表示为()222*,,a b c a b c N +=∈,我们把a ,b ,c 叫做勾股数.下列给出几组勾股数:3,4,5;5,12,13;7,24,25;9,40,41,以此类推,可猜测第5组股数的三个数依次是 .15.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 . 16.函数()f x x a =+的图象在1x =处的切线被圆22:2440C x y x y +-+-=截得弦长的取值范围为[2,6],则实数a 的取值范围是 .三、解答题:(本大题共6小题,共计70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知数列{}n a 满足11a =,121n n a S +=+,其中n S 为{}n a 的前n 项和,*n N ∈. (1)求n a ;(2)若数列{}n b 满足31log n n b a =+,求122320172018111b b b b b b +++L 的值.18.(本小题满分12分)如图,在三棱柱111A B C ABC -中,D 是棱AB 的中点.(1)证明:1//BC 平面1A CD .(2)若E 是棱1BB 上的任意一点,且三棱柱111A B C ABC -的体积为12,求三棱锥1A ACE -的体积.19.(本小题满分12分)某县一中学的同学为了解本县成年人的交通安全意识情况,利用假期进行了一次全县成年人安全知识抽样调查.已知该县成年人中40%的拥有驾驶证,先根据是否拥有驾驶证,用分层抽样的方法抽取了100名成年人,然后对这100人进行问卷调查,所得分数的频率分布直方图如下图所示.规定分数在80以上(含80)的为“安全意识优秀”.(1)补全上面22⨯的列联表,并判断能否有超过99%的把握认为“安全意识优秀与是否拥有驾驶证”有关?(2)若规定参加调查的100人中分数在70以上(含70)的为“安全意识优良”,从参加调查的100人中根据安全意识是否优良,按分层抽样的方法抽出5人,再从5人中随机抽取3人,试求抽取的3人中恰有一人为“安全意识优良”的概率.附表及公式:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.20.(本小题满分12分)已知椭圆C :()222210x y a b a b+=>>的左右顶点分别为(),0A a -,(),0B a ,点P 是椭圆C 上异于A 、B的任意一点,设直线PA ,PB 的斜率分别为1k 、2k ,且1213k k ⋅=-,椭圆的焦距长为4. (1)求椭圆C 的离心率;(2)过右焦点F 且倾斜角为30°的直线l 交椭圆C 于M 、N 两点,分别记ABM ∆,ABN ∆的面积为1S 、2S ,求12S S -的值.21.(本小题满分12分) 已知函数()()()22112ln 1ln 242f x x x ax x x =----. (1)讨论()f x 的单调性.(2)试问是否存在(],a e ∈-∞,使得()13sin 44a f x π>+对[)1,x ∈+∞恒成立?若存在,求a 的取值范围;若不存在,请说明理由.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程(本小题满分10分)已知曲线C 的极坐标方程是1ρ=,以极点为原点,极轴为x 轴的非负半轴建立平面直角坐标系,直线l 的参数方程2222x t y t ⎧=+⎪⎪⎨⎪=-+⎪⎩(t 为参数).(1)写出直线l 的普通方程与曲线C 的直角坐标方程;(2)设曲线C 经过伸缩变换'2'x yy y =⎧⎨=⎩得到曲线'C ,设曲线'C 上任一点为()','M x y ,求点M 到直线l 距离的最大值.23.选修4-5:不等式选讲(本小题满分10分) 已知关于x 的不等式2|25|5x a x a +++-<. (1)当1a =时,求不等式的解集;(2)若该不等式有实数解,求实数a 的取值范围.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}2560A x x x =-+≥,{}10B x x =-≤,则A B =I ( ) A .(],1-∞ B .[]2,1-C .[]3,1--D .[)3,+∞【答案】A【解析】{}(][)2560,23,A x x x =-+≥=-∞⋃+∞Q ,{}(]10,1B x x =-≤=-∞,因此(],1A B =-∞I ,故选A .2.复数2(1)41i z i -+=+的虚部为( )A .—1B .—3C .1D .2【答案】B【解析】()()2421(1)44213112i i i i z i i i ---+-====-++,所以z 的虚部为3-,故选B . 3.新中国成立70周年以来,党中央、国务院高度重视改善人民生活,始终把提高人民生活水平作为一切工作的出发点和落脚点、城乡居民收入大幅增长,居民生活发生了翻天覆地的变化.下面是1949年及2015年~2018年中国居民人均可支配收入(元)统计图.以下结论中不正确的是( )A .20l5年-2018年中国居民人均可支配收入与年份成正相关B .2018年中居民人均可支配收入超过了1949年的500倍C .2015年-2018年中国居民人均可支配收入平均超过了24000元D .2015年-2018年中围居民人均可支配收入都超过了1949年的500倍 【答案】D【解析】A :观察统计图可知,20l5年-2018年中国居民人均可支配收入随着年份的增加而增加,选项A 正确;B :2018年中国居民人均可支配收入是1949年的28228.0549.7568÷≈倍,所以选项B 正确;C :2015年-2018年中国居民人均可支配收入平均数为1(21966.1923820.9825973.7928228.05)24997.254+++≈(元),所以选项C 正确; D :2015年中国居民人均可支配收入是1949年的21966.1949.7442÷≈倍,所以选项D 错误,故选D . 4.下列说法正确的是( )A .在频率分布直方图中,众数左边和右边的直方图的面积相等;B .为调查高三年级的240名学生完成作业所需的时间,由教务处对高三年级的学生进行編号,从001到240抽取学号最后一位为3的学生进行调查,则这种抽样方法为分层抽样;C .“1x =”是“2320x x -+=”的必要不充分条件;D .命题p :“0x R ∃∈,使得200320x x -+<”的否定为:“x R ∀∈,均有2320x x -+≥”.【答案】D【解析】对于A ,在频率分步直方图中,中位数左边和右边的直方图的面积相等,故A 错误;对于B ,从001到240抽取学号最后一位为3的学生进行调查,则这种抽样方法为系统抽样,故B 错误;对于C ,由2320x x -+=得1x =或2x =,故“1x =”是“2320x x -+=”的充分不必要条件,故C 错误;对于D ,正确.故选D .5.已知21533122,,log 355a b c ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则( )A .c a b <<B .c b a <<C .b c a <<D .a b c <<【答案】A【解析】211533311220,log 03355a b c ⎛⎫⎛⎫⎛⎫<=<<==< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即c a b <<,故选A .6.某种饮料每箱装6罐,每箱中放置2罐能够中奖的饮料,若从一箱中随机抽取2罐,则能中奖的概率为( ) A .115 B .13 C .25 D .35【答案】D【解析】甴列举法可得:从6罐中随机抽取2罐的方法数是15,能中奖的方法数是9,则能中奖的概率为概率为93155p ==,故选D . 7.已知双曲线C 的中心在坐标原点,一个焦点0)到渐近线的距离等于2,则C 的渐近线方程为( ) A .12y x =±B .23y x =±C .32y x =±D .2y x =±【答案】D【解析】设双曲线的方程为:22221x y a b -=,其渐近线方程为:b y x a =±,依题意可知2252a b ⎧+=⎪=,解得12a b ==,,∴双曲线C 的渐近线方程为2y x =±,故选D .8.鸡兔同笼,是中国古代著名的趣味题之一.《孙子算经》中就有这样的记载:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各有几何?设计如右图的算法来解决这个问题,则判断框中应填入的是( )A .94m >B .94m =C .35m =D .35m ≤【答案】B【解析】由题意可知i 为鸡的数量,j 为兔的数量,m 为足的数量,根据题意知,在程序框图中,当计算足的数量为94时,算法结束,因此,判断条件应填入“94m =”.故选B . 9.函数ln ||()x f x x x=+的图象大致为( ) A .B .C .D .【答案】A【解析】由题意知,函数ln ||()x f x x x =+,满足ln ||ln ||()()()x x f x x x f x x x--=-+=-+=--,所以函数()y f x =为奇函数,图象关于原点对称,所以B 选项错误;又因为(1)10f =>,所以C 选项错误;又因为ln 2(2)202f =+>,所以D 选项错误,故选A . 10.将函数sin 2y x =的图象向左平移512π个单位长度,得到函数()y f x '=的图象,则下列说法正确的是( )①函数()y f x '=的图象关于直线6x π=-对称;②函数()y f x '=的图象关于点,03π⎛⎫⎪⎝⎭对称; ③函数()y f x '=的图象在区间,66ππ⎛⎫-⎪⎝⎭上单调递减; ④函数()y f x '=的图象在区间2,63ππ⎛⎫⎪⎝⎭上单调递增. A .①④ B .②③C .①③D .②(④【答案】C【解析】由题意将函数sin 2y x =的图象向左平移512π个单位长度, 得55()sin 2sin 2126f x x x ππ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦sin 2cos 2323x x πππ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 令23x k ππ+=,k ∈Z ,得到,26k x k ππ=-∈Z ,所以对称轴为直线,26k x k ππ=-∈Z ; 令232x k πππ+=+,k ∈Z ,得到212k x ππ=+,k ∈Z ,所以对称中心为点,0212k ππ⎛⎫+ ⎪⎝⎭,k ∈Z ; 由2223k x k ππππ≤+≤+,k ∈Z ,得63k x k ππππ-+≤≤+,k ∈Z ,所以函数()f x 在,()63k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z 上单调递减;由22223k k x πππππ≤≤+++,k ∈Z ,得236k x k ππ-+π≤≤-+π,k ∈Z ,所以函数()f x 在2,()36k k k ππππ⎡⎤-+-+∈⎢⎥⎣⎦Z 上单调递增,所以①③正确,故选C .11.鲁班锁(也称孔明锁、难人木、六子联方)起源于古代中国建筑的榫卯结构.这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙.鲁班锁类玩具比较多,形状和内部的构造各不相同,一般都是易拆难装.如图1,这是一种常见的鲁班锁玩具,图2是该鲁班锁玩具的直观图,每条棱的长均为2,则该鲁班锁的表面积为( )A .8(6+B .6(8+C .8(6+D .6(8+ 【答案】A【解析】由题图可知,该鲁班锁玩具可以看成是一个棱长为2+的正方体截去了8个正三棱锥所余下来的几何体,且被截去的正三棱锥的底面边长为2,则该几何体的表面积为2116(248222S ⎡=⨯+-⨯+⨯⨯⎢⎣8(6=+,故选A .12.已知定义在R 上的可导函数()f x 的导函数为'()f x ,对任意实数x 均有(1)()'()0x f x xf x -+>成立,且(1)y f x e =+-是奇函数,不等式()0xxf x e ->的解集是( )A .()1,+∞B .(),e +∞C .(),1-∞D .(),e -∞【答案】A【解析】要求解的不等式等价于()1x xf x e >,令()()x xf x g x e =,()()()()''10xx f x xf x g x e-+=>,所以()g x 在R 上为增函数,又因为(1)y f x e =+-是奇函数,故()1f e =,所以()11g =,所以所求不等式等价于()()1g x g >,所以解集为()1,+∞,故选A . 二、填空题:(本大题共4小题,每小题5分,共20分)13.已知向量(,3),(1,3)a m b =-=.若//a b ,则m = . 【答案】1-【解析】由331m ⨯=-⨯,得1m =-,故答案为:1-.14.中国古代数学名草《周髀算经》曾记载有“勾股各自乘,并而开方除之”,用符号表示为()222*,,a b c a b c N +=∈,我们把a ,b ,c 叫做勾股数.下列给出几组勾股数:3,4,5;5,12,13;7,24,25;9,40,41,以此类推,可猜测第5组股数的三个数依次是 . 【答案】11,60,61【解析】观察、先找出勾股数的规律:①以上各组数均满足()222*,,a b ca b c N +=∈;②最小的数a 是奇数,并且每组勾股数中最小的数依次放在一起是连续的奇数,其余的两个数是连续的正整数;③最小奇数的平方等于另两个连续整数的和,如22222345,51213,72425,94041,116061=+=+=+=+=+⋅⋅⋅,由以上特点我们可知第⑤组勾股数:2116061=+,故答案为:11,60,61.15.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 . 【答案】9【解析】由题意可知,ABC ABD BCD S S S =+△△△,由角平分线性质和三角形面积公式得111sin1201sin 601sin 60222ac a c ︒=⨯⨯︒+⨯⨯︒,化简得11,1ac a c a c=++=,因此1144(4)()559,c a a c a c a c a c +=++=++≥+=当且仅当23c a ==时取等号,则4a c +的最小值为9.16.函数()f x x a =+的图象在1x =处的切线被圆22:2440C x y x y +-+-=截得弦长的取值范围为[2,6],则实数a 的取值范围是 . 【答案】[6,2]-【解析】11'221()()ln 2f x x a f x x x x --=+⇒=+.由题可得函数()f x 在1x =处的切线斜率(1)1k f '==.又(1)f a =,所以切点坐标为(1,)a ,所以函数()f x x a =+的图象在1x =处的切线方程为1y x a =+-.将圆22:2440C x y x y +-+-=化为标准式为22(1)(2)9x y -++=,则圆C 的圆心坐标为:(1,2)-,半径为3,所以圆心到切线的距离d =.因为切线被圆22:2440C x y x y +-+-=截得弦长的取值范围为[2,6],则26≤≤,解得62a -≤≤,所以,实数a 的取值范围是[6,2]-,故答案为:[6,2]-.三、解答题:(本大题共6小题,共计70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知数列{}n a 满足11a =,121n n a S +=+,其中n S 为{}n a 的前n 项和,*n N ∈. (1)求n a ;(2)若数列{}n b 满足31log n n b a =+,求122320172018111b b b b b b +++L 的值. 【解析】(1)121n n a S +=+,121n n a S -=+,2n ≥,两式相减得112,3,2n n n n n a a a a a n ++-==≥,注意到11a =,2112133a S a =+==,于是11,3n n n a a +∀≥=,所以13n n a -=.(2)n b n =,于是()1111111n n b b n n n n +==-++, 所以1223201720181111111120171223201720182018b b b b b b +++=-+-++-=L L . 18.(本小题满分12分)如图,在三棱柱111A B C ABC -中,D 是棱AB 的中点.(1)证明:1//BC 平面1A CD .(2)若E 是棱1BB 上的任意一点,且三棱柱111A B C ABC -的体积为12,求三棱锥1A ACE -的体积. 【解析】(1)连接1AC 交1A C 于点O ,连接OD . 因为四边形11AAC C 是平行四边形,所以O 是1AC 的中点.因为D 是AB 的中点,所以1//OD BC .又OD ⊂平面1A CD ,1BC ⊄平面1A CD ,所以1//BC 平面1A CD .(2)设三棱柱111A B C ABC -的高为h ,底面ABC ∆的面积为S , 则三棱柱111A B C ABC -的体积12V S h =⋅=. 又111A A CE C AA E C ABA V V V ---==,1113C ABA A ABC V V Sh --==,所以111243A A CE V -=⨯=. 19.(本小题满分12分)某县一中学的同学为了解本县成年人的交通安全意识情况,利用假期进行了一次全县成年人安全知识抽样调查.已知该县成年人中40%的拥有驾驶证,先根据是否拥有驾驶证,用分层抽样的方法抽取了100名成年人,然后对这100人进行问卷调查,所得分数的频率分布直方图如下图所示.规定分数在80以上(含80)的为“安全意识优秀”.(1)补全上面22⨯的列联表,并判断能否有超过99%的把握认为“安全意识优秀与是否拥有驾驶证”有关?(2)若规定参加调查的100人中分数在70以上(含70)的为“安全意识优良”,从参加调查的100人中根据安全意识是否优良,按分层抽样的方法抽出5人,再从5人中随机抽取3人,试求抽取的3人中恰有一人为“安全意识优良”的概率.附表及公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.【解析】(1)由题意可知拥有驾驶证的人数为:10040%40⨯=人,则拥有驾驶证且得分为优秀的人数为:402515-=人,由频率分布直方图知得分优秀的人数为:()100100.0150.00520⨯⨯+=人,∴没有驾驶证且得分优秀的人数为:20155-=人,则没有驾驶证且得分不优秀的人数为:10040555--=人,可得列联表如下:()221001555255122512 6.6354060208096K ⨯⨯-⨯∴==>>⨯⨯⨯,∴有超过99%的把握认为“安全意识优秀与是否拥有驾驶证”有关.(2)由频率分布直方图可求得70以上(含70)的人数为:()1000.0200.0150.0051040⨯++⨯=,∴按分层抽样的方法抽出5人时,“安全意识优良”的有2人,记为1,2;其余的3人记为,,a b c ,从中随机抽取3人,基本事件有:()1,2,a ,()1,2,b ,()1,2,c ,()1,,a b ,()1,,a c ,()1,,b c ,()2,,a b ,()2,,a c ,()2,,b c ,(),,a b c 共10个,恰有一人为“安全意识优良”的事件有6个,∴恰有一人为“安全意识优良”的概率为:63105P ==, 20.(本小题满分12分)已知椭圆C :()222210x y a b a b+=>>的左右顶点分别为(),0A a -,(),0B a ,点P 是椭圆C 上异于A 、B的任意一点,设直线PA ,PB 的斜率分别为1k 、2k ,且1213k k ⋅=-,椭圆的焦距长为4. (1)求椭圆C 的离心率;(2)过右焦点F 且倾斜角为30°的直线l 交椭圆C 于M 、N 两点,分别记ABM ∆,ABN ∆的面积为1S 、2S ,求12S S -的值.【解析】(1)设点()()000,P x y x a ≠,则2200221x ya b+=,① ∵2000122200013y y y k k x a x a x a ⋅=⋅==-+--,② ∴联立①②得()()222230b axa--=,∴()2203a a b x =≠,∴22222212133a b e a a c -===-=,∴e =. (2)由题意知,24c =,即2c =,由(1)知,223a b =,∴22224a b c b =+=+,∴22b =,26a =,∴椭圆C 的方程为:22162x y +=.由已知得l:)2y x =-,联立()2223162y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩,可得2210x x --=. 设()11,M x y ,()22,N x y ,根据韦达定理,得122x x +=,于是)12121212S S y x x -=⨯+=+21.(本小题满分12分) 已知函数()()()22112ln 1ln 242f x x x ax x x =----. (1)讨论()f x 的单调性.(2)试问是否存在(],a e ∈-∞,使得()13sin 44a f x π>+对[)1,x ∈+∞恒成立?若存在,求a 的取值范围;若不存在,请说明理由.【解析】(1)()()()ln ln ln 1f x x x a x a x x a x =-+-=--',()0,x ∈+∞.当a e =时,()()()ln 10f x x e x '=--≥,()f x 在()0,∞+上单调递增; 当0a ≤时,0x a ->,()f x 在()0,e 上单调递减,在(),e +∞上单调递增; 当0a e <<时,()f x 在(),a e 上单调递减,在()0,a ,(),e +∞上单调递增; 当a e >时,()f x 在(),e a 上单调递减,在()0,e ,(),a +∞上单调递增.(2)假设存在(],a e ∈-∞,使得()13sin 44a f x π>+对[)1,x ∈+∞恒成立. 则()31123sin 444a f a π=->+,即8sin1504a a π-->, 设()8sin 154xg x x π=--,则存在(],x e ∈-∞,使得()0g x >, 因为()8cos044xg x ππ='->,所以()g x 在(],x e ∈-∞上单调递增, 因为()20g =,所以()0g x >时2x >即2a >. 又因为()13sin 44a f x π>+对[)1,x ∈+∞恒成立时,需()min 13sin 44a f x π>+, 所以由(1)得:当a e =时,()f x 在[)1,+∞上单调递增,所以()()min 331=2=244f x f a e =--, 且3123sin 444e e π->+成立,从而a e =满足题意; 当2e a <<时,()f x 在(),a e 上单调递减,在[)1,a ,(),e +∞上单调递增,所以()()2113sin ,4413sin ,444a f e a f e ea ππ⎧>+⎪⎪⎨⎪=->+⎪⎩所以22,4sin 1204a a ea e π>⎧⎪⎨--->⎪⎩(*). 设()()24sin1242xh x ex e x e π=---<<,()4cos044xh x e ππ=-'>,则()h x 在()2,e 上单调递增,因为()228130h e e =-->,所以()h x 的零点小于2,从而不等式组(*)的解集为()2,+∞,所以2x e <<即2e a <<.综上,存在(],a e ∈-∞,使得()13sin 44a f x π>+对[)1,x ∈+∞恒成立,且a 的取值范围为(]2,e . 请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程(本小题满分10分)21 已知曲线C 的极坐标方程是1ρ=,以极点为原点,极轴为x 轴的非负半轴建立平面直角坐标系,直线l 的参数方程2222x t y t ⎧=+⎪⎪⎨⎪=-+⎪⎩(t 为参数).(1)写出直线l 的普通方程与曲线C 的直角坐标方程;(2)设曲线C 经过伸缩变换'2'x y y y =⎧⎨=⎩得到曲线'C ,设曲线'C 上任一点为()','M x y ,求点M 到直线l 距离的最大值.【解析】(1)直线l 的普通方程:40x y --=,曲线C 的直角坐标方程:221x y +=. (2)曲线C :22''14x y +=,设()2cos ,sin M ϕϕ,d ==,其中θ为辅助角,当()sin 1ϕθ+=-时,d取最大值为2. 23.选修4-5:不等式选讲(本小题满分10分)已知关于x 的不等式2|25|5x a x a +++-<.(1)当1a =时,求不等式的解集;(2)若该不等式有实数解,求实数a 的取值范围. 【解析】(1)当1a =时,令()|1||3|5g x x x =++-<,当1x <-时,()225g x x =-+<,解得312x ->>-; 当13x -≤<时,()45g x =<,不等式恒成立;当3x ≥时,()225g x x =-<,解得732x ≤<. 综上所述,不等式的解集为37,22x ⎛⎫∈- ⎪⎝⎭. (2)222|||25|2525x a x a x a x a a a +++-≥+--+=-+,所以2255a a -+<,即25255a a -<-+<,解得()0,2a ∈.。
2020年高考文科数学模拟试卷(三)Word版含答案及解析
2020年高考文科数学模拟试卷(三)时间:120分钟分值:150分注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、考生号填写在答题卡上。
2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试卷上无效。
3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。
4、考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则()A.B.C.D.2.设命题,则为()A.B.C.D.3.已知向量满足,则与的夹角为()A. B.C. D.4.椭圆C:的右焦点为F,过F作轴的垂线交椭圆C于A,B两点,若△OAB是直角三角形(O为坐标原点),则C的离心率为()A. B.C. D.5.下列函数中,既是奇函数,又在区间(0,1)内是增函数的是()A. B.C. D.6.如图1,已知正方体ABCD-A1B1C1D1的棱长为2,M,N,Q分别是线段AD1,B1C,C1D1上的动点,当三棱锥Q—BMN的正视图如图2所示时,此三棱锥俯视图的面积为()A. 1B. 2C.D.7.执行如图所示的程序框图,则输出的值为()A. -2B.C. 3D.8.以正方体各面中心为顶点构成一个几何体,从正方体内任取一点P,则P落在该几何体内的概率为()A. B.C. D.9.函数在上的值域为()A. B.C. D.10.双曲线左、右焦点为F1,F2,直线与C的右支相交于P,若,则双曲线C渐近线方程为()A. B. C.D.11.电子计算机诞生于20世纪中叶,是人类最伟大的技术发明之一.计算机利用二进制存储信息,其中最基本单位是“位(bit)”,1位只能存放2种不同的信息:0或l ,分别通过电路的断或通实现.“字节(Byte)”是更大的存储单位,1Byte=8bit ,因此1字节可存放从00000000(2)至11111111(2)共256种不同的信息.将这256个二进制数中,所有恰有相邻两位数是1其余各位数均是0的所有数相加,则计算结果用十进制表示为 ( ) A. 254 B. 381C. 510D. 76512.函数的零点个数是 ( )A. 0B. 1C. 2D. 与a 有关 第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.若,x y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则43z x y =+的最大值为__________.14.平均数为1010的一组数构成等差数列,其末项为2019,则该数列的首项为__________. 15.抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.现有抛物线22(0)y px p =>,如图一平行于x 轴的光线射向抛物线,经两次反射后沿平行x 轴方向射出,若两平行光线间的最小距离为4,则该抛物线的方程为__________.16.连接正方体每个面的中心构成一个正八面体,则该八面体的外接球与内切球体积之比为______.三、解答题:共70分。
2020届高考模拟试卷文科数学试题及详细答案解析03
2020届高考模拟卷高三文科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}|2A x x =<,{}|320B x x =->,则( ) A .{}3|2B A x x =<I B .A B =∅I C .3|2A B x x ⎧⎫=<⎨⎬⎩⎭U D .A B =R U【答案】A2.设复数z 满足(1i)2i z +=,则z =( ) A .1i + B .1i - C .2D .i 1-【答案】A3.已知命题p :0x ∀>,()ln 10x +>;命题q :若a b >,则22a b >,下列命题为真命题的是( ) A .p q ∧ B .p q ∧⌝ C .p q ⌝∧ D .p q ⌝∧⌝【答案】B4.已知向量(3,6)a =v ,(1,)b λ=-v,且a b r r ∥,则λ=( )A .2B .3C .2-D .3-【答案】C5.《莱因德纸草书》(Rhind Papyrus )是世界上最古老的数学著作之一,书中有这样一道题:把120个面包分成5份,使每份的面包数成等差数列,且较多的三份之和恰好是较少的两份之和的7倍,则最少的那份有( )个面包. A .4 B .3C .2D .1【答案】C6.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则下列说法错误的是( )A .丙可以知道四人的成绩B .乙、丙的成绩是一优秀一良好C .乙可以知道自己的成绩D .丁可以知道自己的成绩【答案】A7.已知函数()()() sin 00f x A x b A ωϕω=++>,>的图象如图所示,则() f x 的解析式为( )A .()2sin()263f x x ππ=++B .1()3sin()236f x x π=-+C .()2sin()366f x x ππ=++D .()2sin()363f x x ππ=++【答案】D8.2()2f x x x =-的定义域为[1,1]a a -+,lg 0.2b =,0.22c =,则( ) A .c b a <<B .b c a <<C .a b c <<D .b a c <<【答案】D9.某四棱锥的三视图如图所示,则该四棱锥的体积为( )此卷只装订不密封班级 姓名 准考证号 考场号 座位号A .43B .23C .83D .2【答案】C10.已知[x ]表示不超过...x 的最大..整数.执行如图所示的程序框图,若输入x 的值为2,则输出z 的值为( )A .1B .05-.C .05.D .04-.【答案】B11.已知如下六个函数:y x =,2y x =,ln y x =,2x y =,sin y x =,cos y x =,从中选出两个函数记为()f x 和()g x ,若()()()F x f x g x =+的图象如图所示,则()F x =( )A .2cos x x +B .2sin x x +C .2cos x x +D .2sin x x +【答案】D12.已知定义在()0,+∞上的函数()f x ,满足(1)()0f x >;(2)()()()2f x f x f x '<<(其中()f x '是()f x 的导函数,e 是自然对数的底数),则()()23f f 的范围为( ) A .21,e e ⎛⎫ ⎪⎝⎭B .211,e e ⎛⎫⎪⎝⎭C .10,e ⎛⎫ ⎪⎝⎭D .311,e e ⎛⎫ ⎪⎝⎭【答案】B 【解析】设()()e x f x g x =,则()()()0exf x f xg x '-'=>()g x ∴在(0,)+∞上单调递增,所以(2)(3)g g <,即2(2)(3)(2)1e e (3)e f f f f <⇒<,令2()()e x f x h x =,则2()2()()0e xf x f x h x '-'=<,()h x ∴在(0,)+∞上单调递增,所以(2)(3)h h >,即242(2)(3)(2)1e e (3)e f f f f >⇒>.综上,21(2)1e (3)ef f <<.第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.若x ,y 满足约束条件0200x y x y y -⎧⎪+-⎨⎪⎩≥≤≥,则34z x y =-的最小值为___________.【答案】1-14.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是___________.【答案】8π15.为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为ˆˆˆybx a =+.已知101240i i x ==∑,1011700i i y ==∑,ˆ4b =.该班某学生的脚长为255.,据此估计其身高为____________.【答案】17616.设n S 是数列{}n a 的前n 项和,且11a =,11n n n a S S ++=-,则22110n n nS S +的最大值为_____.【答案】319【解析】因为11n n n a S S ++=-,所以有111111n n n n n nS S S S S S +++-=-⇒-=,即1n S ⎧⎫⎨⎬⎩⎭为首项等于1公差为1的等差数列,所以11n n n S S n=⇒=,则22221()1110110()nn n nS n S n =++2221111101010110()n n n n n n n n====++++,因为10210n n +≥(当且仅当10n =时取等号),因为n 为自然数,所以根据函数的单调性可从与10n =相邻的两个整数中求最大值,3n =,13n S =,22311019n n nS S =+,22124,,411013n n n nS n S S ===+,所以最大值为319.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)设数列{}()123n a n =⋯,,,的项满足关系12(2)n n a a n -=≥,且1a ,21a +,3a 成等差数列.(1)求数列{}n a 的通项公式; (2)求数列{1}n a +的前n 项和.【答案】(1)()122n n a a n =Q -≥,从而212a a =,32124a a a ==,又因为1a ,21a +,3a 成等差数列,即13221()a a a +=+, 所以111421)2(a a a +=+,解得12a =,所以数列{}n a 是首项为2,公比为2的等比数列,故2n n a =. (2)设{}1n a +的前n 项和为n T ,则1122(12)()2212n n n n T a a a n n n +-=++++=+=-+-L .18.(本小题满分12分)在ABC △中,边a ,b ,c 分别是内角A ,B ,C 所对的边,且满足2sin sin sin B A C =+.(1)求证:1cos 2B ≥;(2)设B 的最大值为0B ,当0B B =,3a =,又12AD DB =u u u r u u u r,求CD 的长. 【答案】(1)由题设及正弦定理知,2b a c =+,即2a cb +=.由余弦定理知,()()222222223232212cos 22882a c a c a c ac ac ac a cb B ac ac ac ac +⎛⎫+- ⎪+--+-⎝⎭====≥,(2)cos y x =Q 在()0,π上单调递减,B ∴的最大值03B π=,根据(1)中均值不等式,只有当a c =时才能取到03B π=,3a c ∴==,又12AD DB =u u u r u u u r ,所以1AD =,在ACD △中由余弦定理得:22213cos 3213CD π+-=⨯⨯,得7CD =.19.(本小题满分12分)某化妆品商店为促进顾客消费,在“三八”妇女节推出了“分段折扣”活动,具体规则如下表:购买商品金额 折扣 消费不超过200元的部分 9折 消费超过200元但不超过500元的部分 8折 消费超过500元但不超过1000元的部分7折 消费超过1000元的部分6折例如,某顾客购买了300元的化妆品,她实际只需付:()2000.93002000.8260⨯+-⨯=(元).为了解顾客的消费情况,随机调查了100名顾客,得到如下统计表:购买商品金额(0,200] (200,500] (500,1000] 1000以上人数10403020(1)写出顾客实际消费金额y 与她购买商品金额x 之间的函数关系式(只写结果); (2)估算顾客实际消费金额y 不超过180的概率; (3)估算顾客实际消费金额y 超过420的概率.【答案】(1)0.92000.8202005000.77050010000.6170100x x x x y x x x x ⎧⎪+<⎪=⎨+<⎪⎪+>⎩ ≤ ≤ ≤ .(2)令180y ≤,得200x ≤,所以()()118020010P y P x ==≤≤.(3)令420y >,得500x >,所以()()()()3214205005001000100010102P y P x P x P x >=>=<+>=+=≤.20.(本小题满分12分)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,AD BC ∥,3AB AD ==,4PA BC ==,N ,T 分别为线段PC ,PB 的中点.(1)若PC 与面ABCD 所成角的正切值为43,求四棱锥P ABCD -的体积.(2)试探究:线段AD 上是否存在点M ,使得AT ∥平面CMN ?若存在,请确定点M 的位置,若不存在,请说明理由.【答案】(1)连AC ,由PA ⊥底面ABCD 可知PCA ∠为PC 与面ABCD 所成的角,4PA =Q ,4tan 3PCA ∠=,3AC ∴=, 取线段BC 的中点E ,由3AB AC ==得AE BC ⊥,225AE AB BE =-=.()1753452ABCDS ∴=+⨯=,17514543P ABCD V -∴=⨯⨯=.(2)取线段AD 的三等分点M ,使得223AM AD ==.连接AT ,TN , 由N 为PC 中点知TN BC ∥,122TN BC ==. 又AD BC ∥,故TN AM ∥且TN AM =.四边形AMNT 为平行四边形,于是MN AT ∥. 因为AT ⊄面CMN ,MN ⊂面CMN ,所以AT ∥平面CMN ,AD ∴上存在点M ,满足2AM =,就能使AT ∥平面CMN .21.(本小题满分12分)已知函数2()2ln f x x x mx =--. (1)当0m =时,求函数()f x 的最大值;(2)函数()f x 与x 轴交于两点1(,0)A x ,2(,0)B x 且120x x <<,证明:1212121()()333f x x x x '+<-.【答案】(1)当0m =时,()22ln f x x x =-,求导得()()()211x x f x x+-'=,根据定义域,容易得到在1x =处取得最大值,得到函数的最大值为1-.(2)根据条件得到21112ln 0x x mx --=,22222ln 0x x mx --=,两式相减得 221212122(ln ln )()()x x x x m x x ---=-,得221212121212122(ln ln )()2(ln ln )()x x x x x x m x x x x x x ----==-+--,因为2()2f x x m x'=-- 得1212121212122(ln ln )12212()2()()12333333x x f x x x x x x x x x x -'+=-+-++-+121212122(ln ln )21()12333x x x x x x x x -=-+--+ 因为120x x <<,要证1212121()()333f x x x x '+<-,即证1212122(ln ln )201233x x x x x x --<-+,即证1212122()2(ln ln )01233x x x x x x --->+,即证2112212(1)2ln 01233x x x x x x -->+, 设12x t x =(01)t <<,原式即证12(1)2ln 012133t t t -->+⋅,即证6(1)2ln 02t t t -->+ 构造18()62ln 2g t t t =--+,22(1)(4)()0(2)t t g t t t ---'=<+,()g t 单调递减, 所以()(1)0g t g >=得证.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)【选修4—4:坐标系与参数方程】在直角坐标系xOy 中,直线l 的参数方程为1cos sin x t y t αα=-+⎧⎨=⎩(t 为参数,α为直线的倾斜角).以平面直角坐标系xOy 的原点为极点,x 轴的正半轴为极轴,取相同的长度单位,建立极坐标系.圆C 的极坐标方程为2cos ρθ=,设直线l 与圆C 交于A ,B 两点. (1)求角α的取值范围; (2)若点P 的坐标为()1,0-,求11PA PB+的取值范围. 【答案】(1)圆C 的直角坐标方程2220x y x +-=,把1cos sin x t y t αα=-+⎧⎨=⎩代入2220x y x +-=得24cos 30t t α-+= ① 又直线l 与圆C 交于A ,B 两点,所以216cos 120α∆=->,解得:cos α>cos α<又由[)0,α∈π故50,,66αππ⎡⎫⎛⎫∈π⎪ ⎪⎢⎣⎭⎝⎭U .(2)设方程①的两个实数根分别为1t ,2t ,则由参数t 的几何意义可知:12124cos 113t t PA PB t t α++==,又由cos 12α<≤,所以4cos 4333α<≤, 于是11PA PB +的取值范围为43⎤⎥⎝⎦. 23.(本小题满分10分)【选修4—5:不等式选讲】 已知函数()3f x x x =+-.(1)解关于x 的不等式()5f x x -≥;(2)设(){},|m n y y f x ∈=,试比较4mn +与()2m n +的大小.【答案】(1)32,0()|||3|3,0323,3x x f x x x x x x -<⎧⎪=+-=⎨⎪->⎩≤≤从而得0325x x x <⎧⎨-+⎩≥或0335x x ⎧⎨+⎩≤≤≥或3235x x x >⎧⎨-+⎩≥,解之得23x -≤或 x ∈∅或8x ≥,所以不等式的解集为2(,][8,)3-∞-+∞U . (2)由(1)易知()3f x ≥,所以3m ≥,3n ≥, 由于()()()()2422422m n mn m mn n m n +-+=-+-=--且3m ≥,3n ≥,所以20m ->,20n -<,即()()220m n --<, 所以()24m n mn +<+.。
2020高考模拟考试文科数学含答案
2020年高考虽然延期一个月,但是练习一定要跟上,加油!(第Ⅰ卷选择题部分,共60分)一、 选择题:(本大题共12小题,每个小题5分,共60分,在每小题给出的四个选项中,只有一个是符合要求的)1、已知全集R ,集合},0)2)(2)(1(|{=-+-=x x x x A },0|{≥=y y B 则BC A R ⋂为 A.}2,2,1{- B.{1,2} C. }2{- D. }2,1{--2、在等差数列{}n a 中,57915a a a ++=,579535a a a +++、、成等比数列, 则等差数列的公差是( ) A 、–5或1 B 、1 C 、 –3 D 、–3或33、甲、乙各掷一次飞镖,假设二人击中目标的概率均为0.6,则至少有一人击中目标的概率为A 0.36B 0.16C 0.48D 0.84 4、给出下列条件(其中l 和a 为直线,α为平面)①α⊥l 内的一凸五边形的两条边,②α⊥l 内三条不都平行的直线, ③α⊥l 内无数条直线,④α⊥l 内正六边形的三条边。
其中是α⊥l 的充分条件的所有序号是( )A ②B ①③C ②④D ③④ 5、不等式5||6||>+x x 的解集是( ) A.)2,2(- B. ⋃-)2,2(⋃+∞),3()3,(--∞ C. )3,(--∞),3(+∞⋃ D. )3,(--∞(3,1)⋃--⋃)1,1(-),2(+∞⋃6、样本(0,2,4,6,8)是随机地从总体M 中抽取的,则总体的方差是( )A.8B.6C.4.D.107、已知正三棱柱ABC-A 1B 1C 1中,E 是BC 的中点,D 是AA 1上的一个动点,且m AA AD =1,若AE ∥平面DB 1C ,则m 的值等于 1112 (4323)A B C D8、53)(x y +展开式的第三项为10,则y 关于x 的函数图象的大致形状为9、用0、1、2、3、4的五个数组成无重复数字的五位数,奇数数字相邻,偶位数也全相邻的有 A 、32个 (B )24个(C )20个 (D )36个10、两个正数m,n 的等差中项是5,等比中项是4,且m>n ,则椭圆122=+ny m x 的离心率e 等于 A .25 B. 21C. 22D. 2311、已知二次函数2()(,,0)f x ax bx c a b c a =++≠其中是常数,且在点0x 处的切线为y kx m =+,设函数.)(m kx x g +=若()()g x f x ≥恒成立,则A .0a >B .0a <C .240b ac ∆=-≥;D .240b ac ∆=-< 12、若右图,定圆的半径为a ,圆心为(b,c)则直线0ax by c ++=与直线10x y --=的交点在A.第一象限B.第二象限C.第三象限D. 第四象限(D)xyOxyOxy O(B)(A) xyO(C)第Ⅱ卷(非选择题部分,共90分)二、填空题:(本题共4个小题,每小题4分,共16分。
(完整版)2020年普通高等学校招生全国统一考试模拟卷(3)(文科数学含答案详解)
2019年普通高等学校招生全国统一考试模拟卷(3)文科数学本试题卷共5页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集,集合,,则()A.B.C.D.【答案】C【解析】由题意得,,∴,∴.选C.2.欧拉公式(为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数集,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位.特别是当时,被认为是数学上最优美的公式,数学家们评价它是“上帝创造的公式”.根据欧拉公式可知,表示的复数在复平面中位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】由已知有,因为,所以在第三象限,所以,,故表示的复数在复平面中位于第三象限,选C.3.如图,“赵爽弦图”是由四个全等的直角三角形(阴影部分)围成一个大正方形,中间空出一个小正方形组成的图形,若在大正方形内随机取一点,该点落在小正方形的概率为,则途中直角三角形中较大锐角的正弦值为()A.B.C.D.【答案】B【解析】设小正方形的边长为,直角三角形的直角边分别为,,,由几何概型可得,解得,(舍),所以直角三角形边长分别为,,,直角三角形中较大锐角的正弦值为,选B.4.下列命题中:①“”是“”的充分不必要条件②定义在上的偶函数最小值为5;③命题“,都有”的否定是“,使得”④已知函数的定义域为,则函数的定义域为.正确命题的个数为()A.1个B.2个C.3个D.4个【答案】C【解析】①或,所以“”是“”的充分不必要条件;②因为为偶函数,所以,因为定义区间为,所以,因此最小值为5;③命题“,都有”的否定是“,使得”;④由条件得,,;因此正确命题的个数为①②④,选C.5.《九章算术》中的玉石问题:“今有玉方一寸,重七两;石方一寸,重六两.今有石方三寸,中有玉,并重十一斤(即176两),问玉、石重各几何?”其意思为:“宝玉1立方寸重7两,石料1立方寸重6两,现有宝玉和石料混合在一起的一个正方体,棱长是3寸,质量是11斤(即176两),问这个正方体中的宝玉和石料各多少两?”如图所示的程序框图给出了对此题的一个求解算法,运行该程序框图,则输出的,分别为()A.90,86B.94,82C.98,78D.102,74【答案】C【解析】执行程序:,,;,,;,,;,,,故输出的,分别为,.故选:C.6.某几何体的三视图如图所示,则该几何体的体积是()A.B.C.D.【答案】D【解析】由三视图可知:该几何体由两部分构成,一部分侧放的四棱锥,一部分为四分之一球体,∴该几何体的体积是,故选:D.7.已知实数,满足:,则的最大值()A.8B.7C.6D.5【答案】D【解析】根据不等式组画出可行域是封闭的四边形区域,对目标函数进行分类,当时,令,,这时可行域为直线下方的部分,当目标函数过点时有最大值.当时,令,,这时可行域为直线上方的部分,这时当目标函数过点时有最大值,代入得到最大值为.故答案为:D.8.设,函数的图象向右平移个单位后与原图象重合,则的最小值是()A.B.C.D.【答案】A【解析】将的图象向右平移个单位后对应的函数为,∵函数的图象向右平移个单位后与原图象重合,所以有,即,又,,故,故选A.9.已知函数与其导函数的图象如图,则满足的的取值范围为()A.B.C.D.【答案】D【解析】根据导函数与原函数的关系可知,当时,函数单调递增,当时,函数单调递减,由图象可知:当时,函数的图象在图象的下方,满足;当时,函数的图象在图象的下方,满足;22222正视图侧视图俯视图所以满足的解集为或,故选D .10.若正项递增等比数列满足,则的最小值为()A .B .C .2D .4【答案】D 【解析】因为,所以,当且仅当时取等号,即的最小值为,选D .11.设正三棱锥的高为,且此棱锥的内切球的半径,则()A .B .C .D .【答案】D 【解析】取线段中点,设在底面的射影为,连接,,设,则,设,则正三棱锥的表面积,由体积得,,,,,,,选D .12.已知,若函数恰有三个零点,则下列结论正确的是()A .B .C .D .【答案】D 【解析】,可知函数在区间单调递增,在单调递减,在单调递增,如下图,,,,令,则,因为要有三个零点,∴有解,设为,,由,根据图象可得:当时,,,符合题意,此时,当时,可求得,不符合题意.综上所述,,故选D .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.向量,满足,,与的夹角为,则________.【答案】【解析】由可得,即,代入可得,整理可得,解得,故答案为.14.抛物线的焦点为,点,为抛物线上一点,且不在直线上,则周长的最小值为____________.【答案】【解析】由抛物线定义,抛物线上的点到焦点的距离等于这点到准线的距离,即.所以周长,填.15.在中,内角,,所对的边分别为,,,已知,且,则面积的最大值为________.【答案】【解析】由已知有,,(1)q g x 2t 1210t t 12t t 124e t 222e44et 22214e+e4kt t 12240,et t 12241et t由于,,又,则,,当且仅当时等号成立.故面积的最大值为.16.过双曲线的焦点与双曲线实轴垂直的直线被双曲线截得的线段的长称为双曲线的通径,其长等于(、分别为双曲线的实半轴长与虚半轴长).已知双曲线()的左、右焦点分别为、,若点是双曲线上位于第四象限的任意一点,直线是双曲线的经过第二、四象限的渐近线,于点,且的最小值为,则双曲线的通径为__________.【答案】【解析】如图所示:连接,由双曲线的定义知,,当且仅当,,三点共线时取得最小值,此时,由到直线的距离,,由定义知通径等于,故答案为.三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答.(一)必考题:60分,每个试题12分.17.设是数列的前项和,已知,.(1)求数列的通项公式;(2)设,求数列的前项和.【答案】(1);(2).【解析】(1)∵,,∴当时,,得;····1分当时,,∴当时,,即,····3分又,····4分∴是以为首项,为公比的等比数列.····5分∴数列的通项公式为.····6分(2)由(1)知,,····7分,····8分当为偶数时,;····10分当为奇数时,,∴.····12分18.2018年为我国改革开放40周年,某事业单位共有职工600人,其年龄与人数分布表如下:年龄段人数(单位:人)180********约定:此单位45岁~59岁为中年人,其余为青年人,现按照分层抽样抽取30人作为全市庆祝晚会的观众.(1)抽出的青年观众与中年观众分别为多少人?(2)若所抽取出的青年观众与中年观众中分别有12人和5人不热衷关心民生大事,其余人热衷关心民生大事.完成下列列联表,并回答能否有的把握认为年龄层与热衷关心民生大事有关?热衷关心民生大事不热衷关心民生大事总计青年12中年5总计30(3)若从热衷关心民生大事的青年观众(其中1人擅长歌舞,3人擅长乐器)中,随机抽取2人上台表演节目,则抽出的2人能胜任才艺表演的概率是多少?0.1000.0500.0250.0100.0012.7063.841 5.024 6.63510.828.【答案】(1),;(2)列联表见解析,没有的把握认为年龄层与热衷关心民生大事有关;(3).【解析】(1)抽出的青年观众为18人,中年观众12人····2分(2)列联表如下:热衷关心民生大事不热衷关心民生大事总计青年61218中年7512总计131730····4分,····6分∴没有的把握认为年龄层与热衷关心民生大事有关.····7分(3)热衷关心民生大事的青年观众有6人,记能胜任才艺表演的四人为,,,,其余两人记为,,则从中选两人,一共有如下15种情况:,,,,,,,,,,,,,,,····10分抽出的2人都能胜任才艺表演的有6种情况,····11分所以.····12分19.如图,在四棱锥中,四边形是菱形,,平面平面,,,在棱上运动.(1)当在何处时,平面;(2)已知为的中点,与交于点,当平面时,求三棱锥的体积.【答案】(1)当为中点时,平面;(2).【解析】(1)如图,设与相交于点,当为的中点时,平面,····2分证明∵四边形是菱形,可得:,又∵为的中点,可得:,∴为的中位线,····3分可得,····4分又∵平面,平面,∴平面.····6分(2)为的中点,,则,又,,且,又,...····9分又,点为的中点,到平面的距离为.····11分.····12分20.在平面直角坐标系中,点,圆,点是圆上一动点,线段的中垂线与线段交于点.(1)求动点的轨迹的方程;(2)若直线(斜率存在)与曲线相交于,两点,且存在点(其中,,不共线),使得被轴平分,证明:直线过定点.B【答案】(1);(2).【解析】(1)由已知,,圆的半径为,依题意有:,····1分····3分故点的轨迹是以,为焦点,长轴长为4的椭圆,即,,.故点的轨迹的方程为.····5分(2)令,,因,,不共线,故的斜率不为0,可令的方程为:,则由,得则,①····7分被轴平分,,即,亦即②····8分而代入②得:③····9分①代入③得:····10分∵直线的斜率存在,∴,∴,此时的方程为:,过定点,综上所述,直线恒过定点.····12分21.设函数.(1)讨论的单调性;(2)设,当时,,求的取值范围.【答案】(1)见解析;(2).【解析】(1)由题意得,.····1分当时,当,;当时,;∴在单调递减,在单调递增····2分当时,令得,,①当时,,;当时,;当时,;所以f(x)在,单调递增,在单调递减····3分②当时,,所以在单调递增····4分③当时,,;当时,;当时,;∴在,单调递增,在单调递减.····5分(2)令,有.····6分令,有,当时,,单调递增.∴,即.····7分①当,即时,,在单调递增,,不等式恒成立····9分②当,时,有一个解,设为根.∴有,,单调递减;当时,;单调递增,有.∴当时,不恒成立;····11分综上所述,的取值范围是.····12分l(二)选考题(共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做第一题计分)22.【选修4-4:坐标系与参数方程】在平面直角坐标系中,曲线的参数方程为:(为参数,),将曲线经过伸缩变换:得到曲线.(1)以原点为极点,轴的正半轴为极轴建立坐标系,求的极坐标方程;(2)若直线(为参数)与,相交于,两点,且,求的值.【答案】(1);(2)或.【解析】(1)的普通方程为,把,代入上述方程得,,∴的方程为,令,,所以的极坐标方程为;····5分(2)在(1)中建立的极坐标系中,直线的极坐标方程为,由,得,由,得,所以,∴,而,∴或.····10分23.选修4-5:不等式选讲已知函数,.(1)当时,若的最小值为,求实数的值;(2)当时,若不等式的解集包含,求实数的取值范围.【答案】(1)或;(2).【解析】(1)当时,,因为的最小值为3,所以,解得或.····5分(2)当时,即,当时,,即,因为不等式的解集包含,所以且,即,故实数的取值范围是.····10分。
2020届高考模拟数学文科试题及答案
2020届数学文科高考模拟试题1、设集合22{|40},{|log 1}M x x N x x =-≤=<,则M N ⋂=( )A. ∅B. (0,2)C. (2,2)-D. [2,2)-2、已知复数312z i=- (i 是虚数单位),则z 的实部为( ) A. 35- B. 35 C. 15- D. 153、等比数列{}n a 中,若4568a a a ⋅⋅=,且5a 与62a 的等差中项为2,则公比q =( )A.2B.12C.2-D.12-4、在1,2,3,6这组数据中随机取出三个数,则数字2是这三个不同数字的平均数的概率是( )A.14 B. 13 C. 12 D. 345、已知α为第二象限角,且1sin cos 5αα+=,则sin2α= ( )A. 1225B. 2425C. 1225-D. 2425-6、执行如图所示程序框图,输出的S = ( )A. 25B. 9C. 17D. 207、函数2ln(1)3()x x x f x ++-=的图像大致为( ) A. B.C. D.8、若,x y 满足约束条件20030x y x y m x -+≥⎧⎪+-≥⎨⎪-≤⎩,则23z x y =-的最大值为9,则正实数m的值为( )A.1B.2C.4D.8 9、在△ABC 中, 3A π=,若2?a =,则△ABC 面积的最大值为( )A.2 B. 2 C. 6 D. 310、长方体1111ABCD A B C D -,11,2,3AB AD AA ===,则异面直线11A B 与1AC 所成角的余弦值为( )A. 1414B. 8314C. 1313D. 1311、双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为12,F F ,过1F 3的直线与双曲线的左右两支分别交于点,?P Q ,若2QP QF =,则双曲线 C 的离心率为( )A. 7B. 6C.1312D. 131212、已知奇函数() f x 的导函数为()'f x ,当0x ≠时, ()()0xf x f x +>',若()()11,,1a f b ef e c f ee ⎛⎫==--= ⎪⎝⎭,则,,a b c 的大小关系正确的是( ) A. a b c << B. b c a << C. a c b << D. c a b << 二、填空题13、已知函数()2ln 24f x x x x =+-,则函数() f x 的图象在1?x =处的切线方程为__________.14、已知向量a r 与b r的夹角是3π,且1,2a b ==r r,若)b a λ+⊥r r ,则实数λ=__________.15、已知抛物线28y x =的焦点F ,过F 的直线与抛物线交于,A B 两点,则||4||FA FB +的最小值是 .16、若对任意[1,2]t ∈,函数22()(1)f x t x t x a =-++总有零点,则实数a 的取值范围是__________. 三、解答题17、在等差数列{}n a 中,n S 为其前n 项和(n *∈N ),且23a =,416S =. (1).求数列{}n a 的通项公式; (2).设11n n n b a a +=,求数列{}n b 的前n 项为n T .18、某商场营销人员进行某商品M 市场营销调查发现,每回馈消费者一定的点数,该商品当天的销量就会发生一定的变化,经过试点统计得到以下表:(1)经分析发现,可用线性回归模型拟合当地该商品一天销量y (百件)与该天返还点数 x 之间的相关关系.请用最小二乘法求y 关于 x 的线性回归方程y bx a =+,并预测若返回6个点时该商品当天销量;(2)若节日期间营销部对商品进行新一轮调整.已知某地拟购买该商品的消费群体十分庞大,经过营销部调研机构对其中的200名消费者的返点数额的心理预期值进行了一个抽样调查,得到如下一份频数表:将对返点点数的心理预期值在[1,3)和[11,13]的消费者分别定义为“欲望紧缩型”消费者和“欲望膨胀型”消费者,现采用分层抽样的方法从位于这两个区间的30名消费者中随机抽取6名,再从这6人中随机抽取3名进行跟踪调查,求抽出的3人中至少有1名“欲望膨胀型”消费者的概率.(参考公式及数据:①回归方程y bx a =+,其中ni ii=1n22ii=1x y -nxyb=,a=y-bx x-nx∑∑;②5i ii=1x y =18.8∑.)19、如图,在ABC △中,BC AC ⊥,,D E 分别为,AB AC 的中点,将ADE △沿DE 折起到PDE △的位置.(1)证明:BC PEC ⊥平面;(2)若7,3BP PC BC CD ===,,求四棱锥P BCED -的体积.20、在直角坐标系 xOy 中,已知椭圆E 的中心在原点,长轴长为8,椭圆在 x 轴上的两个焦点与短轴的一个顶点构成等边三角形. (1)求椭圆的标准方程;(2)过椭圆内一点()1,3M 的直线与椭圆E 交于不同的,?A B 两点,交直线14y x =-于点N ,若,NA mAM NB nBM ==u u u r u u u u r u u u r u u u u r ,求证: m n +为定值,并求出此定值21、已知函数()()()e ,2ln ,R xf x xg x a x x a ==+∈.(1)求()f x 单调区间;(2)若()()f x g x ≥在[)1+∞,上恒成立,求a 的取值范围.22、在直角坐标系 xOy 中,曲线1C 的参数方程为22cos {2sin x y ϕϕ=+= (ϕ为参数).以原点 O 为极点, x 轴非负半轴为极轴且取相同的单位长度建立极坐标系,曲线2C 的极坐标方程为4sin ρθ=.(1)求曲线1C 的普通方程和2C 的直角坐标方程;(2)已知曲线3C 的极坐标方程为(0π)θαα=<<,点A 是曲线3C 与1C 的交点,点B 是曲线3C 与2C 的交点,且,A B 均异于原点 O ,AB =α的值.23、已知函数2()23f x x a =+.(1).当0a =时,求不等式()23f x x +-≥的解集;(2).若对于任意实数x ,不等式21()2x f x a +-<恒成立,求实数a 的取值范围.答案以及解析1答案及解析:答案:B解析:24,22x x-≤∴-≤≤Q,[2,2]M∴=-,log21,02xx∴<<<∴,(0,2)N∴=,(0,2)M N∴⋂=,故选B.2答案及解析:答案:B解析:∵()()()312i336i 12i12i12i55z+===+--+,∴z的实部为35.故选B.3答案及解析:答案:B解析:根据题意,等比数列{}n a中,若4568a a a⋅⋅=,则35()8a=,解可得52a=,又由5a与62a的等差中项为2,则56()(2)4a a+=,解可得:61a=,则6512a q a ==; 故选B .4答案及解析: 答案:A解析:在1,2,3,6这组数据中随机取出三个数,基本事件总数 ()1,2,3,()1,2,6,()1,3,6,()2,3,6共4个,则数字2是这三个不同数字的平均数所包含的基本事件只有()1,2,31个.因此,数字2是这三个不同数字的平均数的概率是14.故应选A.5答案及解析: 答案:D解析:由1sin cos 5αα+=,两边平方得:221sin cos 2sin cos 25αααα++=.242sin cos 25αα=-,即24sin 225α=-.故选D.6答案及解析: 答案:C解析:按照程序框图依次执行为1S =,0n =,0T =;9S =,2n =,044T =+=;17S =,4n =,41620T S =+=>,退出循环,输出17S =.故选C.7答案及解析: 答案:A解析:22ln(1)3ln(1)3()()0x x x x x xf x f x++-+-++-=+=,即()()f x f x-=-,故()f x为奇函数,排除C,D选项;ln(21)3(1)0f+-=<,排除B选项,故选A.8答案及解析:答案:B解析:,x y满足约束条件2030x yx y mx-+≥⎧⎪+-≥⎨⎪-≤⎩的可行域如图,则23z x y=-的最大值为9,所以直线0x y m+-=,过直线239x y-=和直线3x=的交点(3,1)-,2m∴=,故选B.9答案及解析:答案:D解析:△ABC中,,23A aπ==,由余弦定理得,2222cos3a b c bc π=+-,即42bc bc bc ≥⋅=,∴4bc ≤,当且仅当b c =时“=”成立; ∴△ABC 面积的最大值为11sin 422S bc A =≤⨯=故选D.10答案及解析: 答案:A解析:∵1111//C D A B ,∴异面直线11A B 与1AC 所成的角即为11C D 与1AC 所成的角11AC D ∠.在11Rt AC D ∆中, 111C D =,1AD ==1AC ==,∴11111cos C D AC D AC ∠===.故选A.11答案及解析: 答案:C解析:双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为()()12,0,,0F c F c -,过点1F的直线为:)2,y x c QP QF =+=,122,4PF a PF a ==, 1212π2,3F F c PF F =∠=,可得: 222π1644222cos 3a a c a c =+-⨯⨯,解得2b a =,所以230,1e e e --=>, 可得131e +=12答案及解析: 答案:C解析:令()()g x xf x =,则()()()''0g x f x xf x =+>,所以()g x 为递增函数, 因为11e e>>,∴()()11g e g g e ⎛⎫>> ⎪⎝⎭∴()()111ef e f f e e ⎛⎫>> ⎪⎝⎭, 又() f x 为奇函数,所以()()ef e ef e --=, ∴b c a >>13答案及解析: 答案:30x y --=解析:∵()2ln 24f x x x x =+-,∴()1'44f x x x=+-,∴()'11f =,又()12f =-,∴所求切线方程为()21y x --=-,即30x y --=.14答案及解析: 答案:3-解析:∵向量a r 与b r的夹角是3π,且1,2a b ==r r ,∴11212a b ⋅=⨯⨯=r r ,∵()3a b a λ+⊥r r r ,∴则()2330a b a a a b λλ+⋅=+⋅=r r r r r r,∴30λ+=, ∴3λ=-15答案及解析: 答案:18解析:抛物线28y x =的焦点(2,0)F ,设1122(,),(,)A x y B x y ,则1212||4||24(2)410FA FB x x x x +=+++=++, 当直线AB 斜率不存在时,1||4||2421020FA FB x +=++⨯+=, 当直AB 斜率存在时,设直线AB 的方程为,代入28y x =得222212(48)40,4k x k x k x x -++=∴=211144||4||41041018FA FB x x x x ∴+=++≥⨯=, 当且仅当11x =时取等号.||4||FA FB +的最小值是18.故答案为:18.16答案及解析: 答案:9(,]16-∞ 解析:∵函数22()(1)f x t x t x a =-++总有零点,22(1)40t at ∴∆=+-≥对任意[1,2]t ∈恒成立,∴22211()()222t a t t+1≤=+ 记11()22y t =+在[1,2]上单调递减, ∴211119()()2222216t +≥+=⨯ ∴916a ≤故答案为:9(,]16-∞17答案及解析:答案:(1).设等差数列{}n a 的公差是d ,由23a =,416S =,得113,4616,a d a d +=⎧⎨+=⎩解得11a =,2d =,∴21n a n =-,*N n ∈. (2).由(1).知,21n a n =-, ∴()()111111212122121n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭, 12111111111123352121221n n T b b b n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+=-+-+⋅⋅⋅+-=- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 即21n nT n =+,n *∈N .18答案及解析: 答案:(1)易知123450.50.61 1.4 1.73, 1.0455x y ++++++++====,522222211234555i i x ==++++=∑ , ni ii=1n222i i=1x y -nxy18.853 1.04b==0.325553x -nx-⨯⨯=-⨯∑∑, a=y-bx 1.040.3230.08=-⨯=则y 关于 x 的线性回归方程为0.320.08y x =+,当6x =时, 2.00y =,即返回6个点时该商品每天销量约为2百件. (2)设从“欲望膨胀型”消费者中抽取 x 人,从“欲望紧缩型”消费者中抽取y 人, 由分层抽样的定义可知6301020x y==,解得2,4x y ==在抽取的6人中,2名“欲望膨胀型”消费者分别记为12,A A ,4名“欲望紧缩型”消费者分别记为1234,,,B B B B ,则所有的抽样情况如下:共20种,其中至少有1名“欲望膨胀型”消费者的情况由16种记事件A 为“抽出的3人中至少有1名‘欲望膨胀型’消费者”,则16()0.820P A ==19答案及解析: 答案:(1)证明:∵,D E 分别为,AB AC 的中点 ∴//DE BC ∵BC AC ⊥∴,,DE AE DE EC ⊥⊥PE EC E =I ∴DE ⊥平面PEC∴BC ⊥平面PEC(2)在Rt BCP △中,由PC BP ==得2BC =∵12,12BC CD DE BC ====∴AE EC ==在PEC △中,PE EC PC === ∴点P 到EC 的距离为32d =∴113332P BCED BCED V S d -=⋅==20答案及解析:答案:(1)椭圆的标准方程为:2211612x y += (2)设1122001(,),(,),(,)4A x yB x y N x x -, 由,NA mAM =u u u r u u u u r 得1010111(,)(1,3)4x x y x m x y -+=--所以0011134,11m x m x x y m m -+==++,00134(,)11m x m x A m m -+∴++,因为2211612x y +=上,所以得到0220134()()1111612m x m x m m -++++=,得到220139964804m m x ++-=; 同理,由NB nBM =u u u r u u u u r 可得220139964804n n x ++-= 所以,m n 可看作是关于 x 的方程220139964804x x x ++-=的两个根,所以323m n +=-为定值答案:(1)()()e 1xf x x '=+由()0f x '>,得()1,x ∈-+∞ 由()0f x '<,得(),1x ∈-∞∴()f x 分别在区间()1,-+∞上单调递增,在区间(),1-∞上单调递减(2)令()()()()[)2ln e ,1,xh x g x f x a x x x x =-=+-∈+∞则()()()12e 21e 11xxa x h x a x x x x -⎛⎫'=+-+=+ ⎪⎝⎭由1知()e xf x x =在[)1+∞,上单调递增 ∴e e x x ≥ 当e2e,2a a ≤≤即时,2e 0x a x -≤, ∴()h x 在[)1+∞,上单调递减,()()max 12e h x h a ==- 令()max 0h x ≤,得e2a ≤ ②e 2e,2a a >>即时,存在()01,x ∈+∞,使002e 0xa x -= 当()01,x x ∈时,()0h x >;当()0,x x ∈+∞时,()0h x < ∴()h x 在()01,x x ∈上单调递增,在()0,x x ∈+∞上单调递减;()()()()000002ln e 2ln 21x man h x h x a x x x a a ==+-=- ∵e 2a >∴2ln 210a ->∴()()00man h x h x =≤不能恒成立综上:e ,2a ⎛⎤∈-∞ ⎥⎝⎦答案:(1)由22cos {2sin x y ϕϕ=+=消去参数ϕ,得1C 的普通方程为22(2)4x y -+=.∵24sin 4sin ρθρρθ=⇒=,又cos {sin x y ρθρθ==,∴2C 的直角坐标方程为22(2)4x y +-=(2)由(1)知曲线1C 的普通方程为22(2)4x y -+=,∴其极坐标方程为4cos ρθ=,∴π4sin cos 4A B AB ρρααα⎛⎫=-=-=-= ⎪⎝⎭∴又πππ3πsin 1ππ(Z)4424k k k ααα⎛⎫-=±⇒-=+⇒=+∈ ⎪⎝⎭, ∴0απ<<,∴34πα=.23答案及解析:答案:(1).当0a =时,()|2||2||2|3f x x x x +-=+-≥有0223x x x ≤⎧⎨--+≥⎩或02223x x x <<⎧⎨-+≥⎩或2223x x x ≥⎧⎨+-≥⎩解得13x ≤-或12x ≤<或2x ≥所以()|2|3f x x +-≥的解集为1(,][1,)3-∞-⋃+∞.(2)对于任意实数x ,不等式|21|()2x f x a +-<成立,即2|21||23|2x x a a +-+<恒成立。
2020年高考数学模拟试卷(文科)(3月份)(含答案解析)
2020年高考数学模拟试卷(文科)(3月份)一、单项选择题(本大题共12小题,共60.0分)1. 已知复数z =−1i −1,则它的共轭复数z −在复平面内对应的点的坐标为( )A. (−1,−1)B. (−1,1)C. (1,2)D. (1,−2)2. 已知集合A ={x|x −1⩾0},B ={x|x 2⩽1},则A ∪B =( )A. {x|x ⩾1}B. {x|x ≥−1}C. {x|x <1}D. {x|x ⩽−1}3. 已知向量AB ⃗⃗⃗⃗⃗ =(1,2),AC⃗⃗⃗⃗⃗ =(−3,1),则AB ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =( ) A. 6 B. −6 C. −1 D. 14. 如图所示的程序框图,若输入m =221,n =91,则输出的结果是( )A. 3B. 7C. 13D. 265. 某几何体的三视图如图所示,则该几何体的体积为( )A. 3B. 2C. 83 D. 436. 若x,y 满足约束条件{−3≤x −y ≤1,−9≤3x +y ≤3,则z =x +y 的最小值为( )A. 1B. −3C. −5D. −67.将一个质地均匀的正四面体玩具(四个面上依次标有1,2,3,4)先后抛掷两次,得到的点数依次记为a,b,则事件“2a−b=0”发生的概率为()A. 116B. 18C. 14D. 128.若x∈[−π6,π3]时,函数y=sin(x+π3)的值域是()A. [−1,√3]B. [1,√3]C. [√3,2]D. [1,2]9.已知点M是双曲线x23−y22=1上一点,F1,F2分别是双曲线的左,右焦点,若|MF1|=2|MF2|,则△MF1F2的面积是()A. 4√3B. 2√11C. 3√6D. 6√5510.已知函数y=f(x)(x∈R)是奇函数,那么函数F(x)=xf(x)(x∈R)()A. 是奇函数B. 是偶函数C. 既是奇函数又是偶函数D. 既不是奇函数也不是偶函数11.如图所示,三棱锥P−ABC中,PA⊥平面ABC,△ABC为正三角形,PA=AB,E是PC的中点,则异面直线AE和PB所成角的余弦值为()A. 16B. 14C. 13D. 1212.如图,AB是椭圆C长轴长的两个顶点,M是C上一点,tan∠AMB=−1,tan∠MAB=13,则椭圆的离心率为()A. √33B. √63C. √306D. √426二、填空题(本大题共4小题,共20.0分)13.已知函数f(x)={|log4x|,0<x≤4−12x+3,x>4,若a<b<c且f(a)=f(b)=f(c),则(ab+1)c的取值范围是________.14.若直线l与圆(x+1)2+(y−2)2=100相交于A,B两点,弦AB的中点为(−2,3),则直线l的方程为______ .15.已知△ABC满足(c−b)(sinC+sinB)=(c−a)sinA,则角B=______ .16.三棱锥P−ABC中,PA=AB=BC=2,PB=AC=2√2,PC=2√3,则三棱锥P−ABC的外接球的表面积为______.三、解答题(本大题共7小题,共82.0分)17.在公差不为0的等差数列{a n}中,a22=a3+a6,且a3为a1与a11的等比中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=(−1)nn(a n−12)(a n+1−12),求数列{b n}的前n项和T n.18.如图,已知四棱锥P−ABCD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,∠BAD=60°.(1)证明:PB⊥BC;(2)若平面PAD⊥底面ABCD,E为线段PD上的点,且PE=2ED,求三棱锥P−ABE的体积.19.为降低空气污染,提高环境质量,政府决定对汽车尾气进行整治.某厂家生产甲、乙两种不同型号的汽车尾气净化器,为保证净化器的质量,分别从甲、乙两种型号的净化器中随机抽取100件作为样本进行产品性能质量评估,评估综合得分m都在区间[70,95].已知评估综合得分与产品等级如下表:综合得分m等级m≥85一级品75≤m<85二级品70≤m<75三级品根据评估综合得分,统计整理得到了甲型号的样本频数分布表如下和乙型号的样本频率分布直方图(如图).综合得分频数[70,75)2[75,80)8[80,85)30[85,90)35[90,95)25合计100(Ⅰ)从厂家生产的乙型净化器中随机抽取一件,估计这件产品为一级品的概率;(Ⅱ)在某次促销活动中,厂家从2件甲型一级品和3件乙型一级品中随机抽取2件送给两名幸运客户,求这两名客户得到同一型号产品的概率;(Ⅲ)根据图表数据,请自定标准,对甲、乙两种型号汽车尾气净化器的优劣情况进行比较.20.已知动圆过定点P(2,0),且在y轴上截得的弦MN的长为4.(1)求动圆圆心的轨迹C的方程;(2)过点M(1,0)的直线l与曲线C交于A、B两点,线段AB的垂直平分线与x轴交于点E(x0,0),求x0的取值范围.21.已知函数f(x)=(e x−1)(x−a)+ax.(1)当a=1时,求f(x)在x=1处的切线方程;(2)若当x>0时,f(x)>0,求a的取值范围.22.在极坐标系中,曲线C1:ρ=2sinθ,曲线C2:ρcosθ=3,点P(1,π),以极点为原点,极轴为x轴正半轴建立直角坐标系.(1)求曲线C1和C2的直角坐标方程;(2)过点P的直线l交C1于点A,B,交C2于点Q,若|PA|+|PB|=λ|PQ|,求λ的最大值.23.已知函数f(x)=|x−1|−|x+2|.(1)若不等式f(x)≤|a+1|恒成立,求a的取值范围;(2)求不等式|f(x)−|x+2||>3的解集.【答案与解析】1.答案:A解析:根据复数的运算,化简得z =−1+i ,根据共轭复数的概念,即可求解.本题主要考查了复数的运算,以及共轭复数的求解,其中解答中熟记复数的运算法则,以及共轭复数的概念是解答的关键,着重考查了运算与求解能力,属于基础题. 解:z =−1i −1=−1+i ,z −=−1−i ,对应点的坐标为(−1,−1), 故选:A .2.答案:B解析:本题主要考查集合的基本运算,求出集合A ,B 的元素是解决本题的关键,求出集合A ,B ,利用集合的并集运算即可得到结论,比较基础. 解:由题意得集合A ={x|x ≥1}, B ={x|x 2≤1}={x |−1≤x ≤1}, 所以A ∪B ={x|x ≥−1}, 故选B .3.答案:B解析:解:AB ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ⋅(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=(1,2)⋅(−4,−1)=−4−2=−6, 故选:B .BC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ 代入AB ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ 计算可得.本题考查了平面向量数量积的性质及其运算,属基础题.4.答案:C解析:本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量m的值,模拟程序的运行过程,可得答案.解:若输入m=221,n=91,第一次执行循环体后,满足m≠n,k=130,不满足n>k,故m=130第二次执行循环体后,满足m≠n,k=39,满足n>k,故m=91,n=39;第三次执行循环体后,满足m≠n,k=52,不满足n>k,故m=52第四次执行循环体后,满足m≠n,k=13,满足n>k,故m=39,n=13第五次执行循环体后,满足m≠n,k=26,不满足n>k,故m=26第六次执行循环体后,满足m≠n,k=13,不满足n>k,故m=13第七次执行循环体后,不满足m≠n,故输出的m值为13,故选:C.5.答案:C解析:本题考查简单几何体的三视图以及棱锥的体积公式.解:由三视图可知,该几何体为四棱锥,底面为边长是2的正方形,髙为2,所以体积为V=13×2×22=83.故选C.6.答案:C解析:【试题解析】解:作出x ,y 满足约束条件{−3≤x −y ≤1−9≤3x +y ≤3,表示的平面区域,如图所示的阴影部分:由z =x +y 可得y =−x +z ,则z 表示直线y =−x +z 在y 轴上的截距,截距越小,z 越小,由题意可得,{1=x −y−9=3x +y ,解得A(−2,−3),当y =−x +z 经过点A 时,z 最小, 由A(−2,−3),此时z =x +y =−5. 故选:C .作出不等式组表示的平面区域,由z =x +y 可得y =−x +z ,则z 表示直线y =−x +z 在y 轴上的截距,截距越小,z 越小,结合图象可求z 的最小值.本题主要考查了线性目标函数在线性约束条件下的最值的求解,解题的关键是明确z 的几何意义.7.答案:B解析:本题考查古典概型,解决问题的关键是由题列举所有的情况,结合满足2a −b =0即b =2a 的有(1,2),(2,4),共2个,进而求解比值即可. 解析:解:将一个质地均匀的正四面体玩具连续抛掷两次,得到的点数(a,b)分别是(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.其中满足2a −b =0即b =2a 的有(1,2),(2,4),共2个, 则事件“2a −b =0”发生的概率P =216=18, 故选B .8.答案:D解析:本题主要考查正弦型函数在给定区间上值域问题,属基础题.解:∵x∈[−π6,π3 ],∴x+π3∈[π6,2π3],∴sin(x+π3)∈[12,1]∴y∈[1,2],故选D.9.答案:B解析:本题主要考查了双曲线的性质及几何意义,属于中档题.解:由双曲线x23−y22=1知a=√3,因为|MF1|=2|MF2|,且|MF1|−|MF2|=2a=2√3,所以|MF1|=4√3,|MF2|=2√3,又|F1F2|=2√5,所以在△MF1F2中,cos∠F1MF2=|MF1|2+|MF2|2−|F1F2|22|M F1||MF2|=56,故sin∠F1MF2=√116,所以S△MF1F2=12|MF1||MF2|sin∠F2MF2=2√11,故选B.10.答案:B解析:本题主要考查函数的奇偶性,属于基础题.解:由y=f(x)为奇函数可得f(−x)=−f(x).∵F(x)=xf(x).∴F(−x)=−xf(−x)=xf(x)=F(x).∴函数y=F(x)为偶函数.故选B.11.答案:B解析:本题考查异面直线所成角的余弦值的求法,是基础题.利用异面直线所成角的定义:取BC的中点M,连接ME,得∠AEM的余弦值即为所求,利用余弦定理解决.解:取BC的中点M,连接ME,由题意得∠AEM的余弦值即为所求,设PA=AB=2a,在ΔAME中EM=√2a,EM=√2a,AM=√3a,由余弦定理得.故答案为14.12.答案:C解析:可以已知条件求出M的坐标,然后求解离心率即可.本题考查椭圆的简单性质的应用,是基本知识的考查.解:tan∠AMB=−1,tan∠MAB=13,可得tan∠MBA=−tan∠AMB+tan∠MAB1−tan∠AMBtan∠MAB=12,AB是椭圆C长轴长的两个顶点,M是C上一点,tan∠AMB=−1,tan∠MAB=13,A(−a,0),B(a,0),M(acosθ,bsinθ),所以bsinθacosθ+a =13,bsinθacosθ−a=−12,可得cosθ=15,所以2√65b15a+a=13,可得a2−c2a2=16,解得e=ca =√306.故选:C.13.答案:(16,64)解析:本题考查了函数的性质,运用图象得出a,b,c的范围,关键是得出ab=1,代数式的化简,指数函数的单调性的运用,属于中档题.画出图象得出,当f(a)=f(b)=f(c),a<b<c时,0<a<1<b<4<<c<6,ab=1,化简(ab +1)c =2c ,由指数函数的单调性即可求得范围.解:函数f(x)={|log 4x|,0<x ≤4−12x +3,x >4, f(a)=f(b)=f(c),a <b <c ,∴0<a <1<b <4<c <6,ab =1,∴(ab +1)c =2c ,即有16<2c <64,故答案为:(16,64).14.答案:x −y +5=0解析:此题考查了直线与圆相交的性质,涉及的知识有:圆的标准方程,两直线垂直时斜率满足的关系,垂径定理,以及直线的点斜式方程,其中由垂径定理的逆定理得到圆心与弦AB 中点的连线与直线l 垂直是解本题的关键.由圆的方程找出圆心C 的坐标,连接圆心与弦AB 的中点,根据垂径定理的逆定理得到此直线与直线l 垂直,根据两直线垂直时斜率的乘积为−1,由圆心与弦AB 中点的连线的斜率,求出直线l 的斜率,再由直线l 过AB 的中点,即可得到直线l 的方程.解:由圆(x +1)2+(y −2)2=100,得到圆心C 的坐标为(−1,2),由题意得:圆心C 与弦AB 中点的连线与直线l 垂直,∵弦AB 的中点为(−2,3),圆心C 的坐标为(−1,2),∴圆心与弦AB 中点的连线的斜率为3−2−2+1=−1,∴直线l 的斜率为1,又直线l 过(−2,3),则直线l 的方程为y −3=x +2,即x −y +5=0.故答案为x −y +5=0. 15.答案:π3解析:解:由正弦定理得(c−b)(c+b)=(c−a)a,即c2−b2=ac−a2,即a2+c2−b2=ac,由余弦定理得cosB=a2+c2−b22ac =ac2ac=12,则在△ABC中,B=π3,故答案为:π3根据正弦定理和余弦定理进行化简即可.本题主要考查解三角形的应用,根据正弦定理和余弦定理是解决本题的关键.16.答案:12π解析:可得△PAC是直角三角形.△PBC是直角三角形.可得三棱锥P−ABC的外接球的球心、半径,即可求出三棱锥P−ABC的外接球的表面积.本题考查了三棱锥P−ABC的外接球的表面积,考查学生的计算能力,确定三棱锥P−ABC的外接球的球心、半径是关键.属于中档题.解:∵AP=2,AC=2√2,PC=2√3,∴AP2+AC2=PC2.∴△PAC是以∠PAC为直角的直角三角形.∵PB=2√2,BC=2,PC=2√3,∴PB2+BC2=PC2,∴△PBC是以∠PBC为直角的直角三角形.∴取PC中点O,则有OP=OC=OA=OB=√3,∴O为三棱锥P−ABC的外接球的球心,半径为√3.∴三棱锥P−ABC的外接球的表面积为4πR2=12π.故答案为:12π.17.答案:解:(Ⅰ)在公差d 不为0的等差数列{a n }中,a 22=a 3+a 6,且a 3为a 1与a 11的等比中项,可得(a 1+d)2=2a 1+7d ,且a 32=a 1a 11,即(a 1+2d)2=a 1(a 1+10d),解得a 1=2,d =3,则a n =2+3(n −1)=3n −1,n ∈N ∗;(Ⅱ)b n =(−1)n n (a n −12)(a n+1−12)=(−1)n n (3n−32)(3n+32) =19⋅(−1)n ⋅4n (2n−1)(2n+1)=19⋅(−1)n ⋅(12n−1+12n+1),∴T n =b 1+b 2+b 3+⋯+b n =19[−(11+13)+(13+15)−(15+17)+⋯+(−1)n ⋅(12n −1+12n +1)] =19[−1+(−1)n ⋅12n+1)].解析:本题考查等差数列的通项公式的求法,注意运用方程思想,考查数列的求和方法:裂项相消求和,考查化简整理的运算能力,属于中档题.(Ⅰ)运用等差数列的通项公式和等比数列中项的性质,解方程可得首项和公差,即可得到所求通项公式;(Ⅱ)化简b n =(−1)n n (3n−32)(3n+32)=19⋅(−1)n ⋅(12n−1+12n+1),再由数列的求和方法:裂项相消求和,即可得到所求和.18.答案:解:(1)取AD 中点O ,连接OP ,OB , ∵PA =PD ,∴OP ⊥AD ,∵四边形ABCD 为菱形,∠BAD =60°,∴OB ⊥AD ,∴AD ⊥平面POB ,又AD//BC ,∴BC⊥平面POB,∴PB⊥BC;(2)∵平面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,OB⊥AD,∴OB⊥平面PAD.∵PE=2ED,∴S△PAE=23S△PAD=23⋅√34⋅22=2√33,又OB=√3OA=√3,∴V P−ABE=V B−APE=13S△APE⋅OB=13×2√33×√3=23.解析:本题考查了线面垂直的判定与性质,棱锥的体积计算,属于中档题.(1)取AD中点O,连接OP,OB,证明AD⊥PO,AD⊥OB得出AD⊥平面POB,再结合AD//BC得出结论;(2)根据V P−ABE=V B−APE=13S△APE⋅OB求出棱锥的体积.19.答案:解:(Ⅰ)设事件A为“从厂家生产的乙型净化器中随机抽取一件,这件产品为一级品”,由图可得,估计这件产品为一级品的概率P(A)=1−(0.01+0.02+0.03)×5=0.7;(Ⅱ)设甲型净化器记为a1,a2,乙型净化器记为b1,b2,b3,从5件中任取2件共有10种情况:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3),(b1,b2),(b1,b3),(b2,b3),这两名顾客得到同一型号产品共有4种情况:(a1,a2),(b1,b2),(b1,b3),(b2,b3),设事件B为“两名顾客得到同一型号产品”,则P(B)=410=25;(Ⅲ)①可根据三级品率进行比较,由图表可知,甲型产品三级品的概率为0.02,乙型产品三级品的概率0.05,所以可以认为甲型产品的质量更好;②可根据一级品率进行比较,由图表可知,甲型产品一级品的概率为0.6,乙型产品一级品的概率为0.7,所以可以认为乙型产品的质量更好.解析:本题考查频率分布直方图及随机变量的概率求法.(Ⅰ)由频率f分布直方图中各小矩形面积之和为1估计这件产品为一级品的概率;(Ⅱ)考查求这两名客户得到同一型号产品的概率,应用古典概型求概率的方法:从5件中任取2件共有10种情况,这两名顾客得到同一型号产品共有4种情况,从而求概率;(Ⅲ)根据图表数据,请自定标准,对甲、乙两种型号汽车尾气净化器的优劣情况进行比较,可从三级品概率角度也可从一级品概率角度.20.答案:解:(1)设圆心C(x,y),过点C 作CD ⊥y 轴,垂足为D ,则|MD|=2,∴|CP|2=|CM|2=|MD|2+|DC|2,∴即(x −2)2+y 2=22+x 2,化简得y 2=4x .(2)由题意,设直线l 的方程为x =my +1(m ≠0),A(x 1,y 1),B(x 2,y 2),AB 中点S(x 3,y 3),则由{x =my +1y 2=4x,得y 2−4my −4=0, 所以y 3=y 1+y 22=2m,x 3=my 3+1=2m 2+1,则线段AB 的中垂线的方程为y −2m =−m(x −(2m 2+1)),则x 0=2m 2+3,所以x 0的取值范围是(3,+∞).解析:本题考查轨迹方程的求法,直线与抛物线的位置关系的应用,考查运算求解能力,属于中档题.(1)设圆心C(x,y),过点C 作CD ⊥y 轴,垂足为D ,转化求解即可.(2)设直线l 的方程为x =my +1(m ≠0),A(x 1,y 1),B(x 2,y 2),AB 中点S(x 3,y 3),由{x =my +1y 2=4x,求出线段AB 的中垂线的方程为y −2m =−m(x −(2m 2+1)),然后求解x 0的取值范围. 21.答案:解:(1)当a =1时,f(x)=(e x −1)(x −1)+x =xe x −e x +1,∴f′(x)=xe x ,∴k =f′(1)=e ,∵f(1)=1,∴f(x)在x =1处的切线方程为y −1=e(x −1),即ex −y −e +1=0;(2)∵f′(x)=(1+x −a)e x +(a −1),令g(x)=(1+x −a)e x +(a −1),∴g′(x)=(2+x −a)e x ,①当a ≤2时,g′(x)>0,在(0,+∞)上恒成立,∴g(x)在(0,+∞)上为增函数,∴g(x)>g(0)=1−a +a −1=0∴f′(x)>0在(0,+∞)上恒成立,∴f(x)在(0,+∞)上为增函数,∴f(x)>f(0)=0,②当a >2时,当x ∈(0,a −2)时,g′(x)<0,函数g(x)为减函数,∵g(0)=(1−a)+(a −1)=0,∴当x ∈(0,a −2)时,g(x)<0,即f′(x)<0,函数f(x)在(0,a −2)为减函数,∵f(0)=0,∴当x ∈(0,a −2)时,f(x)<0,即f(x)>0不是对一切x >0都成立,综上所述,a ≤2,即a 的取值范围为是(−∞,2].解析:(1)根据导数的几何意义即可求出切线方程,(2)先求导,再构造函数g(x)=(1+x −a)e x +(a −1),再求导,分类讨论,根据导数和函数的单调性和最值的关系即可求出.本题考查了导数以及应用,不等式等基础知识,考查了推理论证能力,运算求解能力,抽象概括能力等,考查了函数与方程思想,化归与转化思想,分类与整合思想,数形结合思想等,属于难题. 22.答案:解:(1)曲线C 1:ρ=2sinθ,所以:曲线C 1的直角坐标方程为:x 2+y 2−2y =0;曲线C 2:ρcosθ=3,所以:曲线C 2的直角坐标方程为:x =3.(2)P 的直角坐标为(−1,0),设直线l 的倾斜角为α,(0<α<π2),则直线l 的参数方程为:{x =−1+tcosαy =tsinα(t 为参数,0<α<π2) 代入C 1的直角坐标方程整理得,t 2−2(sinα+cosα)t +1=0,t 1+t 2=2(sinα+cosα)直线l 的参数方程与x =3联立解得,t 3=4cosα,由t 的几何意义可知,|PA|+|PB|=2(sinα+cosα)=λ|PQ|=4λcosα, 整理得, 4λ=2(sinα+cosα)cosα=sin2α+cos2α+1=√2sin(2α+π4)+1,由0<α<π2,π4<2α+π4<5π4,所以,当2α+π4=π2,即α=π8时,λ有最大值14(√2+1).解析:(1)直接利用转换关系,把参数方程和极坐标方程与直角坐标方程进行转化.(2)利用一元二次方程根与系数的关系,利用三角函数的变换求出结果.本题考查的知识要点:参数方程和极坐标方程与直角坐标方程的转化,一元二次方程根与系数的关系的应用,三角函数的关系式的恒等变换.23.答案:解:(1)因为f(x)=|x −1|−|x +2|≤|(x −1)−(x +2)|=3,所以由f(x)≤|a +1|恒成立得|a +1|≥3,即a +1≥3或a +1≤−3,解得a ≥2或a ≤−4;(2)不等式||x −1|−2|x +2||>3,等价于|x −1|−2|x +2|>3或|x −1|−2|x +2|<−3,设g(x)=|x −1|−2|x +2|={−x −5,x ≥1−3x −3,−2≤x <1x +5,x <−2,画出g(x)的图象如图所示:由图可知,不等式的解集为{x|x<−8或x>0}.解析:(1)利用绝对值三角不等式求出f(x)的最大值,再求关于a的绝对值不等式即可;(2)由题意画出函数g(x)=|x−1|−2|x+2|的图象,结合图象求出对应不等式的解集.本题考查了含有绝对值的不等式解法与应用问题,也考查了不等式恒成立问题,是中档题.。
2020年高考文科数学模拟试卷及答案(共五套)
2020年高考文科数学模拟试卷及答案(共五套)2020年高考文科数学模拟试卷及答案(一)一、选择题:(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项符合题目的要求)1、设集合{}1 2 3 4U =,,,,集合{}2540A x x x =∈-+<N ,则U C A 等于( )A .{}1 2,B .{}1 4,C .{}2 4,D .{}1 3 4,,2、记复数z 的共轭复数为z ,若()1i 2i z -=(i 为虚数单位),则复数z 的模z =()A .2B .1C .22D .23、命题p:∃x ∈N,x 3<x 2;命题q:∀a ∈(0,1)∪(1,+∞),函数f(x)=log a (x-1)的图象过点(2,0),则( )A. p 假q 真B. p 真q 假C. p 假q 假D. p 真q 真4、《张丘建算经》卷上第22题为:“今有女善织,日益功疾,且从第2天起,每天比前一天多织相同量的布,若第一天织5尺布,现有一月(按30天计),共织390尺布”,则该女最后一天织多少尺布?()A .18B .20C .21D .255、已知 ,且,则A.B.C.D.6、已知 , , ,若 ,则A. B.—8 C. D. —27、执行如右图所示的程序框图,则输出 的值为A. B.C. D.8、等轴双曲线 的中心在原点,焦点在 轴上, 与抛物线 的准线交于 两点, ,则 的实轴长为 ( )A. B. C. D.9、已知 的内角 , , 的对边分别为 , , ,若 , ,则的外接圆面积为 A. B. 6π C. 7πD.10、一块边长为6cm 的正方形铁皮按如图(1)所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,将该容器按如图(2)放置,若其正视图为等腰直角三角形(如图(3)),则该容器的体积为( )A .3126cmB .346cmC.3272cm D .392cm11、已知,曲线 在点 ))1f(,1( 处的切线经过点,则有A. 最小值B. 最大值C. 最小值D. 最大值12、对实数 和 ,定义运算“ ”:.设函数 ,.若函数 的图象与 轴恰有两个公共点,则实数 的取值范围是 ( ) A. B. C. D.二、填空题(共4小题;共20分)13、 设变量 , 满足约束条件则目标函数 的最大值为 .14、已知等比数列{a n }的各项均为正数,且满足:a 1a 7=4,则数列{log 2a n }的前7项之和为15、已知圆 ,则圆 被动直线 所截得的弦长是 .16、如图,直三棱柱111ABC A B C -的六个顶点都在半径为1的半球面上,AB AC =,侧面11BCC B 是半球底面圆的内接正方形,则侧面11ABB A 的面积为.三、解答题:(解答应写出文字说明、证明过程或演算步骤。
2020高考文科数学模拟试卷含答案
一、选择题(每小题5分,共60分)1.如图,集合A ,B 分别用两个椭圆所围区域表示,若A ={1,3,5,7},B ={2,3,5},则阴影部分所表示的集合的元素个数为A .1B .2C .3D .42.已知复数()R b a bi a z ∈+=,,则0≠b 是复数z 为纯虚数的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 3.已知|a |=3,|b |=1,且a 与b 方向相同,则a •b 的值是 A .3- B .0 C .3 D .–3或3 4.双曲线221kx y -=的一个焦点是(2,0),那么它的实轴长是 A .1B .2C .2D .225.函数)sin(ϕω+=x A y 在一个周期内的图象如下,此函数的解析式为可为( )A .)322sin(2π+=x y B .)32sin(2π+=x yC .)32sin(2π-=xyD .)32sin(2π-=x y6.如果()f x 是定义在R 上的奇函数,它在),0[+∞上有0)(/<x f ,那么下述式子中正确的是 A .)1()43(2++≥a a f f B .)1()43(2++≤a a f fC .)1()43(2++=a a f fD .以上关系均不确定7.下面四个命题:AU B①“直线a ∥直线b ”的充要条件是“a 平行于b 所在的平面”;②“直线l ⊥平面α内所有直线”的充要条件是“l ⊥平面α”;③“直线a 、b 为异面直线”的充分不必要条件是“直线a 、b 不相交”; ④“平面α∥平面β”的必要不充分条件是“平面α内存在不共线三点到平面β的距离相等”。
其中正确命题的序号是A ①②B ②③C ②④D ③④ 8.函数)(sin 2)(R x x x x f ∈-=π的部分图象是9.运行如图所示的程序框图后,若输出的b的值为16,则循环体的判断框内①处应填A.2B.3C.4D.5 10.若a是从区间[03],任取的一个数,b是从区间[02],任取的一个数,则关于x的一元二次方程2220x ax b++=有实根的概率是:A.34B.12C.49D.2311.已知两点M(-3,0),N(3,0),点P为坐标平面内一动点,且=•+•NPMNMPMN,则动点P(x,y)到两点A(-3,0)、B(-2,3)的距离之和的最小值为A.4 B.5 C.6 D.1012.已知函数f(x)=ax2+bx-1(a,b且a>0)有两个零点,其中一个零点在区间(1,2)内,则a-b的取值范围为A.()+∞-,1B.()1,-∞-C.()1,∞-D.()1,1-二、填空题:(每小题4分,共16分)A B C DFA*ECO BDM13.命题p :∀x ≥0,x 2>0,则⌝p 是 .14.若幂函数y =(m 2-m -1)223m m x --在x ∈(0,+∞)上是减函数,则实数,m 的值为 .15.已知函数在2sin1()log (65)f x x x =-+在(,)a +∞上是减函数,则实数a 的取值范围为 .16.已知函数[]3()3,2,2f x x x x =-∈-和函数[]()1,2,2g x ax x =-∈-,若对于[]12,2x ∀∈-,总[]02,2x ∃∈-,使得01()()g x f x =成立,则实数a 的取值范围 . 三、解答题:本大题共6个小题,共74分。
2020届高三模拟卷文科数学附答案
2020届模拟06 文科数学测试范围:学科内综合.共150分,考试时间120分钟第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知集合{}3813x A x =>,{}212110B x x x =∈-+<N ,则A B =I ( ) A .{}2,3,4 B .{}2,3,4,5C .{}5,6,7,8,9,10D .{}6,7,8,9,102.已知实数,a b 满足()()i 2i 35i a b ++=-(其中i 为虚数单位),则复数i z b a =-的共轭复数为 ( )A .131i 55-+B .131i 55-- C .131i 55+ D .131i 55-3.已知命题0:0,2p x π⎛⎫∃∈ ⎪⎝⎭,0023sin 0x x -<,则命题p 的真假以及命题p 的否定分别为 ( )A .真,:p ⌝0,2x π⎛⎫∀∈ ⎪⎝⎭,23sin 0x x ->B .真,:p ⌝0,2x π⎛⎫∀∈ ⎪⎝⎭,23sin 0x x -≥C .假,:p ⌝00,2x π⎛⎫∃∈ ⎪⎝⎭,0023sin 0x x ->D .假,:p ⌝00,2x π⎛⎫∃∈ ⎪⎝⎭,0023sin 0x x -≥4.已知向量()2,m =-a ,()1,n =b ,若()-//a b b ,且2=b ,则实数m 的值为 ( ) A .2 B .4 C .2-或2 D .4-或4 5.运行如下程序框图,若输出的k 的值为6,则判断框中可以填 ( )6.()tan751cos240sin30sin 60sin1201tan75︒-︒︒--︒︒+=+︒( )A .1323+B .1323-C .1323-+D .1323--7.已知函数()321ln333xf x x x x x-=++++,则下列说法正确的是 ( ) A .函数()f x 的图象关于1x =-对称B .函数()f x 的图象关于1y =-对称C .函数()f x 的图象关于()1,0-中心对称D .函数()f x 的图象关于()1,1--中心对称8.将函数()()sin 03f x x πωω⎛⎫=-> ⎪⎝⎭的图象向右平移4π个单位后,得到的函数图象关于2x π=对称,则当ω取到最小值时,函数()f x 的单调增区间为( ) A .()33,2010410k k k ππππ⎡⎤-∈⎢⎥⎣⎦++Z B .()3113,4102010k k k ππππ⎡⎤∈⎢⎥⎣⎦++Z C .()33,20545k k k ππππ⎡⎤-∈⎢⎥⎣⎦++Z D .()3113,45205k k k ππππ⎡⎤∈⎢⎥⎣⎦++Z 9.已知实数,x y 满足343125510x y x yx +⎧⎪⎪⎪+⎨⎪-⎪⎪⎩≥≤≥,若3z mx y =--,且0z ≥恒成立,则实数m 的取值不可能为 ( ) A .7 B .8 C .9 D .1010.已知某几何体的三视图如下所示,若网格纸上小正方形的边长为1,则该几何体的最短棱长为 ( )A .1B .2C .3D .211.已知椭圆222:19x y C b+=的离心率为223,且,M N 是椭圆C 上相异的两点,若点()2,0P 满足PM PN ⊥,则PM MN ⋅uuu r uuu r的取值范围为 ( )A .125,2⎡⎤--⎢⎥⎣⎦B .15,2⎡⎤--⎢⎥⎣⎦C .[]25,1--D .[]5,1--12.已知关于x 的不等式212ln x x mx +≤在[)1,+∞上恒成立,则m 的最小值为 ( ) A .1 B .2 C .3 D .4第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上.) 13.杨辉,字谦光,南宋时期杭州人.在他1261年所著的《详解九章算法》一书中,辑录了如图所示的三角形数表,称之为“开方作法本源”图,并说明此表引自11世纪中叶(约公元1050年)贾宪的《释锁算术》,并绘画了“古法七乘方图”.故此,杨辉三角又被称为“贾宪三角”.杨辉三角是一个由数字排列成的三角形数表,一般形式如下:基于上述规律,可以推测,当23n =时,从左往右第22个数为 .14.已知双曲线()2222:10,0x yC a b a b-=>>的右焦点到渐近线的距离为3.现有如下条件:①双曲线C 的离心率为54; ②双曲线C 与椭圆22:13611x y C '+=共焦点; ③双曲线右支上的一点P 到12,F F 的距离之差是虚轴长的43倍.请从上述3个条件中任选一个,得到双曲线C 的方程为 . (注:以上三个条件得到的双曲线C 的方程一致)15.已知四棱锥P ABCD -中,底面四边形ABCD 为等腰梯形,且AB CD //,12AB CD =,PA PB AD ==,43PA AD CD +==,若平面PAB ⊥平面ABCD ,则四棱锥P ABCD -外接球的表面积为 .第15题图 第16题图16.如图所示,四边形MNQP 被线段NP 切割成两个三角形分别为MNP △和QNP △,若MN MP ⊥,2sin 24MPN π⎛⎫∠+= ⎪⎝⎭,22QN QP ==,则四边形MNQP 面积的最大值为 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知正项数列{}n a 的前n 项和为n S ,若数列13log n a ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭是公差为1-的等差数列,且22a +是13,a a 的等差中项.(1)证明数列{}n a 是等比数列,并求数列{}n a 的通项公式;(2)若n T 是数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和,若n T M <恒成立,求实数M 的取值范围.18.(12分)某大学棋艺协会定期举办“以棋会友”的竞赛活动,分别包括“中国象棋”、“围棋”、“五子棋”、“国际象棋”四种比赛,每位协会会员必须参加其中的两种棋类比赛,且各队员之间参加比赛相互独立;已知甲同学必选“中国象棋”,不选“国际象棋”,乙同学从四种比赛中任选两种参与.(1)求甲参加围棋比赛的概率;(2)求甲、乙两人参与的两种比赛都不同的概率.19.(12分)已知四棱锥E ABCD -中,底面ABCD 是直角梯形,90ABC ∠=︒,且AD BC //,222BC AD AB ===,F 为,AC BD 的交点,点E 在平面ABCD 内的投影为点F . (1)AF ED ⊥;(2)若AF EF =,求三棱锥D ABE -的体积.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,上、下顶点分别为,A B ,若12AF =,点3(,1)2-关于直线y x =的对称点在椭圆C 上.(1)求椭圆C 的方程与离心率;(2)过点()0,2做直线l 与椭圆M 相交于两个不同的点,M N ; 若OM ON λ⋅<uuu r uuu r恒成立,求实数λ的取值范围.21.(12分)已知函数()2ln 2p f x x x =-. (1)当0p >时,求函数()f x 的极值点; (2)若1p >时,证明:()()33e 121p p x f x p ---<-.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号. 22.(10分)选修4—4坐标系与参数方程在平面直角坐标系xOy 中曲线C 的参数方程为22cos 2sin x y θθ=+⎧⎨=⎩(θ为参数),以O 为极点,x 轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程为cos 1004πρθ⎛⎫++= ⎪⎝⎭.(1)求曲线C 的普通方程以及直线l 的直角坐标方程;(2)将曲线C 向左平移2个单位,再将曲线C 上的所有点的横坐标缩短为原来的12,得到曲线1C ,求曲线1C 上的点到直线l 的距离的最小值.23.(10分)选修4—5不等式选讲 已知函数()f x x m =-. (1)当2m =时,求不等式()23f x x >-的解集;(2)若不等式()1122f x x ++≥恒成立,求实数m 的取值范围.2020届模拟06文科数学答案与解析1.【答案】C 【解析】依题意,集合{}9293813332xx A x x x x ⎧⎫⎧⎫⎪⎪=>=>=>⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭,{}{}{}2121101112,3,4,5,6,7,8,9,10B x x x x x =∈-+<∈<<N =N =,故{}5,6,7,8,9,10A B =I ,故选C.2.【答案】A 【解析】依题意,()()()()35i 2i 35i 113ii 2i 2i 2i 5a b ----+===++-,故113,55a b ==-,故131i i 55z b a =-=--,故复数z 的共轭复数为131i 55z =-+,故选A.3.【答案】B 【解析】不妨取04x π=,此时003223sin 022x x π-=-<,故命题p 为真;特称命题的否定为全称命题,故:p ⌝0,2x π⎛⎫∀∈ ⎪⎝⎭,23sin 0x x -≥,故选B.4.【答案】C 【解析】依题意,向量()()3,-=--a b m n ;因为()-//a b b ,故3m n n -=-,故20m n +=;又2=b ,即1n =-或1,故2m =或-2,故选C. 5.【答案】B 【解析】运行该程序,第一次,2,2S k ==;第二次,6,3S k ==;第三次,14,4S k ==;第四次,30,5S k ==;第五次;62,6S k ==;第六次,126,7S k ==;观察可知,判断框中可以填“62S <”,故选B. 6.【答案】A 【解析】依题意,()cos240sin30sin 60sin120︒︒--︒︒sin30cos120cos30sin120=︒︒+︒︒1sin1502=︒=; 00tan 751tan 75tan 453tan 301tan 751tan 75tan 453-︒-︒==︒=++︒︒;故原式的值为1323+,故选A. 7.【答案】D 【解析】依题意,()()()()321ln 1121x f x x x -+=++-++,将函数()f x 的图象向右平移一个单位,再向上平移一个单位后,得到函数32ln2xy x x-=++的图象,这是一个奇函数,图象关于()0,0中心对称,故函数()321ln333xf x x x x x-=++++的对称中心为()1,1--,故选D.8.【答案】C 【解析】依题意,将函数()sin 3f x x πω⎛⎫=- ⎪⎝⎭的图象向右平移4π个单位后,得到sin 43y x ωππω⎛⎫=-- ⎪⎝⎭的图象,此时()2432k k ωπωππππ--=+∈Z , 解得()546k k ωπππ=+∈Z ,故()1043k k ω=+∈Z ,故ω的最小值为103 故()10sin 33f x x π⎛⎫=- ⎪⎝⎭;令()10222332k x k k πππππ--∈++Z ≤≤,解得()10522636k x k k ππππ-∈++Z ≤≤,即()3320545k x k k ππππ-∈++Z ≤≤,故选C.9.【答案】A 【解析】依题意,作出不等式组所表示的平面区域如下图阴影部分所示,可以求出()()221,1,1,,5,25A B C ⎛⎫⎪⎝⎭;要使0z ≥恒成立,需且仅需130223055230m m m --⎧⎪⎪--⎨⎪⎪--⎩≥≥≥解得375m ≥;故m 的取值不可能为7,故选A. 10.【答案】B 【解析】作出该几何体的直观图如下图所示,观察可知,该几何体的最短棱长为AC 或BD ,均为2,故选B.11.【答案】A 【解析】依题意,()22PM MN PM PN PM PM PN PM PM ⋅=⋅-=⋅-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ;因为222193b e =-=,故21b =;设(),M x y ,则()2,PM x y =--uuu r , 故()2222222282444414599x x PM x y x x y x x x =-+=-++=-++-=-+uuu r ,[]3,3x ∈-,可知,当3x =-时,2PM uuu r 有最大值25,当94x =时,2PM uuu r 有小值12;故PM MN ⋅u u u r u u u r 的取值范围为125,2⎡⎤--⎢⎥⎣⎦,故选A.12.【答案】A 【解析】依题意,222ln 112ln x x x mx m x x+⇔+≤≥,令()22ln 1x g x x x =+,故()()32ln 1'x x x g x x --=;令()ln 1h x x x x =--,则()'ln h x x =-,故当[)1,x ∈+∞时,()'ln 0h x x =-≤;故()22ln 1x g x x x=+在[)1,+∞上单调递减,故()()max 11m g x g ⎡⎤==⎣⎦≥,故m 的最小值为1,故选A. 13.【答案】253【解析】当23n =时,共有24个数,从左往右第22个数即为这一行的倒数第3个数,观察可知,其规律为1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,136,153,171,190,210,231,253,故所求数字为253.14.【答案】221169x y -=【解析】依题意,双曲线()2222:10,0x y C a b a b -=>>的渐近线方程为by x a =±,即0bx ay ±=,故223bc a b =+,即3b =;①双曲线C 的离心率为54,故54c a =;又3b =,且222a b c +=,故4,5a c ==,故双曲线C 的方程为221169x y -=; ②椭圆22':13611x y C +=的焦点坐标为()()5,0,5,0-,故5c =;又222a b c +=,故4a =,故双曲线C 的方程为221169x y -=; ③依题意,设双曲线C 的左、右焦点分别为12,F F ,故12423PF PF b -=⋅,故4a =,故双曲线C 的方程为221169x y -=. 15.【答案】52π【解析】因为四边形ABCD 为等腰梯形,AB CD //,故AD BC =;因为PA PB =,12AB CD =,PA PB AD ==,43PA AD CD +==,=23PA PB AB AD BC ====,故3ADC π∠=; 取CD 的中点E ,则E 是等腰梯形ABCD 外接圆圆心;F 是PAB △外心,作OE ⊥平面ABCD ,OF ⊥平面PAB ,则O 是四棱锥P ABCD -的外接球的球心,且3,2OF GE PF ===;设四棱锥P ABCD -的外接球半径R ,则22213R PF OF =+=,所以四棱锥P ABCD -外接球的表面积是52π.16.【答案】524+【解析】因为2sin 24MPN π⎛⎫∠+= ⎪⎝⎭,故42MPN ππ∠+=,故4MPN π∠=,故MNP △是等腰直角三角形;在QNP △中,2,1QN QP ==,由余弦定理,254cos NP Q =-;2211os 42c 45MNP S MN NP Q =-==△;又1sin 2sin QNP S NQ P Q Q Q =⋅⋅=△,55cos sin 2sin()444MNQP S Q Q Q π=-+=+-;3π5(1)依题意,11133log log 1n n a a +-=-,故113log 1n na a +=-,故13n n a a +=;故数列{}n a 是公比为3的等比数列,因为()21322a a a +=+,故()1112329a a a +=+, 解得11a =;故数列{}n a 的通项公式为13n n a -=;(6分) (2)依题意,1113n n a -=,故数列1n a ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭是以1为首项,13为公比的等比数列,故1231111n nT a a a a =++++L 111113133=1113323213nn n -⎛⎫- ⎪⎛⎫⎝⎭+++==-< ⎪⎝⎭-L , 故32M ≥,即实数M 的取值范围为3,2⎡⎫+∞⎪⎢⎣⎭.(12分)18.【解析】(1)依题意,甲同学必选“中国象棋”,不选“国际象棋”,故甲参加围棋比赛的概率为12;(4分)(2)记“中国象棋”、“围棋”、“五子棋”、“国际象棋”分别为1,2,3,4, 则所有的可能为(1,2,1,2),(1,2,1,3),(1,2,1,4),(1,2,2,3),(1,2,2,4),(1,2,3,4),(1,3,1,2),(1,3,1,3),(1,3,1,4),(1,3,2,3),(1,3,2,4),(1,3,3,4),其中满足条件的有(1,2,3,4),(1,3,2,4)两种,故所求概率21126P ==.(12分) 19.【解析】(1)依题意,AFD CBF △△∽,12AF DF AD CF BF BC ===, 又Q 1,2AB BC ==,∴2,32AD AC ==,(2分) 在Rt BDA △中,2262BD AB AD =+=,∴1333AF AC ==,(3分)在ABF △中,2222236()()133AF BF AB +=+==,∴90AFB ∠=︒,即AC BD ⊥;Q EF ⊥平面ABCD ,AC ⊂平面ABCD ,∴AC EF ⊥;(6分)又Q BD EF F =I ,BD ⊂平面BDE ,EF ⊂平面BDE ,∴AC ⊥平面BDE , 因为ED ⊂平面BDE ,故AC ED ⊥,即AF ED ⊥;(8分)(2)依题意,11123613322336D ABE E ABD ABD S EF V V --⋅=⨯⨯⨯⨯===△.(12分)20.【解析】(1)依题意,点3(,1)2-关于直线y x =的对称点为3(1,)2-, 因为12AF =,故222b c a +==,故椭圆222:14x yC b+=;将3(1,)2-代入椭圆222:14x y C b +=中,解得1b =;所以椭圆C 的方程为2214xy +=故离心率32c e a ==;(4分)(2)当直线l 的斜率不存在时,(0,1),(0,1)M N -,所以1OM ON ⋅=-u u u u r u u u r. 当直线l 的斜率存在时,设直线l 的方程为11222,(,),(,)y kx M x y N x y =+, 联立22214y kx x y =+⎧⎪⎨+=⎪⎩,消去y 整理得22(14)16120k x kx +++=, 由0∆>,可得243k >,且1212221612,1414k x x x x k k +=-=++, 所以1212OM ON x x y y ⋅=+uuu u r uuu r 21212217(1)2()4114k x x k x x k =++++=-++,所以1314OM ON -<⋅<uuu u r uuu r ,故134λ≥,综上实数λ的取值范围为13,4⎡⎫+∞⎪⎢⎣⎭.(12分)(1)依题意,()2ln 2p f x x x =-,故()()()21111'px px px f x px x x x+--=-==; 可知,当0,p x p ⎛⎫∈ ⎪ ⎪⎝⎭时,()'0f x <;,p x p ⎛⎫∈+∞ ⎪ ⎪⎝⎭时,()'0f x >; 故函数()f x 的极小值点为px p=,无极大值点;(4分)(2)Q 1p >,令()()()()211ln 2pg x p x f x p x x x =--=--+,故()()()11'px x g x x +-=-,可得函数()g x 的单调递增区间为(0,1),单调递减区间为(1,)+∞, ∴()g x 在1x =时取得极大值,并且也是最大值,即()max 112g x p =-. 又210p ->,∴()21(21)1ln (21)(1)22p p p x x x p p ⎡⎤---+--⎢⎥⎣⎦≤.设31(21)(1)2()e p p p h p ---=,则233(297)(1)(27)()2e 2e p p p p p p h p ---+--'=-=-,所以()h p 的单调递增区间为7(1,)2,单调递减区间为7(+)2∞,,所以1236794()()22e e h p h ⨯==≤,Q 2e 3>,∴99332e<=,∴()3h p <,又3e 0p ->Q , ∴()23(21)1ln 3e 2p p p p x x x -⎡⎤---+<⎢⎥⎣⎦,即()()33e 121p p x f x p ---<-.(12分)22.【解析】(1)曲线:()22:24C x y -+=;直线::250l x y -+=;(4分) (2)依题意,曲线221:14y C x +=;又曲线1C 的参数方程为cos (2sin x y θθθ=⎧⎨=⎩为参数), 设曲线1C 上任一点()cos ,2sin P θθ,则()cos 2sin 25255sin 10222P l d θθθϕ→-+-+==≥(其中1tan 2ϕ=-),所以点P 到直线l 的距离的最小值为102.(10分) 23.【解析】(1)显然3x >;故()()()()22322343f x f x x x x x x >⇒>-⇒->-⇒<-,故不等式()23f x x >-的解集为()3,4;(5分)(2)依题意,当2m -≥,()31,21111,22231,22x m x m f x x x m x m x m x ⎧+-⎪⎪⎪++=-++-⎨⎪⎪-+--⎪⎩≥≤≤≤,故()min 111222mf x x ⎡⎤++=+⎢⎥⎣⎦≥,解得2m ≥;当2m -≤时,()31,221111,22231,2x m x f x x x m m x x m x m ⎧+->-⎪⎪⎪++=--<-⎨⎪⎪-+-⎪⎩≤≤,故()min111222mf x x ⎡⎤++=--⎢⎥⎣⎦≥,解得6m -≤;综上所述,实数m 的值为(,6][2,)-∞-+∞U .(10分)。
2020年高考数学(文)模拟试卷(新课标版)03(解析版)
2020年高考数学(文)模拟试卷(新课标版)03注意事项:1.本卷满分150分,考试时间120分钟。
答题前,现将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷。
草稿纸和答题卡上的非答题区域均无效。
5.考试结束后,请将本试题卷和答题卡一并上交。
一、单选题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合{1,0,1,2,3}A =-,集合{}2|20B x x x =->,则R A B =I ð( )A .{1,3}-B .{0,1}C .{0}D .{0,1,2}【来源】2020届重庆市高三上学期期末测试卷文科数学(一诊康德卷) 【答案】D 【解析】 【分析】化简集合B ,求出R C B ,按照交集的定义,即可求解. 【详解】{}2|20{|0B x x x x x =->=<或{}|22},0R x B x x C >=≤≤, R A B =I ð{0,1,2}.故选:D. 【点睛】本题考查交集、补集的混合运算,属于基础题.2.(5分)欧拉公式cos sin ix e x i x =+(i 为虚数单位)是由瑞士著名数学家欧拉发xi 现的,它将指数函数的定义扩大到复数,建立了三角函数和指数函数的关系,它在复变函数理论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,6i e π表示的复数在复平面中位于( ) A .第一象限B .第二象限C .第三象限D .第四象限【来源】2020届内蒙古赤峰二中普通高等学校招生第三次统一模拟考试文科数学 【答案】A 【解析】 【分析】由cos sin ixe x i x =+可知当6x π=时,6=cossin66ii e πππ+,化简即可求得结果.【详解】Q cos sin ix e x i x =+,∴ 当6x π=时,61=cossin=+6622ie i i πππ+,∴6i e π表示的复数对应的点为12⎫⎪⎪⎝⎭在第一象限. 故选:A. 【点睛】本题考查复数与平面内点的对应关系,难度容易.3.(5分)给出下列三个命题:①“若0a b >>,则22a b >”的逆命题为假命题;②“21a ≥”是“函数()221f x x ax =++至少有一个零点”的充要条件;③命题“00,30x x R ∃∈≤”的否定是“,30x x R ∀∈>”.其中真命题的个数是( ) A .0B .1C .2D .3【来源】吉林省长春市东北师范大学附属中学2019-2020学年高三上学期一摸数学(文)试题 【答案】D 【解析】 【分析】对命题①,先求逆命题,再判断真假;对命题②,先将()221f x x ax =++至少有一个零点作等价转化,再结合充要条件判断;对命题③,结合命题的否定一般方法加以否定即可 【详解】对①,“若0a b >>时,则22a b >”的逆命题为:“若22a b >时,则0a b >>”,当3,2a b =-=时不成立,逆命题为假命题,说法正确; 对②,若函数()221f x x ax =++至少有一个零点,等价于0∆≥,即224401a a -≥⇒≥,故②为真命题;对③,存在命题的否定:存在改全称,“≤”改成“>”,故③为真命题 故真命题的个数为3个 故选:D 【点睛】本题考查命题真假的判断,属于基础题4.(5分)现将“□”和“○”按照如下规律从左到右进行排列:若每一个“□”或“○”占1个位置,即上述图形中,第1位是“□”,第4位是“○”,第7位是 “□”,则在第2017位之前(不含第2017位),“○”的个数为( ) □,○,□,○,○,○,□,○,○,○,○,○,□,○,○,○,○,○,○,○L L A .1970B .1971C .1972D .1973【来源】2020届安徽省合肥二中高三下学期3月线上考试数学(文)试题 【答案】B 【解析】 【分析】根据题意,以“□,○”为第1组,“□,○,○,○,”为第2组,如此类推,发现规律,将问题转化为计算等差数列前n 项和,即可求得结果. 【详解】记“□,○”为第1组,“□,○,○,○,”为第2组,“□,○,○,○,○,○”为第3组, 以此类推,可知第k 组共有2k 个图形, 故前k 组共有(1)k k +个图形,因为44451980201645462070⨯=<<⨯=, 所以在前2016位中共有45个“□”, 从而可知有2016−45=1971个“○”.故选:B. 【点睛】本题本质上在考查等差数列的求和,处理问题的关键是合理的分段和转化,属基础题. 5.(5分)若将函数()2sin 6f x x π⎛⎫=+⎪⎝⎭图象上各点的横坐标缩短到原来的12(纵坐标不变),再向下平移一个单位得到的函数()g x 的图象,函数()g x ( ) A .图象关于点,012π⎛⎫-⎪⎝⎭对称 B .最小正周期是2πC .在0,6π⎛⎫⎪⎝⎭上递增 D .在0,6π⎛⎫⎪⎝⎭上最大值是1 【来源】2020届湖南省株洲市高三一模数学(文)试题 【答案】C 【解析】 【分析】根据三角函数的图象变换关系求出函数()y g x =的解析式,结合三角函数的性质分别进行判断即可. 【详解】若将函数()2sin 6f x x π⎛⎫=+ ⎪⎝⎭图象上各点的横坐标缩短到原来的12(纵坐标不变),得到函数2sin 26y x π⎛⎫=+ ⎪⎝⎭的图象,向下平移一个单位得到的函数()y g x =的图象,则()2sin 216g x x π⎛⎫=+- ⎪⎝⎭, A.20126ππ⎛⎫⨯-+= ⎪⎝⎭,则函数()g x 关于,112π⎛⎫-- ⎪⎝⎭对称,故A 错误, B.函数的周期22T ππ==,故B 错误, C.当0,6x π⎛⎫∈ ⎪⎝⎭时,2,662x πππ⎛⎫+∈ ⎪⎝⎭,此时函数()y g x =为增函数,故C 正确,D.由C 知当0,6x π⎛⎫∈ ⎪⎝⎭时,2,662x πππ⎛⎫+∈ ⎪⎝⎭,此时函数()y g x =无最大值,故D 错误, 故选:C. 【点睛】本题主要考查三角函数的图象和性质,利用三角函数的图象变换法则求出函数的解析式,以及利用三角函数的性质是解决本题的关键,难度不大.6.(5分)已知圆锥SC 的高是底面半径的3倍,且圆锥SC 的底面直径、体积分别与圆柱OM 的底面半径、体积相等,则圆锥SC 与圆柱OM 的侧面积之比为( ).AB .3:1C .2:1D 2【来源】福建省普通高中2019-2020学年高三3月文科数学试题 【答案】A 【解析】 【分析】设圆锥SC 的底面半径为r ,可求得圆锥的母线长,根据圆锥侧面积公式求得侧面积;由圆锥体积与圆柱体积相等可构造方程求得圆柱的高,进而根据圆柱侧面积公式求得圆柱侧面积,从而求得比值. 【详解】设圆锥SC 的底面半径为r ,则高为3r ,∴圆锥SC 的母线长l =,∴圆锥SC 的侧面积为2rl r π=;圆柱OM 的底面半径为2r ,高为h , 又圆锥的体积23133V r r r ππ=⋅=,234r h r ππ∴=,4rh ∴=, ∴圆柱OM 的侧面积为2224rh rh r πππ⋅==,∴圆锥SC 与圆柱OM 22:r r π=.故选:A . 【点睛】本题考查圆锥和圆柱侧面积的求解问题,涉及到圆锥和圆柱体积公式的应用,属于基础题. 7.(5分)执行如图所示的程序框图,当15p =时,则输出的n 值是A .3B .4C .5D .6【来源】湖南省益阳市、湘潭市2019-2020学年高三上学期9月教学质量统测数学(文)试题 【答案】C 【解析】 【分析】根据程序框图,逐步执行,即可得出结果. 【详解】执行程序框图如下: 输入:15p =, 初始值:1,0n S ==,第一步:015=<S ,进入循环体,0021S =+=,112n =+=; 第二步:115=<S ,进入循环体,1123S =+=,213n =+=; 第三步:315=<S ,进入循环体,2327S =+=,314n =+=; 第四步:715=<S ,进入循环体,37215S =+=,415n =+=; 第五步:1515==S ,结束循环,输出5n =; 故选C 【点睛】本题主要考查循环程序框图输出的结果,逐步执行框图,即可得出结果.8.(5分)已知向量()1,2a =r ,()2,3b x =--r ,且a b ⊥r r,则b =r ( )A.9B .3C .D .【来源】湖南省益阳市2019-2020学年高三下学期4月复学摸底考试文科数学试题 【答案】C 【解析】 【分析】由a b ⊥r r得出0a b ⋅=r r ,结合向量数量积的坐标运算求得x 的值,进而利用向量的模长公式可求得b r 的值.【详解】a b ⊥r rQ ,()22340a b x x ∴⋅=-+⨯-=--=r r ,解得4x =-,()6,3b ∴=-r ,因此,b ==r故选:C. 【点睛】本题考查向量模长的计算,涉及向量垂直的坐标表示,考查计算能力,属于基础题.9.(5分)下边茎叶图记录了甲、乙两位同学在5次考试中的成绩(单位:分).已知甲成绩的中位数是124,乙成绩的平均数是127,则x y +的值为( )A .3B .4C .5D .6【来源】2020届湖北省宜昌市高三下学期3月线上统一调研测试数学(文)试题 【答案】C 【解析】 【分析】根据茎叶图由甲成绩的中位数是124,可得4x =;利用平均数的公式即可求得y ,进而求解. 【详解】由甲成绩的中位数是124,可得4x =;乙成绩的平均数是127,可得()11121231341351301275y ⨯+++++=,所以1y =, 所以5x y +=, 故选:C 【点睛】本题考查茎叶图的应用,考查由中位数、平均数求参数.10.(5分)在一次考试后,为了分析成绩,从1、2、3班中抽取了3名同学(每班一人),记这三名同学为、、A B C ,已知来自2班的同学比B 成绩低,A 与来自2班的同学成绩不同,C 的成绩比来自3班的同学高.由此判断,下列推断正确的为( ) A .A 来自1班B .B 来自1班C .C 来自3班D .A 来自2班【来源】2020届百师联盟高三开学摸底大联考全国卷数学(文)试题 【答案】B 【解析】 【分析】由题分析得B 不是来自2班,A 不是来自2班,C 来自2班,再进一步分析得解. 【详解】由题得,B 不是来自2班,A 不是来自2班,所以C 来自2班,又B 的成绩比来自2班的同学高,C 的成绩比来自3班的同学高, 所以B 不能来自3班,只能来自1班. 故选:B 【点睛】本题主要考查推理证明,意在考查学生对这些知识的理解掌握水平.11.(5分)设函数22()ln ,()f x x x x g x x a x =-=++,对任意的11[,2]4x ∈,存在2[2,4]x ∈,使12()()1f x g x -<成立,则实数a 的取值范围是( ) A .7(4ln 2,)2--+∞ B .9(,)2-+∞ C .211(ln 2,)48-++∞ D .(3,)-+∞【来源】四川省成都石室中学2019-2020学年高三上学期期中数学(文)试题 【答案】B【解析】 【分析】对任意的11[,2]4x ∈,存在2[2,4]x ∈,都有12()()1f x g x -<,等价于max max ()()1f x g x <+,再利用导数求函数的最值即可得解. 【详解】解:因为对任意的11[,2]4x ∈,存在2[2,4]x ∈,都有12()()1f x g x -<,即12()()1f x g x <+,所以max max ()()1f x g x <+.当[2,4]x ∈时,函数()g x 在[2,4]为增函数,则max 29()442g x a a =++=+,又因为'()12ln f x x x x =--,设()12ln h x x x x =--,1[,2]4x ∈,所以'()2ln 3h x x =--,又'()h x 在1[,2]4单调递减,则''11()()2ln 34ln 23044h x h ≤=--=-<,所以'()f x 在1[,2]4单调递减,由于'(1)0f =,所以()f x 在1[,1)4单调递增,(1,2]单调递减,max ()(1)1f x f ==,于是9112a <++,所以9(,)2a ∈-+∞, 故选:B. 【点睛】本题考查了不等式恒成立及有解问题,重点考查了利用导数求函数的最值,属中档题.12.(5分)若椭圆E 的顶点和焦点中,存在不共线的三点恰为菱形的中心和顶点,则E 的离心率等于( )A .2B C .12或2D .2【来源】福建省泉州市2019-2020学年高三上学期期末质检文数学试题 【答案】D 【解析】 【分析】由菱形对角线互相垂直可转化为,在椭圆的顶点和焦点中找到不共线的三点能构成一个直角三角形,结合椭圆的对称性,只须考虑三种情况,作出图形,从而求得椭圆的离心率. 【详解】依题意,由菱形对角线互相垂直可转化为,在椭圆的顶点和焦点中找到不共线的三点能构成一个直角三角形,结合椭圆的对称性,只须考虑三种情况:(1)如图1,若以顶点D 焦点B 为菱形顶点,C 为中心,则DC BC ⊥,由勾股定理得,2222()()a b a a c ++=+,由222b a c =-化简得220c ac a +-=,两边同除以2a ,得210e e +-=,又因为01e <<,可得12e =. (2)如图2,若以焦点A ,B 为菱形顶点,C 为中心,则AC BC ⊥,故45OCB ∠=o,易得2c e a ==; (3)如图3,若以焦点B 为菱形的中心,C ,E 为顶点,则CB EB ⊥,易得2c e a ==,故选D.【点睛】本题考查椭圆的离心率及椭圆的对称性性质,考查逻辑推理能力和运算求解能力,求解的关键是画出几何图形,并能进行完整的分类讨论.二、填空题:本题共4小题,每小题5分,共20分。
2020高考文科数学全真模拟试卷含答案
数 学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页,共150分,考试时间120分钟。
注意事项:1.请考生将自己的学校、班级、姓名、考号填写在答题卷内密封栏中,将考号最后两位填在答题卷右下方座位号内,同时请认真阅读答题卷上的注意事项。
2.第Ⅰ卷每小题选出正确答案后用2B 铅笔把答题卡上对应题目的答案代号涂黑,如需改动,必须用橡皮擦干净后,再选涂其它答案。
第Ⅱ卷用黑色签字笔直接答在答题卷每题对应的答题区域内,答在试题卷上无效。
3.考试结束后,监考人员将试题卷、答题卡和答题卷一并收回。
试题卷 第 Ⅰ 卷 (选择题,共50分)一.选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.“两条直线没有公共点”是“这两条直线异面”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.函数xx x f -=1)(的反函数为)(1x f -,若0)(1<-x f ,则x 的取值范围是A .(-∞,0)B .(-1,1)C .(1,+∞)D .(-∞,-1)3.若命题P :x ∈A ∩B ,则命题非P 是A .x ∈A ∪B B .∉x A ∪BC .x ∉A 或x ∉BD .x ∉A 且x ∉B4. 已知l 、m 为两条不重合的直线,α、β为两个不重合的平面,则下列条件中可以判断平面α与平面β平行的是 A .βα////l l , B .βα⊥⊥l l , C .βα//l l ,⊂D .ββα////m l m l ,,、⊂5.定义运算bc ad dc b a -=,则符合条件0121211=-+--x y yx 的点P (x ,y )的轨迹方程为 A .14)1(22=+-y x B .14)1(22=--y x C .1)1(22=+-y xD .1)1(22=--y x6. S n 为等差数列{a n }的前n 项和,S 9=-36,S 13=-104,等比数列{b n }中, b 5=a 5,b 7=a 7,则b 6等于A .24B .24- C .24± D .无法确定7.设点P 是曲线:b b x x y (33+-=为实常数)上任意一点,P 点处切线的倾斜角为α,则α的取值范围是A .)32[ππ,B .]652(ππ, C .[0,2π)∪)65[ππ,D .[0,2π)∪)32[ππ,8. 已知定义在R 上的偶函数f (x )的单调递减区间为[0,+∞),则不等式)2()(x f x f -<的解集是A .(1,2)B .(2,+∞)C .(1,+∞)D .(-∞,1)9.在股票买卖过程中,经常用到两种曲线,一种是即时价格曲线)(x f y =,另一种是平均价格曲线)(x g y =(如f (2) = 3是指开始买卖后二个小时的即时价格为3元;g (2) = 3表示二个小时3元),下图给出的四个图像中,实线表示)(x fy =,xABCD虚线表示)(x gy ,其中可能正确的是10.用0、1、2、3、4这五个数字组成无重复数字的五位数,其中恰有一个偶数字夹在两个奇数字之间的五位数的个数是A.12 B.28 C.36 D.48试题卷 第 Ⅱ 卷(非选择题,共100分)二.填空题(本大题共5小题,每小题5分,共25分.将正确答案填在答题卷对应题号的横线上.)11. 222)21(-+xx 展开式中的常数项是 ▲ .12. 将函数x x y cos sin +=的图像按向量a 平移后与1cos 2+=x y 的图像重合,则向量a = ▲ .13. 设抛物线y x 122=的焦点为F ,经过点P (2,1)的直线l 与抛物线相交于A 、B 两点,且点P 恰为AB 的中点,则| AF |+| BF |= ▲ .14. 某地区有A 、B 、C 三家养鸡场,鸡的数量分别为12 000只、8 000只、4 000只,为了预防禽流感,现用分层抽样的方法从中抽取一个容量为120只的样本检查疫情,则从A 鸡场抽取的个数为 ▲ .15. 一个表面积为π4的球放在如图所示的墙角处,正三角形木板ABC 恰好将球盖住,则墙角O 到木板的距离为 ▲ .三.解答题(本大题共6小题,满分75分。
2020高考文科数学模拟试卷(含两套,解析版)
模拟试卷一(满分:150分 时间:120分钟)第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合U ={x |4x 2-4x +1≥0},B ={x |x -2≥0},则∁U B =( ) A .(-∞,2)B .(-∞,2] C.⎝ ⎛⎭⎪⎫12,2D.⎝⎛⎭⎪⎫-∞,12∪⎝ ⎛⎭⎪⎫12,2 A [由4x 2-4x +1≥0,得x ∈R ,所以U =R .又B ={x |x -2≥0}={x |x ≥2},所以∁U B =(-∞,2).故选A.]2.已知复数z =2+i 1+i ,则|z |=( )A.52B.10C.102D.5C [z =2+i 1+i =(2+i )(1-i )1-i 2=3-i 2,所以|z |=102,故选C.] 3.已知向量a =(1,2-λ),b =(-2,3),a∥b ,则实数λ=( ) A .3 B.72 C .4D.92B [由a∥b 得,1×3=(2-λ)×(-2),解得λ=72,故选B.]4.已知函数f (x )=⎩⎪⎨⎪⎧1x(x <e ),ln x (x ≥e ),则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫1e =( ) A.1e B .e C .1D .-1C [由题意可知f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫1e =f (e)=ln e =1,故选C.] 5.“割圆术”是刘徽最突出的数学成就之一,他在《九章算术注》中提出割圆术,作为求圆周率的一种方法.刘徽把圆内接正多边形的面积一直算到了3 072边形,并由此而求得了圆周率为3.141 5和3.141 6这两个近似值.我国南北朝时期的数学家祖冲之继承并发展了刘徽的“割圆术”,求得π的范围为(3.141 592 6,3.141 592 7).如果按π=3.142计算,那么当分割到圆内接正六边形时,如图,向圆内随机投掷一点,那么落在图中阴影部分的概率为(3≈1.732,精确到小数点后两位)( )A .0.16B .0.17C .0.18D .0.19B [设圆的半径为r ,则圆的面积为πr 2,正六边形的面积为6×12×r ×32r =332r 2,故所求概率为1-332r 2πr 2=1-332π≈0.17,故选B.] 6.执行如图所示的程序框图,则输出的结果为( )A .-2B .2 C.12D .-1D [执行程序框图,n =1,a =f (2)=1-12=12,n =2,a =f ⎝ ⎛⎭⎪⎫12=1-112=-1,n =3,a =f (-1)=1-1-1=2,n =4,a =f (2)=12,…,易知a 的取值以3为周期,所以当n =8时,a =-1,当n =9时,退出循环.输出的a =-1,故选D.]7.已知x ,y 满足⎩⎪⎨⎪⎧x -y ≤0,2x +y ≥0,x +y -1≤0,则目标函数z =-2x +y 的取值范围为( )A.⎣⎢⎡⎦⎥⎤15,4B .[1,4]C.⎣⎢⎡⎦⎥⎤55,2 D.⎣⎢⎡⎦⎥⎤-12,4D [作出不等式组表示的平面区域如图中阴影部分所示,其中A ⎝ ⎛⎭⎪⎫12,12,B (-1,2),作出直线y =2x ,平移该直线,当直线经过点A ⎝ ⎛⎭⎪⎫12,12时,目标函数取得最小值,z min =-2×12+12=-12,当直线经过点B (-1,2)时,目标函数取得最大值,z max =-2×(-1)+2=4,所以目标函数的取值范围是⎣⎢⎡⎦⎥⎤-12,4,故选D.]8.在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD 中,AB ⊥平面BCD ,且AB =BC =CD ,则异面直线AC 与BD 所成角的余弦值为( )A.12 B .-12C.32D .-32A [如图,分别取AB ,AD ,BC ,BD 的中点E ,F ,G ,O ,连接EF ,EG ,OG ,FO ,FG ,则EF ∥BD ,EG ∥AC ,所以∠FEG 为异面直线AC 与BD所成的角.易知FO ∥AB ,因为AB ⊥平面BCD ,所以FO ⊥OG ,设AB =2a ,则EG =EF =2a ,FG =a 2+a 2=2a ,所以∠FEG =60°,所以异面直线AC 与BD 所成角的余弦值为12,故选A.]9.先将函数f (x )的图象向右平移2π5个单位长度,再将所得函数图象上的所有点的横坐标缩短到原来的14,得到函数g (x )=A sin(ωx +φ)(A >0,|φ|<π2)的图象.已知函数g (x )的部分图象如图所示,则函数f (x )的图象的对称轴方程是( )A .x =4k π+2π5,k ∈ZB .x =4k π+7π10,k ∈ZC .x =2k π+2π5,k ∈ZD .x =2k π+7π5,k ∈ZD [法一:设g (x )的最小正周期为T ,由题意和题图可知A =2,T 4=9π20-π5=π4,∴T=π,∴ω=2,∴g (x )=2sin(2x +φ),∵g (x )的图象过点⎝⎛⎭⎪⎫9π20,2,∴9π10+φ=2k π+π2,k ∈Z ,∴φ=2k π-2π5,k ∈Z .又|φ|<π2,∴φ=-2π5,∴g (x )=2sin ⎝⎛⎭⎪⎫2x -2π5.将函数g (x )=2sin ⎝⎛⎭⎪⎫2x -2π5的图象上的所有点的横坐标伸长到原来的4倍,得到y =2sin ⎝ ⎛⎭⎪⎫12x -2π5的图象,再将y =2sin ⎝ ⎛⎭⎪⎫12x -2π5的图象向左平移2π5个单位长度,得到f (x )=2sin ⎣⎢⎡⎦⎥⎤12⎝⎛⎭⎪⎫x +2π5-2π5=2sin ⎝ ⎛⎭⎪⎫12x -π5的图象.令12x -π5=k π+π2,k ∈Z ,则x =2k π+7π5,k ∈Z .∴函数f (x )的图象的对称轴方程为x =2k π+7π5,k ∈Z .故选D. 法二:由题图可知,函数g (x )的图象的对称轴方程为x =9π20+k π2(k ∈Z ),将函数g (x )的图象上的所有点的横坐标伸长到原来的4倍,再向左平移2π5个单位长度后得到f (x )的图象,故f (x )的图象的对称轴方程为x =⎝⎛⎭⎪⎫9π20+k π2×4-2π5=7π5+2k π,k ∈Z .]10.设函数f (x )=ln x +1-ax x,其中x ∈⎣⎢⎡⎦⎥⎤a ,1a ,若函数f (x )的极小值不大于a ,则实数a 的取值范围为( )A.⎣⎢⎡⎭⎪⎫12,+∞B.⎣⎢⎡⎭⎪⎫12,1 C.⎝ ⎛⎦⎥⎤0,12 D.⎝⎛⎦⎥⎤-∞,12 B [易知函数f (x )的定义域为{x |x >0},则1a >a >0,得0<a <1.由f ′(x )=1x -1x2=0,得x =1,当x ∈(a,1)时,f ′(x )<0,f (x )单调递减;当x ∈⎝⎛⎭⎪⎫1,1a 时,f ′(x )>0,f (x )单调递增.所以f (x )的极小值为f (1)=1-a ,由题可知1-a ≤a ,所以a ≥12,又0<a <1,所以12≤a <1,故选B.] 11.已知经过原点O 的直线与椭圆x 2a 2+y 2b 2=1(a >b >0)相交于M ,N 两点(M 在第二象限),A ,F 分别是该椭圆的右顶点和右焦点,若直线MF 平分线段AN ,且|AF |=4,则该椭圆的方程为( )A.x 29+y 25=1 B.x 236+y 24=1C.x 236+y 232=1 D.x 225+y 224=1 C [法一:由|AF |=4得a -c =4,设M (m ,n ),则N (-m ,-n ),又A (a,0),所以线段AN 的中点为P ⎝⎛⎭⎪⎫a -m 2,-n 2,F (a -4,0).因为点M ,F ,P 在一条直线上,所以k MF =k FP ,即n -0m -(a -4)=-n2-0a -m 2-(a -4),化简得a =6,所以c =2,b 2=62-22=32,故该椭圆的方程为x 236+y 232=1.法二:如图,取AN 的中点P ,连接MA ,OP ,因为O 是MN 的中点,P 是AN 的中点,所以OP ∥MA ,且|OP |=12|MA |,因此△OFP ∽△AFM ,所以|OF ||AF |=|OP ||AM |=12,即c 4=12,因此c =2,从而a =c +|AF |=2+4=6,故b 2=62-22=32,故该椭圆的方程为x 236+y 232=1.]12.已知△ABC 中,内角A ,B ,C 对应的边分别为a ,b ,c ,已知a 2+b 2=c 2+2ac cos C ,a cos C +3c cos A =0,则角A 为( )A .30°B .60°C .90°D .120°D [由余弦定理c 2=a 2+b 2-2ab cos C ,可得a 2+b 2=a 2+b 2-2ab cos C +2ac cos C ,可得b =c 或cos C =0.易知cos C ≠0,从而B =C .由正弦定理得,sin A cos C +3sin C cos A =0,则sin(A +C )+2sin C cos A =0,从而sin(π-B )+2sin B cos A =0,所以cos A =-12,所以在△ABC 中,A =120°,故选D.]第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答,第22~23题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每题5分,共20分,将答案填在横线上)13.设函数f (x )=sin x +x cos xax2(a ∈R ,a ≠0),若f (-2 018)=2,则f (2 018)=________. -2 [易知函数f (x )=sin x +x cos x ax2的定义域为(-∞,0)∪(0,+∞),因为f (-x )=sin (-x )+(-x )cos (-x )a (-x )2=-sin x +x cos xax 2=-f (x ),所以函数f (x )是定义域上的奇函数,所以f (2 018)=-f (-2 018)=-2.]14.如图是某几何体的三视图,则该几何体的体积为________.73[在正方体中作出该几何体的直观图如图所示,不妨将其记为棱台ABC A 1B 1C 1,易知AC =BC =1,A 1C 1=B 1C 1=CC 1=2.因为CC 1⊥平面ABC ,CC 1⊥平面A 1B 1C 1,AC ⊥BC ,A 1C 1⊥B 1C 1,所以V 棱台ABC A 1B 1C 1=13CC 1·(S △ABC +S △A 1B 1C 1+S △ABC ·S △A 1B 1C 1)=13×2×⎝ ⎛⎭⎪⎫12+2+12×2=73.] 15.桌上共有8个球,甲、乙两人轮流取球,取到最后一球者胜利.规则:第一次取球至少1个,至多不超过总数的一半,每次取球的个数不超过前面一次取球的个数,且不少于前面一次取球个数的一半.如第一次甲取3个球,接着乙取球的个数为2或3.若甲先取球,为了有必胜的把握,第一次取球的个数应为________.3 [若甲取1个球,则乙取1个球,易知最终是乙胜.若甲取2个球,则乙可取2个球,然后,甲只能取2个球或1个球,无论如何都是乙胜.若甲取3个球,则乙只能取2个球或3个球,当乙取2个球时,接下来甲取1个球,乙取1个球,甲再取1个球,甲胜;当乙取3个球时,甲取完剩下的球,甲胜.若甲取4个球,则乙可取完剩下的球,乙胜.综上可知,甲第一次取3个球时有必胜的把握.]16.已知直线l :x +2y -5=0与定点A (1,2),动点P 到点A 距离与到直线l 的距离相等,双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一个焦点为F ,Q 是动点P 轨迹上的一点,|FQ |的最小值恰为双曲线C 的虚半轴长,则双曲线C 的离心率为________.5 [由题可知点A 在直线l 上,因而动点P 的轨迹为过点A 与直线l 垂直的直线,则点P 的轨迹方程为y -2=2(x -1),即y =2x ,|FQ |的最小值即点F 到直线y =2x 的距离,由题知|FQ |的最小值恰为b ,那么直线y =2x 为双曲线的一条渐近线,从而ba=2,则e =1+⎝ ⎛⎭⎪⎫b a 2= 5.]三、解答题(解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)已知递增数列{a n }的前n 项和为S n ,a 1=38,21(a 1-a 2)+22(a 2-a 3)+…+2n (a n -a n +1)=-a 2n +1,n ∈N *.(1)求a 2,并证明n ≥2时,a n +a n +1=2n; (2)求S 2 019.[解] (1)令n =1,则2(a 1-a 2)=-a 22,即a 22-2a 2+34=0,解得a 2=12或a 2=32,均符合题意.由21(a 1-a 2)+22(a 2-a 3)+…+2n (a n -a n +1)=-a 2n +1,得21(a 1-a 2)+22(a 2-a 3)+…+2n -1(a n -1-a n )=-a 2n ,n ≥2.两式相减得2n(a n -a n +1)=a 2n -a 2n +1, ∵a n -a n +1≠0,∴a n +a n +1=2n,n ≥2.(2)由(1)得S 2 019=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2 018+a 2 019)=38+22+24+…+22 018=38+4×1-41 0091-4=41 0103-2324.18.(本小题满分12分)2018年世界女排锦标赛于9月29日至10月20日在日本举行,为了解同学们观看现场直播的情况,对高一、高二年级各10个班级的同学进行问卷调查,各班观看人数统计结果如茎叶图所示.(1)①根据图中的数据,估计哪个年级平均观看人数较多? ②计算高一年级观看人数的样本方差.(2)从高一年级观看人数不足20人的班级中随机抽取2个班,求这2个班分别是观看人数在10人以下与10人以上的概率.[解] (1)①设高一年级、高二年级观看人数的平均数分别为x ,y , 那么x =8+6+12+14+16+23+25+33+33+3210=20.2,y =9+11+15+14+16+22+26+28+33+3510=20.9,所以高二年级平均观看人数较多.②由①知x =20.2,则高一年级观看人数的样本方差s 2=110×[(20.2-8)2+(20.2-6)2+(20.2-12)2+(20.2-14)2+(20.2-16)2+(20.2-23)2+(20.2-25)2+(20.2-33)2+(20.2-33)2+(20.2-32)2]=97.16.(2)由茎叶图可知,高一年级观看人数不足20人的班级有5个,其中观看人数在10人以下的班级有2个,分别记为a ,b ,观看人数在10人以上且不足20人的班级有3个,分别记为C ,D ,E .从高一年级观看人数不足20人的班级中抽取2个班,抽取的结果有(a ,b ),(a ,C ),(a ,D ),(a ,E ),(b ,C ),(b ,D ),(b ,E ),(C ,D ),(C ,E ),(D ,E ),共10种,设所求事件为事件A ,则事件A 包含(a ,C ),(a ,D ),(a ,E ),(b ,C ),(b ,D ),(b ,E ),共6种不同的结果, 由古典概型概率计算公式得,P (A )=610=35.19.(本小题满分12分)如图所示的几何体B ACDE 中,△ABC 为等腰直角三角形,AB ⊥AC ,AB =AC =2,DC ⊥平面ABC ,DC =1,EA ⊥平面ABC ,EA = 2.(1)若在EB 上存在点F ,使得BE ⊥平面AFC ,试探究点F 的位置; (2)在(1)的条件下,求三棱锥F BCD 的体积.[解] (1)由AB ⊥AC ,EA ⊥平面ABC ,得AC ⊥平面EAB ,所以AC ⊥BE , 若BE ⊥平面AFC ,只需BE ⊥AF , 在直角△ABE 中,EB =AB 2+AE 2=6,由射影定理AB 2=BF ·BE ,可知BF =46=263=23BE ,所以点F 在BE 上靠近E 的三等分点处.(2)由题可知S 四边形AEDC =12×(1+2)×2=1+2,则V B AEDC =13×S 四边形AEDC ×AB =2+223,由(1)知,F 在BE 上靠近E 的三等分点处,因而V F AEDC =13V B AEDC =2+229,又S △ABC =12×2×2=2,所以V F ABC =13×S △ABC ×23EA =13×2×223=429,所以V F BCD =V B AEDC -V F AEDC -V F ABC =49.20.(本小题满分12分)已知定点N (6,8)与圆O :x 2+y 2=4,动点M 在圆O 上,MN 的中点为P .(1)若点P 的轨迹为圆C ,求圆C 的方程;(2)在(1)的条件下,线段OC 的垂直平分线上,是否存在点Q ,过点Q 分别作圆O 与圆C 的切线(切点分别为A ,B ),使得|QA |=|QB |,若存在,求出点Q 的坐标,若不存在,请说明理由.[解] (1)由已知,设P (x ,y ),则M (2x -6,2y -8),因为点M 在圆O :x 2+y 2=4上, 所以(2x -6)2+(2y -8)2=4,从而可得圆C 的方程为(x -3)2+(y -4)2=1. (2)假设存在,设Q (x ,y ),若|QA |=|QB |,则QC 2-1=QO 2-4,即QO 2-QC 2=3, 从而x 2+y 2-(x -3)2-(y -4)2=3,整理得,3x +4y -14=0,故点Q 在直线3x +4y -14=0上,而OC 的中点坐标为⎝ ⎛⎭⎪⎫32,2,k OC =43,因而OC 的垂直平分线的方程为y -2=-34⎝ ⎛⎭⎪⎫x -32,整理得,6x +8y -25=0,易知直线3x +4y -14=0与直线6x +8y -25=0平行, 因此不存在满足题意的点Q .21.(本小题满分12分)已知函数f (x )=e x-12ax 2+b (a >0),函数f (x )的图象在x =0处的切线方程为y =x +1.(1)当a =1时,求函数f (x )在[0,2]上的最小值与最大值; (2)若函数f (x )有两个零点,求a 的值.[解] (1)由题可知f (0)=1+b ,f ′(x )=e x-ax ,f ′(0)=1,则函数f (x )的图象在x =0处的切线方程为y -1-b =x ,即y =x +1+b ,由已知条件可得b =0,当a =1时,在[0,2]上,f ′(x )=e x-x >0,函数f (x )在[0,2]上单调递增, 从而函数f (x )在[0,2]上的最小值为f (0)=1,最大值为f (2)=e 2-2.(2)法一:由(1)知f (x )=e x-12ax 2,设g (x )=f ′(x )=e x-ax ,则g ′(x )=e x-a ,令g ′(x )=0,可得x =ln a ,当x ∈(-∞,ln a )时,g ′(x )<0,g (x )单调递减;当x ∈(ln a ,+∞)时,g ′(x )>0,g (x )单调递增.因而g (x )的最小值为g (ln a )=a -a ln a ,若a -a ln a ≥0,则f ′(x )≥0,f (x )单调递增,f (x )不会有两个零点,不合题意,因而a -a ln a <0,即a >e.因为g (0)=1>0,g (1)=e -a <0,所以f ′(x )=0在(0,1)内有解,即存在x 1∈(0,1)使f ′(x 1)=0,同时存在x 2∈(1,+∞),使得f ′(x 2)=0,即0<x 1<1<x 2,e x 1=ax 1,e x 2=ax 2,当x ∈(-∞,x 1)时f (x )单调递增,当x ∈(x 1,x 2)时f (x )单调递减,当x ∈(x 2,+∞)时f (x )单调递增,f (x )的大致图象如图所示.由于f (x 1)=e x 1-12ax 21=ax 1-12ax 21=12ax 1(2-x 1)>0,所以,若函数f (x )有两个零点,则函数f (x )的极小值f (x 2)=0,f (x 2)=e x 2-12ax 22=ax 2-12ax 22=12ax 2(2-x 2)=0,得x 2=2.由e x 2-12ax 22=0,即e 2-12a ×22=0,得a =e 22.法二:由(1)知,b =0,则函数f (x )=e x-12ax 2,显然x =0不是零点,令f (x )=0,分离参数,则a =2exx2,设h (x )=2e x x 2(x ≠0),则h ′(x )=2e x(x -2)x3,令h ′(x )=0,则x =2. 易知当x ∈(0,2)时h (x )单调递减,当x ∈(-∞,0)及x ∈(2,+∞)时h (x )单调递增, 则h (x )的极小值为h (2)=e 22,而当x ∈(-∞,0)时,h (x )=2e xx 2>0,数形结合可知,当a =e22时函数f (x )有两个零点.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.(本小题满分10分)[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =2cos α,y =3sin α(α为参数),以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为2ρsin ⎝⎛⎭⎪⎫π3-θ= 3.(1)写出曲线C 的普通方程以及直线l 的直线坐标方程; (2)已知直线l 与曲线C 交于A ,B 两点,求△OAB 的面积. [解] (1)消去参数α,得曲线C 的普通方程为x 24+y 23=1,2ρsin ⎝⎛⎭⎪⎫π3-θ=3可化为3ρcos θ-ρsin θ=3, 由极坐标与直角坐标的互化公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ得,直线l 的直角坐标方程为3x -y-3=0.(2)易知原点O 到直线l 的距离d =32, 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧3x -y -3=0,x 24+y 23=1整理得,5x 2-8x =0,解得x =0或85,不妨令x 1=0,x 2=85,从而得A (0,-3),B ⎝ ⎛⎭⎪⎫85,335,由两点间距离公式得|AB |=165,所以S △OAB =12×|AB |×d =12×165×32=435.23.(本小题满分10分)[选修4-5:不等式选讲] 已知函数f (x )=|2x -1|. (1)解不等式f (x )≤|x |+1;(2)若存在实数m ,使得f (x )-f ⎝ ⎛⎭⎪⎫x 2<m 有解,求m 的取值范围.[解] (1)由已知得,f (x )≤|x |+1,即|2x -1|≤|x |+1, 所以当x <0时,1-2x ≤-x +1,得x ≥0,此时无解; 当0≤x <12时,1-2x ≤x +1,得x ≥0,此时0≤x <12;当x ≥12时,2x -1≤x +1,得x ≤2,此时12≤x ≤2.从而不等式的解集为{x |0≤x ≤2}.(2)设g (x )=f (x )-f ⎝ ⎛⎭⎪⎫x 2,则g (x )=|2x -1|-|x -1|=⎩⎪⎨⎪⎧-x ,x ≤12,3x -2,12<x <1,x ,x ≥1,作出函数g (x )的大致图象(图略),数形结合可知,g (x )的最小值为-12,从而m >-12.所以m 的取值范围是⎝ ⎛⎭⎪⎫-12,+∞.模拟试卷二(满分:150分 时间:120分钟)第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A ={x |x 3=x },B ={x |x 2-3x +2≤0},则A ∩B =( ) A .{1} B .{0,1} C .{-1,1} D .{0,1,-1}A [法一:因为集合A ={x |x 3=x }={0,1,-1},B ={x |x 2-3x +2≤0}={x |(x -1)(x -2)≤0}={x |1≤x ≤2},所以A ∩B ={1},故选A.法二:当x =-1时,(-1)2-3×(-1)+2>0,不满足集合B ,排除选项C ,D ;当x =0时,02-3×0+2>0,不满足集合B ,排除选项B ,故选A.]2.已知复数z 满足(1+2i)z =(1+i)(2-i),则z 的虚部为( ) A .-2 B .2 C .-1 D .1C [由题意得,z =(1+i )(2-i )1+2i =(3+i )(1-2i )(1+2i )(1-2i )=1-i ,所以z 的虚部为-1,故选C.]3.已知函数f (x )=x e x(e 为自然对数的底数)的图象的一条切线的方程为y =x -2a ,则实数a 的值为( )A .0B .-1C .1D .2A [由f (x )=x e x 得,f ′(x )=(x +1)e x,∵直线y =x -2a 为函数f (x )图象的一条切线,且f ′(0)=1,f (0)=0,∴2a =0,∴a =0.]4.随着生活水平的提高,进入健身房锻炼的人数日益增加,同时对健身房的服务要求也越来越高,某健身房为更具竞争力,对各项服务都进行了改善,投入经费由原来的200万元增加到400万元,已知改善前的资金投入比例为:健身设施∶健身培训∶安全保障∶其他服务=10∶5∶3∶2.改善后的经费条形统计图如图所示.则下列结论正确的是( )A .改善后的健身设施经费投入变少了B .改善后健身培训的经费投入是改善前的2.8倍C .改善后安全保障的经费投入所占比例变大了D .改善后其他服务的经费投入所占比例变小了B [A 项,改善前健身设施的经费投入为1020×200=100(万元),改善后为160万元,故A项错误.B 项,改善前健身培训的经费投入为520×200=50(万元),140÷50=2.8,故B 项正确.C 项,改善后安全保障的经费投入所占比例为60400=15%,改善前所占比例为320=15%,改善前后安全保障的经费投入所占比例一样,故C 项错误.D 项,改善后其他服务的经费投入所占比例为40400=10%,改善前所占比例为220=10%,改善前后其所占比例没有变化,故D 项错误.故选B.]5.已知圆C 1:x 2-8x +y 2+7=0的圆心是双曲线C 2:x 2a 2-y 2b2=1(a >0,b >0)的一个焦点,且双曲线C 2的渐近线与圆C 1相切,则双曲线C 2的虚轴长为( )A .3B .6C .7D .27B [因为圆C 1:x 2-8x +y 2+7=0的标准方程为(x -4)2+y 2=9,所以圆C 1的圆心C 1(4,0),半径为3.因为双曲线C 2:x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =bax ,双曲线C 2的渐近线与圆C 1相切,所以|4b |a 2+b2=3,即7b 2=9a 2.又c 2=a 2+b 2,c =4,所以b =3,所以双曲线C 2的虚轴长为2b =6.故选B.]6.甲、乙、丙三人中,一人是教师、一人是记者、一人是医生.已知:丙的年龄比医生大;甲的年龄和记者不同;记者的年龄比乙小.根据以上情况,下列判断正确的是( )A .甲是教师,乙是医生,丙是记者B .甲是医生,乙是记者,丙是教师C .甲是医生,乙是教师,丙是记者D .甲是记者,乙是医生,丙是教师C [由甲的年龄和记者不同与记者的年龄比乙小可以推得丙是记者,再由丙的年龄比医生大,可知甲是医生,故乙是教师.故选C.]7.设公差不为零的等差数列{a n }的前n 项和为S n ,若a 6=3(a 3+a 5),则S 11S 7=( ) A.117 B.227 C.337 D.667D [法一:设数列{a n }的公差为d ,d ≠0,由a 6=3(a 3+a 5)得,a 1+5d =3(a 1+2d +a 1+4d )=6a 1+18d ,所以a 1=-135d ,所以S 11S 7=11×⎝ ⎛⎭⎪⎫-135d +55d7×⎝ ⎛⎭⎪⎫-135d +21d=667.故选D.法二:因为a 6=3(a 3+a 5)=3(a 1+a 7),所以S 11S 7=11(a 1+a 11)27(a 1+a 7)2=11×2a 67×a 63=667(易知a 6≠0),故选D.]8.执行如图所示的程序框图,则输出S 的值为()A .126B .62C .30D .14C [执行程序框图,S =0,S =0+21=2,(1-1)2+(1-1)2<16,n =1+1=2,x =1+1=2,y =1+1=2;S =2+22=6,(2-1)2+(2-1)2<16,n =2+1=3,x =2+1=3,y =2+1=3;S =6+23=14,(3-1)2+(3-1)2<16,n =3+1=4,x =3+1=4,y =3+1=4;S =14+24=30,(4-1)2+(4-1)2>16,退出循环.故输出S 的值为30.故选C.]9.将函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x +π4的图象先向右平移π6个单位长度,再将所得图象上所有点的横坐标缩小为原来的12,得到函数g (x )的图象,则g (x )在⎣⎢⎡⎦⎥⎤-π8,π3上的最小值为( )A .0B .-12C .-32D .-3D [将函数f (x )=3sin ⎝⎛⎭⎪⎫2x +π4的图象先向右平移π6个单位长度,得y =3sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+π4=3sin ⎝ ⎛⎭⎪⎫2x -π12的图象,再将所得图象上所有点的横坐标缩小为原来的12,得g (x )=3sin ⎝ ⎛⎭⎪⎫4x -π12的图象.当x ∈⎣⎢⎡⎦⎥⎤-π8,π3时,4x -π12∈⎣⎢⎡⎦⎥⎤-7π12,5π4,因此当4x -π12=-π2,即x =-5π48时,g (x )在⎣⎢⎡⎦⎥⎤-π8,π3上取得最小值- 3.]10.已知不等式组⎩⎪⎨⎪⎧2x ≤y +1,x +1≥0,y ≤m 构成平面区域Ω,若∃(x ,y )∈Ω,3x -y <-5,则实数m 的值不可能为( )A. 3B. 5 C .3 D .23A [画出平面区域Ω如图中的阴影部分所示,因为∃(x ,y )∈Ω,3x -y <-5,所以应考虑目标函数z =3x -y +5的最大值,即图中交点P (-1,m )在直线3x -y +5=0的上方,所以-3-m +5<0,解得m >2.故选A.]11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a =23,c =22,1+tan Atan B =2cb,则C =( )A.π4 B.π3 C.π6 D.3π4A [由1+tan A tanB =2c b ,得1+sin A cos B cos A sin B =2sinC sin B,即cos A sin B +sin A cos B =2sin C cosA ,即sin(A +B )=2sinC cos A ,又sin(A +B )=sin(π-C )=sin C ≠0,所以2cos A =1,cos A =12,所以A =π3.因为a =23,c =22,所以a >c ,所以A >C .由正弦定理a sin A =csin C 得23sinπ3=22sin C ,所以sin C =22.又A >C ,所以C =π4.] 12.已知抛物线C :y 2=8x ,F 为其焦点,其准线l 与x 轴的交点为H ,过点H 作直线m 与抛物线C 交于A ,B 两点,线段AB 的中点E 到准线l 的距离为16,P 为直线m 上的动点,则点P 到点F 与点D (3,0)距离和的最小值为( )A .3 B.14 C .4 D.17D [由题意知,H (-2,0),可设直线m 的方程为y =k (x +2)(k ≠0),联立⎩⎪⎨⎪⎧y =k (x +2),y 2=8x ,消去y 得k 2x 2+(4k 2-8)x +4k 2=0,Δ=(4k 2-8)2-16k 4>0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-4k 2-8k 2,所以x E =-2+4k 2,从而-2+4k 2+2=16,解得k 2=14,满足Δ>0.由抛物线的对称性知k 的正负不影响结果,故可取k =12,则直线m 的方程为y =12(x +2).设点D (3,0)关于直线m 的对称点为D ′(x 0,y 0),则⎩⎪⎨⎪⎧y 0x 0-3=-2,y 02=12⎝ ⎛⎭⎪⎫x 0+32+2,解得⎩⎪⎨⎪⎧x 0=1,y 0=4,则D ′(1,4),连接FD ′,PD ′,则|PF |+|PD |=|PF |+|PD ′|≥|FD ′|=(1-2)2+(4-0)2=17.故选D.]第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答,第22~23题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每题5分,共20分,将答案填在横线上) 13.已知向量a =(1,2),b =(k ,-6),若a⊥(b -a ),则k =________.17 [由题意知,b -a =(k -1,-8),a·(b -a )=0,即k -1+2×(-8)=0,解得k =17.]14.已知函数f (x )=⎩⎨⎧|log 2x -1|,0<x ≤3,x +1,x >3,则使不等式f (x )<f ⎝ ⎛⎭⎪⎫12成立的x 的取值范围为________.⎝ ⎛⎦⎥⎤12,3 [f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪log 212-1=2,由f (x )<f ⎝ ⎛⎭⎪⎫12得,当0<x ≤3时,|log 2x -1|<2,得12<x ≤3;当x >3时,x +1<2,此时无解.综上所述,不等式f (x )<f ⎝ ⎛⎭⎪⎫12的解集为⎝ ⎛⎦⎥⎤12,3.]15.设轴截面为正三角形的圆锥的体积为V 1,它的外接球的体积为V 2,则V 1V 2=________. 932[如图,设球O 的半径为R ,则由△ABC 是正三角形可得圆锥的底面圆半径r =BO 1=32R ,高h =AO 1=32R ,所以V 1=13πr 2h =13π×⎝ ⎛⎭⎪⎫32R 2×32R =38πR 3,V 2=43πR 3,所以V 1V 2=932.] 16.数列{a n }的前n 项和为S n ,a n ≠0,a n S n +1-a n +1S n =2n -1a n +1a n .设数列⎩⎨⎧⎭⎬⎫2a n +1-a n a n +1的前n 项和为T n ,则2n -1T n +12n -1=________. 2 [∵a n S n +1-a n +1S n =2n -1a n +1a n ,a n ≠0,∴S n +1a n +1-S n a n =2n -1,则S 2a 2-S 1a 1=1,S 3a 3-S 2a 2=2,…,S n a n -S n -1a n -1=2n -2(n ≥2,n ∈N *).以上各式相加,得S n a n -S 1a 1=1+2+…+2n -2.∵S 1a 1=1,∴S n a n-1=2n -1-1,∴S n =2n -1a n (n ≥2,n ∈N *).∵n =1时上式也成立,∴S n =2n -1a n (n ∈N *),∴S n +1=2n a n+1.两式相减,得a n +1=2na n +1-2n -1a n ,即(2n -1)a n +1=2n -1a n ,∴2a n +1-a n a n +1=12n -1,∴T n =1+12+122+…+12n -1=2-12n -1, ∴2n -1T n +12n -1=T n +12n -1=2.]三、解答题(解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos C =23.(1)若△ABC 是以角C 为顶角的等腰三角形,求sin A 的值; (2)若b cos A +a cos B =2,a +b =6,求△ABC 的面积.[解] (1)法一:因为△ABC 是以角C 为顶角的等腰三角形,所以A =B , 则cos(A +B )=cos 2A =-cos C =-23.又cos 2A =1-2sin 2A ,所以1-2sin 2A =-23,得sin A =306.法二:因为△ABC 是以角C 为顶角的等腰三角形,所以A =B .因为cos C =2cos 2C 2-1=23,所以cos C 2=306, 易知A +C 2=90°,所以sin A =cos C 2=306.(2)因为b cos A +a cos B =2,所以由余弦定理可得b ×b 2+c 2-a 22bc +a ×a 2+c 2-b 22ac =2,即b 2+c 2-a 2+a 2+c 2-b 22c=2,整理得c =2.所以c 2=a 2+b 2-2ab cos C =a 2+b 2-43ab =(a +b )2-103ab =4.又a +b =6,所以ab =485.因为cos C =23,所以sin C =53,所以△ABC 的面积S =12ab sin C =12×485×53=855.18.(本小题满分12分)某市爱心人士举办宠物领养活动,为流浪猫、狗寻找归宿,共有560人参加了此次活动,该市宠物收留中心统计了其中70名参加活动的市民的领养意愿,得到如下的统计表.12(1)求出n 1,n 2的值,并以此样本的频率估计总体的概率,试估计此次参加活动的人中两种流浪宠物都愿意领养的人数;(2)在此次参加活动并有领养意愿的市民中,按分层抽样的方法选取6名市民,在这6名市民中随机抽取2名当场讲解宠物饲养经验,求抽取的2人恰为仅愿意领养一种流浪宠物的市民的概率.[解] (1)由题意可得,n 1+n 2=40,结合已知条件n 1∶n 2=1∶3,可得n 1=10,n 2=30.用样本的频率估计总体的概率,可知两种流浪宠物都愿意领养的人数为3070×560=240.(2)由(1)可知,n 1∶20∶n 2=1∶2∶3,由分层抽样的方法可得,6名市民中仅愿意领养流浪狗的市民有6×11+2+3=1(名),仅愿意领养流浪猫的市民有6×21+2+3=2(名),两种流浪宠物都愿意领养的市民有6×31+2+3=3(名).这6名市民中,仅愿意领养流浪狗的1名市民记为A ,仅愿意领养流浪猫的2名市民分别记为B ,C ,两种流浪宠物都愿意领养的3名市民分别记为D ,E ,F .从这6名市民中随机抽取2名的结果有AB ,AC ,AD ,AE ,AF ,BC ,BD ,BE ,BF ,CD ,CE ,CF ,DE ,DF ,EF ,共15种,其中恰为仅愿意领养一种流浪宠物的情况有AB ,AC ,BC ,共3种, 故所求的概率为315=15.19.(本小题满分12分)如图,四棱锥P ABCD 中,底面四边形ABCD 是梯形,AD ∥BC ,AD ⊥AB ,AB =BC =2AD =4,△PAB 是等边三角形,且平面PAB ⊥平面ABCD ,E 是PB 的中点,点M 在棱PC 上.(1)求证:AE ⊥BM ;(2)若三棱锥C MDB 的体积为1639,且PM =λPC ,求实数λ的值.[解] (1)因为四边形ABCD 是梯形,AD ∥BC 且AD ⊥AB ,所以BC ⊥AB . 又平面PAB ⊥平面ABCD ,平面PAB ∩平面ABCD =AB ,所以BC ⊥平面PAB , 又AE ⊂平面PAB ,所以BC ⊥AE .因为△PAB 是等边三角形,E 是PB 的中点,所以AE ⊥PB . 又AE ⊥BC ,BC ∩PB =B ,所以AE ⊥平面PBC , 又BM ⊂平面PBC ,所以AE ⊥BM .(2)过点P 作PF ⊥AB 于点F ,连接CF (图略), 易知PF ⊥平面ABCD ,则PF ⊥CF .因为△PAB 是等边三角形,AB =4,所以PF =2 3. 过点M 作MN ⊥CF 于点N (图略),易知MN ∥PF ,CM CP =MNPF. 因为V 三棱锥P BCD =13×12×4×4×23=1633,V 三棱锥C MDB =1639=V 三棱锥M BCD ,所以V 三棱锥M BCD V 三棱锥P BCD =16391633=13.又V 三棱锥M BCD V 三棱锥P BCD =MN PF =13,所以CM CP =MN PF =13,PM CP =23,所以λ=PM PC =23.20.(本小题满分12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点E (2,1),其左、右顶点分别为A ,B ,且离心率e =22. (1)求椭圆C 的方程;(2)设M (x 0,y 0)为椭圆C 上异于A ,B 两点的任意一点,MN ⊥AB 于点N ,直线l :x 0x +2y 0y -4=0.①证明:直线l 与椭圆C 有且只有一个公共点;②设过点A 且与x 轴垂直的直线与直线l 交于点P ,证明:直线BP 经过线段MN 的中点.[解] (1)由题意,得⎩⎪⎨⎪⎧(2)2a 2+12b 2=1,c a =22,a 2=b 2+c 2,得⎩⎨⎧a =2,b =2,c =2,故椭圆C 的方程为x 24+y 22=1.(2)①由题意知y 0≠0,由⎩⎪⎨⎪⎧x 24+y 22=1,x 0x +2y 0y -4=0得(x 20+2y 20)x 2-8x 0x +16-8y 20=0.因为点M (x 0,y 0)在椭圆上,所以x 20+2y 20=4,则x 2-2x 0x +x 20=0,即(x -x 0)2=0, 得x =x 0,y =y 0.所以直线l 与椭圆C 有且只有一个公共点,即点M . ②由(1)知,A (-2,0),B (2,0),过点A 且与x 轴垂直的直线的方程为x =-2, 结合方程x 0x +2y 0y -4=0,得点P ⎝⎛⎭⎪⎫-2,x 0+2y 0. 直线PB 的斜率k =x 0+2y 0-0-2-2=-x 0+24y 0, 则直线PB 的方程为y =-x 0+24y 0(x -2). 因为MN ⊥AB 于点N ,所以N (x 0,0),线段MN 的中点坐标为⎝ ⎛⎭⎪⎫x 0,y 02. 令x =x 0,得y =-x 0+24y 0(x 0-2)=4-x 24y 0.因为x 20+2y 20=4,所以y =4-x 204y 0=2y 204y 0=y 02,所以直线PB 经过线段MN 的中点⎝⎛⎭⎪⎫x 0,y 02.21.(本小题满分12分)已知函数f (x )=a ln x -x +1. (1)当a =1时,求证:f (x )≤12x -12;(2)若不等式f (x )≤0在[1,e]上恒成立,求实数a 的取值范围.[解] (1)当a =1时,f (x )=ln x -x +1,函数f (x )的定义域为(0,+∞). 设g (x )=f (x )-⎝ ⎛⎭⎪⎫12x -12=ln x -x +1-⎝ ⎛⎭⎪⎫12x -12=ln x -x -12x +32,则g ′(x )=1x -12x -12=-x +x -22x =-(x -1)(x +2)2x .所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 所以g (x )≤g (1)=0, 所以f (x )≤12x -12.(2)因为f (x )=a ln x -x +1,所以f ′(x )=a x -12x =-x -2a2x.①当a ≤0时,因为x ∈[1,e],所以f ′(x )<0, 所以f (x )在[1,e]上单调递减,所以f (x )≤f (1)=0,所以a ≤0满足题意. ②当a >0时,令f ′(x )=0,得x =4a 2,所以当x ∈(0,4a 2)时,f ′(x )>0,当x ∈(4a 2,+∞)时,f ′(x )<0, 所以f (x )在(0,4a 2)上单调递增,在(4a 2,+∞)上单调递减. 当4a 2≥e ,即a ≥e2时,f (x )在[1,e]上单调递增, 所以f (x )≤f (e)=a -e +1≤0,所以a ≤e -1,此时无解. 当1<4a 2<e ,即12<a <e 2时,f (x )在(1,4a 2)上单调递增,在(4a 2,e)上单调递减,所以f (x )≤f (4a 2)=a ln 4a 2-2a +1=2a ln 2a -2a +1≤0. 设h (x )=2x ln 2x -2x +1,则h ′(x )=2ln 2x .当x ∈⎝ ⎛⎭⎪⎫12,e 2时,h ′(x )>0,所以h (x )在⎝ ⎛⎭⎪⎫12,e 2上单调递增,则当x ∈⎝ ⎛⎭⎪⎫12,e 2时,h (x )>h ⎝ ⎛⎭⎪⎫12=0,不满足题意.当0<4a 2≤1,即0<a ≤12时,f (x )在[1,e]上单调递减,所以f (x )≤f (1)=0,所以0<a ≤12满足题意.综上所述,实数a 的取值范围为⎝⎛⎦⎥⎤-∞,12. 请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.(本小题满分10分)[选修4-4:坐标系与参数方程] 在平面直角坐标系xOy 中,已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =3+2cos φ,y =2sin φ(φ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρ=2.(1)设点M ,N 分别为曲线C 1与曲线C 2上的任意一点,求|MN |的最大值;(2)设直线l :⎩⎪⎨⎪⎧x =-1+t cos α,y =t sin α(t 为参数)与曲线C 1交于P ,Q 两点,且|PQ |=1,求直线l 的普通方程.[解] (1)曲线C 1的普通方程为(x -3)2+y 2=4,圆心C 1(3,0),半径r 1=2. 曲线C 2的直角坐标方程为x 2+y 2=4,圆心C 2(0,0),半径r 2=2, ∴|MN |max =|C 1C 2|+r 1+r 2=3+2+2=7.(2)将直线l 的参数方程代入(x -3)2+y 2=4中,得(t cos α-4)2+(t sin α)2=4,整理得t 2-8t cos α+12=0,Δ>0,设P ,Q 对应的参数分别为t 1,t 2,∴t 1+t 2=8cos α,t 1t 2=12,又|PQ |=1,∴|t 1-t 2|=(t 1+t 2)2-4t 1t 2=(8cos α)2-4×12=1,解得cos α=±78,满足Δ>0,∴直线l 的斜率为tan α=±157, ∴直线l 的普通方程为y =±157(x +1). 23.(本小题满分10分)[选修4-5:不等式选讲] 已知函数f (x )=|2x -5|-|x +1|. (1)解不等式:f (x )<3x ;(2)当x ∈[1,2]时,f (x )≤ax 2-x +3恒成立,求实数a 的取值范围. [解] (1)法一:原不等式等价于⎩⎪⎨⎪⎧x >52,x -6<3x或⎩⎪⎨⎪⎧-1≤x ≤52,4-3x <3x或⎩⎪⎨⎪⎧x <-1,6-x <3x ,解得x >23,故原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >23.法二:如图,作出函数f (x )的图象,利用f (x )的图象解不等式,由4-3x =3x ,解得x =23,由图象可得原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >23. (2)法一:当x ∈[1,2]时,f (x )=4-3x ,则不等式f (x )≤ax 2-x +3可化为ax 2+2x -1≥0,令g (x )=ax 2+2x -1,易知函数g (x )=ax 2+2x -1的图象恒过点(0,-1),由函数g (x )=ax 2+2x -1的图象可知,要使x ∈[1,2]时,f (x )≤ax 2-x +3恒成立,需a =0或⎩⎪⎨⎪⎧a >0,g (1)≥0或⎩⎪⎨⎪⎧a <0,g (1)≥0,g (2)≥0,解得a ≥-34,故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-34,+∞. 法二:当x ∈[1,2]时,f (x )=4-3x ,则不等式f (x )≤ax 2-x +3可化为a ≥1x 2-2x,因为x ∈[1,2],1x ∈⎣⎢⎡⎦⎥⎤12,1,所以1x 2-2x =⎝ ⎛⎭⎪⎫1x -12-1≤-34,所以a ≥-34,故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-34,+∞.。
2020年全国高考仿真模拟文科数学试卷(三)解析版
解析 ∵z= 2i =2i1+i=-1+i,∴-z =-1-i,故选 D. 1-i 2
3.“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指 标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注 度也越高.下图是 2018 年 9 月到 2019 年 2 月这半年中,某个关键词的搜索指数变化的走势 图.
A.(-∞,0]∪(1,+∞)
B.(0,1]
C.[3,+∞)
D.∅
答案 C
解析 因为 A=(0,3),所以∁RA=(-∞,0]∪[3,+∞).又 B=(1,+∞),所以(∁RA)∩B =[3,+∞).
2.复数 z= 2i 的共轭复数是( ) 1-i
A.1+i 答案 D
B.1-i
C.-1+i
D.-1-i
-2-
A.1+2π 33
答案 C
B.1+ 2π 33
C.1+ 2π 36
D.1+ 2π 6
解析 由三视图可知四棱锥为正四棱锥,底面正方形的边长为 1,四棱锥的高为 1,球的
直径为正四棱锥底面正方形的外接圆的直径,所以球的直径 2R= 2,则 R= 2,所以半球的 2
体积为 2πR3= 2π,又正四棱锥的体积为1×12×1=1,所以该几何体的体积为1+ 2π.
-1-
解析 A 错误,并无周期变化;B 错误,并不是不断减弱,中间有增强;C 错误,10 月 份的波动大于 11 月份,所以方差要大;D 正确,由图可知,12 月份起到 1 月份有下降的趋势, 所以 12 月份的平均值大于 1 月份.故选 D. 4.阅读下面的程序框图,运行相应的程序,若输入 N 的值为 19,则输出 N 的值为( )
A.0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学模拟试卷(文科)一、选择题1.已知集合{}2230Ax x x =--=,{}1,0,1B =-,则A B =I ( ) A. {}1,0,1,3- B. {}1,1- C. {}1- D. {}1【答案】C 【解析】 【分析】求出集合A ,与集合B 取交集即得.【详解】解方程2230x x --=,得3x =或1x =-, {}3,1A ∴=-,又{}1,0,1B =-,{}1A B ∴=-I . 故选:C .【点睛】本题考查集合的运算,属于基础题. 2.复数122t t =-在复平面内所对应的点位于( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】B 【解析】 【分析】利用复数的除法可求122t t =-,从而得到其在复平面内所对应的点,由此可得正确的选项. 【详解】由题意:()()()2121111i i ii i i i +==-+--+ , 该复数对应的点()1,1- 位于第二象限. 故选:B.【点睛】在做复数的除法时,要注意利用共轭复数的性质:若z 1,z 2互为共轭复数,则z 1·z 2=|z 1|2=|z 2|2,通过分子、分母同乘以分母的共轭复数将分母实数化.3.函数2si n (2)2y x π=+是( ) A. 周期为π的奇函数 B. 周期为π的偶函数 C. 周期为2π的奇函数 D. 周期为2π的偶函数【答案】B 【解析】试题分析:根据周期公式可得22T ππ==,又2s i n (2)222y x c o sx π=+=,所以该函数是偶函数.故选B . 考点:三角函数的周期性和奇偶性.4.函数()()2l n f x x x =-的图象大致是( ) A.B.C. D.【答案】A 【解析】 【分析】先求解f (x )的定义域排除B ,D ,再求导通过导函数研究f (x )的单调性,即得解.【详解】由于()()2l n f x x x =-的定义域为:(,0)(1,)-∞⋃+∞,故排除B ,D ;()221'x f x x x-=-,与()21g x x =-同正负, 令1()0,()2gxx f x >>∴在(1,)+∞单调递增; 令1()0,()2gxx f x <<∴在(,0)-∞单调递减; 故选:A【点睛】本题考查了已知函数解析式研究函数的图像和性质,考查了学生综合分析,转化划归,数形结合的能力,属于中档题.5.已知双曲线2222:1x y C a b-=()0,0a b >>的左、右焦点分别为12,F F ,实轴端点分别为12,A A ,点P 是双曲线C 上不同于12,A A 的任意一点,12PFF ∆与12PAA ∆的面积比为2:1,则双曲线C 的渐近线方程为( ) A. 3y x =±B. 2y x =±C. yD. y x =±【答案】C 【解析】 【分析】由12121212:||:||A P F F P A S S F F A A ∆∆=得到2c a =,利用a,b,c 的关系即得解. 【详解】由于12121212:||:||2:22:1A P F FP A SS F F A A c a ∆∆=== 故:2c a =由题意双曲线的焦点在x 轴上,因此渐近线方程为:by x a=±b a a a==故渐近线方程为:y 故选:C【点睛】本题考查了双曲线的几何性质,考查了学生转化划归,数学运算的能力,属于中档题.6.对任意()2kk Z παπ≠+∈,若2222s i n t a n s i n t a n λαμααα+=,则实数λμ-=( ) A. 2 B. 0C. 1-D. 2-【答案】D 【解析】 【分析】利用同角三角函数关系转化2222s i n t a n s i n t a n λαμααα+=为2(1)c o s 1λαμ+=-对任意()2k k Z παπ≠+∈成立,即得解.【详解】由于()2kk Z παπ≠+∈,故22si n 1,c o s 0αα≠≠, 2222s i n t a ns i n t a n λαμααα+=Q222s i n c o s c o s μαλαα∴+=222c o s s i n1c o sλαμαα∴+==- 2(1)c o s 1λαμ∴+=-对任意()2k k Z παπ≠+∈成立1,1λμ∴=-= 2λμ∴-=-故选:D【点睛】本题考查了同角三角函数关系的应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.7.执行如图所示的程序框图,则输出的S 的值为( )A.20172018B.20182019C.12018D.12019【答案】D 【解析】 【分析】根据程序框图的循环结构,依次计算,即得解.【详解】初始值:1,2S i == 满足:1112019,1,1,1322i t S i i i ≤=-==⨯=+=满足:12122019,1,1,14323i t S i i i ≤=-==⨯⨯=+=满足:131232019,1,1,154234i t S ii i ≤=-==⨯⨯⨯=+=……满足:1201812320182019,1,1...,1202020192342019i t S i i i ≤=-==⨯⨯⨯⨯=+=输出:123201811...23420192019 S=⨯⨯⨯⨯=故选:D【点睛】本题考查了程序框图的循环结构,考查了学生逻辑推理,数学运算的能力,属于基础题.8.如图是某几何体的三视图,则该几何体的表面积为()A.8012π+B. 968π+C. 9616π+D. 9624π+【答案】B 【解析】【分析】由三视图可知,该几何体是棱长为4的正方体,上半部分挖去一个底面半径为2,高为2的圆柱.根据正方体的表面积公式和圆柱的侧面积公式,计算该几何体的表面积. 【详解】由三视图可知,该几何体是棱长为4的正方体,上半部分挖去一个底面半径为2,高为2的圆柱,该几何体的表面积等于正方体的表面积与圆柱的侧面积的和. 所以该几何体的表面积为22642296+8ππ⨯+⨯=. 故选:B. 【点睛】本题考查三视图,考查学生的空间想象能力和柱体的表面积计算公式,属于基础题. 9.已知函数()()()331,l o g 1.x x f x x x⎧≤⎪=⎨>⎪⎩若函数()()1f f a=,则a=()A. 1或27 B. 3或27C. 0或1 D. 0或3【答案】A 【解析】【分析】令()t f a =,则()1f t =,等价于131t t ≤⎧⎨=⎩或31lo g 1t t >⎧⎨=⎩,求出t 值,同理求a .【详解】由()()1f f a =,令()t f a =,则()1f t =. 即131t t ≤⎧⎨=⎩或31lo g 1t t >⎧⎨=⎩,解得0t =或3t =.当0t =,即()0f a =时,有130a a ≤⎧⎨=⎩或31log 0a a >⎧⎨=⎩,无解;当3t =,即()3f a =时,有133a a ≤⎧⎨=⎩或31log 3a a >⎧⎨=⎩,解得1a =或27a =.综上,1a =或27a =. 故选:A .【点睛】本题考查分段函数,考查学生的逻辑推理能力,注意函数的定义域.10.在A B C ∆中,22A B A C ==,,P Q 为线段B C 上的点,且B P P QQ C==u u u r u u u r u u u r .若59AP AQ ⋅=u u ur u u u r ,则B A C ∠=( ) A. 150o B. 120oC. 60oD. 30o【答案】B 【解析】 【分析】转化()()A P A Q A B B P A C C Q ⋅=+⋅+u u u r u u u r u u u r u u u r u u u r u u u r 2252c o s 39A B C x x =∠+-=,结合余弦定理2419c o s 4xA B C +-∠=,即可求解x ,得到c o s A B C ∠. 【详解】不妨设||||||,3B P P Q Q C x B C x===∴=u u u r u u u r u u u r()()A P A Q A BB P A C C Q A B A C B P A C A B C Q B P C Q∴⋅=+⋅+=⋅+⋅+⋅+⋅u u u ru u u r u u u r u u u r u u u r u u u r u u u ru u u r u u u r u u u r u u u ru u u r u u u r u u u r22252cos 395cos 18AB AC BP AC AB BP BP BP AB AC BP BC BP BP ABC x x ABC x =⋅+⋅-⋅-⋅=⋅+⋅-⋅=∠+-=∴∠=-+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r由余弦定理:2419c o s 4xA B C +-∠=联立得到:x =1c o s 1202oA B C A B C ∴∠=-∴∠=故选:B【点睛】本题考查了解三角形和向量综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.11.函数()22xf x e x =-的零点个数为( ) A. 0 B. 1 C. 2 D. 3【答案】D 【解析】 【分析】根据导数判断()f x 的单调性,再根据零点存在定理求零点的个数.求出()'4xf x e x =-,令()()'4,4x xg xe x g xe =-∴=-,可得()g x 在(),ln4-∞上单调递减,在()ln4,+∞上单调递增,可求()'m i n0f x <,()'0f x ∴=有两个实数根,设为1212,x x x x <,,可得()f x 在()1,x -∞上单调递增,在()12,x x 上单调递减,在()2,x +∞上单调递增.再求()f x 的特殊值判断即可.【详解】函数()22xf x e x =-的定义域为R ,()'4xf x e x =-. 令()()'4,4xxg xe x g xe =-∴=-. 令()'0,l n 4gx x =∴=, l n 4x ∴<时,()'0g x <;l n4x >时,()'0g x >; ()g x ∴在(),ln4-∞上单调递减,在()ln4,+∞上单调递增,即()'fx 在(),ln4-∞上单调递减,在()ln4,+∞上单调递增,且()()''l n 4m i nl n 44l n 444l n 444l n 0f x f e e ==-=-<-=. ()'0f x ∴=有两个实数根,设为12,x x ,且12l n 4x x <<.1x x ∴<时,()'0f x >;12x x x <<时,()'0f x <;2x x >时,()'0f x >,()f x ∴在()1,x -∞上单调递增,在()12,x x 上单调递减,在()2,x +∞上单调递增.又()()()()1023120,0010,280,3180f efe fe fe --=-<=-=>=-<=->, ()()()()()()100,020,230f f f f f f ∴-<<<, ()f x ∴在()()()1,0,0,2,2,3-上各有一个零点,()f x ∴有3个零点. 故选:D .【点睛】本题考查函数的零点和导数的应用,考查学生的逻辑推理能力,属于中档题.12.在A B C ∆中,内角,,A B C 的对边分别为,,a b c ,已知3c o s s i n 0a A =,7b =,5c =,则A B C ∆的面积为( )C. D. 【答案】A 【解析】 【分析】利用正弦定理得到3s i n c o s i n s i n0A B A =,求出120oB =,再利用sin sin cC B b=求解s i n ,c o s C C ,结合s i n s i n ()A B C =+得到sin A ,最后由面积公式即得解【详解】由正弦定理可得:3s i n c o s i n s i n0A B A = 又0s i n 0A A π<<∴≠ o s s i n 0t a 120oB B B +== 由正弦定理可得:s i n s i n cC B b ==又c b CB <∴<,故C 为锐角11cos 14C ∴=s in s in ()s in ()s in c o s c o s s in 11121421414A B C B C B C B C π∴=--=+=+=-⨯+⨯=故11s i n 7522144A B C S b c A Λ==⨯⨯⨯=故选:A【点睛】本题考查了解三角形综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.二、填空题13.抛物线24x y = 的焦点到准线的距离为________.【答案】2 【解析】 【分析】根据抛物线的定义知,焦点到准线的距离为p. 【详解】由抛物线方程24x y =知,24p =,2p =, 所以焦点到准线的距离为2.【点睛】本题主要考查了抛物线的方程,几何性质,属于容易题.14.甲、乙两支足球队进行一场比赛,,,AB C 三位球迷赛前在一起聊天.A 说:“甲队一定获胜.”B 说:“甲队不可能输.”C 说:“乙队一定获胜.”比赛结束后,发现三人中只有一人的判断是正确的,则比赛的结果不可能是______.(填“甲胜”“乙胜”“平局”中的一个) 【答案】甲胜 【解析】 【分析】分析若甲队获胜,可得出矛盾,即得解.【详解】若甲队获胜,则A ,B 判断都正确,与三人中只有一人的判断是正确的矛盾,故甲不可能获胜. 故答案为:甲胜【点睛】本题考查了推理和证明中的合情推理,考查了学生推理证明,综合分析的能力,属于基础题. 15.公元前6世纪的毕达哥拉斯是最早研究“完全数”的人.完全数是一种特殊的自然数,它所有的真因子(即除了自身以外的约数)的和恰好等于它本身.若从集合{}1,6,24,28,36中随机抽取两个数,则这两个数中有完全数的概率是______. 【答案】710【解析】 【分析】依次按照完全数的定义分析:1,6,24,28,36,得到集合{}1,6,24,28,36中{}6,28为完全数,{}1,24,36不为完全数,在集合{}1,6,24,28,36中任取两个数有25C 种情况,在集合{}1,24,36中任取两个数有23C 种情况,利用古典概型和互斥事件的概率公式即得解.【详解】1没有除自身外的约数,因此1不为完全数; 6的真因子为1,2,3,1+2+3=6,故6为完全数;24的真因子为1,2,3,4,6,8,12,1+2+3+4+6+8+12=36,故24不为完全数; 28的真因子为1,2,4,7,14,1+2+4+7+14=28,故28为完全数;36的真因子为1,2,3,4,6,9,12,18,1+2+3+4+6+9+12+18=54,故36不为完全数;因此集合{}1,6,24,28,36中{}6,28为完全数,{}1,24,36不为完全数. 在集合{}1,6,24,28,36中任取两个数有2510C =种情况; 在集合{}1,24,36中任取两个数有233C =种情况; 这两个数中有完全数的对立事件为取到的两个数都不是完全数,因此:23257110C p C =-=故答案为:710【点睛】本题考查了古典概型和互斥事件的概率,考查了学生综合分析,概念理解,数学运算的能力,属于中档题.16.往一球型容器注入136πcm 3的水,测得水面圆的直径为4cm ,水深为1cm ,若以6πcm 3/s 的速度往该容器继续注水,当再次测得水面圆的直径为4cm 时,则需经过______s . 【答案】99 【解析】 【分析】根据题意作出简图,由球截面性质:222R r d=+,可求得52R =,当再次测得水面圆的直径为4cm 时,水面到达C e 关于球心对称的位置'C e 所在平面,此时注入水的体积1326VV π=-⋅球,根据注水速度即可得解.【详解】设球半径为R ,如图假设水面在C e 所在位置,则41,,22C A O B R B C ==== 由球截面性质:22245()(1)22RR R =+-∴= 球体积:3412536V R ππ==球当再次测得水面圆的直径为4cm 时,水面到达C e 关于球心对称的位置'C e 所在平面此时注入水的体积13992=66V V ππ=-⋅球 故经过的时间996996t ππ==故答案为:99【点睛】本题考查了球的截面性质和体积,考查了学生空间想象,转化划归,数学运算的能力,属于中档题.三、解答题17.已知等差数列{}n a 的前n 项和为n S ,12a =,318S =. (1)求{}n a 的通项公式; (2)设1302n n b a =-,数列{}n b 的前n 项和为n T ,求n T 的最小值. 【答案】(1)42n a n =-;(2)225- 【解析】 【分析】(1)求出公差d ,根据通项公式即可求出42n a n =-;(2)由(1)可写出231n b n =-,则数列{}n b 是等差数列.根据通项公式求出使得0n b ≤的n 的最大值,再根据前n 项和公式求出n T (或根据前n 项和公式求出n T ,再根据二次函数求最值,求出n T 的最小值). 【详解】(1)方法一:由()1333182a a S +==,又因为12a =,所以310a =.所以数列{}n a 的公差31102422a a d--===,所以()()1121442n a a n d n n =+-=+-⨯=-. 方法二:设数列的公差为d .则3113322S a d =+⨯⨯. 32318d =⨯+=. 得4d =.所以()()1121442n a a n d n n =+-=+-⨯=-. (2)方法一:由题意知()1130423023122n nb a n n =-=--=-. 令10,0.n n b b +≤⎧⎨>⎩得()2310,21310.n n -≤⎧⎨+->⎩解得293122n <≤. 因为*n N ∈,所以15n =. 所以n T 的最小值为()()()151215...2927...1225T b b b =+++=-+-++-=-. 方法二:由题意知()1130423023122n n b a n n =-=--=-. 因为()[]121312312n n b b n n +-=+---=⎡⎤⎣⎦, 所以数列{}n b 是首项为129b =-,公差为2的等差数列. 所以()()22129230152252nn n T n n n n -=-+⨯=-=--. 所以当15n =时,数列{}n b 的前n 项和n T 取得最小值,最小值为15225T =-.【点睛】本题考查等差数列的通项公式和前n 项和公式,考查学生的运算求解能力.18.某校的3000名高三学生参加了天一大联考,为了分析此次联考数学学科的情况,现随机从中抽取15名学生的数学成绩(满分:150分),并绘制成如图所示的茎叶图.将成绩低于90分的称为“不及格”,不低于120分的称为“优秀”,其余的称为“良好”.根据样本的数字特征估计总体的情况.(1)估算此次联考该校高三学生的数学学科的平均成绩.(2)估算此次联考该校高三学生数学成绩“不及格”和“优秀”的人数各是多少.(3)在国家扶贫政策的倡导下,该地教育部门提出了教育扶贫活动,要求对此次数学成绩“不及格”的学生分两期进行学业辅导:一期由优秀学生进行一对一帮扶辅导,二期由老师进行集中辅导.根据实践总结,优秀学生进行一对一辅导的转化率为20%;老师集中辅导的转化率为30%,试估算经过两期辅导后,该校高三学生中数学成绩仍然不及格的人数. 注:转化率=-辅导前不及格人数辅导后不及格人数辅导前不及格人数100%⨯ 【答案】(1)112分;(2)不及格的人数为200人,优秀的人数为1000人;(3)112人 【解析】 【分析】(1)根据题意即求15个数的平均数;(2)根据题意,在随机抽取的15人中,不及格的人数为1,优秀的人数为5,所以不及格率为115,优秀率为13,分别乘以3000即得; (3)根据一期辅导的转化率,求出一期辅导后不及格的人数,再根据二期辅导的转化率,求出二期辅导后不及格的人数.【详解】(1)因为抽取的15名学生的数学学科的平均成绩为()11035680368246358293104113122131015⨯++++++++++++++++⨯+⨯+⨯+⨯+⨯⨯⎡⎤⎣⎦112=.所以依此估计此次联考该校高三学生的数学学科的平均成绩为112分.(2)依题意知,随机抽取的15人中,不及格的人数为1,优秀的人数为5. 所以不及格率为115,优秀率为13. 所以估计在此次联考中该校高三学生数学成绩不及格的人数为1300020015⨯=, 优秀的人数为1300010003⨯=. (3)由(2)知,不及格人数为200.设一期辅导后不及格人数为x ,则20020200100x -=,解得160x =. 设二期辅导后不及格人数为y ,则16030160100y -=,解得112y =. 所以估计经过两次辅导后,该校高三学生中数学成绩仍然不及格的人数为112.【点睛】本题考查茎叶图,考查用样本估计总体,考查学生对实际问题的分析能力和解决能力. 19.如图,在四棱锥SA B C D -中,SA ⊥平面A B C D ,底面A B C D 是直角梯形,A D C D ⊥,//A DB C ,且244BC AD C D ===.点E 是线段B C 上一点,且18CE BC =.(1)求证:平面S AC ⊥平面SED . (2)若22S D =B S 上是否存在一点F ,使得F 到平面SAC 5S F 的值;若不存在,请说明理由.【答案】(1)证明见解析;(2)存在,58【解析】 【分析】(1)利用R t C A D V 和R t E D C V 中,1t a n t a n 2C ADE D C ∠=∠=,证明C A D E D C ∠=∠(或利用R t C A D R t E D C V:V ,证明C A D E D C ∠=∠),从而证明A C D E ⊥,又易知S A D E⊥,可证D E ⊥平面SAC ,即可证明平面S AC ⊥平面SED ;(2)根据BS A C S A B CV V --=,可求点B 到平面SAC 的距离为d,由相似性可得6S F S B d=,可求出S F ,所以存在这样的点F .【详解】(1)方法一:因为2A D C D=,12EC CD =, 所以1ta n t a n 2C ADE D C ∠=∠=, 所以C A D E D C∠=∠. 因为A D C D ⊥,所以90C A D A C D ∠+∠=o ,所以90E D CA C D ∠+∠=o , 所以A C D E⊥. 因为SA ⊥平面A B C D ,D E ⊂平面A B C D ,所以S A D E ⊥. 又S AA CA ⋂=,所以D E ⊥平面SAC .而D E ⊂平面SED ,所以平面S AC ⊥平面SED . 方法二:在C A D ∆与E D C ∆中,EC CD CD DA=,90E C D A D C ∠=∠=o, 所以C A DE D C ∆∆:. 所以C A D E D C ∠=∠.(以下证明同方法一) (2)存在这样的点.由S D =2A D =,得2S A =.又易知A BA C 3SB =.设点B 到平面SAC 的距离为d ,因为BS A C S A B CV V --=,所以11114123232d ⨯⨯⨯=⨯⨯⨯⨯.解得d =.由相似性可得3S F =,解得58S F =. 所以存在这样的点,使得F 到平面SAC此时58S F =. 【点睛】本题考查线面垂直和面面垂直的判定定理,考查立体几何中的存在性问题,属于较难的题目.20.椭圆()2222:10x y C a b a b +=>>将圆228:5O x y +=的圆周分为四等份,且椭圆C.(1)求椭圆C 的方程;(2)若直线l 与椭圆C 交于不同的两点,M N ,且MN 的中点为01,4P x ⎛⎫⎪⎝⎭,线段MN 的垂直平分线为l ',直线l '与x 轴交于点(),0Q m ,求m 的取值范围.【答案】(1)2214x y +=(2)⎛ ⎝⎭ 【解析】 【分析】(1)先求解A,即得解.(2)设()11,M x y ,()22,N x y ,利用点差法得到0l k x =-,得到直线l '的方程为0134y x x =-,得到03(,0)4Q x ,利用01,4P x ⎛⎫ ⎪⎝⎭在椭圆内部得到0x 范围,即得解.【详解】(1)不妨取第一象限的交点为A .由椭圆C 将圆O 的圆周分为四等份,知45x O A ∠=o.所以A ⎝⎭. 因为点A 在椭圆C 上,所以2244155a b+=.①因为e =224a b=.② ①②联立,解得24a =,21b =.所以椭圆C 的方程为2214x y +=.(2)设()11,M x y ,()22,N x y ,则2211222244,4 4.x y x y ⎧+=⎨+=⎩两式相减,得1212121214y y x x x x y y -+=-⨯-+. 又因MN 的中点为01,4P x ⎛⎫ ⎪⎝⎭,所以1202x x x +=,1212y y +=. 所以直线l 的斜率1212121214l y y x x k x x x y y -+==-⨯=--+. 当00x =时,直线l 的方程14y =,直线l '即y 轴,此时0m =. 当00x ≠时,直线l '的斜率01l k x '=. 所以直线l '的方程为()00114y x x x -=-,即134y x x =-. 令0y =,则034x x =. 因为点01,4P x ⎛⎫ ⎪⎝⎭在椭圆内部,所以2201144x ⎛⎫+< ⎪⎝⎭.所以0x ⎛⎫⎛ ⎪⎪ ⎝⎭⎝⎭U,所以0304x ⎛⎫⎛∈ ⎪ ⎪ ⎝⎭⎝⎭U . 综上所述,m的取值范围为⎛ ⎝⎭.【点睛】本题考查了直线和椭圆综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.21.已知函数()l n f x x x a x =+,()f x '是()f x 的导函数. (1)若1a =-,求()f x 的最值;(2)若1a >,证明:对任意的[]11,x a ∈,存在[]21,x a ∈,使得()()121f x f x '-=. 【答案】(1)最小值为1-,没有最大值;(2)证明见解析 【解析】 【分析】(1)求函数()f x 的定义域,求()'fx ,利用()'f x 的正负,判断()f x 的单调性,求出()f x 的最值;(2)求出()l n 1f x x a '=++,易知()'fx 在()0,∞+上单调递增,所以()f x '在[]1,a 上单调递增,求出()f x '的取值范围,得到()'0f x >,所以()f x 在[]1,a 上单调递增,再求出()f x 的取值范围.由题意,问题转化为证明()f x '的最大值小于等于()1f x +的最大值成立. 【详解】(1)函数()f x 的定义域为()0,∞+.当1a =-时,()l n f xx '=,0x >. 所以在()0,1上()0f x '<,在()1,+∞上()0f x '>, 所以()f x 在()0,1上单调递减,在()1,+∞上单调递增. 因为()11f =-,所以()f x 的最小值为1-,没有最大值.(2)由题意得()l n 1fx x a '=++. 因为()f x '在[]1,a 上单调递增,所以()()()1f f x f a '''≤≤, 即()[]1,l n 1f x a a a '∈+++. 因为1a >且1x a ≤≤,所以()0f x '>,所以()f x 在[]1,a 上单调递增.所以()()()1f f x f a ≤≤,即()211,l n 1fx a a a a ⎡⎤+∈+++⎣⎦. 依题意知,只需2l n 1l n 1a a a a a ++≤++成立即可. 要证2l n 1l n 1a a a a a ++≤++成立,即证()()1l n 0a aa -+≥成立. 因为1a >,所以10a ->,ln 0a a +>,所以()()1l n 0a aa -+>, 从而,原命题得证.【点睛】本题考查利用导数研究函数的性质,考查函数与方程,考查不等式,考查转化与化归的数学思想,属于困难的题目.22.在平面直角坐标系xO y 中,曲线C 的参数方程为3cos 3sin x y ϕϕ=⎧⎨=⎩,(ϕ为参数).以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系,直线l 经过点2,3A π⎛⎫⎪⎝⎭,且与极轴所成的角为α. (1)求曲线C 的普通方程及直线l 的参数方程;(2)设直线l 与曲线C 交于,D E两点,若A D A E +,求直线l 的普通方程.【答案】(1)229x y +=.1cos ,sin x t y t αα=+⎧⎪⎨+⎪⎩(t 为参数).(2)y =0y =. 【解析】【分析】(1)曲线C 的参数方程消去参数即得普通方程,根据直线参数方程的定义表示即可; (2)将直线的参数方程代入圆的普通方程,得到韦达定理,由参数方程的几何意义可以得到12A D A E t t +=-即可得解. 【详解】(1)由参数方程得22229c o s 9s i n 9x y ϕϕ+=+=, 所以曲线C 的普通方程为229x y +=. 设点A 的直角坐标为(),x y .则2c o s13x π==,2s i n 3y π=. 即(A ,故直线l 的参数方程为1cos ,sin x t y t αα=+⎧⎪⎨+⎪⎩(t 为参数).(2)将1cos ,sin .x t y t αα=+⎧⎪⎨⎪⎩代入229x y+=,得)2i n 2c o s 50t t αα+-=. )2i n 2c o s 200αα∆++>. 设12,t t 是方程的两个根,则)12i n 2c o s t t αα+=+,125t t =-. 所以12A D A E t t +=-. 所以)2i n 2c o s2024αα++= 整理得t a n 0α=或t a n α=所以直线l 的方程为y =y =. 【点睛】本题考查了参数方程与普通方程的互化以及直线参数方程的几何意义,考查了学生综合分析,数学运算的能力,属于中档题.23.已知存在0x R ∈,使得004x a x b +--≥,,a b R +∈. (1)求+a b 的取值范围;(2)证明:4432a b +≥. 【答案】(1)[)4,+∞(2)见解析 【解析】 【分析】(1)利用绝对值不等式的性质可得b xa xb a +-≤+-,结合题设条件即得解;(2)利用均值不等式()()()2222244222a b a b a b ++=+≥,()2222a b a b ++≥,即得解.【详解】(1)因为()()x a x b x a x b +--≤+--a b =+a b =+,因为存在0x R ∈,使得004x a x b +--≥,所以4a b +≥, 即+a b 的取值范围是[)4,+∞. (2)由(1)知4a b +≥. 因()()()2222244222a b a b a b ++=+≥. 又()22224822a b a b ++≥≥= 所以2448322a b +≥=当且仅当2a b ==时等号成立. 【点睛】本题考查了绝对值不等式,均值不等式的应用,考查了学生转化划归,数学运算的能力,属于中档题.。