双曲线及其性质
双曲线的性质离心率渐近线
与抛物线关系比较
离心率的特性
01
抛物线的离心率e=1,处于椭圆和双曲线之间。
焦点和准线
02
抛物线有一个焦点和一条准线,而双曲线有两个焦点和两条渐
近线。
对称性
03
抛物线和双曲线都关于其对称轴对称。
不同圆锥曲线间转换条件
焦点位置变化
随着焦点位置的变化,圆锥曲线的形状也会发生变化。当 焦点沿实轴移动时,双曲线可以转换为椭圆或抛物线。
渐近线与双曲线位置关系
渐近线与双曲线无限接近但永不相交 。
双曲线上的点无限接近于渐近线,但 永远不会落在渐近线上。
利用渐近线判断双曲线开口方向
01 当$a > b$时,双曲线的开口方向沿着$x$轴方向。 02 当$a < b$时,双曲线的开口方向沿着$y$轴方向。 03 可以通过观察渐近线的斜率来判断双曲线的开口
渐近线
双曲线的渐近线方程为 $y = pm frac{b}{a}x$。当x趋近于无穷大 时,双曲线趋近于这两条直线。
离心率与形状
离心率越大,双曲线开口越宽 ;离心率越小,双曲线开口越
窄。
02 离心率及其意义
离心率定义与计算公式
定义
离心率是双曲线的一个重要参数 ,用于描述双曲线与其焦点之间 的距离关系。
对于标准方程 y^2/a^2 - x^2/b^2 = 1 (a>0, b>0),若a>b,则焦点在y轴上;若 a<b,则焦点在x轴上。
结合图像进行直观判断
观察双曲线图像,若图像关于y轴对称且开口方向沿x轴,则焦点在x轴上。
观察双曲线图像,若图像关于x轴对称且开口方向沿y轴,则焦点在y轴上。 以上判断方法可以帮助我们快速确定双曲线在坐标系中的位置,进而研究 其性质和特点。
双曲线的几何性质
双曲线的几何性质: (1)范围、对称性由标准方程12222=-by a x ,从横的方向来看,直线x=-a,x=a 之间没有图象,从纵的方向来看,随着x 的增大,y 的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线 双曲线不封闭,但仍称其对称中心为双曲线的中心(2)顶点顶点:()0,),0,(21a A a A -,特殊点:()b B b B -,0),,0(21实轴:21A A 长为a 2, a 叫做半实轴长 虚轴:21B B 长为b 2,b 叫做虚半轴长双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异(3)渐近线过双曲线12222=-by a x 的渐近线x a b y ±=(0=±b y a x )(4)离心率双曲线的焦距与实轴长的比aca c e ==22,叫做双曲线的离心率 范围:1>e 双曲线形状与e 的关系:1122222-=-=-==e ac a a c a b k ,e 越大,即渐近线的斜率的绝对值就大,这是双曲线的形状就从扁狭逐渐变得开阔 由此可知,双曲线的离心率越大,它的开口就越阔(5).等轴双曲线定义:实轴和虚轴等长的双曲线叫做等轴双曲线,这样的双曲线叫做等轴双曲线 等轴双曲线的性质:(1)渐近线方程为:x y ±=;(2)渐近线互相垂直;(3)离心率2=e(6).共渐近线的双曲线系如果双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x(7).双曲线的第二定义:到定点F 的距离与到定直线l 的距离之比为常数)0(>>=a c ace 的点的轨迹是双曲线其中,定点叫做双曲线的焦点,定直线叫做双曲线的准线 常数e 是双曲线的离心率.(8).双曲线的准线方程:对于12222=-b y a x 来说,相对于左焦点)0,(1c F -对应着左准线c a x l 21:-=,相对于右焦点)0,(2c F 对应着右准线ca x l 22:=; 对于12222=-b x a y 来说,相对于上焦点),0(1c F -对应着上准线c a y l 21:-=;相对于下焦点),0(2c F 对应着下准线ca y l 22:= (9).双曲线的焦半径(了解)定义:双曲线上任意一点M 与双曲线焦点21,F F 的连线段,叫做双曲线的焦半径焦点在x 轴上的双曲线的焦半径公式:⎩⎨⎧-=+=∴0201ex a MF ex a MF(21,F F 分别是左、右焦点) 焦点在y 轴上的双曲线的焦半径公式:⎩⎨⎧-=+=∴0201ey a MF ey a MF(21,F F 分别是下、上焦点) (10).双曲线的焦点弦:定义:过焦点的直线割双曲线所成的相交弦焦点弦公式:当双曲线焦点在x 轴上时,过左焦点与左支交于两点时: )(221x x e a AB +--=过右焦点与右支交于两点时:)(221x x e a AB ++-=当双曲线焦点在y 轴上时,过左焦点与左支交于两点时:)(221y y e a AB +--=过右焦点与右支交于两点时:)(221y y e a AB ++-=(11).双曲线的重要结论:(1)双曲线焦点到对应准线的距离(焦准距)2bpc =。
双曲线十大经典结论
双曲线十大经典结论双曲线是高中数学中的一种常见函数,它具有许多重要的性质和结论。
下面介绍双曲线的十大经典结论,帮助读者更好地理解和应用双曲线函数。
1. 双曲线的定义双曲线是由平面上离两点距离之差与常数2a的比构成的点的集合。
通常表示为y²/a² - x²/b² = 1或x²/a² - y²/b² = 1。
其中,a,b分别为双曲线的焦距。
2. 双曲线的中心对称性双曲线是关于两个焦点的联线的中垂线对称的。
也就是说,双曲线上的任意一点都关于两个焦点的联线的中垂线对称。
3. 双曲线的渐近线双曲线的两条渐近线分别与x轴和y轴成45°的夹角,并且它们趋近于相交于双曲线的中心点。
4. 双曲线的拐点在双曲线上,x轴和y轴的交点处是曲线的拐点。
这些点被称为双曲线的顶点。
5. 双曲线的对称轴双曲线有两条对称轴:一条垂直于x轴,穿过双曲线的中心点;另一条垂直于y轴,在x轴上方和下方各穿过一点。
6. 双曲线的面积公式双曲线y²/a² - x²/b² = 1在x轴上的两个交点为x=-a和x=a,因此曲线所围成的面积为S = 2ab。
7. 双曲线的弦长公式双曲线上的两点之间的弦长为2a*ln((y1+y2)/2)。
其中,y1和y2为两点在y轴上的投影。
8. 双曲线的渐近线方程双曲线的两条渐近线的方程分别为y = x/a和y = -x/a。
9. 双曲线的反函数双曲线函数y = a*cosh(x/a)有反函数x = a*ln(y + sqrt(y² -a²)),其中cosh为双曲余弦函数。
10. 双曲线的应用双曲线广泛应用于物理、天文、工程、经济、金融等领域。
例如,电磁波在介质中的传播规律可以用双曲线函数表示;货币增长模型中的通货膨胀可以用双曲线函数描述。
双曲线的性质与方程解析
双曲线的性质与方程解析双曲线在数学中是一种常见的曲线类型,具有许多独特的性质与方程解析。
本文将探讨双曲线的基本定义、方程形式、性质特点以及解析方法等相关内容。
一、基本定义双曲线可以定义为平面上的一类曲线,其形状类似于打开的弓形或者两个分离的超越曲线。
具体来说,双曲线由两个分离的支线组成,每个支线都是非闭合的曲线。
二、方程形式双曲线的方程形式一般有两种常见情况:1. 标准方程:双曲线的标准方程可以表示为:(x^2/a^2) - (y^2/b^2) = 1 或者(y^2/b^2) - (x^2/a^2) = 1,其中a和b分别表示椭圆的长半轴和短半轴。
2. 参数方程:双曲线的参数方程形式可以表示为:x = a * secθ,y = b * tanθ 或者x = a * coshθ,y = b * sinhθ,其中θ是参数,a和b分别表示参数方程中的系数。
三、性质特点双曲线具有多个独特的性质和特点,包括:1. 渐近线:双曲线有两条渐近线,分别对应于横轴和纵轴方向无限延伸的情况。
这两条渐近线与曲线的分支永远不相交。
2. 焦点与准线:双曲线的焦点是曲线的特殊点,其定义决定了曲线的形状。
双曲线的准线是与焦点对称且与渐近线相切的直线。
3. 集中性质:双曲线的两个支线向外无限延伸,因此曲线逐渐集中于焦点附近。
这种集中性质在许多实际应用中都有重要的意义。
四、解析方法在解析几何中,双曲线的研究常常涉及到方程的化简、参数的确定以及曲线的绘制等问题。
以下是一些解析方法的示例:1. 方程化简:根据给定的曲线方程,可以通过代数运算将其整理为标准方程或者参数方程的形式,以便更好地研究曲线的性质。
2. 参数确定:在参数方程中,选择合适的参数取值范围,可以确定曲线的部分或者全部形状。
通过调整参数,可以观察曲线的变化情况。
3. 绘制曲线:利用计算机软件绘制双曲线图形是一种常见的方法。
通过选择适当的参数和绘图工具,可以清晰地展示双曲线的形态特征。
双曲线基本知识点
双曲线基本知识点1. 什么是双曲线?在数学中,双曲线是平面上的一种特殊曲线,它与椭圆和抛物线类似,都是由焦点和直角的性质定义的。
双曲线有许多重要的应用,特别是在几何学、物理学和工程学中。
2. 双曲线的方程双曲线的一般方程可以写成:其中a和b分别是椭圆的半轴长度。
当a和b相等时,我们得到一个标准形式的双曲线:3. 双曲线的性质对称轴双曲线有两条对称轴:x轴和y轴。
对称轴通过焦点,并且与直角垂直。
焦点焦点是双曲线上最重要的点之一。
对于标准形式的双曲线,焦点位于原点的左右两侧。
焦点与直角的距离由半轴长度决定。
集中距离集中距离是指从原点到双曲线上任意一点的距离与该点到焦点的距离之差。
对于标准形式的双曲线,集中距离等于半轴长度。
渐近线双曲线有两条渐近线,分别与双曲线无限接近但永远不会相交。
渐近线的斜率等于b/a或-a/b,取决于椭圆的方程形式。
离心率离心率是描述椭圆形状的一个重要参数。
对于标准形式的双曲线,离心率等于根号下(a^2 + b^2)/a。
4. 双曲线的类型根据椭圆方程中a和b的关系,可以将双曲线分为以下几种类型:横向双曲线当a^2 > b^2时,我们得到一个横向双曲线。
这意味着双曲线在x轴上延伸,并且在y轴上收敛。
纵向双曲线当a^2 < b^2时,我们得到一个纵向双曲线。
这意味着双曲线在y轴上延伸,并且在x轴上收敛。
等轴双曲线当a^2 = b^2时,我们得到一个等轴双曲线。
这意味着双曲线在两个方向上都延伸,并且对称于原点。
5. 双曲函数与双曲线相关的函数被称为双曲函数。
常见的双曲函数包括双曲正弦、双曲余弦和双曲正切。
双曲正弦(sinh)双曲余弦(cosh)双曲正切(tanh)%3D-%20i+%20tan(i x))6. 双曲线的应用由于其特殊的性质,双曲线在许多领域中都有重要的应用。
物理学双曲线经常用于描述电磁波、粒子运动和引力场等物理现象。
例如,电磁波在空间中传播的路径可以由双曲线方程表示。
9.4 双曲线及其性质(讲解部分)
∴△AF1F2的周长为|AF1|+|AF2|+|F1F2|=|AF1|+|AF2|+4a,
又△AF1F2的周长为10a,∴|AF1|+|AF2|=6a,
又∵|AF1|-|AF2|=2a,∴|AF1|=4a,|AF2|=2a.
在△AF1F2中,|F1F2|=4a,∴cos∠F1AF2=
|AF1|2 |AF2|2 -|F1F2|2
栏目索引
高考理数
9.4 双曲线及其性质
栏目索引
考点清单
考点一 双曲线的定义及标准方程
考向基础 1.定义 在平面内到两定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|且大于 零)的点的轨迹叫做双曲线,定点F1,F2叫做双曲线的焦点,两焦点间的距离 叫做焦距. 注意 (1)设双曲线上的点M到两焦点F1,F2的距离之差的绝对值为2a,即|| MF1|-|MF2||=2a,其中0<2a<|F1F2|,这一条件不能忽略. ①若2a=|F1F2|,则点M的轨迹是分别以F1,F2为端点的两条射线; ②若2a>|F1F2|,则点M的轨迹不存在; ③若2a=0,则点M的轨迹是线段F1F2的垂直平分线.
栏目索引
3.焦点三角形问题 (1)P为双曲线上的点,F1,F2为双曲线的两个焦点,且∠F1PF2=θ,则S F1PF2 =
b2
tan
θ 2
=c|yP|.
(2)过焦点F1的直线与双曲线的一支交于A、B两点,则A、B与另一个焦点 F2构成的△ABF2的周长为4a+2|AB|.
栏目索引
(3)若P是双曲线右支上一点,F1、F2分别为双曲线的左、右焦点,则|PF1|min=栏目索引考点二 双曲 Nhomakorabea的几何性质
双曲线的定义和性质
双曲线的定义和性质
双曲线(Hyperbolic Curve)是数学中一种特殊的曲线,它具有两条反曲线(Hyperbolic curve),沿着直线封闭,它被认为是一种极限曲线,可以收敛到两个不同
的焦点。
虽然双曲线也称为平行双曲线,但它们可以按照任意方向曲折,但不会超过可以
认为是一个自治空间内的某个最大距离。
双曲线常用来描述流动的几何形状,可以用来解
释力的重力学传播效应。
(1)双曲线的最重要的性质就是它收敛到两个焦点,且这两个焦点之间的距离可以
通过一个称为双曲线的焦距的值来衡量。
(2)另外,双曲线完全由两个反曲线(Hyperbolic curves)组成,沿着直线封闭,
且双曲线具有节点,这些节点与直线联系在一起,称为切点,切点与双曲线的凹角相关联。
(3)此外,双曲线还具有两个定点,它们位于曲线上,且称为双曲线的交点,即双
曲线截止点。
双曲线的曲率(Curvature)取决于双曲线的焦距,曲率越大,双曲线的弯
曲越明显。
(4)双曲线的面积是负的,这意味着它的形状并不完全似圆,而是更加具有弯曲性,因此它在空间中形状更复杂。
(5)双曲线具有相反性,也就是说,当它在一个方向运行时,它会在相反的方向运行。
(6)另外,双曲线的拉伸性也很高,可以曲折的的角度和弯曲程度要比普通圆弧更大,这也使它具有很多实用价值。
(7)双曲线可以用于许多不同的几何计算,如极限几何的计算,倒立曲线的计算以
及复杂的曲面的几何计算。
双曲线及其性质
双曲线及其性质 ☆知识梳理☆一、双曲线的定义1、 的点的轨迹叫双曲线,两定点叫 ,两点间的距离之差为 。
2、用符号语言表述为: 。
二、双曲线的标准方程及简单几何性质三、双曲线的常见结论1、与双曲线22221x y a b-=共渐近线的双曲线系方程为 。
2、等轴双曲线222x y a -=±的渐近线方程为 ,离心率是 。
3、渐近线与离心率的关系: 。
4、双曲线的通径为: 。
四、直线与双曲线的位置关系1、直线与双曲线位置关系的判定把双曲线22221x y a b -= ()0,0a b >>与直线方程y kx b =+联立消去y ,整理成形如20Ax Bx C ++=的形式,对此一元二次方程有:(1)0∆>, (2)0∆=, (3)0∆<, 。
2、直线被双曲线截得的张长公式设直线与双曲线交于1122(,),(,)A x y B x y 两点,则AB = 。
3、中点弦“点差法” 。
☆释疑解惑☆1、对双曲线定义的认识(1)双曲线221102x y -=的焦距为(2)动点P 到两动点()()0,2,0,2A B -的距离之差的绝对值是4,则点P 的轨迹是双曲线(3)双曲线的两焦点()()123,0,3,0F F -,点(6,P 在双曲线上,则双曲线的标准方程是22145x y -= (4)以椭圆221164x y +=的焦点为实轴的顶点,长轴的端点为焦点的双曲线的标准方程是221124x y -= 2、对双曲线性质的认识(1)双曲线()222210,0x y a b a b-=>>,当a b =时,称该双曲线为等轴双曲线,等轴双(2)双曲线221mx y +=的虚轴长是实轴长的3倍,则19m =-(3)双曲线221416x y k k-=的渐近线方程是2y x =±☆典例精析☆例1:已知双曲线的方程为()222210,0x y a b a b-=>>,点,A B 在双曲线的右支上,线段AB经过双曲线的右焦点2F ,AB m =,1F 为另一焦点,则△1ABF 的周长为 ( ) A . 22a m + B . a m + C . 42a m + D . 24a m +变1:双曲线()222210,0x y a b a b-=>>上一点()4,3P 到双曲线的左、右焦点的距离之差等于4,则b 的值为 .变2:已知点()()()3,0,3,0,1,0M N B -,圆C 与直线MN 切于点B ,过,M N 与圆C 相切的两直线相交于点P ,则P 点的轨迹方程为 .变3:设P 是双曲线222116x y a -=上一点,双曲线的一条渐近线方程为430x y -=,12,F F 分别是双曲线的左、右焦点,若13PF =,则2PF 的值为_ .例2:与椭圆2214x y +=共焦点且过点()2,1P 的双曲线方程是( )A .2214x y -=B .2212x y -=C .22133x y -= D .2212y x -=变1:若双曲线222114y x m m ++-=的焦点在y 轴上,则m 的取值范围是 ( ) A .()2,2- B .()2,1-- C .()1,2 D .()1,2-变2:已知双曲线 ()222210,0x y a b a b-=>>的两条渐近线均和圆22:650C x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为 ( )A .22145x y -= B .22154x y -= C .22136x y -= D .22163x y -=例3:如图,F 1,F 2是双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点,过F 1的直线l 与C 的左、右两支分别交于A ,B 两点.若 | AB | : | BF 2 | : | AF 2 |=2 : 3 : 4,则双曲线的离心率为 ( )A .4B C .2D变1:已知双曲线12222=-by a x ()0,0>>b a 的左、右焦点分别为12F F 、,P 为双曲线右支上一点,直线1PF 与圆222a y x =+相切,且212F F PF = ,则该双曲线的离心率e 是 ( )A .35B .45C .1517D .1617变2:已知O 为原点,双曲线2221x y a-=上有一点P ,过P 作两条渐近线的平行线,交点分别为,A B ,平行四边形OBPA 的面积为1,则双曲线的离心率为 ( )ABC.2 D.3变3:设双曲线221222:1(0,0),,x y F a b F F a b-=>>为双曲线F 的焦点.若双曲线F 存在点M ,满足1212MF MO MF ==(O 为原点),则双曲线F 的离心率为 ( ) ABCD1-变4:如图,1F ,2F 是椭圆1C 与双曲线2C 的公共焦点,12,C C 的离心率分别是12,e e ,点A 是12,C C 的一个公共点,若 6021=∠AF F ,则221213e e += ( ) A .41 B . 21C .2D .4变5:设双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21,F F ,离心率为e ,过2F的直线与双曲线的右支交于B A ,两点,若AB F 1∆是以A 为直角顶点的等腰直角三角形,则=2e ( )A .221+B .224-C .225-D .223+变6:双曲线)0,0(12222>>=-b a by a x 的两个焦点为12,F F , P 为其上一点,且122PF PF =,则双曲线离心率的取值范围为 ( )A .()1,3B .(]1,3C . ()3,+∞D .[)3,+∞变7:已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,若过点F 且倾斜角为60︒的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是 ( )A .(1,2]B .(1,2)C .[2,)+∞D .(2,)+∞变8:已知12,F F 分别是双曲线)0,0(12222>>=-b a by a x 的左、右焦点,过1F 且垂直于x轴的直线与双曲线交于,A B 两点,若2ABF ∆是锐角三角形,则该双曲线离心率的取值范围是 .例4:已知双曲线22221x y a b-= ()0,0a b >>的左右焦点分别为12,F F ,若在双曲线上存在点P ,满足01260F PF ∠=,OP =(O 为原点),则双曲线的渐近线方程为( )A .0x =B 0y ±=C .0x =D 0y ±=变1:与双曲线221916x y -=有公共的渐近线,且经过点(A -的双曲线方程是 .变2:如图,12,F F 是12222=-by a x (0,0>>b a )的左右焦点,过1F 的直线与的左、右两支分别交于A B ,两点,若2ABF ∆为等边三角形,则双曲线的渐近线方程为 .例5:若直线1y kx =+与曲线x =则k 的取值范围是( )A .k <<B .1k <-C .1k <<D .k <k >变1:直线l 过点()5,0,与双曲线2214y x -=只有一个公共点,则满足条件的l 有( ) A .1条B .2条C .4条D .无数条变2:已知双曲线224x y -=,直线l :()1y k x =-,讨论直线与双曲线公共点个数.变3:直线1y kx =+与双曲线221x y -=左支交于,A B ,另一条直线l 过点()2,0-和AB的中点,则直线l 在y 轴上截距的取值范围是变4:已知双曲线的中心在原点,()3,0F 是双曲线的焦点,过F 的直线l 与双曲线交于,A B ,AB 的中点为()12,15N --,则双曲线的方程为 .变5:已知中心在原点的双曲线C 的右焦点为()2,0,实轴长为(1)求双曲线C 的方程;(2)若直线:l y kx =C 左支交于,A B 两点,求k 的取值范围; (3)在(2)的条件下,线段AB 的垂直平分线与y 轴交于()0,M m ,求m 的取值范围.变6:已知中心在原点的双曲线C 的右焦点为()2,0,右顶点为).(1)求双曲线C 的方程;(2)若直线:=l y kx A 和B 且2∙>OA OB (其中O 为原点),求k 的取值范围.例7:已知双曲线()222210,0x y a b a b-=>>和圆:222x y b +=,过双曲线上的一点()00,P x y 引圆的两条切线,切点分别为,A B .(1)若双曲线上存在点P ,使得090APB ∠=,求离心率的取值范围; (2)求直线AB 的方程;(3)求AOB ∆(O 为原点)面积的最大值.变1:若点O 和点()2,0F -分别为双曲线()22210x y a a-=>的中心和左焦点,点P 为双曲线右支上的任意一点,则OP FP ⋅的取值范围为 .例8:已知双曲线221x y -=的左、右顶点分别为12A A 、,动直线:l y kx m =+与圆221x y +=相切,且与双曲线左、右两支的交点分别为()()111222,,,P x y P x y .(1)求k 的取值范围,并求21x x -的最小值;(2)记直线11PA 的斜率为1k ,直线22P A 的斜率为2k ,那么,12k k ⋅是定值吗?证明你的结论.变1:在平面直角坐标系中,O 为坐标原点,给定两点()()1002A B -,,,,点C 满足(),,21OC mOA nOB m n R m n =+∈-=.(1)求点C 的轨迹方程;(2)设点C 的轨迹与双曲线,M N 两点,且以MN为直径的圆过原点,求证:2211a b-为定值;(3)在(2☆优化热身☆1、过双曲线228x y -=的左焦点1F 有一条弦PQ 交左支于,P Q ,若7PQ =,2F 是双曲线右焦点,则三角形2PF Q 的周长是 ( )A .28B .14-C .14+D .2、已知双曲线2212x y a-=的一条渐近线为y =,则实数a 的值为 ( ) A . 16 B . 8 C . 4 D . 23、设P 为双曲线22112y x -=上的一点,12,F F 是该双曲线的两个焦点,若12:3:2PF PF =,则12PF F ∆的面积为 ( )A .B .C .12D .244、已知中心在原点,焦点在y 则它的渐近线方程为( )A . 2y x =±B . y x =C . 12y x =±D . y =5、已知双曲线中心在原点且一个焦点为()1F ,点P 位于该双曲线上,线段1PF 的中点坐标为()0,2,则双曲线的方程是 ( )A .2214x y -=B .2214y x -= C .22123x y -= D .22132x y -=612,F F ,过1F 的直线分别交双曲线的两条渐近线于点,P Q .若点P 是线段1FQ 的中点,且12QF QF ⊥,则此双曲线的离心率等于 ( )A B .2 C . D 7、如图,1F 和2F 分别是双曲线22221(0,0)x y a b a b-=>>的两个焦点,A 和B 是以O 为圆心,以1F O 为半径的圆与该双曲线左支的两个交点,且△AB F 2是等边三角形,则双曲线的离心率为 ( ) A .3B .5C .25 D .31+8、如图所示,已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,过F 的直线l 交双曲线的渐近线于A 、B 两点,且直线l则该双曲线的离心率为 ( )A BC .5D .29、若双曲线122=-y x 左支上的一点),(b a P 是 .10、已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程是y ,它的一个焦点是()6,0F ,则此双曲线的方程是 .11、双曲线1222=-m y m x 和椭圆1402522=+y x 有共同的焦点,则=m . 12、设双曲线22221(0,0)x y a b a b-=>>的一条渐近线与圆()2221x y +-=无公共点,则双曲线的离心率e 的取值范围是 .13、设直线()300x y m m -+=≠与双曲线()222210,0x y a b a b-=>>的两条渐近线分别交于点A ,B .若点P (m ,0)满足=PA PB ,则该双曲线的离心率是 .14、如图,已知双曲线()222210,0x y a b a b-=>>的左右焦点分别为12,F F ,122FF =,P是双曲线右支上的一点,12PF PF ⊥,2F P 与y 轴交于点A ,APF ∆的内切圆半径为,则双曲线的离心率是 .15、已知双曲线:C 2212x y -=,设直线l过点()A -. (1)当直线l 双曲线C 的一条渐近线m 平行时,求直线l 的方程及l 与m 的距离; (2)证明:当2k >时,在双曲线C 的右支上不存在点Q ,使之到直线l.16、已知双曲线方程222y x -2=.(1)求以()2,1A 为中点的双曲线的弦所在的直线方程;(2)过点()1,1能否作直线L ,使L 与双曲线交于12,Q Q 两点,且12,Q Q 两点的中点为()1,1?如果存在,求出直线L 的方程;如果不存在,说明理由.MN 的垂直平分线与两坐标轴围成的三角形的面积为2,求k 的取值范围.18、设双曲线()222210,0x y a b a b-=>>的右顶点A ,x 轴上有一点()2,0Q a ,若双曲线上存在点P ,使AP PQ ⊥,求双曲线的离心率的取值范围.。
2020高考数学10.2 双曲线及其性质
(2)利用待定系数法求双曲线方程的常用方法:
a.与双曲线 ax22 - by22 =1共渐近线的方程可设为 ax22 - by22 =λ(λ≠0); b.若双曲线的渐近线方程为y=± ba x,则双曲线的方程可设为 ax22 - by22 =λ(λ≠
0);
c.若双曲线过两个已知点,则双曲线的方程可设为 x2 + y2 =1(mn<0)或mx2 mn
等关系;④利用解析式的结构特点,如a2,|a|, a 等的非负性来完成范围的
求解.
例 (1)(2018浙江镇海中学期中,8)已知O,F分别为双曲线E: ax22 - by22 =1(a>
0,b>0)的中心和右焦点,点G,M分别在E的渐近线和右支上,FG⊥OG,GM
∥x轴,且|OM|=|OF|,则E的离心率为 ( )
A. 5 B. 6 C. 7 D. 2
2
2
2
(2)(2017课标全国Ⅱ文,5,5分)若a>1,则双曲线 x2 -y2=1的离心率的取值 a2
范围是 ( )
A.( 2 ,+∞) B.( 2 ,2)
C.(1, 2 ) D.(1,2)
解析 (1)不妨设点G在渐近线y= b x上,则直线GF的方程为y=- a (x-c).由
(3)P在双曲线外⇔⑦ a2 - b2 <1 . 【知识拓展】 1.过焦点F1的弦AB与双曲线交在同支上,则AB与另一个焦点F2构成的△ ABF2的周长为4a+2|AB|.
2.过双曲线的一个焦点且与实轴垂直的弦叫做通径,其长度是 2b2 . a
3.焦点到渐近线的距离为b. 4.(1)设P,A,B是双曲线上的三个不同的点,其中A,B关于原点对称,则直线
双曲线的定义与性质
双曲线的定义与性质双曲线是二次曲线中的一种,它是平面上到两个给定焦点的距离之差等于常数的点的轨迹。
双曲线的定义和性质对于数学研究和应用都非常重要,下面将对双曲线的定义、性质和一些实际应用进行简要介绍。
一、双曲线的定义双曲线的定义可以通过两个焦点和常数的关系来描述。
假设平面上有两个给定的焦点F1和F2,并且设距离两个焦点的距离之差等于常数2a,那么满足这个条件的点的轨迹就是一条双曲线。
二、双曲线的方程双曲线的方程可以通过焦点的坐标和常数来表示。
设焦点F1的坐标为(c, 0),焦点F2的坐标为(-c, 0),则满足条件的双曲线的方程可以表示为:(x-c)^2/a^2 - (y-0)^2/b^2 = 1或者(x+c)^2/a^2 - (y-0)^2/b^2 = 1其中,a和b分别为双曲线的两个主轴,c为焦点到坐标原点的距离。
三、双曲线的性质1. 焦点与双曲线的关系:双曲线上的每个点到两个焦点的距离之差都等于常数2a,这个性质决定了双曲线的形状。
2. 双曲线的对称性:双曲线关于x轴和y轴都有对称性。
即当(x, y)是双曲线上的一个点时,(-x, y)、(x, -y)和(-x, -y)也是双曲线上的点。
3. 双曲线的渐近线:双曲线有两条渐近线,分别与双曲线的两个分支无限靠近。
这两条渐近线的方程分别为y=(b/a)x和y=-(b/a)x。
4. 双曲线的焦点和定点:双曲线的焦点是双曲线的一部分,而焦点之间连线上的点叫做定点。
双曲线的定点到焦点的距离等于a。
四、双曲线的应用双曲线在物理学、工程学和经济学等领域中都有广泛的应用。
1. 物理学中,双曲线可以用来描述相对论效应下的时间与空间的关系。
2. 工程学中,双曲线可以用来描述电磁波在天线中的传播特性。
3. 经济学中,双曲线可以用来描述供需均衡时的市场行为。
总结:双曲线是平面上到两个给定焦点的距离之差等于常数的点的轨迹。
双曲线的方程可以用焦点的坐标和常数来表示。
双曲线具有一些特点,如焦点与双曲线的关系、双曲线的对称性、渐近线以及焦点和定点等。
高中数学:双曲线的方程和性质
第10讲双曲线的方程和性质[玩前必备]1.双曲线的定义平面内到两个定点F1,F2的距离的差的绝对值等于常数2a❶(2a<|F1F2|)的点P的轨迹叫做双曲线❷.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.❶当|PF1|-|PF2|=2a(2a<|F1F2|)时,点P的轨迹为靠近F2的双曲线的一支.,当|PF1|-|PF2|=-2a(2a<|F1F2|)时,点P的轨迹为靠近F1的双曲线的一支.❷若2a=2c,则轨迹是以F1,F2为端点的两条射线;若2a>2c,则轨迹不存在;若2a=0,则轨迹是线段F1F2的垂直平分线.2.双曲线的标准方程(1)中心在坐标原点,焦点在x轴上的双曲线的标准方程为x2a2-y2b2=1(a>0,b>0).(2)中心在坐标原点,焦点在y轴上的双曲线的标准方程为y2a2-x2b2=1(a>0,b>0).在双曲线的标准方程中,看x2项与y2项的系数的正负,若x2项的系数为正,则焦点在x轴上;若y2项的系数为正,则焦点在y轴上,即“焦点位置看正负,焦点随着正的跑”.3.双曲线的几何性质[常用结论]1.过双曲线的一个焦点且与实轴垂直的弦的长为2b 2a,也叫通径.2.与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有共同渐近线的方程可表示为x 2a 2-y 2b 2=t (t ≠0).3.双曲线的焦点到其渐近线的距离为b .4.若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min =c -a .[玩转典例]题型一 双曲线的定义例1 平面内,一个动点P ,两个定点1F ,2F ,若12PF PF -为大于零的常数,则动点P 的轨迹为( ) A .双曲线B .射线C .线段D .双曲线的一支或射线例2 一动圆与两圆x 2+y 2=1和x 2+y 2﹣8x +12=0都外切,则动圆圆心轨迹为( ) A .圆B .椭圆C .双曲线的一支D .抛物线例3 方程221,()22x y k R k k -=∈-+表示双曲线的充分不必要条件是( )A . 2k >或2k <-B .1k >C .3k >D . 1k >或1k <-例4 已知F 是双曲线x 24-y 212=1的左焦点,A (1,4),P 是双曲线右支上的一动点,则|PF |+|P A |的最小值为________. [玩转跟踪]1.已知△ABC 的顶点A (-5,0),B (5,0),△ABC 内切圆的圆心在直线x =2上,则顶点C 的轨迹方程是( ) A.x 24-y 221=1(x >2) B.y 24-x 221=1(y >2) C.x 221-y 24=1 D.y 24-x 22=1 2.双曲线221412x y -=的左右焦点分别为1F ,2F ,点在P 双曲线上,若15PF =,则2PF =( )A .1B .9C .1或9D .73.若曲线2211x y m m+=-表示焦点在y 轴上的双曲线,则实数m 的取值范围为( )A .1m <B .0m <C .102m -<< D .112m << 题型二 焦点三角形问题例5 (1)已知双曲线2217x y m -=,直线l 过其左焦点1F ,交双曲线左支于A 、B 两点,且AB 4=,2F 为双曲线的右焦点,2ABF ∆的周长为20,则m 的值为 ( ) A .8B .9C .16D .20(2)设12F F 、分别是双曲线2213y x -=的两个焦点,P 是该双曲线上的一点,且1234PF PF =,则12PF F ∆的面积等于A .B .C .D .例6 已知点P 是双曲线22184x y -=上一点,1F ,2F 分别为双曲线的左、右焦点,若12F PF △的外接圆半径为4,且12F PF ∠为锐角,则12PF PF ⋅=( ) A .15 B .16C .18D .20[玩转跟踪]1.已知12,F F 是双曲线22(0)x y m m -=>的两个焦点,点P 为该双曲线上一点,若12PF PF ⊥,且12PF PF +=m =( )A .1BC D .32.已知双曲线C :221916x y -=的左右焦点分别为12,F F ,P 为C 的右支上一点,且212||||PF F F =,则12PF F △的面积等于 A .24B .36C .48D .963.已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=________. 题型三 双曲线的标准方程例7 (1)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±34x ,且其右焦点为(5,0),则双曲线C的标准方程为( )A.x 29-y 216=1 B.x 216-y 29=1 C.x 23-y 24=1 D.x 24-y 23=1 (2)(一题多解)与椭圆x 24+y 2=1共焦点且过点P (2,1)的双曲线标准方程是( )A.x 24-y 2=1 B.x 22-y 2=1 C.x 23-y 23=1 D .x 2-y 22=1(3)经过点P (3,27),Q (-62,7)的双曲线的标准方程为____________.(4)焦点在x 轴上,焦距为10,且与双曲线y 24-x 2=1有相同渐近线的双曲线的标准方程是________________.[玩转跟踪]1.已知离心率为2的双曲线()222210,0x y a b a b -=>>与椭圆22184x y +=有公共焦点,则双曲线的方程为( )A .221412x y -=B .221124x y -=C .2213y x -=D .2213x y -=2.已知双曲线()222210,0x y a b a b-=>>的一条渐近线方程为34y x =,P 为该双曲线上一点,12,F F 为其左、右焦点,且12PF PF ⊥,1218PF PF ⋅=,则该双曲线的方程为( )A .2213218x y -=B .2211832x y -=C .221916x y -=D .221169x y -=3.已知()5,0F -是双曲线()222210,0x y a b a b-=>>的左焦点,过F 作一条渐近线的垂线与右支交于点P ,垂足为A ,且3PA AF =,则双曲线方程为( )A .221205x y -=B .221520x y -=C .221169x y -=D .221916x y -=题型四 椭圆的性质例8 已知1F 、2F 分别为双曲线2222:1x y E a b-=的左、右焦点,点M 在E 上,1221::2:3:4F F F M F M =,则双曲线E 的渐近线方程为( )A .2y x =±B .12y x =±C .y =D .y = 例9 已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A ―→=AB ―→,F 1B ―→·F 2B ―→=0,则C 的离心率为________.例10 设F 是双曲线22221(0,0)x y a b a b-=>>的右焦点.过点F 作斜率为-3的直线l 与双曲线左、右支均相交.则双曲线离心率的取值范围为( )A .B .C .)+∞D .)+∞[玩转跟踪]1.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点为F ,点A ,B 是C 的一条渐近线上关于原点对称的两点,以AB 为直径的圆过F 且交C 的左支于M ,N 两点,若|MN |=2,△ABF 的面积为8,则C 的渐近线方程为( ) A .y =±3x B .y =±33x C .y =±2x D .y =±12x2.已知抛物线y 2=4x的焦点为F ,准线为l .若l 与双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别交于点A和点B ,且|AB |=4|OF |(O 为原点),则双曲线的离心率为( ) A.2 B.3 C .2D.53.的直线与双曲线22221x y a b-=恒有两个公共点,则双曲线离心率的取值范围是( )A .[2,)+∞B .(2,)+∞C .D .)+∞[玩转练习]1.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,则其渐近线方程为( )A .y =±2xB .y =±3xC .y =±22x D .y =±32x 2.设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=6|OP |,则C 的离心率为( ) A. 5B .2C. 3D.23.双曲线C :x 24-y 22=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若|PO |=|PF |,则△PFO的面积为( )A.324B.322C .2 2D .324.设F 为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( ) A.2 B.3 C .2 D.55.(多选)已知双曲线C 过点(3,2)且渐近线为y =±33x ,则下列结论正确的是( ) A .C 的方程为x 23-y 2=1B .C 的离心率为3C .曲线y =e x -2-1经过C 的一个焦点 D .直线x -2y -1=0与C 有两个公共点6.(多选)已知点P 是双曲线E :x 216-y 29=1的右支上一点,F 1,F 2为双曲线E 的左、右焦点,△PF 1F 2的面积为20,则下列说法正确的有( ) A .点P 的横坐标为203B .△PF 1F 2的周长为803C .∠F 1PF 2小于π3D .△PF 1F 2的内切圆半径为327.设F 1(-c,0),F 2(c,0)是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,点P 是C 右支上异于顶点的任意一点,PQ 是∠F 1PF 2的平分线,过点F 1作PQ 的垂线,垂足为Q ,O 为坐标原点,则|OQ |( ) A .为定值a B .为定值b C .为定值cD .不确定,随P 点位置变化而变化8.(多选)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为e 1,椭圆C 1的上顶点为M ,且MF 1―→ ·MF 2―→=0.双曲线C 2和椭圆C 1有相同焦点,且双曲线C 2的离心率为e 2,P 为曲线C 1与C 2的一个公共点,若∠F 1PF 2=π3,则正确的是( )A.e 2e 1=2 B .e 1·e 2=32C .e 21+e 22=52D .e 22-e 21=19.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点为F ,离心率为 2.若经过F 和P (0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为________.10.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两焦点且与x 轴垂直的直线与双曲线的四个交点组成一个正方形,则该双曲线的离心率为________.11.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为__________. 12.(一题两空)中心在原点,焦点在x 轴上的椭圆与双曲线有共同的焦点F 1,F 2,且|F 1F 2|=213,椭圆的长半轴长与双曲线实半轴长之差为4,离心率之比为3∶7. (1)椭圆的方程为________________;(2)若P 为这两曲线的一个交点,则cos ∠F 1PF 2=________. 13.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F (c,0).(1)若双曲线的一条渐近线方程为y =x 且c =2,求双曲线的方程;(2)以原点O 为圆心,c 为半径作圆,该圆与双曲线在第一象限的交点为A ,过A 作圆的切线,斜率为-3,求双曲线的离心率.14.已知点F 1,F 2分别是双曲线C :x 2-y 2b2=1(b >0)的左、右焦点,过F 2作垂直于x 轴的直线,在x 轴上方交双曲线C 于点M ,∠MF 1F 2=30°. (1)求双曲线C 的方程;(2)过双曲线C 上任意一点P 作该双曲线两条渐近线的垂线,垂足分别为P 1,P 2,求PP 1―→·PP 2―→的值.。
双曲线及其性质
1.根据已知条件确定a,b,c的关系,再求出e=
c a
,要注意区分双曲线的渐近
线的斜率与离心率的关系以及双曲线离心率的范围.
2.求解双曲线离心率范围的方法:在解析几何中,求范围问题一般可从以
下几个方面考虑:①与已知范围联系,通过求值域或解不等式来完成;②
通过判别式Δ的大小建立不等关系;③利用点与曲线的位置关系构建不
1
.
∴|AB|=
1 k 2 · (x1 x2 )2 4x1x2 =
1 k2
·
2k
2
k 2 1
4
2 k2 1
=6
3,
整理得28k4-55k2+25=0,
∴k2= 5 或k2= 5 .
7
4
又1<k< 2 ,∴k= 5 .
2
y2 a2
-
x b
2 2
=1
(a>0,b>0),根据双曲线的定义知2a=| ( 15 0)2 (4 3)2 -
( 15 0)2 (4 3)2 |=4,故a=2.又b2=32-a2=5,故所求双曲线的标准方程为
y2 x2
- =1.
45
解法二:椭圆
x2 27
+
y2 36
=1的焦点坐标是(0,±3).设双曲线方程为
a2 y0
3.直线AB的方程为y-y0=
b2 a2
x0 y0
(x-x0).
4.弦AB的垂直平分线方程为y-y0=-
a2 b2
y0 x0
(x-x0).
知识拓展
1.过焦点F1的弦AB与双曲线交在同支上,则AB与另一个焦点F2构成
双曲线的几何性质
双曲线的几何性质
双曲线是二次曲线的一种,其几何性质如下:
1. 双曲线有两个分支,分布在两侧于中心对称的轴线上。
轴线与曲线没有交点。
2. 双曲线的两个分支无限延伸,没有端点。
两个分支之间的距离称为双曲线的焦距,记作2c。
3. 双曲线具有对称性质,即关于x轴、y轴及原点对称。
4. 双曲线的两个分支与其对称轴之间的距离称为双曲线的半轴长,记作a。
半轴长的大小决定了双曲线的形状。
5. 双曲线具有渐近线性质,即两个分支无限接近于直线,称为双曲线的渐近线。
渐近线的方程为y = ±(a/c)x。
6. 双曲线与椭圆和抛物线不同,它没有顶点或焦点。
7. 双曲线的离心率(eccentricity)为大于1的实数,其值决定了曲线的形状。
离心率越大,曲线越扁平。
8. 双曲线的方程一般形式为Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0,其中A、B、C、D、E、F为实数,且满足
B^2 - 4AC < 0,且A和C异号。
这些性质描述了双曲线的形状、对称性、渐近线以及与其他曲线的区别。
双曲线在几何学、物理学和工程学等领域中有广泛的应用。
3、双曲线概念及几何性质
双曲线的概念与几何性质一、知识梳理1.双曲线的定义平面内与两个定点F1,F2(|F1F2|=2c>0)的距离差的绝对值等于常数(小于|F1F2|且大于零)的点的轨迹叫双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫焦距.其数学表达式:集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0:(1)若a<c时,则集合P为双曲线;(2)若a=c时,则集合P为两条射线;(3)若a>c时,则集合P为空集.2.双曲线的标准方程和几何性质3.重要结论1.过双曲线的一个焦点且与实轴垂直的弦的长为2b 2a . 2.离心率e =ca =a 2+b 2a =1+b 2a 2.3.等轴双曲线的渐近线互相垂直,离心率等于 2.二、例题精讲 + 随堂训练1.判断下列结论正误(在括号内打“√”或“×”)(1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( )(2)平面内到点F 1(0,4),F 2(0,-4)距离之差等于6的点的轨迹是双曲线.( ) (3)方程x 2m -y 2n =1(mn >0)表示焦点在x 轴上的双曲线.( )(4)双曲线x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x m ±yn =0.( )(5)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与x 2b 2-y 2a 2=1(a >0,b >0)的离心率分别是e 1,e 2,则1e 21+1e 22=1(此条件中两条双曲线称为共轭双曲线).( ) 解析 (1)因为||MF 1|-|MF 2||=8=|F 1F 2|,表示的轨迹为两条射线. (2)由双曲线的定义知,应为双曲线的一支,而非双曲线的全部.(3)当m >0,n >0时表示焦点在x 轴上的双曲线,而m <0,n <0时则表示焦点在y 轴上的双曲线.答案 (1)× (2)× (3)× (4)√ (5)√2.经过点A (3,-1),且对称轴都在坐标轴上的等轴双曲线方程为________________.解析 设双曲线方程为:x 2-y 2=λ(λ≠0),把点A (3,-1)代入,得λ=8,故所求双曲线方程为x 28-y 28=1.答案 x 28-y 28=13.已知双曲线x2-y216=1上一点P到它的一个焦点的距离等于4,那么点P到另一个焦点的距离等于________.解析设双曲线的焦点为F1,F2,|PF1|=4,则||PF1|-|PF2||=2,故|PF2|=6或2,又双曲线上的点到焦点的距离的最小值为c-a=17-1,故|PF2|=6.答案64.(2018·浙江卷)双曲线x23-y2=1的焦点坐标是()A.(-2,0),(2,0)B.(-2,0),(2,0)C.(0,-2),(0,2)D.(0,-2),(0,2)解析由题可知双曲线的焦点在x轴上,又c2=a2+b2=3+1=4,所以c=2,故焦点坐标为(-2,0),(2,0).答案B5.(2017·全国Ⅲ卷)双曲线x2a2-y29=1(a>0)的一条渐近线方程为y=35x x,则a=________.解析由题意可得3a=35,所以a=5.答案56.(2018·北京卷)若双曲线x2a2-y24=1(a>0)的离心率为52,则a=________.解析由题意可得,a2+4a2=⎝⎛⎭⎪⎫522,即a2=16,又a>0,所以a=4.答案4考点一双曲线的定义及应用【例1】(1)已知F1,F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos ∠F1PF2=()A.14B.35C.34D.45(2)(2019·济南调研)已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为____________. 解析 (1)由x 2-y 2=2,知a =b =2,c =2.由双曲线定义知,|PF 1|-|PF 2|=2a =22,又|PF 1|=2|PF 2|, ∴|PF 1|=42,|PF 2|=22,在△PF 1F 2中,|F 1F 2|=2c =4,由余弦定理,得 cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=34.(2)如图所示,设动圆M 与圆C 1及圆C 2分别外切于A 和B .根据两圆外切的条件,得|MC 1|-|AC 1|=|MA |,|MC 2|-|BC 2|=|MB |, 因为|MA |=|MB |,所以|MC 1|-|AC 1|=|MC 2|-|BC 2|, 即|MC 2|-|MC 1|=|BC 2|-|AC 1|=2,所以点M 到两定点C 1,C 2的距离的差是常数且小于|C 1C 2|=6.又根据双曲线的定义,得动点M 的轨迹为双曲线的左支(点M 与C 2的距离大,与C 1的距离小),其中a =1,c =3,则b 2=8.故点M 的轨迹方程为x 2-y 28=1(x ≤-1).答案 (1)C (2)x 2-y 28=1(x ≤-1)【训练1】 (1)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,左、右焦点分别为F 1,F 2,点A 在双曲线C 上,若△AF 1F 2的周长为10a ,则△AF 1F 2的面积为( ) A.215a 2 B.15a 2 C.30a 2D.15a 2(2)(2019·杭州质检)双曲线C 的渐近线方程为y =±233x ,一个焦点为F (0,-7),点A (2,0),点P 为双曲线第一象限内的点,则当点P 的位置变化时,△P AF 周长的最小值为( ) A.8B.10C.4+37D.3+317解析 (1)由双曲线的对称性不妨设A 在双曲线的右支上,由e =c a =2,得c =2a ,∴△AF 1F 2的周长为|AF 1|+|AF 2|+|F 1F 2|=|AF 1|+|AF 2|+4a ,又△AF 1F 2的周长为10a ,∴|AF 1|+|AF 2|=6a ,又∵|AF 1|-|AF 2|=2a , ∴|AF 1|=4a ,|AF 2|=2a ,在△AF 1F 2中,|F 1F 2|=4a ,∴cos ∠F 1AF 2=|AF 1|2+|AF 2|2-|F 1F 2|22|AF 1|·|AF 2|=(4a )2+(2a )2-(4a )22×4a ×2a =14.又0<∠F 1AF <π,∴sin ∠F 1AF 2=154,∴S △AF 1F 2=12|AF 1|·|AF 2|·sin ∠F 1AF 2=12×4a ×2a ×154=15a 2.(2)由已知得双曲线方程为y 24-x 23=1,设双曲线的另一个焦点为F ′,则|PF |=|PF ′|+4,△P AF 的周长为|PF |+|P A |+|AF |=|PF ′|+4+|P A |+3,当F ′,P ,A 三点共线时,|PF ′|+|P A |有最小值,为|AF ′|=3,故△P AF 的周长的最小值为10. 答案 (1)B (2)B考点二 双曲线的标准方程【例2】 (1)(2017·全国Ⅲ卷)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( )81045C.x 25-y 24=1D.x 24-y 23=1(2)(2018·天津卷)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为( ) A.x 24-y 212=1 B.x 212-y 24=1 C.x 23-y 29=1D.x 29-y 23=1 解析 (1)由题设知b a =52,①又由椭圆x 212+y 23=1与双曲线有公共焦点, 易知a 2+b 2=c 2=9,②由①②解得a =2,b =5,则双曲线C 的方程为x 24-y 25=1.(2)由d 1+d 2=6,得双曲线的右焦点到渐近线的距离为3,所以b =3.因为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,所以ca =2,所以a 2+b 2a 2=4,所以a 2+9a 2=4,解得a 2=3,所以双曲线的方程为x 23-y 29=1. 答案 (1)B (2)C规律方法 1.利用待定系数法求双曲线标准方程的关键是:设出双曲线方程的标准形式,根据已知条件,列出关于参数a ,b ,c 的方程并求出a ,b ,c 的值. 2.与双曲线x 2a 2-y 2b 2=1有相同渐近线时可设所求双曲线方程为x 2a 2-y 2b 2=λ(λ≠0).【训练2】 (1)(2019·海南二模)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)过点(2,3),且实轴的两个端点与虚轴的一个端点组成一个等边三角形,则双曲线C 的标准方程是( ) A.x 212-y 2=1B.x 29-y 23=132332(2)已知双曲线的渐近线方程为2x ±3y =0,且双曲线经过点P (6,2),则双曲线的方程为________________.解析 (1)由双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)过点(2,3),且实轴的两个端点与虚轴的一个端点组成一个等边三角形,可得⎩⎪⎨⎪⎧2a 2-3b 2=1,b a =3,解得⎩⎨⎧a =1,b =3,∴双曲线C 的标准方程是x 2-y 23=1.(2)由双曲线的渐近线方程为y =±23x ,可设双曲线方程为x 29-y 24=λ(λ≠0).因为双曲线过点P (6,2),所以69-44=λ,λ=-13,故所求双曲线方程为y 243-x 23=1.答案 (1)C (2)y 243-x 23=1考点三 双曲线的性质 角度1 求双曲线的渐近线【例3-1】 (2018·全国Ⅱ卷)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,则其渐近线方程为( ) A.y =±2x B.y =±3x C.y =±22xD.y =±32x解析 法一 由题意知,e =ca =3,所以c =3a ,所以b =c 2-a 2=2a ,即b a =2,所以该双曲线的渐近线方程为y =±b a x =±2x .法二 由e =ca =1+⎝ ⎛⎭⎪⎫b a 2=3,得b a =2,所以该双曲线的渐近线方程为y =±ba x =±2x . 答案 A角度2 求双曲线的离心率【例3-2】 (1)(2018·全国Ⅲ卷)设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=6|OP |,则C 的离心率为( ) A. 5B.2C. 3D.2(2)(2018·泰安联考)已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0),圆C 2:x 2+y 2-2ax +34a 2=0,若双曲线C 1的一条渐近线与圆C 2有两个不同的交点,则双曲线C 1的离心率的取值范围是( ) A.⎝ ⎛⎭⎪⎫1,233 B.⎝ ⎛⎭⎪⎫233,+∞ C.(1,2)D.(2,+∞)解析 (1)不妨设一条渐近线的方程为y =b a x ,则F 2到y =b a x 的距离d =|bc |a 2+b 2=b ,在Rt △F 2PO 中,|F 2O |=c ,所以|PO |=a ,所以|PF 1|=6a ,又|F 1O |=c ,所以在△F 1PO 与Rt △F 2PO 中,根据余弦定理得cos ∠POF 1=a 2+c 2-(6a )22ac =-cos ∠POF 2=-a c ,则3a 2+c 2-(6a )2=0,得3a 2=c 2,所以e =ca= 3.(2)由双曲线方程可得其渐近线方程为y =±ba x ,即bx ±ay =0,圆C 2:x 2+y 2-2ax +34a 2=0可化为(x -a )2+y 2=14a 2,圆心C 2的坐标为(a ,0),半径r =12a ,由双曲线C 1的一条渐近线与圆C 2有两个不同的交点,得|ab |a 2+b2<12a ,即c >2b ,即c 2>4b 2,又知b 2=c 2-a 2,所以c 2>4(c 2-a 2),即c 2<43a 2,所以e =c a <233,又知e >1,所以双曲线C 1的离心率的取值范围为⎝⎛⎭⎪⎫1,233. 答案 (1)C (2)A角度3 与双曲线有关的范围(最值)问题【例3-3】 已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1→·MF 2→<0,则y 0的取值范围是( )A.⎝ ⎛⎭⎪⎫-33,33B.⎝ ⎛⎭⎪⎫-36,36C.⎝⎛⎭⎪⎫-223,223 D.⎝⎛⎭⎪⎫-233,233 解析 因为F 1(-3,0),F 2(3,0),x 202-y 20=1,所以MF 1→·MF 2→=(-3-x 0,-y 0)·(3-x 0,-y 0)=x 20+y 20-3<0,即3y 20-1<0,解得-33<y 0<33. 答案 A【训练3】 (1)(2019·上海崇明区调研)在平面直角坐标系xOy 中,双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)的一条渐近线与圆(x -2)2+(y -1)2=1相切,则C 的离心率为( ) A.43B.54C.169D.2516(2)已知焦点在x 轴上的双曲线x 28-m +y 24-m =1,它的焦点到渐近线的距离的取值范围是________.解析 (1)双曲线C 的渐近线方程为by ±ax =0,结合图形易知与圆相切的只可能是by -ax =0,又圆心坐标为(2,1),则|b -2a |a 2+b2=1,得3a =4b , 所以9a 2=16b 2=16(c 2-a 2),则e 2=2516, 又e >1,故e =54.(2)对于焦点在x 轴上的双曲线x 2a 2-y 2b 2=1(a >0,b >0),它的一个焦点(c ,0)到渐近线bx -ay =0的距离为|bc |b 2+a 2=b .本题中,双曲线x 28-m +y 24-m =1即x 28-m -y 2m -4=1,其焦点在x 轴上,则⎩⎨⎧8-m >0,m -4>0,解得4<m <8,则焦点到渐近线的距离d =m -4∈(0,2). 答案 (1)B (2)(0,2)三、课后练习1.(2019·河南适应测试)已知F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,P 是双曲线上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为π6,则双曲线的渐近线方程为( ) A.y =±2x B.y =±12x C.y =±22xD.y =±2x解析 不妨设P 为双曲线右支上一点,则|PF 1|>|PF 2|,由双曲线的定义得|PF 1|-|PF 2|=2a ,又|PF 1|+|PF 2|=6a ,所以|PF 1|=4a ,|PF 2|=2a .又因为⎩⎨⎧2c >2a ,4a >2a ,所以∠PF 1F 2为最小内角,故∠PF 1F 2=π6.由余弦定理,可得(4a )2+(2c )2-(2a )22·4a ·2c =32,即(3a -c )2=0,所以c =3a ,则b =2a ,所以双曲线的渐近线方程为y =±2x . 答案 D2.已知点F 为双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,直线y =kx (k >0)与E 交于不同象限内的M ,N 两点,若MF ⊥NF ,设∠MNF =β,且β∈⎣⎢⎡⎦⎥⎤π12,π6,则该双曲线的离心率的取值范围是( ) A.[2,2+6] B.[2,3+1] C.[2,2+6]D.[2,3+1]解析 如图,设左焦点为F ′,连接MF ′,NF ′,令|MF |=r 1,|MF ′|=r 2,则|NF |=|MF ′|=r 2,由双曲线定义可知r 2-r 1=2a ①,∵点M 与点N 关于原点对称,且MF ⊥NF ,∴|OM |=|ON |=|OF |=c ,∴r 21+r 22=4c 2②,由①②得r 1r 2=2(c 2-a 2),又知S △MNF =2S △MOF ,∴12r 1r 2=2·12c 2·sin 2β,∴c 2-a 2=c 2·sin 2β,∴e 2=11-sin 2β,又∵β∈⎣⎢⎡⎦⎥⎤π12,π6,∴sin 2β∈⎣⎢⎡⎦⎥⎤12,32, ∴e 2=11-sin 2β∈[2,(3+1)2]. 又e >1,∴e ∈[2,3+1].答案 D3.(2018·北京卷)已知椭圆M :x 2a 2+y 2b 2=1(a >b >0),双曲线N :x 2m 2-y 2n 2=1.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为________;双曲线N 的离心率为________.解析 设椭圆的右焦点为F (c ,0),双曲线N 的渐近线与椭圆M 在第一象限内的交点为A ,由题意可知A ⎝ ⎛⎭⎪⎫c 2,3c 2,由点A 在椭圆M 上得,c 24a 2+3c 24b 2=1,∴b 2c 2+3a 2c 2=4a 2b 2,∵b 2=a 2-c 2,∴(a 2-c 2)c 2+3a 2c 2=4a 2(a 2-c 2),∴4a 4-8a 2c 2+c 4=0,∴e 4椭-8e 2椭+4=0,∴e 2椭=4±23,∴e 椭=3+1(舍去)或 e 椭=3-1,∴椭圆M 的离心率为3-1.∵双曲线的渐近线过点A ⎝ ⎛⎭⎪⎫c 2,3c 2,∴渐近线方程为y =3x ,∴n m =3,故双曲线的离心率e 双=m 2+n 2m 2=2. 答案3-1 24.已知椭圆C 1的方程为x 24+y 2=1,双曲线C 2的左、右焦点分别是C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点.(1)求双曲线C 2的方程;(2)若直线l :y =kx +2与双曲线C 2恒有两个不同的交点A 和B ,且OA→·OB →>2(其中O 为原点),求k 的取值范围.解 (1)设双曲线C 2的方程为x 2a 2-y 2b 2=1(a >0,b >0),则a 2=3,c 2=4,再由a 2+b 2=c 2,得b 2=1.故C 2的方程为x 23-y 2=1.(2)将y =kx +2代入x 23-y 2=1, 得(1-3k 2)x 2-62kx -9=0.由直线l 与双曲线C 2交于不同的两点,得⎩⎨⎧1-3k 2≠0,Δ=(-62k )2+36(1-3k 2)=36(1-k 2)>0,∴k 2≠13且k 2<1.① 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=62k 1-3k 2,x 1x 2=-91-3k 2. ∴x 1x 2+y 1y 2=x 1x 2+(kx 1+2)(kx 2+2) =(k 2+1)x 1x 2+2k (x 1+x 2)+2=3k 2+73k 2-1. 又∵OA →·OB →>2,得x 1x 2+y 1y 2>2,∴3k 2+73k 2-1>2,即-3k 2+93k 2-1>0,解得13<k 2<3.② 由①②得13<k 2<1,故k 的取值范围为⎝ ⎛⎭⎪⎫-1,-33∪⎝ ⎛⎭⎪⎫33,1. 5.已知椭圆x 24+y 2m =1与双曲线x 2-y 2n =1的离心率分别为e 1,e 2,且有公共的焦点F 1,F 2,则4e 21-e 22=________,若P 为两曲线的一个交点,则|PF 1|·|PF 2|=________.解析 由题意得椭圆的半焦距满足c 21=4-m ,双曲线的半焦距满足c 22=1+n ,又因为两曲线有相同的焦点,所以4-m =1+n ,即m +n =3,则4e 21-e 22=4×4-m 4-(1+n )=3-(m +n )=0.不妨设F 1,F 2分别为两曲线的左、右焦点,点P 为两曲线在第一象限的交点, 则⎩⎨⎧|PF 1|+|PF 2|=4,|PF 1|-|PF 2|=2.解得⎩⎨⎧|PF 1|=3,|PF 2|=1,则|PF 1|·|PF 2|=3.答案 0 3。
双曲线及其性质知识点大全新
双曲线及其性质知识点大全新什么是双曲线
双曲线是一种二次曲线,它的方程可以表示为:
\[ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \] 或者 \[ \frac{y^2}{b^2} -
\frac{x^2}{a^2} = 1 \] 其中,a和b是正实数。
双曲线的性质
- 双曲线是对称图形,关于x轴、y轴、原点以及两个中心对称。
- 双曲线有两个对称轴,分别是x轴和y轴。
- 双曲线有两个焦点,分别为F1(\[ c, 0 \])和F2(\[ -c, 0 \]),其中c = 根号下\[ a^2 + b^2 \]。
- 双曲线还有一条渐近线,方程为y = ±(b/a)x,斜率为±b/a。
双曲线的种类
根据双曲线的形状,可以将双曲线分为三类:
1. a>b,此时双曲线开口方向为x轴。
2. a<b,此时双曲线开口方向为y轴。
3. a=b,此时双曲线呈现为两条互相重合的直线。
双曲线的应用
双曲线广泛应用于科学和工程领域,其中一些重要的应用包括:
- 在物理学中,双曲线可以用来描述电磁波的传播和反射。
- 在经济学中,双曲线可以用来描述消费者选择不同的商品和
服务的方式。
- 在航空航天领域,双曲线被用于描述天体的轨道和卫星的飞
行路径。
- 在建筑学中,双曲线被用于设计和分析拱形结构。
双曲线在不同领域中有着广泛的应用,掌握双曲线的基本知识
和性质将有助于我们更好地理解和应用这一数学概念。
双曲线的全部知识和性质.doc
双曲线的全部知识和性质.双曲线和方程[知识分类]1.双曲线的定义(1)在平面上,点到两个固定点的距离之差的绝对值等于固定长度的点的轨迹称为双曲线,其中两个固定点称为双曲线的焦点,固定长度称为双曲线的实轴长,线段的长度称为双曲线的焦距。
这个定义是双曲线的第一个定义。
[笔记]在这种情况下,点的轨迹是两条光线。
(2)在平面上,点到固定点的距离和点到固定线的距离为固定值的点的轨迹称为双曲线,其中固定点称为双曲线的焦点,固定线称为双曲线的准线,固定值称为双曲线的偏心率。
这个定义是双曲线的第二个定义。
2.双曲线的简单性质标准方程顶点坐标焦点坐标左焦点,右焦点上焦点,下焦点虚轴和虚轴实轴长度,虚轴长度实轴长度,虚轴长度有界性,关于轴对称对称,关于轴对称对称,也关于原点对称。
双曲线的渐近线是,也就是,或。
[笔记](1)与双曲线具有相同渐近线的双曲方程可以设置为:(2)具有渐近线的双曲方程可以设置为:(3)共轭双曲线:已知双曲线的虚轴为实轴,实轴为虚轴的双曲线称为原双曲线的共轭双曲线。
共轭双曲线有相同的渐近线。
④等边双曲线: 实轴等于虚轴的双曲线叫做等边双曲线。
4.从焦点半径的双曲线上的任何一点到双曲线焦点的距离称为焦点半径。
如果双曲线上的任何一点是双曲线的左右焦点,那么,在哪里。
5.通过双曲线焦点的路径是一条垂直于虚轴的直线,在两点处与双曲线相交,该线段称为双曲线路径。
6.焦点三角形是双曲线上的任何一点,它是双曲线的左右焦点,称为双曲线的焦点三角形。
如果是这样,焦三角的面积为:7.从双曲线焦点到渐近线的距离是(假想的半轴长度)。
8、双曲线焦三角内弹道是9.直线和双曲线之间的位置关系直线,双曲线:,并相交;与…相切。
与…分离。
10.与渐近线平行(不重合)的直线与双曲线只有一个交点。
[笔记]在平面的某一点,直线和双曲线之间只有一个交点。
这种直线可以是4、3、2或0.11.焦点三角形角平分线的性质点是双曲线上的移动点,是双曲线的焦点,是角平分线上的点,那么,移动点的点的轨迹是. 12.双曲线上任意两点的坐标性质是双曲线上的任意两点,如果。
双曲线的概念及性质
双曲线的概念及性质一,定义:平面内与两定点的距离的差的绝对值等于常数2a (小于|F1F2| )的轨迹 问题:(1)平面内与两定点的距离的差的绝对值等于常数(等于|F1F2| )的轨迹是什么? (2)平面内与两定点的距离的差的绝对值等于常数(大于|F1F2| )的轨迹是什么?(3)若a=0,动点M 的是轨迹什么?①当||MF1|-|MF2||= 2a<|F1F2|时,M 点轨迹是双曲线(其中当|MF1|-|MF2|= 2a 时,M 点轨迹是双曲线中靠近F2的一支; 当|MF2|-|MF1|= 2a 时,M 点轨迹是双曲线中靠近F1的一支);②当||MF1|-|MF2||= 2a=|F1F2|时,M 点轨迹是在直线F1F2上且以F1和F2为端点向外的两条射线。
③当||MF1|-|MF2||= 2a >|F1F2|时,M 点的轨迹不存在。
④当||MF1|-|MF2||= 2a=0时,M 点的轨迹是线段F1F2的垂直平分线 。
二,双曲线的标准方程 首先建立起适当的直角坐标系,以1,2F F 所在的直线为x 轴,1,F F 的垂直平分线为y 轴,根据定义可以得到:122a F F =≥ 化简此方程得()22222222()c a x a y a c a --=- ,令222c a b -=得:22221x y a b -=,其中1F (),0c -为左焦点,2F (),0c 为右焦点思考:若焦点落在Y 轴上的时候,其标准方程又是怎样的? 三,双曲线的性质以双曲线标准方程12222=-by a x ,)0(222>>+=a c b a c 为例进行说明.1.范围: 观察双曲线的草图,可以直观看出曲线在坐标系中的范围:双曲线在两条直线a x ±=的外侧.由标准方程可得22a x ≥,当a x ≥时,y 才有实数值;对于y 的任何值,x 都有实数值这说明从横的方向来看,直线x=-a,x=a 之间没有图象,从纵的方向来看,随着x 的增大,y 的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线 2.对称性:双曲线不封闭,但仍具三个对称性,称其对称中心为双曲线的中心3.顶点:双曲线和对称轴的交点叫做双曲线的顶点,令0=y 得a x ±=,因此双曲线和x轴有两个交点)0,()0,(2a A a A -,它们是双曲线12222=-by a x 的顶点,对称轴上位于两顶点间的线段21A A 叫做双曲线12222=-by a x 的实轴长,它的长是2a ,a 叫半实轴长但y 轴上的两个特殊点()b B b B -,0),,0(21,在双曲线中也有非常重要的作用 把线段21B B 叫做双曲线的虚轴,它的长是2b ,b 叫做虚半轴长实轴:21A A 长为2a ,a 叫做半实轴长. 虚轴:21B B 长为2b ,b 叫做虚半轴长.4. 渐近线:经过2121B B A A 、、、作x 轴、y 轴的平行线b y a x ±=±=,,围成一个矩形,其对角线所在的直线方程为x aby ±=. (1) 定义:如果有一条直线使得当曲线上的一点M 限远离原点时,点M 条直线叫这一曲线的渐近线;(2) 直线x a by ±=与双曲线12222=-by a x 否相交?(3) 求法:在方程12222=-by ax 中,令右边为零,则0))((=+-b ya xb y a x 即x ab y ±=; 若方程为12222=-b x a y ,则渐近线方程为x ba y ±=5.离心率:ce a= ()0c a >>,所以1e > 2.问题拓展 (一)等轴双曲线1、定义:若a=b 即实轴和虚轴等长,这样的双曲线叫做等轴双曲线2、方程:222a y x =-或222a x y =-.3、等轴双曲线的性质:(1)渐近线方程为:x y ±= ;(2)渐近线互相垂直..3)等轴双曲线方程可以设为:)0(22≠=-λλy x ,当0>λ时交点在x 轴,当0<λ时焦点在y 轴上. (二)共轭双曲线1、定义:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫做原双曲线的共轭双曲线.2、方程:(1)12222=-b y a x 的共轭双曲线为12222=-a x b y ;12222=-b x a y 的共轭双曲线为12222-=-bx a y ; (2)互为共轭的一对双曲线方程合起来写成为12222±=-b y a x 或12222±=-bx a y ;3、性质:有一对共同的渐近线;有相同的焦距,四焦点共圆;4、注意:(1)共渐近线的两双曲线不一定是共轭双曲线,如121822=-y x 和1922=-y x ; (2)12222=-b y a x 与12222=-bx a y (a ≠b )不共渐近线,有相同的焦距,四焦点共圆;(三)共渐近线的双曲线系方程问题 (1)191622=-y x 与221916y x -=;(2) 191622=-y x 与1183222=-y x 的区别? 问题: 共用同一对渐近线x aby ±=的双曲线的方程具有什么样的特征? 双曲线2222x y a b λ-=(0λ≠)与双曲线22221x y a b-=有共同的渐近线.当0>λ时交点在x 轴,当0<λ时焦点在y 轴上.例:求与双曲线191622=-y x 共渐近线且过)3,33(-A 的双曲线的方程. 三、课堂练习:1 .双曲线2214x y k-=的离心率e ∈(1, 2),则k 的取值范围是 A .(0, 6) B . (3, 12) C . (1, 3) D . (0, 12)2 .下列各对曲线中,即有相同的离心率又有相同渐近线的是(A)x 23-y 2=1和y 29-x 23=1 (B)x 23-y 2=1和y 2-x 23=1(C)y 2-x 23=1和x 2-y 23=1 (D)x 23-y 2=1和92x -32y =13 .方程11122=-++ky k x 表示双曲线,则k 的取值范围是( ) A .11<<-kB .0>kC .0≥kD .1>k 或1-<k4 .以x y 3±=为渐近线,一个焦点是F (0,2)的双曲线方程为 ( )(A )1322=-y x (B )1322=-y x (C )13222-=-y x (D )13222=-y x 5 .双曲线kx 2+4y 2=4k 的离心率小于2,则k 的取值范围是 ( )(A )(-∞,0) (B )(-3,0) (C )(-12,0) (D )(-12,1)6 .已知平面内有一固定线段AB,其长度为4,动点P 满足|PA|-|PB|=3,则|PA|的最小值为 (A)1.5 (B)3 (C)0.5 (D)3.57. 设C 1:2222b y a x -=1,C 2: 2222a x b y -=1,C 3: 2222ay b x -=1,a 2≠b 2,则 ( )(A)C 1和C 2有公共焦点 (B) C 1和C 3有公共焦点 (C)C 3和C 2有公共渐近线 (D) C 1和C 3有公共渐近线8. 双曲线17922=-y x 的右焦点到右准线的距离为____________ 9. 与椭圆1251622=+y x 有相同的焦点,且两准线间的距离为310的双曲线方程为___ 10. 直线1+=x y 与双曲线13222=-y x 相交于B A ,两点,则AB =___________ 11. 求满足下列条件的双曲线的标准方程 (1)、焦点分别为(0,-5)、(0,5),离心率是23; (2)以坐标轴为两条对称轴,实轴长是虚轴长的一半,且过点(3,2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双曲线及其性质1.方程122=+n y m x 表示双曲线⇔m n <0, 双曲线的焦点位置取决于m ,n 的正负:若m >0, n <0,双曲线的标准方程是:122=--n y m x ,a 2=m ,b 2=-n ,焦点在x 轴上;若m <0, n >0,双曲线的标准方程是:122=--mx n y ,a 2=n ,b 2=-m ,焦点在y 轴上。
[举例]已知k 是常数,若双曲线1||2522=-+-k y k x 的焦距与k 的取值无关,则k 的取值范围是: ( ) A .-2<k ≤2 B .k >5 C .-2<k ≤0 D .0≤k <2解析:方程表示双曲线⇔(k -5)(2-|k |)<0⇔-2<k ≤0或0<k <2或k >5;当-2<k ≤0时,方程为:15222=--+k x k y ,a 2=2+k ,b 2=5-k ,则c 2=7与k 无关;当0<k <2时,方程为:15222=---k x k y , a 2=2-k ,b 2=5-k ,则c 2=7-2k 与k 有关;当k >5时,方程为: 12522=---k y k x ,a 2=k -5,b 2=k -2,则c 2=2k -7,与k 有关;故选C 。
[巩固1]若112||22-=-+-ky k x 表示焦点在y 轴上的双曲线,则它的半焦距c 的取值范围是。
[巩固2]双曲线221mx y +=的虚轴长是实轴长的2倍,则m =A .14-B .4-C .4D .142.双曲线12222=-b y a x 关于x 轴、y 轴、原点对称;P(x,y)是双曲线上一点,则|x|≥a,y ∈R ,双曲线的焦准距为c b 2,双曲线的通经(过焦点且垂直于实轴的弦)长为2ab 2;过焦点的弦中,端点在同一支上时通经最短,端点在两支上时实轴最短。
等轴双曲线的离心率为2,渐近线方程为x y ±=;反比例函数xky =的图象是一个经过旋转的等轴双曲线,渐近线为两坐标轴,对称轴为直线x y ±=。
[举例1] 双曲线12222=-by a x 的中心、右焦点、右顶点、右准线与x 轴的交点,依次为 O 、F 、A 、H ,当|HF|≥23|AF|时,||||OA HF 的最大值为 。
解析:|HF|=c b 2,|AF|=c-a,∴c b 2≥23(c-a)⇒c a c +≥23⇒c ≤2a ⇒e ≤2||||OA HF =acb 2=e-e 1,记f(e)= e-e 1,函数f(e)在(1,2]上递增,∴f(e)≤f(2)= 23.[举例2]已知函数xy 1=的图象是平面上到两定点距离之差的绝对值等于定长的点的轨迹,则这个定长为 .解析:双曲线xy 1=的实轴所在的直线为y=x ,实轴与双曲线的交点即顶点为A 1(1,1)和A 2(-1,-1),2a=|A 1A 2|=22,此即“定长”。
注:我们可以再由等轴双曲线的性质得:c=2, 进而得该双曲线的焦点坐标为(-2,-2),(2,2)。
[巩固1] 双曲线12222=-by a x 的右准线与两条渐近线交于A 、B 两点,右焦点为F ,且FB FA ⋅=0,那么双曲线的离心率为 ( )A .2B . 3C .2D .332 [巩固2] 过双曲线2x 2-y 2=2的右焦点F 的直线交双曲线于A 、B 两点,若|AB|=4,则这样的直线有 条。
[迁移]已知双曲线1422=-y x 的实轴A 1A 2,虚轴为B 1B 2,将坐标系的右半平面沿y 轴折起,使双曲线的右焦点F 2折至点F ,若点F 在平面A 1 B 1B 2内的射影恰好是该双曲线左顶点A 1,则直线B 1F 与平面A 1 B 1B 2所成角的正切值为 。
3.熟悉双曲线的渐近线的几何特征(无限接近双曲线但与双曲线不相交)和代数特征(渐近线方程是双曲线标准方程中的“1”换为“0”);平行于渐近线的直线与双曲线有且仅有一个交点,但不相切(体现在代数上:直线方程代入曲线方程得到的是一次方程)。
已知渐近线方程为:kx y ±=,则双曲线方程为:λ=-222y x k ,其中λ是待定的参数(渐近线不能唯一地确定双曲线)。
双曲线的焦点到渐近线的距离等于半虚轴长b 。
[举例1]双曲线0122=--y tx 的一条渐近线与直线012=++y x 垂直,则双曲线的离心率为: A .5 B .25 C .23D .3 ( )解析:双曲线0122=--y tx 的渐近线方程为:022=-y tx 即y =±t x ,(t ≥0)∴t =21,双曲线方程为:1422=-y x ,离心率为 25,选B 。
[举例2]已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,若过点F 且倾斜角为60o的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是 (A )(1,2] (B )(1,2) (C )[2,)+∞ (D )(2,)+∞解析:根据双曲线的图形特点知,双曲线渐近线的倾角大于或等于600时,过焦点且倾斜角为600的直线与双曲线的右支有且只有一个交点,于是有ab ≥3⇒c 2-a 2≥3a 2,得e ≥2。
[巩固1]与双曲线116922=-y x 有共同渐近线,且过)23,3(-A 的双曲线的一个焦点到一条渐近线的距离是:( ) A .42B .22C .423 D .2[巩固2]曲线C :x 2-y 2=1,(x ≤0) 上一点P (a,b )到它的一条斜率为正的渐近线的距离为它的离心率,则a+b 的值是 ;曲线C 的左焦点为F ,M (x,y )(y ≤0) 是曲线C 上的动点,则直线MF 的倾角的范围是 .[迁移]曲线C :21y x +=与直线y=kx+1有两个不同的公共点,则k 的取值范围是 。
4.研究双曲线上的点到其焦点的距离问题时,往往用定义;关注定义中的“绝对值”,由此导致一个点在双曲线的左支和右支上的情形是不同的。
[举例1]已知向量=(5x ,62y ),=(5x ,-62y),双曲线·=1上一点M 到F(7,0)的距离为11,N 是MF 的中点,O 为坐标原点,则|ON|= A .21 B .211 C .221 D .21或221解析:双曲线方程为:1242522=-y x ,左支上的点到右焦点F(7,0)的距离的最小值为12,∴M 是双曲线右支上的点,记左焦点为F /,则|MF /|-|MF|=2a ,即|MF /|=21,在⊿MFF /中,ON 中位线,∴|ON|=221,故选C 。
注:本题中,若将M 到F(7,0)的距离换为13,将有两种情况(M 可能在双曲线的右支上,也可能在左支上)。
[举例2] 设双曲线12222=-by a x (a ,b >0为F 1、、F 2,点Q 焦点F 2作∠F 1QF 2的平分线的垂线,垂足为M 点轨迹是( ) A .椭圆的一部分; B C .抛物线的一部分; D .圆的一部分 解析:不妨设Q 在双曲线的右支,延长F 2M 交QF 1在⊿QF 1F 2中,QM 既是角平分线又是高,故又|QF 1|-|QF 2|=2a ,∴|QF 1|-|QP|=2a 即|PF 1|=2a ,在⊿PF 1F 2中,MO 是中位线,∴|MO|=a, ∴M 点轨迹是圆的一部分,选D 。
[巩固1]已知点P 在双曲线的左支上, 点M 在其右准线上,F 1是双曲线的左焦点,且满足:=||||11OP OF ,则此双曲线的离心率为 。
[巩固2]F 1,F 2分别为双曲线12222=-by a x (a >0,b >0)左右焦点,P 为双曲线左支上的任意一点,若||||122PF PF 最小值为8a ,则双曲线的离心率e 的取值范围是 。
[迁移]P 是双曲线116922=-y x 的右支上一点,M 、N 分别是圆(x+5)2+y 2=4和(x-5)2+y 2=1上的点,则|PM|-|PN|的最大值为 ( ) A .6 B .7 C .8 D .95.研究双曲线上一点与两焦点组成的三角形(焦点三角形)问题时,在运用定义的同时还经常用到正、余弦定理。
[举例1] 双曲线)1(,122>=-n y nx 的两焦点为F 1、、F 2,P 在双曲线上,且满足|PF 1|+|PF 2|=22+n ,则⊿P F 1F 2的面积为 ( )A .21B .1C .2D .4 解析:不妨设F 1、、F 2是双曲线的左右焦点,P 为右支上一点,|PF 1|-|PF 2|=2n ① |PF 1|+|PF 2|=22+n ②,由①②解得:|PF 1|=2+n +n ,|PF 2|=2+n -n ,得: |PF 1|2+|PF 2|2=4n +4=|F 1F 2|2,∴PF 1⊥PF 2,又由①②分别平方后作差得:|PF 1||PF 2|=2,选B 。
[举例2]等轴双曲线x 2-y 2=a 2,(a>0)上有一点P 到中心的距离为3,那么点P 到双曲线两个焦点的距离之积等于 。
解析:由“平行四边形对角线的平方和等于四条边的平方和”得:2(|PF 1|2+|PF 2|2)=36+4c 2,又c 2=2 a 2,得|PF 1|2+|PF 2|2=18+4 a 2 ①,而||PF 1|-|PF 2||=2 a ② 由 ①-②2得:|PF 1||PF 2|=9。
[巩固1] 已知椭圆1162522=+y x 与双曲线12222=-ny m x (m >0, n >0)具有相同的焦点F 1,F 2,设两曲线的一个交点为Q ,∠QF 1F 2=900,则双曲线的离心率为 。
[巩固2] 双曲线116922=-y x 两焦点为F 1,F 2,点P 在双曲线上,直线PF 1,PF 2倾斜角之差为,3π则△PF 1F 2面积为:A .163 B .323C .32D .42[提高] 设双曲线12222=-by a x (a ,b >0)两焦点为F 1、、F 2,点P 为双曲线右支上除顶点外的任一点,则⊿PF 1F 2的内心的横坐标为 ( )A .aB .cC .ca 2D .与P 点的位置有关答案1、[巩固1](1,+∞),[巩固2]A ;2、[巩固1]A ,[巩固2] 3,[迁移]55;3、[巩固1] C ,[巩固2] -21,(],4ππ∪{0},[迁移] (-2,-1);4、[巩固1]2,[巩固2](1,3],[迁移]D ;5、[巩固1]35,[巩固2] A ,[提高]记△PF 1F 2的内切圆圆心为C ,边PF 1、PF 2、F 1F 2上的切点分别为M 、N 、D ,易见C 、D 横坐标相等,|PM|=|PN|,|F 1M|=|F 1D|,|F 2N|=|F 2D|,由|PF 1|-|PF 2|=2a ,即:|PM|+|MF 1|-(|PN|+|NF 2|)=2a,得|MF 1|-|NF 2|=2a 即|F 1D|-|F 2D|=2a ,记C 的横坐标为x 0,则D (x 0,0),于是:x 0+c -(c- x 0)=2a ,得x 0=a ,故选A 。