【苏教版】七年级下(图形的全等)单元测试及详解

合集下载

【单元卷】苏科版七年级数学下册:第7章 平面图形的认识 单元质量检测卷(二)含答案与解析

【单元卷】苏科版七年级数学下册:第7章 平面图形的认识 单元质量检测卷(二)含答案与解析

苏科版七年级数学下册单元质量检测卷(二)第7章平面图形的认识姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间90分钟,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题2分,共20分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.如图,下列不能判定DF∥AC的条件是()A.∠A=∠BDF B.∠2=∠4C.∠1=∠3D.∠A+∠ADF=180°2.已知l1∥l2,一块含30°的直角三角板如图所示放置,∠1=20°,则∠2=()A.30°B.35°C.40°D.45°3.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB、CD,若CD∥BE,∠1=40°,则∠2的度数是()A.90°B.100°C.105°D.110°4.如图,▱ABCD的对角线AC,BD交于点O,若AC=6,BD=8,则AB的长可能是()A.10B.8C.7D.65.如图,AB∥CD,∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∠E﹣∠F=36°,则∠E=()A.82°B.84°C.97°D.90°6.如图,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3∴AB∥CD(内错角相等,两直线平行)B.∵AD∥BC∴∠2=∠4(两直线平行,内错角相等)C.∵∠BAD+∠ABC=180°∴AD∥BC(同旁内角互补,两直线平行)D.∵∠DAM=∠CBM∴AD∥BC(两直线平行,同位角相等)7.如图,已知直线l交直线a,b于A,B两点,且a∥b,E是a上的点,F是b上的点,满足∠DAE=∠BAE,∠DBF=∠ABF,则∠ADB的度数是()A.45°B.50°C.60°D.无法确定8.如图,在五边形ABCDE中,若去掉一个30°的角后得到一个六边形BCDEMN,则∠1+∠2的度数为()A.210°B.110°C.150°D.100°9.如图,已知GF⊥AB,∠1=∠2,∠B=∠AGH,则下列结论:①GH∥BC;②∠D=∠F:③HE平分∠AHG;④HE⊥AB,其中正确的有()A.1个B.2个C.3个D.4个10.一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行,如图2,当∠BAD=15°时,BC∥DE,则∠BAD (0°<∠BAD<180°)符合条件的其它所有可能度数为()A.60°和135°B.45°、60°、105°、135°C.30°和45°D.以上都有可能二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,请把答案直接填写在横线上)11.如图,DA平分∠BDF,∠3=∠4,若∠1=50°,∠2=130°,则∠CBD=°.12.如图,已知∠1=80°,∠2=100°,∠3=105°,则∠4=.13.如图,点F在∠BAC的平分线AP上,点E在AB上,且EF∥AC,若∠BEF=40°,则∠AFE=°.14.如图所示,把长方形纸片ABCD纸沿对角线折叠,若∠BDE=20°,那么∠BED=.15.如图,∠ABC的平分线BF与△ABC中∠ACB的相邻外角∠ACG的平分线CF相交于点F,过F作DF∥BC,交AB于D,交AC于E,若BD=9cm,DE=4cm,求CE的长为cm.16.如图,三角形ABC中,D是AB上一点,F是BC上一点,E,H是AC上的点,EF的延长线交AB的延长线于点G,连接DE,DH,DE∥BC.若∠CEF=∠CHD,∠EFC=∠ADH,∠CEF:∠EFC=5:2,∠C=47°,则∠ADE的度数为.17.如图,AB和CD相交于点O,∠C=∠COA,∠BDC=∠BOD,AP,DP分别平分∠CAO和∠BDC,若∠C+∠P+∠B=165°,则∠C的度数是.18.如图,AD∥BC,∠ADC=120°,∠BAD=3∠CAD,E为AC上一点,且∠ABE=2∠CBE,在直线AC上取一点P,使∠ABP=∠DCA,则∠CBP:∠ABP的值为.三、解答题(本大题共8小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.如图,△ABC中,AD平分∠BAC,P为AD延长线上一点,PE⊥BC于E,已知∠ACB=80°,∠B=24°,求∠P的度数.20.如图,在△ABC的三边上有D,E,F三点,点G在线段DF上,∠1与∠2互补,∠3=∠C.(1)若∠C=40°,求∠BFD的度数;(2)判断DE与BC的位置关系,并说明理由.21.已知:如图∠AED=∠C,∠DEF=∠B,请你说明∠1与∠2相等吗?为什么?解:因为∠AED=∠C(已知)所以∥()所以∠B+∠BDE=180°()因为∠DEF=∠B(已知)所以∠DEF+∠BDE=180°()所以∥()所以∠1=∠2 ().22.AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E.∠ADC=80°.(1)若∠ABC=50°,求∠BED的度数;(2)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,若∠ABC=120°,求∠BED 的度数.23.南湖公园有很多的长方形草地,草地里修了很多有趣的小路,如图三个图形都是长为50米,宽为30米的长方形草地,且小路的宽都是1米.(1)如图1,阴影部分为1米宽的小路,长方形除去阴影部分后剩余部分为草地,则草地的面积为;(2)如图2,有两条宽均为1米的小路(图中阴影部分),求草地的面积.(3)如图3,非阴影部分为1米宽的小路,沿着小路的中间从入口E处走到出口F处,所走的路线(图中虚线)长为.24.探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F,若∠ABC=50°,求∠DEF的度数.请将下面的解答过程补充完整,并填空解:∵DE∥BC∴∠DEF=.()∵EF∥AB,∴=∠ABC.()∴∠DEF=∠ABC.(等量代换)∵∠ABC=50°,∴∠DEF=.应用:如图②,直线AB,BC,AC两两相交,交点分别为A、B、C,点D在线段AB的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F,若∠ABC=65°,则∠DEF=.25.如图,AB∥CD,∠ABE=120°.(1)如图①,写出∠BED与∠D的数量关系,并证明你的结论;(2)如图②,∠DEF=2∠BEF,∠CDF=∠CDE,EF与DF交于点F,求∠EFD的度数;(3)如图③,过B作BG⊥AB于G点,∠CDE=4∠GDE,求的值.26.如图①,直线l1∥l2,直线EF和直线l1、l2分别交于C、D两点,点A、B分别在直线l1、l2上,点P在直线EF上,连结P A、PB.猜想:如图①,若点P在线段CD上,∠P AC=15°,∠PBD=40°,则∠APB的大小为度.探究:如图①,若点P在线段CD上,直接写出∠P AC、∠APB、∠PBD之间的数量关系.拓展:如图②,若点P在射线CE上或在射线DF上时,直接写出∠P AC、∠APB、∠PBD之间的数量关系.参考答案与解析一、选择题(本大题共10小题,每小题2分,共20分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.如图,下列不能判定DF∥AC的条件是()A.∠A=∠BDF B.∠2=∠4C.∠1=∠3D.∠A+∠ADF=180°【答案】B【分析】根据同位角相等、内错角相等、同旁内角互补,两直线平行即可判断.【解答】解:A.∠A=∠BDF,由同位角相等,两直线平行,可判断DF∥AC;B.∠2=∠4,不能判断DF∥AC;C.∠1=∠3由内错角相等,两直线平行,可判断DF∥AC;D.∠A+∠ADF=180°,由同旁内角互补,两直线平行,可判断DF∥AC;故选:B.【知识点】平行线的判定2.已知l1∥l2,一块含30°的直角三角板如图所示放置,∠1=20°,则∠2=()A.30°B.35°C.40°D.45°【答案】C【分析】先根据三角形外角的性质求出∠EDG的度数,再由平行线的性质得出∠4CEF度数,由直角三角形的性质即可得出结论.【解答】解:如图,根据对顶角的性质得:∠1=∠3,∠2=∠4,∵∠EDG是△ADG的外角,∴∠EDG=∠A+∠3=30°+20°=50°,∵l1∥l2,∴∠EDG=∠CEF=50°,∵∠4+∠FEC=90°,∴∠FEC=90°﹣50°=40°,∴∠2=40°.故选:C.【知识点】平行线的性质3.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB、CD,若CD∥BE,∠1=40°,则∠2的度数是()A.90°B.100°C.105°D.110°【答案】B【分析】根据平行线的性质即可求解.【解答】解:延长BC至G,如下图所示,由题意得,AF∥BE,AD∥BC,∵AF∥BE,∴∠1=∠3(两直线平行,同位角相等),∵AD∥BC,∴∠3=∠4(两直线平行,同位角相等),∴∠4=∠1=40°,∵CD∥BE,∴∠6=∠4=40°(两直线平行,同位角相等),∵这条对边互相平行的纸带进行两次折叠,折痕分别为AB、CD,∴∠5=∠6=40°,∴∠2=180°﹣∠5﹣∠6=180°﹣40°﹣40°=100°,故选:B.【知识点】平行线的性质4.如图,▱ABCD的对角线AC,BD交于点O,若AC=6,BD=8,则AB的长可能是()A.10B.8C.7D.6【答案】D【分析】根据三角形三边关系:任意两边之和大于第三边,任意两边之差小于第三边,可得出AB的取值范围,进而得出结论.【解答】解:∵四边形ABCD是平行四边形,∴OA=AC=3,OB=BD=4,在△AOB中:4﹣3<AB<4+3,即1<AB<7,∴AB的长可能为6.故选:D.【知识点】平行四边形的性质、三角形三边关系5.如图,AB∥CD,∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∠E﹣∠F=36°,则∠E=()A.82°B.84°C.97°D.90°【答案】B【分析】根据平行线的性质即可求解.【解答】解:过E作直线MN∥AB,如下图所示,∵AB∥MN,∴∠3+∠4+∠BEM=180°(两直线平行,同旁内角互补),∵AB∥CD,∴MN∥CD,∴∠MEC=∠1+∠2(两直线平行,内错角相等),∴∠BEC=∠MEC+∠BEM=180°﹣∠3﹣∠4+∠1+∠2,∵∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∴∠1=∠2,∠3=∠4,∴∠BEC=180°﹣2∠4+2∠1,∴∠4﹣∠1=90°﹣,∵四边形BECF内角和为360°,∴∠4+∠BEC+∠180°﹣∠1+∠F=360°,∴+∠F=90°,由,∴,故选:B.【知识点】平行线的性质6.如图,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3∴AB∥CD(内错角相等,两直线平行)B.∵AD∥BC∴∠2=∠4(两直线平行,内错角相等)C.∵∠BAD+∠ABC=180°∴AD∥BC(同旁内角互补,两直线平行)D.∵∠DAM=∠CBM∴AD∥BC(两直线平行,同位角相等)【答案】D【分析】根据平行线的判定与性质逐一进行推论即可.【解答】解:A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行);所以A正确;B.∵AD∥BC,∴∠2=∠4(两直线平行,内错角相等);所以B正确;C.∵∠BAD+∠ABC=180°,∴AD∥BC(同旁内角互补,两直线平行);所以C正确;D.∵∠DAM=∠CBM,∴AD∥BC(同位角相等,两直线平行),所以D错误.故选:D.【知识点】平行线的判定与性质7.如图,已知直线l交直线a,b于A,B两点,且a∥b,E是a上的点,F是b上的点,满足∠DAE=∠BAE,∠DBF=∠ABF,则∠ADB的度数是()A.45°B.50°C.60°D.无法确定【答案】A【分析】根据平行线的性质求出∠EAB+∠ABF=180°,根据∠DAE=∠BAE和∠DBF=∠ABF求出∠DAB+∠ABD=135°,根据三角形内角和定理求出即可.【解答】解:∵a∥b,∴∠EAB+∠ABF=180°,∵∠DAE=∠BAE,∠DBF=∠ABF,∴∠DAB+∠ABD=×180°=135°,∴∠ADB=180°﹣(∠DAB+∠ABD)=180°﹣135°=45°,故选:A.【知识点】平行线的性质8.如图,在五边形ABCDE中,若去掉一个30°的角后得到一个六边形BCDEMN,则∠1+∠2的度数为()A.210°B.110°C.150°D.100°【答案】A【分析】解法一:根据多变的内角和定理可求解∠B+∠C+∠D+∠E=510°,∠1+∠2+∠B+∠C+∠D+∠E =(6﹣2)×180°=720°,进而可求解.解法二:利用三角形的内角和定理和平角的定义也可求解.【解答】解:解法一:∵∠A+∠B+∠C+∠D+∠E=(5﹣2)×180°=540°,∠A=30°,∴∠B+∠C+∠D+∠E=510°,∵∠1+∠2+∠B+∠C+∠D+∠E=(6﹣2)×180°=720°,∴∠1+∠2=720°﹣510°=210°,解法二:在△ANM中,∠ANM+∠AMN=180°﹣∠A=180°﹣30°=150°,∴∠1+∠2=360°﹣(∠AMN+∠ANM)=360°﹣150°=210°故选:A.【知识点】多边形内角与外角9.如图,已知GF⊥AB,∠1=∠2,∠B=∠AGH,则下列结论:①GH∥BC;②∠D=∠F:③HE平分∠AHG;④HE⊥AB,其中正确的有()A.1个B.2个C.3个D.4个【答案】B【分析】根据平行线的判定得出GH∥BC,根据平行线的性质得出∠1=∠HGM,∠1=∠D,再逐个判断即可.【解答】解:∵∠B=∠AGH,∴GH∥BC,故①正确;∴∠1=∠HGM,∵∠1=∠2,∴∠2=∠HGM,∴DE∥GF,∵GF⊥AB,∴HE⊥AB,故④正确;∵GF∥DE,∴∠D=∠1,∵∠1=∠CMF,根据已知条件不能推出∠F=∠CMF,即不能推出∠D=∠F,故②错误;∵∠AHG=∠2+∠AHE,根据已知不能推出∠2=∠AHE,故③错误;即正确的有2个,故选:B.【知识点】平行线的判定与性质10.一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行,如图2,当∠BAD=15°时,BC∥DE,则∠BAD (0°<∠BAD<180°)符合条件的其它所有可能度数为()A.60°和135°B.45°、60°、105°、135°C.30°和45°D.以上都有可能【答案】B【分析】根据题意画出图形,再由平行线的判定定理即可得出结论.【解答】解:当AC∥DE时,∠BAD=∠DAE=45°;当BC∥AD时,∠DAB=∠B=60°;当BC∥AE时,∵∠EAB=∠B=60°,∴∠BAD=∠DAE+∠EAB=45°+60°=105°;当AB∥DE时,∵∠E=∠EAB=90°,∴∠BAD=∠DAE+∠EAB=45°+90°=135°.故选:B.【知识点】平行线的判定二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,请把答案直接填写在横线上)11.如图,DA平分∠BDF,∠3=∠4,若∠1=50°,∠2=130°,则∠CBD=°.【答案】65【分析】利用平行线的判定定理和性质定理,等量代换可得∠CBD=∠EBC,可得结果.【解答】解:∵∠1=50°,∴∠DBE=180°﹣∠1=180°﹣50°=130°,∵∠2=130°,∴∠DBE=∠2,∴AE∥CF,∴∠4=∠ADF,∵∠3=∠4,∴∠EBC=∠4,∴AD∥BC,∵AD平分∠BDF,∴∠ADB=∠ADF,∵AD∥BC,∴∠ADB=∠CBD,∴∠4=∠CBD,∴∠CBD=∠EBC==65°.故答案为:65.【知识点】平行线的判定与性质12.如图,已知∠1=80°,∠2=100°,∠3=105°,则∠4=.【答案】75°【分析】由同旁内角互补,两直线平行可得l1∥l2,可得∠3+∠6=180°,即可求解.【解答】解:如图,∵∠2=∠5=100°,∠1=80°,∴∠1+∠2=180°,∴l1∥l2,∴∠3+∠6=180°,∴∠6=180°﹣∠3=75°,∴∠4=∠6=75°,故答案为:75°.【知识点】平行线的判定与性质13.如图,点F在∠BAC的平分线AP上,点E在AB上,且EF∥AC,若∠BEF=40°,则∠AFE=°.【答案】20【分析】根据平行线的性质和角平分线的性质,可以得到∠AFE的度数.【解答】解:∵AP平分∠BAC,∴∠BAP=∠CAP,∵EF∥AC,∴∠EF A=∠CAP,∴∠BAP=∠EF A,∵∠BEF=40°,∠BEF=∠BAP+∠EF A,∴∠BAP=∠EF A=20°,即∠AFE=20°,故答案为:20.【知识点】平行线的性质14.如图所示,把长方形纸片ABCD纸沿对角线折叠,若∠BDE=20°,那么∠BED=.【答案】140°【分析】由AD∥BC,利用“两直线平行,内错角相等”可得出∠CBD的度数,由折叠的性质可得出∠EBD 的度数,结合∠CBE=∠CBD+∠EBD可得出∠CBE的度数,由AD∥BC,利用“两直线平行,同旁内角互补”可求出∠BED的度数.【解答】解:∵AD∥BC,∴∠CBD=∠BDE=20°.由折叠的性质可知:∠EBD=∠CBD=20°,∴∠CBE=∠CBD+∠EBD=40°.∵AD∥BC,∴∠BED=180°﹣∠CBE=140°.故答案为:140°.【知识点】平行线的性质、翻折变换(折叠问题)15.如图,∠ABC的平分线BF与△ABC中∠ACB的相邻外角∠ACG的平分线CF相交于点F,过F作DF∥BC,交AB于D,交AC于E,若BD=9cm,DE=4cm,求CE的长为cm.【答案】5【分析】只要证明△BDF和△CEF为等腰三角形,即可解决问题.【解答】证明:∵BF、CF分别平分∠ABC、∠ACG,∴∠DBF=∠CBF,∠FCE=∠FCG,∵DE∥BC,∴∠DFB=∠CBF,∠EFC=∠FCG,∴∠DBF=∠DFB,∠FCE=∠EFC,∴BD=FD,EF=CE,∴△BDF和△CEF为等腰三角形;∵DF=BD,CE=EF,∴BD﹣CE=FD﹣EF=DE,∴EF=DF﹣DE=BD﹣DE=9﹣4=5(cm),∴EC=5(cm),故答案为:5.【知识点】等腰三角形的判定与性质、平行线的性质16.如图,三角形ABC中,D是AB上一点,F是BC上一点,E,H是AC上的点,EF的延长线交AB的延长线于点G,连接DE,DH,DE∥BC.若∠CEF=∠CHD,∠EFC=∠ADH,∠CEF:∠EFC=5:2,∠C=47°,则∠ADE的度数为.【答案】76°【分析】根据平行线的性质和三角形的内角和解答即可.【解答】解:∵∠CEF=∠CHD,∴DH∥GE,∴∠ADH=∠G,∵∠EFC=∠ADH,∵∠BFG=∠EFC,∴∠G=∠BFG,∴∠ABC=∠G+∠BFG=2∠EFC,∵∠CEF:∠EFC=5:2,∠C=47°,∴∠EFC=38°,∴∠ABC=76°,∵DE∥BC,∴∠ADE=∠ABC=76°,故答案为:76°.【知识点】平行线的性质17.如图,AB和CD相交于点O,∠C=∠COA,∠BDC=∠BOD,AP,DP分别平分∠CAO和∠BDC,若∠C+∠P+∠B=165°,则∠C的度数是.【答案】70°【分析】设∠C=∠AOC=∠BOD=∠BDO=x,∠CAP=∠P AB=y,∠P=z,则∠B=2y,构建方程组解决问题即可.【解答】解:∵∠C=∠COA,∠BDC=∠BOD,∠AOC=∠BOD,∴∠C=∠AOC=∠BOD=∠BDO,设∠C=∠AOC=∠BOD=∠BDO=x,∴∠B=∠CAO,设∠CAP=∠P AB=y,∠P=z,则∠B=2y,则有,解得,∴∠C=70°,故答案为70°.【知识点】三角形内角和定理18.如图,AD∥BC,∠ADC=120°,∠BAD=3∠CAD,E为AC上一点,且∠ABE=2∠CBE,在直线AC上取一点P,使∠ABP=∠DCA,则∠CBP:∠ABP的值为.【答案】2或4【分析】分两种情况进行解答,分别画出图形,结合图形,利用三角形内角和、平行线的性质,等量代换,得出各个角之间的倍数关系.【解答】解:如图,①当∠ABP1=∠DCA时,即∠1=∠2,∵∠D=120°,∴∠1+∠3=180°﹣120°=60°,∵∠BAD=3∠CAD,∠ABE=2∠CBE,AD∥BC,∴3∠3+3∠EBC=180°,∴∠3+∠EBC=60°,∴∠EBC=∠1=∠2=∠P1BE,∴∠CBP1:∠ABP1的值为2,②当∠ABP2=∠DCA时,∴∠CBP2:∠ABP2的值为4,故答案为:2或4.【知识点】平行线的性质三、解答题(本大题共8小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.如图,△ABC中,AD平分∠BAC,P为AD延长线上一点,PE⊥BC于E,已知∠ACB=80°,∠B=24°,求∠P的度数.【分析】在△ABC中,利用三角形内角和定理可求出∠BAC的度数,结合角平分线的定义可得出∠CAD的度数,在△ACD中,利用三角形内角和定理可求出∠ADC的度数,结合对顶角相等可得出∠PDE 的度数,再在△PDE中利用三角形内角和定理可求出∠P的度数.【解答】解:在△ABC中,∠ACB=80°,∠B=24°,∴∠BAC=180°﹣∠ACB﹣∠B=76°.∵AD平分∠BAC,∴∠CAD=∠BAC=38°.在△ACD中,∠ACD=80°,∠CAD=38°,∴∠ADC=180°﹣∠ACD﹣∠CAD=62°,∴∠PDE=∠ADC=62°.∵PE⊥BC于E,∴∠PED=90°,∴∠P=180°﹣∠PDE﹣∠PED=28°.【知识点】三角形内角和定理、角平分线的定义、对顶角、邻补角20.如图,在△ABC的三边上有D,E,F三点,点G在线段DF上,∠1与∠2互补,∠3=∠C.(1)若∠C=40°,求∠BFD的度数;(2)判断DE与BC的位置关系,并说明理由.【分析】(1)由∠1与∠2互补,利用“同旁内角互补,两直线平行”可得出AC∥DF,再利用“两直线平行,同位角相等”可求出∠BFD的度数;(2)由(1)可知∠BFD=∠C,结合∠C=∠3可得出∠BFD=∠3,再利用“内错角相等,两直线平行”即可找出DE∥BC.【解答】解:(1)∵∠1与∠2互补,∴AC∥DF,∴∠BFD=∠C=40°;(2)DE∥BD,理由如下:由(1)可知:∠BFD=∠C,∵∠C=∠3,∴∠BFD=∠3,∴DE∥BC.【知识点】平行线的判定与性质21.已知:如图∠AED=∠C,∠DEF=∠B,请你说明∠1与∠2相等吗?为什么?解:因为∠AED=∠C(已知)所以∥()所以∠B+∠BDE=180°()因为∠DEF=∠B(已知)所以∠DEF+∠BDE=180°()所以∥()所以∠1=∠2 ().【答案】【第1空】DE【第2空】BC【第3空】同位角相等,两直线平行【第4空】两直线平行,同旁内角互补【第5空】等量代换【第6空】EF【第7空】AB【第8空】同旁内角互补,两直线平行,【第9空】两直线平行,内错角相等【分析】先判断出DE∥BC得出∠B+∠BDE=180°,再等量代换,即可判断出EF∥AB即可.【解答】解:因为∠AED=∠C(已知)所以DE∥BC(同位角相等,两直线平行)所以∠B+∠BDE=180°(两直线平行,同旁内角互补)因为∠DEF=∠B(已知)所以∠DEF+∠BDE=180°(等量代换)所以EF∥AB(同旁内角互补,两直线平行)所以∠1=∠2 (两直线平行,内错角相等).故答案为:DE,BC,同位角相等,两直线平行,两直线平行,同旁内角互补,等量代换EF,AB,同旁内角互补,两直线平行,两直线平行,内错角相等.【知识点】平行线的判定与性质22.AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E.∠ADC=80°.(1)若∠ABC=50°,求∠BED的度数;(2)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,若∠ABC=120°,求∠BED的度数.【分析】(1)作EF∥AB,如图1,利用角平分线的定义得到∠ABE=25°,∠EDC=40°,利用平行线的性质得到∠BEF=∠ABE=25°,∠FED=∠EDC=40°,从而得到∠BED的度数;(2)作EF∥AB,如图2,利用角平分线的定义得到∠ABE=60°,∠EDC=40°,利用平行线的性质得到∠BEF=120°,∠FED=∠EDC=40°,从而得到∠BED的度数.【解答】解:(1)作EF∥AB,如图1,∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=∠ABC=25°,∠EDC=∠ADC=40°,∵AB∥CD,∴EF∥CD,∵∠BEF=∠ABE=25°,∠FED=∠EDC=40°,∴∠BED=25°+40°=65°;(2)作EF∥AB,如图2,∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=∠ABC=60°,∠EDC=∠ADC=40°,∵AB∥CD,∴EF∥CD,∵∠BEF=180°﹣∠ABE=120°,∠FED=∠EDC=40°,∴∠BED=120°+40°=160°.【知识点】平行线的性质、平移的性质23.南湖公园有很多的长方形草地,草地里修了很多有趣的小路,如图三个图形都是长为50米,宽为30米的长方形草地,且小路的宽都是1米.(1)如图1,阴影部分为1米宽的小路,长方形除去阴影部分后剩余部分为草地,则草地的面积为;(2)如图2,有两条宽均为1米的小路(图中阴影部分),求草地的面积.(3)如图3,非阴影部分为1米宽的小路,沿着小路的中间从入口E处走到出口F处,所走的路线(图中虚线)长为.【答案】【第1空】1470平方米【第2空】108米【分析】(1)结合图形,利用平移的性质求解;(2)结合图形,利用平移的性质求解;(3)结合图形,利用平移的性质求解.【解答】解:(1)将小路往左平移,直到E、F与A、B重合,则平移后的四边形EFF1E1是一个矩形,并且EF=AB=30,FF1=EE1=1,则草地的面积为:50×30﹣1×30=1470(平方米);故答案为:1470平方米;(2)小路往AB、AD边平移,直到小路与草地的边重合,则草地的面积为:(50﹣1)×(30﹣1)=1421(平方米);(3)将小路往AB、AD、DC边平移,直到小路与草地的边重合,则所走的路线(图中虚线)长为:30﹣1+50+30﹣1=108(米).故答案为:108米.【知识点】生活中的平移现象24.探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F,若∠ABC=50°,求∠DEF的度数.请将下面的解答过程补充完整,并填空解:∵DE∥BC∴∠DEF=.()∵EF∥AB,∴=∠ABC.()∴∠DEF=∠ABC.(等量代换)∵∠ABC=50°,∴∠DEF=.应用:如图②,直线AB,BC,AC两两相交,交点分别为A、B、C,点D在线段AB的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F,若∠ABC=65°,则∠DEF=.【答案】【第1空】∠EFC【第2空】两直线平行,内错角相等【第3空】∠EFC【第4空】两直线平行,同位角相等【第5空】50°【第6空】115°【分析】探究:依据两直线平行,内错角相等;两直线平行,同位角相等,即可得到∠DEF=50°.应用:依据两直线平行,同位角相等;两直线平行,同旁内角互补,即可得到∠DEF=180°﹣65°=115°.【解答】解:探究:∵DE∥BC,∴∠DEF=∠EFC.(两直线平行,内错角相等)∵EF∥AB,∴∠EFC=∠ABC.(两直线平行,同位角相等)∴∠DEF=∠ABC.(等量代换)∵∠ABC=50°,∴∠DEF=50°.故答案为:∠EFC,两直线平行,内错角相等,∠EFC,两直线平行,同位角相等,50°;应用:∵DE∥BC,∴∠ABC=∠ADE=60°.(两直线平行,同位角相等)∵EF∥AB,∴∠ADE+∠DEF=180°.(两直线平行,同旁内角互补)∴∠DEF=180°﹣65°=115°.故答案为:115°.【知识点】平行线的性质、相交线25.如图,AB∥CD,∠ABE=120°.(1)如图①,写出∠BED与∠D的数量关系,并证明你的结论;(2)如图②,∠DEF=2∠BEF,∠CDF=∠CDE,EF与DF交于点F,求∠EFD的度数;(3)如图③,过B作BG⊥AB于G点,∠CDE=4∠GDE,求的值.【分析】(1)如图①,延长AB交DE于点F,根据平行线的性质即可得结论∠BED+∠D=120°;(2)设∠BEF=α,∠CDE=β,可得∠DEF=2α,∠DEB=3α,∠CDE=3β,∠EDF=2β,结合(1)可知∠BED+∠CDE=120°,进而可得结论;(3)根据已知条件和三角形的外角可得∠G+30°=∠E+(120°﹣∠E),进而可得结论.【解答】解:(1)结论:∠BED+∠D=120°,证明:如图①,延长AB交DE于点F,∵AB∥CD,∴∠BFE=∠D,∵∠ABE=120°,∴∠BFE+∠BED=∠ABE=120°,∴∠D+∠BED=120°;(2)如图②,∵∠DEF=2∠BEF,∠CDF=∠CDE,即∠CDE=3∠CDF,设∠BEF=α,∠CDF=β,∴∠DEF=2α,∠DEB=3α,∠CDE=3β,∠EDF=2β,由(1)知:∠BED+∠CDE=120°,∴3α+3β=120°,∴α+β=40°,∴2α+2β=80°,∴∠EFD=180°﹣∠DEF﹣∠EDF=180°﹣(2α+2β)=180°﹣80°=100°,答:∠EFD的度数为100°;(3)如图③,∵BG⊥AB,∴∠ABG=90°,∵∠ABE=120°.∴∠GBE=∠ABE﹣∠ABG=30°,∵∠CDE=4∠GDE,∴∠GDE=∠CDE,∵∠G+∠GBE=∠E+∠GDE,∴∠G+30°=∠E+∠CDE,由(1)知:∠BED+∠CDE=120°,∴∠CDE=120°﹣∠E,∴∠G+30°=∠E+(120°﹣∠E),∴∠G=∠E,∴=.【知识点】平行线的性质、垂线26.如图①,直线l1∥l2,直线EF和直线l1、l2分别交于C、D两点,点A、B分别在直线l1、l2上,点P在直线EF上,连结P A、PB.猜想:如图①,若点P在线段CD上,∠P AC=15°,∠PBD=40°,则∠APB的大小为度.探究:如图①,若点P在线段CD上,直接写出∠P AC、∠APB、∠PBD之间的数量关系.拓展:如图②,若点P在射线CE上或在射线DF上时,直接写出∠P AC、∠APB、∠PBD之间的数量关系.【答案】55【分析】猜想:如图①,根据平行线的性质和∠P AC=15°,∠PBD=40°,即可得∠APB的大小;探究:如图①,结合猜想即可写出∠P AC、∠APB、∠PBD之间的数量关系;拓展:如图②,分两种情况画出图形,当点P在射线CE上或在射线DF上时,结合探究过程即可写出∠P AC、∠APB、∠PBD之间的数量关系.【解答】解:猜想:如图①,过点P作PG∥l1,∵l1∥l2,∴l1∥l2∥PG,∴∠APG=∠P AC=15°,∠BPG=∠PBD=40°,∴∠APB=∠APG+∠BPG=∠P AC+∠PBD=15°+40°=55°,∴∠APB的大小为55度,故答案为:55;探究:如图①,∠P AC=∠APB﹣∠PBD,理由如下:∵l1∥l2∥PG,∴∠APG=∠P AC,∠BPG=∠PBD,∴∠APB=∠APG+∠BPG=∠P AC+∠PBD,∴∠P AC=∠APB﹣∠PBD;拓展:∠P AC=∠PBD﹣∠APB或∠P AC=∠APB+∠PBD,理由如下:如图,当点P在射线CE上时,过点P作PG∥l1,∴l1∥l2∥PG,∴∠APG=∠P AC,∠BPG=∠PBD,∴∠P AC=∠APG=∠BPG﹣∠APB,∴∠P AC=∠PBD﹣∠APB;当点P在射线DF上时,过点P作PG∥l1,∴l1∥l2∥PG,∴∠APG=∠P AC,∠BPG=∠PBD,∴∠P AC=∠APG=∠APB+∠BPG,∴∠P AC=∠APB+∠PBD,综上所述:当点P在射线CE上或在射线DF上时,∠P AC=∠PBD﹣∠APB或∠P AC=∠APB+∠PBD.【知识点】平行线的性质31。

苏科版七年级下第七章《平面图形的认识》复习测试卷含试卷分析详解

苏科版七年级下第七章《平面图形的认识》复习测试卷含试卷分析详解

苏科版七年级数学下册第七章《平面图形的认识》复习检测卷一、选择题(每题3分,共30分)1.下面四个图形中,线段BD是△ABC的高的是( )2.在5×5的方格纸中,图1中的图形N平移后的位置如图2所示,那么正确的平移方法是( )A.先向下移动1格,再向左移动1格B.先向下移动1格,再向左移动2格C.先向下移动2格,再向左移动1格D.先向下移动2格,再向左移动2格3.如图,在A、B两座工厂之间要修建一条笔直的公路,从A地测得B地的走向是南偏东52°,现,A、B两地同时开工,若干天后公路要准确对接,则B地所修公路的走向应该是( )A.北偏西52°B.南偏东52°C.西偏北52°D.北偏西38°4.已知一个三角形三个内角度数的比是l:5:6,则其最大内角的度数为( ) A.60°B.75°C.90°D.120°5.现有两根木棒,它们的长分别为40 cm和50 cm,若要钉成一个三角形木架,则在下列四根木棒中应选取( ) A.10 cm的木棒B.50 cm的木棒C.100 cm的木棒D.110 cm的木棒6.(2011.娄底)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数为( )A.80°B.50°C.30°D.20°7.用一条宽相等的足够长的纸条打一个结,如图①所示,然后轻轻拉紧、压平就可以得到如图②所示的正五边形ABCDE,其中∠BAC的度数为( )A.30°B.36°C.40°D.72°8.如图,如果AB∥CD,那么∠1、∠2、∠3之间的关系为( ) A.∠1+∠2+∠3=360°B.∠1-∠2+∠3=180°C.∠1-∠2-∠3=180°D.∠1+∠2-∠3=180°9.如图,已知直线AB∥CD,当点E在直线AB与CD之间时,下列关系式成立的是( )A.∠BED=∠ABE+∠CDE B.∠BED=∠ABE-∠CDEC.∠BED=∠CDE-∠ABE D.∠BED=2∠CDE-∠ABE10.一电动玩具的正面是由半径为10cm的小圆盘和半径为20cm•的大圆盘依图中方式连接而成的,小圆盘在大圆盘的圆周上外切滚动一周且不发生滑动(大圆盘不动).回到原来的位置,在这一过程中,判断虚线所示位置的三个圆内,所画的头发,眼睛,嘴巴位置正确的是()二、填空题(每题3分,共18分)11.△ABC的高为AD,角平分线为AE,中线为AF,则把△ABC的面积分成相等两部分的线段是_______.12.下列说法:①三角形的外角和等于它的内角和;②三角形的一个外角大于任何一个内角;③三角形的一个外角和内角互补;④三角形的一个外角大于和它不相邻的内角.其中,正确的有_______(填序号).13.三角形的三边长为3,a,7,则a的取值范围是_______;如果这个三角形中有两条边相等,那么它的周长是_______.14.如图,请你添加一个条件,使得AD∥BC,你添加的条件是__________.第14题 第15题 第16题15.如图,在△ABC 中,∠BAC=60°,BD 、CE 分别平分∠ABC 、∠ACB ,BD 、CE 相交于点O ,则∠BOC 的度数是____________.16.小亮从A 点出发前进10 m ,向右转15°,再前进10 m ,又向右转15°,…,这样一直走下去,他第一次回到出发点A 时,一共走了___________m .三、解答题(共52分)17.(6分)如图,小明家有一块三角形菜地,要种面积相等的四种蔬菜,请你设计两种不同的方案,把这块地分成四块面积相等的三角形地块,分别种植这四种蔬菜.18.(6分)已知△ABC 的周长为24 cm ,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,且a 、b 、c 满足条件a -b =b -c =2 cm ,求a 、b 、c 的长.19.(6分)如图,∠1=∠2=∠3,且∠BAC =70°,∠DFE =50°,求∠ABC 的度数.20.(8分)两个多边形的边数比为1:2,内角和的度数比为1:4,求这两个多边形的边数.21.(8分)如图,在△ABC 中,AD 平分∠BAC ,BE ⊥AC 于点E ,交AD 于点F ,试说明∠2=(∠ABC +∠C ).22.(10分)如图,请你从下列三个条件中任选两个作为条件,另一个作为结论,编一道数学题,并说明理由.①AD ∥BC ;②AB ∥CD ;③∠A=∠C .已知:________________________________________________.结论:________________________________________________.理由:1223.(12分)如图①,把△ABC纸片沿DE折叠,使点A落在四边形BCED内部点A′的位置,通过计算我们知道:2∠A=∠l+∠2.请你继续探索:(1)如果把△ABC纸片沿DE折叠,使点A落在四边形BCED的外部点A′的位置,如图②,此时∠A与∠1、∠2之间存在什么样的关系?(2)如果把四边形ABCD沿时折叠,使点A、D落在四边形BCFE的内部A′、D′的位置,如图③,你能求出∠A、∠D、∠l与∠2之间的关系吗?(直接写出关系式即可)参考答案一、1.A 2.C 3.A 4.C 5.A 6.D 7.B8.D 9.A 10.B二、11.中线AF 12.④13.4<a<10 1714.本题答案不唯一,如∠1=∠B 15.120°16.240°三、17.答案不惟一,如图18.6 cm、8 cm、10 cm19.60°20.这两个多边形的边数分别为3、621.略22..本题答案不唯一,如:已知:①②,结论:③.理由:因为AD∥BC,所以∠A=∠ABF,理由是两直线平行,内错角相等.又因为AB∥CD,所以∠ABF=∠C,理由是两直线平行,同位角相等,所以∠A=∠C23.(1)2∠A=∠1-∠2.观察图②得:∠1+2∠ADE=180°,2∠AED-∠2=180°,所以∠1+2∠ADE+2∠AED-∠2=360°.由三角形内角和是180°得:∠A+∠ADE+∠AED=180°,所以2∠A+2∠ADE+2∠AED=360°,所以∠1+2∠ADE+2∠AED-∠2=2∠A+2∠ADE+2∠AED,所以2∠A=∠1-∠2 (2)2∠A+2∠D-∠1-∠2=360°。

苏科版七年级数学下半学期 第十二章 图形的全等A卷二

苏科版七年级数学下半学期 第十二章 图形的全等A卷二

第十二章 图形的全等★A 卷二 基础知识点点通班级姓名 成绩一、选择题(3分×8=24分)1、下列各组所列的条件中,不能判△ABC 和△DEF 全等的是( ) A 、AB=DE ,∠C=∠F ,∠B=∠E B 、AB=EF ,∠B=∠F ,∠A=∠E C 、∠B=∠E ,∠A=∠F ,AC=DE D 、BC=DE ,AC=DF ,∠C=∠D2、下列条件中,能判定两个三角形全等的是( ) A 、有三个角对应相等 B 、有两条边对应相等C 、有两边及一角对应相等D 、有两角及一边对应相等 3、如图,要用“SAS ”证△ABC ≌△ADE ,若已知AB=AD ,AC=AE ,则不需要条件( )A 、∠1=∠2B 、BC=EDC 、∠BAC=∠DAED 、∠B=∠D4、如图,△ABC ≌△CDA ,并且BC=DA ,那么下列结论错误 的是( )A 、∠1=∠2B 、AC=CAC 、AB=AD D 、∠B=∠D5、如图,△ABC 中,AD ⊥BC ,AB=AC ,AE=AF ,则图中全等三角形的对数有( )A 、5对B 、6对C 、7对D 、8对6、如图,要测量河两岸相对的两点A 、B 间的距离,先在过B 点的AB 的垂线L 上取两点C 、D ,使CD=BC ,再在过D 点的垂线上取点E ,使A 、C 、E 在一条直线上,这时,△ACB ≌△ECD ,ED=AB ,测ED 的长就得AB 得长,判定△ACB ≌△ECD 的理由是( )A 、SASB 、ASAC 、SSSD 、AAS7、小明有两根长度分别为4㎝和9㎝的木棒,他想钉一个三角形木架,现有五根长度分别为3㎝、6㎝、11㎝、12㎝、17㎝的木棒供他选择,他有( )种选择C ED B A2121DCB A D BC E F OAC B ED AA 、1B 、2C 、3D 、4 8、一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板。

苏科版初一数学下册1.1 全等图形(含答案)

苏科版初一数学下册1.1 全等图形(含答案)

1.1 全等图形一.选择题(共10小题)1.下列说法正确的是()A.两个面积相等的图形一定是全等图形B.两个长方形是全等图形C.两个全等图形形状一定相同D.两个正方形一定是全等图形2.如图所示的图形是全等图形的是()A.B.C.D.3.下列各组的两个图形属于全等图形的是()A.B.C.D.4.下列选项中表示两个全等图形的是()A.形状相同的两个图形B.能够完全重合的两个图形C.面积相等的两个图形D.周长相等的两个图形5.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3的度数为()A.90°B.105°C.120°D.135°6.下列四个选项中的图形与最左边的图形全等的是()A.B.C.D.7.下列说法:(1)全等图形的形状相同,大小相等;(2)全等三角形的对应边相等;(3)全等图形的周长相等,面积相等;(4)面积相等的两个三角形全等.其中正确的是()A.(1 )(3)(4 )B.(2)(3 )(4 )C.(1 )(2 )(3 )D.(1 )(2)(3 )(4 )8.下列四个图形中,属于全等图形的是()A.③和④B.②和③C.①和③D.②和④9.如图,△ABC≌△DEF,则此图中相等的线段有()A.1对B.2对C.3对D.4对10.全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC和△A1B1C1是全等(合同)三角形,点A与点A1对应,点B与点B1对应,点C与点C1对应,当沿周界A→B→C→A,及A1→B1→C1→A1环绕时,若运动方向相同,则称它们是真正合同三角形如图,若运动方向相反,则称它们是镜面合同三角形如图,两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180°如图,下列各组合同三角形中,是镜面合同三角形的是()A.B.C.D.二.填空题(共5小题)11.如图,已知方格纸中是4个相同的正方形,则∠1与∠2的和为.12.如图①,已知△ABC的六个元素,则图②中甲、乙、丙三个三角形中与图①中△ABC 全等的图形是.13.下图是由全等的图形组成的,其中AB=3cm,CD=2AB,则AF=.14.如图为4×4的正方形网格,图中的线段均为格点线段(线段的端点为格点),则∠1+∠2+∠3+∠4+∠5的度数为.15.下列几种说法:①全等三角形的对应边相等;②面积相等的两个三角形全等;③周长相等的两个三角形全等;④全等的两个三角形的面积相等.其中正确的是.三.解答题(共5小题)16.如图,某校有一块正方形花坛,现要把它分成4块全等的部分,分别种植四种不同品种的花卉,图中给出了一种设计方案,请你再给出四种不同的设计方案.17.如图为人民公园中的荷花池,现在测量荷花池两旁A、B两棵大树间的距离(不得直接量得).请你根据图形全等的知识,用一根足够长的绳子及标杆为工具,设计两种不同的测量方案.要求:(1)画出设计的测量示意图;(2)写出测量方案及理由.18.沿着图中的虚线,用四种不同的方法将下面的图形分成两个全等的图形19.将4×4的棋盘沿格线划分成两个全等图形,参考图例补全另外几种.20.如图所示,请你在图中画两条直线,把这个“+”图案分成四个全等的图形(要求至少要画出两种方法).答案与解析一.选择题(共10小题)1.下列说法正确的是()A.两个面积相等的图形一定是全等图形B.两个长方形是全等图形C.两个全等图形形状一定相同D.两个正方形一定是全等图形【分析】根据全等图形的定义进行判断即可.【解答】解:A:两个面积相等的图形不一定是全等图形,故A错误;B:长方形不一定是全等图形,故B错误;C:两个全等图形形状一定相同,故C正确;D:两个正方形不一定是全等图形,故D错误;故选:C.【点评】本题考查了全等图形,熟练运用“能够完全重合的两个图形叫做全等形”是本题的关键.2.如图所示的图形是全等图形的是()A.B.C.D.【分析】根据能够完全重合的两个图形叫做全等形可得答案.【解答】解:如图所示的图形是全等图形的是B,故选:B.【点评】此题主要考查了全等图形,关键是掌握全等形的定义.3.下列各组的两个图形属于全等图形的是()A.B.C.D.【分析】根据全等形是能够完全重合的两个图形进行分析判断.【解答】解:A、两只眼睛下面的嘴巴不能完全重合,故本选项错误;B、两个正方形的边长不相等,不能完全重合,故本选项错误;C、圆内两条相交的线段不能完全重合,故本选项错误;D、两个图形能够完全重合,故本选项正确.故选:D.【点评】本题考查的是全等形的识别、全等图形的基本性质,属于较容易的基础题.4.下列选项中表示两个全等图形的是()A.形状相同的两个图形B.能够完全重合的两个图形C.面积相等的两个图形D.周长相等的两个图形【分析】直接利用全等图形的定义分析得出答案.【解答】解:A、形状相同的两个图形,不一定是全等图形,故此选项错误;B、能够完全重合的两个图形,一定是全等图形,故此选项正确;C、面积相等的两个图形,不一定是全等图形,故此选项错误;D、周长相等的两个图形,不一定是全等图形,故此选项错误;故选:B.【点评】此题主要考查了全等图形,正确把握全等图形的定义是解题关键.5.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3的度数为()A.90°B.105°C.120°D.135°【分析】根据对称性可得∠1+∠3=90°,∠2=45°.【解答】解:观察图形可知,∠1所在的三角形与∠3所在的三角形全等,∴∠1+∠3=90°,又∠2=45°,∴∠1+∠2+∠3=135°,故选:D.【点评】主要考查了正方形的性质和全等三角形的判定.充分利用正方形的特殊性质来找到全等的条件从而判定全等后利用全等三角形的性质解题.6.下列四个选项中的图形与最左边的图形全等的是()A.B.C.D.【分析】根据全等图形判断即可.【解答】解:只有B选项的图形与已知图形全等,故选:B.【点评】此题考查全等图形问题,关键根据全等图形的定义判断.7.下列说法:(1)全等图形的形状相同,大小相等;(2)全等三角形的对应边相等;(3)全等图形的周长相等,面积相等;(4)面积相等的两个三角形全等.其中正确的是()A.(1 )(3)(4 )B.(2)(3 )(4 )C.(1 )(2 )(3 )D.(1 )(2)(3 )(4 )【分析】能够完全重合的两个三角形叫做全等三角形,依据全等三角形的性质,即可得到正确结论.【解答】解:(1)全等图形的形状相同,大小相等,正确;(2)全等三角形的对应边相等,正确;(3)全等图形的周长相等,面积相等,正确;(4)面积相等的两个三角形不一定全等,错误;故选:C.【点评】本题主要考查了全等三角形的性质,解题时注意:能够完全重合的两个图形叫做全等形.8.下列四个图形中,属于全等图形的是()A.③和④B.②和③C.①和③D.②和④【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案.【解答】解:②和④都可以完全重合,因此全等的图形是②和④.故选:D.【点评】此题主要考查了全等图形,关键是掌握全等图形的概念.9.如图,△ABC≌△DEF,则此图中相等的线段有()A.1对B.2对C.3对D.4对【分析】根据两个三角形全等,可以得到3对三角形的边相等,根据BC=EF,又可以得到BE=CF可得答案是4对.【解答】解:∵△ABC≌△DEF∴AB=DE,AC=DF,BC=EF∵BC=EF,即BE+EC=CF+EC∴BE=CF即有4对相等的线段故选:D.【点评】本题主要考查了全等三角形的对应边相等问题;做题时,结合已知,认真观察图形,得到BE=CF是正确解答本题的关键.10.全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC和△A1B1C1是全等(合同)三角形,点A与点A1对应,点B与点B1对应,点C与点C1对应,当沿周界A→B→C→A,及A1→B1→C1→A1环绕时,若运动方向相同,则称它们是真正合同三角形如图,若运动方向相反,则称它们是镜面合同三角形如图,两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180°如图,下列各组合同三角形中,是镜面合同三角形的是()A.B.C.D.【分析】认真阅读题目,理解真正合同三角形和镜面合同三角形的定义,然后根据各自的定义或特点进行解答.【解答】解:由题意知真正合同三角形和镜面合同三角形的特点,可判断要使选项B的两个三角形重合必须将其中的一个翻转180°;而其A、D、C的全等三角形可以在平面内通过平移或旋转使它们重合.故选:B.【点评】此题考查了全等图形的知识,学生要注意阅读理解能力及空间想象能力的培养,题目出的较灵活,认真读题,透彻理解题意是正确解决本题的关键.二.填空题(共5小题)11.如图,已知方格纸中是4个相同的正方形,则∠1与∠2的和为90°.【分析】首先证明△ABC≌△AED,根据全等三角形的性质可得∠1=∠AED,再根据余角的定义可得∠AED+∠2=90°,再根据等量代换可得∠1与∠2的和为90°.【解答】解:∵在△ABC和△AED中,∴△ABC≌△AED(SAS),∴∠1=∠AED,∵∠AED+∠2=90°,∴∠1+∠2=90°,故答案为:90°.【点评】此题主要考查了全等图形,关键是掌握全等三角形的判定和性质.12.如图①,已知△ABC的六个元素,则图②中甲、乙、丙三个三角形中与图①中△ABC 全等的图形是丙.【分析】根据全等三角形的判定定理(SAS,ASA,AAS,SSS)逐个判断即可.【解答】解:已知图①的△ABC中,∠B=62°,BC=a,AB=c,AC=b,∠C=58°,∠A=60°,图②中,甲:只有一个角和∠B相等,没有其它条件,不符合三角形全等的判定定理,即和△ABC不全等;乙:只有一个角和∠B相等,还有一条边,没有其它条件,不符合三角形全等的判定定理,即和△ABC不全等;丙:符合AAS定理,能推出两三角形全等;故答案为:丙.【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.13.下图是由全等的图形组成的,其中AB=3cm,CD=2AB,则AF=27cm.【分析】根据已知图形得出CD=2AB=6cm,进而求出即可.【解答】解:因为AB=3cm,所以CD=2AB=6cm,所以AF=3AB+3CD=3×3+3×6=27(cm).故答案为:27cm.【点评】此题主要考查了全等图形的性质,得出CD的长是解题关键.14.如图为4×4的正方形网格,图中的线段均为格点线段(线段的端点为格点),则∠1+∠2+∠3+∠4+∠5的度数为225°.【分析】根据正方形的性质可得出∠3=45°,根据长方形的性质即可得出相等的边,由此可得出全等的三角形,进而得出∠1与∠5互余、∠2与∠4互余,再将其代入∠1+∠2+∠3+∠4+∠5中即可得出结论.【解答】解:在图中标上字母,如图所示.∵四边形ABCD为4×4的正方形,∴∠3=45°.∵四边形ANPE为1×1的正方形,∴AE=AN.∵四边形CDEF和四边形BCMN均为4×3的长方形,∴CE=CN.在△ACE和△ACN中,,∴△ACE≌△ACN(SSS),∴∠AEC=∠ANC,∴∠2+∠4+90°=180°,∴∠2与∠4互余.同理可得:∠1与∠5互余.∴∠1+∠2+∠3+∠4+∠5=(∠1+∠5)+(∠2+∠4)+∠3=90°+90°+45°=225°.故答案为:225°.【点评】本题考查了全等图形、全等三角形的判定与性质、长方形及正方形的性质,解题的关键是找出∠3=45°、∠1与∠5互余、∠2与∠4互余.15.下列几种说法:①全等三角形的对应边相等;②面积相等的两个三角形全等;③周长相等的两个三角形全等;④全等的两个三角形的面积相等.其中正确的是①④.【分析】根据全等三角形:能够完全重合的两个三角形叫做全等三角形可得①④正确,但是面积相等或周长相等的两个三角形却不一定全等.【解答】解:①全等三角形的对应边相等,说法正确;②面积相等的两个三角形全等,说法错误;③周长相等的两个三角形全等,说法错误;④全等的两个三角形的面积相等,说法正确;故答案为:①④.【点评】此题主要考查了全等图形,关键是掌握能够完全重合的两个图形叫做全等形.三.解答题(共10小题)16.如图,某校有一块正方形花坛,现要把它分成4块全等的部分,分别种植四种不同品种的花卉,图中给出了一种设计方案,请你再给出四种不同的设计方案.【分析】根据正方形的性质,①两条对角线把正方形分成四个全等的三角形;②作一组对边的平行线也能把正方形分成四个全等的矩形;③连接一组对边的中点,把正方形分成两个全等的矩形,再作矩形的对角线就把每个矩形都分成两个全等的三角形,这样就分成了四个全等的三角形;④过正方形的中心做互相垂直的两条线也能把正方形分成四个全等的四边形.【解答】解:设计方案如下:【点评】本题主要考查了全等图形的意义,要利用正方形及全等形的性质解答,方案多种多样,只要是满足要求就可以.17.如图为人民公园中的荷花池,现在测量荷花池两旁A、B两棵大树间的距离(不得直接量得).请你根据图形全等的知识,用一根足够长的绳子及标杆为工具,设计两种不同的测量方案.要求:(1)画出设计的测量示意图;(2)写出测量方案及理由.【分析】(1)本题属于主观性试题,有多种方案,我们可以构造8字形的全等三角形来测得揽月湖的长度(如下图);(2)根据三角形全等的证明得出对应边相等即可得出答案.【解答】解:(1)如图所示;分别以点A、点B为端点,作AQ、BP,使其相交于点C,使得CP=CB,CQ=CA,连接PQ,测得PQ即可得出AB的长度.(2)理由:由上面可知:PC=BC,QC=AC,又∠PCQ=∠BCA,∴在△PCQ与△BCA中,,∴△PCQ≌△BCA(SAS),∴AB=PQ.【点评】此题考查了全等三角形的应用与证明;此题带有一定主观性,学生要根据已知知识对新问题进行探索和对基础知识进行巩固,这种做法较常见,要熟练掌握.18.沿着图中的虚线,用四种不同的方法将下面的图形分成两个全等的图形【分析】直接利用图形形状分成全等的两部分即可.【解答】解:如图所示:.【点评】此题主要考查了全等图形,正确把握全等图形的定义是解题关键.19.将4×4的棋盘沿格线划分成两个全等图形,参考图例补全另外几种.【分析】能够完全重合的两个图形叫做全等形,可以利用图形的轴对称性和中心对称性来分割成两个全等的图形.【解答】解:如图所示,(答案不唯一)【点评】本题主要考查了全等图形,解题的关键是掌握全等图形的定义:形状和大小完全相同的两个图形叫全等形.20.如图所示,请你在图中画两条直线,把这个“+”图案分成四个全等的图形(要求至少要画出两种方法).【分析】根据能够完全重合的两个图形叫做全等形画线即可.【解答】解:如图所示:.【点评】此题主要考查了全等图形,关键是掌握全等图形的概念.1、Great works are performed not by strengh, but by perseverance.20.6.176.17.202014:4114:41:37Jun-2014:41 2、I stopped believing in Santa Claus when I was six. Mother took me to see him in adepartment store and he asked for my autograph.。

【苏科版】七年级数学下册第十一章 图形的全等 单元测试A卷(含答案)

【苏科版】七年级数学下册第十一章 图形的全等 单元测试A卷(含答案)

七(下)数学下第11章图形的全等 A卷一.选择题(每题4分,共20分)1.全等图形是指两个图形( )A.大小相同B.形状相同C.能够重合D.相等2.如图,△ABC≌△ECD,∠A=48°,∠D=62°点B.C.D在同一直线上,则图中∠ACE的度数是( )A.38°B.48°C.132°D.62°3.下列各组的条件,能判定△ABC≌△A′B′C′的是( )A.AB=A′B′,AC=A′C′,∠C=∠C′ ;B.AB=A′B′,AC=A′C′,∠B=∠B′C.AB=A′B′,AC=A′C′,∠A=∠A′ ;D.∠A=∠A′,∠B=∠B′,∠C=∠C′4.如图,已知AB=AC,BD⊥AC于点D,CE⊥AB于点E,图中全等三角形的组数是( )A.5B.4C.3D.25.说法错误的是( )A.如果两个三角形中,有一角及这个角的平分线以及这个角所对边上的高对应相等,那么这两个三角形全等B.如果两个三角形中,有两条边和第三边上的高对应相等,那么这两个三角形全等C.如果两个三角形中,有一边及该边上的高和中线对应相等,那么这两个三角形全等D.如果两个三角形中,有两个角和其中一角的平分线对应相等,那么这两个三角形全等二.填空题(第6~10题,每题4分,第11题8分,共28分)6.已知,如图,AD=AC,BD=BC,O为AB上一点,那么,图中共有______对全等三角形.7.如图,△ABC≌△ADE,则,AB=_________,∠E=∠________.若∠BAE=120°,∠BAD=40°,则∠BAC=_________°.8.如图,在△ABC中,AD平分∠BAC,D为BC边的中点,DE⊥AB于点E,DF⊥AC于点F,图中有_________对相等的线段,它们是_______________________.9.两根钢条AB′.BA′的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得AB=5 cm,则槽宽为__________cm.10.如图,在△ABC和△ABD中,∠C=∠D=90,若利用“AAS”证明△ABC≌△ABD,则需要加条件________或________;若利用“HL”证明△ABC≌△ABD,则需要加条件___________或____________.11.如图,已知∠ACB=∠BDA=90°,要使△ABC≌△BAD还需要增加一个什么条件?把增加的条件在横线上,并将相应的根据填在后面的括号内.(1)_______________;(2)_________________;(3)_______________;(4)_________________.三.解答题(第12.13题,每题8分,第14~17题,每题9分,共52分)12.如图,∠A=∠D,∠C=∠F,要使△ABC≌DEF,还要增加什么条件?试说明你的理由.13.如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3 cm,求∠DFE的度数和EC的长.14.如图,△ABC中,AB=AC,D是BC的中点,试说明AD⊥BC.15.如图,A.B两点是湖两岸上的两点,为测A.B两点距离,由于不能直接测量,请你设计一种方案,测出A.B两点的距离,并说明你的方案的可行性.(8分)16.已知:如图.AB=CD,AF=CE,BE=DF,试说明∠B=∠C.你认为本题还可以得到哪些结论,尽可能多地写出来.17.将一个正方形分割成4个全等的部分.你有几种分割的方法?在每一种方法中,每一个全等部分是怎样得到另一个全等部分的?请你至少提供三种不同的方案.参考答案—.1.C 2.B 3.C4.B5.B二.6.3 7.AD,∠C,80 8.5,AB=AC.AE=AF.BE=CF.BD=CD.DE=DF9.510.∠CAB=∠DAB,∠ABC=∠ABD.AC=AD,BC=BD11.AC=BD,BC=AD,SAS∠BAC=∠ABD,AC=BD,ASA;∠BAC=∠ABD,BC=AD,AAS;AC=BD,HL三.12.只要增加一对边相等即可,利用“AAS”或“ASA”证明两三角形全等.13.∠DFE=90°,CE=3 cm14.由已知得△ABD≌△ACD,则∠ADB=∠ADC,进而得AD⊥BC15.构造以AB为一边的三角形以及这个三角形的全等三角形,如过A作河岸的平行线AC,过B作AC的垂直线BD.AC.BD交于点O.在OC上取点C使OC=OA.过C作∠ACD=∠BAC.CD交BD于点D.由“ASA”得△OCD≌△OAB,则有AB=CD,只要测量出CD的长,即可. 16.由AF=CE,得AE=CF,则可证△ABE≌△CDF,即∠B=∠C还可以得到∠D=∠B,∠AEB=∠CFD17.分割成如图1.图2或图3均可(答案不唯一).其中图1.图2的全等部分可以看作是平移得到的;图l.图3的全等部分可以看作是旋转得到的.。

苏教版数学七年级下期末复习五---图形的全等

苏教版数学七年级下期末复习五---图形的全等

苏教版数学七年级下期末复习五---图形的全等一、 知识点:1、 什么叫做全等图形:能完全重合的图形叫全等图形。

2、什么叫做全等三角形:两个能重合的三角形叫全等的三角形。

3、全等三角形的表示:“全等”用符号“≌”表示,读作“全等于” 例如△ABC 与△DEF 全等, 记作“△ABC ≌△DEF ”, 读作“△ABC 全等于△DEF ”强调:在表示两个三角形全等时,要把对应顶点的字母写在对应的位置上.如果上面两个三角形全等就不能写成△ABC ≌△EFD,因为点A 对应的点为点D ,而不是点E 。

4、全等三角形的基本性质:全等三角形的对应边相等,对应角全等。

如果△ADC ≌△DEF ,则有AB=DE ,BC=EF ,CA=FD ,∠A=∠D ,∠B=∠E ,∠C=∠F 。

5、全等三角形的性质:全等三角形的周长相等;全等三角形的面积相等; 全等三角形的对应高相等;全等三角形的对应中线相等;全等三角形的对应角平分线相等。

6、探索三角形全等的条件判定方法1:两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS ”。

判定方法2:两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA ”。

判定方法3:角和其中一角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS ”。

判定方法4:三边对应相等的两个三角形全等,简写“边边边”或“SSS ”。

7、探索直角三角形全等的条件(1) 两直角边对应相等的两个直角三角形全等。

(2) 有一边一锐角对应相等的两个直角三角形全等。

(3)斜边和一条直角边对应相等的两个直角三角形。

8、角平分线性质定理角平分线上的点到角的两边的距离相等。

二、举例:例1:把大小4×4的正方形方格图形分割成两个全等图形,例如,图1,请在图2中,沿着虚线画出四种不同的分法,把4×4的正方形方格图形分割成两个全等图形.(1)画法1画法2画法3画法4例2:将下图分成四个全等的图形,而且每一份图形中恰好有“巧分图形”四个字.FEDCBA例3:(1)你能把如图所示的(a)长方形分成2个全等图形?把如图所示的(b)能分成3个全等三角形吗?把如图所示的(c)分成4个全等三角形吗? (a ) (b ) (c ) (2)你会把下图(d )和(f )分成四个全等的图形吗?试一试.(保留你画的痕迹)(d )(f )例4:如图,是一个等边三角形,你能把它分成两个全等的三角形吗?你能把它分成三个,四个全等 例5:如图,已知△ABD ≌△ACE ,CE ⊥AB ,BD ⊥AC ,垂足分别是E 、D ,试在△ABD 和△ACE 中找出相等的边和相等的角。

新苏教版七年级数学下册《全等三角形》单元测试题及答案解析(精品试卷).docx

新苏教版七年级数学下册《全等三角形》单元测试题及答案解析(精品试卷).docx

(新课标)苏教版2017-2018学年七年级下册《全等三角形》单元测试题一、选择题:(本题共10小题,每小题3分,共30分)1.如图,△ABC≌△CDA,AB=4,BC=5,AC=6,则△ADC的周长为…………………………………………( )A.4 ;B.5;C.15;D.不能确定;2.(2015•沂源县校级模拟)如图,用尺规作出∠AOB的角平分线OE,在作角平分线过程中,用到的三角形全等的判定方法是………………………………………………………………………………………()A.ASA;B.SSS; C.SAS; D.AAS;3.(2014秋•黔东南州期末)如图,在下列条件中,不能证明△ABD≌△ACD的条件是………………()A.∠B=∠C,BD=DC;B.∠ADB=∠ADC,BD=DC;C.∠B=∠C,∠BAD=∠CAD;D.BD=DC,AB=AC;4. 如图,在△ABC中,AD是BC边上的高,点E、F是AD上的两点,AB=AC,BC=4,AD=3,则图中阴影部分的面积是…………………………………………………………………………………………………( ) A.12 ;B.6;C.3 ;D.4;5.(2014春•兴化市期末)小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带……()A.第1块;B.第2块;C.第3块;D.第4块;6.(2014秋•铜陵期末)能使两个直角三角形全等的条件是………………………………………………()A.斜边相等; B.一锐角对应相等;C.两锐角对应相等;D.两直角边对应相等;7.如图,在△ABC中,∠C=90°,DE⊥AB于D,BC=BD,已知AC=3㎝,那么AE+DE等于…………()A.2㎝;B.3㎝;C.4㎝;D.5㎝;8.如图,已知△ABC为等边三角形,点D、E分别在边BC、AC上,且AE=CD,AD与BE相交于点F.则∠BFD的度数为……………………………………………………………………………………………………()A.45°B.90°C.60°D.30°9.如图,AB∥CD,CE∥BF,A、E、F、D在一直线上,BC与AD交于点O,且OE=OF,则图中有全等三角形的对数为……………………………………………………………………………………………………()A. 2 B. 3 C. 4 D. 5DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有………………()A.1个;B. 2个;C.3个;D.4个;二、填空题:(本题共8小题,每小题3分,共24分)11. 如图,若AB=DE,_________,BE=CF,则根据“SSS”可得△ABC≌△DEF.12.(2013秋•兴化市校级月考)如图,AB∥FC,DE=EF,AB=15,CF=8,则BD= .13.如图,已知:∠B=∠DEF,AB=DE,要说明△ABC≌△DEF.(1)若以“ASA”为依据,还缺条件;(2)若以“AAS”为依据,还缺条件;(3)若以“SAS”为依据,还缺条件;14.(2012•无锡)如图,△ABC中,∠C=30°.将△ABC绕点A顺时针旋转60°得到△ADE,AE与BC交于F,则∠AFB= °.15.如图所示,在Rt△ABC中,E为斜边AB的中点,ED⊥AB,且∠CAD:∠BAD=1:7,则∠BAC的度数为_______.16.如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作过点A 的直线的垂线BD,CE,若BD=4cm,CE=3cm,则DE= ㎝.17.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是.(将你认为正确的结论的序号都填上)18.如图,在直角三角形ABC中,∠C=90°,AC=20,BC=10,PQ=AB,P,Q两点分别在线段AC和过点A且垂直于AC的射线AM上运动,且点P 不与点A,C重合,那么当点P运动到的位置时,才能使△ABC与△APQ 全等?三、解答题:(本题共9大题,满分共76分)19. (6分)如图,方格纸中的△ABC的三个顶点分别在小正方形的顶点(格点)上,请在方格纸上按下列要求画图.(1)在图①中画出与△ABC全等且有一个公共顶点的△A′B′C′;(2)在图②中画出与△ABC全等且有一条公共边的△A″B″C″.20. (本题满分6分)如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3 cm,求∠DFE的度数和EC的长.AB∥DE,∠ACB=∠F.求证:△ABC≌△DEF.22. (本题满分8分)已知:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,DE=BF.求证:(1)AF=CE;(2)AB∥CD.23. (本题满分8分)(2014•自贡)如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(2)若∠ABE=55°,求∠EGC的大小.24.(本题满分8分)已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.25. (本题满分8分)如图,已知△ABC中,AB>AC,BE、CF都是△ABC 的高,P是BE上一点且BP=AC,Q是CF延长线上一点且CQ=AB,连接AP、AQ、QP,求证:(1)AP=AQ;(2)AP⊥AQ.26. (本题满分9分)已知:△ABC的高AD所在直线与高BE所在直线相交于点F,过点F作FG∥BC,交直线AB于点G.(1)如图1,若△ABC为锐角三角形,且∠ABC=45°.求证:①△BDF≌△ADC;②FG+DC=AD;(2)如图2,若∠ABC=135°,直接写出FG、DC、AD之间满足的数量关系.27.(本题满分8分)在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=度;(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.28. (本题满分9分)如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q 第一次在△ABC的哪条边上相遇?《全等三角形》单元测试题参考答案一、选择题:1.C;2.B;3.A;4.C;5.B;6.D;7.B;8.C;9.B;10.D;二、填空题:11.AC=DF;12.7;13. ∠A=∠D;∠ACB=∠F;BC=EF;14.90;15.48°;16.7;17.①②③;18.AC中点;三、解答题:19.20. ∠DFE=90°,EC=3㎝;21.证明:∵AB∥DE,∴∠B=∠DEF.∵BE=CF,∴BC=EF.∵∠ACB=∠F,∴B DEFBC EFACB F ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DEF (ASA ) 22.证明:(1)∵DE ⊥AC ,BF ⊥AC ,在△ABF 和△CDE 中,AB CD DE BF=⎧⎨=⎩,∴△ABF ≌△CDE (HL ). ∴AF=CE .(2)由(1)知∠ACD=∠CAB ,∴AB ∥CD .23.(1)证明:∵四边形ABCD 是正方形,∴∠ABC=90°,AB=BC ,∵BE ⊥BF ,∴∠FBE=90°,∵∠ABE+∠EBC=90°,∠CBF+∠EBC=90°,∴∠ABE=∠CBF ,在△AEB 和△CFB 中,AB =BC ∠ABE =∠CBF BE =BF ,∴△AEB ≌△CFB (SAS ),∴AE=CF .(2)解:∵BE ⊥BF ,∴∠FBE=90°,又∵BE=BF ,∴∠BEF=∠EFB=45°,∵四边形ABCD 是正方形,∴∠ABC=90°,又∵∠ABE=55°,∴∠EBG=90°-55°=35°,∴∠EGC=∠EBG+∠BEF=45°+35°=80°.24.(1)证明:∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+CAD,即∠BAD=∠CAE ,又∵AB=AC ,AD=AE ,∴△BAD ≌△CAE (SAS ).(2)BD 、CE 特殊位置关系为BD ⊥CE .证明如下:由(1)知△BAD ≌△CAE ,∴∠ADB=∠E .∵∠DAE=90°,∴∠E+∠ADE=90°.∴∠ADB+∠ADE=90°.即∠BDE=90°.∴BD 、CE 特殊位置关系为BD ⊥CE .26.(1)证明:在△AOB 和△COD 中∵B CAOB DOC AB DC ∠=∠⎧⎪∠=⎨⎪=⎩,∴△AOB ≌△COD (AAS ) (2)∵△AOB ≌△COD (已证),∴AO=DO,∵E 是AD 的中点, ∴AE=DE ; 在△AOE 和△DOE 中∵AO ODAE DE OE OE =⎧⎪=⎨⎪=⎩,∴△AOE ≌△DOE (SSS ), ∴90AEO DEO ∠=∠=︒; 25. 证明:(1)∵BE 、CF 都是△ABC 的高,∴∠AFC=∠AFQ=∠AEB=90°. ∴∠BAC+∠ABE=90°,∠BAC+∠ACF=90°,∴∠ABE=∠ACF . 在△ABP 和△QCA 中AB QC ABE ACFBP CA =⎧⎪∠=∠⎨⎪=⎩,∴△ABP ≌△QCA (ASA ),∴AP=QA ;(2)∵△ABP ≌△QCA ,∴∠BAP=∠CQA .∵∠CQA+∠FAQ=90°, ∴∠BAP+∠FAQ=90°,即∠APQ=90°,∴AQ ⊥AQ .26.解:(1)①证明:∵∠ADB=90°,∠ABC=45°,∴∠BAD=∠ABC=45°,∴AD=BD ;∵∠BEC=90°,∴∠CBE+∠C=90° 又∵∠DAC+∠C=90°,∴∠CBE=∠DAC ;∵∠FDB=∠CDA=90°,∴△FDB ≌△CDA (ASA )②∵△FDB ≌△CDA ,∴DF=DC ;∵GF ∥BC ,∴∠AGF=∠ABC=45°,∴∠AGF=∠BAD ,∴FA=FG ;∴FG+DC=FA+DF=AD.(2)FG、DC、AD之间的数量关系为:FG=DC+AD.理由:∵∠ABC=135°,∴∠ABD=45°,△ABD、△AGF皆为等腰直角三角形,∴BD=AD,FG=AF=AD+DF;∵∠FAE+∠DFB=∠FAE+∠DCA=90°,∴∠DFB=∠DCA;又∵∠FDB=∠CDA=90°,BD=AD,∴△BDF≌△ADC(AAS);∴DF=DC,∴FG、DC、AD之间的数量关系为:FG=DC+AD.27.解:(1)90°.理由:∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,AB=AC ∠BAD=∠CAE AD=AE ,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB,∴∠BCE=∠B+∠ACB,又∵∠BAC=90°∴∠BCE=90°;(2)①α+β=180°,理由:∵∠BAC=∠DAE,∴∠BAD+∠DAC=∠EAC+∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,AB=AC ∠BAD=∠CAE AD=AE∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB.∴∠B+∠ACB=β,∵α+∠B+∠ACB=180°,∴α+β=180°;②当点D在射线BC上时,α+β=180°;理由:∵∠BAC=∠DAE,∴∠BAD=∠CAE,∵在△ABD和△ACE中AB=AC ∠BAD=∠CAE AD=AE∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠BAC+∠ABD+∠BCA=180°,∴∠BAC+∠BCE=∠BAC+∠BCA+∠ACE=∠BAC+∠BCA+∠B=180°,∴α+β=180°;当点D在射线BC的反向延长线上时,α=β.理由:∵∠DAE=∠BAC,∴∠DAB=∠EAC,∵在△ADB和△AEC中,AD=AE ∠DAB=∠EAC AB=AC ,∴△ADB≌△AEC(SAS),∴∠ABD=∠ACE,∵∠ABD=∠BAC+∠ACB ,∠ACE=∠BCE+∠ACB ,∴∠BAC=∠BCE ,即α=β.28.解:(1)①∵t=1秒,∴BP=CQ=3×1=3厘米,∵AB=10厘米, 点D 为AB 的中点,∴BD=5厘米.又∵PC=BC-BP ,BC=8厘米, ∴PC=8-3=5厘米,∴PC=BD .又∵AB=AC ,∴∠B=∠C ,在△BPD 和△CQP 中,PC BD B C BP CQ =⎧⎪∠=∠⎨⎪=⎩,∴△BPD ≌△CQP .(SAS ) ②∵P v ≠Q v ,∴BP ≠CQ ,又∵△BPD ≌△CPQ ,∠B=∠C ,则BP=PC=4cm ,CQ=BD=5cm ,∴点P ,点Q 运动的时间t =433BP =秒,∴Q v =515443CQ t==厘米/秒; (2)设经过x 秒后点P 与点Q 第一次相遇,由题意,得1532104x x =+⨯解得803x =.∴点P 共运动了803×3=80厘米.∵80=56+24=2×28+24,∴点P 、点Q 在AB 边上相遇, ∴经过803秒点P 与点Q 第一次在边AB 上相遇.。

苏科版七年级数学下半学期 第十二章 图形的全等B卷二

苏科版七年级数学下半学期 第十二章 图形的全等B卷二

第十二章 图形的全等★B 卷二 能力训练级级高 班级 姓名 成绩一、选择题(3分×6=18分)1、将两个全等的有一个角为30°的直角三角形拼成右图, 其中两条长直角边在同一条直线上,则图中等腰三角形的个数是( )A 、4B 、3C 、2D 、12、、如图,已知△ABC ≌△BAD ,A 和B ,C 和D 分别是对应点,如果AB=6㎝,BD=7㎝,AD=4㎝,则BC 的长为( )A 、6㎝B 、5㎝C 、4㎝D 、不确定 3、如图,AB ∥CD ,CE ∥BF ,A 、E 、F 、D 在一直线上,BC 与AD 交于点O ,则图中有全等三角形的对数为( )A 、2B 、3C 、4D 、54、已知△ABC ≌△A ’C ’B ’, ∠B 与∠C ’,∠C 与∠B ’是对应角,那么下列说法中①BC=C ’B ’② ∠C 的平分线与∠B 的平分线相等;③AC 上的高与A ’B ’边上的高相等;④AB 上的中线与A ’B ’边上的中线相等,其中正确的说法的个数 ( )A 、1个B 、2个C 、3个D 、4个5、如图,已知△ACF ≌△BDE ,且点E 与点F ,点A 与点B 是对应点,下列结论错误的是( ) A 、AB=CD B 、AF ∥BE C 、∠C=∠E D 、CF ∥DE6、如图,已知△ACE ≌△DFB ,下列结论中正确的个数是( )① AC=DB ②AB=DC ③∠1=∠2 ④AE ∥DF ⑤S △ACE =S △DFB ⑥BC=AE ⑦BF ∥ECA 、4个B 、5个C 、6个D 、7个二、填空题(3分×11=33分)7、如图,△ABC 中,∠C=90°,AC=BD ,AD 平分∠CAB 交BC 于D ,DE ⊥AB ,垂足为点E ,AB=12㎝,DC=5cm,则△DEB 的周长为 。

°30°30OFDE C B AF D EC B A 21FD ECB AD ECBADCBA8、在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E,AD 、CE 交于点H ,请你添加一个适当 的条件: 使△AEH ≌△CEB 。

【苏科版】七年级数学下册第十一章 图形的全等 单元测试B卷(含答案)

【苏科版】七年级数学下册第十一章 图形的全等 单元测试B卷(含答案)

七(下)数学下第11章图形的全等B卷一.选择题(每题5分,共25分)1.如图,△ABC≌△DCB,A.B的对应顶点分别为点D.C,如果AB=7 cm,BC=12 cm,AC=9 cm,那么BD的长是( )A.7 cmB.9 cmC.12 cmD.无法确定2.如图,AC.BD相交于点O,OA=OB=OC=OD,则图中全等三角形的对数是( )A.1对B.2对C.3对D.4对3.以下说法:①有两个角和一个角的对边对应相等的两个三角形全等;②有一边和一个角对应相等的两个等腰三角形全等;③有一边对应相等的两个等边三角形全等;④一个锐角和一条边对应相等的两个直角三角形全等;其中正确的是( )A.①②③B.①②④C.①③④D.②③④4.下列说法:①全等图形的面积相等;②全等图形的周长相等;③全等的四边形的对角线相等;④所有正方形都全等.其中正确的结论的个数是( )A.1B.2C.3D.45.根据下列条件,能唯一画出△ABC的是( )A.AB=3,BC=4,AC=8;B.AB=3,BC=4,∠A=30°;C.∠A=60°,∠B=45°,AB=6;D.∠C=90°,AB=6;二.填空题(每题6分,共30分)6.如图,△ABC的三边互不相等,将△ABC绕着点A顺时针旋转60°,得到△A′B′C′,请将A′.B′.C′填到其对应的位置上.7.已知△DEF≌△ABC,AB=AC,且△ABC的周长为23 cm,BC=4 cm,则△DEF中的EF边等于_____________.8.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出___________个.9.如图,点C为线段AB上一点,△ACM和△CBN是等边三角形,若BM=5 cm,则AN=_________.10.在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,如图,则∠EAB是__________.三.解答题(11~13题每题7分,第14~16题每题8分,共45分)11.如图,已知,AF=ED,AE=FD,点B.C在AD上,AB=CD,(1)写出图中所有的全等三角形;(2)我会说明△__________≌△____________.12.如图,在△ABC中,AB=AC,E.F分别为边AB..AC上的一点,且BE=CF,BF.CE 相交于点O,问图中还有哪些相等的角和相等的线段?试说明理由.13.如图,有一块三角形的纸片,记作△ABC,F.E.D分别为三边AB.AC.BC的中点,请把图中的全等形找出来.若这块三角形的纸片是等边三角形,那么图中还有哪些全等形?14.如图,在正方形ABCD中,E为AD的一点,F是BA延长线上的一点,AF=AE,(1)图中的全等三角形是哪一对?(2)在图中,可以通过平移.翻折.旋转中的哪一种方法,使△ABE变到△ADF的位置?(3)图中线段BE与DF之间有怎样的关系?为什么?15.如图所示,AB=CD,BC=AD,AO=CO,△AOE与△COF全等吗?请说明理由;题中“AB=CD,BC=AD,AO=CO”,这3个条件可以用什么条件来替代,同样可以得到△AOE 与△COF全等.写出来吧!16.如图,要用一块长4米.宽2米的长方形木板,拼接出一块长5米.宽1.5米的长方形木板,为了保证牢固,要求接缝条数尽可能地少.你能用自己学过的图形全等的有关知识设计一个拼接方案吗?参考答案一.1.B 2.C 3.C 4.C 5.C二.6.7.4 cm8.4 9.5 cm10.35°三.11.(1)△ABF≌△DCE,△DBF≌△ACE△ADF≌△DAE. (2)提示:先证明△ADF≌△DAE. 12.AE=AF,OB=OC,OE=OF13.△AFE.△FBD.△EDC和△DEF是全等的三角形.若这块三角形的纸片是等边三角形,那么图中的全等形还有:四边形AFDE.四边形BFED.四边形CEFD是全等的四边形;四边形EFBC.四边形DEAB.四边形FDCA 是全等的四边形. 14.(1)△ADF≌△ABE. (2)把△ABE绕点A逆时针旋转90°变到△ADF 的位置. (3)BE与DF垂直且相等.由“SAS”证△ADF≌△ABE.再延长BE交DF于点G.∠FDA=∠EBA,∠DEG=∠AEB.∴∠DGB=∠BAE=90°.∴BE⊥DF15.全等16.。

苏科版七年级数学下册全等三角形单元测试卷

苏科版七年级数学下册全等三角形单元测试卷

苏科版七年级数学下册全等三角形单元测试卷一、选择题(共10小题;共50分)1. 如图,小明做了一个方形框架,发现很容易变形,请你帮他选择一个最好的加固方案A. B.C. D.2. 如图,,,于点,于点,,,则的长为3. 下列说法错误的是A. 能够完全重合的两个图形叫做全等图形B. 面积相等的两个三角形是全等图形C. 全等图形的形状和大小都一样D. 平移、旋转前后的图形是全等图形4. 如图所示,工人师傅做了一个长方形窗框,,,,分别是四条边的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在A. ,两点之间B. ,两点之间C. ,两点之间D. ,两点之间5. 如图,线段与相交于点,连接,,,若,,则下列结论中不正确的是A. B.C. D.6. 下列叙述:①能够完全重合的两个图形一定是全等图形;②全等图形的面积一定相等;③两个周长相等的图形一定是全等图形.其中正确的个数是A. B. C. D.7. 下列事例应用了三角形稳定性的有①人们通常会在栅栏门上斜着钉上一根木条;②新植的树木,常用一些粗木与之成角度地支撑起来,防止倾斜;③四边形模具.A. 个B. 个C. 个D. 个8. 如图,已知,,分别为,上的点,,则下列结论不一定成立的是A. B. C. D.9. 全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设和是全等(合同)三角形,且点与点对应,点与点对应,点与点对应,当沿周界及,环绕时,若运动方向相同,则称它们是真正合同三角形(如图①所示);若运动方向相反,则称它们是镜面合同三角形(如图②所示).两个真正合同三角形,都可以在平面内通过平移或旋转使它们重合;而两个镜面合同三角形要重合,则必须将其中的一个翻折.下列各组合同三角形中,是镜面合同三角形的是A. B.C. D.10. 如图,工人师傅做了一个长方形窗框,,,,分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在A. ,两点之间B. ,两点之间C. ,两点之间D. ,两点之间二、填空题(共6小题;共30分)11. 如图,,,,,则,度.12. 空调安装在墙上时,一般都会象如图所示的方法固定在墙上,这种方法应用的数学知识是.13. 如图,为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是利用了 .14. 如图,为边上一点,,那么与的位置关系是.15. 如图所示,,,为上任意一点,图中有对三角形全等,它们分别是,使用的判定定理分别是.16. 如图,点,,,在同一条直线上,,,,,则的长为.三、解答题(共8小题;共104分)17. 用直线将下列图形中的全等图形连起来.18. 如图,小明家有一个由六条钢管连接而成的钢架,为使这一钢架稳固,他计划用三条钢管连接使它不变形.请你帮小明解决这个问题.(画图说明,要求用三种不同方法)19. 有一块三角形板材,如图,根据实际生产需要,工人师傅要把平分开,现在他手边只有一把直尺和一根细绳,你能帮工人师傅想个办法吗?说明你的理由.20. 为使五边形木架(用根木条钉成)不变形,哥哥准备如图①那样再钉上两根木条,弟弟准备如图②那样再钉上两根木条,哪种方法能使木架不变形?为什么?21. 如图,点,,,在同一条直线上,且,若,,求证:.22. 如图①,将一张长方形纸片沿一条对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆成如图②的形式,使点,,,在同一条直线上.(1)求证:;(2)若,,请在图中找出除外的一对全等三角形,并说明理由.23. 如图,在由边长为的小正方形组成的网格中,画如图所示的燕尾形工件,现要求最大限度地裁剪出十个与它完全一样的燕尾形工件,问这个网格的长至少为多少(接缝处不计)?24. 如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上几根木条?要使一个边形()木架在同一平面内不变形,至少还要再钉上几根木条?答案第一部分1. B2. A 【解析】,,,.,.在和中,,,,,,.3. B 【解析】三角形的面积相等时,三角形的形状不一定相同,所以两图形不一定全等.4. B 【解析】若这根木条钉在,两点之间,或,两点之间,或,两点之间都能构成三角形,根据三角形的稳定性,可使窗框稳固,但若这根木条钉在,两点之间,则不能构成三角形,不能使窗框稳固.5. C【解析】A.根据可以证明,故本选项正确;B.根据全等三角形的对应角相等,得,故本选项正确;C. 和显然不是对应边,故本选项错误;D.根据全等三角形的对应角相等得,故本选项正确.6. C 【解析】①②正确.7. B 【解析】①人们通常会在栅栏门上斜着钉上一根木条,利用了三角形的稳定性,②新植的树木,常用一些粗木与之成角度地支撑起来,防止倾斜,利用了三角形的稳定性,③对于四边形模具,四边形不具有稳定性.故应用了三角形稳定性的有个.8. D 【解析】因为,,,所以,所以,,故A,C正确,不符合题意.因为,,所以,故B正确,不符合题意.9. B 【解析】解题的关键是准确理解题目中新概念的意义和性质.易知要使B中两个三角形重合,必须将其中一个进行翻折.10. B第二部分11. ,12. 三角形稳定性13. 三角形的稳定性14. 垂直平分15. ,与,与,与,,,(或)16.第三部分17. ①与⑨,③与⑧,④与⑩,⑤与⑦.18. 如图所示.19. 如图,用一定长度的绳子在和上分别截取和,使得,再取适当长度(不小于长)的绳子,将其对折,得绳子的中点,把绳子确定的两个端点分别固定在,两点,拽住绳子的中点,向外拉直和,确定出使的点在板材上的位置,过,两点画射线,则平分.理由:在和中,所以.所以.20. 两种方法都能使木架不变形.在图①中,,,的形状和大小不变.在图②中,,的形状和大小不变,故点相对,的位置也不变.21. 证明,,且,,,,即,在和中,,.22. (1)由题意得,故,又,.又,,,.(2).理由如下:由,得,,,,即.在和中,.23. 如图,后面画出的图形与第一个图形完全一样,画第二个图形时,需往右用个格,画第三个图形时,需要再往右用个格,画第四个图形时,需要再往右用个格,,画第十个图形时,网格的长为.这个网格的长至少为.24. 根据三角形的稳定性,要使六边形木架不变形,至少再钉上根木条;要使一个边形木架不变形,至少再钉上根木条.。

七年级下《图形的全等复习课件》(苏科版).ppt -PPT课件

七年级下《图形的全等复习课件》(苏科版).ppt -PPT课件

A'
A
B'
C' B
C
h
6
• 15、如图,D是AC上一点,BE∥AC,BE=AD,
AE分别交BD、DC于点F、G。∠1=∠2,图中
哪些三角形与△FAD全等?说明理由。
C
D
E G
F
2
1
A
B
h
7
• 16、已知:如图,AB⊥BD,ED⊥BD,垂足分别为B、
D,AB=CD,BC=DE。试说明AC⊥CE。
• 若保持△ABC不动,将△CDE沿BC所在直线平移得下
• 3、下列判断:①有两个角和一个角的对边对应相等的两 B
C
• 个三角形全等;②两个等边三角形全等;③有一边对应相
• 等的两个等边三角形全等;④一个锐角和一条直角边对应相等的两个直角三
角形全等。其中正确的是( )
AD
• A、①②③ B、①②④ C、①③④ D、②③④
• 4、如图若△ABC≌△DEF,则相等的线段有( )
• A、1组 B、2组 C、3组 D、4组
BE
CF
• 5、在△ABC和△A’B’C’中,①AB=A’B’;②BC=B’C’;③AC=A’C’;④
∠A=A’;⑤∠B=∠B’;⑥∠C=∠C’。下列条件中,不能保证
△ABC≌△A’B’C’的是( )
• A、①②③ B、①②⑤ C、②④⑤ D、①③⑤
h
2
• 6、将一长方形纸片按如图方式折叠,BC、BD为折痕,则 ∠CBD的度数为( )
复习课
h
1
• 一、选择题
• 1、任意一个三角形被一条中线分成两个三角形,则这两个三角形:①形状 相同;②面积相等;③全等。上述说法中,正确的有( )

苏科版七年级数学下半学期 第十二章 图形的全等 B卷一

苏科版七年级数学下半学期 第十二章 图形的全等 B卷一

第十二章 图形的全等★B 卷1 能力训练级级高班级 姓名 成绩 一、选择题:(3分×6=18分)1.下面的四组条件中,不能确定两个三角形全等的一组是( ) A 、两个三角形的两边一角对应相等B 、两个三角形的两角一边对应相等C 、两个三角形的三边对应相等D 、两个三角形的两边及夹角对应相等 2.如图,已知△ABC 中,AQ =PQ ,PR =PS ,PR ⊥AB 于R ,PS ⊥AC 于S ,则三个结论: (1)AS=AR ,(2)QP ∥AR ,(3)△BRP ≌△QSR 中。

( ) A 、全部正确 B 、仅(1)和(2)正确C 、仅(1)正确D 、仅(1)和(3)正确3.如图,D 在AB 上,点E 在AC 上,且∠B =∠C ,那么补充下列一个条件后,仍无法判定△ABE ≌△ACD 的是( )A 。

、AD =AEB 、∠AEB =∠ADC C 、BE =CD D 、AB =AC 4.下列说法错误的是( )A 、如果两个三角形中,有一角及这个角的平分线以及这个角所对边上的高对应相等,那么这两个三角形全等B 、如果两个三角形中,有两条边和第三边上的高对应相等,那么这两个三角形全等C 、如果两个三角形中,有一边及该边上的高和中线对应相等,那么这两个三角形全等D 、如果两个三角形中,有两个角和其中一角的平分线对应相等,那么这两个三角形全等5.如图,△ABC ≌△ECD ,∠A =48°,∠D =62°点B 、C 、D 在同一直线上,则图中∠ACE 的度数是( )A 、38°B 、48°C 、132°D 、62°6.如图,△AFC ≌△DEB 且AF =DE ,下列结论不正确的是( ) A 、∠1=∠2 B 、AC =DB C 、AB =DC D 、∠B =∠C二、选择题(3分×15=45分)7、如图,在△ABC 和△FED 中,AD =FC ,AB =FE 当添加条件: 时,就可得到△ABC ≌△FED (只需填写一个你认为正确的条件) 8、如图,△AEB ≌△ADC ,C 和B 是对应顶点,∠B =25°,∠AEB =135°则∠A = °,∠C = °,∠ADC = °9、已知,如图在△ABC 中,AD 平分∠BAC ,AD ⊥BC ,则△ACD ≌△ABD 的根据是ASQ RPCB A E D CBAE D C B 2A 1F E D CBAFEDCBAE D CBADC B10.已知如图,AB =EC ,BF =CD 要证△ABF ≌△ECD ,只需补充条件 =FD 或AB ∥EC 和 ∥ 。

苏科版初中数学七年级下册单元测试第十一章图形的全等

苏科版初中数学七年级下册单元测试第十一章图形的全等

第十一章 图形的全等(作者说卷:本章研究图形的全等和全等三角形的条件重点是后者,难点的学会学会合情推理、有条理地表达自己的观点。

本卷按照这一原则设计。

其中的第1、19题考查图形的全等,第2、11、12、13考查全等三角形的性质,第3、4、5、8、9、10、14、15、16、18、20、21、23考查全等三角形的条件的运用和理解,第6、17考查角平分线的性质。

同时安排了一定量的开放题和探索题)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷40分第Ⅱ卷60分,共100分,考试时间90分钟.第Ⅰ卷 (选择题,共40分)一、选择题(每题3分,共30分)1.下列图形中,和左图全等的图形是( )解析:本题考查图形的全等的概念,选C 。

2.如图,ΔABC≌ΔADE,AB=AD ,AC=AE ,∠B=20º, ∠E=110º,∠EAB=30º,则∠BAD 的度数为( ) A.80º B.110º C.70º D.130º 解析:本题考查全等三角形的性质。

由ΔABC≌ΔADE 知,∠B=∠D =20º,又∠E=110º,所以∠EAD=50º,又∠EAB=30º,所以∠BAD =80º ,选A 。

3.下列结论正确的是( )A.有两个锐角相等的两个直角三角形全等;B.一条斜边对应相等的两个直角三角形全等;C.顶角和底边对应相等的两个等腰三角形全等;D.两个等边三角形全等.解析:本题考查全等三角形判定方法的理解,选C 。

4.在ΔABC 和ΔDEF 中,如果∠A=∠D,∠B=∠E,要使这两个三角形全等,还需要的条件可以是( )ABCDECBDA第2题图FDB A 第4题图EDABC第5题图A .AB=EF B.BC=EF C.AB=DE D.∠C=∠D解析:本题考查“ASA ”的运用,已知两角,还需夹边,选C 。

苏科版七年级数学下册全等三角形单元测试卷29

苏科版七年级数学下册全等三角形单元测试卷29

苏科版七年级数学下册全等三角形单元测试卷29一、选择题(共10小题;共50分)1. 下列图形具有稳定性的是A. B.C. D.2. 如图,已知,,下列哪个条件不能判定A. B. C. D.3. 如图,,若,,则的长为A. B. C. D.4. 如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上根木条.A. B. C. D.5. 如图,已知,点在上,点在上,,与相交于点,那么图中全等的三角形共有A. 对B. 对C. 对D. 对6. 如图所示,,,,,在一条直线上.下列结论:①是的平分线;②;③;④线段是的中线;⑤.其中正确的有个.A. B. C. D.7. 人字梯中间一般会设计一“拉杆”,这样做的道理是A. 两点之间,线段最短B. 垂线段最短C. 三角形具有稳定性D. 两直线平行,内错角相等8. 如图,在和中,若,,,则下列结论中不正确的是A. B.C. D. 为中点9. 已知,与,与是对应角,有下列个结论:①;②;③;④,其中正确的结论有A. 个B. 个C. 个D. 个10. 如图,工人师傅做了一个长方形窗框,,,,分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在A. ,两点之间B. ,两点之间C. ,两点之间D. ,两点之间二、填空题(共6小题;共30分)11. 下列图形中,图①与图⑧是全等图形.再找出两对全等图形:.12. 盖房子时,在窗框未安装之前,木工师傅常常先在窗框上斜钉上一根木条,这是利用了三角形具有的原理.13. 如图,木工师傅做完门后,为了防止变形,常常像图中所示那样钉上两条斜拉的木条(图中的,),这样做的数学道理是.14. 如图,,请根据图中提供的信息,写出.15. 如图,是外一点,是上一点,,,,,则的度数为.16. 如图,在中,,,点是的中点,连接,过点作⊥,分别交,于点,,与过点且垂直于的直线相交于点,连接,给出以下五个结论:①;②;③点是的中点;④;⑤,其中正确结论的序号是.三、解答题(共8小题;共104分)17. 用直线将下列图形中的全等图形连起来.18. 为使五边形木架(用根木条钉成)不变形,哥哥准备如图①那样再钉上两根木条,弟弟准备如图②那样再钉上两根木条,哪种方法能使木架不变形?为什么?19. 如图,在中,,,平分,交的延长线于,若,求的长.20. 如图,小明家有一个由六条钢管连接而成的钢架,为使这一钢架稳固,他计划用三条钢管连接使它不变形.请你帮小明解决这个问题.(画图说明,要求用三种不同方法)21. 如图,若,,,,则.请你说出它们相等的理由.22. 已知:平分,,,求证:.23. 如图所示,,且,试判断线段与的关系,并说明理由.24. (1)作多边形所有过顶点的对角线,并分别用字母表示出来.(2)这些对角线将六边形分割成多少个三角形?答案第一部分1. A2. C3. A 【解析】根据三角形全等可以得出,则.4. C5. C【解析】在与中,,,,,,即.在与中,,.在与中,,.在与中,.综上所述,全等的三角形有:,,,,共对.6. A 【解析】①,,是的平分线,故①正确.②,,,,,,,,,,可能不在同一直线上可能不垂直于,故②不正确.③,,,,,若,,不在同一直线上,则,,故③不正确.④,,线段是的中线,故④正确.⑤,,若,,不在同一直线上,则,,故⑤不正确.7. C 【解析】人字梯中间一般会设计一“拉杆”,是为了形成三角形,利用三角形具有稳定性来增加其稳定性.8. D9. C 【解析】,与,与是对应角,,,,①②④共个正确的结论.与不是对应边,不正确.10. B【解析】工人师傅做了一个长方形窗框,工人师傅为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在,两点之间(没有构成三角形),这种做法根据的是三角形的稳定性.第二部分11. 图②与图④,图③与图⑤分别全等12. 稳定性13. 三角形具有稳定性14.【解析】,,,即.15.【解析】提示:连接.易证,.易证,.16. ①②④【解析】①由,得;②由,;③由可得;④由,得,所以;⑤,,故.第三部分17. ①与⑨,③与⑧,④与⑩,⑤与⑦.18. 两种方法都能使木架不变形.在图①中,,,的形状和大小不变.在图②中,,的形状和大小不变,故点相对,的位置也不变.19. 延长与延长线交于点.,,,,,在和中,,,平分,,,在和中,,,.20. 如图所示.21. 如图,分别连接,,在和中,,,,,,即,在和中,,.22. 如图,在上取点,使,连接,,,,,,,平分,即,在和中,(),,.23. = ,;如图,延长交于点 .,, .,...24. (1)如图,,,.(2)个.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章 图形的全等
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷40分第Ⅱ卷60分,共100分,考试时间90分钟.
第Ⅰ卷 (选择题,共40分)
一、选择题(每题3分,共30分)
1.下列图形中,和左图全等的图形是( )
解析:本题考查图形的全等的概念,选C 。

2.如图,ΔABC≌ΔADE ,AB=AD ,AC=AE ,∠B=20º, ∠E=110º,∠EAB=30º,则∠BAD 的度数为( ) A.80º B.110º C.70º D.130º 解析:本题考查全等三角形的性质。

由ΔABC≌ΔADE 知,∠B=∠D =20º,又∠E=110º,所以∠E AD=50º,又∠EAB=30º,所以∠BAD =80º ,选A 。

3.下列结论正确的是( )
A.有两个锐角相等的两个直角三角形全等;
B.一条斜边对应相等的两个直角三角形全等;
C.顶角和底边对应相等的两个等腰三角形全等;
D.两个等边三角形全等.
解析:本题考查全等三角形判定方法的理解,选C 。

4.在ΔABC 和ΔDEF 中,如果∠A=∠D,∠B=∠E,要使这两个三角形全等,
还需要的条件可以是( )
A .AB=EF B.BC=EF C.AB=DE D.∠C=∠D
解析:本题考查“ASA ”的运用,已知两角,还需夹边,选C 。

5.如图,ΔABC 中,AB=AC ,BE=EC ,直接使用“SSS”可判定( ) A.ΔABD≌ΔACD B.ΔABE≌ΔACE C.ΔBED≌ΔCED D.ΔABE≌ΔEDC
A
B
C
D
E
C
B
D
第2题图
F
D
C B A 第4题图
E
D A
B
C
第5题图
解析:本题考查“SSS”,显然还有一组公共边AE=AE,故ΔABE≌ΔACE,选B。

6.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()
A.PE PF
=B.AE AF
=
C.△APE≌△APF D.AP PE PF
=+
解析:本题考查角平分线的性质,显然△APE≌△APF,所以AE AF
=,PE PF
=,选D。

8.下列说法中:①如果两个三角形可以依据“AAS”来判定全等,那么一定也可以依据“ASA”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是()A.①和②B.②和③C.①和③D.①②③
解析:这的一道多结论选择题,有一定的难度,需要对全等的几种判定方法非常熟练才能正确作答。

选D。

9.根据下列已知条件,能惟一画出△ABC的是()
A.AB=3,BC=4,CA=8 B.AB=4,BC=3,∠A=30°
C.∠A=60°,∠B=45°,AB=4 D.∠C=90°,AB=6
解析:A:根据三角形三边关系知不能组成三角形;B:已知两边一对角即“SSA”,这样的三
角形不唯一;C:已知两角夹边即“ASA”,三角形唯一;已知一边一角这样是三角形不唯一。

选C。

10.如图, AD是ABC
△的中线,E,F分别是AD和AD延长线上的点,且DE DF
=,连结BF,CE.下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个
解析:根据“SAS”可判定△BDF≌△CDE,所以CE=BF,BF∥CE,又AD是ABC
△的中线,根据底等高的三角形面积相等,即△ABD和△ACD面积相等,所以选D。

A
D
C B
图8
E
F
第10题图
第Ⅱ卷 (非选择题,共60分)
二、填空题(每题3分,共24分)
11.如果△ABC 和△DEF 全等,△DEF 和△GHI 全等,则△ABC 和△GHI______全等, 如果△ABC 和△DEF 不全等,△DEF 和△GHI 全等,则△ABC 和△GHI______全等.(填“一定”或“不一定”或“一定不”)
解析:本题考查全等三角形的传递性,答案:一定,一定不。

12.如图,△ABC ≌△ADE ,∠B =100°,∠BAC =30°,那么∠AED =______. 解析:根据三角形内角和知∠C =50°,又由全等知∠AED=∠C =50°。

13.△ABC 中,∠BAC ∶∠ACB ∶∠ABC =4∶3∶2,且△ABC ≌△DEF ,则∠DEF =______. 解析:设每一份为x 度,则4x+3x+2x=180,解得x=20,所以∠ABC=40°,∠DEF =40°. 14.如图2,BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是“______”.
第12题图 第14题图 第15题图
解析:因为两直角三角形中BD =EC ,BC=CB ,△BCD ≌△CBE 的依据是HL 。

15.如图,AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△COB .你补充的条件是______.
解析:根据题意两三角形中已有AD =CB ,∠AOD=∠COB ,需添加一角即可,答案不唯一,例如:∠A=∠C 或∠ADO=∠CBO ,但不能添加边否则就会出现“SSA ”。

16.如图,AC ,BD 相交于点O ,AC =BD ,AB =CD ,写出图中两对相等的角______.
A D C
B
A
D
E
C
B
A
D
O
C
B
解析:连接BC 根据“SSS ”, 可证明△ABC ≌△DCA ,所以∠A=∠D ,由此又可证明△ABO ≌△CDO ,所以∠B=∠C 。

17.如图,△ABC 中,∠C =90°,AD 平分∠BAC ,AB =5,CD =2,则△ABD 的面积是 ______.
第16题图 第17题图 第18题图
解析:过点D 作DE ⊥AB ,根据“角平分线上的点到角的两边距离相等”可知DE=DC=2,所以△ABD 的面积是10。

18.如图,有一个直角三角形ABC ,∠C=90°,AC=10,BC=5,一条线段PQ=AB ,P 、Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,问P 点运动到 位置时,才能使ΔABC≌ΔPQA.
解析:要使ΔABC≌ΔPQA ,必须BC=AP=5,所以当P 点运动到AC 中点时,两三角形全等。

三、解答题 (共46分)
19.(本题8分)如图,把大小为4×4的正方形方格图形分割成两个全等的图形,请在下图中沿有虚线处画出四种不同的分法。

解析:这两个全等图形实质是关于这个网格成中心对称图形,主要是考虑对应边相等,对应角相等。

如图所示。

P
Q
C
A
B
x A
D O
C
B
A
D C
B
(4)
(3)
(2)
(1)
20. (本题8分)如图,将等腰直角三角形ABC 的直角顶点置于直线l 上,且过A 、B 两点分别作直线l 的垂线,垂足分别为D 、E ,请你仔细观察后,在图中找出一对全等三角形,并写出证明它们全等的过程。

解析:△ACD ≌△CBE 理由:
由题意知∠CAD+∠ACD=90°,∠ACD+∠BCE=90°
∴∠CAD=∠BCE
又∠ADC=∠CEB=90°,AC=CB ∴△ACD ≌△CBE
21.(本题9分)已知:如图12,AB =CD ,DE ⊥AC ,BF ⊥AC ,E ,F 是垂足,DE BF =. 说明:(1)AF CE =;(2)AB CD ∥.
证明:(1)在Rt ABF △和Rt △CDE 中,AB CD DE BF =⎧⎨=⎩
,,
所以Rt △ABF ≌Rt △CDE(HL). 所以AF CE =.
(2)由(1)知∠ACD=∠CAB ,所以AB ∥CD .
22. (本题9分)如图,工人师傅要检查人字梁的∠B 和∠C 是否相等,但他手边没有量角器,只有一个刻度尺.他是这样操作的: ①分别在BA 和CA 上取BE CG =; ②在BC 上取BD CF =;
③量出DE 的长a 米,FG 的长b 米.
如果a b =,则说明∠B 和∠C 是相等的.他的这种做法合理吗?为什么?
解析:合理.因为他这样做相当于是利用“SSS ”证明了△BED ≌△CGF ,所以可得∠B=∠C .
A E
C
B
F G
A
D
E
C
B
F
23. (本题10分)如图,给出下列论断:①DE CE =,②12=∠∠,③34=∠∠.请你将其中的两个作为条件,另一个作为结论,构成一个真命题,并加以证明.
解:(1)②③⇒① (2)①③⇒②
(3)①②⇒③
正确结论有三种,以(1)为例:
证明:因为34=∠∠,所以EA EB =. 在ADE △和BCE △中
⎪⎩


⎧∠=∠=∠=∠BEC AED EB EA 21, 因此ADE BCE △≌△. 所以DE EC =.
4
3
2
1
E
D
C B
A
A
B C E D。

相关文档
最新文档