中考数学培优考前辅导训练题【一】

合集下载

初三数学培优专题试卷

初三数学培优专题试卷

一、选择题(每题5分,共25分)1. 下列选项中,不是二次方程的是()A. x^2 - 5x + 6 = 0B. 2x^2 + 3x - 1 = 0C. x^3 - 2x^2 + 3x - 6 = 0D. 4x^2 - 4x + 1 = 02. 已知一元二次方程 ax^2 + bx + c = 0(a ≠ 0)的两根为 x1 和 x2,那么下列选项中,正确的是()A. x1 + x2 = -b/aB. x1 x2 = c/aC. x1^2 + x2^2 = b^2 - 4ac/aD. x1^2 - x2^2 = (x1 + x2)^2 - 4x1x23. 下列函数中,为反比例函数的是()A. y = x^2 + 1B. y = 2x + 3C. y = 1/xD. y = 2/x^24. 已知等差数列 {an} 的首项为 a1,公差为 d,那么下列选项中,正确的是()A. a1 + a2 + a3 = 3a1 + 3dB. a1 + a2 + a3 = 3a1 + 2dC. a1 + a2 + a3 = 3a1 + dD. a1 + a2 + a3 = 3a15. 下列选项中,不是等比数列的是()A. 2, 4, 8, 16, ...B. 1, 2, 4, 8, ...C. 1, 3, 9, 27, ...D. 1, 3, 6, 9, ...二、填空题(每题5分,共25分)6. 已知一元二次方程 x^2 - 4x + 3 = 0,则其两根之和为 __________,两根之积为 __________。

7. 若反比例函数 y = k/x(k ≠ 0)的图象经过点(2,3),则 k = __________。

8. 等差数列 {an} 的首项为 2,公差为 3,那么第 10 项 an = __________。

9. 等比数列 {an} 的首项为 3,公比为 2,那么第 6 项 an = __________。

初三数学培优试题(一)

初三数学培优试题(一)

初三数学培优试题(一)班别__________ 姓名_______1.如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 36…………………………(1)表中第8行的最后一个数是______________,它是自然数_____________的平方,第8行共有____________个数;(2)用含n的代数式表示:第n行的第一个数是___________________,最后一个数是________________,第n行共有_______________个数;(3)求第n行各数之和.解:A NF G C M D P (图九)2.如图九,在线段AE 的同侧作正方形ABCD 和正方形BEFG (BE AB <),连结EG 并延长交DC 于点M ,作MN AB ⊥,垂足为N ,MN 交BD 于点P .设正方形ABCD 的边长为1.(1)证明:△CMG ≌△NBP ;(2)设BE x =,四边形MGBN 的面积为y ,求y 关于x 的函数解析式,并写出定义域;(3)如果按照题设方法作出的四边形BGMP 是菱形,求BE 的长.(1)证明:3.如图,抛物线y=(x+1)2+k 与x轴交于A、B两点,与y轴交于点C (0,-3).(1)求抛物线的对称轴及k的值;(2)抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;(3)点M是抛物线上一动点,且在第三象限.①当M点运动到何处时,△AMB的面积最大?求出△AMB的最大面积及此时点M的坐标;②当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点M的坐标.4.如图,抛物线y=ax 2+bx (a 0)与双曲线y =xk 相交于点A ,B . 已知点B 的坐标为(-2,-2),点A 在第一象限内,且tan ∠AOx =4. 过点A 作直线AC ∥x 轴,交抛物线于另一点C .(1)求双曲线和抛物线的解析式;(2)计算△ABC 的面积;(3)在抛物线上是否存在点D ,使△ABD 的面积等于△ABC 的面积.若存在,请你写出点D 的坐标;若不存在,请你说明理由.。

初三数学培优试卷及答案

初三数学培优试卷及答案

一、选择题(每题5分,共50分)1. 已知一元二次方程x^2 - 5x + 6 = 0,则方程的解为:A. x = 2,x = 3B. x = 1,x = 6C. x = 2,x = 4D. x = 3,x = 52. 下列函数中,是奇函数的是:A. y = x^2B. y = x^3C. y = |x|D. y = x^43. 在等腰三角形ABC中,AB = AC,若∠BAC = 40°,则∠B = ∠C = °。

4. 下列命题中,正确的是:A. 平行四边形的对角线互相平分B. 等腰三角形的底角相等C. 直角三角形的两条直角边相等D. 矩形的对边平行且相等5. 若a、b、c是等差数列,且a + b + c = 12,则a^2 + b^2 + c^2的值为:6. 已知二次函数y = ax^2 + bx + c的图象开口向上,且顶点坐标为(1, -2),则a、b、c的值分别为:7. 在直角坐标系中,点A(2, 3)关于x轴的对称点为B,则点B的坐标为:8. 已知等腰三角形ABC中,AB = AC,且BC = 6,AD是BC边上的高,则AD的长度为:9. 下列不等式中,正确的是:A. 3x > 2x + 1B. 2x < 3x - 1C. 3x ≥ 2x + 1D. 2x ≤ 3x - 110. 若a、b、c是等比数列,且a + b + c = 27,b^2 = ac,则a、b、c的值分别为:二、填空题(每题5分,共50分)11. 已知一元二次方程x^2 - 4x + 3 = 0的解为x1和x2,则x1 + x2 = ,x1x2 = 。

12. 函数y = 2x - 3的图象与x轴、y轴的交点坐标分别为(),()。

13. 在等腰三角形ABC中,AB = AC,若∠BAC = 45°,则∠B = ∠C = °。

14. 下列命题中,正确的是:平行四边形的对角线互相平分,等腰三角形的底角相等,矩形的对边平行且相等。

初三数学培优练习题

初三数学培优练习题

初三数学培优练习题1. 用选项中的数字填空,并简要说明推理过程:(1) 已知一元二次方程 $2x^2 - 5x - 3 = 0$ 的两个根是 $x_1$ 和$x_2$,则 $x_1 + x_2$ 的值是 ____。

(2) 若正数 $a$ 满足 $\frac{1}{a} + a = 2$,则 $a$ 的值是 ____。

(3) 若函数 $f(x) = 2x - 3$,则 $f(4) + f(-4)$ 的值是 ____。

2. 解答下列方程组,并写出结果的解释:(1)$\begin{cases}2x + 3y = 7 \\3x - y = 1 \\\end{cases}$(2)$\begin{cases}x^2 + y^2 = 25 \\x + y = -4 \\\end{cases}$3. 股票价格涨跌问题:假设某股票的初始价格为 $P_0$ 元,经过一段时间后价格涨到$P_1$ 元,再经过一段时间后价格涨到 $P_2$ 元。

已知 $P_1$ 比$P_0$ 增长了 25%,$P_2$ 比 $P_1$ 降低了 20%。

求:(1) $P_1$ 和 $P_2$ 之间的比值;(2) 经过涨跌后,$P_2$ 相对于初始价格 $P_0$ 的涨跌幅。

4. 几何问题:在平面直角坐标系中,已知点 $A(2, 4)$,点 $B$ 在 $x$ 轴上,点$C$ 在 $y$ 轴上。

若三角形 $ABC$ 的周长是 10,求三角形 $ABC$ 的面积。

5. 概率问题:一个标准的52张扑克牌组中,红心和方块的牌各有 13 张,黑桃和梅花的牌各有 13 张。

从一个标准的扑克牌组中随机抽取 5 张牌,求:(1) 这 5 张牌全是红心的概率;(2) 这 5 张牌全是红心或全是黑桃的概率。

以上就是初三数学培优练习题,希望对你的学习有所帮助!。

初三数学培优试题(含答案)

初三数学培优试题(含答案)

初三数学培优试题一学校: 班级: 姓名: 分数:一.选择题1、下列函数:① 3y x =-,②21y x =-,③()10y x x=-<,④223y x x =-++ 其中y 的值随x 值的增大而增大的函数有( )(A )4个 (B )3个 (C )2个 (D )1个2.(2018济南,9,4分)如图,在平面直角坐标系中,△ABC 的顶点都在方格线的格点上,将△ABC 绕点P 顺时针方向旋转90°,得到△A ′B ′C ′,则点P 的坐标为( )A .(0,4)B .(1,1)C .(1,2)D .(2,1)xy–1–2–3–412341234567BCA A'C 'B'O3、按下面的程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件的x 的不同值最多有( )(A )2个 (B )3个 (C )4个 (D )5个4、已知关于x 的不等式组12x a x a ->-⎧⎨-<⎩的解集中任意一个x 的值均不..在04x ≤≤的范围内,则a 的取值范围是( )(A )5a >或2a <- (B )25a -≤≤ (C )25a -<< (D )5a ≥或2a ≤-5、如图所示,已知点A 是半圆上一个三等分点,点B 是AN 的中点,点P 是半径ON 上的动点。

若O 的半径长为,则AP BP +的最小值为( )(A )2 (B )3 (C )2 (D )6.(3分)如图,矩形ABCD 中,E 是AB 的中点,将△BCE 沿CE 翻折,点B 落在点F 处,tan ∠DCE=.设AB=x ,△ABF 的面积为y ,则y 与x 的函数图象大致为( )A .B .C .D .P B A二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程)7.已知一组数据:12.10.8.15.6.8.则这组数据的中位数是。

初三数学培优试题(含答案)

初三数学培优试题(含答案)

初三数学培优试题一学校: 班级: 姓名: 分数:一.选择题1、下列函数:① 3y x =-,②21y x =-,③()10y x x=-<,④223y x x =-++ 其中y 的值随x 值的增大而增大的函数有( )(A )4个 (B )3个 (C )2个 (D )1个2.(2018济南,9,4分)如图,在平面直角坐标系中,△ABC 的顶点都在方格线的格点上,将△ABC 绕点P 顺时针方向旋转90°,得到△A ′B ′C ′,则点P 的坐标为( )A .(0,4)B .(1,1)C .(1,2)D .(2,1)xy–1–2–3–412341234567BCA A'C 'B'O3、按下面的程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件的x 的不同值最多有( )(A )2个 (B )3个 (C )4个 (D )5个4、已知关于x 的不等式组12x a x a ->-⎧⎨-<⎩的解集中任意一个x 的值均不..在04x ≤≤的范围内,则a 的取值范围是( )(A )5a >或2a <- (B )25a -≤≤ (C )25a -<< (D )5a ≥或2a ≤-5、如图所示,已知点A 是半圆上一个三等分点,点B 是AN 的中点,点P 是半径ON 上的动点。

若O 的半径长为,则AP BP +的最小值为( )(A )2 (B )3 (C )2 (D )6.(3分)如图,矩形ABCD 中,E 是AB 的中点,将△BCE 沿CE 翻折,点B 落在点F 处,tan ∠DCE=.设AB=x ,△ABF 的面积为y ,则y 与x 的函数图象大致为( )A .B .C .D .P B A二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程)7.已知一组数据:12.10.8.15.6.8.则这组数据的中位数是。

2021年九年级中考数学复习专题:【三角形综合】培优训练(一)

2021年九年级中考数学复习专题:【三角形综合】培优训练(一)

2021年九年级中考数学复习专题:【三角形综合】培优训练(一)一.选择题1.下列四组线段中,能构成直角三角形的是()A.2cm、4cm、5cm B.15cm、20cm、25cmC.0.2cm、0.3cm、0.4cm D.1cm、2cm、2.5cm2.下列条件不能判定两个直角三角形全等的是()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一直角边对应相等D.两个锐角对应相等3.如图,OA=OB,OC=OD,∠C=30°,则∠D的度数是()A.30°B.35°C.40°D.45°4.已知在含有30°角的直角三角形中,斜边长为8cm,则这个三角形的最短边长为()A.2cm B.4cm C.6cm D.8cm5.如图,公园里有一座假山,要测假山两端A,B的距离,先在平地上取一个可直接到达A 和B的点C,分别延长AC,BC到D,E,使CD=CA,CE=CB,连接DE.这样就可利用三角形全等,通过量出DE的长得到假山两端A,B的距离.其中说明两个三角形全等的依据是()A.SSS B.ASA C.AAS D.SAS6.如图,在Rt△ABC中,∠C=90°,点D在线段BC上,且∠B=30°,∠ADC=60°,BC =3,则BD的长度为()A.B.2 C.D.37.如图,在四边形ABCD中,∠A=∠C=90°,DF∥BC,∠ABC的平分线BE交DF于点G,GH⊥DF,点E恰好为DH的中点,若AE=3,CD=2,则GH=()A.1 B.2 C.3 D.48.如图,射线OC是∠AOB的角平分线,D是射线OC上一点,DP⊥OA于点P,DP=4,若点Q是射线OB上一点,OQ=3,则△ODQ的面积是()A.3 B.4 C.5 D.69.如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有()A .1个B .2个C .3个D .4个10.如图,已知AD 为△ABC 的高线,AD =BC ,以AB 为底边作等腰Rt △ABE ,连接ED ,EC ,延长CE 交AD 于F 点,下列结论:①∠DAE =∠CBE ;②CE ⊥DE ;③BD =AF ;④△AED 为等腰三角形;⑤S △BDE =S △ACE ,其中正确的有( )A .①③B .①②④C .①③④D .①②③⑤二.填空题 11.在△ABC 中,AC =5,BC =12,AB =13,则△ABC 的面积为= .12.如图,在△ABC 中,∠C =90°,AB =26cm ,BC 的垂直平分线交AB 于点D ,则点C 与点D 的距离是 cm .13.如图,线段AB ,BC 的垂直平分线l 1,l 2交于点O .若∠B =35°,则∠AOC = °.14.如图,在Rt △ABC 中,∠ABC =90°.AB =5,AC =13,BC =12,∠BAC 与∠ACB 的角平分线相交于点D ,点M 、N 分别在边AB 、BC 上,且∠MDN =45°,连接MN ,则△BMN 的周长为 .15.如图,在△ABC中,OA=4,OB=3,C点与A点关于直线OB对称,动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.当△PQB为等腰三角形时,OP的长度是.16.如图,在△ABC中,AB=AC,∠BAC=90°,点P是BC上的一点,连接AP,作∠APD=∠B,交AC于点D,且∠PDC=∠BAP,作AE⊥BC于点E.(1)∠EAP的大小=(度);(2)已知AP=6,①△APC的面积=;②AB•PE的值=.三.解答题17.已知:如图,在△ABC中,AB=AC,点D是BC的中点,作∠EAB=∠BAD,AE边交CB 的延长线于点E,延长AD到点F,使AF=AE,连结CF.(1)求证:BE=CF;(2)若∠ACF=100°,求∠BAD的度数.18.如图,在△ABC中,AB<AC,边BC的垂直平分线DE交△ABC的外角∠CAM的平分线于点D,垂足为E,DF⊥AC于点F,DG⊥AM于点G,连接CD.(1)求证:BG=CF;(2)若AB=10cm,AC=14cm,求AG的长.19.如图1,△ABC中,CD⊥AB于点D,且BD:AD:CD=2:3:4.(1)试说明△ABC是等腰三角形;(2)已知S=90cm2,如图2,动点P从点B出发以每秒1cm的速度沿线段BA向点A △ABC运动,同时动点Q从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止.设点P运动的时间为t(秒),①若△DPQ的边与BC平行,求t的值;②若点E是边AC的中点,问在点P运动的过程中,△PDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.20.在Rt△ABC中,∠ACB=90°,AC=8,AB=10.(1)如图1,求点C到边AB距离;(2)点M是AB上一动点.①如图2,过点M作MN⊥AB交AC于点N,当MN=CN时,求AM的长;②如图3,连接CM,当AM为何值时,△BCM为等腰三角形?21.思维启迪:(1)如图1,A,B两点分别位于一个池塘的两端,小亮想用绳子测量A,B间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B点的点C,连接BC,取BC的中点P(点P可以直接到达A点),利用工具过点C作CD∥AB交AP的延长线于点D,此时测得CD=100米,那么A,B间的距离是米.思维探索:(2)在△ABC和△ADE中,AC=BC,AE=DE,且AE<AC,∠ACB=∠AED=90°,将△ADE 绕点A逆时针方向旋转,把点E在AC边上时△ADE的位置作为起始位置(此时点B和点D位于AC的两侧),设旋转角为α,连接BD,点M是线段BD的中点,连接MC,ME.①如图2,当△ADE在起始位置时,猜想:MC与ME的数量关系和位置关系分别是;②如图3,当α=90°时,点D落在AB边上,请判断MC与ME的数量关系和位置关系,并证明你的结论.22.在平面直角坐标系中,点C的坐标为(3,3).(1)如图1,若点B在x轴正半轴上,点A(1,﹣1),AB=BC,AB⊥BC,则点B坐标为.(2)如图2,若点B在x轴负半轴上,CE⊥x轴于点E,CF⊥y轴于点F,∠BFN=45°,NF交直线CE于点N,若点B(﹣1,0),BN=5,求点N坐标.(3)如图3,若点B,F分别在x,y轴的正半轴上,CF=BF,连接CB,点P、Q是BC上的两点,设∠PFQ=θ(0°<θ<45°),∠BFC=2∠PFQ,则以线段CP、PQ、BQ长度为边长的三角形的形状为(①钝角三角形②直角三角形③锐角三角形④随线段的长度而定),请选择,并给出证明.参考答案一.选择题1.解:A、∵22+42≠52,∴此组数据不能作为直角三角形的三边长,故本选项不符合题意;B、∵152+202=252,∴此组数据能作为直角三角形的三边长,故本选项符合题意;C、∵0.22+0.32≠0.42,∴此组数据不能作为直角三角形的三边长,故本选项不符合题意;D、∵12+22≠2.52,∴此组数据不能作为直角三角形的三边长,故本选项不符合题意;故选:B.2.解:A、根据SAS定理可知,两条直角边对应相等的两个三角形全等,本选项不符合题意;B、根据AAS定理可知,斜边和一锐角对应相等的两个三角形全等,本选项不符合题意;C、根据HL定理可知,斜边和一直角边对应相等的两个三角形全等,本选项不符合题意;D、两个锐角对应相等的两个三角形不一定全等,本选项符合题意;故选:D.3.解:在△AOD与△BOC中,,∴△AOD≌△BOC(SAS),∴∠D=∠C,∵∠C=30°,∴∠D=30°,故选:A.4.解:在含有30°角的直角三角形中,斜边长为8cm,∴这个三角形的最短边长为×8=4(cm).故选:B.5.解:根据题意可得:在△ABC和△DEC中,,∴△ABC≌△DCE(SAS),∴AB=DE,∴依据是SAS,故选:D.6.解:设CD=x,∵在△ACB中,∠C=90°,∠B=30°,∴∠BAC=180°﹣90°﹣30°=60°,∵∠B=30°,∠ADC=60°,∴∠BAD=∠ADC﹣∠B=30°,∴∠B=∠BAD,∴AD=BD,∵在△ACD中,∠C=90°,∠CAD=30°,∴AD=2CD=2x,即BD=AD=2x,∵BC=3=BD+CD=2x+x,解得:x=1,即BD=2x=2,故选:B.7.解:过E作EM⊥BC,交FD于点N,∵DF∥BC,∴EN⊥DF,∴EN∥HG,∴∠DEN=∠DHG,∠END=∠HGD,∴△END∽△HGD,∴=,∵E为HD中点,∴=,∴=,即HG=2EN,∴∠DNM=∠NMC=∠C=90°,∴四边形NMCD为矩形,∴MN=DC=2,∵BE平分∠ABC,EA⊥AB,EM⊥BC,∴EM=AE=3,∴EN=EM﹣MN=3﹣2=1,则HG=2EN=2.故选:B.8.解:作DE⊥OB于E,如图,∵OC是∠AOB的角平分线,DP⊥OA,DE⊥OB,∴DE=DP=4,∴S=×3×4=6.△ODQ故选:D.9.解:如图,作AM⊥BD于M,AN⊥EC于N,设AD交EF于O.∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴EC=BD,∠BDA=∠AEC,故①正确∵∠DOF=∠AOE,∴∠DFO=∠EAO=90°,∴BD⊥EC,故②正确,∵△BAD≌△CAE,AM⊥BD,AN⊥EC,∴AM=AN,∴FA平分∠EFB,∴∠AFE=45°,故④正确,若③成立,则∠EAF=∠BAF,∵∠AFE=∠AFB,∴∠AEF=∠ABD=∠ADB,推出AB=AD,由题意知,AB不一定等于AD,所以AF不一定平分∠CAD,故③错误,故选:C.10.解:①∵AD为△ABC的高线,∴∠CBE+∠ABE+∠BAD=90°,∵Rt△ABE是等腰直角三角形,∴∠ABE=∠BAE=∠BAD+∠DAE=45°,AE=BE,∴∠CBE+∠BAD=45°,∴∠DAE=∠CBE,故①正确②在△DAE和△CBE中,,∴△ADE≌△BCE(SAS);∴∠EDA=∠ECB,∵∠ADE+∠EDC=90°,∴∠EDC+∠ECB=90°,∴∠DEC=90°,∴CE⊥DE;故②正确;③∵∠BDE=∠ADB+∠ADE,∠AFE=∠ADC+∠ECD,∴∠BDE=∠AFE,∵∠BED+∠BEF=∠AEF+∠BEF=90°,∴∠BED=∠AEF,在△AEF和△BED中,,∴△AEF≌△BED(AAS),∴BD=AF;故③正确;④∵AE≠DE,∴△ADE不是等腰三角形,⑤∵AD=BC,BD=AF,∴CD=DF,∵AD⊥BC,∴△FDC是等腰直角三角形,∵DE⊥CE,∴EF=CE,∴S△AEF =S△ACE,∵△AEF≌△BED,∴S△AEF =S△BED,∴S△BDE =S△ACE.故⑤正确;故选:D.二.填空题(共6小题)11.解:在△ABC中,AC=5,BC=12,AB=13,∴AC2+BC2=52+122=132=AB2,∴△ABC为直角三角形,且∠ACB=90°,∴△ABC的面积=,故答案为:30.12.解:连接CD,∵BC的垂直平分线交AB于点D,∴DC=DB,∴∠DCB=∠B,∵∠B+∠A=90°,∠DCA+∠DCB=90°,∴∠A=∠DCA,∴DC=DA,∴CD=AB=13(cm),故答案为:13.13.解:连接BO并延长,点D在BO的延长线上∵线段AB,BC的垂直平分线l1,l2交于点O,∴OA=OB,OC=OB,∴∠OAB=∠OBA,∠OCB=∠OBC,∴∠AOD=2∠ABO,∠COD=2∠CBO,∴∠AOC=∠AOD+∠COD=2(∠ABO+∠CBO)=70°,故答案为:70.14.解:过D点作DE⊥AB于E,DF⊥BC于F,DH⊥AC于H,如图,∵DA平分∠BAC,∴DE=DH,同理可得DF=DH,∴DE=DF,∵∠DEB=∠B=∠DFB=90°,∴四边形BEDF为正方形,∴BE=BF=DE=DF,在Rt△ADE和Rt△ADH中,∴Rt△ADE≌Rt△ADH(HL),∴AE=AH,同理可得Rt△CDF≌Rt△CDH(HL),∴CF=CH,设正方形BEDF的边长为x,则AE=AH=5﹣x,CF=CH=12﹣x,∵AH+CH=AC,∴5﹣x+12﹣x=13,解得x=2,即BE=2,在FC上截取FP=EM,如图,∵DE=DF,∠DEM=∠DFP,EM=FP,∴△DEM≌△DFP(SAS),∴DM=DP,∠EDM=∠FDP,∴∠MDP=∠EDF=90°,∵∠MDN=45°,∴∠PDN=45°,在△DMN和△DPN中,,∴△DMN≌△DPN(SAS),∴MN=NP=NF+FP=NF+EM,∴△BMN的周长=MN+BM+BN=EM+BM+BN+NF=BE+BF=2+2=4.故答案为4.15.解:∵OA=8,OB=6,C点与A点关于直线OB对称,∴BC=AB==5,分为3种情况:①当PB=PQ时,∵C点与A点关于直线OB对称,∴∠BAO=∠BCO,∵∠BPQ=∠BAO,∴∠BPQ=∠BCO,∵∠APB=∠APQ+∠BPQ=∠BCO+∠CBP,∴∠APQ=∠CBP,在△APQ与△CBP中,,∴△APQ≌△CBP(AAS),∴PA=BC,此时OP=5﹣4=1;②当BQ=BP时,∠BPQ=∠BQP,∵∠BPQ=∠BAO,∴∠BAO=∠BQP,根据三角形外角性质得:∠BQP>∠BAO,∴这种情况不存在;③当QB=QP时,∠QBP=∠BPQ=∠BAO,∴PB=PA,设OP=x,则PB=PA=8﹣x在Rt△OBP中,PB2=OP2+OB2,∴(4﹣x)2=x2+32,解得:x=;∵点P在AC上,∴点P在点O左边,此时OP=.∴当△PQB为等腰三角形时,OP的长度是1或.故答案为:1或.16.解:(1)∵AB=AC,∠BAC=90°,∴△ABC是等腰直角三角形,∴∠B=∠C=45°,∵∠B+∠BAP+∠APB=180°,∠APD+∠DPC+∠APB=180°,∠B=∠APD,∴∠BAP=∠DPC,∵∠BAP=∠PDC,∴∠DPC=∠PDC,∵∠C=45°,∴∠DPC=∠PDC=67.5°,∵∠B=∠APD=45°,∠PDC=∠APD+∠PAC,∴∠PAC=67.5°﹣45°=22.5°,∵AB=AC,AE⊥BC,∴∠BAE=∠EAC=∠BAC=×90°=45°,∴∠EAP=∠EAC﹣∠PAC=45°﹣22.5°=22.5°;故答案为:22.5;(2)①过点C作CG⊥AP交AP延长线于G,过点B作BH⊥AP于H,过点P作PF⊥AC于F,如图所示:∴∠BHA=∠AGC=90°,∵∠BAH+∠GAC=90°,∠ACG+∠GAC=90°,∴∠BAH=∠ACG,在△ABH和△CAG中,,∴△ABH≌△CAG(AAS),∴AH=CG,∵∠BAP=67.5°,∠APB=180°﹣∠APD﹣∠DPC=180°﹣45°﹣67.5°=67.5°,∴∠BAP=∠APB,∴AB=BP,∵BH⊥AP,∴AH=PH=AP=×6=3,∴CG=AH=3,=AP•CG=×6×3=9,∴S△APC故答案为:9;=AC•PF,②∵S△APC∴AC•PF=18,∵∠EAP=∠CAP=22.5°,PF⊥AC,PE⊥AE,∴PE=PF,∵AB=AC,∴AB•PE=AC•PF=18.故答案为:18.三.解答题(共6小题)17.(1)证明:∵AB=AC,点D是BC的中点,∴∠CAD=∠BAD.又∵∠EAB=∠BAD,∴∠CAD=∠EAB.在△ACF和△ABE中,,∴△ACF≌△ABE(SAS).∴BE=CF.(2)解:∵△ACF≌△ABE.∴∠ABE=∠ACF=100°,∴∠ABC=80°,∵AB=AC,∴∠ABC=∠ACB=80°,∴∠BAC=20°,∵∠CAD=∠BAD,∴∠BAD=10°.18.(1)证明:连接BD,∵DE垂直平分BC,∴BD=CD,∵AD平分∠CAM,DF⊥AC,DG⊥AM,∴DG=DF,在Rt△BDG和Rt△CDF中,,∴Rt△BDG≌Rt△CDF(HL),∴BG=CF;(2)解:在Rt△ADG和Rt△ADF中,,∴Rt△ADG≌Rt△ADF(HL),∴AG=AF,∵AC=AF+CF,BG=AB+AG,BG=CF,∴AC=AF+AB+AG,∴AC=2AG+AB,∵AB=10cm,AC=14cm,∴AG==2cm.19.解:(1)设BD=2x,则AD=3x,CD=4x,∴AB=BD+AD=5x,由勾股定理得,AC==5x,∴AB=AC,即△ABC是等腰三角形;=90cm2,(2)∵S△ABC∴×5x×4x=90,解得,x=3,∴BD=6m,AD=9m,CD=12m,由题意得,BP=t,AQ=t,则AP=15﹣t,当DQ∥BC时,∠ADQ=∠ABC,∠AQD=∠ACB,∴∠ADQ=∠AQD,∴AQ=AD=9,即t=9,当PQ∥BC时,∠APQ=∠ABC,∠AQP=∠ACB,∴∠APQ=∠AQP,∴AP=AQ,即15﹣t=t,解得,t=7.5,综上所述,当△DPQ的边与BC平行,t的值为9或7.5;(3)在Rt△CDA中,点E是AC的中点,∴DE=AC=AE=7.5,∴当点P与点A重合时,△PDE为等腰三角形,此时t=15,如图3,当DP=DE=7.5时,BP=BD+DP=13.5,此时t=13.5,如图4,当PD=PE时,△PDE为等腰三角形,作EH⊥AB于H,∵ED=EA,∴DH=DA=4.5,设DP=EP=x,由勾股定理得,EH==6,∴PH=x﹣6,在Rt△EHP中,EP2=EH2+PH2,即x2=62+(x﹣4.5)2,解得,x=,则BP=6+=,综上所述,当△PDE为等腰三角形时,t的值为15或13.5或.20.解:(1)如图1,过点C作CD⊥AB于点D,在Rt△ABC中,由勾股定理得,AC2+BC2=AB2,即82+BC2=102,解得,BC=6,∵,∴10CD=6×8,∴CD=,∴点C到边AB的距离为;(2)①连接BN,如图2所示:∵MN⊥AB,∴∠BMN=90°,∴∠BMN=∠ACB=90°,在Rt△BCN与Rt△BMN中,∴Rt△BCN≌Rt△BMN(HL),∴BC=BM,∴AM=AB﹣BM=10﹣6=4,∴AM的长为4cm;②当AM为5、4或时,△BCM为等腰三角形.当BM=CM时,△BCM为等腰三角形,如图3所示:∵BM=CM,∴∠BCM=∠B,∵∠ACB=90°,∴∠A+∠B=90°,∠BCM+∠ACM=90°,∴∠A=∠ACM,∴AM=CM,∴AM=BM=AB,∴AM=5;当BM=BC=6时,△BCM为等腰三角形,如图4所示:AM=AB﹣BM=4;当BC=CM=6时,△BCM为等腰三角形,如图5所示,过点C作CD⊥AB于点D,在Rt△BDC中,由勾股定理得:BD2+CD2=BC2,∴BD 2+()2=62,∴BD=,∵BC=CM,CD⊥AB,∴DM=BD=,∴AM=AB﹣BD﹣DM=.21.解:(1)∵CD∥AB,∴∠C=∠B,在△CPD和△BPA中,,∴△CPD≌△BPA(ASA),∴AB=CD=100(米),故答案为:100;(2)如图2,延长EM交BC于F,∵∠ACB=∠AED=90°,∴∠ACB=∠CED=90°,∴DE∥BC,∴∠MDE=∠MBF,在△MED和△MFB中,,∴△MED≌△MFB(ASA)∴EM=FM,DE=BF,∵DE=AE,∴EA=FB,∵CA=CB,∴CA﹣EA=CB﹣FB,即CE=CF,∵EM=FM,∴MC=ME,MC⊥ME,故答案为:MC=ME,MC⊥ME;(3)MC=ME,MC⊥ME,理由如下:如图3,延长EM至H,使MH=EM,连接BH、CE、CH,在△MDE和△MBH中,,∴△MDE≌△MBH(SAS),∴BH=DE=AE,∠MDE=∠MBH,∵∠MDE=135°,∠ABC=45°,∴∠CBH=90°,在△CAE和△CBH中,,∴△CAE≌△CBH(SAS),∴CE=CH,∵ME=MH,∴MC=ME,MC⊥ME.22.解:(1)如图1,过点C作CD⊥OB于D,过点A作AH⊥OB于H,∵点C的坐标为(3,3),点A(1,﹣1),∴CD=OD=3,OH=AH=1,∵AB⊥BC,CD⊥OB,AH⊥OB,∴∠ABC=∠AHB=∠CDB=90°,∴∠ABH+∠CBD=∠ABH+∠HAB=90°,∴∠CBD=∠HAB,又∵AB=BC,∴△ABH≌△BCD(AAS),∴BD=AH=1,∴BO=4,∴点B(4,0),故答案为:(4,0);(2)∵点C的坐标为(3,3),点B(﹣1,0),∴CE=CF=OE=3,BO=1,∴BE=4,∴EN===3,∴点N(3,﹣3);(3)如图3,将△CPF绕点F顺时针旋转2θ,得到△BGF,∴△CPF≌△BGF,∴FG=FP,BG=CP,∠CFP=∠BFG,∠C=∠FBG,∵∠BFC=2∠PFQ,∴∠CPF+∠BFQ=∠PFQ,∴∠BFG+∠BFQ=∠PFQ,又∵FG=PF,FQ=FQ,∴△PFQ≌△GFQ(SAS),∴GQ=PQ,∴以线段CP、PQ、BQ长度为边长的三角形就是以线段BQ,GQ,GB长度为边长的△BGQ,∵∠PFQ=θ(0°<θ<45°),∴∠BFC=2∠PFQ<90°,∴∠C+∠FBC>90°,∴∠GBF+∠FBC>90°,∴△BGQ是钝角三角形,∴以线段CP、PQ、BQ长度为边长的三角形是钝角三角形,故答案为①.。

初三中考数学培优试卷

初三中考数学培优试卷

1. 下列各数中,绝对值最小的是()A. -3B. 2C. -2D. 32. 已知a=2,b=-3,那么下列各式中,正确的是()A. a+b=5B. a-b=-1C. a×b=-6D. a÷b=-23. 如果m和n是方程2x+3=7的解,那么m+n的值是()A. 4B. 5C. 6D. 74. 在下列各式中,正确的是()A. (a+b)²=a²+2ab+b²B. (a-b)²=a²-2ab+b²C. (a+b)²=a²-2ab+b²D. (a-b)²=a²+2ab-b²5. 下列各数中,能被3整除的是()A. 123B. 124C. 125D. 1266. 下列各式中,正确的是()A. (x+y)²=x²+y²B. (x+y)²=x²+2xy+y²C. (x-y)²=x²-2xy+y²D. (x-y)²=x²+2xy-y²7. 如果a=3,b=4,那么下列各式中,正确的是()A. a²+b²=25B. a²-b²=7C. a²-b²=9D. a²+b²=78. 在下列各式中,正确的是()A. (a+b)³=a³+b³B. (a+b)³=a³+3a²b+3ab²+b³C. (a-b)³=a³-3a²b+3ab²-b³D. (a-b)³=a³-3a²b-3ab²-b³9. 下列各数中,能被5整除的是()A. 123B. 124C. 125D. 12610. 在下列各式中,正确的是()A. (x+y)³=x³+y³B. (x+y)³=x³+3x²y+3xy²+y³C. (x-y)³=x³-3x²y+3xy²-y³D. (x-y)³=x³-3x²y-3xy²-y³11. 如果a=2,b=-3,那么a²+b²的值是______。

初三数学培优试题及答案

初三数学培优试题及答案

初三数学培优试题及答案一、选择题(每题2分,共10分)1. 下列哪个数不是实数?A. πB. -3C. √2D. i2. 如果一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 100πD. 125π3. 已知a=3,b=2,求下列表达式的值:a^2 + b^2A. 13B. 17C. 19D. 214. 一个数的平方根等于它本身,这个数是:A. 0B. 1C. -1D. 45. 下列哪个是二次方程的解?A. x = 1B. x = -1C. x = 2D. x = 3(方程为:x^2 - 4x + 4 = 0)二、填空题(每题2分,共10分)6. 一个直角三角形的两条直角边分别为3和4,斜边的长度是______。

7. 一个正数的倒数是1/8,这个数是______。

8. 如果一个数的立方等于-27,那么这个数是______。

9. 一个数的绝对值是5,这个数可以是______或______。

10. 一个二次方程的判别式是36,那么这个方程的根的情况是______。

三、解答题(每题10分,共30分)11. 解方程:2x^2 - 5x - 3 = 0。

12. 证明:如果一个三角形的两边长度分别为a和b,且a < b,那么这个三角形的周长P满足P > 2a。

13. 一个工厂每天可以生产x个产品,每个产品的成本是c元,销售价格是p元。

如果工厂每天的利润是y元,写出y关于x的函数表达式。

四、综合题(每题15分,共20分)14. 一个圆的半径是7,圆心到一个点A的距离是5。

如果点A在圆内,求点A到圆上任意一点B的距离的最大值和最小值。

15. 一个班级有50名学生,其中30名学生喜欢数学,20名学生喜欢英语。

如果一个学生至少喜欢一门科目,求这个班级中同时喜欢数学和英语的学生人数的范围。

答案:一、选择题1. D2. B3. C4. A5. D二、填空题6. 5(根据勾股定理)7. 8(倒数的定义)8. -3(立方根的定义)9. 5,-5(绝对值的定义)10. 有两个不相等的实数根(判别式的定义)三、解答题11. 解:2x^2 - 5x - 3 = 0,使用求根公式,得到x1 = (5 + √41) / 4,x2 = (5 - √41) / 4。

初三数学培优测试卷

初三数学培优测试卷

一、选择题(每题5分,共25分)1. 下列各数中,属于有理数的是()A. √3B. πC. 0.1010010001…(循环小数)D. √-12. 已知 a > 0,b < 0,则下列不等式中正确的是()A. a + b > 0B. a - b < 0C. -a - b > 0D. a - b > 03. 下列函数中,图象为一条直线的是()A. y = x^2B. y = 2x + 1C. y = 3x - 4D. y = x^34. 已知 a,b,c 是三角形的三边,且 a + b = c,则下列结论正确的是()A. 三角形是直角三角形B. 三角形是等腰三角形C. 三角形是等边三角形D. 三角形是钝角三角形5. 下列命题中,正确的是()A. 两个平行四边形面积相等B. 两个矩形面积相等C. 两个菱形面积相等D. 两个正方形面积相等二、填空题(每题5分,共25分)6. 若 a = 3,b = -2,则 a^2 + b^2 的值为 ________。

7. 在直角坐标系中,点 A(2,3)关于 x 轴的对称点坐标为 ________。

8. 若一个数加上它的倒数等于 3,则这个数是 ________。

9. 已知等差数列的前三项分别是 2,5,8,则该数列的公差是 ________。

10. 一个长方形的长是 8cm,宽是 3cm,则它的面积是 ________cm^2。

三、解答题(每题15分,共45分)11. (15分)已知 a,b 是方程 x^2 - 3x + 2 = 0 的两个根,求 a + b 的值。

12. (15分)已知等腰三角形的底边长为 6cm,腰长为 8cm,求该三角形的周长。

13. (15分)已知函数 y = 2x - 1,求该函数的图象与 x 轴的交点坐标。

四、附加题(共20分)14. (10分)已知正方形 ABCD 的边长为 4cm,求对角线 AC 的长度。

数学初三培优练习题推荐

数学初三培优练习题推荐

数学初三培优练习题推荐数学作为一门严谨而重要的学科,对于初三学生来说尤为重要。

为了帮助初三学生提高数学水平,本文将推荐一些适合初三学生的培优练习题,以帮助他们巩固知识、拓宽思路,提高解题能力。

一、整式的计算与因式分解1. 计算整式表达式:(2x + 3)(x - 5) + (4x - 1)(3x + 2)这个练习题能够帮助学生熟悉整式的乘法运算和如何合并同类项,加深对整式相加的概念。

2. 因式分解:x^2 - 5x - 6这题目要求学生将给出的整式表达式进行因式分解,加深对因式分解的理解和掌握。

二、平面几何1. 三角形构造:已知三角形的两条边分别为6cm和8cm,夹角为60°,通过作图构造这个三角形并确定第三条边。

这个练习题可以帮助学生通过实际操作来深入理解三角形的构造过程,加深对三角形性质的认识。

2. 平行线的性质:已知l1 // l2,∠A = 70°,求∠X和∠Y。

通过利用平行线的性质,这个练习题能够帮助学生更好地理解平行线与角度之间的关系,提高对平行线性质的掌握能力。

三、数列与函数1. 等差数列:已知等差数列前两项为1和3,公差为2,求该等差数列的通项公式并计算第9项。

这个练习题可以帮助学生通过观察数列的规律来推导出通项公式,巩固对等差数列的理解。

2. 一次函数:已知一次函数y = 3x - 2,求其在x = 4处的函数值和该函数的图像与坐标轴的交点坐标。

这个练习题可以帮助学生更好地理解一次函数的性质,提高对一次函数图像与坐标轴的理解。

四、概率与统计1. 投掷骰子:投掷两枚骰子,求得到两颗骰子点数之和为7的概率。

通过计算概率,学生可以加深对概率的理解和运用。

2. 统计图的解读:已知某班级学生的身高数据,制作柱状图,根据图表回答相关问题,如身高的众数、中位数等。

通过解读统计图,学生可以培养对数据的分析和解读能力,加深对统计学知识的掌握。

通过以上的习题推荐,初三学生可以在各个数学知识点上进行有针对性的练习,巩固知识,提高解题能力。

初中数学培优班试卷及答案

初中数学培优班试卷及答案

1. 下列各数中,有理数是()。

A. $\sqrt{2}$B. $\pi$C. $-3.14$D. $i$2. 已知 $a=5$,$b=-2$,则 $a^2 + b^2$ 的值为()。

A. 17B. 23C. 29D. 333. 下列函数中,一次函数是()。

A. $y=2x^2+3$B. $y=x+1$C. $y=\sqrt{x}$D. $y=3x^3+2$4. 若 $\angle A$ 是等腰三角形 $ABC$ 的顶角,则 $\angle BAC$ 的度数可能是()。

A. $40^\circ$B. $50^\circ$C. $60^\circ$D. $70^\circ$5. 在平面直角坐标系中,点 $P(2,3)$ 关于 $y$ 轴的对称点坐标是()。

A. $(-2,3)$B. $(2,-3)$C. $(-2,-3)$D. $(2,3)$6. 已知 $x^2 - 5x + 6 = 0$,则 $x$ 的值为()。

A. $2$ 或 $3$B. $1$ 或 $4$C. $2$ 或 $1$D. $3$ 或 $2$7. 下列各组数中,成等差数列的是()。

A. $1, 3, 5, 7$B. $1, 4, 9, 16$C. $2, 4, 8, 16$D. $1, 5, 10, 20$8. 若 $a$、$b$、$c$ 成等比数列,且 $a+b+c=12$,$abc=27$,则 $b$ 的值为()。

A. $3$B. $6$C. $9$D. $12$9. 下列图形中,不是轴对称图形的是()。

A. 正方形B. 等腰三角形C. 圆D. 长方形10. 若 $\sin \theta = \frac{1}{2}$,则 $\cos \theta$ 的值为()。

A. $\frac{\sqrt{3}}{2}$B. $-\frac{\sqrt{3}}{2}$C. $\frac{1}{2}$D. $-\frac{1}{2}$11. 若 $x^2 - 4x + 3 = 0$,则 $x^2 - 6x + 9$ 的值为______。

九年级数学上培优试题

九年级数学上培优试题

九年级数学上培优试题(一)一、 选择题(每小题3分,共30分)1.下列说法不正确的是( )A .一组邻边相等的矩形是正方形B .对角线相等的菱形是正方形C .对角线互相垂直的矩形是正方形D .有一个角是直角的平行四边形是正方形 2.(2011年江苏无锡)菱形具有而矩形不一定具有的性质是( )A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角互补 3.(2012年湖南张家界)顺次连接矩形四边中点所得的四边形一定是( ) A .正方形 B .矩形 C .菱形 D .等腰梯形4.(2012年江苏宜昌)如图,在菱形ABCD 中,AB =5,∠BCD =120°,则△ABC 的周长等于( )A .20B .15C .10D . 55.如图,矩形ABCD 的两条对角线相交于点O ,∠AOD =120°,AB =2,则矩形的对角线AC 的长是( )A .2B .4C . 2 3D .4 3 6.(2013年陕西)如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,OE AB ⊥,垂足为E ,若=130ADC ∠︒,则AOE ∠的大小为() A .75° B .65° C .55° D .50°7.(2013年江苏苏州)如图,矩形ABCD 的对角线AC 、BD 相交于点O ,CE ∥BD ,DE ∥AC ,若AC=4,则四边形CODE 的周长( )A . 4B . 6C . 8D . 108.(2013山东泰安)如图,在矩形ABCD 中,AB=2,BC=4, 对角线AC 的垂直平分线分别交AD 、AC 于点E 、O ,连接 CE ,则CE 的长为( )A. 3B.3.5C.2.5D.2.8 9.如图,将一个长为,宽为的矩形纸片先按照从左向右对折,再按照从下向上的方向对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下(如图(1)),再打开,得到如图(2)所示的小菱形的面积为( ) A . B . C . D .DCBA(1) (2)10.(2013山西)如图,已知菱形ABCD 的对角线AC 、BD 的长分别为6cm 、8cm ,AE ⊥BC 于点E ,则AE 的长是( ) A .B .C .D .二、填空题(每小题3分,共24分)11.(2011年江苏淮安)在四边形ABCD 中,AB =DC ,AD =BC .请再添加一个条件,使四边形ABCD 是矩形.你添加的条件是___ _______(写出一种即可).12.(2011年江苏南京)如图,菱形ABCD 的边长是2 cm ,E 是AB 的中点,且DE ⊥AB ,则菱形ABCD 的面积为___ _____cm 2.13.(2012年吉林长春)如图, ABCD 的顶点B 在矩形AEFC 的边EF 上,点B 与点E ,F 不重合,若△ACD 的面积为3,则图中阴影部分两个三角形的面积和为_ _____.第9题图第5题图第4题图 第6题图第7题图 ABCDE O第8题图第12题图第13题图14.(2013贵州省毕节市)我们把顺次连接四边形四条边的中点所得的四边形叫中点四边形.....。

初三培优数学测试卷

初三培优数学测试卷

一、选择题(每题5分,共50分)1. 若a,b是方程x²-3x+2=0的两个根,则a+b的值为()A. 2B. 3C. 4D. 52. 下列各数中,有理数是()A. √3B. √2+√3C. πD. 3.143. 已知一元二次方程x²-5x+6=0的两个根为x₁,x₂,则(x₁+x₂)²-4x₁x₂的值为()A. 1B. 4C. 9D. 164. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数为()A. 60°B. 75°C. 75°D. 120°5. 已知一次函数y=kx+b的图象经过点A(1,2),B(-2,3),则该函数的解析式为()A. y=2x+1B. y=3x+1C. y=2x-1D. y=3x-16. 已知函数y=2x+1在x=2时的函数值为5,则该函数的图象()A. 经过点(1,5)B. 经过点(2,5)C. 经过点(3,5)D. 经过点(4,5)7. 若a,b是方程x²-4x+4=0的两个根,则a²+b²的值为()A. 4B. 8C. 12D. 168. 在△ABC中,若a²+b²=5²,c²=4²,则△ABC是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 梯形9. 已知函数y=x²+2x+1的图象的顶点坐标为(-1,0),则该函数的对称轴为()A. x=-1B. y=-1C. x=1D. y=110. 已知一次函数y=kx+b的图象与x轴、y轴分别相交于点A、B,若OA=3,OB=2,则该函数的解析式为()A. y=2x+3B. y=3x+2C. y=2x-3D. y=3x-2二、填空题(每题5分,共50分)11. 若a,b是方程x²-4x+4=0的两个根,则a²+2ab+b²的值为______。

中考数学培优考前辅导训练题[一]

中考数学培优考前辅导训练题[一]

中考数学培优考前辅导训练题[一]中考数学培优考前辅导训练题【一】1.二次函数y=AX2+BX+C(a)的图像≠ 0)如图1所示。

得出五个结论:(1)ABC>0;(2) b<a+c;(3)4a+2b+c>0;(4)2c<3b;(5)a+b>m(am+b)(m的实数)≠ 1),其中[]正确结论为a.1b 2c。

3d。

四2.如图2,△abc是等边三角形,点d,e分别在bc,ac上,且bd?13bc,ce?13ac,be,ad相交于点f,如果连接了De,则得出以下结论:① ∠ 阿菲?60?;②判定元件?交流电;③ce2?df?da④af?是ae?AC,正确的结论是[]a.4-1yb。

3和C.2ad.1个Apeacfbeeh(b)eobccbd图2图4D图5图1图33如图3所示△ ABC,广告⊥ 卑诗省,行政长官⊥ AB和垂直脚分别为D和e。

AD和CE在h点相交。

已知eh=EB=3和AE=4时,CH的长度为[]ada.1b.2c.3d.4g0123xfcfa4.如图4,已知ef是?o的直径,把?a为60的直角三角板abc的一条直角边bc放在直线ef上,斜边ab与?o交于点p,点b与点o重合.将三角板abc沿B按照图6efcoe的方向平移,直到B点与E点重合?pof?十、那么X的取值范围是[]a.30≤x≤60b.30≤x≤90c.30≤x≤120d.60≤x≤1205.如图5所示△ ABC,AB?10,ac?公元前8年?6.如果通过点C并与边AB相切的移动圆分别与点E和f处的CB和Ca相交,则线段EF的最小长度为[]a.42b.4.75c、五,d.48图76给定a(6,0)和B(0,8),如果从点a和点B到线L的距离为5,且有n条线L满足上述条件,则n的值为[]a.1b。

2C。

3D。

4.7.如图6,在□abcd中,ab=6,ad=9,∠bad的平分线交bc于点e,交dc的延长线于点f,bg⊥ae,垂足为g,bg=42,则δcef的周长为【】a.8b.9.5c.10d.11.58.如图7所示,直角梯形纸ABCD,ad⊥ AB,AB=8,ad=CD=4,点E和F分别位于线段AB和ad上,依次△ A EF沿EF,点a的下降点记录为P。

中考数学数学中考数学压轴题的专项培优练习题(附解析(1)

中考数学数学中考数学压轴题的专项培优练习题(附解析(1)

一、中考数学压轴题1.已知四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(P,G不与正方形顶点重合,且在CD的同侧),PD=PG,DF⊥PG于点H,交直线AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连结EF.(1)如图1,当点P与点G分别在线段BC与线段AD上时.①求证:DF=PG;②若AB=3,PC=1,求四边形PEFD的面积;(2)如图2,当点P与点G分别在线段BC与线段AD的延长线上时,请猜想四边形PEFD 是怎样的特殊四边形,并证明你的猜想.2.我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P作坐标轴的平行线PM和PN,分别交x轴和y轴于点M,N.点M、N在x轴和y轴上所对应的数分别叫做P点的x坐标和y坐标,有序实数对(x,y)称为点P的斜坐标,记为P(x,y)(1)如图2,ω=45°,矩形OABC中的一边OA在x轴上,BC与y轴交于点D,OA=2,OC=1.①点A、B、C在此斜坐标系内的坐标分别为A,B,C.②设点P(x,y)在经过O、B两点的直线上,则y与x之间满足的关系为.③设点Q(x,y)在经过A、D两点的直线上,则y与x之间满足的关系为.(2)若ω=120°,O为坐标原点.①如图3,圆M与y轴相切原点O,被x轴截得的弦长OA=23,求圆M的半径及圆心M的斜坐标.②如图4,圆M的圆心斜坐标为M(23,23),若圆上恰有两个点到y轴的距离为1,则圆M的半径r的取值范围是.3.如图,AB∥CD,定点E,F分别在直线AB,CD上,平行线AB,CD之间有一动点P.(1)如图1,当P点在EF的左侧时,∠AEP,∠EPF,∠PFC满足数量关系为,如图2,当P点在EF的右侧时,∠AEP,∠EPF,∠PFC满足数量关系为.(2)如图3,当∠EPF=90°,F P平分∠EFC时,求证:EP平分∠AEF;(3)如图4,QE,QF分别平分∠PEB和∠PFD,且点P在EF左侧.①若∠EPF=60°,则∠EQF=.②猜想∠EPF与∠EQF的数量关系,并说明理由;4.如图1,正方形CEFG绕正方形ABCD的顶点C旋转,连接AF,点M是AF中点.(1)当点G在BC上时,如图2,连接BM、MG,求证:BM=MG;(2)在旋转过程中,当点B、G、F三点在同一直线上,若AB=5,CE=3,则MF=;(3)在旋转过程中,当点G在对角线AC上时,连接DG、MG,请你画出图形,探究DG、MG的数量关系,并说明理由.5.定义:如果一个三角形一条边上的高与这条边的比值是3:5,那么称这个三角形为“准黄金”三角形,这条边就叫做这个三角形的“金底”.(概念感知)(1)如图1,在ABC 中,12AC =,10BC =,30ACB ∠=︒,试判断ABC 是否是“准黄金”三角形,请说明理由.(问题探究)(2)如图2,ABC 是“准黄金”三角形,BC 是“金底”,把ABC 沿BC 翻折得到DBC △,连AB 接AD 交BC 的延长线于点E ,若点C 恰好是ABD △的重心,求AB BC 的值.(拓展提升) (3)如图3,12l l //,且直线1l 与2l 之间的距离为3,“准黄金”ABC 的“金底”BC 在直线2l 上,点A 在直线1l 上.10AB BC =,若ABC ∠是钝角,将ABC ∠绕点C 按顺时针方向旋转()090αα︒<<︒得到A B C '',线段A C '交1l 于点D .①当30α=︒时,则CD =_________;②如图4,当点B 落在直线1l 上时,求AD CD 的值.6.综合与实践4A 纸是我们学习工作最常用的纸张之一, 2,我们定义:长宽之比是2的矩形纸片称为“标准纸”.操作判断:()1如图1所示,矩形纸片2()ABCD AD AB =是一张“标准纸”,将纸片折叠一次,使点B 与D 重合,再展开,折痕EF 交AD 边于点,E 交BC 边于点F ,若1,AB =求CF 的长,()2如图2,在()1的基础上,连接,BD 折痕EF 交BD 于点O ,连接,BE 判断四边形BFDE 的形状,并说明理由.探究发现:()3如图3所示,在(1)和(2)的基础上,展开纸片后,将纸片再折叠一次,使点A 与点C 重合,再展开,痕MN 交AD 边于点M ,BC 交边于点,N 交BD 也是点O .然后将四边形ENFM 剪下,探究纸片ENFM 是否为“标准纸”,说明理由.7.(1)阅读理解:如图①,在ABC 中,若8AB =,5AC =,求BC 边上的中线AD 的取值范围. 可以用如下方法:将ACD 绕着点D 逆时针旋转180︒得到EBD △,在ABE △中,利用三角形三边的关系即可判断中线AD 的取值范围是______;(2)问题解决:如图②,在ABC 中,D 是BC 边上的中点,DE DF ⊥于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,求证:BE CF EF +>;(3)问题拓展:如图③,在四边形ABCD 中,180B D ∠+∠=︒,CB CD =,100BCD ∠=︒,以C 为顶点作一个50︒的角,角的两边分别交AB 、AD 于E 、F 两点,连接EF ,探索线段BE ,DF ,EF 之间的数量关系,并说明理由.8.已知:如图,二次函数213222y x x =-++的图象交x 轴于A 点和B 点(A 点在B 点左则),交y 轴于E 点,作直线,EB D 是直线EB 上方抛物线上的一个动点.过D 点作 直线l 平行于直线.EB M 是直线 EB 上的任意点,N 是直线l 上的任意点,连接,MO NO ,始终保持MON ∠为90︒,以MO 和ON 边,作矩形MONC .(1)在D 点移动过程中,求出当DEB ∆的面积最大时点D 的坐标;在DEB ∆的面积最大 时,求矩形MONC 的面积的最小值.(2)在DEB ∆的面积最大时,线段ON 交直线EB 于点G ,当点,,,D N G B 四个点组成平行 四边形时,求此时线段ON 与抛物线的交点坐标.9.如图,已知正方形ABCD 中,4,BC AC BD =、相交于点O ,过点A 作射线AM AC ⊥,点E 是射线AM 上一动点,连接OE 交AB 于点F ,以OE 为一边,作正方形OEGH ,且点A 在正方形OEGH 的内部,连接DH .(1)求证:EDO EAO ∆≅∆;(2)设BF x =,正方形OEGH 的边长为y ,求y 关于x 的函数关系式,并写出定义域;(3)连接AG ,当AEG ∆是等腰三角形时,求BF 的长.10.如图①,四边形ABCD 中,//,90AB CD ADC ∠=︒.(1)动点M 从A 出发,以每秒1个单位的速度沿路线A B C D →→→运动到点D 停止,设运动时间为a ,AMD ∆的面积为,S S 关于a 的函数图象如图②所示,求AD CD 、的长.(2)如图③动点P 从点A 出发,以每秒2个单位的速度沿路线A D C →→运动到点C 停止,同时,动点Q 从点C 出发,以每秒5个单位的速度沿路线C D A →→运动到点A 停止,设运动时间为t ,当Q 点运动到AD 边上时,连接CP CQ PQ 、、,当CPQ ∆的面积为8时,求t 的值.11.如图,在ABC ∆中,14AB =,45B ∠=︒,4tan 3A =,点D 为AB 中点.动点P 从点D 出发,沿DA 方向以每秒1个单位长度的速度向终点A 运动,点P 关于点D 对称点为点Q ,以PQ 为边向上作正方形PQMN .设点P 的运动时间为t 秒.(1)当t =_______秒时,点N 落在AC 边上.(2)设正方形PQMN 与ABC ∆重叠部分面积为S ,当点N 在ABC ∆内部时,求S 关于t 的函数关系式.(3)当正方形PQMN 的对角线所在直线将ABC ∆的分为面积相等的两部分时,直接写出t 的值.12.如图1,在O 中,弦AB ⊥弦CD ,垂足为点E ,连接AD 、BC 、AO ,AD AB =.(1)求证:2CAO CDB ∠=∠(2)如图2,过点O 作OH AD ⊥,垂足为点H ,求证:2OH CE DE +=(3)如图3,在(2)的条件下,延长DB 、AC 交于点F ,过点D 作DM AC ⊥,垂足为M ,交AB 于N ,若12BC =,3AF BF =,求MN 的长.13.问题背景:如图,四边形ABCD 中,AD BC ∥,8BC =,17AD =+,32AB =,45ABC ∠=︒,P 为边AD 上一动点,连接BP 、CP .问题探究(1)如图1,若30PBC ∠=︒,则AP 的长为__________.(2)如图2,请求出BPC △周长的最小值;(3)如图3,过点P 作PE BC ⊥于点E ,过点E 分别作EM PB ⊥于M ,EN PC ⊥于点N ,连接MN①是否存在点P ,使得PMN 的面积最大?若存在,求出PMN 面积的最大值,若不存在,请说明理由;②请直接写出PMN 面积的最小值.14.如图①,在△ABC 中,∠ACB =90°,∠B =30°,AC =1,D 为AB 的中点,EF 为△ACD 的中位线,四边形EFGH 为△ACD 的内接矩形(矩形的四个顶点均在△ACD 的边上). (1)计算矩形EFGH 的面积;(2)将矩形EFGH 沿AB 向右平移,F 落在BC 上时停止移动.在平移过程中,当矩形与△CBD 重叠部分的面积为316时,求矩形平移的距离; (3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形1111E F G H ,将矩形1111E F G H 绕1G 点按顺时针方向旋转,当1H 落在CD 上时停止转动,旋转后的矩形记为矩形2212E F G H ,设旋转角为α,求cos α的值.15.如图,在等边△ABC 中,AB =BC =AC =6cm ,点P 从点B 出发,沿B →C 方向以1.5cm/s 的速度运动到点C 停止,同时点Q 从点A 出发,沿A →B 方向以1cm/s 的速度运动,当点P 停止运动时,点Q 也随之停止运动,连接PQ ,过点P 作BC 的垂线,过点Q 作BC 的平行线,两直线相交于点M .设点P 的运动时间为x (s ),△MPQ 与△ABC 重叠部分的面积为y (cm 2)(规定:线段是面积为0的图形).(1)当x = (s )时,PQ ⊥BC ;(2)当点M 落在AC 边上时,x = (s );(3)求y 关于x 的函数解析式,并写出自变量x 的取值范围.16.如图,正方形ABCD 的边长为8,M 是AB 的中点,P 是BC 边上的动点,连结PM ,以点P 为圆心,PM 长为半径作⊙P .(1)当BP = 时,△MBP ~△DCP ;(2)当⊙P 与正方形ABCD 的边相切时,求BP 的长;(3)设⊙P 的半径为x ,请直接写出正方形ABCD 中恰好有两个顶点在圆内的x 的取值范围.17.如图,在平面直角坐标系中,Rt ABC△的斜边在AB在x轴上,点C在y轴上90ACB∠=︒,OC、OB的长分别是一元二次方程2680x x-+=的两个根,且OC OB<.(1)求点A的坐标;(2)D是线段AB上的一个动点(点D不与点A,B重合),过点D的直线l与y轴平行,直线l交边AC或边BC于点P,设点D的横坐标为t,线段DP的长为d,求d关于t的函数解析式;(3)在(2)的条件下,当12d=时,请你直接写出点P的坐标.18.在平面直角坐标系中,点O为坐标原点,直线y=﹣x+4与x轴交于点A,过点A的抛物线y=ax2+bx与直线y=﹣x+4交于另一点B,且点B的横坐标为1.(1)该抛物线的解析式为;(2)如图1,Q为抛物线上位于直线AB上方的一动点(不与B、A重合),过Q作QP⊥x 轴,交x轴于P,连接AQ,M为AQ中点,连接PM,过M作MN⊥PM交直线AB于N,若点P的横坐标为t,点N的横坐标为n,求n与t的函数关系式;在此条件下,如图2,连接QN并延长,交y轴于E,连接AE,求t为何值时,MN∥AE.(3)如图3,将直线AB绕点A顺时针旋转15度交抛物线对称轴于点C,点T为线段OA 上的一动点(不与O、A重合),以点O为圆心、以OT为半径的圆弧与线段OC交于点D,以点A为圆心、以AT为半径的圆弧与线段AC交于点F,连接DF.在点T运动的过程中,四边形ODFA的面积有最大值还是有最小值?请求出该值.19.如图,在矩形ABCD中,点E为BC的中点,连接AE,过点D作DF AE⊥于点F,过点C作CN DF⊥于点N,延长CN交AD于点M.(1)求证:AM MD=(2)连接CF,并延长CF交AB于G①若2AB=,求CF的长度;②探究当ABAD为何值时,点G恰好为AB的中点.20.已知菱形ABCD中,∠ABC=60°,AB=4,点M在BC边上,过点M作PM∥AB交对角线BD于点P,连接PC.(1)如图1,当BM=1时,求PC的长;(2)如图2,设AM与BD交于点E,当∠PCM=45°时,求证:BEDE=33+;(3)如图3,取PC的中点Q,连接MQ,AQ.①请探究AQ和MQ之间的数量关系,并写出探究过程;②△AMQ的面积有最小值吗?如果有,请直接写出这个最小值;如果没有,请说明理由.21.阅读材料:等腰三角形具有性质“等边对等角”.事实上,不等边三角形也具有类似性质“大边对大角”:如图1.在△ABC中,如果AB>AC,那么∠ACB>∠ABC.证明如下:将AB沿△ABC的角平分线AD翻折(如图2),因为AB>AC,所以点B落在AC的延长线上的点B'处.于是,由∠ACB>∠B',∠ABC=∠B',可得∠ACB>∠ABC.(1)灵活运用:从上面的证法可以看出,折纸常常能为证明一个命题提供思路和方法.由此小明想到可用类似方法证明“大角对大边”:如图3.在△ABC中,如果∠ACB>∠ABC,那么AB>AC.小明的思路是:沿BC的垂直平分线翻折……请你帮助小明完成后面的证明过程.(2)拓展延伸:请运用上述方法或结论解决如下问题:如图4,已知M为正方形ABCD的边CD上一点(不含端点),连接AM并延长,交BC的延长线于点N.求证:AM+AN>2BD.22.如图,在等腰Rt△ABC中,∠ACB=90°,AC=BC=8,点D在△ABC外,连接AD、BD,且∠ADB=90°,AB、CD相交于点E,AB、CD的中点分别是点F、G,连接FG.(1)求AB的长;(2)求证:AD+BD=2CD;(3)若BD=6,求FG的值.23.在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交BC于点F.(1)如图①,当AE⊥BC时,写出图中所有与∠B相等的角:;所有与∠C相等的角:.(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45) .①求∠B的度数;②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.24.在菱形ABCD中,点P是对角线BD上一点,点M在CB的延长线上,且=,连接PA.PC PM()1如图①,求证:PA PM=;()2如图②,连接,AM PM与AB交于点,120PC AM;O ADC︒∠=求证 =()3连接AM,当90∠=时,PC与AM的数量关系是ADC︒25.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c的图象与x轴交于A(﹣3,0)、B(2,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式;(2)点E(m,2)是直线AC上方的抛物线上一点,连接EA、EB、EC,EB与y轴交于D.①点F是x轴上一动点,连接EF,当以A、E、F为顶点的三角形与△BOD相似时,求出线段EF的长;②点G为y轴左侧抛物线上一点,过点G作直线CE的垂线,垂足为H,若∠GCH=∠EBA,请直接写出点H的坐标.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.E解析:(1)①详见解析;②8;(2)(2)四边形PEFD是菱形,证明详见解析【解析】【分析】(1)①根据四边形ABCD为正方形得AD=CD ,然后证明△ADF≌△CDP,则DF=DP,得到DF=PG;②先判断四边形PEFD是菱形,然后求出22+=P作PM⊥AD于点3110M,则四边形CDMP是矩形,则△DHG∽△PMG,根据相似三角形的性质,即可求出答案;(2)根据四边形ABCD为正方形得AD=AB,由四边形ABPM为矩形得AB=PM,则AD=PM,再利用等角的余角相等得到∠GDH=∠MPG,于是可根据“ASA”证明△ADF≌△MPG,得到DF=PG,加上PD=PG,得到DF=PD,然后利用旋转的性质得∠EPG=90°,PE=PG,所以PE=PD=DF,再利用DF⊥PG得到DF∥PE,于是可判断四边形PEFD为平行四边形,加上DF=PD,则可判断四边形PEFD为菱形.【详解】解:(1)①证明∵四边形ABCD是正方形,∴AD=CD ,∠A= ∠C=∠ADC=90°,∵DF⊥PG,∴∠DHG=90°,∴∠HGD+∠ADF=90°,∠CDP+∠PDG=90°,∵ PD=PG ,∴∠PGD=∠PDG,∴∠ADF=∠CDP,∴△ADF≌△CDP(ASA),∴DF=DP,∵ PD=PG ,∴DF=PG ;②∵线段PG 绕点P 逆时针旋转90°得到线段PE∴∠GPE=∠DHG=90°, PG=PE=DF= PD∴PE ∥DF∴四边形PEFD 是菱形在Rt △DCP 中,AD=AB=3,PC=1,PG=DP=223110+= 过点P 作PM ⊥AD 于点M ,则四边形CDMP 是矩形∴DM=MG=PC=1,DG=2DM=2,∠PMG=∠DHG=90°,∠DGH=∠PGM∴△DHG ∽△PMG∴DG GH PG MG = 即=110GH ∴GH=105, PH=PG-GH=4105 由(1)DF=DP=10∴四边形PEFD 的面积是DF PH ⋅=10×4105=8 ; (2)四边形PEFD 是菱形 ;作PM ⊥DG 于M ,如图2,∵四边形ABCD 为正方形,∴AD=AB ,∵四边形ABPM 为矩形,∴AB=PM ,∴AD=PM ,∵DF ⊥PG ,∴∠DHG=90°,∴∠GDH+∠DGH=90°,∵∠MGP+∠MPG=90°,∴∠GDH=∠MPG ,在△ADF 和△MPG 中FAD PMG AD MP ADF MPG ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADF ≌△MPG (ASA ),∴DF=PG ,而PD=PG ,∴DF=PD ,∵线段PG 绕点P 逆时针旋转90°得到线段PE ,∴∠EPG=90°,PE=PG ,∴PE=PD=DF 而DF ⊥PG ,∴DF ∥PE ,且DF =PE ,∴四边形PEFD 为平行四边形,∵DF=PD ,∴四边形PEFD 为菱形.【点睛】本题考查了四边形的综合题:熟练掌握平行四边形、矩形、菱形和正方形的判定与性质是解题的关键;同时会运用等腰三角形的性质和旋转的性质;会利用三角形全等解决线段相等的问题.2.B解析:(1)①(2,0),(1),(﹣1yx ;③y=﹣2x; (2)①半径为2,M(33);②2<r <4 【解析】【分析】(1)①如图2−1中,作BE ∥OD 交OA 于E ,CF ∥OD 交x 轴于F .求出OE 、OF 、CF 、OD 、BE 即可解决问题;②如图2−2中,作BE ∥OD 交OA 于E ,作PM ∥OD 交OA 于M .利用平行线分线段成比例定理即可解决问题;③如图3−3中,作QM ∥OA 交OD 于M .利用平行线分线段成比例定理即可解决问题; (2)①如图3中,作MF ⊥OA 于F ,作MN ∥y 轴交OA 于N .解直角三角形即可解决问题;②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.求出FN=NE=1时,⊙M的半径即可解决问题;【详解】解:(1)①如图2﹣1中,作BE∥OD交OA于E,CF∥OD交x轴于F.由题意OC=CD=1,OA=BC=2,∴BD=OE=1,OD=CF=BE=2,∴A(2,0),B(1,2),C(﹣1,2),故答案为:A(2,0),B(1,2),C(﹣1,2).②如图2﹣2中,作BE∥OD交OA于E,作PM∥OD交OA于M.∵OD∥BE,OD∥PM,∴BE∥PM,∴BE OE PM OM=,∴21x =,∴y=2x.故答案为:y=2x.③如图2﹣3中,作QM∥OA交OD于M.222MQ DMOA DOx y∴=-∴=∴222y x=-+故答案为:y=﹣22x+2.(2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N.∵ω=120°,OM⊥y轴,∴∠MOA=30°,∵MF⊥OA,OA=23,∴OF=FA=3,∴FM=1,OM=2FM=2,∴圆M的半径为2∵MN∥y轴,∴MN⊥OM,∴MN=233,ON=2MN=433,∴M4323,⎛⎫⎪⎪⎝⎭.②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.∵MK∥x轴,ω=120°,∴∠MKO=60°,∵MK=OK=23,∴△MKO是等边三角形,∴MN=3,当FN=1时,MF=3﹣1=2,当EN=1时,ME=3+1=4,观察图象可知当⊙M的半径r的取值范围为2<r<4.故答案为:2<r<4.【点睛】本题考查圆综合题、平行线分线段成比例定理、等边三角形的判定和性质、平面斜坐标系等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考压轴题.3.E解析:(1)∠EPF=∠AEP+∠PFC,∠AEP+∠EPF+∠PFC=360°;(2)见解析;(3)①150°,∠EQF=180°-12∠EPF【解析】【分析】(1)如下图,过点P作AB的平行线,根据平行线的性质可推导出角度关系;(2)如下图,根据(1)的结论,可得∠AEP+∠PFC=∠EPF=90°,利用△EPF内角和为180°可推导得出∠PEF+∠PFE=90°,从而得出∠PEF=∠AEP;(3)①根据(1)的结论知:∠AEP+∠PFC=∠EPF=60°,再利用角平分线的性质得出∠PEQ+∠PFQ=150°,最后在四边形EPFQ中得出结论;②根据(1)的结论知:∠AEP+∠PFC=∠EPF°,再利用角平分线的性质得出∠PEQ+∠PFQ=180°-1EPF2,最后在四边形EPFQ中得出结论.【详解】(1)如下图,过点P作PQ∥AB∵PQ∥AB,AB∥CD,∴PQ∥CD ∴∠AEP=∠EPQ,∠QPF=∠PFC 又∵∠EPF=∠EPQ+∠QPF∴∠EPF=∠AEP+∠PFC如下图,过点P作PQ∥AB同理,AB ∥QP ∥CD∴∠AEP+∠QPE=180°,∠QPF+∠PFC=180°∴∠AEP+∠EPF+∠PFC=∠AEP+∠EPQ+∠QPF+∠PFC=360°(2)根据(1)的结论知:∠AEP+∠PFC=∠EPF=90°∵PF 是∠CFE 的角平分线,∴∠PFC=∠PFE在△PEF 中,∵∠EPF=90°,∴∠PEF+∠PFE=90°∴∠PEF+∠PFE=∠AEP+∠PFC∴∠PEF=∠AEP ,∴PE 是∠AEF 的角平分线(3)①根据(1)的结论知:∠AEP+∠PFC=∠EPF=60°∴∠BEP+∠PFD=180°-∠AEP+180°-∠PFC=300°∵EQ 、QF 分别是∠PEB 和∠PFD 的角平分线∴∠PEQ=QEB ,∠PFQ=∠QFD∴∠PEQ+∠PFQ=150°在四边形PEQF 中,∠EQF=360°-∠EPF -(∠PEQ+∠PFQ)=360°-60°-150°=150° ②根据(1)的结论知:∠AEP+∠PFC=∠EPF∴∠BEP+∠PFD=180°-∠AEP+180°-∠PFC=360°-∠EPF∵EQ 、QF 分别是∠PEB 和∠PFD 的角平分线∴∠PEQ=∠QEB ,∠PFQ=∠QFD∴∠PEQ+∠PFQ=()1360EPF 2∠︒-=180°-1EPF 2∠ ∴在四边形PEQF 中: ∠EQF=360°-∠EPF -(∠PEQ+∠PFQ)=360°-EPF ∠-(180°-1EPF 2∠)=180°-1EPF 2∠ 【点睛】本题考查“M ”型模型,解题关键在过两条平行线中间的点作已知平行线的平行线,然后利用平行线的性质进行角度转化可推导结论.4.D解析:(1)证明见解析;(22953)DG 2MG ,理由见解析.【解析】【分析】(1)连接MG 并延长交AB 于N 点,证明△ANM ≌△FGM 后得到MG=MN ,AN=CG ,进而得到BN=BG ,得到△ANG 为等腰直角三角形,即可证明MG=MB.(2)分两种情况画出图形再利用(1)中的思路结合勾股定理即可求解.(3)先画出图形,然后证明△ADG ≌△ABG ,得到DG=BG ,又△BMG 为等腰直角三角形,故而得到DG=BG=2MG.【详解】解:(1) 连接MG 并延长交AB 于N 点,如下图所示:∵GF ∥AN ,∴∠NAM=∠GFM在△ANM 和△FGM 中∠∠=⎧⎪=⎨⎪∠=∠⎩BAM GFM AM FMNMA GMF ,∴△ANM ≌△FGM(ASA) ∴MG=MN ,CG=GF=AN∴AB-AN=BC-CG∴NB=GB∴△NBG 为等腰直角三角形又M 是NG 的中点∴由直角三角形斜边上的中线等于斜边的一半知:故有:MG=MB.(2)分类讨论:情况一:当B 、G 、F 三点在正方形ABCD 外同一直线上时延长MG 到N 点,并使得MG=MN ,连接AN ,BN∴∠∠=⎧⎪=⎨⎪=⎩MN MG AMN GMF AM FM ,∴△AMN ≌△FMG(SAS)∴AN=GF=GC ,∠NAM=∠GFM∴AN ∥GF∴∠NAB+∠ABG=180°又∠ABC=90°∴∠NAB+∠CBG=90°又在△BCG 中,∠BCG+∠CBG=90°∴∠NAB=∠BCG∴在△ABN 中和△CBG 中:∠∠=⎧⎪=⎨⎪=⎩AB BC NAB GCB AN CG ,∴△ABN ≌△CBG(SAS)∴BN=BG ,∠ABN=∠CBG∴∠ABC=∠NBG=90°∴△NBG 是等腰直角三角形,且∠BGN=45°在Rt △BCG 中,2222=534--=BG BC CG过M 点作MH ⊥BG 于H 点,∴△MHB 为等腰直角三角形∴MH=BH=HG=12BG=2 在Rt △MFH 中,2222MF=2529+=+=MH HF 情况二:当B 、G 、F 三点在正方形ABCD 内同一直线上时如下图所示,延长MG 到MN ,并使得MG=MN ,连接NA 、NB ,同情况一中证明思路,∠∠=⎧⎪=⎨⎪=⎩MN MG AMN GMF AM FM ,△AMN ≌△FMG(SAS)∴AN=GF=GC ,∠NAM=∠GFM∴AN ∥GF∴∠NAB=∠ABG又∠ABG+∠GBC=90°∠GBC+∠BIF=90°∴∠BIF=∠ABG又∠BIF=∠BCG ,∠ABC=∠NAB∴∠NAB=∠GCB∴在△ABN 中和△CBG 中:∠∠=⎧⎪=⎨⎪=⎩AB BC NAB GCB AN CG ,∴△ABN ≌△CBG(SAS)∴BN=BG ,∠ABN=∠CBG∴∠ABC=∠NBG=90°∴△NBG 是等腰直角三角形,且∠BGN=45°在△BCG 中,2222=534-=-=BG BC CG过M 点作MH ⊥BG 于H 点,∴△MHB 为等腰直角三角形∴MH=BH=HG=12BG=2 ∴HF=HG-GF=2-1=1在Rt △MFH 中,2222MF=215+=+=MH HF 29 5.(3)由题意作出图形如下所示:DG 、MG 的数量关系为:2,理由如下:∵G 点在AC 上∴∠DAG=∠BAG=45°在△ADG 和△ABG 中:∠∠=⎧⎪=⎨⎪=⎩AD AB DAG BAG AG AG ,∴△ADG ≌△BAG(SAS)∴DG=BG又由(2)中的证明过程可知:△MBG 为等腰直角三角形∴2MG∴2MG故答案为:2MG.【点睛】本题考查了正方形的旋转、三角形的全等、勾股定理等知识,难度很大,关键是要能正确做出图形,利用数形结合的思想,熟练的使用正方形的性质是解题的关键.5.A解析:(1)ABC 是“准黄金”三角形,理由见解析;(2)32910AB BC =;(3)①125615355AD CD =. 【解析】【分析】 (1)过点A 作AD BC ⊥于点D ,先求出AD 的长度,然后得到61035AD BC ==,即可得到结论; (2)根据题意,由“金底”的定义得:3:5AE BC =,设3AE k =,5BC k =,由勾股定理求出AB 的长度,根据比值即可求出AB BC的值;(3)①作AE ⊥BC 于E ,DF ⊥AC 于F ,先求出AC 的长度,由相似三角形的性质,得到AF=2DF ,由解直角三角形,得到3CF DF =,则(23)35AC x =+=,即可求出DF 的长度,然后得到CD 的长度; ②由①可知,得到CE 和AC 的长度,分别过点B ',D 作B G BC '⊥,DF AC ⊥,垂足分别为点G ,F ,然后根据相似三角形的判定和性质,得到DF AF AE EC=,然后求出CD 和AD 的长度,即可得到答案.【详解】解:(1)ABC 是“准黄金”三角形.理由:如图,过点A 作AD BC ⊥于点D ,∵12AC =,30ACB ∠=︒, ∴162AD AC ==. ∴:6:103:5AD BC ==. ∴ABC 是“准黄金”三角形.(2)∵点A ,D 关于BC 对称,∴BE AD ⊥,AE ED =.∵ABC 是“准黄金”三角形,BC 是“金底”,∴:3:5AE BC =.不防设3AE k =,5BC k =,∵点C 为ABD △的重心,∴:2:1BC CE =.∴52k CE =,152k BE =. ∴2215329(3)2k AB k ⎛⎫=+= ⎪⎝⎭. ∴329329:5AB k BC ==. (3)①作AE ⊥BC 于E ,DF ⊥AC 于F ,如图:由题意得AE=3, ∵35AE BC =, ∴BC=5, ∵10AB BC =, ∴10AB ,在Rt △ABE 中,由勾股定理得:22(10)31BE =-=,∴156EC =+=, ∴223635AC =+=∵∠AEC=∠DFA=90°,∠ACE=∠DAF ,∴△ACE ∽△DAF , ∴3126AE E D C F AF ===, 设DF x =,则2AF x =,∵∠ACD=30°, ∴3CF x =, ∴(23)35AC x == 解得:65315DF x == ∴2125615CD DF ==②如图,过点A 作AE BC ⊥于点E ,则3AE =. ∵ABC 是“准黄金”三角形,BC 是“金底”,∴:3:5AE BC =.∴5BC =. ∵105AB BC =, ∴10AB. ∴221BE AB AE =-=.∴6CE BE BC =+=,2236935AC CE AE =+=+=.分别过点B ',D 作B G BC '⊥,DF AC ⊥,垂足分别为点G ,F ,∴90B GC DFC '∠=∠=︒,3B G '=,5C B B C '==,则CG 4=.∵GCB FCD α'∠=∠=,∴AEC DFA ∽△△.∴::::3:4:5DF FC CD B G GC CB ''==.∴设3DF k =,4FC k =,5CD k =.∵12l l //,∴ACE CAD ∠=∠,且90AEC AFD ∠=∠=︒.∴AEC DFA ∽△△.∴DF AF AE EC =. ∴335436k k =,解得3510k =. ∴355CD k ==2222959595102AF DF AD ⎛⎫⎛⎫+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=. ∴9352355AD CD === 【点睛】本题属于相似形综合题,主要考查了重心的性质,等腰直角三角形的性质,勾股定理,解直角三角形,旋转的性质以及勾股定理的综合运用,解决问题的关键是依据题意画出图形,根据数形结合的思想进行解答.6.(1) CF 长为24;(2) 四边形BFDE 是菱形,理由见解析;(3) 纸片ENFM 是“标准纸",理由见解析【解析】【分析】(1)1AB =,则AD =ABCD 是矩形,得到1,CD AB BC AD ==-=FB FD =,设CF x =,则FB FD x ==,在Rt DCF △中,222+=CD CF DF ,可得)2221x x +=即可求解.(2)当顶点B 与点D 重合时,折痕EF 垂直平分BD ,可得OB OD =,90BOF DOE ∠=∠=,在矩形ABCD 中,//AD BC ,得到OBF ODE ∠=∠,在BOF 和DOE △中,,OBF ODE OB OD BOF DOE ∠=∠=∠=∠,,可得BOF DOE ≅,OE OF =,再根据OB OD =,可得四边形BFDE 是平行四边形,最后根据EF BD ⊥,即可求证平行四边形BFDE 是菱形.(3)由()2可知,OE OF =,同理可知,OM ON =,可得四边形ENFM 是平行四边形,根据90DOE DAB ∠=∠=︒,得到DOE DAB ,再根据AD =,可得2OE AB OD AD ===,进而得到2OE OD =,2EF BD =,同理可得,2MN AC =,根据四边形ABCD 是矩形,可得AC BD =,EF MN =,四边形ENFM是矩形,90EMF ∠=,MF OD tan FEM ME OE ∠===MF =,即可求证纸片ENFM 是“标准纸".【详解】解:()11,AB =则AD AB ==四边形ABCD 是矩形1,CD AB BC AD ∴==-=由折叠得FB FD =设CF x =,则FB FD x ==在Rt DCF △中,222+=CD CF DF)2221x x +=4x =答:CF 长为4 ()2四边形BFDE 是菱形.理由:当顶点B 与点D 重合时,折痕EF 垂直平分,BDOB OD ∴=,90BOF DOE ∠=∠=在矩形ABCD 中,//,AD BCOBF ODE ∴∠=∠在BOF 和DOE △中,,OBF ODE OB OD BOF DOE ∠=∠=∠=∠,BOF DOE ∴≅OE OF ∴=OB OD =∴四边形BFDE 是平行四边形EF BD ⊥平行四边形BFDE 是菱形.()3纸片ENFM 是“标准纸”理由如下:由()2可知,,OE OF =同理可知,,OM ON =∴四边形ENFM 是平行四边形90DOE DAB ∠=∠=︒DOE DAB ∴ 2AD =222OE AB OD AD ∴=== 22OE OD ∴=2EF BD ∴=同理可得,2MN AC = 四边形ABCD 是矩形,AC BD ∴=,EF MN ∴=∴四边形ENFM 是矩形.90EMF ∴∠=.MF OD tan FEM ME OE∴∠===MF ∴=.∴纸片ENFM 是“标准纸".【点睛】此题主要考查矩形的判定和性质、勾股定理、全等三角形的判定和性质、菱形的判定及三角函数,灵活运用判定和性质是解题关键.7.F解析:(1)28AD <<;(2)见详解;(3)EF BE DF =+,理由见详解【解析】【分析】(1)根据旋转的性质可证明ADC EDB ≅,6,AC BE AD ED ===,在ABE △中根据三角形三边关系即可得出答案;(2)延长FD 至M ,使DF=DM ,连接BM ,EM ,可得出CF BM =,根据垂直平分线的性质可得出EF EM =,利用三角形三边关系即可得出结论;(3)延长AB 至N ,使BN=DF ,连接CN ,可得NBC D ∠=∠,证明NBC FDC ≅,得出,CN CF NCB FCD =∠=∠,利用角的和差关系可推出50ECN ECF ∠=︒=,再证明NCE FCE ≅,得出EN EF =,即可得出结论.【详解】解:(1)∵,,AD ED CD BD ADC BDE ==∠=∠∴ADC EDB ≅∴6,AC BE AD ED ===在ABE △中根据三角形三边关系可得出:AB BE AE AB BE -<<+,即4216AD <<∴28AD <<故答案为:28AD <<;(2)延长FD 至M ,使DF=DM ,连接BM ,EM ,同(1)可得出CF BM =,∵,FD MD FD DE =⊥∴EF EM =在BEM △中,BE BM EM +>∴BE CF EF +>;(3)EF BE DF =+,理由如下:延长AB 至N ,使BN=DF ,连接CN ,∵180,180ABC D ABC NBC ∠+∠=︒∠+∠=︒∴NBC D ∠=∠∴NBC FDC ≅∴,CF CN NCB FCD =∠=∠∵100,50BCD FCE ∠=︒∠=︒∴50ECN ECF ∠=︒=∴NCE FCE ≅(SAS )∴EN EF =∴EF EN BE BN BE DF ==+=+∴EF BE DF =+.【点睛】本题考查的知识点有旋转的性质、全等三角形的判定及性质、线段垂直平分线的性质、三角形三边关系、角的和差等,解答此题的关键是作出辅助线,构造出与图①中结构相关的图形.此题结构精巧,考查范围广,综合性强.8.D解析:(1)D 点坐标为()2,3,矩形MONC 的最小值为645;(2)交点坐标为(3+13,﹣93132+),(3﹣13,﹣93132-),(1﹣5,152-),(1+5,15+).【解析】【分析】(1)当△DEB的面积最大时,直线DN与抛物线相切,可求出直线DN的解析式和点D的坐标,当矩形面积最小时,MG最小,求出MG的最小值即可.(2)分两种情况讨论,以DB为边和以DB为对角线,分别求出此时ON的解析式,联立求出交点坐标即可.【详解】解:(1)如图1所示,过点D作y轴的平行线交MB于点H,过点O作OQ垂直MB于点Q,令y=0,解得x1=﹣1,x2=4,∴A(﹣1,0),B(4,0),令x=0,y=2,∴E(0,2),设直线BE的解析式为y=kx+b,则2, 40,bk b=⎧⎨+=⎩解得122kb⎧=-⎪⎨⎪=⎩,∴直线BE的解析式为y=﹣12x+2,∵DN∥BE,∴设直线DN的解析式为y=﹣12x+b1,S △DEB =DH 12⨯•(x B ﹣x E ), ∴当△DEB 面积最大时,即是DH 最大的时候, ∴﹣12x +b 1=﹣12x 2+32x +2, △=b 2﹣4ac =0,即16﹣4(2b 1﹣4)=0,解得b 1=4,点D (2,3),S 矩=2S △MOG +S 平形四边形,∴矩形面积最小时就是MG 最小,设QG =m ,MQ =n ,∴MG =m +n ,∵m +n ≥∵△QOG ∽△MQO ,∴OQ 2=m •n ,∵△OEQ ∽△EOB ,∴OQ ∴m •n =165,∴m +n .∴MG , ∴S 矩=2S △MOG +S 平形四边形=645. (2)分两种情况讨论,情况一:当GN ∥DB 时,直线DB 的解析式为:y =﹣32x +6, 则直线NG 的解析式为y =﹣32x , ∴﹣32x =﹣12x 2+32x +2,解得x 1=x 2=3∴交点坐标为(92+),(392-), 情况二:DB 为对角线时,此时NG 必过DB 的中点(3,32), 设直线ON 的解析式为y =k 1x ,则k 1=12, ∴直线OD 的解析式为y =12x , 12=﹣12x 2+32x +2,解得x 1=1x 2=∴交点坐标为(1),(),综上所述:交点坐标为(92+),(392-),(1﹣12),(12). 【点睛】此题考查了二次函数的性质以及二次函数与几何相结合的问题,转化矩形面积最小和三角形面积最大为某条线段的最值为解题关键.9.A解析:(1)详见解析;(2)y x=(04x <<);(3)当AEG ∆是等腰三角形时,2BF =或43【解析】【分析】 (1)根据正方形的性质得到∠AOD=90°,AO=OD ,∠EOH=90°,OE=OH ,由全等三角形的性质即可得到结论;(2)如图1,过O 作ON ⊥AB 于N ,根据等腰直角三角形的性质得到122AN BN ON AB ====,根据勾股定理得到OF ===线段成比例定理即可得到结论;(3)①当AE=EG 时,△AEG 是等腰三角形,②当AE=AG 时,△AEG 是等腰三角形,如图2,过A 作AP ⊥EG 于P ③当GE=AG 时,△AEG 是等腰三角形,如图3,过G 作GQ ⊥AE 于Q ,根据相似三角形的性质或全等三角形的性质健即可得到结论.【详解】(1)∵四边形ABCD 是正方形,,OA OD AC BD ∴=⊥,90AOD ∴∠=︒,∵四边形OEGH 是正方形,,90OE OH EOH ∴=∠=︒,AOD EOH ∴∠=∠,AOD AOH EOH AOH ∴∠-∠=∠-∠,即HOD EOA ∠=∠,HDO EAO ∴∆≅∆.(2)如图1,过O 作ON⊥AB 于N ,则122AN BN ON AB ====, ∵BF=x,∴AF=4-x ,∴FN=2-x , ∴()222222248OF FN ON x x x =+=-+=-+∴248EF y x x =-+ ∵AM⊥AC,∴AE∥OB,∴BF OF AF EF=, ∴2248448x x x x y x x -+=---+, ∴)244804x x y x -+≤<; (3)①当AE=EG 时,△AEG 是等腰三角形,则AE=OE ,∵∠EAO=90°,∴这种情况不存在;②当AE=AG 时,△AEG 是等腰三角形,如图2,过A 作AP⊥EG 于P ,则AP∥OE,∴∠PAE=∠AEO,∴△APE∽△EAO,∴PE AE OA OE=,∵AE=AG,∴2421482x xxPE y-+==,()22248xAE yx-=-=,∴()22222224448448xx xxx xx---+=+,解得:x=2,②当GE=AG时,△AEG是等腰三角形,如图3,过G作GQ⊥AE于Q,∴∠GQE=∠EAO=90°,∴∠GEQ+∠EGQ=∠GEQ+∠AEO=90°,∴∠EGQ=∠AEO,∵GE=OE,∴△EGQ≌△OEA(AAS),∴22EQ AO==∴224242()xAE E Q-===∴43x =, ∴BF=2或43. 【点睛】本题考查了四边形的综合题,正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的性质,勾股定理,正确的作出辅助线构造全等三角形是解题的关键.10.C解析:(1)12,16AD CD ==;(2)277和297. 【解析】【分析】(1)根据题意由函数图象可知动点M 从A 出发,以每秒1个单位的速度从C 到D 耗时16秒求出CD ,再利用三角形面积公式求得AD 即可;(2)由题意可知只能有P 和Q 点都在AD 边上,此时分当P 在Q 上方时以及当P 在Q 下方时两种情况运用数形结合思维进行分析得出答案.【详解】解:(1)由函数图象可知动点M 从A 出发,以每秒1个单位的速度从C 到D 耗时36-20=16秒,即CD=16,而此时AMD ∆的面积为96,又因为90ADC ∠=︒, 即有11169622CD AD AD =⨯=,解得12AD =. 所以12,16AD CD ==. (2)由题意可知Q 运动到点A 停止的时间为285,而P 运动到点D 停止的时间为6, 所以只能有P 和Q 点都在AD 边上,此时以PQ 为底边,CD 为高,设运动时间为t ,则AP=2t ,QD=5t-16,(162855t ≤<), ①当P 在Q 上方时,则有PQ=AD-AP-QD= 122516287t t t --+=-, 可知CPQ ∆的面积为8时即11(287)16822PQ CD t =⨯-⨯=,解得277t =(满足条件);②当P 在Q 下方时,则有PQ=QD-(AD-AP )= 516(122)728t t t ---=-,可知CPQ ∆的面积为8时即11(728)16822PQ CD t =⨯-⨯=,解得297t =(满足条件). 所以当CPQ ∆的面积为8时,t 的值为277和297. 【点睛】本题考查四边形动点问题和一次函数结合,熟练掌握四边形动点问题的解决办法和一次函。

部编数学九年级上册期中押题培优01卷(考试范围:21.124.2)(解析版)含答案

部编数学九年级上册期中押题培优01卷(考试范围:21.124.2)(解析版)含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!期中押题培优01卷(考试范围21.1-24.2)一、单选题(共16分)1.(本题2分)把一元二次方程()213x x x -=-化为一般形式,正确的是( )A .2230x +=B .22230x x --=C .2220x x -+=D .22230x x -+=【答案】D【分析】将方程整理为一般式即可.【详解】解:()213x x x -=-,223x x x -=-,即22230x x -+=.故选:D .【点睛】本题考查一元二次方程的一般式,掌握一元二次方程的一般式的形式为20(a 0)++=¹ax bx c 是解题的关键.2.(本题2分)点(2,3)P 关于原点对称的点P ¢的坐标是( )A .(2,3)-B .(2,3)-C .(2,3)--D .(3,2)【答案】C【分析】关于原点对称的点,横坐标与纵坐标都互为相反数,据此判断即可.【详解】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”可知:点(2,3)P 关于原点对称的点的坐标是(-2,-3).故选:C .【点睛】本题考查了关于原点对称的点的坐标,利用关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.3.(本题2分)已知点()12,A y -,()22,B y ,()33,C y 均在拋物线()2112y x k =-+上,则1y ,2y ,3y 的大小关系为( )A .123y y y <<B .213y y y <<C .132y y y <<D .231y y y <<【答案】D【分析】根据二次函数的解析式得出图象的开口向下,对称轴是直线x =1,根据x ≥1时,y 随x 的4.(本题2分)用配方法解方程2230x x --=时,原方程应变形为( )A .()214x +=B .()214x -=C .()227x +=D .()227x -=【答案】B【分析】利用完全平方公式()2222a ab b a b ±+=±进行配方即可得.【详解】解:2230x x --=,223x x -=,22131x x -+=+,()214x -=,故选:B .【点睛】本题考查了利用配方法解一元二次方程,熟练掌握配方法是解题关键.5.(本题2分)将矩形ABCD 绕点B 顺时针旋转90°后得到矩形A BC D ¢¢¢,若AB =12,AD =5,则DBD ¢V 的面积为( )A .13B .26C .84.5D .169【答案】C 【分析】首先根据旋转的性质得到90DBD DB D B Т°¢=,=,继而得到DBD ¢V 是等腰直角三角形,6.(本题2分)如图表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5cm,水面宽AB为8cm,则水的最大深度CD为()A.4cm B.3cm C.2cm D.1cmQ输水管的半径为5cm,水面宽\^,DO AB7.(本题2分)已知二次函数()20y ax bx c a =++¹的图象如图所示,并且关于x 的一元二次方程20ax bx c m ++-=有两个不相等的实数根,下列结论:①240b ac -<;②0abc >;③0a b c -+<;④2m >-.其中正确结论的个数有( )A .1个B .2个C .3个D .4个∴2m >-,故④正确;故选:B【点睛】此题主要考查了二次函数图象与各项系数的关系,正确把握二次函数与方程之间的关系是解题的关键.8.(本题2分)如图,⊙O 在△ABC 三边上截得的弦长相等,即DE =FG =MN ,∠A =50°,则∠BOC =( )A .100°B .110°C .115°D .120°∵DE =FG =MN ,∴OP =OK =OQ ,∴OB 、OC 平分∠ABC 和∠12OBC ABC \Ð=Ð,Ð∵∠A =50°,二、填空题(共16分)9.(本题2分)请你用数学的眼光观察,以下历届冬奥会图标中,你最为欣赏的图标是____________,(选择①,②,③,④中的一项)选择理由是____________________________________.【答案】 ② 既是轴对称图形,又是中心对称图形【分析】根据轴对称图形和中心对称图形的定义解答即可.【详解】解:我最为欣赏的图标是②,选择理由是②既是轴对称图形,又是中心对称图形①是轴对称图形,③既不是轴对称图形,也不是中心对称图形,④是轴对称图形.故答案为:②;既是轴对称图形,又是中心对称图形.【点睛】本题考查了轴对称图形和中心对称图形,掌握相关定义是解答本题的关键.10.(本题2分)将抛物线2y x =向上平移3个单位,再向右平移2个单位,所得抛物线的解析式是________.【答案】()223y x =-+【分析】根据题意可得将抛物线2y x =向上平移3个单位,再向右平移2个单位,所得抛物线的顶点坐标为(2,3),即可求解.【详解】解:∵抛物线y =x 2的顶点坐标为(0,0),∴将抛物线2y x =向上平移3个单位,再向右平移2个单位,所得抛物线的顶点坐标为(2,3),∴所得抛物线的解析式是()223y x =-+.故答案为:()223y x =-+【点睛】本题主要考查了二次函数图象的平移,熟练掌握二次函数图象的平移的规律是解题的关键.11.(本题2分)定义:有一个圆分别和一个三角形的三条边各有两个交点,截得的三条弦相等,我们把这个圆叫作“等弦圆”,现在有一个斜边长为2的等腰直角三角形,当等弦圆最大时,这个圆的半径为_____.【答案】22,90,CD CK EQ ACB ==Ð=°Q90,COD COK \Ð=Ð=° DK 过圆心,90,2,AC BC ACB AB =Ð=°=Q12,AC BC AF BF CF \=====12.(本题2分)关于x的一元二次方程2x﹣3x﹣m=0有两个实数根,则m的取值范围为_____.【答案】m94³-## 2.25m³-##124m³-13.(本题2分)如图,点A、B、C在⊙O上,∠B=130°,则∠AOC=__________°.【答案】100【分析】如图所示,在优弧AC上去一点D,连接AD,DC,利用圆内接四边形对角互补求出∠ADC 的度数,再由圆周角定理求解即可.【详解】解:如图所示,在优弧AC上去一点D,连接AD,DC,则四边形ABCD是圆内接四边形,∵∠B=130°,∴∠ADC=180°-∠B=50°,∴∠AOC=2∠ADC=100°,故答案为:100.【点睛】本题主要考查了圆内接四边形的性质,圆周角定理,正确作出辅助线构造圆内接四边形是解题的关键.14.(本题2分)如图,等边OAB V 的边OB 在x 轴上,点B 坐标为(2,0),以点O 为旋转中心,把OAB V 逆时针转90°,则旋转后点A 的对应点A ¢的坐标是______.15.(本题2分)某件商品连续两次降价后,零售价由原来的500元降为405元,设此商品平均每次降价的百分率为x ,则恨据题意列出的方程是______.【答案】2500(1)405x -=【分析】设平均每次降价的百分率为x ,则第一次降价后售价为500(1-x ),第二次降价后售价为2500(1)x -,然后根据两次降价后的售价建立等量关系即可.【详解】解:根据题意得2500(1)405x -=.故答案为:2500(1)405x -=.【点睛】本题考查的是由实际问题抽象出一元二次方程,要注意题意指明的是降价,应该是(1-x )而不是(1+x ).16.(本题2分)如图,已知顶点为(-3,-6)的抛物线2y ax bx c=++经过点(-1,-4),则下列结论:①24b ac > ②26ax bx c ++-≥ ③若点(2,),(5,)m n --在抛物线上,则m n >④关于x 的一元二次方程24ax bx c ++=-的两根为-5和-1 ⑤22()a c b +>,其中正确的有__________ .【答案】①②④【分析】利用二次函数与一元二次方程的关系及其与一元一次不等式的关系,以及二次函数的对称性可以求解.【详解】由图象知,抛物线与x 轴有两个不同的交点,只是左边那个没画出来而已,∴由二次函数与一元二次方程的关系可知,Δ=b 2-4ac >0,从而b 2>4ac ,故①正确;三、解答题(共88分)17.(本题6分)解方程:(1)()()8112x x --=-(2)22410x x --=.18.(本题6分)如图,等边ABCV中,D是AC中点,过C作CE∥AB,且AE CE^,求证:BD AE=.【答案】见解析【分析】只需要利用AAS证明△BAD≌△ACE即可证明结论;【详解】证明:∵等边三角形ABC中,D是AC中点,∴AB=CA,BD是等边三角形ABC的高,∵AE⊥CE,∴∠ADB=∠E=90°,∵CE∥AB,∴∠BAD=∠ACE,在△BAD与△ACE中∵ADB EBAD ACEAB CAÐ=ÐìïÐ=Ðíï=î∴△BAD≌△ACE(AAS)【点睛】本题主要考查了等边三角形的性质,全等三角形的性质与判定,平行线的性质,熟知等边三角形的性质和全等三角形的性质与判定条件是解题的关键.19.(本题6分)已知a 是方程x 2-2x -1=0的一个根,求代数式(a -2)2+(a +1)(a -1)的值.【答案】5【分析】先根据条件a 是方程210x x +-=的一个根,得出221a a -=,然后把所给的代数式化简为22(2)3a a -+,代入221a a -=计算即可.【详解】∵a 是方程2-210x x -=的一个根,∴2210a a --=.∴221a a -=.∴()()()2211a a a +-+-22441a a a =-++-2243a a =-+22(2)3a a =-+213=´+5=.【点睛】本题考查了一元二次方程根的定义,代数式求值,正确理解方程根的概念、利用整体代入的方法进行求解是解题的关键.20.(本题6分)如图,已知AB 、CD 是⊙O 的直径,DF ∥AB 交⊙O 于点F ,BE ∥DC 交⊙O 于点E .(1)求证:BE =DF ;(2)写出图中4组不同的且相等的劣弧(不要求证明).【答案】(1)见解析;(2)答案不唯一,图中相等的劣弧有:弧DF =弧BE ,弧EC =弧FA ,弧AC =弧BD ,弧DA =弧BC .【分析】(1)根据DF ∥AB ,BE ∥DC ,得到∠EBA =∠CDF ,然后根据相等的弧所对的弦相等即可(2)根据等弦对等弧和相等的圆周角所对的弧相等即可得到4组不同的且相等的劣弧.【详解】(1)∵DF∥AB,BE∥DC,∴∠EBA=∠COA=∠CDF.∴弧ECA=弧CAF,∴弧BE=弧DF,∴BE=DF;(2) 由(1)可得,弧DF=弧BE;∵弧ECA=弧CAF,∴弧EC=弧FA;Ð=Ð,∵AOC BOD∴弧AC=弧BD;∵弧BE+弧EC=弧AF+弧DF;∴弧DA=弧BC.∴综上所述,图中相等的劣弧有:弧DF=弧BE,弧EC=弧FA,弧AC=弧BD,弧DA=弧BC.【点睛】此题考查了相等的圆周角所对的弧相等,弦相等,等弧对等弦等知识,解题的关键是熟练掌握相等的圆周角所对的弧相等,弦相等,等弧对等弦等知识.21.(本题7分)下面是娜娜设计的“作一个角等于已知角”的尺规作图过程.已知:RT△ABC,求作:AB上作点D,使∠BCD=∠A.作法:如图,以AC为直径作圆,交AB于D,所以点D就是所求作的点;根据娜娜设计的作图过程,完成下面的证明.证明:∵AC是直径∴∠ADC=90°(______)(填推理的依据)即∠ACD+∠A=90°,∵∠ACB=90°,即∠ACD+_______=90°,∴∠BCD=∠A (_______)(填推理的依据).22.(本题7分)已知关于x 的一元二次方程()()()2321203k x k x k k --++-=¹.(1)判断方程根的情况,并说明理由;(2)若方程的所有实数根均为整数,并且k 也是整数,求k 的值.23.(本题7分)如图,已知抛物线2y ax bx c =++的顶点为A (4,3),与y 轴相交于点B (0,﹣5),对称轴为直线l ,点M 是线段AB 的中点.(1)求抛物线的表达式;(2)写出点M 的坐标并求直线AB 的表达式;(3)设动点P ,Q 分别在抛物线和对称轴l 上,当以A ,P ,Q ,M 为顶点的四边形是平行四边形时,求P ,Q 两点的坐标.24.(本题7分)如图,在Rt ABC V 中,90B Ð=°,6cm AB =,10cm BC =,点P 从点A 开始沿AB 边向点B 移动,速度为1cm /s ;点Q 从点B 开始沿BC 边向点C 移动,速度为2cm /s ,点P 、Q 分别从点A 、B 同时出发,当其中一点到达终点后,另一点也随之停止运动.(1)几秒时,PQ 的长度为?(2)几秒时,PBQ △的面积为28cm ?(3)当(05)t t <<为何值时,四边形APQC 的面积最小?并求这个最小值.25.(本题8分)如图,AB 是O e 的直径,CD 是O e 的一条弦,,AB CD ^连接,.AC OD(1)求证:2;BOD A Ð=Ð(2)连接DB ,过点C 作,CE DB ^交DB 的延长线于点E ,延长,DO 交AC 于点F ,若F 为AC 的中点,求证:直线CE 为O e 的切线.【答案】(1)答案见解析(2)答案见解析【分析】(1)设AB 交CD 于点H ,连接OC ,证明Rt Rt COH DOH @V V ,故可得COH DOH Ð=Ð ,于是»»BCBD = ,即可得到2BOD A Ð=Ð;(2)连接AD ,解出60COB Ð=°,根据AB 为直径得到90ADB Ð=°,进而得到60ABD Ð=°,即可证明OC DB ∥,故可证明直线CE 为O e 的切线.(1)证明:设AB 交CD 于点H ,连接OC ,由题可知,OC OD \=,90OHC OHD Ð=Ð=°,OH OH =Q ,()Rt Rt HL COH DOH @\V V ,COH DOH \Ð=Ð,»»BCBD \=,COB BOD \Ð=Ð,2COB A Ð=ÐQ ,2BOD A \Ð=Ð;(2)证明:连接AD ,OA OD =Q ,OAD ODA Ð=Ð∴,同理可得:OAC OCA Ð=Ð,OCD ODC Ð=Ð,∵点H 是CD 的中点,点F 是AC 的中点,OAD ODA OAC OCA OCD ODC \Ð=Ð=Ð=Ð=Ð=Ð,180OAD ODA OAC OCA OCD ODC Ð+Ð+Ð+Ð+Ð+Ð=°Q ,30OAD ODA OAC OCA OCD ODC \Ð=Ð=Ð=Ð=Ð=Ð=°,223060COB CAO \Ð=Ð=´°=°,AB Q 为O e 的直径,90ADB \Ð=°,90903060ABD DAO \Ð=-Ð=°-°=°,60ABD COB \Ð=Ð=°,OC DE \∥,CE BE ^Q ,CE OC \^,\直线CE 为O e 的切线.【点睛】本题主要考查三角形全等的判定与性质,同弧所对的圆周角相等,圆周角定理,直线平行的判定与性质,三角形的内角和公式,证明三角形全等以及证明平行线是解题的关键.26.(本题8分)在平面直角坐标系xOy 中,已知抛物线2221y x mx m =-+-.(1)当2m =时,求抛物线的顶点坐标;(2)①求抛物线的对称轴(用含m 的式子表示);②若点()11,m y -,()2,m y ,()33,m y +都在抛物线2221y x mx m =-+-上,则1y ,2y ,3y 的大小关为__________;(3)直线y x b =+与x 轴交于点()30A -,,与y 轴交于点B ,过点B 作垂直于y 轴的直线l 与抛物线2221y x mx m =-+-有两个交点,在抛物线对称轴左侧的点记为P ,当OAP △为钝角三角形时,求m 的取值范围.312y y y \>>;故答案为:312y y y \>>;(3)把点()30A -,代入y x b =+的表达式并解得:3b =,则()0,3B ,直线AB 的表达式为:3y x =+,如图,在直线3x =上,当90AOP Ð=o 时,点P 与B 重合,当3y =时,22213y x mx m =-+-=,则2x m =±,Q 点P 在对称轴的左侧,2x m m \=+>不符合题意,舍去,则点()2,3P m -,当△OAP 为钝角三角形时,则02m m <-<或23m -<-,解得:2m >或1m <-,m \的取值范围是:2m >或1m <-.【点睛】本题考查的是二次函数综合运用,涉及到一次函数,解不等式,一元二次方程根的判别式,钝角三角形判断的方法等知识点,第三问有难度,确定∠AOP 为直角时点P 的位置最关键.27.(本题10分)如图,在△ABC 中,,AB AC BAC a Ð==,点D 在BC 上,以点A 为中心,将线段AD 顺时针旋转a 得到线段AE ,连接,BE DE .(1)按要求作出图形;(2)若a =90°,用等式表示线段,,DC DB DE 大小关系,并证明;(3)若a=120°,AB=M为BC的中点,求ME的最小值.28.(本题10分)ABC V 为等边三角形,AB =8,AD ⊥BC 于点D ,E 为线段AD 上一点,AE =AE 为边在直线AD 右侧构造等边三角形AEF ,连接CE ,N 为CE 的中点.(1)如图1,EF 与AC 交于点G ,连接NG ,BE ,直接写出NG 与BE 的数量关系;(2)如图2,将AEF V 绕点A 逆时针旋转,旋转角为a ,M 为线段EF 的中点,连接DN ,MN .当30120a °<<°时,猜想∠DNM 的大小是否为定值,如果是定值,请写出∠DNM 的度数并证明,如果不是,请说明理由;(3)连接BN,在AEFV绕点A逆时针旋转过程中,请直接写出线段BN的最大值.∵△ABC是等边三角形,同(1)可证△BAE≌△CAF(SAS。

中考数学培优考前辅导训练题

中考数学培优考前辅导训练题

图1图2图4-2图5第2个图第1个图图71.图1所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的 结果为24,第二次输出的结果为12,…,则第2010次输出的结果为【 】A.6 B.3 C.200623 D.10033231003⨯+2.某汽车维修公司的维修点环形分布如图2, 公司在年初分配给A 、B 、C 、D 四个维修点某种配件各50件.在使用前发现需将A 、B 、C 、D 四个维修点的这批配件分别调整为40、45、54、61件,但调整只能在相邻维修点之间进行。

那么要完成上述调整,最少的调动件次(n 件配件从一个维修点调整到相邻维修点的调动件次为n )为【 】 A .15 B .16 C .17 D .183.下面两个多位数1248624……、6248624……,都是按照如下方法得到的:将第一位数字乘以2, 若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.对第2位数字 再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是【 】 A.495 B.497 C.501 D.5034.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小 关系为【 】 A.Q P > B.Q P = C.Q P < D.不能确定5.下列各式:①2193-⎛⎫-= ⎪⎝⎭②()02-=1 ③222)(b a b a +=+ ④()622393b a ab =- ⑤x x x -=-432,其中计算正确的是【 】 A.①②③ B.①②④ C.③④⑤ D.②④⑤ 6.如图3,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后余部分又剪 拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是【 】 A .2m +3 B .2m +6 C .m +3 D .m +67.图4-1是一个边长为()m n +的正方形,小颖将图4-1中的阴影部分拼成图4-2的, 形状由图4-1和图4-2能验证的式子是【 】A.22()()4m n m n mn +--=B.222()()2m n m n mn +-+=C.222()2m n mn m n -+=+ D.22()()m n m n m n +-=-8.如图5,在边长为a 的正方形中,剪去一个边长为b 的小正方形(a >b ),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a 、b 的恒等式为【 】A.()2222a b a ab b -=-+ B.()2222a b a ab b +=++ C.22()()a b a b a b -=+- D.2()a ab a a b +=+9.若代数式26x x b -+可化为2()1x a --,则b a -的值是 .10.古希腊数学家把数 ,21,15,10,6,3,1叫做三角数,它有一定的规律性.若把一个三角数记为1a ,第二个三角数记 为 ,2a ,第n 个三角形数记为n a ,计算12a a -, ,,3423a a a a --,由此推算,=-99100a a ,=100a .11.小明玩一种挪动珠子的游戏,每次挪动珠子的颗数与对应所得的分数如右表:当对应所得分数为132分时,则挪动的珠子数 颗.12.观察式子:),7151(21751),5131(21531),311(21311-=⨯-=⨯-=⨯由此计算:+⨯+⨯+⨯751531311…=⨯+201120091 .13. 若自然数n 使得作竖式加法n +(n +1)+(n +2)均不产生进位现象,则称n 为“可连数”,例如32是“可连数”,因为32+33+34不产生进位现象;23不是“可连数”,因为23+24+25产生了进位现象,那么小于200的“可连数”的个数为 .14.观察图6它们是按一定规律构造的,依照此规律,第100个图形中共有 个三角形. 15.120100(60)(1)|28|2(21)(301)cos tan -÷-+--+⨯-= ;0212tan 60(-3.14)()2π---+-+= . 16.已知m 2-5m -1=0,则2m 2-5m +1m2= .17.20XX 年广州亚运会吉祥物取名“乐羊羊”.图7各图是按照一定规律排列的 羊的组图,图①有1只羊,图②有3只羊,……,则图⑩有___________只羊.图8-1图8-2图8-3图9图11图13AB C A 1A 2A 3B 1B 2B 3图1018.搭建如图8①的单顶帐篷需要17根钢管,帐篷按图8②,图8③的方式串起 来搭建,则串7顶这样的帐篷需要 根.19.图9为手的示意图,在各个手指间标记字母A ,B ,C ,D .请你按图中箭头所指方向(即A →B →C →D →C →B →A →B →C →…的方式)从A 开始数连续的正整数1,2,3,4,…,当数到12时,对应的字母是 ;当字母C 第201次出现 时,恰好数到的数是 ;当字母C 第2n +1次出现时(n 为正整数),恰好数到的数是 (用含n 的代数式表示).20.如图10,△ABC 的面积为1,分别取AC 、BC 两边的中点A 1、B 1,则四边形A 1ABB 1的面积为34,再分别取A 1C 、B 1C 的中点A 2、B 2,A 2C 、B 2C 的中点A 3、B 3,依次取下去….利用这一图形,能直观地计算出3 4+3 42+3 43+…+34n =________.21.如图11,在Rt △ABC 中,AB=AC ,P 是边AB (含端点)上的动点,过P 作BC的垂线PR ,R 为垂足,∠PRB 的平分线与AB 相交于点S ,在线段RS 上存在一点T ,若以线段PT 为一边作正方形PTEF ,其顶点E 、F 恰好分别在边BC 、AC 上.(1)△ABC 与△SBR 是否相似?说明理由; (2)请你探索线段TS 与P A 的长度之间的关系;(3)设边AB=1,当P 在边AB (含端点)上运动时,请你探索正方形PTEF 的面积y 的最小值和最大值.22.如图12,直线434+-=x y 和x 轴、y 轴的交点分别为B 、C ,点A 的坐标是(-2,0). (1)试说明△ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S .① 求S 与t 的函数关系式;② 设点M 在线段OB 上运动时,是否存在S=4的情形?若存在,求出对应的t 值;若不存在请说明理由;③在运动过程中,当△MON 为直角三角形时,求t 的值.23.已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图13所示的平面直角坐标系.F 是边BC 上的一个动点(不与B C ,重合),过F 点的反比例函数(0)ky k x=>的图象与AC 边交于点E . (1)求证:AOE △与BOF △的面积相等;(2)记OEF ECF S S S =-△△,求当k 为何值时,S 有最大值,最大值为多少?(3)请探索:是否存在这样的点F ,使得将CEF △沿EF 对折后,C 点恰好落在OB 上? 若存在,求出点F 的坐标;若不存在,请说明理由.答案:1-8BBACBACC ,9. 5;10. 100,5050;11.12;12. 10052011;13.24;14.199;15.-2,5; 16. 28; 17. 55;18.83;19.B ,603,63n +;20.114n-21.【解析】要想证明△ABC 与△SBR 相似,只要证明其中的两个角相等即可;要想得到TS=PA ,只要证明△TPS ≌△PFA 即可;对于(3),需要建立正方形PTEF 的面积y 与AP 的函数关系式,利用函数的极值来解决. 【答案】解:(1)∵RS 是直角∠PRB 的平分线,∴∠PRS =∠BRS =45°.在△ABC 与△SBR 中,∠C =∠BRS =45°,∠B 是公共角,∴△ABC ∽△SBR ..(2)线段TS 的长度与P A 相等.∵四边形PTEF 是正方形,∴PF =PT ,∠SPT +∠FP A =180°-∠TPF =90°, 在Rt △PF A 中,∠PF A +∠FP A =90°,∴∠PF A =∠TPS ,∴R t △P AF ≌Rt △TSP ,∴P A =TS .当点P 运动到使得T 与R 重合时,这时△PF A 与△TSP 都是等腰直角三角形且底边相等,即有P A =TS . 由以上可知,线段ST 的长度与P A 相等.(3)由题意,RS 是等腰Rt △PRB 的底边PB 上的高,∴PS =BS , ∴BS +PS +P A =1, ∴PS =12PA-.设P A 的长为x ,易知AF =PS ,则y =PF 2=P A 2+PS 2,得y =x 2+(12x -)2,即y =2511424x x -+,根据二次函数的性质,当x =15时,y 有最小值为15.如图2,当点P 运动使得T 与R 重合时,P A =TS 为最大.易证等腰Rt △P AF ≌等腰Rt △PSR ≌等腰Rt △BSR ,∴P A =13.如图3,当P 与A 重合时,得x =0.∴x 的取值范围是0≤x ≤13.∴①当x 的值由0增大到15时,y 的值由14减小到15∴②当x 的值由15增大到13时,y 的值由15增大到29∵15≤29≤14,∴在点P 的运动过程中,正方形PTEF 面积y 的最小值是15,y 的最大值是14. 22.【答案】(1)将0y =代入443y x =-+,得3x =,∴点B 的坐标为(30),; 将0x =代入443y x =-+,得4y =,∴点C 的坐标为(04),.在Rt OBC △中,4OC =,3OB =,5BC ∴=.又(20)A -,,5AB ∴=,AB BC ∴=,ABC ∴△是等腰三角形.(2)5AB BC ==,故点M N ,同时开始运动,同时停止运动.过点N 作ND x ⊥轴于D ,则4sin 5ND BN OBC t =∠=,①当02t <<时(如图甲),2OM t =-,114(2)225S OM ND t t ∴==-22455t t =-+.当25t <≤时(如图乙),2OM t =-,114(2)225S OM ND t t ∴==-22455t t =-.(注:若将t 的取值范围分别写为02t ≤≤和25t ≤≤也可以)②存在4S =的情形.当4S =时,224455t t -=.解得11t =,21t =.15t =+,故当4S =时,1t =MN x ⊥轴时,MON △为直角三角形.3cos 5MB BN MBN t =∠=,又5MB t =-.355t t ∴=-,258t ∴=.当点M N ,分别运动到点B C ,时,MON △为直角三角形,5t =.故MON △为直角三角形时,258t =秒或5t =秒.23. 【答案】(1)证明:设11()E x y ,,22()F x y ,,AOE △与FOB △的面积分别为1S ,2S ,由题意得11k y x =,22ky x =. 1111122S x y k ∴==,2221122S x y k ==.12S S ∴=,即AOE △与FOB △的面积相等.(2)由题意知:E F ,两点坐标分别为33k E ⎛⎫⎪⎝⎭,,44k F ⎛⎫ ⎪⎝⎭,,1111432234ECF S EC CF k k ⎛⎫⎛⎫∴==-- ⎪⎪⎝⎭⎝⎭△, EOF AOE BOF ECFAOBC S S S S S ∴=---△△△△矩形11121222ECF ECFk k S k S =---=--△△122OEF ECF ECF S S S k S ∴=-=--△△△11112243234k k k ⎛⎫⎛⎫=--⨯-- ⎪⎪⎝⎭⎝⎭2112S k k ∴=-+.当161212k =-=⎛⎫⨯- ⎪⎝⎭时,S 有最大值.131412S -==⎛⎫⨯- ⎪⎝⎭最大值. (3)解:设存在这样的点F ,将CEF △沿EF 对折后,C 点恰好落在OB 边上的M 点,过点E 作EN OB ⊥,垂足为N .由题意得:3EN AO ==,143EM EC k ==-,134MF CF k ==-, 90EMN FMB FMB MFB ∠+∠=∠+∠=,EMN MFB ∴∠=∠.又90ENM MBF ∠=∠=,ENM MBF ∴△∽△.EN EM MB MF ∴=,11414312311331412k k MB k k ⎛⎫-- ⎪⎝⎭∴==⎛⎫-- ⎪⎝⎭, 94MB ∴=.222MB BF MF +=,222913444k k ⎛⎫⎛⎫⎛⎫∴+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得218k =.21432k BF ∴==.∴存在符合条件的点F ,它的坐标为21432⎛⎫ ⎪⎝⎭,.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 页
1 图7
A
B
E
F
C
D 图6G
B C 图2
A
B E
H
C D 图3中考数学培优考前辅导训练题【一】
1.二次函数y=ax 2+bx +c (a ≠0)的图象如图1,有以下5个结论:(1)abc >0;(2)b <a +c ;(3)4a +2b +c >0; (4)2c <3b ;(5)a +b >m (am +b ) (m ≠1的实数),其中正确的结论有【 】个 A . 1 B. 2 C . 3 D . 4
2.如图2,A B C △是等边三角形,点D E ,分别在B C A C ,上,且13
B D B
C =
,13
C E A C =
,B E A D ,相交于点F ,
连接D E ,则下列结论:①60AFE = ∠;②D E A C ⊥;③2CE DF DA = ;④A F B E A E A C = ,正确的结论有【 】A .4个 B .3个 C .2个
D .1个
3.如图3, 在△ABC 中AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,AD 、CE 交于点H ,已知EH=EB=3、AE=4,则CH 的长是【 】
A . 1
B . 2
C . 3
D .4
4.如图4,已知E F 是O 的直径,把A ∠为60
的直角三角板ABC 的一条直角边B C 放在直线E F 上,斜边A B 与O 交于点P ,点B 与点O 重合.将三角板ABC 沿
O E 方向平移,使得点B 与点E 重合为止.设POF x ∠= ,则x 的取值范围是【 】
A .3060x ≤≤
B .3090x ≤≤
C .30120x ≤≤
D .60120x ≤≤
5.如图5,在A B C △中,1086A B A C B C ===,,,经过点C 且与边A B 相 切的动圆与C B C A ,分别相交于点E F ,,则线段
E F 长度的最小值是【 】 A .
B .4.75
C .5
D .48
6.已知A (6,0)、B (0,8),若点A 和点B 到直线l 的距离都为5,且满足上述条件的直线l 共有n 条,则n 的值是【 】A .1 B .2 C .3 D .4
7.如图6,在□ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,BG=24,则ΔCEF 的周长为【 】 A.8 B.9.5 C.10 D.11.5
8.如图7,直角梯形纸片ABCD ,AD ⊥AB ,AB =8,AD=CD=4,点E 、F 分别在线段AB 、AD 上,将△AEF 沿EF 翻折,点A 的落点记为P .(1)当AE=5,P 落在线段CD 上时,PD= ; (2)当P 落在直角梯形ABCD 内部时,PD 的最小值等于 . 9.在平面直角坐标系中,有A (3,-2),B (4,2)两点,现另取一点C (1,n ),当n = 时,AC + BC 的值最小. 10.某公司销售A 、B 、C 三种产品,在去年的销售中,高新产品C 的销售金额占总销售金额的40%. 由于受国际金融危机的影响,今年A 、B 两种产品的销售金额都将比去年减少20%,因而高新产品C 是今年销售的重点.若要使今年的总销售金额与去年持平,那么今年高新产品C 的销售金额应比去年增加 %.
11.若正方形ABCD 的边长为4,E 为BC 边上一点,BE=3,M 为线段AE 上一点,射线BM 交正方形的一边于点F ,且BF=AE ,则BM 的长为 .
12.在△A BC 中,AB=AC ,AB 的垂直平分线与AC 所在的直线相交所得到锐角为50°,则∠B 等于_______度.
13.已知M (a ,b )是平面直角坐标系xOy 中的点,其中a 是从l ,2,3三个数中任取的一个数,b 是从l ,2,3,4四个数中任取的一个数.定义“点M (a ,b )在直线x +y=n 上”为事件Q n (2≤n ≤7,n 为整数),则当Q n 的概率最大时,n
的所
A C
图4 A
图5
第 页
2 图
8
图9
有可能的值为 .
14.矩形ABCD 的边AB=8,AD=6,现将矩形ABCD 放在直线l 上且沿着l 向右作无滑动地翻滚,当它翻滚至类 似开始的位置1111A B C D 时(如图8),则顶点A 所经过的路线长是_________. 15.如图9,方格纸中4个小正方形的边长均为1,
则图中阴影部分三个小扇形的面积和为 (结果保留π). 16.如图10,在R t A B C △中,90A ∠= ,A B A C =
,BC = 另有一等腰梯形D E F G (G F D E ∥)的底边D E 与B C 重合,两腰分别落在AB 、AC 上,且G 、F 分别是AB 、AC
的中点.(1)直接写出△AGF 与△ABC 的面积的比值;
(2)操作:固定A B C △,将等腰梯形D E F G 以每秒1个单位的速度沿B C 方向向右运动,直到点D 与点C 重合时停止.设运动时间为x 秒,运动后的等腰梯形为D E F G ''(如图11).
①探究1:在运动过程中,四边形F F CE '能否是菱形?若能,请求出此时x 的值;若不能,请说明理由. ②探究2:设在运动过程中A B C △与等腰梯形D E F G 重叠部分的面积为y ,求y 与x 的函数关系式.
17.如图①,梯形ABCD 中,∠C=90°.动点E 、F 同时从点B 出发,点E 沿折线 BA —AD —DC 运动到点C 时停止运动,点F 沿BC 运动到点C 时停止运动,它们运动时的速度都是1 cm /s .设E 、F 出发t s 时,△EBF 的面积为y cm 2.已知y 与t 的函数图象如图②所示,其中曲线OM 为抛物线的一部分,MN 、NP 为线段.据图中信息,解答下列问题: (1)梯形上底的长AD=_____cm ,梯形ABCD 的面积_____cm 2;
(2)当点E 在BA 、DC 上运动时,分别求出y 与t 的函数关系式(注明自变量的取值范围); (3)当t 为何值时,△EBF 与梯形ABCD 的面积之比为1:
2.
18.如图,将OA = 6,AB = 4的矩形OABC 放置在平面直角坐标系中,动点M 、N 以每秒1个单位的速度分别从 点A 、C 同时出发,其中点M 沿AO 向终点O 运动,点N 沿CB 向终点B 运动,当两个动点运动了t 秒时,过点 N 作NP ⊥BC ,交OB 于点P ,连接MP .
(1)点B 的坐标为 ;用含t 的式子表示点P 的坐标为 ;
(2)记△OMP 的面积为S ,求S 与t 的函数关系式(0 < t < 6);并求t 为何值时,S 有最大值?
(3)试探究:当S 有最大值时,在y 轴上是否存在点T ,使直线MT 把△ONC 分割成三角形和四边形两部分,且三角形的面积是△ONC 面积的1
?若存在,求出点T 的坐标;若不存在,请说明理由.
A
F
G
(D )B
C (E ) 图10 F
G
A
F '
G '
B
D
C
E
图11。

相关文档
最新文档