SumoMembraneProt copy

合集下载

SUMO protease酵母表达载体说明

SUMO protease酵母表达载体说明

SUMO protease编号 载体名称北京华越洋生物VECT2140 SUMO p roteaseSUMO p rotease载体基本信息出品公司: invitrogen载体名称: SUMO p rotease质粒类型: 酵母表达载体高拷贝/低拷贝: -­‐-­‐启动子: -­‐-­‐克隆方法: 多克隆位点,限制性内切酶载体大小: -­‐-­‐5' 测序引物及序列: -­‐-­‐3' 测序引物及序列: -­‐-­‐载体标签: 6XHis载体抗性: 卡纳霉素(Kanamycin)筛选标记: -­‐-­‐备注: 表达SUMO酶产品目录号: 12588-­‐018稳定性: -­‐-­‐组成型: -­‐-­‐病毒/非病毒: -­‐-­‐SUMO p rotease载体简介DescriptionSUMO Protease, also known as Ulp, is a recombinant fragment of ULP1 (Ubl-­‐specific protease 1) from S accharomyces c erevisiae.It is highly specific for the SUMO protein fusion, recognizing the tertiary structure of SUMO rather t han a n a mino a cid s equence.The S UMO P rotease f eatures:1A s ix-­‐histidine s equence t o f acilitate i ts r emoval f rom t he d igested p rotein s ample2Highly a ctive c leavage3No n on-­‐specific p roteolysis (highly s pecific c leavage*)4Activity f rom 2°C t o 37°CApplication: Removal of fusion tags from recombinant proteins.Unit Definition: One unit of SUMO Protease is defined as the amount of enzyme needed to cleave 85% of 2µg of substrate protein at 30°C in one hour.Quality Control: SUMO Protease has greater than 85% single-­‐band purity with no non-­‐specific protease contamination. It is functionally tested for the absence ofany n on-­‐specific p rotease a ctivity.其他酵母表达载体:p416GFD pPIC9p53blue pPIC9K pACT2-AD pPIC9k-His pAD-GAL4-2.1 pPICZA pADH2 pPICZB pAUR123 pPICZC pBridge pPICZαA pCL1 pPICZαB pDEST32 pPICZαC pDisplay pPICZαD pDR195 pPICZαFC pESC-His pPICZαGB pESC-Leu pPink-HC pESC-TRP pPink-LC pESC-URA pPinkα-HC pFA6a-FGP(S65T)-kanMX6 pRS316 pFLD pRS403 pFLD/CAT pRS405 pFLDαpRS406 pGADT7-T pRS414 pGAG424 pRS415 pGAPZA pRS416 pGAPZB pRS41H pGAPZαB pRS426 pGAPZαC pRS426gal pGBKT7 pSEP1 pGBKT7-53 pSEP2 pGBKT7-Lam pSEP3pHIC-PI pSospHIL-D2 pSos-MAFB pHIL-S1 pUG66pHis2 pYC2/CT pHisSi-1 pYC2/NTA pMETA pYC2/NTB pMETB pYCP211 pMETC pYEPlac112 pMETαA pYEPlac195 pMETαB pYES2 pMETαC pYES2-EGFP pMyr pYES2-kan pPIC3.5 pYES2-NTApPIC3.5K pYES2-NTB pPIC6B pYES2-NTC pPIC6C pYES3/CT pPIC6αA pYES6/CT pPIC6αB pYES-DEST52 pPIC6αC pYIP211 pYX212 pYIP5 SUMOprotease pYRP7Ycp22lac-EGFP Ycplac33。

碧云天SUMO Protease产品说明书

碧云天SUMO Protease产品说明书

SUMO Protease产品简介:碧云天生产的SUMO Protease (Small Ubiquitin-related Modifier Protease),是一种重组表达的高度特异性识别SUMO 化修饰或SUMO 结构域,并水解SUMO 羧基端(C 端) x-Gly-Gly-x 肽段中Gly-Gly 后的肽键,从而去除SUMO 化修饰或者去除SUMO 融合表达蛋白中SUMO 结构域的蛋白酶。

本产品是一种来自Saccharomyces cerevisiae 的高活性的半胱氨酸蛋白酶(cysteinyl protease) Ulp1 (Ubl-specific protease 1, ubiquitin-like protein-specific protease 1)基因片段的重组表达蛋白。

SUMO 是一种泛素样蛋白(Ubiquitin-like Protein),是一种非常常见蛋白翻译后修饰(post-translation modification, PTM),对于蛋白的稳定性、生物学功能有重要的调节作用。

SUMO 也常被作为一种非常高效和有用的标签用于蛋白的表达纯化,例如碧云天的D2918 pET-N-His-PreScission-SUMO 质粒就是一种在N 端同时表达His 标签和SUMO 标签的原核表达质粒。

将SUMO 作为标签和目的蛋白的氨基端(N 端)进行融合表达时可以改善目的蛋白的折叠,提高目的蛋白的可溶性和产量。

随后使用SUMO Protease 对SUMO 融合蛋白进行酶切,去除SUMO 标签就可以获得完全没有标签蛋白干扰的目的蛋白。

因此SUMO Protease 可以高效且特异性地用于从重组融合蛋白上完全切割去除SUMO 标签,从而最大限度地减少了对目的蛋白结构和功能的影响。

SUMO Protease 进行酶切时的最适pH 值为8.0,最佳酶切温度为30ºC 。

舍雷肽酶结构

舍雷肽酶结构

舍雷肽酶结构
舍雷肽酶(Chymotrypsin)是一种消化酶,耐受几乎所有油脂和蛋白质的繁星,同时也是重要的研究工具,在生物化学和分子生物学中广泛应用。

舍雷肽酶的结构经过多年研究,已经被深入了解。

舍雷肽酶的结构是由一个多肽链组成,由所谓的α-螺旋和β-折叠构成。

舍雷肽酶的分子量约为25000,由241个氨基酸残基构成。

它有三个亚单位:酰氨基酸催化亚基、β月桂酸、长变异特异性酶抑制剂。

酰氨基酸催化亚基是舍雷肽酶最为复杂的部分。

它包括两个区域:一个是催化区,注重催化酶,另一个则是亲合区,注重基质的结合。

催化区由主锚定氨基酸三联体组成,由精氨酸(His57)、组氨酸(Asp102)和谷氨酸(Ser195)构成,称为精组酸连接部位。

亲合区则是一个比催化区大的区域,包括杂氨酸、丙二酸和组氨酸。

亲合区位于催化区的外部,可以促进基质与酶的结合和识别。

舍雷肽酶的β月桂酸亚基可以形成一个长的疏水挡板,并能够限制催化区的免疫反应性,从而一定程度上减少了非特异性水解的风险。

长变异特异性酶抑制剂是另一种抑制因子,可抑制蛋白酶。

这种抑制剂可以附着在酶的表面,从而使基质无法结合。

同时,酶分裂产生的残基也是酶分子的一部分。

综上所述,舍雷肽酶的结构是复杂的、多组分的,并且包含多种功能模块,包括酰氨基酸催化亚基、β月桂酸和长变异特异性酶抑制剂。

这些模块在舍雷肽酶的催化过程中扮演着重要的角色,为其各自的功能提供支持。

对于舍雷肽酶结构的进一步研究,将有助于进一步理解酶的催化机制以及相关生物学过程的调控机制。

小分子泛素相关修饰物SUMO融合外源蛋白表达的研究进展

小分子泛素相关修饰物SUMO融合外源蛋白表达的研究进展

文章编号:2096-0387 (2018) 03-0152-03第4卷第3期 生物化工Vol.4 No.32018 年 6 月Biological Chemical EngineeringJun. 2018小分子泛素相关修饰物SUM O 融合外源蛋白表达的研究进展荣雅昕,王英超'张耀方,卢顺娇,周倩,陈慧慧(天津农学院基础科学学院,天津300384)摘要:S U M 0 (类泛素蛋白修饰分子)是一类具有高度保守序列的低分子量蛋白。

作为融合标签在蛋白质的融合表达得到 了广泛应用。

本文对SUM0融合表达系统的优点进行概述,并综述了其在原核生物和真核生物外源蛋白融合表达的研究情况。

关键词:融合外源蛋白;SU M 0;研究进展 中图分类号:Q786文献标志码:AResearch Progress on the Fusion of Foreign Protein by Small Molecule Ubiquitin PeptideRong Ya -xin , Wang Ying-chao , Zhang Yao -fang , Lu Shun -jiao , Zhou Qian,Chen H ui-hui(College of Basic Science , Tianjin Agriculture University , Tianjin 300384)Abstract : SUMOwas a class of low molecular weight proteins with highly conserved sequences . As a fusion label , the fusion expression of protein has been widely used . In this paper , the advantages of SUMO fusion expression system were summarized and the progress in the fusion expression of exogenous proteins in prokaryotes and eukaryotes was reviewed .Key words : Fusion of exogenous protein;Small ubiquitin-related modifer;Research progressSUMO 是存在于真核生物中起相关修饰作用的 一类蛋白质,具有调节蛋白转运、相互作用,维持基 因完整性等多种功能[1_3]。

表面增强拉曼散射活性基底

表面增强拉曼散射活性基底

表面增强拉曼散射活性基底高书燕 张树霞 杨恕霞 张洪杰#(河南师范大学化学与环境科学学院,新乡 453007;#中国科学院长春应用化学研究所,长春 130022)摘 要 表面增强拉曼散射(SERS)是人们将激光拉曼光谱应用到表面科学研究中所发现的异常表面光学现象。

它可以将吸附在材料表面的分子的拉曼信号放大106到1014倍,这使其在探测器的应用和单分子检测方面有着巨大的发展潜力。

由于分子所吸附的基底表面形态是SERS效应能否发生和SERS信号强弱的重要影响因素,所以分子的承载基体是很关键的,因而SERS活性基底的研究一直是该领域的研究热点之一。

本文总结了形态各异的表面增强拉曼散射活性基底,分析了最新发展并对其未来作一展望。

关键词 表面增强拉曼散射 活性基底Surface2enhanced R aman Scattering Active SubstratesG ao Shuyan,Zhang Shuxia,Y ang Shuxia,Zhang H ongjie#(C ollege of Chemistry and Environmental Science,Henan N ormal University,X inxiang453007;#Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,Changchun130022)Abstract Sur face2enhanced Raman scattering(SERS)is a special optical phenomenon originating from the application of laser Raman into sur face science.SERS can greatly magnify the Raman signals of the ads orbed m olecules106 to1014times,which makes SERS have potentials in detectors and single2m olecule analysis.Because the sur face m orphologies and structures of the substrates determines the generation and intensity of Raman signals,the substrates play a vital role in SERS and the research on the SERS active substrates remains a hot topic.In this paper,SERS active substrates are reviewed.In addition,the newly developments and futures of this area are ananlyzed and outlooked,respectively.K eyw ords Sur face2enhanced Raman scattering,Active substrate表面增强拉曼散射(Surface2enhanced Raman Scattering,SERS)主要是纳米尺度的粗糙表面或颗粒体系所具有的异常光学增强现象,它可以将吸附在材料表面的分子的拉曼信号放大约106倍,对于特殊的纳米量级粒子形态分布的基底表面,信号的增强甚至可以高达1014倍,因此在探测器的应用和单分子检测方面有着巨大的发展潜力。

ModeNote用于柔软生物样品的真正非接触模式原子力显微镜

ModeNote用于柔软生物样品的真正非接触模式原子力显微镜

Nanotechnology Solutions Partner 用于柔软生物样品的真正非接触模式原子力显微镜用原子力显微镜对液体中柔软生物样品进行成像一直是一项很有挑战性的任务˚直到现在,在该领域的大部分工作都是由敲击模式原子力显微镜进行,在这种显微镜下,由压电堆叠制动器驱动的悬臂以接近其共振率的频率进行振动,并且在每个振动弧的底部会轻微接触样品表面,导致其振幅降低˚使用反馈控制将振幅控制在一个预设值上,这样就获得了样品表面的一个形貌图像˚但是,由于敲击模式下的原子力显微镜针尖在每个振动周期末会与样品表面轻微接触,导致潜在的样品变形、甚至损坏,因此在敲击模式下要获得脆弱易受损生物样品(如活细胞或单体蛋白质)的稳定、高分辨率图像是不容易的˚在针尖与样品间相互碰撞期间其产生的相对较大的相互作用力经常会导致接触点周围样品表面的变形,从而限制了此模式下所获得的最高分辨率值,使得分辨单体蛋白质或核酸的任务几乎无法完成˚此外,在通过敲击模式原子力显微镜成像时,针尖与样品间接触时间很大程度上取决于样品的力学特性˚对于杨氏模量处于 1kPa ~ 100MPa区间的柔软生物样品而言,针尖与样品间接触时间可以占整个振动周期的 20%-90%˚如此长的接触时间不仅增加非预期样品伤害的可能性,同时也可能导致针尖被样品表面上粘性有机分子污染˚带有抗串扰功能(XE)及高强度Z-扫描器的XE系列原子力显微镜已经用真正非接触模式TM 取代敲击模式,从而成功地解决了上述问题˚1, 2 之前的研究表明使用振幅调制反馈机制的原子力显微镜可以在两个不同的作用力区域(吸引力和排斥力)运转˚在吸引相互作用区域,针尖与样品间的净吸引力在没有真实针尖-样品接触的情况下,控制着针尖晃动的振幅缩小值˚在排斥作用力区域,净排斥力(包括长距离吸引成分与短距离排斥成分)控制悬臂的动态,导致针尖与样品在每个悬臂振动周期末都不可避免地进行接触(图1)˚由于缺乏将针尖精细准确地控制在吸引作用力区域,防止针尖插入粗糙的样品表面的控制机制,市场上大部分原子力显微镜卖主选择在排斥力作用区域运行其系统,允许针尖周期性地与样品接触(敲击模式原子力显微镜)˚由于有了获得专利的多栈压力驱动的高强度Z-扫描器(典型共振频率~ 10 kHz)以及高性能控制器电子设备,XE系列原子力显微镜对于吸引相互作用区域较小的频率变化导致的振幅微小变动更加敏感,反应更加迅速˚低惯性Z-扫描器的快速反应使其能够对针尖沿样品表面形貌的动态进行精确的跟踪,从而使得针尖在遇到急剧上升的样品表面特征物时能够迅速缩回,并且保持在吸引相互作用区域,而不插入样品表面˚图 1.原子间力此外,与市面上的敲击模式原子力显微镜相比,XE系列原子力显微镜在其真正非接触模式下,以更小的悬臂振幅运转˚从图2的振幅&距离关系中,我们可以清楚地看到在较大自由空气振幅(图2a显示的振幅为40nm,这是市面上敲击模式原子力显微镜所采用的典型振幅数量级)下振动的针尖,整个振动曲线中仅有小部分位于吸引相互作用区域˚因此,在这种情况下,要精确地将针尖控制在吸引相互作用区域运转是极其困难的˚另一方面,由于较小的自由空气振幅(图2b显示的振幅为4nm,这是真正非接触模式下运转的XE系列原子力显微镜所采用的典型振幅数量级),大部分振动曲线位于吸引相互作用区域内,使得XE系列原子力显微镜能够轻而易举地在真实非接触成像模式下进行运转˚值得指出的是当采用较小的自由空气振幅时,要求极其精确的控制机制以及快速反馈,从而才能对针尖-样品相互作用产生的振幅变化进行跟踪˚在XE系列原子力显微镜下,通过将高强度Z 扫描器和高速控制电子学原理结合起来,确保了Z扫描反馈性能中的快速伺服电机运转˚图 2. 不同振幅的振幅-距离曲线(f 0 是悬臂共振频率,而f是运行中的驱动频率)˚对柔软生物样品进行成像的真正非接触模式原子力显微镜vs.敲击模式原子力显微镜图 3. 单链G4 DNA分子的原子力显微镜形貌图像(扫描尺寸:1μm x1μm)(a) (b)Nanotechnology Solutions Partner 与市面上大部分原子力显微镜所采用的敲击模式相比,XE系列原子力显微镜的真正非接触模式确保了柔软生物样品成像过程中针尖-样品相互作用力所导致的样品降解程度最小化,并确保活样品(如细胞)的原始状态不会受到明显的扰动˚由于在整个过程中,针尖与样品表面不会相互接触,因此可以最大化地避免针尖受样品表面粘性分子的污染,因此能够保持成像的较优分辨率˚在扫描纳米尺寸的生物分子样品(如,蛋白质分子)时,由于能够保持针尖的灵敏度并且能够将针尖-样品作用力最小化,因此真正非接触模式能够获得单个分子的最高分辨率,甚至可以将其内部结构反应出来˚在传统的敲击模式原子力显微镜下,由于液体本身的粘滞度及惯性阻力作用(这也将导致其力敏感度大量降低,甚至造成悬臂振动不稳定),悬臂的共振峰值(影响成像质量的一个因素)在液体中将会急剧下降,因而在这种模式下更有必要在柔软生物样品液体成像过程中采用有效的质量控制方法˚更重要的是,在低质量环境以及相同的振幅设置值下,原子力显微镜的针尖与样品针尖的相互作用力将会比高质量环境下的作用力大得多˚即使将挑选的设置值非常接近悬臂的自由空气振幅,这种过大的针尖-样品作用力也将导致柔软生物样品(如活细胞)受到严重损坏˚因此,世界上已经发明出了很多技术,通过增加一个调制悬臂振动信号(相移π/2,并随增益因数放大),从而加强了悬臂振动的驱动力˚采用这种方法,有效阻尼常数将随着增益因素的增加而显著下降,从而使Q因素(Q=ω0/γeff )明显提高˚然而,Q因数的人工控制不仅增加了信号水平,同时也倾向于以同样的增益因素将任何寄生振荡信号及噪音扩大˚因此,信号-噪音比(主要由热起伏决定)无法通过这种方法提高˚由于XE系列原子力显微镜所采用的真正非接触模式是在针尖-样品相互吸引作用区域内运转的,并且振动频率相对较小,因此在正常的成像条件下,针尖-样品相互作用力达到最小,这使得上述忧虑显得没有必要˚但是,在液体中进行悬臂振动时,其振动光谱确实通常包括多个非本征峰值,这些非本征峰值很大程度上取决于悬臂的激振模式及振动状态,这使得识别出悬臂的真实共振峰值极其困难˚意识到了这个问题,XE系列原子力显微镜内装了质量控制组件,增强了液体中的共振光谱,从而帮助那些经常进行液体成像的用户减小共振峰值识别的困难度˚液体成像的非接触模式及质量控制方法参考1. R. Garcia, A. San Paulo, Phys. Rev. B. 60, 4961 (1999)2. R. Garcia, A. San Paulo, Ultramicroscopy 82, 79 (2000)。

蛋白质SUMO化修饰研究进展及其临床应用价值

蛋白质SUMO化修饰研究进展及其临床应用价值

泛素化而言,二者反应途径中涉及到的酶迥然不同。激活
E1 在泛蛋白化途径中表现为单体蛋白 ,在 Uba1 SUMO 化修
饰中是由 2 个亚基组成的异源二聚体。在酵母细胞中 E1 为
具有腺苷酸化功能的 Aos1 和硫酯酰化能力的 Uba2,其结构
分别对应 Uba1 的 N 端和 C 端,而在哺乳动物中为 SAE1/
的核小体调节剂,但仍需进一步的研究来确证 SUMO5 是翻
译的内源性蛋白质 。 [6]
根据序列比对结果表明,所有的 SUMO 蛋白 C 端都具有
双甘氨酸的断裂/ 连接位点和保守的泛素结构域,N 端延伸
区域富含蛋白质、甘氨酸和带电荷氨基酸,从而为特异的蛋
白质—蛋白质间的相互作用提供结构基础[7]。在亚型上,
2.1 SUMO 化途径 SUMO 化是 SUMO 蛋白参与的与泛素
化修饰相似的一种共价修饰,即 SUMO 的末端双甘氨酸
(Gly)构型与底物蛋白赖氨酸(Lys)的 E氨基之间形成 1 个
异肽键 。整 [10] 个 SUMO 化过程分为以下几个步骤:(1)成
熟:非活性的 SUMO 前体水解数个氨基酸(AA)以暴露 C 末
用下,SUMO 的甘氨酸与底物的赖氨酸侧链结合 。 [11] SUMO
化修饰是一个动态可逆的过程,在 SUMO 化酶(SENP)的作
用下,异肽键断裂,SUMO 从靶蛋白上切除,重新进入 SUMO
循环,即为去 SUMO 化。
2.2 蛋白质 SUMO 化修饰的特点 SUMO 对底物蛋白的修
饰过程涉及包括 , E1 E2 和 E3 的一系列酶促级联反应,但较
小泛素相关修饰物 ( ,
small ubiquitinrelated modifiers

SUMO蛋白纯化步骤

SUMO蛋白纯化步骤

SUMO蛋白纯化步骤
1.制备大量表达蛋白
选择合适的载体,将SUMO蛋白的序列与目标蛋白的序列连接,并在
适当的表达系统中大量表达。

通常使用大肠杆菌(E. coli)作为表达宿主。

2.细胞培养与蛋白表达
将经过质粒转化的大肠杆菌菌株培养在含有适当抗生素的培养基中,
以促进质粒的稳定复制。

待菌液浓度达到一定程度后,添加诱导剂(如IPTG)刺激蛋白表达。

培养细胞经过一定时间后,收集菌液(菌体)。

3.细胞破碎
转移到离心管中的菌体通过离心沉积,弃去上清液,然后用适当的缓
冲盐溶液进行细胞破碎,并添加适量的酶抑制剂以保护目标蛋白的完整性。

破碎的方法可以选择超声波、高压均质器等。

4.尘埃蛋白去除
利用离心将细胞碎片和蛋白质分离。

离心渣中包含大部分目标蛋白,
并且杂质蛋白会随着上清被移除。

杂质蛋白可以通过滤过或离心的方式去除。

5.亲和纯化
6.洗脱目标蛋白
使用适当的冲洗缓冲液,从亲和柱上洗脱融合蛋白,通常增加一些融
合蛋白如六组氨酸来洗脱。

在该步骤中,目标蛋白可以与SUMO蛋白分离,并纯化出来。

7.反复纯化和洗脱
如果目标蛋白的纯度还不够高,可以反复进行纯化和洗脱步骤,以进
一步纯化目标蛋白并去除净杂质。

8.浓缩和储存目标蛋白
使用合适的方法如超滤或共沉淀将纯化后的目标蛋白浓缩到所需的浓度。

根据蛋白质稳定性的要求,决定是否添加保护剂并存储在适当的缓冲
液中。

SUMO蛋白酶活性片段的表达、纯化及活性测定

SUMO蛋白酶活性片段的表达、纯化及活性测定

SUMO蛋白酶活性片段的表达、纯化及活性测定
SUMO蛋白酶被认为在多种细胞过程中起着调节作用。

为了
进一步研究SUMO蛋白酶的生物学功能,需要进行其活性片
段的表达、纯化及活性测定。

首先,可以使用质粒构建技术从人类cDNA库中克隆SUMO
蛋白酶的一个片段,如Ulp1,Ulp2或Ulp3。

将其插入到表达
载体中,并进行适当的序列验证。

接下来,需要选择适当的宿主细胞进行表达。

常用的宿主细胞为大肠杆菌,但也存在其他表达系统,如酵母菌表达系统。

通过在表达时添加不同的诱导剂,可以控制蛋白的表达量和时机。

之后,需要对表达的蛋白进行纯化。

可以利用亲和纯化柱进行初步的纯化,然后再使用离子交换、凝胶过滤和透析等方式进行进一步的纯化。

纯化后的蛋白需要经过SDS-PAGE和Western blot验证。

最后,需要对SUMO蛋白酶活性片段进行活性测定。

可以观
察其对SUMO修饰蛋白的去SUMO化作用。

可以通过Western blot、荧光标记或质谱等方法进行定量。

活性测定的
结果可以用于进一步研究SUMO蛋白酶的生物学功能及调节
机制。

在表达、纯化和活性测定这一系列实验中,需要严格控制实验条件和研究方法。

同时,还需要注意跟踪和记录实验结果,以便后续分析和讨论。

sumo1 wb实验方法

sumo1 wb实验方法

sumo1 wb实验方法
关于SUMO1的WB(Western Blot)实验方法,首先需要明确的是SUMO1是一种蛋白质,在细胞中起着重要的调控作用。

进行SUMO1的WB实验需要遵循以下步骤:
1. 细胞培养和处理,首先需要培养细胞,并根据实验设计进行处理,比如添加药物、转染siRNA等,以模拟不同的实验条件。

2. 蛋白提取,使用合适的细胞裂解缓冲液裂解细胞,释放蛋白质。

可以加入蛋白酶抑制剂来保护蛋白质不被降解。

3. 蛋白浓度测定,使用BCA或者Bradford等方法测定蛋白质的浓度,以便后续加载相同量的蛋白质样品。

4. SDS-PAGE电泳,将蛋白样品加入含有SDS的蛋白胶,根据蛋白大小进行电泳分离。

5. 转膜,将分离后的蛋白转移到聚丙烯酰胺膜(PVDF或者nitrocellulose)上。

6. 阻断,用5%脱脂奶粉或者BSA等在转膜后的膜上进行阻断,以减少非特异性结合。

7. 一抗孵育,加入SUMO1的一抗,孵育过夜,以识别SUMO1的
蛋白带。

8. 洗膜,用TBST洗膜,去除未结合的一抗。

9. 二抗孵育,加入HRP标记的二抗,孵育1小时,以结合一抗。

10. 显色和成像,使用ECL显色液,然后在暗室中进行膜的曝
光和成像。

在进行SUMO1的WB实验时,需要注意的是实验中各步骤的条件
和试剂的选择,以及蛋白质的质量控制和实验重复次数的确定。

另外,实验中的数据分析也是非常重要的,需要对实验结果进行准确
的定量分析和统计学处理。

希望这些信息能够帮助到你。

sumoylation检测方法

sumoylation检测方法

一、概述sumoylation是一种重要的细胞生物学修饰过程,通过连接小的SUMO(小肽蛋白)分子到蛋白质中,调节细胞中多种生物学过程,如基因表达、细胞周期调控、DNA修复等。

sumoylation的检测方法对于研究细胞生物学过程以及相关疾病的发病机制具有重要意义。

二、sumoylation检测方法的分类sumoylation检测方法主要分为两大类:定性检测方法和定量检测方法。

1. 定性检测方法(1)免疫印迹分析(Western blotting):将细胞或组织蛋白提取后,使用SUMO特异性抗体结合sumoylated蛋白进行Western blotting检测。

优点是操作简单,成本低,可同时检测多个样本,但是对实验者的技术要求较高。

(2)质谱分析(Mass spectrometry):通过质谱分析检测蛋白质样本中的SUMO化肽段,可用于鉴定SUMO化位点以及量化SUMO蛋白的水平。

这种方法具有高灵敏度和高分辨率,但是设备昂贵,需要技术人员具备专业的分析技能。

2. 定量检测方法(1)荧光共振能量转移(FRET):利用FRET探针检测sumoylation 过程中的分子间相互作用,从而定量测定sumoylation的水平。

该方法灵敏度高,且可实时监测sumoylation的动态变化。

(2)荧光标记法(Fluorescent tagging):通过在目标蛋白中引入荧光标记识别SUMO化蛋白,通过荧光信号强度定量测定sumoylation的水平。

这种方法操作简便,且适用于高通量筛选。

三、sumoylation检测方法的应用sumoylation检测方法在细胞生物学和疾病研究中具有广泛的应用价值。

1. 在癌症研究中,sumoylation检测方法可用于评估肿瘤抑制基因的功能及表达水平,了解肿瘤发生机制。

2. 在神经退行性疾病研究中,sumoylation检测方法可用于检测神经元中SUMO蛋白的水平以及sumoylation酶的活性,揭示其与疾病发生发展的关系。

SUMO蛋白酶说明书

SUMO蛋白酶说明书

SUMO Protease产品概述SUMO Protease(SUMO 蛋白酶,又称ULP蛋白酶)能够识别并且高效地将 SUMO(Small Ubiquitin-Like Modifier)从融合蛋白上切割下来。

相对于 EK 和 TEV 等蛋白酶的短小识别位点,SUMO 蛋白酶能够识别完整的 SUMO 序列,所以SUMO蛋白酶酶切反应有很高的特异性,且在较宽范围的反应环境体系中保持较高的活力,例如温度(4-30℃)、pH(5.5-9.5)等。

SUMO蛋白酶还具有多聚His 标签,便于融合蛋白切割后用Ni-NTA(产品货号:PAN001)去除。

SUMO Protease是自E.coli 表达经亲和纯化的重组蛋白酶。

酶活性单位定义在 30℃条件下反应 1 小时,能够切割5 µg 的反应底物达 90%以上所需的酶量定义为一个活性单位。

溶液成分通善SUMO Protease推荐反应体系不同温度下的参考反应时间:1.4℃反应 15~16 小时2.16℃反应 4 小时3.25℃反应 1.5 小时4.30℃反应 1 小时蛋白酶纯度 > 95%, as determined by SDS-PAGE 通善SUMO Protease活性测试待测融合蛋白100µg,加入sumo protease 2µl,4℃反应16小时,取酶切前后样品SDS-PAGE检测,如右图所示 >90% 融合蛋白被切割。

储存条件长期储存于 -80℃,可保存2年;或小量分装后保存于 -20℃,可保存6个月,避免反复冻融。

10X SUMO Buffer置于 -20℃保存。

包装规格货号规格RPP003-500 500 URPP003-2000 2000 URPP003-10000 10000 U。

SUMO蛋白酶使用说明书

SUMO蛋白酶使用说明书

SUMO蛋白酶使用说明书货号:P2070规格:1000U(200μL)产品内容:试剂名称规格保存温度SUMO蛋白酶(5U/μL)200μL-80℃SUMO Protease Buffer2mL-20℃产品说明:SUMO蛋白酶也称Ulp,是一种具有较高活性的半胱氨酸蛋白酶,它能识别SUMO蛋白的三级结构,而不是氨基酸序列,因此可以高效而且特异性地将SUMO蛋白从重组融合蛋白上切割下来。

SUMO蛋白酶在较宽范围的反应环境体系中能保持较高的活性,如温度(4-30℃),PH(5.5-9.5)等,SUMO蛋白酶带有多聚His标签,便于融合蛋白切割后利用亲和层析去除该蛋白酶。

保存条件:SUMO蛋白酶-80℃长期保存,可存储2年;首次使用后可置于-20℃保存,避免反复冻融。

SUMO Protease Buffer可置于-20℃保存。

酶活定义:在1×SUMO Protease Buffer(50mM Tris-HCl,1mM DTT,pH8.0)中,30℃反应1h,剪切>85%的2μg底物所需要的酶量定义为一个活性单位。

使用方法说明:1.SUMO蛋白酶与需要酶切的目的蛋白比例:1:100。

2.酶切体系:融合蛋白1000μgSUMO Protease Buffer20μLSUMO蛋白酶2μLddHO定容至1000μL23.酶切条件:推荐4℃酶切过夜,用户可以根据自己研究的目的蛋白进行摸索,以下酶切分析图片可供参考。

4.酶切后可取少量样本进行SDS-PAGE分析,若要去除酶切后体系中的SUMO蛋白酶,可用His标签纯化树脂亲和层析。

酶切后电泳分析图:4℃酶切3h;5h;6h;7h;8h;10h;12h;22h后SDS-PAGE电泳图。

注意事项:1.为达到最好的酶切效果,请保证重组蛋白为部分或完全纯化的蛋白。

2.对于大部分融合蛋白,SUMO蛋白酶最理想的反应液中NaCl的浓度为150mM。

然而,根据实际情况可在100mM-300mM之间调节NaCl的浓度以达到最佳的效果。

sumo化蛋白修饰组学

sumo化蛋白修饰组学

sumo化蛋白修饰组学Sumo化蛋白修饰组学是一种新兴的研究领域,它涉及到蛋白质修饰、基因表达、细胞信号传导等多个方面。

Sumo化蛋白修饰是指小泡状蛋白(Small Ubiquitin-like Modifier,SUMO)与蛋白质结合,从而改变蛋白质的功能和活性。

Sumo化蛋白修饰组学则是指利用高通量技术,研究Sumo化蛋白修饰在细胞中的作用和调控机制。

Sumo化蛋白修饰组学的研究对象主要是Sumo化蛋白修饰的靶蛋白。

这些靶蛋白包括转录因子、核糖体蛋白、细胞周期调控蛋白等。

通过对这些靶蛋白的研究,可以深入了解Sumo化蛋白修饰在细胞中的作用和调控机制。

Sumo化蛋白修饰组学的研究方法主要包括质谱分析、蛋白质芯片、基因组学、蛋白质互作等技术。

其中,质谱分析是最常用的技术之一。

通过质谱分析,可以鉴定Sumo化蛋白修饰的靶蛋白,并确定Sumo化的位置和程度。

蛋白质芯片则可以用于筛选Sumo化蛋白修饰的靶蛋白,从而快速鉴定Sumo化蛋白修饰的靶蛋白。

基因组学则可以用于研究Sumo化蛋白修饰在基因表达调控中的作用。

蛋白质互作则可以用于研究Sumo化蛋白修饰在蛋白质相互作用中的作用。

Sumo化蛋白修饰组学的研究成果已经在多个领域得到了应用。

例如,在肿瘤学中,Sumo化蛋白修饰组学可以用于研究肿瘤细胞中Sumo化蛋白修饰的靶蛋白,从而为肿瘤治疗提供新的靶点。

在神经科学中,Sumo化蛋白修饰组学可以用于研究神经元中Sumo化蛋白修饰的靶蛋白,从而深入了解神经元的功能和调控机制。

Sumo化蛋白修饰组学是一种新兴的研究领域,它可以深入了解Sumo化蛋白修饰在细胞中的作用和调控机制。

随着技术的不断发展,Sumo化蛋白修饰组学将在多个领域得到广泛应用,为人类健康和生命科学研究提供新的思路和方法。

sumo修饰综述

sumo修饰综述

sumo修饰综述
sumo修饰是指一种重要的蛋白质翻译后修饰方式,它涉及一个76个氨基酸的小分子蛋白sumo(Small Ubiquitin-like Modifier)被共价连接到靶蛋白上。

sumo修饰在调节多种细胞过程中发挥着关键作用,包括基因表达、蛋白质定位、蛋白质稳定性、DNA损伤修复和细胞周期调控等。

sumo修饰过程包括几个关键步骤:首先,前体sumo蛋白需要被特异性蛋白酶剪切以暴露出C端双缩酮基团;然后sumo被一种E1激酶活化并转移到E2结合酶sumo酶;最后,sumo在E3连接酶的帮助下,与靶蛋白上的赖氨酸残基形成异peptide键。

sumo修饰是一个可逆过程,靶蛋白上的sumo也可以被特异性蛋白酶切除。

sumo有多个亚型,在不同的生物体内表达和发挥不同的功能。

在哺乳动物中,sumo-1是主要的亚型,广泛存在于多种组织和细胞中;而sumo-2/3主要在细胞应激反应中发挥作用。

已有大量研究表明,sumo修饰与多种疾病如癌症、神经退行性疾病、代谢紊乱等密切相关,因此sumo修饰途径被认为是潜在的治疗靶点。

sumo修饰是一种关键的蛋白质翻译后修饰方式,在维持细胞的正常生理功能中扮演着不可或缺的角色。

深入研究sumo修饰的分子机制及其在疾病中的作用,将为开发新型治疗策略提供理论基础。

小泛素相关修饰物SUMO研究进展

小泛素相关修饰物SUMO研究进展

小泛素相关修饰物SUMO研究进展陈泉;施蕴渝【期刊名称】《生命科学》【年(卷),期】2004(16)1【摘要】蛋白质翻译后修饰对改变蛋白功能、活性或定位都起着非常重要的作用,泛素及其相似蛋白的修饰是其中一种重要形式。

与其他诸如磷酸化、乙酰化、糖基化等不同的是,泛素及其相似蛋白的修饰基团本身即是一个小的多肽,通过异肽键与靶蛋白Lys侧链e-NH2相连,其中小泛素相关修饰物(smallubiquitin-related modifier,SUMO)与蛋白的共价连接是一种新的广泛存在的翻译后修饰形式。

SUMO是广泛存在于真核生物中高度保守的蛋白家族,在脊椎动物中有三个SUMO 基因,称为SUMO-1,-2,-3,与泛素在二级结构上极其相似,且催化修饰过程的酶体系也具有很高的同源性。

然而,与泛素化介导的蛋白酶降解途径不同,SUMO化修饰发挥着更为广泛的功能,如核质转运、细胞周期调控、信号转导、转录活性调控等。

【总页数】6页(P1-6)【关键词】翻译后修饰;UBLs;SUMO化;去SUMO化【作者】陈泉;施蕴渝【作者单位】中国科学技术大学生命科学学院【正文语种】中文【中图分类】Q7【相关文献】1.小泛素相关修饰物SUMO的研究进展 [J], 许永青;曾广腾;钟阿勇2.小泛素样修饰物修饰与肿瘤相关研究进展 [J], 丁小军;孙坚3.NF-κB信号通路与小泛素相关修饰物的研究进展 [J], 黄红梅;徐勇4.小分子泛素相关修饰物SUMO融合外源蛋白表达的研究进展 [J], 荣雅昕;王英超;张耀方;卢顺娇;周倩;陈慧慧5.小泛素相关修饰物异常表达在常见恶性肿瘤发生发展中的作用机制研究进展 [J], 姜忠敏;刘晓智;赵坡因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Enhanced expression and purification of membrane proteins by SUMO fusion in Escherichia coliXun Zuo1,Shuisen Li2,John Hall1,Michael R.Mattern1,Hiep Tran1,Joshua Shoo3, Robin Tan3,Susan R.Weiss4&Tauseef R.Butt1,*1LifeSensors,Inc.,271Great Valley Parkway,Malvern,PA19355,USA;2Drexel University,School of BioMedical Engineering,3141Chestnut Street,Philadelphia,PA19104,USA;3Department of Biological Sciences,National University of Singapore,10Kent Ridge Crescent,Singapore119260;4Department of Microbiology,University of Pennsylvania Medical School,Philadelphia,PA19104,USA;*Author for correspondence(e-mail:butt@;Fax:+1-610-644-8616)Received11August2004;accepted in revised form16January2005Key words:5-lipoxygenase activating protein(FLAP),membrane protein expression,Nickel affinity purification,SARS-CoV membrane protein,SUMO fusionAbstractSevere acute respiratory syndrome coronavirus(SARS-CoV)membrane protein and5-lipoxygenase-acti-vating protein(FLAP)are among a large number of membrane proteins that are poorly expressed when traditional expression systems and methods are employed.Therefore to efficiently express difficult mem-brane proteins,molecular biologists will have to develop novel or innovative expression systems.To this end,we have expressed the SARS-CoV M and FLAP proteins in Escherichia coli by utilizing a novel gene fusion expression system that takes advantage of the natural chaperoning properties of the SUMO(small ubiquitin-related modifier)tag.These chaperoning properties facilitate proper protein folding,which en-hances the solubility and biological activity of the purified protein.In addition to these advantages,we found that SUMO Protease1,can cleave the SUMO fusion high specificity to generate native protein. Herein,we demonstrate that the expression of FLAP and SARS-CoV membrane proteins are greatly enhanced by SUMO fusions in E.coli.Abbreviations:FLAP–5-lipoxygenase-activating protein;FPLC–Fast Performance Liquid Chromatog-raphy;IPTG–isopropyl-b-D-thiogalactopyranoside;M protein of SARS-CoV–membrane protein of SARS coronavirus;Ni-NTA–nickel-nitrilotriacetic acid;PMSF–phenylmethylsulfonylfluoride;SARS–Severe Acute Respiratory Syndrome;SARS-CoV–SARS coronavirus.IntroductionTo date,the Protein Data Bank(PDB,http:// /pdb)has accumulated nearly 20,000independent protein structures,of which only101are membrane proteins.Since approxi-mately one-third of the total proteins are mem-brane proteins,one can conclude that the structures of membrane proteins are particularly difficult to solve[1].Specifically,the major ‘‘bottleneck’’for structural and functional studies of membrane proteins is efficient expression and purification.Therefore,to express and purify the remaining membrane proteins,molecular biolo-gists will have to think outside the box and de-velop novel expression systems.Herein,we apply a novel expression system to two membrane pro-teins,SARS-CoV membrane(M)protein and FLAP that are poorly expressed when traditional expression systems and methods are employed.Journal of Structural and Functional Genomics6:103–111,2005.ÓSpringer2005 DOI10.1007/s10969-005-2664-4Severe Acute Respiratory Syndrome(SARS)is a respiratory illness caused by SARS coronavirus (SARS-CoV),which only recently has been re-ported in Asia,North America,and Europe[2]. The SARS-CoV M protein is a25-kDa glycopro-tein,which is the most abundant structural pro-tein with three membrane spanning domains naturally located on the exterior surface of the virus[2].It is known that the membrane proteins of coronavirus play a key role in virus assembly [3].When expressed in combination with viral envelope(E)proteins,the M protein is retained in the budding compartment and is incorporated into virus-like particles(VLPs).Mutations in the C-terminal residue of M proteins have devastat-ing effects on the formation of VLPs,suggesting that the C-terminus of the M protein interacts with the E protein to form VLPs[3].However, because the SARS-CoV M protein is very diffi-cult to express in traditional systems,the exact structures and functions of the protein are un-known.Expression of intact and correctly folded M protein is essential for the development of SARS vaccines since the VLPs are believed to be strong antigens of the virus[2,3].5-Lipoxygenase-activating protein(FLAP)is an18-kDa integral membrane protein that is essential for cellular leukotriene(LT)synthesis, and it is the therapeutic target of LT biosynthesis inhibitors[4].It is known that FLAP activates5-lipoxygenase(5-LO)by transferring arachidonic acid to5-LO,but the mechanism by which FLAP activates5-LO and the structure of the protein has not been determined.Effective expression and purification of FLAP is a pre-requisite for further functional and structural studies.A novel expression system based on the SUMO(small ubiquitin-related modifier)tag and SUMO protease has been described previously [5].SUMO has been shown to enhance expres-sion and solubility.In addition,the protease that cleaves the fusion is highly specific and generates native protein with any desired N-terminal resi-due except for proline.Herein,we demonstrate that SARS-CoV M protein and FLAP are effi-ciently expressed when directly fused with SUMO,which can then be selectively cleaved to generate high quantities of native protein with a desired stly,we compare the level of expression of the SUMO fused membrane proteins with unfused membrane proteins in Esc-herichia coli.Materials and methodsConstruction of6·His and6·His-SUMO fusion expression vectorsSARS-CoV membrane protein(M)was sepa-rately expressed in E.coli as a polyhistidine-SUMO fusion and as a polyhistidine fusion.The SARS-CoV cDNA was derived from mRNA provided by CDC Atlanta.All the expression constructs utilized the pET24d plasmid(Nov-agen,Madison,WI)as the backbone.The pET24 derivative carrying the SUMO(Smt3)gene of S.cerevisiae,has been described previously[5]. An N-terminal hexahistidine(6·His)tag was introduced by PCR into the SUMO coding sequence,as well as a unique Bsa I site at the C-terminus.By utilizing the Class IIS properties of the Bsa I site,the SARS protein coding sequence was inserted in frame with SUMO.PCR primers incorporating this site were used to amplify the SARS-CoV coding sequences from cDNA clones carried in the pTOPO vectors described above. The3¢primers carried a Bam HI site for insertion into the multiple cloning site of pET24d.The primer pairs used to PCR amplify the SARS-CoV M protein are:Forward:tttGGTC-TCaaggtatggcagacaacggtactattacc;Reverse:cgc-GGATCCtcactgtactagcaaagcaatattg.Restriction enzyme recognition sites used for cloning are indicated in upper case letters.In addition,a set of parallel vectors that does not carry the SUMO sequence but has an N-terminal6·His tag and an identical multiple cloning site was created,so that the same PCR fragment can be simulta-neously cloned as6·His-SUMO and6·His fused versions.The FLAP gene was cloned by PCR from the baculo virus vector described by Man-cini et al.[4].The N-terminal FLAP was fused to the C-terminus of SUMO as described for the SARS M protein.Thefinal vector expresses pET24d-6·His-SUMO-FLAP.A control vector that expressed un-fused FLAP(pET24d)was also constructed to examine the protein expression enhancing properties of SUMO.All plasmids were routinely sequenced and transmitted to the E.coli bacterial strain BL21(DE3)for protein104expression.For PCR amplification of the genes of interest,a proofreading polymerase was used (Platinum Taq,Invitrogen,Carlsbad,CA).Expression of SUMO-fusion proteins in E.coliFLAP and SARS-CoV M proteins,either fused to6·His-SUMO or to6·His,were expressed in E.coli.In a typical experiment,a single colony of the E.coli BL21(DE3)strain containing each of the plasmids described above was inoculated into50ml of Luria-Bertani(LB)medium.The antibiotic kanamycin was added at10l g/ml to the medium.The cells were grown at37°C over-night with rotation at250rpm.The next morn-ing25ml of the overnight culture was transferred into500ml of fresh LB medium to permit exponential growth.When the optical density at600nm(OD600)reached 0.6–0.7, protein expression was induced by addition of 1mM IPTG(isopropyl-b-D-thiogalactopyrano-side)and the cells were allowed to grow at20°C overnight.SDS-PAGE was used to check protein expres-sion.Typically,cells from a1.5ml of the culture at the times just before expression was induced and after completion of induction were collected by centrifugation at6000rpm for5min.The cell pellets were suspended in50l l of distilled water and the sample was freeze–thawed once to facili-tate cell disruption.After the cell lysates were incubated with RNAse and DNAse(each at 40l g/ml)for15min,they were mixed with SDS-PAGE buffer containing0.1%SDS and5mM b-mercaptoethanol and heated at95°C for5min to denature and reduce proteins,which were sep-arated on the gels with Tris–Glycine running buffer.Western blotProteins separated by a SDS-PAGE were trans-ferred onto nitrocellulose membranes at42V ( 150mA)for 2.5h.Membranes were then incubated with30ml of TTBS buffer,containing 5%milk(pH8.0)for1h at room temperature. The expressed proteins were probed with either monoclonal anti-His or polyclonal anti-M anti-bodies(obtained from rabbits immunized against SUMO–SARS-CoV M protein fusions,both made by LifeSensors Inc,USA),by incubating overnight at4°C with1:1000dilution of the pri-mary antibodies.After the membranes were wa-shed with TTBS buffer for5min,they were incubated with secondary antibodies(Peroxidase-conjugated goat anti-rabbit IgG,Rockland Im-munochemicals,as diluted to1000·)for45min. The membranes werefinally washed with TTBS for10min before the Western blot substrates were applied(Roche,Mannheim,Germany)and visualized by autoradiography.Purification of SUMO-fused proteinsSample preparationAfter the cells were harvested from culture med-ium by centrifugation(5000g for10min at 4°C),cell pellets were suspended(at ratio of 1mg to2ml)in lysis buffer(50mM phosphate buffer,pH8.0,containing0.3M NaCl,10mM imidazole,1%Triton X100and1mM PMSF). Cells were broken by sonication(at50%output for5·30s pulses with1min intervals between each cycle)at4°C with tube jacketed in wet ice. After the cell lysate was incubated with DNase and RNase(each at0.1mg/ml)for15min,the supernatant(soluble proteins)was obtained by centrifugation(10,000g for20min at4°C).The pellets containing inclusion bodies were washed three times in buffer(PBS containing25%su-crose,5mM EDTA and1%Trition X100, pH7.5),with centrifugation as described above. The washed inclusion bodies were then resus-pended in denaturing lysis buffer(Novagen)that contained50mM CAPS(pH11.0),0.3% N-lauroyl sarcosine,and1mM DTT to extract insoluble proteins by incubation for30min at room temperature with shaking.The supernatant (extracted from inclusion bodies)was obtained by centrifugation(20,000rpm for20min,4°C). Protein concentrations were determined using the Bradford color-reaction assay(Bio-Rad)and absorbance at595nm with bovine serum albu-min as standards,according to the manufac-turer’s instruction.Purification of His tagged SUMO-fusionIn this study,the SUMO-fusion proteins extracted from E.coli inclusion bodies were purified using Nickel affinity chromatography under denaturing conditions.BioLogic Duo-Flow FPLC system105(Bio-Rad)was used for high-throughput fractio-nations.Typically, 30ml of the extract(from inclusion bodies in2l cultured medium)was incu-bated with 10ml of Ni-NTA superflow resin (Qiagen,Valencia,CA)at4°C for1h with shak-ing for effective binding of the6·His tagged pro-teins to the resin.The mixture was then loaded into an empty column and theflow-through(F/T) sample was collected.The F/T sample was re-ap-plied to the column to minimize losses of the tar-get proteins.Subsequently,the resin was continually washed by the Washing Buffer (20mM imidazole,0.3%N-lauroyl sarcosine, 50mM CAPS buffer,and0.3M NaCl,pH11) until UV280reached or fell below the base line (UV value=0).The6·His tagged SUMO-fusion proteins were eluted using the elution buffer that contains the same components as in the wash buf-fer,except that the concentration of imidazole was increased to300mM.The proteins with high UV280values were collected in4ml fractions.The proteins in fractions with high UV values were checked on SDS gels and pooled.Cleavage of SUMO fusionsThe purified SUMO-fusion proteins were re-folded by extensive dialysis for2days at4°C against a buffer(20mM Tris–HCl,pH8.0,10% glycerol),based on the published method[6]. During the dialysis,the buffer( 1l)was chan-ged more than4times to effectively remove the detergent and imidazole.SUMO Protease1was previously produced in our laboratory and stored at)80°C in storage buffer(5%glycerol,75mM Tris pH8.0,0.5mM DTT and1mM EDTA) [5].A unit of protease activity is defined as the amount of the SUMO protease that cleaves 100l g of SUMO–Met–GFP fusion substrate at 25°C in1h in the buffer containing20mM Tris–HCl,pH8.0and5mM b-mercaptoethanol [5].In this study,the dialyzed SUMO-membrane proteins were added with the SUMO Protease 1at a ratio of1unit of the enzyme to100l g of the substrate,and incubated in the buffer as de-scribed above at30°C for1h,since the SUMO membrane protein fusion is difficult to cleave.It was necessary to remove the N-lauroyl sarcosine from the purified SUMO–M proteins before add-ing the SUMO protease for the cleavage of the fusion since the detergent inhibited the enzyme activity and no detergents was needed for main-taining the SUMO–M proteins in soluble form; the detergent was added back to the sample only when the cleavage was completed.Subtraction of SUMO and SUMO protease forfinal purification of target proteinsSince both SUMO and SUMO Protease1had 6·His tags,and the cleaved membrane proteins from SUMO fusions did not,the cleaved SUMO fusion samples could be re-applied to the Nickel column to obtain the purified membrane proteins by subtracting the unwanted6·His-tagged pro-teins.After SUMO Protease1cleaved the SUMO fusion,the sample was loaded onto a Nickel column with Ni-NTA resin.Most of the membrane proteins without6·His tags were eluted out in theflow-through(unbounded)frac-tions and the rest were recovered by washing the resin using PBS.The eluted and washed proteins appearing in the fractions with high UV280values were pooled as thefinal purified sample.ResultsEnhanced expression of the membrane proteins by SUMO-fusionWhen fused with6·His-tags(without SUMO), FLAP was so poorly expressed in E.coli that it could not be detected on a Coomassie blue stained SDS-gel(Figure1,left panel)and only a faint band( 18kDa)was observed on a Wes-tern blot probed with an anti-His antibody(Fig-ure1).In contrast,when FLAP was fused with SUMO,the expression of the protein was dra-matically increased.Although two intense bands with molecular weights of 25and 36–38kDa were detected in the induced SUMO–M fusion samples when probed by the anti-His antibody (Figure1,right panel),only one band( 36–38kDa)was observed on the SDS-gel(Figure1, left panel).Since the molecular weights of FLAP and SUMO are18and11.5kDa,respectively (SUMO runs as a 18–20kDa band with SDS-PAGE),the expressed protein( 36–38kDa) detected here was consistent with intact SUMO–FLAP fusion,while the less intense band ( 25kDa)could be a degradation product of the106fusion.In addition,a very faint band appeared close to the top of the Western blot image in all the samples (Figure 1,right panel),indicating that the anti-His antibody had non-specific reac-tions with the bacteria proteins.Figure 2shows the Western blot of the reac-tions of the unfused 6·His-M protein and the two clones expressing His-SUMO–M protein with the anti-His antibodies.Only soluble fractions (super-natant of the cell lysates)were analyzed in this experiment.When expressed with only a His-tag (without SUMO),the M protein was poorly ex-pressed,because only a faint band ( 25kDa)was observed.In contrast,a few highly intense bands of the SUMO–M fusion samples were detected (Figure 2),of which the major band ( 43kDa)was consistent with the expected size of the SUMO–M fusion,as the combination of SUMO ( 18kDa)and FLAP ( 25kDa).Although high-er level aggregated forms associated with immuno-logical reactions in the SUMO–M protein samples were observed (Figure 2)as compared to those in Figure 3(see below),it is apparent that SUMO fu-sion dramatically enhanced the expression of the membrane protein (Figure 2).Purification of SARS-CoV M proteinAs described above,a typical procedure for purification of the SARS-CoV M protein from the inclusion body of the E.coli involves threesteps:purification of the SUMO fusion,cleav-age of the fusion,and subtraction for final puri-fied Mproteins.Figure 1.Enhanced expression of FLAP by SUMO fusion in E.coli .Left panel:10%SDS-gel;right panel:Western blot.Samples were the whole cell lysate extracted from the E.coli expressed the recombinant FLAP proteins fused with either His tag (indicated as FLAP)or His-tag-SUMO (as SUMO–FLAP).Proportional volumes of the samples ( 12l l for the SDS gel and 2l l for the Western blot)were loaded and electrophoresed on the SDS gels,which were either stained with Coomassie blue or transferred to a membranes for the Western blot probed with the anti-His monoclonal antibody.M:molecular weight markers.Arrows highlight observed positions of expressedproteins.Figure 2.Enhanced expression of SARS-CoV M protein by SUMO fusion in E.coli .The Western blot was from a 10%SDS gel separating the SARS-CoV M proteins expressed with His-tag fusion (M)and with two clones of His tag-SUMO fu-sions (SUMO–M),respectively.Samples contained the super-natant extracted from the whole cell lysates prepared without adding any detergent except 0.1%SDS in the final SDS-PAGE sample bu ffer before loading the gels.Proportional volumes ( 4l l)of the samples were loaded on the gel,which were transferred to the membrane and then probed by the anti-His antibody.Positions of molecular weights are indi-cated and arrows highlight observed positions of expressed protein bands.Membrane protein aggregation is often ob-served in SDS-PAGE conditions.107Figure 3shows the detection of the proteins in crude and purified samples at di fferent steps of purification of the SUMO–M protein fusion.Briefly,the expressed protein ( 43kDa)was de-tected from the induced E.coli cells,and the pro-tein was confirmed to be the SUMO–M fusion by the reaction with anti-His antibodies (Fig-ure 3,Lane 2).Approximately,40%of the total expressed proteins were found in the supernatant of the cell lysate (soluble fraction)and 60%were recovered from inclusion bodies (Figure 3,Lanes 3and 4).Even though detergents were used in sample preparation to solubilize proteins,some aggregated forms of the SUMO–M pro-teins in the crude samples were found as bands accumulated at the top of gel when detected by the Western blot (Figure 3,right panel lanes 2–4).Most of the proteins without 6·His tags,along with minor amounts of the target proteins,were eluted in the flow-through (unbounded frac-tions)and washed out by using the washing buf-fer containing 20mM imidazole (Figure 3,Lanes 5–6).Finally,the His-tagged SUMO–M proteins were e fficiently eluted with elution bu ffer contain-ing 300mM imidazole (Figure 3,Lanes 7–9).In this experiment,the eluted fusion proteins were in an isolated peak with high UV 280values containing three 4-ml fractions.Although some unwanted impurities were present in the eluted samples,the most intense band ( 43kDa)detected on the SDS-gel was the SUMO–M protein,which was recognized by the anti-His antibody (Figure 3,Lanes 7–9).The dialyzed SUMO–M protein fusion sample was subjected to cleavage by SUMO Protease 1.Under the conditions described in the Materials and methods,the SUMO fusion was not com-pletely cleaved by SUMO Protease 1,indicating that the fusion will require modified reaction conditions for optimal cleavage.Nevertheless,we could cleave at least 50%of the total amount of the SUMO fusion under the experimental condi-tions.The degraded components of the cleaved SUMO fusion were clearly shown on the SDS-gel,as the intensity of SUMO–M protein band ( 43kDa)was reduced,and two new bands cor-responding to the expected molecular weights of SUMO ( 18–20kDa)and the M protein ( 25kDa)appeared.Lastly,the SARS-CoV M protein was purified by subtracting the components bearing His tags,such as uncleaved SUMO–M fusion,SUMO,and SUMO Protease 1.The M protein ( 25kDa),along with some less-abundant pro-teins (impurities),was detected in the final puri-fied sample on the SDS-gel (Figure 4,left panel),indicating at least 50%purity of the M protein obtained.Identity of the M protein was con-firmed by its reaction with the anti-M antibody (Figure 4,right panel).The uncleavedSUMO–MFigure 3.Detection of expressed and purified SARS-CoV M proteins.Left panel:15%SDS-gel;right panel:Western blot probed by anti His-tag antibody.Proteins expressed with 6·His-SUMO fusion in E.coli were extracted with the solubilization bu ffer and the SUMO–M protein with His tags from inclusion bodies were purified using the Nickel a ffinity chromatography under denatur-ing conditions.Proportional volumes of the samples ( 12l l for the SDS-gel and 2l l for the Western blot)were loaded and de-tected by Coomassie blue staining (left panel)and the Western blot (right panel).Lanes:1–Uninduced whole cell lysate (control);2–Induced whole cell lysate;3–Supernatant;4–Extract from inclusion bodies;5–Pooled flow-through fractions (unbounded)from the Nickel column;6–Pooled wash fractions;7,8and 9–Fractions 1,2and 3,respectively,in the UV peak containing the three fractions with top values in fraction 2,in which the target proteins were eluted by the Elution bu ffer containing 300mM imidazole.Arrow highlights the SUMO–M protein ( 43kDa).108fusion band was not observed in the Western blot,possibly because that the amount of the M protein present in the fusion was not enough for immunological reaction with the anti-M anti-body.In this study,we obtained 15ml of the eluted M protein sample in which the protein concentration was 0.33mg/ml,presenting a final yield of 5.0mg of the proteins that were puri-fied from the 500ml E.coli culture.DiscussionMembrane proteins,naturally embedded in the lipid bilayers on cell surfaces,play crucial roles in many cellular and physiological processes.Never-theless,before such processes are studied,large quantities of pure protein are required for struc-tural studies using crystallography or NMR.To date,most membrane protein structures remain unsolved,due in part to the ine fficiencies of exist-ing protein expression systems.For instance,the production of membrane proteins in mammalian cells usually results in non-expression or very low yields of correctly folded proteins [7].Furthermore,FLAP can be expressed in insect cells with recombinant baculovirus,but the yield is too low for purification [4].Nevertheless,Griss-hammer and co-workers have expressed and puri-fied several important membrane proteins of humans in prokaryotes using a maltose bindingprotein fusion.This indicates that E.coli is a suit-able vector for expression of membrane proteins and fusion tags improve the expression [8–12].Expressing recombinant membrane proteins is quite an arduous task because they are strongly hydrophobic when expressed in host cells,fold incorrectly and aggregate,leading to either rapid degradation or the accumulation of inclusion bodies,respectively.Fortunately,these problems are somewhat alleviated when membrane pro-teins are expressed with a fusion partner.How-ever,in the past,traditional fusion systems have given variable results of expression and have faced major problems attributed to either the ine fficient cleavage of the fusion protein or cleav-age within the target protein,both of which com-pound the di fficulties of purification.Therefore,membrane proteins would benefit not only from fusion partners that enhance expression and solu-bility but also from one that is e fficiently and specifically cleaved.Ubiquitin has been reported to exert chaper-oning e ffects on fused proteins,thus increasing expression of proteins in E.coli and yeast [13–15].SUMO is a ubiquitin-like protein containing approximately 100amino acids,which is highly conserved in eukaryotes and absent from prok-aryotes [16].We hypothesize that the attachment of a highly stable and compact SUMO structure to the N-terminus of the membrane proteins will facilitate correct protein folding andenhanceFigure 4.Cleavage of SUMO–M protein fusion by SUMO Protease 1and purification of SARS-CoV M protein.Left panel:15%SDS-gel to detect the cleaved SUMO–M fusion and the purified M nes:1–Purified and dialyzed SUMO–M fusion sample;2–SUMO fusion cleaved by SUMO Protease 1;3and 4–4l g and 2l g of the purified M protein sample,respectively.Right panel:Western blot,in which lanes 1and 2were the same samples as lane 3and 4of the SDS-gels,to confirm the identity of M proteins by probing with an anti-M antibody.109solubility and expression.A rationale for the role of SUMO in promoting solubility of insoluble proteins is that the inner SUMO core is a dense hydrophobic globular structure,and the protein surface is hydrophilic and highly water-soluble (similar to amphipathic detergents)[13,15].Our laboratory has exploited the chaperoning proper-ties of several ubiquitin-like proteins including SUMO and SUMO proteases in cleaving SUMO fusions to develop a technology that will provide both enhanced expression and robust cleavage of the fusion protein.Specifically,a number of pro-teins have been expressed with SUMO in E.coli, demonstrating that SUMO-fusion dramatically enhances the expression of the proteins and that SUMO Protease1cleaves a variety of SUMO fusions with high specificity[5].In this study,we expressed FLAP and SARS-CoV membrane protein as SUMO fusions in E.coli to evaluate the roles of SUMO and SUMO Protease1on the production of the membrane proteins.As described above,eukary-otic cells do not produce sufficient quantities of heterogonous membrane proteins;therefore,we have chosen to work in E.coli.Moreover,the expression of recombinant proteins in E.coli is well established[9,11,12].In addition,E.coli is easier to grow in vitro,less expensive,and produces recombinant proteins more rapidly as compared to alternative systems.In this study, SUMO dramatically enhanced the expression of the FLAP and SARS-CoV M proteins in E.coli (Figures1–3).When SUMO-fusions are expressed as6·His-SUMO,rapid purification is possible by using Nickel affinity chromatography.This method is particularly useful for small molecular weight pro-teins or peptides since they are easily lost during purification using non-affinity chromatographic methods[1].In this study,the SUMO–M fusion that was recovered from inclusion bodies(insolu-ble protein aggregates)was efficiently purified under denaturing conditions(Figures3and4).Another advantage of the SUMO fusion tech-nology is the utility of SUMO Protease1,which is remarkably robust and highly specific.Previ-ous work has shown that the enzyme efficiently and selectively cleaves many SUMO fusions over a wide range of conditions,including a broad range of pH(5.5–10.5)and temperature(4–37°C). Except for proline,any N-terminal amino acid can be efficiently cleaved by SUMO Protease1 [5].Furthermore,SUMO Protease1is highly robust,since it can cleave in the presence of 300mM imidazole,2M urea and100mM Gu-HCL[5].In this study,we found that the SUMO–SARS-CoV M protein can be specifically cleaved by SUMO Protease1(see Figure4). Incomplete cleavage of SUMO fusions could occur when the proteins are resistant to the enzyme,or the reaction conditions are not favor-able.This problem is especially pronounced with membrane proteins,whose cleavage in the pres-ence of detergents may be desirable to allow proper folding of the protein.On the other hand, detergents may decrease the hydrolytic activities of the enzyme.Nevertheless,we obtained>50% of the total amount of fusion proteins cleaved under the conditions typically used for non-mem-brane proteins(Figure4).In summary,the data provided here demon-strates that fusion with SUMO is able to enhance expression of membrane proteins in E.coli.The SUMO fusion technology could be widely applied to the production of a variety of structurally di-verse membrane proteins in E.coli.After the SUMO tag is removed by SUMO Protease1,tar-get proteins with high purity and quantity can be used in functional assays or structural studies, such as crystallography and NMR. AcknowledgementsWe would like to thank members of the Weiss lab at University of Pennsylvania for their help in cloning and expression of SARS-CoV pro-teins.Thanks to Dr.Patrick Loll of Biochemistry Department at Drexel University and Dr.Wil-liam Wunner of Wistar Institute Philadelphia PA for the help and suggesting FLAP as a model protein.We would also like to thank Dr.David Sterner for his critical reviewing on the manuscript. TRB would like to thank NIH,NIAID,NIGMS for the support.References1.Loll,P.J.(2003)J.Struct.Biol.142,144–153.2.Rota,P.A.and Oberste,M.S.(2003)Science300,1394–1399.3.de Haan,C.A.,Vennema,H.and Rottier,P.J.(2000)J.Virol.74,4967–4978.110。

相关文档
最新文档