2018年春季新版苏科版八年级数学下学期第11章、反比例函数单元复习试卷17
初中数学苏科版八年级下册第11章 反比例函数11.1 反比例函数-章节测试习题
章节测试题1.【答题】已知y=y1+y2,其中y1与x成反比例,且比例系数为k1(k1≠0),y2与x成正比例,且比例系数为k2(k2≠0),当x=-1时,y=0,则k1与k2的关系是()A. k1+k2=0B. k1-k2=0C. k1k2=1D. k1k2=-1【答案】A【分析】由题意y1与x成反比例,y2与x成正比例,可用待定系数法设出,再将x=-1时,y=0代入即可表示出k1与k2的关系.【解答】解:∵,∵当x=-1时,y=0,∴0=-k1-k2,∴k1+k2=0,选A.2.【答题】已知y与x2成反比例,并且当x=-2时,y=2,那么当x=4时,y等于()A. -2B. 2C.D. -4【答案】C【分析】由题意y与x2成反比例,设y=,然后把点(-2,2),代入求出k 值,从而求出函数的解析式,求出y值.【解答】解:∵y与x2成反比例,∴y=当x=-2时,y=2,∴,∴k=8,∴.当x=4时,.选C.3.【答题】甲、乙两地相距100千米,一辆汽车从甲地开往乙地,把汽车到达乙地所用时间t(小时)表示为汽车速度v(千米/时)的函数,其函数表达式为______.【答案】【分析】根据等量关系“路程=速度×时间”写出函数关系式.【解答】解:根据题意,得.故答案为:.4.【答题】已知y1与x成正比例系数为k1,y2与x成反比例,比例系数为k2,若函数y=y1-y2的图象经过点(1,2),(2,),则8k1+5k2的值为______.【答案】9【分析】设出y1和y2的解析式,由y=y1+y2的图象经过点(1,2),(2,),代入求得k1 、k2的值,再求得8k1+5k2的值.【解答】解:设则,将点(1,2),(2,),代入得,,解得,,∴8k1+5k2==9.5.【题文】已知y=y1+y2,其中y1与x成反比例,y2与(x-2)成正比例.当x=1时,y=-1;x=3时,y=3.(1)求y与x的函数关系式;(2)当x=-1时,y的值。
苏科版八年级下册 第11章《反比例函数》单元测试卷(含答案)
2018-2019学年第二学期初二数学第十一章单元测试卷知识涵盖:八下:反比例函数; 试卷分值130分; 一、选择题:(本题共10小题,每小题3分,共30分)1.在下列函数中,y 是x 的反比例函数的是……………………………………………( )A .3x y =-; B .31y x =-; C .12y x =; D .22y x=-; 2.反比例函数ky x=的图象经过点(3,-2),下列各点在图象上的是……( )A .(-3,-2);B .(3,2);C .(-2,-3);D .(-2,3); 3.对于反比例函数4y x=-,下列说法不正确的是…………………………………( ) A .图像经过点(1,-4); B .它的图象在第一、三象限; C .当x >0时,y 随x 的增大而增大; D .图像关于原点中心对称; 4.函数3y kx =-与ky x=(k ≠0)在同一坐标系内的图象可能是………( )5.在反比例函数2y x=-图象上有三个点A ()11,x y 、B ()22,x y 、C ()33,x y ,若1230x x x <<<,则下列结论正确的是…………………………………………………( ) A .321y y y << B .132y y y <<; C .231y y y <<;D .312y y y <<;6.如图,双曲线()302y x x=-<经过▱ABCO 的对角线交点D ,已知边OC 在y 轴上,且AC ⊥OC 于点C ,则▱OABC 的面积是……………………………………………( ) A .32;B .94;C .3; D .6;7.如图,一次函数1y k x b =+的图象与反比例函数2k y x=的图象相交于A (2,3),B (6,第6题图第8题图第7题图A. B. C. D.1)两点,当21k k x b x+<时,x 的取值范围为…………( ) A .x <2 ;B .2<x <6; C .x >6; D .0<x <2或x >6;8.如图,在平面直角坐标系中,菱形ABCD 的顶点A ,B 在反比例函数ky x =(k >0,x >0)的图象上,横坐标分别为1,4,对角线BD ∥x 轴.若菱形ABCD 的面积为452,则k 的值为…………( ) A .54; B .154; C .4 ; D .5; 9.在平面直角坐标系xOy 中,将一块含有45°角的直角三角板如图放置,直角顶点C 的坐标为(1,0),顶点A 的坐标为(0,2),顶点B 恰好落在第一象限的双曲线上,现将直角三角板沿x 轴正方向平移,当顶点A 恰好落在该双曲线上时停止运动,则此时点C 的对应点C ′的坐标为…………( ) A .3,02⎛⎫ ⎪⎝⎭ B .5,02⎛⎫⎪⎝⎭;C .(2,0);D .(3,0);10. 如图,在平面直角坐标系中,一条直线与反比例函数()80y x x=>的图象交于两点A 、B ,与x 轴交于点C ,且点B 是AC 的中点,分别过两点A 、B 作x 轴的平行线,与反比例函数()20y x x=>的图象交于两点D 、E ,连接DE ,则四边形ABED 的面积为( ) A .4; B .92 ;C .5; D .112;二、填空题:(本题共8小题,每小题3分,共24分) 11.对于函数12y x=,当0x <时,y 随x 的增大而 . 12.若反比例函数()2221m y m x-=-的图像在第二、四象限,则m 的值是 .13.如果直线y=mx 与双曲线ky x=的一个交点A 的坐标为(3,2),则它们的另一个交点B 的坐标为 .14.已知反比例函数2y x =,当x <-1时,y 的取值范围为 . 15.若反比例函数3k y x-=的图象位于第一、三象限内,正比例函数()29y k x =-的图象第10题第9题图过二、四象限,则k 的整数值是 . 16. 已知A ,B 两点分别在反比例函数3m y x =(m ≠0)和25m y x -=52m ⎛⎫≠ ⎪⎝⎭的图象上,若点A 与点B 关于x 轴对称,则m 的值为 . 17.设函数3y x =与26y x =--的图象的交点坐标为(a ,b ),则12a b+的值是 . 18.如图,▱ABCD 放置在平面直角坐标系中,已知点A (2,0),B (6,0),D (0,3),反比例函数的图象经过点C ,将▱ABCD 向上平移,使点B 恰好落在双曲线上,此时A ,B ,C ,D 的对应点分别为A ′,B ′,C ′,D ′,且C ′D ′与双曲线交于点E ,则点E 的坐标为 .三、解答题:(本题满分76分)19.(本题满分6分) 已知反比例函数5m y x-=(m 为常数,且m ≠5). (1)若在其图象的每个分支上,y 随x 的增大而增大,求m 的取值范围; (2)若其图象与一次函数y=-x+1图象的一个交点的纵坐标是3, 求m 的值.20. (本题满分6分)已知12y y y =+, 1y 与 x 成正比例, 2y 与3x -成反比例,当4x =和1x =时,y 都等于3,求x =9时y 的值.21. (本题满分6分)以矩形ABCD 两条对角线的交点O为坐标原点,以平行于两边的方向为坐标轴,建立如图所第18题示的平面直角坐标系,BE⊥AC,垂足为E.若双曲线32yx=(x>0)经过点D,试求OB•BE的值.22. (本题满分8分)如图,A(4,3)是反比例函数kyx=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数kyx=的图象于点P.(1)求反比例函数kyx=的表达式;(2)求点B的坐标;(3)求△OAP的面积.23.(本题满分7分)一般情况下,中学生完成数学家庭作业时,注意力指数随时间x(分钟)的变化规律如图所示(其中AB、BC为线段,CD为双曲线的一部分).(1)分别求出线段AB和双曲线CD的函数关系式;(2)若学生的注意力指数不低于40为高效时间,根据图中信息,求出一般情况下,完成一份数学家庭作业的高效时间是多少分钟?24. (本题满分8分)如图,直线1y k x =(x ≥0)与双曲线2k y x=(x >0)相交于点P (2,4).已知点A (4,0),B (0,3),连接AB ,将Rt △AOB 沿OP 方向平移,使点O 移动到点P ,得到△A'PB'.过点A'作A'C ∥y 轴交双曲线于点C .(1)求1k 与2k 的值;(2)求直线PC 的表达式;(3)直接写出线段AB 扫过的面积.25. (本题满分8分)如图,在平面直角坐标系中,一次函数1y k x b =+的图象与反比例函数2k y x=的图象交于A (4,-2)、B (-2,n )两点,与x 轴交于点C . (1)求2k ,n 的值;(2)请直接写出不等式21k k x b x+<的解集; (3)将x 轴下方的图象沿x 轴翻折,点A 落在点A ′处,连接A ′B ,A ′C ,求△A ′BC 的面积.26. (本题满分9分)。
苏科版数学八年级下册第11章《反比例函数及图象》单元复习(练习含答案)
第11章《反比例函数及其图象》单元复习1.反比例函数的概念、图象与性质考试内容考试 要求反比例函数的概念 一般地,形如y =kx (k 为常数,k ≠____________________)的函数称为反比例函数,其中x 是自变量,y 是x 的函数.自变量的取值范围是____________________. B 级确定反比例函数的解析式常用方法:待定系数法.C 级y =kx(k ≠0) 图象所在象限 性质 k>0一、三象限(x 、y 同号) 在每个象限内,y 随x 增大而____.k<0二、四象限(x 、y 异号)在每个象限内,y 随x 增大而____.反比例函数y =kx (k ≠0)的图象是 ,且关于 对称.注意点在应用反比例函数的性质时,要注意“在每个象限内”这几个字的含义,切忌说k >0时,y 就随x 的增大而减小.2.反比例函数中k 的几何意义考试内容考试要求k 的几何意义反比例函数图象上的点(x ,y)具有两数之积(xy =k)为 这一特点,则过双曲线上任意一点,向两坐标轴作垂线,两条垂线与坐标轴围成的矩形的面积为常数 .C 级结论的推导如图,过双曲线上任一点P 作x 轴、y 轴的垂线PM 、PN ,所得的矩形PMON的面积S=PM·PN=____________________·____________________=____________________.∵y=kx,∴xy=____________________,∴S=____________________.拓展在上图中,易知S△POM=S△PON=.所以过双曲线上任意一点,向两坐标轴作垂线,则以该点、一个垂足和原点为顶点的三角形的面积为常数.3.反比例函数的实际应用考试内容考试要求步骤①根据实际情况建立反比例函数模型;②利用待定系数法或其他学科的公式等确定函数解析式;③根据反比例函数的性质解决实际问题.C级注意点在实际问题中,求出的解析式要注意自变量和函数的取值范围.考试内容考试要求基本思想1.反比例函数值的大小比较时,应分x>0与x<0两种情况讨论,而不能笼统地说成“k<0时,y随x的增大而增大”.C级2.在一次函数与反比例函数的函数值的大小比较中,要把x的取值以两交点横坐标、原点为分界点分成四部分进行分析.1.(2018·台州)已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为I=UR,当电压为定值时,I关于R的函数图象是()(第1题)2.如图,函数y1=k1x与y2=k2x的图象相交于点A(1,2)和点B,当y1<y2时,自变量x的取值范围是()A.x>1;B.-1<x<0;C.-1<x<0或x>1;D.x<-1或0<x<1。
2018苏科版八年级下《第十一章反比例函数》单元提高卷含答案
《十一章 反比例函数》单元测试卷一、选择题1、如图是三个反比例函数312,,k k ky y yx x x===,在x 轴上方的图像,由此观察得到k l 、k 2、k 3的大小关系为( )(A )k 1>k 2>k 3 (B )k 3>k 1>k 2 (C )k 2>k 3>k 1 (D )k 3>k 2>k 1 2、在同一直角坐标平面内,如果直线1y x k =与双曲线2k y x =没有交点,那么1k 和2k 的关系一定是( )(A) 1k 、2k 异号 (B) 1k 、2k 同号 (C) 1k >0, 2k <0 (D) 1k <0, 2k >0 3、已知反比例函数y =xm21-的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时,y 1<y 2,则m 的取值范围是( ).A 、m <0B 、m >0C 、m <21 D 、m >21 4、如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是( ). A 、x <-1 B 、x >2C 、-1<x <0或x >2D 、x <-1或0<x <2 5、如图,正比例函数y=x 与反比例y=x1的图象相交于A 、C 两点,AB ⊥x 轴于B ,CD ⊥x 轴于D ,则四边形ABCD 的面积为( ) A 、1 B 、23 C 、2 D 、25 6、反比例函数2016y x=图像上的两点为(x 1,y 1),(x 2,y 2),且x 1<x 2,则下列关系成立的是( ) A.y 1>y 2 B.y 1<y 2 C.y 1=y 2 D.不能确定7、当a≠0时,函数y=ax+1与函数y=xa在同一坐标系中的图像可能是( )8、 一张正方形的纸片,剪去两个一样的小矩形得到一个“E ”图案,如图所示,设小矩形的长和宽分别为x 、y ,剪去部分的面积为20,若210x ≤≤,则y 与x 的函数图象是( )9、下列函数图像:①y= —3x; ② y= 4x; ③ y= —4x ④y=21x ;与函数 y=-x4的图像有公共点的有 ( ) A .1个 B. 2个 C. 3个 D. 4个 10、如图,点P 是x 轴正半轴上一个动点,过点P 作x 轴的垂线PQ 交双曲线y =x1于点Q ,连结OQ ,点P 沿x 轴正方向运动时,Rt △QOP 的面积( ). A 、逐渐增大 B 、逐渐减小 C 、保持不变 D 、无法确定 二、填空题11、在反比例函数xk y 1+=的图象上有两点11()x y ,和22()x y ,,若120x x <<时,210y y >>,则k 的取值范围是 .12、若A 、B 两点关于y 轴对称,且点A 在双曲线xy 21=上,点B 在直线3+=x y 上,设点A 的坐标为(a,b ),则abb a += 。
2018年春季新版苏科版八年级数学下学期第11章、反比例函数单元复习试卷1
第11章 反比例函数 检测卷(总分:100分 时间:60分钟) 得分:_________一、选择题(本大题共8小题,每小题2分,共1 6分)1.下列函数是反比例函数的为 ( )A .y=2x -3B .y=23x -C. y=23x D .y=3x 2.在同一坐标系中,函数y=k x和y=kx+3的图象大致是 ( )3.已知点A(-2,y 1)、B(-1,y 2)、C(3,y 3)都在反比例函数y=32x的图象上,则( ) A .y 1<y 2<y 3 B .y 3<y 2<y 1 C .y 3<y 1<y 2 D .y 2<y 1<y 34.过双曲线y=k x(k 是常数,k >0,x>0)的图象上两点A 、B 分别作AC ⊥x轴于C ,BD ⊥x 轴于D ,△AOC 的面积S 1和△BOD 的面积S 2的大小关系为( )A .S 1>S 2B .S 1一S 2C .S 1<S 2D .S 1和S 2的大小无法确定5.如果P(a ,b)在函数y=k x的图象上,则在此图象上的点还有 ( ) A. (-a ,b) B .(a ,-b) C .(-a ,-b) D .(0,0) 6.已知力F 所做的功10焦,则力F 与物体在力的方向上通过的距离s 的图象大致是 ( )7.若点M(2,2)和N(b ,-1-n 2)是反比例函数y=k x的图象上的两个点,则一次函数y=kx+b 的图象经过 ( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限8.在反比例函数y=4x的图象中,阴影部分的面积等于4的有 ( )A .1个B .2个C .3个D .4个二、填空题(本大题共10小题,每小题2分,共20分)9.已知y 与x 成反比例,当x=3时,y=1,则y 与x 间的函数关系式为_________.10.已知点P 在反比例函数y=6x -的图象上,且点P 的纵坐标是-2,则点P 的横坐标是_________.11.若反比例函数y=k x 的图象过点A(1,-2),则k=_________. 12.反比例函数y=k x(x>0)图象如图所示,则y 随x 的增大_________ . 13.若反比例函数y=1x的图象上有两点A(1,y 1),B(2,y 2),则y 1_________y 2(填“>”、“<”或“=”).14.在△ABC 的三个顶点A(2,-3),B(-4,-5),C(-3,2)中,可能在反比例函数 y=k x (k>0)的图象上的点是_________.15.设有反比例函数y=1k x+,(x 1,y 1)、(x 2,y 2)为其图象上的两点,若x 1<0<x 2时, y 1>y 2,则k 的取值范围是_________. l6.如图,反比例函数y=5x 的图象与直线y=kx(k>o)相交于A 、B 两点,AC ∥y 轴,BC ∥x 轴,则△ABC 的面积等于_________个面积单位.17.若一次函数y=2x -k 的图象与反比例函数y=5k x+的图象相交,其中一个交点纵坐标为4,则此交点坐标为_________.18.如图所示,P 1(x 1,y 1)、P 2(x 2,y 2)、…、P n (x n ,y n )在函数y=9x(x>o)的图象上,△OP l A 1、△P 2A 1A 2、△P 3A 2A 3、…、△P n A n -1A n 都是等腰直角三角形,斜边 O 1A l 、A 1 A 2、…、A n -1A n 都在x 轴上,则y 1+y 2+…+y n =_________ .三、解答题(本大题共10小题,共64分)19.(本小题5分)已知正比例函数y=kx 与反比例函数y= 5x -的图象都过A(m ,1)点,求此正比例函数解析式.20.(本小题5分)已知点A(2,-k+2)在双曲线y=k x上.求常数k 的值.21.(本小题5分)已知y=y 1-y 2,y 1与x 成正比例,y 2与x+3成反比例,当x=0 时,y=-2;当x=3时,y=2;求y 与x 的函数关系式,并指出自变量的取值范围.22.(本小题5分)一定质量的氧气,它的密度ρ(kg /m 3)是它的体积V(m 3)的反比例函数,当V=10 m 3时,ρ=1.43 kg /m 3.(1)求ρ与V 的函数关系式;(2)求当V=2 m 3时,求氧气的密度ρ.23.(本小题5分)已知一次函数y=kx+b(k ≠o)和反比例函数y=2k x的图象交于点A(1,1). (1)求两个函数的解析式’(2)若点B 是x 轴上一点,且△AOB 是直角三角形,求B 点的坐标.24.(本小题7分)已知反比例函数y=k x的图象与一次函数y=kx+m 的图象相交于点(2,1). (1)分别求出这两个函数的解析式’(2)试判断点P(-1,5)关于x 轴的对称点P ’是否在一次函数y=kx+m 的图象上.25.(本小题7分)若反比例函数y 1=6x与一次函数y 2=mx -4的图象都经过点A (a ,2)、B(-1,b).(1)求一次函数y 2=mx -4的解析式;(2)在同一直角坐标系中,画出两个函数的图象,并求当x 取何值时有y 2<y 1;(3)求△AOB 的面积.26.(本小题7分)反比例函数y=2x的图象与一次函数y=kx+b 的图象交于点A(m ,2)、点B(-2,n),一次函数的图象与y 轴的交点为C .(1)求一次函数解析式;(2)求C 点的坐标;(3)求△AOC 的面积.27.(本小题9分)如图,直线y=kx+b 与反比例函数y=k x(x<0)的图象相交于点A 、点B ,与x 轴交于点C ,其中点A 的坐标为(-2,4),点B 的横坐标为-4. (1)试确定反比例函数的关系式;(2)求△AOC 的面积.28.(本小题9分)若一次函数y=2x -1和反比例函数y=2k x的图象都经过点(1,1). (1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,求点A 的坐标。
2018-2019学年苏科版八年级数学下册第11章《反比例函数》测试卷及答案
第11章《反比例函数》测试题(时间:100分钟 满分:120分)一、选择题(本大题共10小题,每小题3分,共30分)1.如图1,在平面直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线3(0)y x x=>上的一个动点,当点B 的横坐标逐渐增大时,OAB ∆的面积将( )A.逐渐增大B.不变C.逐渐减小D.先增大,后减小 2.如果反比例函数ky x=的图象经过点(1,2)-,那么它还一定经过( ) A. (2,1)- B. 1(,2)2-C. (2,1)--D. 1(,2)23.如果反比例函数1ky x-=的图象与直线y x =没有交点,那么符合条件的k 值为( )A. 1k =B. 1k =-C. 2k =D. 2k =-4.在反比例函数13ky x-=的图象上有两个点1122(,),(,)A x y B x y ,且120x x <<,12y y <,则k 的取值范围是( )A. 13k ≥B. 13k >C. 13k <-D. 13k < 5.如图2,反比例函数1y 与正比例函数2y 的图象的一个交点坐标是(2,1)A ,若210y y >>,则x 的取值范围在数轴上表示为( )6.如图3,点A 是反比例函数11(0)k y x x=>图象上一点,过点A 作x 轴的平行线,交反比例函数22(0)k y x x=>的图象于点B ,连接,OA OB ,若O A B ∆的面积为2,则21k k -的值为( )A. 2-B. 2C. 4-D. 47.设ABC ∆的一边长为x ,这条边上的高为y ,y 与x 满足的反比例函数关系如图4所示,当ABC ∆为等腰直角三角形时,x y +的值为( ) A. 4 B. 5C. 5或D. 4或8.在数学活动课上,小华借助下列表格中的数据,在平面直角坐标系中经历描点和连线 的步骤,正确绘制了某个反比例函数的图象,则下列关于该函数的描述错误的是( )A.图象在第二、四象限B.图象必经过点1(6,)2- C.图象与坐标轴没有交点D.当4x <-时,y 的取值范围是34y < 9.如图,点P 在反比例函数1(0)y x x=>的图象上,且横坐标为2.若将点P 先向右平移两个单位,再向上平移一个单位后得到点'P ,则在第一象限内,经过点'P 的反比例函数图象的表达式是( )A. 5(0)y x x =-> B. 5(0)y x x => C. 6(0)y x x =-> D. 6(0)y x x=>10.如图6,ABC ∆和DEF ∆的各顶点分别在双曲线1y x =,2y x =,3y x=的第一象限的图象上,90C F ∠=∠=︒,////AC DF x 轴,////B CE F y 轴,则ABC DEF S S ∆∆-=( )A.112 B. 16 C. 14 D. 512二、填空题(本大题共10小题,每小题3分,共30分)11.若梯形的下底长为x ,上底长为下底长的13,高为y ,面积为60,则y 与x 的函数关系式是 (不考虑x 的取值范围).12.如果关于x 的函数11(1)k y k x x+=+-是反比例函数,那么k 的值等于 . 13.如图7,点,A B 是双曲线3y x=上的点,分别经过,A B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S += .14.若反比例函数(0)ky k x=<的函数图象过点(2,),(1,)P m Q n ,则m 与n 的大小关系是m n .(填“>”或“=”“<”)15.如图8,一次函数1y ax b =+的图象与反比例函数23y x=的图象相交于,A B 两点,当12y y >时,10x -<<,或3x >,则一次函数的表达式为 . 16.在平面直角坐标系中,点A 的坐标为(5,0),点C 的坐标为(0,4),四边形ABCO 为矩形,点P 为线段BC 上的一个动点,若POA ∆为等腰三角形,且点P 在双曲线ky x=上,则k 的值可以是 .17. 如图9,已知双曲线1214(0),(0)y x y x x x =>=>,点P 为双曲线24y x=上的一点,且PA x ⊥轴于点A ,PB y ⊥轴于点B ,,PA PB 分别交双曲线11y x=于,D C 两点,则PCD ∆的面积是 .18.直线(0)y a x a =≥,与双曲线3y x=交于1122(,),(,)A x y B x y 两点,则122143x y x y -= .19.我们已经学习过反比例函数1y x=的图象和性质,请回顾研究它的过程,对函数21y x =进行探索,下列结论: ①图象在第一、二象限; ②图象在第一、三象限; ③图象关于y 轴对称; ④图象关于原点对称;⑤当0x >时,y 随x 增大而增大;当0x <时,y 随x 增大而增大; ⑥当0x >时,y 随x 增大而减小;当0x <时,y 随x 增大而增大.其中是函数21y x =的性质及它的图象特征的是 .(填写所有正确答案的序号) 20.如图10,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,过点12345,,,,A A A A A ,分别作x 轴的垂线与反比例函数2(0)y x x=≠的图象相交于点12345,,,,P P P P P ,得直角三角形11OPA ,122A P A ,233A P A ,344A P A ,455A P A ,并设其面积分别为12345,,,,S S S S S ,则5S 的值为 ,以此类推n S = (1n ≥的整数).三、解答题(本大题共6小题,共60分)21. ( 8分)已知变量y 与x 成反比例函数,并且当5x =时,3y =. (1)求y 与x 之间的函数关系式.(2)求15x =时,y 的值.22.(10分)函数2y x=的图象如图11所示. (1)在同一平面直角坐标系中,用描点法画下列函数的图象.①21y x =+;②21y x =+. 列表:画图象,并注明函数表达式.(2)观察图象,完成填空:①将函数2y x =的图象向 平移 个单位,可得函数21y x =+的图象; ②将函数2y x =的图象向 平移 个单位,可得函数21y x =+的图象.(3)函数2y x =的图象经过怎样的变化,可得函数20192017x y x +=+的图象?(写出一种即可)23. ( 8分)如图12,已知一次函数1y x m =+(m 为常数)的图象与反比例函数2ky x=(k 为常数,0k ≠)的图象相交于点(1,3)A .(1)求这两个函数的表达式及其图象的另一个交点B 的坐标.(2)观察图象,写出使函数值12y y ≥的自变量x 的取值范围.24. (10分)如图13,在平面直角坐标系中,直线(0)y k x b k =+≠与双曲线(0)my m x=≠相交于点(2,3)A -和点(,2)B n . (1)求直线与双曲线的表达式.(2)对于横、纵坐标都是整数的点叫做整点.动点P 是双曲线(0)my m x=≠上的整点,过点P 作垂直于x 轴的直线,交直线AB 于点Q ,当点P 位于点Q 的下方时,请直接写出整点P 的坐标.25. (12分)一辆汽车匀速通过某段公路,所需时间t (h)与行驶速度v (km/h)满足函数关系式kt v=,其图象为如图14所示的一段曲线且端点为(40,1)A 和(,0.5)B m . (1)求k 和m 的值.(2)若行驶速度不得超过60km/h ,则汽车通过该路段最少需要多少时间?26. (12分)“保护生态环境,建设绿色社会”已经从理念变为人们的行动.某化工厂2017年1月的利润为200万元.设2017年1月为第1个月,第x 个月的利润为y 万元.由于排污超标,该厂决定从2017年1月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y 与x 成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图15 ).(1)分别求该化工厂治污期间及治污改造工程完工后,y 与x 之间对应的函数关系式. (2)治污改造工程完工后经过几个月,该厂月利润才能达到2017年1月的水平? (3)当月利润少于100万元时,为该厂资金紧张期,问该厂资金紧张期共有几个月?参考答案1. C2.A3. C4. D5. D6. D7. D8. D9. D 10. A11.90y x= 12. 1或2- 13. 5 14. >15. 2y x =- 16. 10或12或817. 98 18. 3-19. ①③⑥ 20.15 1n21. (1)设y 与x 之间的函数关系式为ky x=, 由题意,得35k =, 解得15k = ∴15y x=(2)当15x =时,15115y ==.22. (1)图略.(2)观察图象,完成填空: ①将函数2y x =的图象向上平移1个单位,可得函数21y x =+的图象; ②将函数2y x =的图象向左平移1个单位,可得函数21y x =+的图象.(3)函数2y x =的图象向左平移2017个单位,可得函数22017y x =+的图象.再将所得的图象向上平移1个单位,可得函数212017y x =++,即20192017x y x +=+的图象;23.(1)由题意,得31m =+.解得2m =.∴一次函数的表达式为12y x =+. 由题意,得,31k =. 解得3k =.∴反比例函数的表达式为23y x=. 由题意,得32x x+=. 解得11x =,23x =-. 当23x =-时,121y y ==-, ∴点B 的坐标为(3,1)--.(2)由图象,可知当30x -≤<或1x ≥时,函数值12y y ≥.24. (1)∵双曲线(0)my m x=≠经过点(2,3)A -,如图5, ∴6m =-.∴双曲线的表达式为6y x =-. ∵点(,2)B n 在双曲线6y x=-上,∴点B 的坐标为(3,2)-.∵直线y kx b =+经过点(2,3)A -和点B (3,2)-,∴2332k b k b +=-⎧⎨-+=⎩,解得11k b =-⎧⎨=-⎩,∴直线的表达式为1y x =--.(2)符合条件的点P 的坐标是(1,6)-或(6,1)-. 25.(1)将(40,1)代入k t v=, 得140k =, 解得40k =.所以函数表达式为40t v =. 当0.5t =时,400.5m=.解得80m =.所以40,80k m ==. (2)令60v =,得402603t ==.结合函数图象可知,汽车通过该路段最少需要23小时. 26.(1)①当15x ≤≤时,设k y x =,把(1,200)代入, 得200k =, 即200y x= ②当5x =时,40y =,∴当5x >时,4020(5)2060y x x =+-=-.(2)当200y =时,2002060x =-.解得13x =.所以治污改造工程顺利完工后经过1358-= (个)月后,该厂利润达到2017年1月的水平.(3)对于200y x=,当100y =时,2x =; 对于2060y x =-,当100y =时,8x =,所以资金紧张的时间为826-=(个)月.。
最新苏科版八年级数学下册第11章《反比例函数》综合测试题含答案
第11章《反比例函数》综合测试题 (时间:100分钟 满分:120分)一、选择题(本大题共10小题,每小题3分,共30分)1.如果反比例函数ky x=的图象经过点(1,2)-,那么它还一定经过( )A. (2,1)-B. 1(,2)2-C. (2,1)--D. 1(,2)22.如图1,在平面直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线3(0)y x x=>上的一个动点,当点B 的横坐标逐渐增大时,OAB ∆的面积将( )A.逐渐增大B.不变C.逐渐减小D.先增大,后减小3.如果反比例函数1ky x-=的图象与直线y x =没有交点,那么符合条件的k值为( )A. 1k =B. 1k =-C. 2k =D. 2k =-4.在反比例函数13ky x-=的图象上有两个点1122(,),(,)A x y B x y ,且120x x <<,12y y <,则k 的取值范围是( )A. 13k ≥B. 13k >C. 13k <-D. 13k <5.如图2,反比例函数1y 与正比例函数2y 的图象的一个交点坐标是(2,1)A ,若210y y >>,则x 的取值范围在数轴上表示为( )6.如图3,点A 是反比例函数11(0)k y x x=>图象上一点,过点A 作x 轴的平行线,交反比例函数22(0)k y x x=>的图象于点B ,连接,OA OB ,若OAB ∆的面积为2,则21k k -的值为( )A. 2-B. 2C. 4-D. 47.设ABC ∆的一边长为x ,这条边上的高为y ,y 与x 满足的反比例函数关系如图4所示,当ABC ∆为等腰直角三角形时,x y +的值为( ) A. 4 B. 5C. 5或D. 4或8.在数学活动课上,小华借助下列表格中的数据,在平面直角坐标系中经历描点和连线 的步骤,正确绘制了某个反比例函数的图象,则下列关于该函数的描述错误的是( )A.图象在第二、四象限B.图象必经过点1(6,)2-C.图象与坐标轴没有交点D.当4x <-时,y 的取值范围是34y < 9.如图,点P 在反比例函数1(0)y x x=>的图象上,且横坐标为2.若将点P 先向右平移两个单位,再向上平移一个单位后得到点'P ,则在第一象限内,经过点'P 的反比例函数图象的表达式是( )A. 5(0)y x x =->B. 5(0)y x x =>C. 6(0)y x x =->D. 6(0)y x x=>10.如图6,ABC ∆和DEF ∆的各顶点分别在双曲线1y x =,2y x =,3y x=的第一象限的图象上,90C F ∠=∠=︒,////AC DF x 轴,////BC EF y 轴,则A B C D E FS S ∆∆-=( )A.112 B. 16 C. 14 D. 512二、填空题(本大题共10小题,每小题3分,共30分)11.若梯形的下底长为x ,上底长为下底长的13,高为y ,面积为60,则y 与x 的函数关系式是 (不考虑x 的取值范围).12.如果关于x 的函数11(1)k y k x x+=+-是反比例函数,那么k 的值等于 .13.如图7,点,A B 是双曲线3y x=上的点,分别经过,A B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S += .14.若反比例函数(0)ky k x=<的函数图象过点(2,),(1,)P m Q n ,则m 与n 的大小关系是m n .(填“>”或“=”“<”)15.如图8,一次函数1y ax b =+的图象与反比例函数23y x=的图象相交于,A B 两点,当12y y >时,10x -<<,或3x >,则一次函数的表达式为 .16.在平面直角坐标系中,点A 的坐标为(5,0),点C 的坐标为(0,4),四边形ABCO 为矩形,点P 为线段BC 上的一个动点,若POA ∆为等腰三角形,且点P 在双曲线ky x=上,则k 的值可以是 .17. 如图9,已知双曲线1214(0),(0)y x y x x x =>=>,点P 为双曲线24y x=上的一点,且PA x ⊥轴于点A ,PB y ⊥轴于点B ,,PA PB 分别交双曲线11y x=于,D C 两点,则PCD ∆的面积是 .18.直线(0)y a xa =≥,与双曲线3y x=交于1122(,),(,)A x y B x y 两点,则122143x y x y -= .19.我们已经学习过反比例函数1y x=的图象和性质,请回顾研究它的过程,对函数21y x =进行探索,下列结论: ①图象在第一、二象限; ②图象在第一、三象限;③图象关于y 轴对称; ④图象关于原点对称;⑤当0x >时,y 随x 增大而增大;当0x <时,y 随x 增大而增大; ⑥当0x >时,y 随x 增大而减小;当0x <时,y 随x 增大而增大.其中是函数21y x=的性质及它的图象特征的是 .(填写所有正确答案的序号)20.如图10,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,过点12345,,,,A A A A A ,分别作x 轴的垂线与反比例函数2(0)y x x=≠的图象相交于点12345,,,,P P P P P ,得直角三角形11OPA ,122A P A ,233A P A ,344A P A ,455A P A ,并设其面积分别为12345,,,,S S S S S ,则5S 的值为 ,以此类推n S = (1n ≥的整数).三、解答题(本大题共6小题,共60分)21. ( 8分)已知变量y 与x 成反比例函数,并且当5x =时,3y =. (1)求y 与x 之间的函数关系式.(2)求15x =时,y 的值.22.(10分)函数2y x=的图象如图11所示. (1)在同一平面直角坐标系中,用描点法画下列函数的图象.①21y x =+;②21y x =+.列表:画图象,并注明函数表达式. (2)观察图象,完成填空:①将函数2y x =的图象向 平移 个单位,可得函数21y x=+的图象;②将函数2y x =的图象向 平移 个单位,可得函数21y x =+的图象.(3)函数2y x =的图象经过怎样的变化,可得函数20192017x y x +=+的图象?(写出一种即可)23. ( 8分)如图12,已知一次函数1y x m =+(m 为常数)的图象与反比例函数2ky x=(k 为常数,0k ≠)的图象相交于点(1,3)A .(1)求这两个函数的表达式及其图象的另一个交点B 的坐标.(2)观察图象,写出使函数值12y y ≥的自变量x 的取值范围.24. (10分)如图13,在平面直角坐标系中,直线(0)y kx b k =+≠与双曲线(0)my m x=≠相交于点(2,3)A -和点(,2)B n . (1)求直线与双曲线的表达式. (2)对于横、纵坐标都是整数的点叫做整点.动点P 是双曲线(0)my m x=≠上的整点,过点P 作垂直于x 轴的直线,交直线AB 于点Q ,当点P 位于点Q 的下方时,请直接写出整点P 的坐标.25. (12分)一辆汽车匀速通过某段公路,所需时间t (h)与行驶速度v (km/h)满足函数关系式kt v=,其图象为如图14所示的一段曲线且端点为(40,1)A 和(,0.5)B m .(1)求k 和m 的值.(2)若行驶速度不得超过60km/h ,则汽车通过该路段最少需要多少时间?26. (12分)“保护生态环境,建设绿色社会”已经从理念变为人们的行动.某化工厂2017年1月的利润为200万元.设2017年1月为第1个月,第x个月的利润为y万元.由于排污超标,该厂决定从2017年1月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y与x成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图15 ).(1)分别求该化工厂治污期间及治污改造工程完工后,y与x之间对应的函数关系式.(2)治污改造工程完工后经过几个月,该厂月利润才能达到2017年1月的水平?(3)当月利润少于100万元时,为该厂资金紧张期,问该厂资金紧张期共有几个月?参考答案1.A2. C3. C4. D5. D6. D7. D8. D9. D 10. A11.90 yx =12. 1或2-13. 514. >15. 2y x=-16. 10或12或817.98 18. 3- 19. ①③⑥20. 15 1n21. (1)设y 与x 之间的函数关系式为k y x=, 由题意,得35k =, 解得15k = ∴15y x =(2)当15x =时,15115y ==. 22. (1)图略.(2)观察图象,完成填空:①将函数2y x =的图象向上平移1个单位,可得函数21y x =+的图象;②将函数2y x =的图象向左平移1个单位,可得函数21y x =+的图象.(3)函数2y x =的图象向左平移2017个单位,可得函数22017y x =+的图象.再将所得的图象向上平移1个单位,可得函数212017y x =++,即20192017x y x +=+的图象;23.(1)由题意,得31m =+. 解得2m =.∴一次函数的表达式为12y x =+. 由题意,得,31k =. 解得3k =.∴反比例函数的表达式为23y x=. 由题意,得32x x+=. 解得11x =,23x =-. 当23x =-时,121y y ==-, ∴点B 的坐标为(3,1)--.(2)由图象,可知当30x -≤<或1x ≥时,函数值12y y ≥.24. (1)∵双曲线(0)my m x=≠经过点(2,3)A -,如图5, ∴6m =-.∴双曲线的表达式为6y x =-.∵点(,2)B n 在双曲线6y x=-上,∴点B 的坐标为(3,2)-.∵直线y kx b =+经过点(2,3)A -和点B (3,2)-,∴2332k b k b +=-⎧⎨-+=⎩, 解得11k b =-⎧⎨=-⎩,∴直线的表达式为1y x =--.(2)符合条件的点P 的坐标是(1,6)-或(6,1)-.25.(1)将(40,1)代入k t v =, 得140k =, 解得40k =. 所以函数表达式为40t v =. 当0.5t =时,400.5m =. 解得80m =.所以40,80k m ==.(2)令60v =,得402603t ==. 结合函数图象可知,汽车通过该路段最少需要23小时. 26.(1)①当15x ≤≤时,设k y x =,把(1,200)代入, 得200k =, 即200y x= ②当5x =时,40y =,∴当5x >时,4020(5)2060y x x =+-=-.(2)当200y =时,2002060x =-. 解得13x =.所以治污改造工程顺利完工后经过1358-= (个)月后,该厂利润达到2017年1月的水平.(3)对于200y x=,当100y =时,2x =; 对于2060y x =-,当100y =时,8x =, 所以资金紧张的时间为826-=(个)月.。
2018年苏教版八年级数学下册《第11章反比例函数》单元测试卷含答案
第11章反比例函数单元测试一、选择题(本大题共9小题,共27.0分)1.已知函数f(x)=(x−a)(x−b)(其中a>b)的图象如图所示,则函数g(x)=a x+b的大致图象是()A. AB. BC. CD. D2.函数f(x)=x|x−2|的单调减区间是()A. [1,2]B. [−1,0]C. [0,2]D. [2,+∞)3. 4.下列关系式中,表示y是x的反比例函数的是…………………………………………()A. y=13x B. y=3x2C. y=13xD. y=12x−54.已知变量x、y满足下面的关系:则x,y之间用关系式表示为( )x…−3−2−1123…y…1 1.53−3−1.5−1…A. y=3x B. y=−x3C. y=−3xD. y=x35.在反比例函数y=1−kx的图象的任一支上,y都随x的增大而增大,则k的值可以是( )A. −1B. 0C. 1D. 26.如果x与y满足xy+1=0,则y是x的( )A. 正比例函数B. 反比例函数C. 一次函数D. 二次函数7.如图所示,正比例函数y1=k1x(k1≠0)的图象与反比例函数y2=k2x(k2≠0)的图象相交于A、B两点,其中A的横坐标为2,当y1>y2时,x的取值范围是( )A. x<−2或x>2B. x<−2或0<x<2C. −2<x<0或0<x<2D. −2<x<0或x>28.若反比例函数y=kx的图象经过点(−1,2),则这个反比例函数的图象还经过点( )A. (2,−1)B. (−12,1) C. (−2,−1) D. (12,2)9.在平面直角坐标系中,有反比例函数y=1x 与y=−1x的图象和正方形ABCD,原点O与对角线AC,BD的交点重合,且如图所示的阴影部分面积为8,则AB的长是( )A. 2B. 4C. 6D. 8二、填空题10.若正比例函数y=2x与反比例函数y=kx(k不为0)的图象有一个交点为(2,m),则m=______ ,k=______ ,它们的另一个交点为______ .11.如图,一次函数与反比例函数的图象交于A(1,12)和B(6,2)两点.点P是线段AB上一动点(不与点A和B重合),过P点分别作x、y轴的垂线PC、PD交反比例函数图象于点M、N,则四边形PMON面积的最大值是______ .12.如图,在平面直角坐标系中,M为y轴正半轴上一点,过点M的直线l//x轴,l分别与反比例函数y=kx 和y=4x的图象交于A、B两点,若S△AOB=3,则k的值为______ .13.已知函数y=kx的图象经过(−1,3)点,如果点(2,m)也在这个函数图象上,则m=______ .14.已知点A是函数y=−4x的图象上的一点,过A点作AM⊥x轴,垂足为M,连接OA,则△OAM的面积为______ .三、解答题15.已知极坐标系的极点在平面直角坐标系的原点处,极轴与x轴的正半轴重合.直线l的参数方程为{x=−1+√32ty=12t(t为参数),曲线C的极坐标方程为ρ=4cosθ.(Ⅰ)写出曲线C的直角坐标方程,并指明C是什么曲线;(Ⅱ)设直线l与曲线C相交于P,Q两点,求|PQ|的值..16.已知函数f(x)=3x−13|x|(Ⅰ)若f(x)=2,求x的值;(Ⅱ)判断x>0时,函数f(x)的单调性;,1]恒成立,求m的取值范围.15.(III)若3t f(2t)+mf(t)≥0对于t∈[1217.如图,已知反比例函数y1=k和一次函数y2=ax+b的图象相交于点A和点D,x且点A的横坐标为1,点D的纵坐标为−1.过点A作AB⊥x轴于点B,△AOB的面积为1.⑴求反比例函数和一次函数的解析式.⑴若一次函数y2=ax+b的图象与x轴相交于点C,求∠ACO的度数.⑴结合图象直接写出:当y1>y2时,x的取值范围.18.在双曲线y=1−k的任一支上,y都随x的增大而增大,则k的取值范围.x19.如图,A、B是双曲线y=k上的点,点A的坐标是x(1,4),B是线段AC的中点.(1)求k的值;(2)求点B的坐标;(3)求△OAC的面积.【答案】1. B2. B3. C4. C5. D6. B7. D8. A9. B10. 4;8;(−2,−4)11. 25212. −213. −3214. 215. 略16. 略17. 略18. 解:∵y都随x的增大而增大,∴此函数的图象在二、四象限,∴1−k<0,∴k>1.19. 解:(1)把A(1,4)代入y=kx 得4=k1,解得k=4;(2)由B是AC的中点可得B点的纵坐标是A点纵坐标的一半,即y=2,把y=2代入y=4x求得x=2,故B点的坐标为(2,2);(3)由A、B点的坐标求得直线AB的解析式为y=−2x+6,令y=0,求得x=3,∴C点的坐标为(3,0)∴△OAC的面积为12×3×4=6..。
苏科版数学八年级下《第11章反比例函数》单元测试题含答案
苏科版数学八年级下《第11章反比例函数》单元测试题含答案(时间:90分钟 满分:120分)(班级: 姓名: 得分: )一、选择题(第小题3分,共30分) 1. 观察下列函数:2015y x =,2016x y =-,20181y x =-,2014y x-=.其中反比例函数有( )A. 1个B. 2个C. 3个D. 4个2. 反比例函数2018y x =,2016y x =-,12019y x=的共同特点是( )A. 图像位于相同的象限内B. 自变量的取值范围是全体实数C. 在第一象限内y 随x 的增大而减小D. 图像都不与坐标轴相交 3. 在反比例函数2015ky x -=图像的每一支曲线上,y 都随x 的增大而增大,则k 的值可以是( ) A .2016 B.0 C.2015 D.2016-4. 已知函数210(2)m y m x -=+是反比例函数,且图像在第二、四象限内,则m 的值是( )A.3B.3-C.3±D.13-5.如图,正比例函数y 1=k 1x 和反比例函数y 2=2kx的图像交于A (-1,2),B (1,-2)两点,若y 1 <y 2,则x 的取值范围是( )A.x <-1或x >1B. x <-1或0<x <1C. -1<x <0或 0<x <1D. -1<x <0或x >16.如果反比例函数=ky x的图像经过点A(-1,-2),则当x >1时,函数值y 的取值范围是( )A.y >1B. 0< y <2C. y >2D.0<y <17. 反比例函数2016y x=图像上的两点为(x 1,y 1),(x 2,y 2),且x 1<x 2,则下列关系成立的是( )A.y 1>y 2B.y 1<y 2C.y 1=y 2D.不能确定 8.当a ≠0时,函数y=ax+1与函数y=xa在同一坐标系中的图像可能是( )9.如图,若点M 是x 轴正半轴上的任意一点,过点M 作PQ ∥y 轴,分别交函数x k 1y =(x >0)和xk2y =(x >0)的图像于点P 和Q ,连接OP ,OQ,则下列结论正确的是( )B.21K K QM PM= A.∠POQ 不可能等于900D. △POQ 的面积是)(|k ||k |2121+C.这两个函数的图像一定关于x 轴对称第9题图10.如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y=-x+6于A,B 两点,若反比例函数ky x=(x >0)的图像与△ABC 有公共点,则k 的取值范围是( )A .2≤k ≤8 B. 2≤k ≤9 C. 2≤k ≤5 D. 5≤k ≤8 二、填空题(第小题4分,共32分) 11.已知函数y=-12016x,当x <0时,y__________0,此时,其图像的相应部分在第__________象限.12. 若正比例函数y=kx 在每一个象限内y 随x 的增大而减小,那么反比例函数ky x=-在每一个象限内y 随x 的增大而_________.13. 在同一坐标系内,正比例函数20182015y x =-与反比例函数2016y x=-图像的交点在第_____象限 . 14. 若A (x 1,y 1),B(x 2,y 2),C (x 3,y 3)都是反比例函数y=-x1的图像上的点,且x 1<0<x 2<x 3,则y 1,y 2,y 3由小到大的顺序是__________.15. 点A(2,1)在反比例函数y kx=的图像上,当1﹤x ﹤4时,y 的取值范围是 .16. 设函数2y x =与1y x =-的图像的交点坐标为() , a b ,则11a b -的值为________17. 如图,点A 在双曲线 1y x=上,点B 在双曲线 3y x =上,且AB ∥x 轴,点C 和点D 在x 轴上,若四边形ABCD 为矩形,则矩形ABCD 的面积为 . 18. 如图,直线y=k 1x+b 与双曲线y=2k x交于A,B 两点,其横坐标分别为1和5, 则不等式k 1x <2k x-b 的解集是 .三、解答题(共58分)19.(10分)已知y=y 1-y 2,y 1与x 成反比例,y 2与x-2成正比例, 并且当x=3时,y=5;当x=1时,y=-1. (1)y 与x 的函数表达式; (2)当1x =-时,求y 的值.20.(10分)已知一次函数y =3x+m 与反比例函数y =xm 3-的图像有两个交点.(1)当m为何值时,有一个交点的纵坐标为6?(2)在(1)的条件下,求两个交点的坐标.21.(12分)如图,直线y=k1x+b与双曲线y=2kx相交于A(1,2),B(m,-1)两点.(1)求直线和双曲线的表达式;(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)为双曲线上的三点,且x1<x2<0<x3,请直接写出y1,y2,y3的大小关系;(3)观察图像,请直接写出使不等式k1x+b>2kx成立的x的取值范围.22.(12分)某气球内充满了一定质量的气球,当温度不变时,气球内气球的压强p(千帕)是气球的体积V(米3)的反比例函数,其图像如图所示.(1)写出这个函数的表达式;(2)当气球的体积为0.8米3时,气球内的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少?23.(14分)已知一次函数mxy+=1的图像与反比例函数xy62=的图像交于A,B两点,当1>x时,21yy>;当10<<x时,21yy<.⑴求一次函数的表达式;⑵已知一次函数在第一象限上有一点C到y轴的距离为3,求△ABC的面积.参考答案一、1.B 2. D 3. A 4. B 5. D 6. B 7. D 8. C 9. D 10. B二、11.> 二 12. .减小 13. 二、四 14. .y 2<y 3<y 1 15. 12y <<216. 12- 17. 2 18.0<x <1或x >5三、19.解:(1)设()()112212,2 0k y y k x k k x==-≠,则y=x k 1-k 2(x-2).由题意,得⎪⎩⎪⎨⎧-=+=-.1,532121k k k k 解得⎩⎨⎧-==.4,321k k 所以y 与x 的函数表达式为y=x 3+4(x-2).(2)当1x =-时,()()3342412151y x x =+-=+--=--. 20.解:(1)把y =6分别代入y =3x+m 和y =xm 3-, 得 3x+m =6,xm 3-=6. 解得m =5. (2)由(1)得一次函数为y =3x+5,反比例函数为y =x 2. 解352y x y x =+⎧⎪⎨=⎪⎩得∴两个函数图像的交点为(-2,-1)和(31,6). 21.解:(1)∵双曲线y =2k x 经过点A (1,2),∴k 2=2.∴双曲线的表达式为y =2x. ∵点B(m ,-1)在双曲线y =2x上,∴m =-2,则B (-2,-1).由点A (1,2),B (-2,-1)在直线y =k 1x +b 上,得112,2 1.k b k b +=⎧⎨-+=-⎩解得11,1.k b =⎧⎨=⎩∴直线的表达式为y =x +1. (2)y 2<y 1<y 3.(3)x >1或-2<x <0.22. (1)96P v=(2)当 4.8v =米3时,961204.8P ==20千帕 (3)∵96144P v=≤,∴23v ≥.为了安全起见,气球的体积应不小于23米3.23.解:(1)根据题意知,点A 的坐标为(1,6),代人y 1=x+m , 得m=5.∴ 一次函数的表达式为y 1=x+5.(2)如图,过点B 作直线BD 平行于x 轴,交AC 的延长线于D. ∵点C 到y 轴的距离为3,∴C 点的横坐标为3.又C 在双曲线上,∴y=623=,即C (3,2). 解56y x y x =+⎧⎪⎨=⎪⎩得12126116x x y y =-=⎧⎧⎨⎨=-=⎩⎩,∴B (-6,-1). 设AC 的表达式为y=k 1x+b 1,把点A (1,6),点C (3,2)代入,得⎩⎨⎧=+=+.23,61111b k b k 解得k 1=-2,b 1=8.∴直线AC 的表达式为y=-2x+8. 当y=-1时-1=-2x+8, x=4.5,即点D (4.5,-1) ∴ABC ABD BCD S S S =-△△△=1211217-32222⨯⨯⨯⨯=21.。
苏科版八年级数学下册第十一章 反比例函数练习(含答案)
A. m −2
B. m 2
C. m −2
D. m 2
5.下图中反比例函数 y = k 与一次函数 y = kx − k 在同一直角坐标系中的大致图象是( ) x
A.
B.
C.
D.
1/8
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
6.如图,反比例函数 y = k 的图象经过点 A(−1, 4) ,直线 y = −x + b(b 0) 与双曲线 y = k
C.12
D. −12
3.设 A( x1 , y1)、B (x2 , y2)是反比例函数 y = 2 图象上的两点.若 x1<x2 x
<0,则 y1 与 y2 之间的关系是( )
A.y1<y2<0 0
D.y1>y2>0
B.y2<y1<0
C.y2>y1>
4.对于每一象限内的双曲线 y = m − 2 ,y 都随 x 的增大而增大,则 m 的取值范围是( ) x
反比例函数 y= k 的图象上,若点 A 的坐标为(﹣2,﹣2),则 k 的值为_____. x
14.将油箱注满 k 升油后,轿车行驶的总路程 S (单位:千米)与平均耗油量 a (单位:升 /千米)之间是反比例函数关系 S = k (k 是常数, k 0) .已知某轿车油箱注满油后,以平
a 均耗油量为每千米耗油 0.1 升的速度行驶,可行驶 760 千米,当平均耗油量为 0.08 升/千米
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
一、单选题
第十一章 反比例函数
1.下列函数是反比例函数的是( )
A. y = −2x
B. y = − 2 x
C. y = − x 2
2.若点 (−2, −6) 在反比例函数 y = k 上,则 k 的值是( )
苏教版八年级数学下册第11章《反比例函数》常考题(含解析)
八年级数学下册第11章《反比例函数》常考题一,单项选择题(本大题共10小题,每小题3分,共30分) 1.下列函数中,图象是双曲线且经过点(2,-4)的是( ) A .2y x =-B .4y x=-C .8y x=-D .6y x =-2.下列关系中,成反比例函数关系的是( )A .在直角三角形中,30度角所对的直角边y 与斜边x 之间的关系B .在等腰三角形中,顶角y 与底角x 之间的关系C .圆的面积S 与它的半径r 之间的关系D .面积为2019的菱形,其中一条对角线y 与另一条对角线x 之间的关系 3.在双曲线3m y x-=每一分支上,y 都随x 的增大而增大,则m 的取值范围是( ) A .m >-3 B .m <-3C .m >3D .m <34.反比例函数y =3x图象上三个点的坐标为(x 1,y 1)、(x 2,y 2)、(x 3,y 3),若x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是 ( ) A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 2<y 3<y 1D .y 1<y 3<y 25.关于x 的函数y kx k =-和()0ky k x=-≠在同一坐标系中的图像大致是( ). A . B .C .D .6.如图,双曲线y 1=kx与直线y 2=ax 相交于A ,B 两点,点A 的坐标为(2,m ),若y 1<y 2,则x 的取值范围是( )A .x >2或﹣1<x <0B .﹣2<x <0或0<x <2C .x >2或﹣2<x <0D .x <﹣2或0<x <27.如图,点A 、B 是双曲线3y x=上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S +=( )A .4B .3C .2D .18.如图,在平面直角坐标系中,正方形OABC 的顶点О在原点,A ,C 分别在x 轴和y 轴的正半轴上,反比例函数()0ky k x=>图象交AB 边于点D ,交BC 边于点E ,连接EO 并延长,交()0ky k x=>的图象于点F ,连接DE ,DO ,DF ,若:1:2CE BE =,8DOF S =△,则k 的值等于( )A .3B .4.6C .6D .89.在压力一定的情况下,压强()P pa 与接触面积S (2m )成反比例,某木块竖直放置与地面的接触面积20.3S m =时,20000P pa =,若把木块横放,其与地面的接触面积为22m ,则它能承受的压强为( ) A .1000paB .2000paC .3000paD .4000pa10.如图,已知动点P 在函数1(0)2y x x=>的图象上运动,PM x ⊥轴于点M ,PN y ⊥轴于点N ,线段PM 、PN 分别与直线AB :1y x =-+交于点E ,F ,则AF BE⋅的值为( )A .4B .2C .1D .12二、填空题(本大题共7小题,每小题3分,共21分)11.点(3,)a 在反比例函数6y x=-的图象上,则a 的值为_________.12.在平面直角坐标系中,反比例函数ky x=-的图象经过点(,4)A m ,(B .则m 的值是____.13.对于函数2y x=,当2x ≤时,y 的取值范围是_______________ 14.如图,在平面直角坐标系中,一次函数y =kx +b 和函数y =4x (x >0)的图象交于A 、B 两点.利用函数图象直接写出不等式4x <kx +b(x >0)的解集是____________.15.已知1(A x ,1)y ,2(B x ,2)y 都在反比例函数6y x=的图象上.若124x x =-,则12y y 的值为___.16.如图,设点P 在函数y =m x的图象上,PC ⊥x 轴于点C ,交函数y =nx 的图象于点A ,PD ⊥y 轴于点D ,交函数y =nx的图象于点B ,若四边形PAOB 的面积为8,则m ﹣n =_____.17.如图,过原点的直线与反比例函数()0ky k x=>的图象交于A ,B 两点,点A 在第一象限,点C 在x 轴正半轴上,连结AC 交反比例函数图象于点D .AE 为∠BAC 的平分线,过点B 作AE 的垂线,垂足为E ,连结DE ,若AC =3DC ,△ADE 的面积为6,则k 的值为_____.三、解答题(本大题共6小题,18,19.20题各7分,21题8分,22,23题各10分,共49分) 18.已知一次函数y kx b =+的图象经过点(1,5)A --,且与正比例函数12y x =的图象相交于点(2, )B a (1)求a 的值;(2)求出一次函数的解析式; (3)求AOB ∆的面积.19.如图,在平面直角坐标系中,一次函数y=-2x-4的图象与反比例函数ky x=的图象交于A(1,n),B(m ,2).(1)求反比例函数关系式及m 的值(2)若x 轴正半轴上有一点M ,满足ΔMAB 的面积为16,求点M 的坐标; (3)根据函数图象直接写出关于x 的不等式24k x x--<的解集20.函数y=(m ﹣1)21m m x --是反比例函数(1)求m 的值 (2)判断点(12,2)是否在这个函数的图象上.21.李叔叔驾驶小汽车从A 地匀速行驶到B 地,行驶里程为480km ,设小汽车的行驶时间为()t h ,行驶速度为()v km h ,且全程速度限定不超过120km h . (1)求v 与t 之间的关系式;(2)李叔叔上午8点驾驶小汽车从A 地出发,需要在当天12点48分至14点(含12点48分和14点)间到达B 地,求小汽车行驶速度v 的范围.22.在平面直角坐标系平面中,直线12y x =经过点(),2A m ,反比例函数()0ky k x=≠的图像经过点A 和点()8,B n . (1)求反比例函数的解析式;(2)在x 轴上找一点C ,当AC BC =时,求点C 的坐标; (3)在(2)的条件下,求ACB ∆的面积.23.如图,一次函数1y =ax+b 与反比例函数2y =kx的图象相交于A (2,8),B (8,2)两点,连接AO ,BO ,延长AO 交反比例函数图象于点C .(1)求一次函数1y 的表达式与反比例函数2y 的表达式; (2)当1y <2y 时,直接写出自变量x 的取值范围为 ; (3)求AOBS的值(4)点P 是x 轴上一点,当PACS =45AOBS 时,请求出点P 的坐标.一,单项选择题(本大题共10小题,每小题3分,共30分) 1.下列函数中,图象是双曲线且经过点(2,-4)的是( ) A .2y x =- B .4y x=-C .8y x=-D .6y x =-【答案】C 【分析】设双曲线的解析式为:,ky x=再把()2,4-代入函数解析式,可得答案. 【详解】解:设双曲线的解析式为:,k y x=4,2k ∴-=8,k ∴=-∴双曲线的解析式为:8, yx =-故选:.C【点睛】本题考查的是利用待定系数法求解反比例函数的解析式,反比例函数的性质,掌握以上知识是解题的关键.2.下列关系中,成反比例函数关系的是()A.在直角三角形中,30度角所对的直角边y与斜边x之间的关系B.在等腰三角形中,顶角y与底角x之间的关系C.圆的面积S与它的半径r之间的关系D.面积为2019的菱形,其中一条对角线y与另一条对角线x之间的关系【答案】D【分析】根据题意分别写出各个选项中的函数关系式,根据反比例函数的定义判断.【详解】A、在直角三角形中,30度角所对的直角边y与斜边x之间的关系:y=12x,不是反比例函数关系;B、在等腰三角形中,顶角y与底角x之间的关系:y=180°﹣2x,不是反比例函数关系;C、圆的面积S与它的半径r之间的关系:S=πr2,不是反比例函数关系;D、面积为2019的菱形,其中一条对角线y与另一条对角线x之间的关系:y=4038x,是反比例函数关系;故选:D.【点睛】本题考查的是反比例函数的定义、直角三角形的性质、三角形内角和定理、菱形的面积计算,掌握反比例函数的定义是解题的关键.3.在双曲线3myx-=每一分支上,y都随x的增大而增大,则m的取值范围是()A.m>-3 B.m<-3 C.m>3 D.m<3【答案】D【分析】根据反比例函数的图象与性质即可求出k的范围.【详解】解:由题意可知:m-3<0, ∴m <3 故选:D . 【点睛】本题考查反比例函数的性质,解题的关键是熟练运用反比例函数的性质,本题属于基础题型.4.反比例函数y =3x图象上三个点的坐标为(x 1,y 1)、(x 2,y 2)、(x 3,y 3),若x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是 ( ) A .y 1<y 2<y 3 B .y 2<y 1<y 3C .y 2<y 3<y 1D .y 1<y 3<y 2【答案】B 【分析】先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再根据x 1<x 2<0<x 3即可得出结论. 【详解】解:∵反比例函数y =3x中,k =3>0, ∴此函数图象的两个分支分别位于第一三象限,且在每一象限内y 随x 的增大而减小. ∵x 1<x 2<0<x 3,∴(x 1,y 1)、(x 2,y 2)在第三象限,(x 3,y 3)在第一象限, ∴y 2<y 1<0<y 3. 故选:B . 【点睛】本题主要考查反比例函数图象上点的坐标特征,解题的关键是掌握反比例函数图象上点的坐标特征:当k >0时,图象分别位于第一、三象限,横纵坐标同号;当k <0时,图象分别位于第二、四象限,横纵坐标异号. 5.关于x 的函数y kx k =-和()0ky k x=-≠在同一坐标系中的图像大致是( ). A . B .C .D .【答案】D 【分析】首先根据反比例函数图象所经过的象限判断出k 的符号;然后由k 的符号判定一次函数图象所经过的象限,图象一致的选项即为正确选项. 【详解】解:A 、反比例函数()0ky k x=-≠的图象经过第一、三象限,则-k >0,即k <0,所以一次函数y =kx−k 的图象经过第一、二、四象限,故本选项错误; B 、反比例函数()0ky k x=-≠的图象经过第一、三象限,则-k >0,即k <0,所以一次函数y =kx−k 的图象经过第一、二、四象限,故本选项错误; C 、反比例函数()0ky k x=-≠的图象经过第二、四象限,则-k <0,即k >0,所以一次函数y =kx−k 的图象经过第一、三、四象限,故本选项错误; D 、反比例函数()0ky k x=-≠的图象经过第一、三象限,则-k >0,即k <0.所以一次函数y =kx−k 的图象经过第一、二、四象限,故本选项正确. 故选:D . 【点睛】本题考查反比例函数与一次函数的图象特点:①反比例函数()0ky k x=≠的图象是双曲线;②当k >0时,它的两个分支分别位于第一、三象限;③当k <0时,它的两个分支分别位于第二、四象限. 6.如图,双曲线y 1=kx与直线y 2=ax 相交于A ,B 两点,点A 的坐标为(2,m ),若y 1<y 2,则x 的取值范围是( )A .x >2或﹣1<x <0B .﹣2<x <0或0<x <2C .x >2或﹣2<x <0D .x <﹣2或0<x <2【答案】C 【分析】根据点A 和点B 关于原点对称,即得到点B 的横坐标,结合函数图象,即可得到答案. 【详解】∵点A 的坐标为:(2,m ),由题意知:点A 和点B 关于原点中心对称, ∴点B 的坐标为:(-2,-m ), 根据图象可知:x 的取值范围为:-2<x <0或x >2. 故选:C . 【点睛】本题考查了反比例函数与一次函数的交点问题,解题的关键是正确掌握数形结合的思想. 7.如图,点A 、B 是双曲线3y x=上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S +=( )A .4B .3C .2D .1【答案】A 【分析】先根据反比例函数系数k 的几何意义得S 1+S 阴影及S 2+S 阴影的值,进而可得出S 1+S 2的值. 【详解】解:∵点A 、B 是双曲线3y x=上的点, ∴S 1+S 阴影=S 2+S 阴影=3,∵S 阴影=1∴S 1=S 2=3-S 阴影=3-1=2,∴12224S S +=+=.故选A .【点睛】 本题考查反比例函数系数k 的几何意义,是常考点,需要学生熟练掌握.8.如图,在平面直角坐标系中,正方形OABC 的顶点О在原点,A ,C 分别在x 轴和y 轴的正半轴上,反比例函数()0k y k x =>图象交AB 边于点D ,交BC 边于点E ,连接EO 并延长,交()0k y k x=>的图象于点F ,连接DE ,DO ,DF ,若:1:2CE BE =,8DOF S =△,则k 的值等于( )A .3B .4.6C .6D .8 【答案】C【分析】 由反比例函数()0k y k x=>图象的中心对称性质,则OE=OF ,由四边形OABC 为正方形,可得OA=OC ,∠OCA=∠OAB=90°由点E ,D 在反比例函数图像上,可证CE=AD ,可证△OCE ≌△OAD (SAS )可得OE=OD=OF ,由中线性质S △ODE =S △ODF =8,由:1:2CE BE =,可知CE 13BC =,BE=23BC 设正方形的边长为m ,利用正方形面积构造方程,求出2=18m 进而求 211=633k m m m ⋅==即可. 【详解】解:由反比例函数()0k y k x=>图象的中心对称性质, 则OE=OF , ∵四边形OABC 为正方形,∴OA=OC ,∠OCA=∠OAB=90°,由点E ,D 在反比例函数图像上,∴CE=AD==k k OA OC, 在△OCE 和△OAD 中,OC OA OCE OAD CE AD =⎧⎪∠=∠⎨⎪=⎩,∴△OCE ≌△OAD (SAS ),∴OE=OD=OF ,∴S △ODE =S △ODF =8,∵:1:2CE BE =,∴CE=()11+33CE BE BC =,BE=23BC , 设正方形的边长为m ,S 正方形OABC =2S △OCE +S △BED +S △OED ,即m 2=2×21112·82323m m m ⎛⎫⨯++⨯ ⎪⎝⎭, ∴2=18m ,∵点E 在反比例函数图像上E (1,3m m ), ∴211633k xy m m m ==⋅==. 故选择:C .【点睛】本题考查反比例函数性质,正方形性质,三角形中线性质,掌握反比例函数性质,正方形性质,三角形中线性质,掌握关键是抓住正方形面积构造方程.9.在压力一定的情况下,压强()P pa 与接触面积S (2m )成反比例,某木块竖直放置与地面的接触面积20.3S m =时,20000P pa =,若把木块横放,其与地面的接触面积为22m ,则它能承受的压强为( )A .1000paB .2000paC .3000paD .4000pa 【答案】C【分析】利用压强与接触面积和物体重量的关系进而得出答案.【详解】解:设p=F S, 把(0.3,20000)代入得:F=20000×0.3=6000,故P=6000S, 当S=2m 2时, P=60002=3000pa . 故选C .【点睛】本题主要考查了反比例函数的应用,正确记忆压强与接触面积和物体重量的关系是解题关键.10.如图,已知动点P 在函数1(0)2y x x=>的图象上运动,PM x ⊥轴于点M ,的值为( )A .4B .2C .1D .12 【答案】C【分析】由于P 的坐标为1,2a a ⎛⎫ ⎪⎝⎭,且PN OB ⊥,PM OA ⊥,那么N 的坐标和M 点的坐标都可以a 表示,那么BN 、NF 的长度也可以用a 表示,接着F 点、E 点的也可以a 表示,然后利用勾股定理可以分别用a 表示AF ,BE ,最后即可求出AF BE ⋅.【详解】解:作FG x ⊥轴, P 的坐标为1,2a a ⎛⎫ ⎪⎝⎭,且PN OB ⊥,PM OA ⊥, N ∴的坐标为10,2a ⎛⎫ ⎪⎝⎭,M 点的坐标为(),0a , 112BN a∴=-, 在直角三角形BNF 中,45(1NBF OB OA ∠=︒==,三角形OAB 是等腰直角三角形),112NF BN a∴==-, F ∴点的坐标为111,22a a ⎛⎫- ⎪⎝⎭, 同理可得出E 点的坐标为(),1a a -,2222111(11)()222AF a a a∴=-++=,2222()()2BE a a a =+-=, 22221212AF BE a a∴⋅=⋅=,即1AF BE ⋅=. 故选C .【点睛】本题考查了反比例函数的性质、勾股定理,解题的关键是通过反比例函数上的点P 坐标,来确定E 、F 两点的坐标,进而通过勾股定理求出线段乘积的值.二、填空题(本大题共7小题,每小题3分,共21分)11.点(3,)a 在反比例函数6y x =-的图象上,则a 的值为_________. 【答案】2-.【分析】直接把点(3,)a 代入反比例函数6y x =-,求出a 的值即可. 【详解】 解:点(3,)a 在反比例函数6y x=-图象上, 623a ∴=-=-. 故答案为:2-.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.12.在平面直角坐标系中,反比例函数k y x =-的图象经过点(,4)A m ,(B .则m 的值是____. 【答案】32-【分析】将点B 的坐标代入反比例函数解析式,得出k 的值,再将点A 的纵坐标代入即可得出m 的值.【详解】解:将点B 的坐标代入反比例函数解析式,得出:=,将点A的纵坐标代入可得,64m=-,解得,32m=-.故答案为:32 -.【点睛】本题考查的知识点是反比例函数图象上点的坐标,属于基础题目,易于掌握.13.对于函数2yx=,当2x≤时,y的取值范围是_______________【答案】y≥1或y<0【分析】分为x<0和0<x≤2两部分来求解.【详解】解:对于函数2yx=,当x<0时,y<0;当0<x≤2时,y≥1;故当x≤2时,y的取值范围是y≥1或y<0,故答案为:y≥1或y<0.【点睛】本题考查了反比例函数的性质,重点是注意kyx=(k≠0)中k的取值.14.如图,在平面直角坐标系中,一次函数y=kx+b和函数y=4x(x>0)的图象交于A、B两点.利用函数图象直接写出不等式4x<kx+b(x>0)的解集是____________.【答案】1<x<4【解析】【分析】不等式4x<kx+b(x>0)的解集实际上是反比例函数值小于一次函数值的自变量x的取值范围,根据图象可以直接得出答案.解:不等式4x <kx +b(x >0)的解集实际上是反比例函数值小于一次函数值的自变量x 的取值范围,根据图象得:1<x <4.故答案为:1<x <4.【点睛】本题考查一次函数、反比例函数的图象和性质,理清不等式的解集与两个函数的交点坐标之间的关系是解决问题的关键.15.已知1(A x ,1)y ,2(B x ,2)y 都在反比例函数6y x =的图象上.若124x x =-,则12y y 的值为___.【答案】-9.【分析】根据反比例函数上点的特征得到1y 、2y 分别与1x 、2x 的关系,再把它们相乘,最后把12=4x x -代入即可.【详解】将点A 和B 代入反比例函数得:116y x =,226y x =, 所以12121266363694y y x x x x ====--. 故答案为-9【点睛】 本题考查反比例函数图像上点的坐标特征,图像为双曲线,图像上点的横、纵坐标的积是定值. 16.如图,设点P 在函数y =m x的图象上,PC ⊥x 轴于点C ,交函数y =n x 的图象于点A ,PD ⊥y 轴于点D ,交函数y =n x 的图象于点B ,若四边形PAOB 的面积为8,则m ﹣n =_____.【分析】根据反比例函数系数k 的几何意义求出四边形PCOD 的面积为m ,△OBD 和△OAC 的面积为12n ,根据四边形PAOB 的面积=S 四边形PCOD ﹣S △OBD ﹣S △OAC =8求解即可. 【详解】解:根据题意,S 四边形PCOD =m ,S △BOD =12n ,S △AOC =12n , ∴四边形PAOB 的面积=S 四边形PCOD ﹣S △OBD ﹣S △OAC =m ﹣12n ﹣12n =8, ∴m ﹣n =8.故答案为:8.【点睛】本题考查反比例函数系数k 的几何意义,熟知过双曲线上任意一点分别向两条坐标轴作垂线,围成的矩形面积为∣k ∣是解答的关键.17.如图,过原点的直线与反比例函数()0k y k x=>的图象交于A ,B 两点,点A 在第一象限,点C 在x 轴正半轴上,连结AC 交反比例函数图象于点D .AE 为∠BAC 的平分线,过点B 作AE 的垂线,垂足为E ,连结DE ,若AC =3DC ,△ADE 的面积为6,则k 的值为_____.【答案】92【分析】 连接OE ,在Rt △ABE 中,点O 是AB 的中点,得到OE=12AB=OA ,根据角平分线的定义得到∠OAE=∠DAE ,得到∠OEA=∠DAE ,过A 作AM ⊥x 轴于M ,过D 作DN ⊥x 轴于N ,易得S 梯形AMND =S △AOD ,△CAM ∽△CDN ,得到S 梯形AMND =S △AOD =S △ADE =6,求得S △AOC =9,延长CA 交y 轴于P ,易得△CAM ∽△CPO ,设DN=a ,则AM=3a ,推出S △CAM :S △AOM =3:1,于是得到结论.解:连接OE,在Rt△ABE中,点O是AB的中点,∴OE=12AB=OA,∴∠OAE=∠OEA,∵AE是∠BAC的角平分线,∴∠OAE=∠DAE,∴∠OEA=∠DAE,∴AD∥OE,∴S△ADE=S△AOD,过A作AM⊥x轴于M,过D作DN⊥x轴于N,易得S梯形AMND=S△AOD,△CAM∽△CDN,∵CD:CA=1:3,S梯形AMND=S△AOD=S△ADE=6,∴S△AOC=9,延长CA交y轴于P,易得△CAM∽△CPO,设DN=a,则AM=3a,∴ON=ka,OM=3ka,∴MN=23ka,CN=3ka,∴CM:OM=3:1,∴S△CAM:S△AOM=3:1,∴S△AOM=94,∴k=92.故答案为92.本题考查反比例函数k 的意义;借助直角三角形和角平分线,将△ACE 的面积转化为△AOC 的面积是解题的关键.三、解答题(本大题共6小题,18,19.20题各7分,21题8分,22,23题各10分,共49分) 18.已知一次函数y kx b =+的图象经过点(1,5)A --,且与正比例函数12y x =的图象相交于点(2, )B a(1)求a 的值;(2)求出一次函数的解析式;(3)求AOB ∆的面积.【答案】(1)1(2)23y x =-(3)92 【解析】【分析】(1)将点B 代入正比例函数12y x =即可求出a 的值; (2)将点A 、B 代入一次函数y kx b =+,用待定系数法确定k ,b 的值即可; (3)可将AOB ∆分割成两个三角形求其面积和即可.【详解】(1)依题意,点(2,)B a 在正比例函数12y x =的图象上, 所以,1212a =⨯= (2)依题意,点A 、B 在一次函数图象上,所以,521k b k b -+=-⎧⎨+=⎩,解得:23k b =⎧⎨=-⎩,. 一次函数的解析式为:23y x =-,(3)直线AB 与y 轴交点为(0,3)-,AOB ∆的面积为:1193132222⨯⨯+⨯⨯=【点睛】本题考查了一次函数与反比例函数的综合,待定系数法求一次函数解析式是解题的关键,对于一般的三角形不易直接求面积时,可将其分割成多个易求面积的三角形.19.如图,在平面直角坐标系中,一次函数y=-2x-4的图象与反比例函数k y x=的图象交于A(1,n),B(m ,2).(1)求反比例函数关系式及m 的值(2)若x 轴正半轴上有一点M ,满足ΔMAB 的面积为16,求点M 的坐标;(3)根据函数图象直接写出关于x 的不等式24k x x --<的解集【答案】(1) 反比例关系式为:6y x =-,m=-3; (2)点M(2,0) ;(3)x<-3或0<x<1 【分析】(1)把A (1,n ),B (m ,2)代入y=-2x-4即可求得m 、n 的值,从而得到A (1,-6),然后利用待定系数法即可即可求得反比例函数的表达式;(2)设M (m ,0),因为△MAB 的面积为16,直线AB 交x 轴于(-2,0),可得12|m+2|×8=16,解方程即可;(3)根据图象,结合A 、B 的坐标即可求得.【详解】解:(1) ∵一次函数y=-2x-4的图象过点A (1,n ),B (m ,2)∴n=-2-4,2=-2m-4∴n=-6,m=-3,∴点A(1,-6).把A (1,-6)代入k y x=得,k=-6, ∴反比例关系式为:6y x =-; (2)设直线AB 交x 轴于点N ,则N(-2,0),设M (m ,0),m >0,当M 在x 轴正半轴时ABM BMN AMN S S S ∆∆∆=+112622MN MN =⨯+⨯ =12|m+2|×8=16 ∴m=2或-6(不合题意舍去),∴点M(2,0) ;(3) 由图象可知:不等式在k x<-2x-4的解集是x <-3或0<x <1. 故答案为:(1) 反比例关系式为:6y x =-, m=-3; (2)点M(2,0) ;(3)x<-3或0<x<1 【点睛】本题考查反比例函数与一次函数的交点问题,三角形的面积等知识,解题的关键是熟练掌握待定系数法解决问题,学会构建方程解决问题.20.函数y=(m ﹣1)21mm x --是反比例函数(1)求m 的值 (2)判断点(12,2)是否在这个函数的图象上. 【答案】(1) m=0;(2)点(12,2)不在这个函数图象上. 【解析】试题分析:()1根据反比例函数的定义得到2101 1.m m m -≠⎧⎨--=-⎩即可求出m 得值. ()2把12x =代入反比例函数1y x=-,求得y 的值,即可判断. 试题解析:()1由题意得:2101 1.m m m -≠⎧⎨--=-⎩解得0m =.(2)∵反比例函数1y x =-,当122x y ==-,, ∴点122⎛⎫⎪⎝⎭,不在这个函数图象上. 21.李叔叔驾驶小汽车从A 地匀速行驶到B 地,行驶里程为480km ,设小汽车的行驶时间为()t h ,行驶速度为()v km h ,且全程速度限定不超过120km h .(1)求v 与t 之间的关系式;(2)李叔叔上午8点驾驶小汽车从A 地出发,需要在当天12点48分至14点(含12点48分和14点)间到达B 地,求小汽车行驶速度v 的范围.【答案】(1)()4804v t t =≥;(2)小汽车行驶速度v 的范围为80100v ≤≤ 【分析】(1)根据速度乘以时间等于路程,得到v 与t 之间的关系式;(2)根据题意得出时间的范围,代入(1)中的关系式得到速度的范围.【详解】解:(1)∵480vt =,且全程速度限定不超过120km h ,∴v 与t 之间的关系式为()4804v t t=≥. (2)∵8点至12点48分的时间长为4.8h ,8点至14点的时间长为6h ,∴将6t =代入480v t=中,得80v =, 将 4.8t =代入480v t=中,得100v =. ∴小汽车行驶速度v 的范围为80100v ≤≤. 【点睛】本题考查反比例函数的应用,解题的关键是列出反比例函数解析式进行求解. 22.在平面直角坐标系平面中,直线12y x =经过点(),2A m ,反比例函数()0k y k x=≠的图像经过点A 和点()8,B n .(1)求反比例函数的解析式;(2)在x 轴上找一点C ,当AC BC =时,求点C 的坐标;(3)在(2)的条件下,求ACB ∆的面积.【答案】(1)8y x =;(2)C (458,0);(3)5116 【分析】 (1)先把(),2A m 代入12y x =求出m ,再把(),2A m 代入k y x=求出k 即可; (2)先求出点B 的坐标,设C (x ,0),根据两点间的距离公式求出x 即可;(3)连接AC ,BC ,作AE ⊥x 轴于E ,作BF ⊥x 轴于F ,根据S △ABC =S 梯形ABFE -S △ACE -S △BCF求解即可;【详解】解:(1)把(),2A m 代入12y x =,得 122m =, ∴m =4,把()4,2A 代入k y x=,得 24k =, ∴k =8, ∴8y x=; (2)把()8,B n 代入8y x =,得 818n ==, ∴()8,1B ,设C (x ,0),∵AC BC =,=∴458x =, 经检验45x 8=是原方程的根, ∴C (458,0); (3)连接AC ,BC ,作AE ⊥x 轴于E ,作BF ⊥x 轴于F ,∵()4,2A ,()8,1B ,C (458,0), ∴AE =2,BF =1,EF =8-4=4,CE =458-4=138,CF =8-458=198, ∴S △ABC =S 梯形ABFE -S △ACE -S △BCF =()11131191242122828⨯+⨯-⨯⨯-⨯⨯ =5116.【点睛】本题考查了待定系数法求反比例函数解析式,反比例函数图像上点的坐标特征,坐标与图形的性质,两点间的距离公式,以及割补法求图形的面积等知识,求出反比例函数解析式是解答本题的关键.23.如图,一次函数1y =ax+b 与反比例函数2y =k x的图象相交于A (2,8),B (8,2)两点,连接AO ,BO ,延长AO 交反比例函数图象于点C .(1)求一次函数1y 的表达式与反比例函数2y 的表达式;(2)当1y <2y 时,直接写出自变量x 的取值范围为 ;(3)求AOB S 的值(4)点P 是x 轴上一点,当PAC S =45AOB S 时,请求出点P 的坐标.【答案】(1)y =﹣x+10,y =16x ;(2)x >8或0<x <2;(3)30;(4)P (3,0)或P (﹣3,0).【分析】(1)利用待定系数法确定解析式即可;(2)利用数形结合思想,根据交点的横坐标确定解集即可;(3)利用图形分割法表示所求图形的面积即可;(4)用点P 的横坐标表示三角形的面积求解即可.【详解】解:(1)将A (2,8),B (8,2)代入y =ax+b得2882a b a b +=⎧⎨+=⎩, 解得110a b =-⎧⎨=⎩,∴一次函数为1y =﹣x+10,将A (2,8)代入2y =kx ,得8=2k,解得k =16,∴反比例函数的解析式为y =16x; (2)由图象可知,当1y <2y 时,x >8或0<x <2,故答案为x >8或0<x <2;(3)设直线AB 与x 轴的交点为D ,把y =0代入1y =﹣x+10得,0=﹣x+10,解得x =10,∴D (10,0),∴AOB S =AOD S ﹣DOB S =11082⨯⨯-11022⨯⨯ =30,(4)由题意可知点A 与点C 对称,所以C (-2,-8),∵PAC S =45AOB S =45×30=24, ∴2×12A PO y ⨯⨯=24,即2×182PO ⨯⨯=24, ∴OP =3, ∴P (3,0)或P (﹣3,0).【点睛】本题考查了一次函数与反比例函数的解析式确定,函数值确定的不等式解集,图形的面积,动点问题,熟记待定系数法,图形面积的分割法,动点表示面积是解题的关键.。
苏科版数学八年级下册《第11章反比例函数》章末测试卷【含答案】
苏科版数学八年级下册《第11章反比例函数》章末测试卷一.选择题(共10小题)1.下列函数中,y是x的反比例函数的是()A.=﹣1 B.xy=﹣C.y=x﹣p D.y=﹣52.下列函数中是反比例函数的是()A.y=﹣B.y=C.y=D.y=3.如果k<0,那么函数y=(1﹣k)x与y=在同一坐标系中的图象可能是()A.B.C.D.4.二次函数y=ax2+bx+c的图象如图所示,则反比例函数y=与一次函数y=ax+b在同一平面直角坐标系中的大致图象为()(第4题图)A.B.C.D.5.已知m≠0,函数y=﹣mx2+n与y=在同一直角坐标系中的大致图象可能()A.B.C.D.6.二次函数y=ax2+bx+c的图象如图所示,反比例函数y=﹣与正比例函数y=bx在同一坐标系内的大致图象是()(第6题图)A.B.C.D.7.正比例函数y=2x和反比例函数的一个交点为(1,2),则另一个交点为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(1,2)D.(2,1)8.如图,边长为4的正方形ABCD的对称中心是坐标原点O,AB∥x轴,BC∥y轴,反比例函数y=与y=﹣的图象均与正方形ABCD的边相交,则图中阴影部分的面积之和是()(第8题图)A.2 B.4 C.6 D.89.下列函数:①y=,②y=﹣2x+8,③y=5x,④y=x2,⑤y=﹣(x+3)2(x<﹣3时)中,y 的值随x的值增大而增大的函数共有()A.1个B.2个C.3个D.4个10.若双曲线y=在每一个象限内,y随x的增大而减小,则k的取值范围是()A.k≠3B.k<3 C.k≥3D.k>3二.填空题(共7小题)11.如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则k= .(第11题图)12.已知反比例函数y=(x>0)的图象上有两点A(x1,y1)、B(x2,y2),如果x1<x2时,那么y1y2.(填“>”或“<”)13.如图,A(4,0),C(﹣1,3),以AO,OC为边作平行四边形OABC,则经过B点的反比例函数的解析式为.(第13题图)14.如图,在平面直角坐标系中,▱ABCO的顶点A、C的坐标分别为A(2,0)、C(﹣1,2),反比例函数y=(k≠0)(k≠0)的图象经过点B,则求反比例函数的表达式为.(第14题图)15.如图,AB⊥x轴,反比例函数y=的图象经过线段AB的中点C,若△ABO的面积为2,则该反比例函数的解析式为.(第15题图)16.京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行驶完全程所需的时间t(h)与行驶的平均速度v(km/h)之间的函数关系式是t= .17.某农业大学计划修建一块面积为2×106㎡的长方形实验田,该试验田的长y米与宽x 米的函数解析式是.三.解答题(共5小题)18.已知y是x的反比例函数,且点A(3,5)在这个函数的图象上.(1)求y与x之间的函数关系式;(2)当点B(﹣5,m)也在这个反比例函数的图象上时,求△AOB的面积.19.已知y=y1+y2,y1与成正比例,y2与x2成反比.当x=1时,y=﹣12;当x=4时,y=7.(1)求y与x的函数关系式和x的取范围;(2)当x=时,求y的值.20.如图,一次函数y=x+m的图象与反比例函数y=的图象交于A,B两点,且与x轴交于点C,点A的坐标为(2,1).(1)求m及k的值;(2)求点B的坐标及△AOB的面积;(3)观察图象直接写出使反比例函数值小于一次函数值的自变量x取值范围.(第20题图)21.某三角形的面积为15cm2,它的一边长为xcm,且此边上高为ycm,请写出y与x之间的关系式,并求出x=5时,y的值.22.如图,⊙O的直径AB=12cm,AM和BN是它的两条切线,DE切⊙O于E,交AM于D,BN 于C,设AD=x,BC=y,求y与x的函数关系式.(第22题图)参考答案一.1.B 2.C 3.C 4.D 5.B 6.D 7.A 8.D 9.B 10.D 二.11.12 12.> 13. y= 14.y= 15.y= 16. t=17. y=三.18.解:(1)设反比例函数解析式为y=,将点A(3,5)代入解析式得,k=3×5=15,y=.(2)将点B(﹣5,m)代入y=得,m==﹣3,则B点坐标为(﹣5,﹣3),设AB的解析式为y=kx+b,将A(3,5),B(﹣5,﹣3)代入y=kx+b得,,解得,,函数解析式为y=x+1,D点的坐标为(0,1),S△ABO=S△ADO+S△BDO=×1×3+=×1×5=4.(第18题答图)19.解:(1)设y1=k1,y2=,则y=k1+;∵当x=1时,y=﹣12;当x=4时,y=7.∴.解得.∴y与x的函数关系式为y=4﹣.∵x≥0,x2≠0,∴x的取范围为x>0;(2)当x=时,y=4×﹣=﹣254.∴y的值为﹣254.20.解:(1)∵一次函数y=x+m的图象与反比例函数y=的图象交于A,B两点,点A的坐标为(2,1).∴把A的坐标代入函数解析式得:1=2+m,k=2×1,解得m=﹣1,k=2;(2)两函数解析式为y=x﹣1,y=,解方程组得,.∵点A的坐标为(2,1),∴B点坐标为(﹣1,﹣2),y=x﹣1,当y=0时,0=x﹣1,解得x=1,即点C的坐标为(1,0),OC=1,所以△AOB的面积S=S△AOC+S△BOC==;(3)反比例函数值小于一次函数值的自变量x取值范围是x>2或﹣1<x<0.21.解:∵三角形的面积=边长×这边上高÷2,三角形的面积为15cm2,一边长为xcm,此边上高为ycm,∴;当x=5时,y=6(cm).22.解:作DF⊥BN交BC于点F.如答图.∵AM、BN与⊙O切于点定A、B,∴AB⊥AM,AB⊥BN.又∵DF⊥BN,∴∠BAD=∠ABC=∠BFD=90°,∴四边形ABFD是矩形,∴BF=AD=x,DF=AB=12,∵BC=y,∴FC=BC﹣BF=y﹣x;∵DE切⊙O于E,∴DE=DA=x CE=CB=y,则DC=DE+CE=x+y,在Rt△DFC中,由勾股定理,得(x+y)2=(y﹣x)2+122,整理为,∴y与x的函数关系式是.(第22题答图)。
苏科版2018--2019学年度第二学期八年级下册数学单元测试题----第11章反比例函数
绝密★启用前 苏科版2018--2019学年度第二学期 八年级下册数学单元测试题----第11章反比例函数 注意事项: 1.做卷时间100分钟,满分120分 2.做题要仔细,不要漏做一、单选题(计30分) 1.(本题3分)下列各点中,在函数y =﹣x 6图象上的是( ) A .(﹣3,﹣2) B .(﹣2,3) C .(3,2) D .(﹣3,3) 2.(本题3分)小明乘车从济宁市到济南,行车的平均速度y (km/h)和行车时间x (h)之间的函数图象是( ) A . B . C . D . 3.(本题3分)如图,点P 在反比例函数y=x 2的图象上,P A ⊥x 轴于点A ,则△P AO 的面积为( ) A .1 B .2 C .4 D .6 4.(本题3分)如图,直线y =-x +3与y 轴交于点A ,与反比例函数y =x k (k≠0)的图象交于点C ,过点C 作CB ⊥x 轴于点B ,AO =3BO ,则反比例函数的解析式为( )A .y =x 2B .y =-x 2C .y =x 4D .y =-x 4 5.(本题3分)若点A (x 1,﹣6),B (x 2,﹣2),C (x 3,2)在反比例函数y =x m 12 (m 为常数)的图象上,则x 1,x 2,x 3的大小关系是( ) A .x 1<x 2<x 3 B .x 2<x 1<x 3 C .x 2<x 3<x 1 D .x 3<x 2<x 1 6.(本题3分)如图,已知点,,点P 在线段AB 上(不与端点重合),反比例函数y=xk 的图象经过点P ,则k 的取值范围是( )A .>3B .0≤≤3C .0<≤3D .≥37.(本题3分)在对物体做功一定的情况下,力F(牛)与此物体在力的方向上移动的距离s(米)成反比例函数关系,其图象如图所示.P(5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是( )A .0.5米B .5米C .1米D .0.2米8.(本题3分)若函数y =x 3与y =x -1的图象交于点A(a ,b),则a 1-b 1的值为( )A .31B .3C .-31D .-39.(本题3分)如图,A 、B 两点在双曲线y =x 4上,分别经过A 、B 两点向坐标轴作垂线段,已知S 阴影=1.7,则S 1+S 2等于( )10.(本题3分)今年,某公司推出一款新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买手机的活动,一部售价为9688元的新手机,前期付款3000元,后期每个月分别付相同的数额,则每个月付款额(元)与付款月数(为正整数)之间的函数关系式是( ) A . B . C . D .二、填空题(计32分) 11.(本题4分)点A (2,﹣4)在反比例函数y =x k 的图象上,则k 的值等于_____. 12.(本题4分)已知函数y =(k -3)为反比例函数,则k =__________. 13.(本题4分)小王驾车从甲地到乙地,他以70千米/时的平均速度4小时到达目的地,当他按原路匀速返回甲地时,汽车的速度y(千米/时)与时间x(时)(x≠0)的函数关系式为________________. 14.(本题4分)已知反比例函数y=x k 的图象如图所示,则k _____ ,在图象的每一支上,随的增大而_____. 15.(本题4分)已知一次函数的图象与反比例函数y=x k 的图象相交,其中有一个交点的横坐标是2,则的值为_____. 16.(本题4分)如图,过原点O 的直线与反比例函数y =x k 的图象相交于点A (1,3)、B (x ,y ),则点B 的坐标为________________.17.(本题4分)已知点A 在反比例函数y=x k 的图象上,轴,点C 在x 轴上,,则反比例函数的解析式为______ . 18.(本题4分)二氧化碳的密度ρ(kg/m 3)关于其体积V (m 3)的函数关系式如图所示,那么函数关系式是__________.三、解答题(计58分)19.(本题7分)如果y 是z 的反比例函数,z 是x 的正比例函数,且x≠0,那么y 与x 具有怎样的函数关系?20.(本题7分)如图,在平面直角坐标系中,已知四边形ABCD 为菱形,且A (0,4)、D (3,0).(1)求经过点C 的反比例函数的解析式;(2)设P 是(1)中所求函数图象上一点,以P 、O 、A 顶点的三角形的面积与△COB 的面积相等.求点P 的坐标.21.(本题7分)已知是的反比例函数,下表给出了与的一些值. (1)写出这个反比例函数的表达式; (2)根据函数表达式完成下表; (3)根据列表在平面直角坐标系内画出这个反比例函数的图象. 22.(本题7分)反比例函数x k y =的图象如图所示. (1)求的取值范围; (2)点和在这个反比例函数图象上,求和的值. 23.(本题7分)在平面直角坐标系xOy 中,直线y =x +2与双曲线x k y =相交于点 A (m ,3). (1)求反比例函数的表达式; (2)画出直线和双曲线的示意图; (3)若P 是坐标轴上一点,当OA =P A 时.直接写出点P 的坐标.24.(本题7分)在同一直角坐标系上画出函数y =x +2,y =-x 2的图象.25.(本题8分)如图,已知反比例函数y 1=x k1与一次函数y 2=k 2x+b 的图象交于点A(2,4),B (﹣4,m )两点.(1)求k 1,k 2,b 的值;(2)求△AOB 的面积;(3)请直接写出不等式x k 1≥k 2x+b 的解.26.(本题8分)已知一次函数y =k 1x+b 与反比例函数y =x k 2的图象交于第一象限内的P (21,8),Q (4,m )两点,与x 轴交于A 点. (1)写出点P 关于原点的对称点P′的坐标; (2)分别求出这两个函数的表达式; (3)求∠P′AO 的正切值.参考答案1.B【解析】【分析】只需把所给点的横纵坐标相乘,结果是﹣6的,就在此函数图象上.【详解】∵反比例函数y=﹣中,k=﹣6,∴只需把各点横纵坐标相乘,结果为﹣6的点在函数图象上,四个选项中只有B选项符合.故选B.【点睛】本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.2.B【解析】【分析】根据题意可得行车的平均速度y(km/h)和行车时间x(h)是反比例函数关系,再根据x、y 的取值范围可得答案.【详解】解:由题意得:xy=路程,∵小明乘车从姜堰到泰州,∴路程是定值,∴x、y是反比例函数关系,∵x>0,y>0,∴B选项符合,故选:B.【点睛】此题主要考查了反比例函数的应用和图象,关键是正确理解题意,表示出函数关系式.3.A【解析】【分析】根据反比例函数系数k的几何意义可知,△P AO的面积|k|,即可得出结论.【详解】依据比例系数k的几何意义可得:△P AO的面积|k|==1.故选A.【点睛】本题考查了反比例函数y中k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S|k|.4.D【解析】【分析】根据一次函数图象上点的坐标特征可求出点A的坐标,结合AO=3BO可得出BO的长度,进而可得出点C的坐标,再利用反比例函数图象上点的坐标特征即可求出反比例函数的解析式.【详解】∵直线y=-x+3与y轴交于点A,∴A(0,3),即OA=3,∵AO=3BO,∴OB=1,∴点C的横坐标为-1,∵点C在直线y=-x+3上,∴当x=-1时,y=-(-1)+3=4,∴点C的坐标为(-1,4).∴反比例函数的解析式为:y=,【点睛】本题考查了反比例函数与一次函数的交点问题、一次函数图象上点的坐标特征以及反比例函数图象上点的坐标特征,根据点C的坐标利用反比例函数图象上点的坐标特征求出反比例函数解析式是解题的关键.5.B【解析】【分析】根据反比例函数的性质,可以判断出x1,x2,x3的大小关系,本题得以解决.【详解】解:∵反比例函数y=(m为常数),m2+1>0,∴在每个象限内,y随x的增大而减小,∵点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数y=(m为常数)的图象上,﹣6<﹣2<0<2,∴x2<x1<x3,故选:B.【点睛】本题考查反比例函数图象上点的坐标特征,解题关键是明确题意,利用反比例函数的性质解答.6.C【解析】【分析】将(4,0)、(0,3)两点代入y=kx+b即可求出解析式y=-x+3,再将y=-x+3代入,整理得x2+3x+k=0,根据两个图象有两个公共点可得△≥0,解不等式k的取值范围,进而求解即可.将(4,0)、(0,3)两点代入y=kx+b,得,,解得k=-,b=3,故一次函数解析式为y=-x+3,将y=-x+3代入,得-x+3=,整理得,x2+3x+k=0,∵两个函数有两个公共点,∴△=32-4××k≥0,解得0<k≤3.故答案为:0<k≤3.【点睛】本题考查了反比例函数与一次函数的交点问题,熟练掌握该知识点是本题解题的关键. 7.A【解析】【分析】根据图象可知,反比例函数图象上的点(5,1)满足函数关系式,从而求得函数解析式,再求当F=10时,S的值.【详解】设力F(牛)与此物体在力的方向上移动的距离s(米)的函数关系式为F=,把点P(5,1)代入得k=5,所以当F=10牛时,s=0.5米.故选:A.本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.8.C【解析】【分析】把A(a,b)分别代入y=与y=x+1,得b=,b=a-1,即ab=3,b-a=-1,把-通分代入ab、b-a的值即可得答案.【详解】把A(a,b)分别代入y=与y=x+1,得b=,b=a-1,∴ab=3,b-a=-1,∴-==-,故选C.【点睛】本题考查反比例函数与一次函数的交点问题,把a、b代入求出ab、b-a的值是解题关键. 9.C【解析】【分析】根据反比例函数系数k的几何意义可得S四边形AEOF=4,S四边形BDOC=4,根据S1+S2=S+S四边形BDOC﹣2×S阴影,可求S1+S2的值.四边形AEOF【详解】如图,∵A、B两点在双曲线y=上,∴S四边形AEOF=4,S四边形BDOC=4,∴S1+S2=S四边形AEOF+S四边形BDOC﹣2×S阴影,∴S1+S2=8﹣3.4=4.6故选C.【点睛】本题考查了反比例函数系数k的几何意义,熟练掌握在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.10.D【解析】【分析】直接利用后期每个月分别付相同的数额,进而得出y与x的函数关系式.【详解】每个月付款额=(售价9688-前期付款3000)÷月数;即,故选D.【点睛】本题考查了根据实际问题列反比例函数关系式,正确理解题意是解题的关键.11.-8【解析】【分析】直接把点A(2,-4)代入反比例函数y=(k≠0),求出k的值参数即可.【详解】解:将点A(2,-4)代入反比例函数y=,得到k=xy=2×(-4)=-8.故答案是:-8.【点睛】本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12.-3【解析】【分析】根据反比例函数的定义得到8-k2=-1且k-3≠0.【详解】∵函数y= (k-3)为反比例函数,∴8-k2=-1且k-3≠0.解得k=-3.故答案是:-3.【点睛】本题考查了反比例函数的定义,反比例函数的一般形式是y=(k≠0).13.y=(x>0)【解析】【分析】根据速度×时间=路程,可以求出甲地去乙地的路程;再根据行驶速度=路程÷时间,得到y 与x的函数解析式.【详解】由已知得:甲地去乙地的路程=70×4=280,则汽车的速度y(千米/时)与时间x(时)(x≠0)的函数关系式为y=(x>0).故答案为:y=(x>0).【点睛】考查了根据实际问题列反比例函数关系式,清楚路程、速度、时间三者之间的关系对解答本题很重要.14., 增大.【解析】【分析】根据反比例函数的图象所在的象限可以确定k的符号;根据图象可以直接回答在图象的每一支上,y随x的增大而增大.【详解】根据图象知,该函数图象经过第二、四象限,故k<0;由图象可知,反比例函数y=在图象的每一支上,y随x的增大而增大.故答案是:<;增大.【点睛】本题考查了反比例函数的图象.解题时,采用了“数形结合”的数学思想.15.6.【解析】【分析】把x=2代入一次函数的解析式,即可求得交点坐标,然后利用待定系数法即可求得k的值.【详解】在y=x+1中,令x=2,解得y=3,则交点坐标是:(2,3),代入y=得:k=6.故答案是:6.【点睛】本题考查了用待定系数法确定函数的解析式,是常用的一种解题方法.同学们要熟练掌握这种方法.16.(-1,-3)【解析】【分析】根据反比例函数的中心对称性求解即可.【详解】∵点A与B关于原点对称,A(1,3),∴B点的坐标为(-1,-3).故答案是(-1,-3).【点睛】本题考查了反比例函数的中心对称性,反比例函数是中心对称图形,反比例函数的图像与经过原点的直线的两个交点一定关于原点对称.17.y=-【解析】【分析】先根据反比例函数的图象在第二象限判断出k的符号,再由S△ABC=2得出AB•OB的值,进而可得出结论.【详解】∵反比例函数的图象在第二象限,∴k<0.∵S△ABC=2,∴AB•OB=2,∴AB•OB=4,∴k=-4,即反比例函数的解析式为y=-.故答案为:y=-.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.18.ρ=【解析】【分析】由函数图像可得ρ与V成反比例函数的关系,设ρ=,把ρ=0.5,V=19.8,代入即可求出k的值.【详解】由题意,得ρ与V成反比例函数的关系,设ρ=,根据图象信息,可得:当ρ=0.5时,V=19.8,∴k=ρV=19.8×0.5=9.9,即可得ρ=.故答案为:ρ=.【点睛】本题考查了待定系数法求反比例函数关系式,根据图像得出二氧化碳的密度ρ(kg/m3)关于其体积V(m3)的函数关系是反比例函数关系是解答本题的关键.19.y是x的反比例函数,理由见解析.【解析】【分析】根据形如(k是不等于零的常数)是反比例函数,形如y=kx(k是不等于零的常数)是正比例函数,可得答案.【详解】解:由y是z的反比例函数,得y=.由z是x的正比例函数,得z=k2x.等量代换,得.y是x的反比例函数.【点睛】本题考查的知识点是反比例函数的定义,解题关键是熟记反比例函数的定义.20.(1)y=﹣;(2)点P的坐标为(,﹣20),(﹣,20).【解析】【分析】(1)根据菱形的性质可得菱形的边长,进而可得点C的坐标,代入反比例函数解析式可得所求的解析式;(2)设出点P的坐标,易得△COB的面积,利用点P的横坐标表示出△PAO 的面积,那么可得点P的横坐标,继而可求得点P的坐标.【详解】(1)由题意知,OA=4,OD=3在Rt△AOB中,AD==5,∵四边形ABCD为菱形,∴AD=BC=AB=CD=5,∴C(3,﹣5).设经过点C的反比例函数的解析式为y=(k≠0),则=﹣5,解得:k=﹣15.故所求的反比例函数的解析式为y=﹣;(2)设P(x,y)∵AD=AB=5,OA=4,∴OB=1,S△COB=×1×3=,即×OA×|x|=,∴|x|=,∴x=±,此时y=±20,故点P的坐标为(,﹣20),(﹣,20).【点睛】本题考查了菱形的性质以及待定系数法求反比例函数解析式,根据菱形的四条边相等的性质得到点C的坐标,注意分类讨论思想的应用.21.(1);(2)根据函数表达式完成见表格;(3)作图见解析.【解析】【分析】(1)设出反比例函数解析式,把x=-3,y=2代入可求得反比例函数的比例系数;(2)让x与y的乘积为-6计算可得表格中未知字母的值;(3)根据表格中的数据描点,连线.【详解】(1)设所求的函数解析式为.∵,,∴,∴;(2)(3)如图所示:【点睛】本题考查了用待定系数法求反比例函数解析式;用到的知识点为:点在反比例函数图象上,点的横纵坐标适合函数解析式;在同一函数图象上的点的横纵坐标的积相等.22.(1);(2),.【解析】【分析】(1)根据反比例函数的性质得2m-1>0,然后解不等式即可;(2)根据反比例函数图象上点的坐标特征得到2m-1=-1×(-3)=3n,然后解方程即可得到m和n的值.【详解】(1)∵反比例函数图象分布在第一、三象限,∴,∴;(2)∵点和在这个反比例函数图象上,∴,∴,.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了反比例函数的性质.23.(1)y=;(2)见解析;(3) P(0,6)或P(2,0)【解析】【分析】(1)利用待定系数法即可求出反比例函数的表达式;(2)利用描点法画出函数图象即可;(3)当点P在y轴上,过点A作AE⊥PO,可求出P的坐标(0,6);当点P在x轴上,过点A 作AF⊥PO,则OF=1,可得P的坐标(2,0).【详解】解:(1)∵直线y=x+2与双曲线相交于点A(m,3).∴3=m+2,∴m=1.∴A(1,3)把A(1,3)代入∴k=3×1=3,∴.(2)直线和双曲线的示意图如图所示:(3)当点P在y轴上,过点A作AE⊥PO,则OE=3,∵OA=P A,AE⊥PO,∴PE=OE=3,∴OP=6,∴点P的坐标为(0,6)若点P在x轴上,过点A作AF⊥PO,则OF=1∵OA=P A,AF⊥PO,∴OF=PF=1,∴OP=2∴点P坐标为(2,0)综上所述,P(0,6)或P(2,0)【点睛】本题主要考查画一次函数、反比例函数的图像,及一次函数与反比例函数的综合,综合性大. 24.图象如图见解析.【解析】【分析】画一次函数的图象只要描两点即可,而反比例函数的图象关于原点对称,只要用列表、描点、连线画出第二象限内的部分,另一个分支即可画出.【详解】y=x+2过点(0,2),(-2,0),y=-在第二象限内过点(-1,2)(-2,1)(,4)(-4,)图象如图:【点睛】本题考查利用描点法画一次函数和反比例函数图像,画一次函数的图象只要描两点即可,而反比例函数的图象关于原点对称,只要用列表、描点、连线画出第二象限内的部分,另一个分支即可画出.25.(1)k1=8,k2=1,b=2;(2)6;(3)x≤﹣4或0<x≤2.【解析】【分析】(1)由点A的坐标利用反比例函数图象上点的坐标特征,即可得出反比例函数解析式,再结合点B的横坐标即可得出点B的坐标,根据点A、B的坐标利用待定系数法,即可求出一次函数解析式;(2)根据一次函数图象上点的坐标特征,即可求出一次函数图象与y轴的交点坐标,再利用分割图形法即可求出△AOB的面积;(3)根据两函数图象的上下位置关系,即可得出不等式的解集.【详解】(1)∵反比例函数y=与一次函数y=k2x+b的图象交于点A(2,4),B(﹣4,m),∴k1=2×4=8,m==﹣2,∴点B的坐标为(﹣4,﹣2).将A(2,4)、B(﹣4,﹣2)代入y2=k2x+b中,,解得:,∴k1=8,k2=1,b=2.(2)当x=0时,y2=x+2=2,∴直线AB与y轴的交点坐标为(0,2),∴S△AOB=×2×4+×2×2=6.(3)观察函数图象可知:不等式≥k2x+b的解集为x≤﹣4或0<x≤2.【点睛】本题考查了反比例函数与一次函数的交点问题,解题的关键是:(1)根据待定系数法求出函数解析式;(2)利用分割图形法求出△AOB的面积;(3)根据两函数图象的上下位置关系找出不等式的解集.26.(1)(﹣,﹣8);(2)y=﹣2x+9;(3).【解析】【分析】(1)根据中心对称的性质,可得点P关于原点的对称点P'的坐标;(2)根据P(,8),可得反比例函数解析式,根据P(,8),Q(4,1)两点可得一次函数解析式;(3)过点P′作P′B⊥x轴,垂足为B,构造直角三角形,依据P'B以及AB的长,即可得到∠P'AO的正切值.【详解】解:(1)点P关于原点的对称点P′的坐标是(﹣,﹣8);(2)∵P(,8)在y=的图象上∴k2=×8=4∴反比例函数的表达式是:y=∵Q(4,m)在y=的图象上∴4×m=4,即m=1∴Q(4,1)∵y=k1x+b过P(,8)、Q(4,1)两点∴解得:∴一次函数的解析式是y=﹣2x+9;(3)作P'B⊥x轴于B,则P'B=8,BO=对于y=﹣2x+9,令y=0,则x=∴AB=+=5在Rt△ABP'中tan∠P′AO=,【点睛】本题主要考查了反比例函数综合题型,需要掌握反比例函数与一次函数的交点问题,中心对称以及解直角三角形,解决问题的关键是掌握待定系数法求函数解析式.。
2018年春季新版苏科版八年级数学下学期第11章、反比例函数单元复习试卷4
第11章 反比例函数 检测题(满分:100分,时间:90分钟)一、选择题(每小题3分,共30分) 1.下列函数是反比例函数的是( )A.y x =B.1y kx -=C.8y x =-D.28y x=2.若反比例函数8y x=的图象经过点(2,)m -,则m 的值是( ) A.14 B.14- C.-4 D.4 3.在同一坐标系中,函数ky x=和3y kx =+的图象大致是( )4.当k >0,x <0时,反比例函数ky x=的图象在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 5.若函数ky x=的图象经过点(3,-7),则它一定还经过点( ) A.(3,7) B.(-3,-7) C.(-3,7) D.(2,-7)6.如图,菱形OABC 的顶点C 的坐标为(3,4).顶点A 在x 轴的正半轴上,反比例函数(0)ky x x=>的图象经过顶点B ,则k 的值为( )A.12B.20C.24D.32第6题图 第7题图7.如图,A 为反比例函数ky x=图象上一点,AB 垂直于x 轴于点B ,若3AOB S =△,则k 的值为( )A.6B.3C.23D.不能确定 8.已知点1(2,)A y -、2(1,)B y -、3(3,)C y 都在反比例函数4y x=的图象上,则1y 、2y 、3y 的大小关系是( )A.123y y y <<B.321y y y <<C.312y y y <<D.213y y y << 9.在反比例函数1ky x-=的图象的每一条曲线上,y 都随x 的增大而增大,则k 的值可以 是( )A.-1B.0C.1D.2 10.已知1(1,)A y -,2(2,)B y 两点在双曲线32my x+=上,且12y y >,则m 的取值范围是( ) A.0m < B.0m > C.32m >- D.32m <-二、填空题(每小题3分,共24分)11.已知y 与21x +成反比例,且当1x = 时,2y =,那么当0x =时,y =________. 12.点1(2,)y ,2(3,)y 在函数2y x=-的图象上,则1y 2y (填“>”或“<”或“=”).13.已知反比例函数32m y x-=,当m 时,其图象的两个分支在第一、三象限内;当m 时,其图象在每个象限内y 随x 的增大而增大.14.若反比例函数3k y x-=的图象位于第一、三象限内,正比例函数(29)y k x =-的图象经过第二、四象限,则k 的整数值是________.15.在温度不变的条件下,一定质量的气体的压强p 与它的体积V 成反比例,当V =200时,p =50,则当p =25时,V = .16.点(2,1)A 在反比例函数ky x=的图象上,当14x <<时,y 的取值范围是 . 17.已知反比例函数4y x=,当函数值2y -≥时,自变量x 的取值范围是___________. 18.在同一直角坐标系中,正比例函数1y k x =的图象与反比例函数2k y x=的图象有公共点,则12k k 0(填“>”“=”或“<”). 三、解答题(共46分)第19题图19.(7分)反比例函数21m y x-=的图象如图所示,1(1,)A b -,2(2,)B b -是该图象上的两点. (1)比较1b 与2b 的大小;(2)求m 的取值范围.20.(7分)如图,直线11(0)y k x b k =+≠与双曲线22(0)y k x k =≠相交于(1,2)A 、(,1)B m -两点.(1)求直线和双曲线的解析式;(2)若111(,)A x y 、222(,)A x y 、333(,)A x y 为双曲线上的三点,且1230x x x <<<,请直接写出1y 、2y 、3y 的大小关系式;(3)观察图象,请直接写出不等式12k x b k x +<的解集.21.(8分)已知一次函数(0)y kx b k =+≠和反比例函数2ky x=的图象交于点(1,1)A . (1)求两个函数的解析式;(2)若点B 是x 轴上一点,且AOB △是直角三角形,求点B 的坐标.22.(8分)已知图中的曲线是反比例函数5m y x-=(m 为常数)图象 的一支.(1)这个反比例函数图象的另一支在第几象限?常数m 的取值范围 是什么?(2)若该函数的图象与正比例函数2y x =的图象在第一象内限的交 点为A ,过点A 作x 轴的垂线,垂足为B ,当A O B △的面积为4时, 求点A 的坐标及反比例函数的解析式.第22题图23.(8分)如图,在平面直角坐标系中,O 为坐标原点.已知反比例函 数(0)ky k x=>的图象经过点(2,)A m ,过点A 作AB x ⊥轴于点B ,且AOB △的面积为12. (1)求k 和m 的值;(2)点(,)C x y 在反比例函数ky x=的图象上,求当13x ≤≤时 函数值y 的取值范围;(3)过原点O 的直线l 与反比例函数ky x=的图象交于P 、Q 两点,试根据图象直接写出线段PQ 长度的最小值.24.(8分)某乡镇要在生活垃圾存放区建一个老年活动中心,这样必须把31 200 m 的生活垃圾运走.(1)假如每天能运3 m x ,所需时间为y 天,写出y 与x 之间的函数关系式; (2)若每辆拖拉机一天能运312 m ,则5辆这样的拖拉机要用多少天才能运完? (3)在(2)的情况下,运了8天后,剩下的任务要在不超过6天的时间完成,那么至少需要增加多少辆这样的拖拉机才能按时完成任务?BO A第23题图参考答案1.C 解析:A 项,y x =是正比例函数,故本选项错误; B 项,1y kx -=当0k =时,它不是反比例函数,故本选项错误; C 项,符合反比例函数的定义,故本选项正确; D 项,28y x =的未知数的次数是-2,故本选项错误.故选C . 2.C 解析:将点(2,)m -代入反比例函数8y x=,得842m ==--,故选C .3.A 解析:由于不知道k 的符号,此题可以分类讨论.当0k >时,反比例函数ky x=的图象在第一、三象限,一次函数3y kx =+的图象经过第一、二、三象限,可知A 选项符合.同理可讨论当0k <时的情况. 4.C 解析:当0k >时,反比例函数ky x=的图象在第一、三象限,当0x <时,函数图象在第三象限,所以选C. 5.C 解析:因为函数kyx=的图象经过点(3,-7),所以21k =-.将各选项分别代入检验可知只有选项C 符合. 6.D 解析:过点C 作CD x ⊥轴,垂足为D , ∵ 点C 的坐标为(3,4), ∴ 3OD =,4CD =,∴5OC , ∴ 5OC BC ==, ∴ 点B 坐标为(8,4),∵ 反比例函数(0)ky x x=>的图象经过顶点B ,∴ 32k =,故选D . 第6题图 7.A 解析:由题意可得132AOB S k ==△.因为反比例函数位于第一象限,所以k >0.所以k =6.8.D 解析:因为反比例函数4y x=的图象在第一、三象限,且在每个象限内y 随x 的增大而减小,所以12y y >.又因为当0x <时,0y <,当0x >时,0y >,所以30y >,210y y <<,故选D.9.D 解析:由y 随x 的增大而增大,知10k -<,即1k >,故选D.10.D 解析:将1(1,)A y -,2(2,)B y 两点分别代入双曲线32my x+=,得123y m =--,2y = 322m +.∵ 12y y >,∴ 32232m m +-->,解得32m <-,故选D . 11.6 解析:因为y 与21x +成反比例,所以设21ky x =+.将1x =,2y =代入,得6k =,所以621y x =+.再将0x =代入,得6y =. 12.< 解析:∵ 函数2y x =-中的-2<0,∴ 函数2y x=-的图象经过第二、四象限,且在每一象限内,y 随x 的增大而增大,∴ 点1(2,)y ,2(3,)y 同属于第四象限.∵ 2<3, ∴12y y <. 13.>23 <23 解析:∵ 反比例函数32m y x-=的图象的两个分支在第一、三象限内, ∴ 320m ->,即23m >. ∵ 其图象在每个象限内y 随x 的增大而增大,∴ 320m -<,即23m <.14.4 解析:由反比例函数3k y x-=的图象位于第一、三象限内,得30k ->,即3k >.又正比例函数(29)y k x =-的图象经过第二、四象限,所以290k -<,所以92k <,所以k 的整数值是4.15.400 解析:∵ 在温度不变的条件下,一定质量的气体的压强p 与它的体积V 成反比例,∴ 设k p V =.∵ 当V =200时,p =50,∴2005010 000k Vp ==⨯=,∴ 10 000p V=.当p =25时,得10 00040025V ==. 16.122y << 解析:将(2,1)A 代入ky x =,得2k =,所以y 随x 的增大而减小.当1x =时,2y =;当4x =时,12y =,所以y 的取值范围是122y <<.17.x ≤-2或x >0 解析:如图所示:由函数图象可知,当y ≥-2时,x ≤-2或x >0.18.> 解析:∵ 正比例函数1y k x =的图象与反比例函数2k y x=的图象有公共点,∴ 1k 、2k 同号,∴ 12k k >0. 第17题答图19.解:(1)由图象知,y 随x 的增大而减小.又12->-,∴ 12b b <.(2)由210m ->,得12m >. 20.解:(1)将(1,2)A 代入双曲线解析式,得22k =,即双曲线解析式为2y x=. 将(,1)B m -代入双曲线解析式,得21m-=,即2m =-,(2,1)B --. 将A 与B 的坐标代入直线解析式,得112,2 1.k b k b +⎧⎨-+-⎩==解得11k =,1b =,则直线解析式为1y x =+.(2)∵ 1230x x x <<<,且反比例函数在第一象限为减函数,∴ 2A 与3A 位于第一象限,即230y y >>,1A 位于第三象限,即10y <,则231y y y >>.(3)由(1,2)A 、(2,1)B --,利用函数图象,得不等式21k k x b x+<的解集为2x <-或01x <<.21.解:(1)∵ 点(1,1)A 在反比例函数2ky x=的图象上, ∴ 2k =.∴ 反比例函数的解析式为1y x=. 设一次函数的解析式为2y x b =+.∵ 点(1,1)A 在一次函数2y x b =+的图象上,∴ 1b =-. ∴ 一次函数的解析式为21y x =-. (2)∵ 点(1,1)A ,∴ o 45AOB ∠=.∵ AOB △是直角三角形 ,∴ 点B 只能在x 轴正半轴上. ①当o 190OB A ∠=,即11B A OB ⊥时,∵ o 145AOB ∠=,∴ 11B A OB =.∴ 1(1,0)B . ②当o 290OAB ∠=时,o 2245AOB AB O ∠=∠=, ∴ 1B 是2OB 的中点,∴ 2(2,0)B .综上可知,点B 的坐标为(1,0)或(2,0). 22.解:(1)这个反比例函数图象的另一支在第三象限. ∵ 这个反比例函数的图象分布在第一、第三象限,∴ 50m ->,解得5m >.(2)如图,由第一象限内的点A 在正比例函数2y x =的图象上,设点A 的坐标为000(,2)(0)x x x >,则点B 的坐标为0(,0)x .∵4OAB S =△,∴001242x x ⨯=,解得02x =(负值舍去). ∴ 点A 的坐标为(2,4).又∵ 点A 在反比例函数5m y x-=的图象上, ∴ 542m -=,即58m -=. ∴ 反比例函数的解析式为8y x=. 23.解:(1)由题意知2OB =.第22题答图lQ PBA xy所以111•2222AOB S OB AB m ==⨯⨯=△,所以12m =.所以点A 的坐标为12,2⎛⎫⎪⎝⎭.把12,2A ⎛⎫⎪⎝⎭代入k y x =,得122k =,解得1k =.(2)因为当1x =时,1y =;当3x =时,13y =,又反比例函数1y x=在0x >时,y 随x 的增大而减小, 所以当13x ≤≤时,y 的取值范围为113y ≤≤.(3)如图,由图可得线段PQ长度的最小值为 第23题答图24.解:(1)1200y x=; (2)12560x =⨯=,将其代入 1 200y x =,得 1 2002060y ==(天) 答:20天运完.(3)运了8天后剩余的垃圾是31 200860720(m )-⨯=.剩下的任务要在不超过6天的时间完成则每天至少运37206120(m )÷=,则需要的拖拉机数是120÷12=10(辆).故至少需要增加10-5=5(辆)这样的拖拉机才能按时完成任务.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章 《反比例函数》(满分120分,考试时间120分钟)一、精心选一选(本题满分30分,共有10道小题,每小题3分。
下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.请将各小题所选答案的标号填写在题后面的括号内.) 1、下列函数中,图象经过点(1,-1)的反比例函数解析式是( )A .y=x 1B .y=-x 1C .y=x 2D .y=-x22、在反比例函数y=xk 3图象的每一支曲线上,y 都随x 的增大而减小,则k 的取值范围是( )A .k >3B .k >0C .k <3D . k <0 3、如图1,某反比例函数的图像过点M (,1),则此反比例函数表达式为( )A .y=x 2 B .y=-x2 C .y=x 21 D .y=-x 21图1 图2 图3 4、已知反比例函数y=xk的图象在第二、第四象限内,函数图象上有两点A (,y1)、B (5,y2),则y1与y2的大小关系为 ( )A 、y1>y2B 、y1=y2C 、y1<y2D 、无法确定5、某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m3 ) 的反比例函数,其图象如图2所示.当气球内的气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应( ) A .不小于45m 3 B .小于45m 3 C .不小于54m 3 D .小于54m 36、反比例函数xky =的图象如图3所示,点M 是该函数图象上一点,MN 垂直于x 轴,垂足是点N ,如果S △MON =2,则k 的值为 ( ) (A)2 (B)-2 (C)4 (D)-4 7、对于反比例函数xy 2=,下列说法不正确的是 ( ) A .点(-2,-1)在它的图象上 B .它的图象在第一、三象限C .当时,随的增大而增大 D .当时,随的增大而减小8、已知反比例函数xy 2=,则这个函数的图象一定经过( ) A . (2,1) B . (2,-1) C .(2,4) D . (-21,2) 9、如图4,A 、B 是反比例函数xy 2=的图象上的两点.AC、BD 都垂直于x 轴,垂足分别为C 、D .AB 的延长线交x 轴于点E .若C 、D 的坐标分别为(1,0)、(4,0),则ΔBDE 的面积与ΔACE 的面积的比值是 ( )A .21 B .41C.81 D .16110、在下图中,反比例函数xy k 12+=的图象大致是 ( )二、细心的填一填(本题有10个小题, 每小题3分, 共30分) 11、已知反比例函数xy 8-=的图象经过点P (a+1,4),则a=_____. 12、反比例函数xy 6-=图象上一个点的坐标是 . 13、已知点(1,-2)在反比例函数xky =的图象上,则 .14、已知反比例函数xky =的图象经过点,则这个反比例函数的解析式是 .图415、若反比例函数xy 1-=的图象上有两点,,则______(填“”或“”或“”).16、写出一个图象在第一、三象限的反比例函数的解析式 . 17、请写出一个图象在第二、四象限的反比例函数关系式_____________ 18、已知反比例函数的图象经过点(3,2)和(m ,-2),则m 的值是__.19、在对物体做功一定的情况下,力F (牛)与此物体在力的方向上移动的距离s (米)成反比例函数关系,其图象如图5所示,P (5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是 米.图5 图6 20、如图6,在反比例函数2y x=(0x >)的图象上,有点1234P P P P ,,,,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为123S S S ,,,则123S S S ++= .三、专心解一解(共60分)21、(本小题满分8分)如图,已知A (-4,2)、B (n ,-4)是一次函数y =kx +b 的图象与反比例函数xmy =的图象的两个交点. (1) 求此反比例函数和一次函数的解析式;(2) 根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围.2y x=xyOP 1P 2P 3 P 4 123422、(本小题满分8分)从甲、乙两题中选做一题即可.如果两题都做,只以甲题计分. 题甲:如图,反比例函数xky =的图象与一次函数的图象交于A(1,3),B(n,-1)两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当取何值时,反比例函数的值大于一次函数的值.23、(本小题满分10分)如图,一次函数y=kx+b 的图象与反比例函数xmy =的图象交于A(-2,1),B(1,n)两点.(1)试确定上述反比例函数和一次函数的表达式; (2)求的面积.24、(本小题满分14分)如图,已知直线y=21x 与双曲线y=xk(k >0)交于A,B 两点,且点A 的横坐标为4. (1)求k 的值; (2)若双曲线y=xk(k >0)上一点的纵坐标为8,求的面积;(3)过原点O 的另一条直线交双曲线y=xk(k >0)于P,Q 两点(P 点在第一象限),若由点A,B,P,Q 为顶点组成的四边形面积为,求点的坐标.25、(本小题满分10分) 已知A(-1,M),B(2,m+33)是反比例函数xky =图象上的两个点.(1)求k 的值;(2)若点C(-1,0),则在反比例函数xky =图象上是否存在点D ,使得以A,B,C,D 四点为顶点的四边形为梯形?若存在,求出点D 的坐标;若不存在,请说明理由.26、(本小题满分10分)如图所示,小华设计了一个探究杠杆平衡条件的实验:在一根匀质的木杆中点O左侧固定位置B处悬挂重物A,在中点O右侧用一个弹簧秤向下拉,改变弹簧秤与点O的距离x(cm),观察弹簧秤的示数y(N)的变化情况。
实验数据记录如下:(1线连接这些点并观察所得的图象,猜测y(N)与x(cm)之间的函数关系,并求出函数关系式;(2)当弹簧秤的示数为24N时,弹簧秤与O点的距离是多少cm?随着弹簧秤与O点的距离不断减小,弹簧秤上的示数将发生怎样的变化?参考答案一、1、B .y=-x12、A .根据反比例函数的性质知k >33、B .y=-x24、A 、图象在第儿、四象限,k <0,知y1>y25、C .不小于54m 36、D ;根据面积关系得-47、C .当时,随的增大而增大8、A .反比例函数xy 2=过点(2,1) 9、D .关系反比例函数的性质及面积关系得16110、D ;由k 2+1>0知图象过的一、三象限 二、11、-3;将点的坐标代入求得a 的值12、满足条件xy=-6的任一点(x,y)均可 13、-2;将点的坐标代入得k =-2 14、xy 18=15、<;关系反比例函数的性质 16、解:答案不唯一,如:xy 2=17、解:答案不唯一,如:xy 2-= 18、-3;将两点坐标代入19、0.5;根据反比例函数的性质 20、23;点拨 根据反比例函数的一个性质k=xy 即为矩形的面积 三、21、 解:(1) ∵ 点A (-4,2)和点B (n ,-4)都在反比例函数y =xm的图象上, ∴ 解得又由点A (-4,2)和点B (2,-4)都在一次函数y =kx +b 的图象上, ∴解得∴ 反比例函数的解析式为xy 8-=,一次函数的解析式为y =-x -2 . (2)x 的取值范围是x >2或-4<x <0 . 22、解:(1)A(1,3)在xky =的图象上,,xy 3= 又在xy 3=的图象上,,即解得:,,反比例函数的解析式为3y x=, 一次函数的解析式为, (2)从图象上可知,当或时,反比例函数的值大于一次函数的值23、解:(1)点在反比例函数xmy =的图象上,.反比例函数的表达式为xy 2-=.点也在反比例函数xy 2-=的图象上,,即.把点,点代入一次函数中,得解得一次函数的表达式为.(2)在中,当时,得. 直线与轴的交点为.线段将分成和,. 24、解:(1)点横坐标为,当时,.点的坐标为.点是直线y=21x 与双曲线y=xk(k >0)的交点,.(2)解法一:如图-1,点在双曲线上,当时,点的坐标为.过点分别做轴,轴的垂线,垂足为,得矩形.,,,..解法二:如图-2,过点分别做轴的垂线,垂足为, 点在双曲线y=x8上,当时,.点的坐标为.点,都在双曲线y=x8上,..,.(3)反比例函数图象是关于原点的中心对称图形,,.四边形是平行四边形..设点横坐标为,得P(m,m8).过点分别做轴的垂线,垂足为, 点在双曲线上,.若,如图-3,,..解得,(舍去).. 若,如图-4,,.∴21(2+m 8).(m -4)=6,解得,(舍去).∴P(8,1). 点P 的坐标是P(2,4)或P(8,1)25、解:(1)由,得,因此.(2)如图1,作轴,为垂足,则,,, 因此.由于点C 与点A 的横坐标相同,因此轴,从而.当AC 为底时,由于过点B 且平行于AC 的直线与双曲线只有一个公共点B ,故不符题意.当BC 为底时,过点作BC 的平行线,交双曲线于点D ,过点A,D 分别作轴,y 轴的平行线,交于点F .由于,设,则,, 由点,得点.因此,解之得m 1=337(舍去),因此点D(6,33). 此时AD=3314,与的长度不等,故四边形是梯形.如图2,当AB 为底时,过点C 作AB 的平行线,与双曲线在第一象限内的交点为D . 由于AC=BC ,因此∠CAB=30º,从而∠ACD=150º.作DH⊥x 轴,H 为垂足,则∠DCH=60º,设CH=m 2(m 2>0),则DH=3m 2,CD=2m 2由点C(-1,0),得点D(-+m 2, 3m 2),因此(-1+m 2).3m 2=23.解之得m 2=2(m 2=-1舍去),因此点D(1,23).此时CD=4,与AB 的长度不相等,故四边形ABCD 是梯形.如图3,当过点C 作AB 的平行线,与双曲线在第三象限内的交点为时, 同理可得,点D(-2,- 3),四边形ABCD 是梯形.综上所述,函数xy 32 图象上存在点D ,使得以A,B,C,D 四点为顶点的四边形为梯形,点D 的坐标为:D(6,33)或D(1,23)或D(-2,- 3).26、解:(1)如图,猜测y 是x 的反比例函数,设y=xk ,把x=10, y=30代入,得k=30,所以 y=x30(x>0)。
(2)y=x30, 当y=24时,解得x=12.5。