对称平移旋转
平移旋转与对称
平移旋转与对称平移、旋转和对称是几何学中常见的变换形式,在数学中有着重要的应用和研究价值。
本文将介绍平移、旋转和对称的基本概念、性质以及它们之间的关系。
一、平移平移是指将一个图形在平面上沿着某个方向移动一定的距离,移动后的图形与原来的图形形状完全相同。
我们可以通过向量来描述平移。
设有平面上的一点A,平移的向量为v,则A点平移后得到的点A'可表示为A + v。
简单来说,平移是保持形状不变的移动。
平移的性质:1. 平移不改变图形的形状和大小,只改变图形的位置。
2. 平移保持图形上的任意两点之间的距离和夹角不变。
3. 平移具有可逆性,即可以通过反向平移将图形移回原来的位置。
二、旋转旋转是指将一个图形绕着某个点或某条线旋转一定的角度,使得旋转后的图形在形状上与原来的图形相似。
我们可以通过旋转矩阵来描述旋转变换。
设有平面上的一点A,绕O点逆时针旋转θ度后得到的点A'可表示为:[x' y'] = [cosθ -sinθ] [x - x0] + [x0][y - y0]其中(x0, y0)为旋转中心坐标。
旋转的性质:1. 旋转不改变图形的大小,只改变图形的位置和方向。
2. 绕同一个点旋转的图形之间的大小和形状相似。
3. 旋转保持图形上的任意两点之间的距离和夹角不变。
4. 旋转也具有可逆性,即可以通过逆时针旋转将图形旋转回原来的位置。
三、对称对称是指将一个图形中的点绕着一个轴进行翻转,使得翻转后的图形与原来的图形完全重合。
我们可以通过对称轴来描述对称变换。
设有平面上的一点A,关于对称轴l对称后得到的点A'可表示为A' = 2l - A。
简单来说,对称是保持形状不变的镜像变换。
对称的性质:1. 对称不改变图形的大小和方向,只改变图形的位置。
2. 关于直线对称的图形之间的大小和形状完全相同。
3. 对称保持图形上的任意两点关于对称轴的距离不变。
4. 对称具有可逆性,即可以通过再次对称将图形还原到原来的位置。
平移旋转和对称的基本概念
平移旋转和对称的基本概念平移、旋转和对称是数学中的基本概念,它们在几何学、代数学以及实际生活中具有重要的应用。
本文将通过解释这些概念的意义和原理,以及它们在不同领域的应用,来帮助读者更好地理解和运用这些数学概念。
1. 平移的概念与应用平移是指在平面上将一个图形移动到另一个位置,移动的距离和方向保持不变。
例如,我们可以将一个正方形从原来的位置移动到其他位置,而它的边长、面积和角度并不改变。
平移可以用向量来表示,通过将所有的点都按照相同的向量进行平移即可。
平移在几何学中有广泛的应用。
例如,在设计建筑物时,建筑师可以通过平移来确定各个房间的位置和相对位置,从而在平面上合理地布局。
另外,在计算机图形学中,平移也是实现图像移动和交互的重要手段,通过改变图像的位置实现动画效果。
2. 旋转的概念与应用旋转是指以某个中心点为基准,将图形按照一定角度旋转。
旋转使得图形的形状保持不变,只是在空间中发生了位置的改变。
旋转可以用角度来表示,通过将图形中的每个点绕着中心点旋转相同的角度即可。
旋转在几何学中也有很多应用。
在地理学中,地球的自转和公转使得我们能够感知到昼夜的变化和季节的交替。
在艺术作品和设计中,旋转被广泛地运用,例如一幅画中的旋转图案或者轮廓线。
3. 对称的概念与应用对称是指一个图形在某个中心点或者轴线的两侧是完全相同的。
简单来说,我们可以把一个图形沿着中心点或轴线对折,两边的形状是相同的,就可以说这个图形具有对称性。
对称可以分为平面对称和轴对称。
对称在几何学和物理学中有广泛的应用。
在几何学中,对称是图形重要特征之一,通过对称性质可以简化计算和分析。
在物理学中,许多物理现象都具有对称性,例如轨道运动、电磁场分布等,通过对称性原理可以简化实际问题的求解。
通过对平移、旋转和对称的解释和应用,我们不仅能够更好地理解和运用这些基本概念,还能够在实际生活中发现它们的应用。
几何学中的这些基本概念贯穿了数学的各个领域,并且具有广泛的实际应用,对我们的日常生活和学习有着重要的影响。
平移旋转与对称平移旋转与对称的定义与性质
平移旋转与对称平移旋转与对称的定义与性质平移、旋转和对称是几何学中重要的概念和操作。
它们是描述和变换图形位置和形状的基本工具。
本文将详细介绍平移、旋转和对称的定义及其性质。
一、平移的定义与性质平移是指将一个图形沿着一定方向移动一定距离,而不改变其形状和方向。
下面是平移的定义与性质:定义:平移是指将一个图形中的所有点,按照同样的方向和距离,同时保持相对位置的变换操作。
性质:1. 平移不改变图形的大小、形状和方向。
2. 平移后的图形与原图形之间的对应关系保持不变。
3. 平移是一个向量运算,可以用向量表示平移的方向和距离。
4. 任意两个平移可以合成为一个平移。
二、旋转的定义与性质旋转是指将一个图形绕着某个固定点旋转一定角度,使得旋转后的图形与原图形相似但方向和位置发生变化。
下面是旋转的定义与性质:定义:旋转是指将一个图形绕着固定点旋转一定角度,使得旋转前后图形中的对应点的距离保持不变。
性质:1. 旋转不改变图形的大小、形状和方向。
2. 旋转后的图形与原图形之间的对应关系保持不变。
3. 旋转可以按顺时针或逆时针方向进行。
4. 旋转是一个变换操作,可以用旋转中心和旋转角度来描述。
三、对称的定义与性质对称是指将一个图形分割成两个部分,使得两个部分关于某条直线、点或中心对称。
下面是对称的定义与性质:定义:对称是指将一个图形按照某个轴线或点进行折叠或旋转,使得折叠或旋转后的图形与原图形重合。
性质:1. 对称不改变图形的大小、形状和方向。
2. 对称后的图形与原图形之间的对应关系保持不变。
3. 图形关于对称轴对称时,对称轴上的点不动;图形关于对称中心对称时,对称中心不动。
4. 对称操作是可逆的,即对称两次会得到原来的图形。
综上所述,平移、旋转和对称是几何学中常用的图形变换操作。
它们各自有着特定的定义和性质,可以描述和变换图形的位置和形状。
理解和掌握平移、旋转和对称的定义与性质,将有助于我们在解决几何问题和应用几何知识时进行准确的操作和分析。
平移旋转和对称
平移旋转和对称平移、旋转和对称在数学和几何学中是非常重要的概念。
本文将介绍平移、旋转和对称的定义、性质以及它们在实际应用中的意义。
一、平移平移是指将一个图形按照指定的方向和距离移动到另一个位置,而不改变其形状和大小。
平移可以看作是将整个图形沿着指定的方向平行移动。
平移有以下性质:1. 平移后的图形与原图形形状相同,大小相等;2. 平移后的图形与原图形相互重合;3. 平移与图形的位置无关,只与方向和距离有关;4. 平移是一种向量运算,可以用向量表示。
平移在日常生活中有许多应用,例如地图中的位置标记、机器人的行走路径规划等。
在艺术和设计领域中,平移可以使图形或图案产生一种整齐、规则的效果。
二、旋转旋转是指将一个图形按照指定的中心点和角度旋转。
旋转可以改变图形的朝向和位置,但不改变其形状和大小。
旋转有以下性质:1. 旋转后的图形与原图形形状相同,大小相等;2. 旋转后的图形与原图形相似,它们的对应点之间的距离保持不变;3. 旋转可以是顺时针或逆时针方向;4. 旋转角度可以用正数表示顺时针旋转,用负数表示逆时针旋转。
旋转也有广泛的应用。
在地理学中,地球的自转和公转是旋转的典型例子。
在航空航天领域,飞机和火箭的飞行轨迹是通过旋转实现的。
三、对称对称是指一个图形可以通过某条直线或某个中心点将其分成两个完全相同的部分。
对称可以是关于直线对称或中心对称。
对称有以下性质:1. 对称轴是将图形分成两个对称的部分的直线或点;2. 对称轴上的点与它们的对称点距离相等;3. 关于直线对称的图形在对称轴上没有变化;4. 关于中心对称的图形与其对称轴上的点相互重合。
对称在艺术、建筑和自然界中都有广泛的应用。
例如,许多建筑物的设计和花朵的形状都具有对称性,给人一种美感和和谐感。
总结:平移、旋转和对称是数学和几何学中重要的概念。
平移是指将图形沿着指定的方向平行移动,保持其形状和大小不变;旋转是指将图形按照指定的中心点和角度旋转,改变其朝向和位置但不改变形状和大小;对称是指图形可以通过某条直线或某个中心点将其分成两个完全相同的部分。
轴对称平移与旋转轴对称轴对称的再认识
2023-10-30•轴对称平移•旋转轴对称•轴对称的再认识目录•总结与展望01轴对称平移轴对称平移是指将图形以某条直线为轴,将图形上所有点沿该直线方向作对应平移。
定义轴对称平移不改变图形的形状和大小,只改变图形的位置和方向。
性质定义与性质轴对称平移的应用图像处理在图像处理中,轴对称平移可用于对图像进行平移、旋转等操作,实现图像的几何变换。
晶体学在晶体学中,轴对称平移是描述晶体结构的重要工具之一,可以帮助科学家更好地理解晶体的性质和结构。
图形设计在图形设计中,轴对称平移是一种常见的变换方式,可以用来创建新的图形或图案。
实例展示矩形平移将一个矩形以某条直线为轴,将矩形上所有点沿该直线方向作对应平移,得到一个新的矩形。
螺旋图案通过连续的轴对称平移和旋转操作,可以创建一个美丽的螺旋图案。
雪花图案通过多个轴对称平移和旋转操作,可以创建一个雪花图案。
02旋转轴对称定义旋转轴对称是指图形绕某一直线旋转一定的角度后,自身重合的现象。
性质旋转轴对称具有旋转不变性和对称性。
定义与性质旋转对称在建筑、雕塑、绘画等艺术领域中有着广泛的应用。
艺术领域自然界中许多现象,如雪花、螺旋壳等,都呈现出旋转对称性。
自然界中在计算机图形学中,旋转对称被广泛应用于图像处理和动画制作。
计算机科学旋转轴对称的应用螺旋图案是典型的旋转对称图形,其结构具有旋转不变性。
螺旋图案六角形雪花是一种典型的具有旋转对称性的自然结构。
雪花圆形花坛是常见的旋转对称建筑,其设计具有旋转不变性。
圆形花坛实例展示03轴对称的再认识轴对称是指一个物体关于某一直线(对称轴)对称,即物体在该直线的两侧或一侧,沿直线折叠后,物体两部分能够互相重合。
轴对称的定义轴对称的深入理解轴对称具有唯一性、反身性和对称性。
轴对称的性质可以通过观察物体的形状、位置、方向等是否关于对称轴对称来进行判断。
轴对称的判断如雪花、树叶等自然物的形状呈现出轴对称的特点。
自然界中的轴对称许多艺术品和建筑在设计时也会利用轴对称,如教堂、寺庙等。
了解简单的平移旋转和对称操作
了解简单的平移旋转和对称操作平移、旋转和对称是数学中常见的几何变换操作。
它们在几何学、物理学以及计算机图形学等领域都有广泛的应用。
本文将详细介绍平移、旋转和对称的概念、性质和运算方法。
一、平移操作平移是指将一个对象沿着某个方向移动一定的距离,保持其形状和大小不变。
在平面几何中,我们通常使用坐标系来描述平移操作。
对于二维平面上的点P(x,y),进行平移操作时,可以将点P的横坐标和纵坐标分别增加或减少一个常数来得到新的点P'。
具体而言,如果平移向量为(a,b),则点P(x,y)经过平移操作后的坐标为P'(x+a, y+b)。
平移向量可以是任意的实数或整数。
二、旋转操作旋转是指将一个对象围绕着某个点或某条线旋转一定的角度。
同样地,在平面几何中,我们使用坐标系来描述旋转操作。
为了方便起见,我们通常将旋转中心设为原点(0,0)。
对于二维平面上的点P(x,y),将其逆时针旋转θ角度后的新坐标可以通过以下公式计算得到:x' = x*cosθ - y*sinθy' = x*sinθ + y*cosθ其中,θ为旋转角度,cosθ和sinθ分别为角度θ的余弦和正弦值。
这个公式可以推广到三维空间中的点和向量的旋转。
三、对称操作对称是指将一个对象关于某个点、某条线或某个平面进行镜像反转。
常见的对称方式有关于原点对称、关于x轴对称、关于y轴对称等。
对于二维平面上的点P(x,y),进行关于原点的对称操作后,新的点P'的坐标可以通过以下公式计算得到:x' = -xy' = -y同样地,对称操作也可以推广到三维空间中。
综上所述,平移、旋转和对称是几何学中常见的基本变换操作。
通过这些操作,我们可以改变对象的位置、方向和形状,从而满足不同的应用需求。
在实际应用中,如计算机图形学、机器人运动规划等领域,平移、旋转和对称操作有重要的意义,并且与其他几何变换操作相互结合使用,构建复杂的模型和算法。
平移旋转与对称
平移旋转与对称平移、旋转与对称一、引言平移、旋转与对称是几何学中常见且重要的概念,它们在数学、物理学、计算机图形学等领域中具有广泛的应用。
本文将从数学的角度介绍平移、旋转与对称的基本概念、性质和应用。
二、平移1. 平移的定义平移是指在平面上将一个图形沿着某个方向移动一段距离,而不改变其形状、大小和方向。
形式化地说,平移是通过一个向量来描述的,该向量表示了平移的方向和距离。
2. 平移的性质- 平移不改变图形的面积和内角和。
- 平移保持图形的等边性,即等边图形在平移后仍然是等边图形。
- 平移保持图形的平行性,即平行线在平移后仍然是平行线。
3. 平移的应用- 平移在几何学中常用于构造等边多边形、拼图等问题。
- 平移在计算机图形学中广泛应用于图形的移动和动画效果的实现。
- 平移在物理学中用于描述质点在空间中的位移。
三、旋转1. 旋转的定义旋转是指在平面上围绕某个中心点将一个图形按照一定的角度转动,而不改变其形状、大小和面积。
旋转可以通过一个角度和一个旋转中心来完全描述。
2. 旋转的性质- 旋转不改变图形的面积和内角和。
- 旋转保持图形的对称性,即旋转图形的对称轴仍然是旋转后图形的对称轴。
- 旋转保持图形的相似性,即相似图形在旋转后仍然是相似图形。
3. 旋转的应用- 旋转在几何学中用于构造正多边形、旋转体等问题。
- 旋转在计算机图形学中广泛应用于图形的旋转变换和特效的实现。
- 旋转在物理学和力学中用于描述刚体的转动和角速度问题。
四、对称1. 对称的定义对称是指在平面上沿着某条线、点或面将一个图形折叠,使得折叠前后的图形完全重合,或者称为对称轴或对称中心。
根据对称的方式可以分为线对称和点对称。
2. 对称的性质- 对称不改变图形的面积和内角和。
- 线对称保持图形的形状和大小不变,点对称既保持形状和大小也保持方向不变。
- 对称保持图形的对称性,即对称图形的对称轴或对称中心仍然是对称后图形的对称轴或对称中心。
3. 对称的应用- 对称在几何学中用于构造对称多边形、折纸等问题。
三年级数学上册---平移、旋转及轴对称( 知识梳理+例题精讲+易错专练)
第6讲平移、旋转及轴对称一、思维导图二、知识点梳理知识点一:平移在同一平面内,物体或图形沿着某一直线方向运动的现象叫做平移。
平移时物体或图形的形状、大小和方向没有变化,只是位置改变了。
知识点二:旋转物体或图形绕一个点或一个轴运动的现象叫做旋转。
旋转时物体或图形的形状和大小不变,其自身的运动方向发生了变化。
注意:旋转分为顺时针旋转和逆时针旋转。
知识点三:轴对称图形一个图形沿着一条直线对折后,折痕两边的部分能够完全重合的图形就是轴对称图形。
轴对称图形沿对称轴对折后,两边能够完全重合,即对称的点、对称的线段都能够完全重合,对称点到对称轴的距离相等。
三、例题精讲考点一:平移和旋转1.能够通过下图平移得到的图形是()。
A.B.C.D.2.在括号中填“平移”或“旋转”。
(1)小明进教室开门时,门的运动是()。
(2)小丽拧开纯净水瓶盖,瓶盖的运动是()。
(3)小红拉开窗帘,窗帘的运动是()。
(4)老师将课桌拖到最后一排,桌子的运动是()。
3.观察下面的图形,然后填空。
(1)小汽车向()平移了()格。
(2)小船向()平移了()格。
(3)飞机向()平移了()格。
4.如图所示。
(1)小狗先向左走4格,再向下走6格,它能吃到肉骨头吗?如果能,请你把小狗的行走过程在方格中画出来;如果不能,请你帮小狗设计一个正确的行走方案。
(2)小狗吃完肉骨头后接着想去吃大鸡腿,它应该怎么走?考点二:轴对称图形5.图形是从()对折的纸上剪下来的。
A.B.C.D.6.如图,一个大正方形被分成16个大小相同的小正方形,其中四个小正方形已涂成阴影,若再将一个小正方形涂成阴影,使所有阴影区域构成轴对称图形,则这个小正方形的编号为()。
7.拿一张长纸条,将它一反一正折叠起来,并画出字母E。
用小刀把画出的字母E挖去,拉开就可以得到一条以字母E为图案的花边,如图。
观察整条花边,左起和右起的三个图案各为一组,这两组图案有什么关系?8.(1)下面五个图形中,是轴对称图形的有()。
《轴对称图形》平移、旋转和轴对称
对于任何一对对称点,它们到对称轴的距离相等,且连线垂直于对 称轴。
旋转与轴对称的关系
一个图形以某点为旋转中心旋转一定角度后与另一个图形重合,那 么这两个图形关于这条旋转中心成轴对称。
轴对称应用
艺术领域
许多艺术作品都利用了轴对称原 理,如建筑、雕塑、绘画等,给
人以美的感受。
自然界中
自然界中许多物体也具有轴对称 性,如叶子、花朵、动物身体等 ,这反映了自然界中一种平衡和
平移的性质
平移不改变图形的形状、 大小和方向,只改变图形 的位置。
平移性质
对应线段相等
平移后得到的图形与原图形对应线段相等。
对应角相等
平移后得到的图形与原图形对应角相等。
对应点所连的线段平行(或在同一直线上)且相等
平移后得到的图形与原图形对应点所连的线段平行(或在同一直线上)且相等。
平移应用
平行四边形的判定
旋转定义
旋转
在平面内,将一个图形绕 一个定点沿某个方向转动 一个角度,这样的图形运 动称为旋转。
旋转角
图形旋转时转动的角度。
旋转中心
图形旋转时,定点所在的 位置称为旋转中心。
旋转性质
旋转方向:可以是顺时针或逆 时针方向。
旋转角度:可以是任意角度, 但必须是0°的整数倍。
旋转前后图形全等,对应点到 旋转中心的距离相等,对应线 段长度、对应角大小相等。
根据平行四边形对边平行的性质,可以将一个四边形沿一条对角线平移得到另 一个四边形,如果这个四边形的对角线互相平分,那么这个四边形就是平行四 边形。
梯形的判定
根据梯形一组对边平行的性质,可以将一个四边形沿一条对角线平移得到另一 个四边形,如果这个四边形的对角线互相平分,那么这个四边形就是梯形。
对称平移旋转知识点
对称平移旋转知识点一、对称对称是指在一些中心或条轴线上,图形的两个相互对应的点、线、面或者物体的位置互换,使其保持不变。
对称可以分为以下几种类型:1.轴对称:图形在条轴线上对称,比如正方形的对角线、长方形的中心对称轴等。
2.点对称:图形以一些点为中心对称,比如圆形的中心点。
3.旋转对称:图形以一些旋转中心旋转一定角度后与原图重合。
对称的性质:1.对称图形与原图形有相同的形状和大小;2.图形中任意两点关于对称轴对称的点的距离相等;3.以对称轴为界,若一个点在轴上的一侧,则与该点关于对称轴对称的点必在轴上的另一侧。
二、平移平移是指在几何空间中,通过将图形在同一平面内的各点按照相同且给定的方向和距离进行平移,使图形保持形状和大小不变。
平移可以基于以下要素进行操作:1.平移向量:平移向量是指从图形的每个点指向其平移后的对应位置的向量。
2.平移轴:平移轴是指平移向量的方向。
平移的性质:1.图形的每一点平移后仍在同一平面上;2.图形的平移前后点之间的距离保持不变;3.平移不改变图形的形状和大小。
三、旋转旋转是指在平面或者空间中按照一些中心或条轴线,将图形围绕旋转中心或轴线进行旋转,使图形在平面或者空间中绕旋转中心或轴线旋转一定角度。
旋转的参数:1.旋转角度:旋转的角度可以是顺时针或逆时针方向。
2.旋转中心:旋转中心是指旋转轴线上的一个点,图形按照该点为中心进行旋转。
旋转的性质:1.旋转不改变图形的形状和大小;2.旋转后图形中任意两点之间的距离保持不变;3.旋转后图形的对称性质可能会发生变化。
在实际应用中,对称、平移和旋转经常被用于图形的变换、模式识别、计算机图形学等各个领域。
比如,在计算机动画中,通过对图像进行平移和旋转操作,可以实现各种图形效果和动画效果;在建筑设计中,对称性和对称变换被广泛运用于设计美学和结构均衡等方面。
总之,对称、平移和旋转是几何学中的重要概念和操作,它们的理论和应用对于提高空间想象力、解决实际问题具有重要意义。
对称、平移和旋转变换
对称、平移和旋转变换在平面几何的解证题中,往往由条件的隐蔽和分散,以至找不到解证题的途径,而恰当地运用几何变换,就可以使“分散”变为“集中”,“隐蔽”变为“明显”,使解证题思路清晰起来。
这一讲我们着重学习三种主要的合同变换——对称变换、平移变换、旋转变换及其在解证几何题中的运用。
一、对称变换对称变换包括轴对称变换和中心对称变换。
将一个图形以一条定直线为轴作对称图形,这种变换是轴对称变换。
将一个图形以一个定点为中心作对称图形,这种变换是中心对称变换(也是旋转变换的特殊情况)。
对称变换的特点是不改变图形的形状和大小,只是改变了图形的位置。
一条直线或一个点就确定了一个对称变换。
例1:试证:等腰三角形的底角相等。
已知:如图(1),在△ABC 中,AB=AC ,求:∠B=∠C分析:(1)由于等腰三角形是一个轴对称图形,则可添加对称轴证之,如作AD ⊥BC 于D ,再证△ABD ≌△ACD 即可。
(2)更妙的是,把△ABC 看作是以AD 为轴的两个重叠在一起的三角形由△ABC ≌△ACB 换出∠B=∠C 。
例2:如图(2),四边形ABCD 中,AB ∥CD ,且有AB=AC=AD=213cm ,BC=5cm ,求BD 的长。
分析:由于△ACD 是等腰三角形,以底边CD 中垂线NM 为轴补全图形,做出△ABC 关于MN 的对称△AED ,则AB=AD=AE=213,所以∠BDE=Rt ∠,而DE=BC=5,所以BD=12。
例3:如图(3),在梯形ABCD 中,AD ∥BC ,点E 是CD 的中点,EF ⊥A B 于F ,则S ABCD 梯形=AB •EF 。
分析:由于DE=EC ,因此,以E 为定点作A 的对称点G ,则△ADE 与△GCE 关于点E 对称,且B ,C ,G 三点共线,所以S BEG ∆=S ABE ∆=21AB •EF ,故S ABCD 梯形= AB •EF 。
二、平移变换平移变换是将一个图形向某一个方向移动一个距离得到一个新的图形,其平移前后的线段保持相等且平行,角也保持相等。
平移旋转与对称的基本概念
平移旋转与对称的基本概念平移、旋转和对称是几何学中的基本概念。
它们是描述和表达图形在平面上移动和变化的重要工具。
在本文中,我们将详细介绍平移、旋转和对称的概念,并讨论它们在几何学中的应用。
一、平移平移是指将一个图形沿着平面上的某条直线移动,同时保持其大小和形状不变。
平移可以看作是将整个图形上下左右移动一个固定的距离。
平移有以下几个基本特点:1. 平移不改变图形的大小和形状。
2. 平移是依靠向量来描述的,向量的大小和方向表示了平移的距离和方向。
在几何学中,平移被广泛用于构造对称图形、证明定理等方面。
通过平移,我们可以方便地研究和分析图形的性质。
二、旋转旋转是指将一个图形绕着一个点或轴进行转动。
在旋转过程中,图形的每个点按照一定的角度和顺序进行变化。
旋转可以改变图形的方向和位置,但不改变其大小和形状。
旋转有以下几个基本特点:1. 旋转可以通过角度来描述,通常以正值表示顺时针旋转,负值表示逆时针旋转。
2. 旋转是通过给定旋转中心和旋转角度来确定的。
旋转在几何学中有广泛的应用,例如构造对称图形、分析旋转对称性等。
旋转还可以用来证明一些几何定理,描述物体在空间中的移动等。
三、对称对称是指一个图形绕着某种中心轴进行翻折,使得图形的一部分与另一部分完全相同。
对称可以使图形左右对称、上下对称或中心对称。
对称有以下几个基本特点:1. 左右对称是指图形的左、右两边是相同的。
2. 上下对称是指图形的上、下两边是相同的。
3. 中心对称是指图形以某个点为中心,对称的两部分完全重合。
对称在几何学中起着重要的作用,它不仅被广泛应用于构造对称图形、分析对称性等方面,还被广泛运用于艺术和设计领域。
许多自然界中的事物都具有对称性,对称也是美的重要表现形式之一。
综上所述,平移、旋转和对称是几何学中的基本概念,它们描述了图形在平面上的移动和变化方式。
通过平移、旋转和对称,我们可以更好地理解和研究图形的属性、应用它们来解决几何问题。
因此,对于几何学的学习和实践中,理解和掌握平移、旋转和对称是非常重要的。
平移、旋转、轴对称
---------------------------------------------------------------最新资料推荐------------------------------------------------------平移、旋转、轴对称什么是平移、旋转、轴对称?如何判断一个图形进行了平移、旋转或者是否为轴对称图形?如何确定平移的的方向什么是平移、旋转、轴对称?如何判断一个图形进行了平移、旋转或者是否为轴对称图形?如何确定平移的的方向和距离?如何确定旋转角度和旋转中心?(1)什么是平移、旋转、轴对称?平移:一个图形在平面内沿某个方向移动一定距离,这样的图形运动叫平移。
旋转:一个图形在平面内绕着一个固定点转动一定角度,这样的图形运动叫旋转,这个固定点称为旋转中心,转动的角度称为旋转角度。
轴对称:如果一个平面图形,沿着某一条直线对折,直线两边的部分能够完全重合,这个图形就叫做轴对称图形。
这条直线叫对称轴。
互相重合的点叫对称点。
(2)如何判断一个图形进行了平移、旋转或者是否为轴对称图形?在学习中,学生可能会问到摩天轮的运动、窗帘的拉动、门的转动、荡秋千、钟摆等生活现象算不算旋转。
回答这些具体的问题,教师首先需要理解轴对称、平移和旋转的概念在图形的变换中有一个非常重要的变换,就是全等变换,1 / 5也叫做合同变换。
如果图形经过变换后与原来的图形是重合的,也就是图形的形状、大小不发生变化,那么这个图形的变换就叫做全等变换,即原来的图形中,任意两点的距离假设是 l 的话,经过变换后的两点之间的距离仍是 l,所以全等变换是一个保距变换,而且由于距离保持不变,图形整体的形状、大小,都可以证明仍然是保持不变的。
全等变换有几种方式。
我们可以想象一下两个完全一样的图形,要由一个图形的运动得到另一个图形,可以作怎样的运动呢?可以是平移。
除此以外呢?比如两个三角形有一顶点重合,那么有两种情况:一种是这两个三角形的三个顶点顺序是一致的,这时其中一个经过旋转就能与另一个重合;还有一种是顶点的顺序相反,这时将其中一个反射(翻折)就能得到另一个。
平移旋转与对称
平移旋转与对称在几何学中,平移、旋转和对称是三个重要的变换。
它们能够帮助我们研究和描述物体的位置、方向和形状特征。
本文将深入讨论平移、旋转和对称的基本概念、性质以及应用。
一、平移平移是指将一个图形沿着平行于某条线段或者某个平面的方向移动,且移动后与原来位置保持形状和大小不变的操作。
通常,我们用一个向量来表示平移的方向和距离。
平移的特点是保持图形的平行性和全等性。
也就是说,图形上的任意一条线段在平移后仍然平行于原始位置的相应线段,并且图形上的任意一对全等点在平移后仍然是全等的。
平移也可以通过坐标来描述。
考虑一个二维平面上的点P(x, y),若向右平移a个单位,向上平移b个单位,则新的坐标为P'(x+a, y+b)。
平移在实际生活中有着广泛的应用,例如地图的移动、对象的移动和图形的变换等等。
二、旋转旋转是指将一个图形绕着一个固定点旋转一定角度而得到的新图形。
旋转可以顺时针方向或逆时针方向进行,并且可以根据旋转的中心、角度和方向来确定旋转的特征。
旋转的特点是保持图形的形状和大小不变,但改变了图形的方向和位置。
在旋转过程中,原图形上的每一条线段会沿着旋转中心点为轴心旋转一定的角度,并且保持旋转前后的长度不变。
旋转也可以通过坐标来描述。
考虑一个二维平面上的点P(x, y),若绕着原点逆时针旋转θ角度,则新的坐标为P'(x', y'),其中:x' = x * cos(θ) - y * sin(θ)y' = x * sin(θ) + y * cos(θ)旋转在各个领域有着广泛的应用,例如机器人运动、地球旋转和三维模型变换等等。
三、对称对称是指一个图形相对于某个中心轴线或者中心点发生镜像,其左右或上下两部分是完全相同的。
对称分为轴对称和中心对称两种情况。
轴对称是指图形相对于某条直线对称,也称为镜像对称。
在轴对称中,图形上的每一点与对称轴上的对应点的距离相等,并且两者的连线垂直于对称轴。
图形的轴对称、平移与旋转的知识点
图形的轴对称、平移与旋转一、轴对称图形与轴对称如果一个图形沿着某条直线对折如果两个图形对折后,这两个图形1.常见的轴对称图形: 等腰三角形、矩形、菱形、正方形、圆.2.折叠的性质:折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等.【注意】凡是在几何图形中出现“折叠”这个字眼时,第一反应即存在一组全等图形,其次找出与要求几何量相关的条件量.解决折叠问题时,首先清楚折叠和轴对称能够提供我们隐含的且可利用的条件,分析角之间、线段之间的关系,借助勾股定理建立关系式求出答案,所求问题具有不确定性时,常常采用分类讨论的数学思想方法.3.作某点关于某直线的对称点的一般步骤1)过已知点作已知直线(对称轴)的垂线,标出垂足;2)在这条直线另一侧从垂足除法截取与已知点到垂足的距离相等的线段,那么截点就是这点关于该直线的对称点.4.作已知图形关于某直线的对称图形的一般步骤1)作出图形的关键点关于这条直线的对称点;2)把这些对称点顺次连接起来,就形成了一个符合条件的对称图形.二、图形的平移1.定义:在平面内,一个图形由一个位置沿某个方向移动到另一个位置,这样的图形运动叫做平移.平移不改变图形的形状和大小.2.三大要素:一是平移的起点,二是平移的方向,三是平移的距离.3.性质:1)平移前后,对应线段平行且相等、对应角相等;2)各对应点所连接的线段平行(或在同一条直线上)且相等;3)平移前后的图形全等.4.作图步骤:1)根据题意,确定平移的方向和平移的距离;2)找出原图形的关键点;3)按平移方向和平移距离平移各个关键点,得到各关键点的对应点;4)按原图形依次连接对应点,得到平移后的图形.三、图形的旋转1.定义:在平面内,一个图形绕一个定点沿某个方向(顺时针或逆时针)转过一个角度,这样的图形运动叫旋转.这个定点叫做旋转中心,转过的这个角叫做旋转角.2.三大要素:旋转中心、旋转方向和旋转角度.3.性质:1)对应点到旋转中心的距离相等;2)每对对应点与旋转中心所连线段的夹角等于旋转角;3)旋转前后的图形全等.4.作图步骤:1)根据题意,确定旋转中心、旋转方向及旋转角;2)找出原图形的关键点;3)连接关键点与旋转中心,按旋转方向与旋转角将它们旋转,得到各关键点的对应点;4)按原图形依次连接对应点,得到旋转后的图形.【注意】旋转是一种全等变换,旋转改变的是图形的位置,图形的大小关系不发生改变,所以在解答有关旋转的问题时,要注意挖掘相等线段、角,因此特殊三角形性质的运用、锐角三角函数建立的边角关系起着关键的作用.四、中心对称图形与中心对称如果一个图形绕某一点旋转180°后能与如果一个图形绕某点旋转180°后与平行四边形、矩形、菱形、正方形、正六边形、圆等.注意:图形的“对称”“平移”“旋转”这些变化,是图形运动及延伸的重要途径,研究这些变换中的图形的“不变性”或“变化规律”.。
平移_旋转_轴对称_知识点总结
旋转、平移、轴对称、中心对称知识点总结对应点间的连线平行且相等(或在同一条直线上)对应边平行且相等(或在同一条直线上),对应角相等,图形的形状和大小不改变。
图形上每一点都绕同一点按相同的方向和角度旋转对应点到旋转中心的距离相等对应边相等,对应角相等,图形的性状大小不改变旋转180°能否与自身重合对应点间的连线是否经过同一点,并被这一点平分找对称轴:找一组对应点连线,做其垂直平分线。
找两组对应点连线,过两条中点的直线找对称中心:找一组对应点连线找其中点两组对应点连线的交点找关键点过每个关键点做对称轴的垂线截取与之相等的距离,标出对应找关键点过每个关键点做平移方向的平行线截取与之相等的距离,标出对应点找关键点连接关键点与旋转中心,将这条线段按方向和角度旋转,标出对应点找关键点连接关键点与对称中心,延长并截取相等的长度,标出对应点点连接对应点。
连接对应点。
连接对应点。
连接对应点。
线段是轴对称图形,对称轴是它的垂直平分线。
角是轴对称图形,对称轴是它的角平分线。
垂直平分线的性质:垂直平分线上任意一点到线段两端的距离相等。
④角平分线的性质:角平分线上任意一点到叫两边的距离相等。
⑤对称轴垂直平分对称点间的连线。
多次平移相当于一次平移两条对称轴平行时,两次轴对称相当于一次平移线段旋转90°后与原来的位置垂直两条对称轴相交时,两次轴对称相当于一次旋转。
中心对称一定是旋转对称,旋转对称不一定是中心对称。
任何通过中心对称图形的对称中心的直线都将这个图形分成面积相等的两部分。
两条对称轴互相垂直时,两次轴对称相当于一次中心对称一个图形经过轴对称、平移或选转等变换得到的新图形一定与原图形全等两个全等的图形总能经过轴对称、平移或旋转等变换后重合。
平移、对称、旋转与位移
例:平面直角坐标系中,有一条线段AB,其中A(2,1)、B(2,0),以原点O为位似中心,相似比为2:1,将线段AB放大为线段A′B′,那么A′点的坐标为(4,2Fra bibliotek或(-4,-2).
图形关于坐标轴成对称变换
在平面直角坐标系内,如果两个图形关于x轴对称,那么这两个图形上的对应点的横坐标相等,纵坐标互为相反数;
在平面直角坐标系内,如果两个图形关于y轴对称,那么这两个图形上的对应点的横坐标互为相反数,纵坐标相等.
图形关于原点成中心对称
在平面直角坐标系内,如果两个图形关于原点成中心对称,那么这两个图形上的对应点的横坐标互为相反数,纵坐标互为相反数.
(2)性质:①平移后,对应线段相等且平行,对应点所连的线段相等且平行;②平移后,对应角相等且对应角的两边分别平行、方向相同;
③平移不改变图形的形状和大小,只改变图形的位置,平移后新旧两个图形全等.
画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.
4.图形的中心对称
(1)把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么这两个图形关于这个点对称或中心对称,该点叫做对称中心.
(2)①关于中心对称的两个图形是全等形;②关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分;③关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等.
图形关于原点成位似变换
在平面直角坐标系内,如果两个图形的位似中心为原点,相似比为k,那么这两个位似图形对应点的坐标的比等于k或-k.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
旋转有哪三要素? 1、旋转中心。(绕某点) 2、旋转方向。(顺时针或逆时针) 3、旋转角度。(旋转90度或其它角度) 完整描述旋转: 某图形绕某点顺时针(或逆时针)旋转多少 度。如:三角形绕点A逆时针旋转90°。
情境导入1
这是生活中常见的现象。
火车车厢、电梯和国旗分别是怎样运动 的?你能想办法表示这些运动吗?
一个图形沿着一条直线对折后两部分 完全重合,这样的图形叫轴对称图形。
折痕所在的这条直线是轴对称图形的 对称轴。
正几边形有几条对称轴。 画轴对称图形:描点:先数格子,画出对 应点,再连接这些点,画出图形的另一半。
苏教版四年级数学下册
下面的小船图和金鱼图分别是怎样运动的? 他们的运动有什么相同点和不同点?
你能把指针继续旋转到指向C或D吗?
典题精讲
下面的运动哪些是平移,哪些是旋转?
旋转
平移
旋转
平移
平移
旋转
平移
旋转
判断平移和旋转时,就看是沿着直线运动还是围绕固定一点运动。
典题精讲
哪些树叶通过平移可以和绿色树叶重合? 把它们涂上颜色。
平移时形状、大小、方向都不变,只有位置变了。
易错提醒
三角形向左平移 了( )格。
探究新知
火车车厢这样运动:
电梯这 样运动:
国旗这 样运动:
探究新知
这些物体的运动都可以看成是平移。 你还见过哪些平移现象?
拉抽屉、移门、输送带、缆车等等都 是平移运动。
平移时物体都是沿着一条直线运动。
情境导入2
物体的运动除 了平移以外, 还有这样一种
运动。
11 12 10
9
O
8 76
1 2
3
4 5
对称、平移和旋转
图片欣赏
蝴蝶
蜻蜓
秋天落叶
这类图形有什么共同的特征?
如果一个沿图着形一沿条着直线一对条折直两线侧对的折图形, 两侧完的全图重合形能够完全重合,这个图形就 是 轴对称图形。
折痕 所在的这一条直线 叫做对称轴。
正方形有四条对称轴。
画出图形的另一半,使它成为一个轴对称图形。
轴对的运动在生活还有许多,观察电风扇叶 片、螺旋桨分别是怎样运动的?你能用手势
表示这些运动吗?
探究新知
这些物体的运动都是围绕一个点转动的, 这样的运动属于旋转。
你还见过哪些旋转现象? 摩天轮、车轮、方向盘等等都是旋转
运动。
旋转时物体都是围绕一个固定的点运动。
探究新知
做一个转盘,把指针从指向A旋转到指 向B。
学以致用
5.接着往下画。
课堂小结
大家想一想,什 么是平移,什么是
旋转?
平移和旋转后物 体与原来物体有
什么不同?
1.平移是物体沿着一条直线运动,旋转是物体围绕一 个固定的点转动。
2. 平移后的物体形状、大小、方向都不变,位置变 了,旋转后的物体形状、大小不变,方向一般会变。
旋转
要素:中心(点) 方向(顺时针、逆时针)
度数
画旋转:找中心点,找出与中心点 相连的两条边,按要求旋转一定的 度数,画出旋转后的位置,再根据 与其他几条边的关系,画出其他边,
组成旋转后的图形。
选择=结果
汇报结束 谢谢观看! 欢迎提出您的宝贵意见!
画平移:找出图形中几个关键的 点,按平移的方向和格数分别确 定对应点的位置,再按照原图,
顺次连接各点,画出图形。
苏教版四年级数学下册
转杆打 开
转杆关 闭
与时针旋转方向相同的是顺 时针,
与时针旋转方向相反的是逆 时针。
转杆打开 是
逆时针旋 转900
90 0
转杆关闭 是
顺时针旋 转900 90
0
小鱼图和小船图 都是向右平移
小船图平移的距 离比小鱼图远一
些。
如何数小船和小鱼的平移距离?
9格 9格
看帆船上的一条线 段,这条线段向右 平移了9格,小船图
就向右平移9格
看船头的一个点, 这个点向右平移了9 格,小船图就向右
平移9格
用这个方法数一数小鱼平移的 7格 距离。
7格
平移
要素:方向(上下左右) 格数
三角形向左平移 了(3)格。
易错提醒
错解分析:
在判断物体平移时,要看对应的点平移了几格,例如 从这个点的平移过程可以看出,三角形平移了4格。
易错提醒
三角形向左平移了(
)格。
答: 三角形向左 答: 三角形向左
平移了3格。
平移了4格。
学以致用
1. 连 一 连 。
升旗时国旗的运动 在算盘上拨珠 风扇叶片的运动 光盘在电脑里的运动 轮船在水里的航行
平移 旋转
钟摆的运动 电梯的运动 火车的运动 汽车方向盘的运动 螺旋桨的运动
学以致用
3.下面哪两个图形可以通过平移重合?用线连一连。
我是这样想的。 通过平移可以重合的图形形状一样、方向 一样。
学以致用
3.下面哪两个图形可以通过平移重合?用线连一连。
学以致用
5.接着往下画。
我是这样想的。 第二幅小鱼图是第一幅小鱼图向左旋转得 到的,第三幅又是第二幅向左旋转得到的。
平移 旋转
钟摆的运动 电梯的运动 火车的运动 汽车方向盘的运动 螺旋桨的运动
我是这样想的。
判断平移和旋转时根据是沿着直线运 动还是围绕固定的点运动,国旗运动
是沿着直线……。
学以致用
判断平移和旋转时根据是沿着 直线运动还是围绕固定的点运
1. 连 一 连 。
动。
升旗时国旗的运动 在算盘上拨珠 风扇叶片的运动 光盘在电脑里的运动 轮船在水里的航行