大班数学9月份月考试题
湖南长郡教育集团2024年九年级上学期数学9月月考模拟试卷+答案
湖南省长沙市长郡教育集团2024-2025学年九年级上学期数学9月月考模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)如图各交通标志中,不是中心对称图形的是()A.B.C.D.2.(3分)地球上的陆地面积约为149000000平方千米,这个数字用科学记数法表示应为()A.0.149×106B.1.49×107C.1.49×108D.14.9×1073.(3分)下列计算正确的是()A.x2•x3=x5B.(x3)3=x6C.x(x+1)=x2+1D.(2a﹣1)2=4a2﹣14.(3分)下面是2024年丽江市某周发布的最高温度:16℃,19℃,22℃,24℃,26℃,24℃,23℃.关)A.中位数是24B.众数是24C.平均数是20D.方差是95.(3分)下列关于x的一元一次不等式x﹣1>0的解集在数轴上的表示正确的是()A.B.C.D.6.(3分)如图,已知AB是⊙O的直径,D、C是劣弧EB的三等分点,∠BOC=40°,那么∠AOE=()A .40°B .60°C .80°D .120°7.(3分)关于函数y =﹣2x +1,下列结论正确的是()A .图象必经过点(﹣2,1)B .图象经过第一、二、三象限C .图象与直线y =﹣2x +3平行D .y 随x 的增大而增大8.(3分)如图,直线AB ∥CD ,直线EF 分别与AB ,CD 交于点E ,F ,EG 平分∠BEF ,交CD 于点G ,若∠1=70°,则∠2的度数是()A .60°B .55°C .50°D .45°9.(3分)函数y =ax +b 与y =ax 2+b (a ≠0)在同一平面直角坐标系中的大致图象可能是()A .B .C .D .10.(3分)如图,已知直线PA 交⊙O 于A 、B 两点,AE 是⊙O 的直径,点C 为⊙O 上一点,且AC 平分∠PAE ,过C 作CD ⊥PA ,垂足为D ,且DC +DA =12,⊙O 的直径为20,则AB 的长等于()A.8B.12C.16D.18二.填空题(共6小题,满分18分,每小题3分)11.(3分)因式分解:﹣a2﹣6a﹣9=.12.(3分)请写出一个经过点(0,﹣2),且y随着x增大而增大的一次函数:.13.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则不等式ax2+bx+c>0的解集是.14.(3分)石拱桥的主桥拱是圆弧形.如图,一石拱桥的跨度AB=16m,拱高CD=4m,那么桥拱所在圆的半径OA=m.15.(3分)已知关于x的方程x2﹣kx﹣6=0的一个根为x=3,则实数k的值为.16.(3分)如图,四边形ABCD内接于⊙O,点M在AD的延长线上,∠CDM=71°,则∠AOC=.三.解答题(共9小题,满分72分)17.(6分)计算:.18.(6分)先化简,再求值:(y+1)2﹣(y﹣1)(y+5),其中y=﹣.19.(6分)如图所示,每个小正方形的边长为1个单位长度,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).(1)点A关于点O中心对称的点的坐标为;(2)△AOB绕点O顺时针旋转90°后得到△A1OB1,在图中画出△A1OB1,并写出点B1的坐标:.20.(8分)如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.(1)求证:∠AEB=∠ADC;(2)连接DE,若∠ADC=130°,求∠BED的度数.21.(8分)如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=45°,∠APD=75°.(1)求∠B的大小;(2)已知圆心O到BD的距离为3,求AD的长.22.(9分)如图,已知抛物线y=(x﹣2)(x+a)(a>0)与x轴交于点B、C,与y轴交于点E,且点B 在点C的左侧.(1)若抛物线过点M(﹣2,﹣2),求实数a的值;(2)在(1)的条件下,解答下列问题;①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.23.(9分)国庆节期间,某品牌月饼经销商销售甲、乙两种不同味道的月饼,已知一个甲种月饼和一个乙种月饼的进价之和为14元,每个甲种月饼的利润是6元,每个乙种月饼的售价比其进价的2倍少1元,小王同学买4个甲种月饼和3个乙种月饼一共用了89元.(1)甲、乙两种月饼的进价分别是多少元?(2)在(1)的前提下,经销商统计发现:平均每天可售出甲种月饼200个和乙种月饼150个.如果将两种月饼的售价各提高1元,则每天将少售出50个甲种月饼和40个乙种月饼.为使每天获取的利润更x元.在不考虑其他因素的条件下,当x为多少元时,才能使该经销商每天销售甲、乙两种月饼获取的利润为2650元?24.(10分)如图(1),正方形ABCD和正方形AEFG,边AE在边AB上,AB=12,AE=6,将正方形AEFG绕点A逆时针旋转a(0°≤α≤45°).(1)如图(2),正方形AEFG旋转到此位置,求证:BE=DG;(2)在旋转的过程中,当∠BEA=120°时,试求BE的长;(3)BE的延长线交直线DG于点P,在旋转的过程中,是否存在某时刻BF=BC?若存在,试求出DP 的长;若不存在,请说明理由.25.(10分)如图1所示,直线与x轴、y轴分别相交于点A,点B,点C(1,2)在经过点A,B的二次函数y=ax2+bx+c的图象上.(1)求抛物线的解析式:(2)点P为线段AB上(不与端点重合)的一动点,过点P作PQ∥y轴交抛物线于点Q,求PQ+PB 取得最大值时点P的坐标;(3)如图2,连接BC并延长,交x轴于点D,E为第三象限抛物线上一点,连接DE,点G为x轴上一点,且G(﹣1,0),直线CG与DE交于点F,点H在线段CF上,且∠CFD+∠ABH=45°,连接BH交OA于点M,已知∠GDF=∠HBO,求点H的坐标.湖南省长沙市长郡教育集团2024-2025学年九年级上学期数学9月月考模拟试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)如图各交通标志中,不是中心对称图形的是()A.B.C.D.【解答】解:A.不是中心对称图形,故此选项符合题意;B、C、D是中心对称图形,故B、C、D选项不符合题意.故选:A.2.(3分)地球上的陆地面积约为149000000平方千米,这个数字用科学记数法表示应为()A.0.149×106B.1.49×107C.1.49×108D.14.9×107【解答】解:将149000000用科学记数法表示为:1.49×108.故选:C.3.(3分)下列计算正确的是()A.x2•x3=x5B.(x3)3=x6C.x(x+1)=x2+1D.(2a﹣1)2=4a2﹣1【解答】解:A、x2•x3=x5,本选项符合题意;B、(x3)3=x9≠x6,本选项不符合题意;C、x(x+1)=x2+x,本选项不符合题意;D、(2a﹣1)2=4a2﹣4a+1≠4a2﹣1,本选项不符合题意;故选:A.4.(3分)下面是2024年丽江市某周发布的最高温度:16℃,19℃,22℃,24℃,26℃,24℃,23℃.关于这组数据,下列说法正确的是()A.中位数是24B.众数是24C.平均数是20D.方差是9【解答】解:将数据按从小到大排列为:16、19、22、23、24、24、29,故中位数为:23,故A选项错误,不符合题意;众数是24,故B选项正确,符合题意;平均数为,故C错误,不符合题意;方差是:,故D选项错误,不符合题意;故选:B.5.(3分)下列关于x的一元一次不等式x﹣1>0的解集在数轴上的表示正确的是()A.B.C.D.【解答】解:解不等式x﹣1>0得,x>1,在数轴上表示如图,.故选:B.6.(3分)如图,已知AB是⊙O的直径,D、C是劣弧EB的三等分点,∠BOC=40°,那么∠AOE=()A.40°B.60°C.80°D.120°【解答】解:∵D、C是劣弧EB的三等分点,∠BOC=40°∴∠EOD=∠COD=∠BOC=40°∴∠AOE=60°.故选:B.7.(3分)关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过点(﹣2,1)B.图象经过第一、二、三象限C.图象与直线y=﹣2x+3平行D.y随x的增大而增大【解答】解:A、当x=﹣2,y=﹣2x+1=﹣2×(﹣2)+1=5,则点(﹣2,1)不在函数y=﹣2x+1图象上,故本选项错误;B、由于k=﹣2<0,则函数y=﹣2x+1的图象必过第二、四象限,b=1>0,图象与y轴的交点在x的上方,则图象还过第一象限,故本选项错误;C、由于直线y=﹣2x+1与直线y=﹣2x+3的倾斜角相等且与y轴交于不同的点,所以它们相互平行,故本选项正确;D、由于k=﹣2<0,则y随x增大而减小,故本选项错误;故选:C.8.(3分)如图,直线AB∥CD,直线EF分别与AB,CD交于点E,F,EG平分∠BEF,交CD于点G,若∠1=70°,则∠2的度数是()A.60°B.55°C.50°D.45°【解答】解:∵EG平分∠BEF,∴∠BEG=∠GEF,∵AB∥CD,∴∠BEG=∠2,∴∠2=∠GEF,∵AB∥CD,∴∠1+∠2+∠GEF=180°,∴∠2=(180°﹣70°)=55°.故选:B .9.(3分)函数y =ax +b 与y =ax 2+b (a ≠0)在同一平面直角坐标系中的大致图象可能是()A .B .C .D .【解答】解:选项A 中,函数y =ax +b 中的a >0,b >0,二次函数y =ax 2+b 中a >0,b >0,故选项A 符合题意;选项B 中,函数y =ax +b 中的a >0,b <0,二次函数y =ax 2+b 中a >0,b >0,故选项B 不符合题意;选项C 中,函数y =ax +b 中的a >0,b <0,二次函数y =ax 2+b 中a <0,b >0,故选项C 不符合题意;选项D 中,函数y =ax +b 中的a >0,b >0,二次函数y =ax 2+b 中a <0,b >0,故选项D 不符合题意;故选:A .10.(3分)如图,已知直线PA 交⊙O 于A 、B 两点,AE 是⊙O 的直径,点C 为⊙O 上一点,且AC 平分∠PAE ,过C 作CD ⊥PA ,垂足为D ,且DC +DA =12,⊙O 的直径为20,则AB 的长等于()A .8B .12C .16D .18【解答】解:连接OC ,过O 作OF ⊥AB ,垂足为F ,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠PAE,∴∠DAC=∠CAO,∴∠DAC=∠OCA,∴PB∥OC,∵CD⊥PA,∴∠OCD=∠CDA=∠OFD=90°,∴四边形DCOF为矩形,∴OC=FD,OF=CD.∵DC+DA=12,设AD=x,则OF=CD=12﹣x,∵⊙O的直径为20,∴DF=OC=10,∴AF=10﹣x,在Rt△AOF中,由勾股定理得AF2+OF2=OA2.即(10﹣x)2+(12﹣x)2=102,解得x1=4,x2=18.∵CD=12﹣x大于0,故x=18舍去,∴x=4,∴AD=4,AF=10﹣4=6,∵OF⊥AB,由垂径定理知,F为AB的中点,∴AB=2AF=12.故选:B.二.填空题(共6小题,满分18分,每小题3分)11.(3分)因式分解:﹣a2﹣6a﹣9=﹣(a+3)2.【解答】解:﹣a2﹣6a﹣9=﹣(a2﹣+6a+9)=﹣(a+3)2.故答案为:﹣(a+3)2.12.(3分)请写出一个经过点(0,﹣2),且y随着x增大而增大的一次函数:y=x﹣2(答案不唯一).【解答】解:设一次函数解析式为y=kx+b(k≠0).∵y随着x增大而增大,∴k>0,∵一次函数y=kx+b的图象经过点(0,﹣2),取k=1,∴﹣2=1×0+b,∴b=﹣2,∴一次函数的解析式可以为y=x﹣2.故答案为:y=x﹣2(答案不唯一).13.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则不等式ax2+bx+c>0的解集是﹣1<x<3.【解答】解:∵由函数图象可知,当﹣1<x<3时,函数图象在x轴的下方,∴不等式ax2+bx+c>0的解集是﹣1<x<3.故答案为:﹣1<x<3.14.(3分)石拱桥的主桥拱是圆弧形.如图,一石拱桥的跨度AB=16m,拱高CD=4m,那么桥拱所在圆的半径OA=10m.【解答】解:∵OC⊥AB,AB=16m,∴AD=BD=8m,设BO=x m,则DO=(x﹣4)m,在Rt△OBD中,得:BD2+DO2=BO2,即82+(x﹣4)2=x2,解得:x=10,即桥拱所在圆的半径是10m.故答案为:10.15.(3分)已知关于x的方程x2﹣kx﹣6=0的一个根为x=3,则实数k的值为1.【解答】解:∵x=3是方程的根,由一元二次方程的根的定义,可得32﹣3k﹣6=0,解此方程得到k =1.16.(3分)如图,四边形ABCD内接于⊙O,点M在AD的延长线上,∠CDM=71°,则∠AOC=142°.【解答】解:∵四边形ABCD内接于⊙O,∴∠B=∠CDM=71°,∴∠AOC=2∠B=2×71°=142°,故答案为:142°.三.解答题(共9小题,满分72分)17.(6分)计算:.【解答】解:原式=2﹣+4﹣1+=2﹣+4﹣1+﹣1=4.18.(6分)先化简,再求值:(y+1)2﹣(y﹣1)(y+5),其中y=﹣.【解答】解:(y+1)2﹣(y﹣1)(y+5)=y2+2y+1﹣(y2+4y﹣5)=y2+2y+1﹣y2﹣4y+5=﹣2y+6,当时,原式=.19.(6分)如图所示,每个小正方形的边长为1个单位长度,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).(1)点A关于点O中心对称的点的坐标为(﹣3,﹣2);(2)△AOB绕点O顺时针旋转90°后得到△A1OB1,在图中画出△A1OB1,并写出点B1的坐标:(3,﹣1).【解答】解:(1)如图,点A′即为所求作.A′(﹣3,﹣2).故答案为:(﹣3,﹣2).(2)如图,△A1OB1即为所求作,点B1的坐标(3,﹣1).故答案为:(3,﹣1).20.(8分)如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.(1)求证:∠AEB=∠ADC;(2)连接DE,若∠ADC=130°,求∠BED的度数.【解答】(1)证明:∵△ABC是等边三角形,∴∠BAC=60°,AB=AC,∵线段AD绕点A顺时针旋转60°,得到线段AE,∴∠DAE=60°,AE=AD,∴∠BAD+∠EAB=∠BAD+∠DAC,∴∠EAB=∠DAC,在△EAB和△DAC中,,∴△EAB≌△DAC(SAS),∴∠AEB=∠ADC;(2)解:如图,连接DE,∵∠DAE=60°,AE=AD,∴△EAD为等边三角形,∴∠AED=60°,又∵∠AEB=∠ADC=130°,∴∠BED=130°﹣60°=70°.21.(8分)如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=45°,∠APD=75°.(1)求∠B的大小;(2)已知圆心O到BD的距离为3,求AD的长.【解答】解:(1)∵∠CAB=45°,∠APD=75°.∴∠C=∠APD﹣∠CAB=30°,∵由圆周角定理得:∠C=∠B,∴∠B=30°;(2)过O作OE⊥BD于E,∵OE过O,∴BE=DE,∵圆心O到BD的距离为3,∴OE=3,∵AO=BO,DE=BE,∴AD=2OE=6.22.(9分)如图,已知抛物线y=(x﹣2)(x+a)(a>0)与x轴交于点B、C,与y轴交于点E,且点B 在点C的左侧.(1)若抛物线过点M(﹣2,﹣2),求实数a的值;(2)在(1)的条件下,解答下列问题;①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.【解答】解:(1)将M(﹣2,﹣2)代入抛物线解析式得:﹣2=(﹣2﹣2)(﹣2+a),解得:a=4;(2)①由(1)抛物线解析式y=(x﹣2)(x+4),当y=0时,得:0=(x﹣2)(x+4),解得:x1=2,x2=﹣4,∵点B在点C的左侧,∴B(﹣4,0),C(2,0),当x=0时,得:y=﹣2,即E(0,﹣2),=×6×2=6;∴S△BCE②由抛物线解析式y=(x﹣2)(x+4),得对称轴为直线x=﹣1,根据C与B关于抛物线对称轴直线x=﹣1对称,连接BE,与对称轴交于点H,即为所求,设直线BE解析式为y=kx+b,将B(﹣4,0)与E(0,﹣2)代入得:,解得:,∴直线BE解析式为y=﹣x﹣2,将x=﹣1代入得:y=﹣2=﹣,则H(﹣1,﹣).23.(9分)国庆节期间,某品牌月饼经销商销售甲、乙两种不同味道的月饼,已知一个甲种月饼和一个乙种月饼的进价之和为14元,每个甲种月饼的利润是6元,每个乙种月饼的售价比其进价的2倍少1元,小王同学买4个甲种月饼和3个乙种月饼一共用了89元.(1)甲、乙两种月饼的进价分别是多少元?(2)在(1)的前提下,经销商统计发现:平均每天可售出甲种月饼200个和乙种月饼150个.如果将两种月饼的售价各提高1元,则每天将少售出50个甲种月饼和40个乙种月饼.为使每天获取的利润更多,经销商决定把两种月饼的价格都提高x元.在不考虑其他因素的条件下,当x为多少元时,才能使该经销商每天销售甲、乙两种月饼获取的利润为2650元?【解答】解:(1)设甲种月饼的进价是x元/个,乙种月饼的进价是y元/个,则,解得.故甲种月饼的进价是8元/个,乙种月饼的进价是6元/个;(2)依题意有(6+x)(200﹣50x)+(6﹣1+x)(150﹣40x)=2650,解得x1=1,x2=﹣,∵x>0,∴x=1.答:当x为1元时,才能使该经销商每天销售甲、乙两种月饼获取的利润为2650元.24.(10分)如图(1),正方形ABCD和正方形AEFG,边AE在边AB上,AB=12,AE=6,将正方形AEFG绕点A逆时针旋转a(0°≤α≤45°).(1)如图(2),正方形AEFG旋转到此位置,求证:BE=DG;(2)在旋转的过程中,当∠BEA=120°时,试求BE的长;(3)BE的延长线交直线DG于点P,在旋转的过程中,是否存在某时刻BF=BC?若存在,试求出DP 的长;若不存在,请说明理由.【解答】(1)证明:∵四边形ABCD和四边形AEFG是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,∴∠BAE+∠EAD=∠DAG+∠EAD=90°,∴∠BAE=∠DAG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴BE=DG;(2)解:如图1,过点A作AH⊥BE交BE的延长线于点H,∵∠BEA=120°,∴∠AEH=180°﹣∠BEA=60°,∵∠AHE=90°,∴∠EAH=90°﹣60°=30°,∴EH=AE=×6=3,∴AH===3,在Rt△ABH中,BH===3,∴BE=BH﹣EH=3﹣3;(3)解:存在.如图2,连接AF,∵四边形AEFG是正方形,∴AE=EF=6,∠AEF=90°,∴AF===12,∵BF=BC=AB=12,∴AF=BF=AB=12,∴△ABF是等边三角形,∵BA=BF,EA=EF,∴BE是线段AF的垂直平分线,∵EG是线段AF的垂直平分线,∴直线BE与直线EG是同一条直线,∴点P与点G重合,即DP=DG,设EG与AF交于点O,则AO=EO=AF=6,∠AOB=90°,∴BO===6,∴BE=BO﹣EO=6﹣6,∵∠BAE+∠EAD=∠DAG+∠EAD=90°,∴∠BAE=∠DAG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴DG=BE,∴DP=BE=6﹣6.25.(10分)如图1所示,直线与x轴、y轴分别相交于点A,点B,点C(1,2)在经过点A,B的二次函数y=ax2+bx+c的图象上.(1)求抛物线的解析式:(2)点P为线段AB上(不与端点重合)的一动点,过点P作PQ∥y轴交抛物线于点Q,求PQ+PB 取得最大值时点P的坐标;(3)如图2,连接BC并延长,交x轴于点D,E为第三象限抛物线上一点,连接DE,点G为x轴上一点,且G(﹣1,0),直线CG与DE交于点F,点H在线段CF上,且∠CFD+∠ABH=45°,连接BH交OA于点M,已知∠GDF=∠HBO,求点H的坐标.【解答】解:(1)∵直线y=x+3与x轴、y轴分别相交于点A,点B,∴A(﹣4,0),B(0,3),∵点C(1,2)在经过点A,B的二次函数y=ax2+bx+c的图象上.∴,∴,∴y=﹣x2﹣x+3;(2)如图,作PD⊥OB于D,设Q(m,﹣m2﹣m+3),P(m,m+3),∴PQ=﹣m2﹣m+3﹣(m+3)=﹣m2﹣m,∵PD∥OA,∴△BPD∽△BAO,∴=,∵A(﹣4,0),B(0,3),∴AB===5,∴,∴PB=﹣m,∴PQ+PB=﹣m2﹣m﹣m=﹣m2﹣m=﹣(m+)2+,∴当m=﹣时,PQ+PB取得最大值,∵×(﹣)+3=,∴P(﹣,);(3)如图,作CN⊥AD于N,作MT⊥AB于T,∵C(1,2),G(﹣1,0),∴CN=GN=2,∴∠CGN=∠NCG=45°,∴∠CFD+∠GDF=45°,∵∠CFD+∠ABH=45°,∴∠GDF=∠ABH,∵∠GDF=∠HBO,∴∠ABH=∠HBO,∴OM=MT,+S△BOM=S△AOB,∵S△ABM∴AB•MT+OB•OM=OB•OA,∴5OM+3OM=3×4,∴OM=,∴M(﹣,0),∴直线BM的解析式为:y=2x+3,∵C(1,2),G(﹣1,0),∴直线CG的解析式为:y=x+1,由2x+3=x+1得,x=﹣2,∴x+1=﹣1,∴H(﹣2,﹣1).。
重庆市育才中学教育集团2024-2025学年九年级上学期9月月考数学试题
重庆市育才中学教育集团2024-2025学年九年级上学期9月月考数学试题一、单选题1.下面这四个图形中,不是轴对称图形的是( )A .B .C .D . 2.要使分式12x x +-有意义,则x 的取值应满足( ) A .1x ≠-且2x ≠ B .0x ≠ C .1x ≠- D .2x ≠3.一元二次方程2312x x +=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法判断4.甲流病毒是一种传染性极强的急性呼吸道传染病,感染者的临床以发热、乏力、干咳为主要表现.在“甲流”初期,若有一人感染了“甲流”,若得不到有效控制,则每轮传染平均一个人传染x 人,经过两轮传染后共有256人感染了“甲流”.则关于x 的方程为( ) A .(1)256x x x ++=B .2256x x +=C .1(1)256x x x +++=D .2(1)(1)256x x +++=5.根据下列表格的对应值,估计方程2430x x +-=的一个解的范围是( )A .0.40.5x <<B .0.50.6x <<C .0.60.7x <<D .0.70.8x << 6.下列命题中,错误的命题是( )A .一组对边平行且相等的四边形是平行四边形;B .两条对角线互相垂直且相等的四边形是正方形;C .对角线相等的平行四边形是矩形;D .对角线互相垂直的平行四边形是菱形. 7.2024年3月24日,长安汽车重庆马拉松在美丽的海棠烟雨公园鸣枪起跑.甲、乙两人参加了40千米的比赛,甲每小时比乙多跑了2千米,最终甲比乙早1小时到达.设乙的速度为每小时x 千米,则可列方程为( )A .404012x x =+-B .404012x x =--C .404012x x =++D .404012x x =-+ 8.函数2(0)y mx nx m =+≠与y mx n =+的图象可能是( )A .B .C .D .9.已知四边形ABCD 和DEFG 都是正方形,点F 在线段AB 上,连接,AE BD BD 、交FG 于点H .若AEF α∠=,则BHF ∠=( )A .2αB .45α︒+C .22.5α︒+D .90α︒+10.将有序实数对(),m n 进行操作后可得到一个新的有序实数对(),m n m n ---,将得到的新的有序实数对按上述规则继续操作下去,每得到一个新的有序实数对称为一次操作.例如:()2,1经过一次操作后得到()1,3-,()2,1经过二次操作后得到()4,2,…,下列说法: ①若(),5m 经过三次操作后得到有序实数对(),5x ,则25x =-;②在平面直角坐标系中,将()m,2所对应的点标记为点P ,将()m ,2经过二次操作、五次操作所得的有序实数对分别标记为点M ,点N ,若直线MN 垂直于x 轴,则PMN V 的面积为56;③若3x y +=,2xy =-且x y <,则()22,x y 经过三次操作后的结果为()26--. 其中正确的个数是( )A .0B .1C .2D .3二、填空题11.计算:)201222-⎛⎫+-+-π= ⎪⎝⎭. 12.某商品原价200元,连续两次降价后售价为128元,则平均每次降价的百分数为. 13.已知一个多边形的每一个外角都等于72︒,则这个多边形的边数是.14.已知四边形ABCD 是菱形,若(0,0),(3,1)A C ,则直线BD 与x 轴的交点的坐标为. 15.如图所示,抛物线形拱桥的顶点距水面2m 时,测得拱桥内水面宽为12m .当水面升高1m 后,拱桥内水面的宽度为m .16.若二次函数()2142y a x x =+--的图象与x 轴有两个公共点,且关于y 的不等式组2423210y a y -⎧<⎪⎨⎪--≤⎩至少有两个整数解,则符合条件的所有整数a 的和为. 17.如图,在矩形ABCD中,4,AB BC ==P 是BC 边上一点,连接AP ,以A 为中心,将线段AP 绕点A 逆时针旋转60︒得到AQ ,连接CQ DQ 、,且BCQ DCQ ∠=∠,则CQ 的长度为.18.一个各数位上的数字均不为0的四位自然数abcd ,若百位数字与十位数字的乘积等于千位数字与个位数字组成的两位数,即b c ad ⋅=,则称这个数为“功能数”例如:四位数1342,∵3412⨯=,∴1342是“功能数”.若349d 是一个“功能数”,则这个数为;对于一个“功能数”P ,将P 的千位数字和十位数字交换位置,百位数字和个位数字交换位置得到的新数记为P ',若4P P '+除以13的余数为P 的十位数字的2倍,则满足条件的P 的值为.三、解答题19.计算:(1)()()22x x y x y -++; (2)22111a a a a -⎛⎫+÷ ⎪+⎝⎭. 20.为了解学生的安全知识掌握情况,某校举办了安全知识竞赛.现从七、八年级的学生中各随机抽取20名学生的竞赛成绩(百分制)进行收集、整理、描述、分析.所有学生的成绩均高于60分(成绩得分用x 表示,共分成四组:A .6070x <≤;B .7080x <≤;C .8090x <≤;D .90100x <≤),下面给出了部分信息:七年级20名学生的竞赛成绩为:66,67,68,68,75,83,84,86,86,86,86,87,87,89,95,95,96,98,98,100.八年级20名学生的竞赛成绩在C 组的数据是:81,82,84,87,88,89.七、八年级所抽学生的竞赛成绩统计表根据以上信息,解答下列问题:(1)上述图表中a =______,b =______,m =______;(2)根据以上数据分析,你认为该校七、八年级中哪个年级学生的安全知识竞赛成绩较好?请说明理由(写出一条理由即可);(3)该校七年级有400名学生,八年级有500名学生参加了此次安全知识竞赛,估计该校七、八年级参加此次安全知识竞赛成绩优秀()90x >的学生人数是多少?21.在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形ABCD 中,点O 是对角线AC 的中点.用尺规过点O 作AC 的垂线,分别交AB ,CD 于点E ,F ,连接AF ,CE .(不写作法,保留作图痕迹) (2)已知:矩形ABCD ,点E ,F 分别在AB ,CD 上,EF 经过对角线AC 的中点O ,且EF AC ⊥.求证:四边形AECF 是菱形.证明:∵四边形ABCD 是矩形,∴AB CD ∥. ∴①,OCF OAE ∠=∠.∵点O 是AC 的中点, ∴②.∴CFO AEO ≅△△(AAS ). ∴③.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想的结论:④.22.某水果店商家购进了一批哈密瓜和脆桃.商家用1600元购买哈密瓜,800元购买脆桃,每斤哈密瓜比每斤脆桃的进价贵6元,且购进脆桃的数量是哈密瓜的2倍.(1)求商家购买每斤哈密瓜和每斤脆桃的进价;(2)商家在销售过程中发现,当哈密瓜的售价为每斤14元,脆桃的售价为每斤5元时,平均每天可售出20斤哈密瓜,40斤脆桃.调查,哈密瓜的售价每降低0.5元平均每天可多售出5斤,且降价幅度不低于10%.商家在保证脆桃的售价和销量不变且不考虑其他因素的情况下,想使哈密瓜和胞桃平均每天的总获利为270元,则每斤哈密瓜的售价为多少元? 23.如图,在Rt ABC △中,90C ∠=︒,4AC =,3BC =,点D 是AC 的中点,动点P 以每秒1个单位长度的速度从点D 出发沿折线D A B →→方向运动,到达点B 时停止运动,设点P 的运动时间为x 秒,BCP V 的面积记为y .(1)请直接写出y 关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,若直线11y x b 2=+与该函数图象有且仅有两个交点,则b 的取值范围是______.24.如图,四边形ABCD 是休闲公园的人行步道.AC ,BD 是两条自行车道且相交于点O ,点B 是休闲公园入口.经测量,点A 在点D 的西偏南45︒方向,点C 在点D 的东偏南30︒方向,点C 在点A 的北偏东75︒方向,AD =(1)求自行车道AC 的长度(精确到个位数);(2)测得45AOB ∠=︒,小刚从A 点出发步行沿步道AB 去B 处取快餐,小刚步行的速度为60米每分钟,送餐员等待的时间不超过5分钟,请计算说明小刚能否在送餐员规定的时间内取1.414≈ 1.732≈2.449)25.如图,抛物线25y ax ax b =++经过点()1,5D --,且交x 轴于()6,0A -,B 两点(点A 在点B 的左侧),交y 轴于点C .(1)求抛物线的解析式.(2)如图1,过点D 作DM x ⊥轴,垂足为M ,点P 在直线AD 下方抛物线上运动,过点P 作PE AD ⊥,PF DM ⊥PF +的最大值,以及此时点P 的坐标.(3)将原抛物线沿射线CA G ,使得45CAG ∠=︒,请写出所有符合条件的点G 的横坐标,并写出其中一个的求解过程. 26.已知ABC V 为等边三角形,D 是边AB 上一点,连接CD ,点E 为CD 上一点,连接BE .(1)如图1,延长BE 交AC 于点F ,若45CBF ∠=︒,BF =CF 的长;(2)如图2,将BEC V 绕点C 顺时针旋转60︒到AGC V ,延长BC 至点H ,使得CH BD =,连接AH 交CG 于点N ,求证2CE DE GN =+;(3)如图3,4AB =,点H 是BC 上一点,且2BD CH =,连接DH ,点K 是AC 上一点,CK AD =,连接DK ,BK ,将△BKD 沿BK 翻折到BKQ V ,连接CQ ,当ADK △的周长最小时,直接写出CKQ V的面积.。
2017-2018学年吉林省长春市新朝阳实验学校大班八年级(上)月考数学试卷(9月份)
2017-2018学年吉林省长春市新朝阳实验学校大班八年级(上)月考数学试卷(9月份)一、选择题(共8小题;共24分)1.(2015春•闵行区期末)下列各数中,是无理数的是( ) A .3.14B .227C .√4D .√82.(2017•安徽)计算(﹣a 3)2的结果是( ) A .a 6B .﹣a 6C .﹣a 5D .a 53.(2017秋•朝阳区校级月考)下列计算结果是2ab 的是( ) A .a 2﹣b 2 B .2a 3b 2÷a •abC .a2b 2÷12abD .(﹣2ab )2÷ab4.(2017秋•朝阳区校级月考)下列多项式相乘,能用平方差公式计算的是( ) A .(x +2)(x +2) B .(﹣x +y )(x ﹣y ) C .(2x ﹣y )(2x +y )D .(﹣x ﹣y )(x +y )5.(2017秋•朝阳区校级月考)已知 a +b =3,ab =1,则a 2+b 2的值为( ) A .7B .9C .5D .86.(2013秋•新洲区期末)下列从左边到右边的变形,属于因式分解的是( ) A .(x +1)(x ﹣1)=x 2﹣1 B .x 2﹣2x +1=x (x ﹣2)+1 C .x 2﹣4y 2=(x +4y )(x ﹣4y )D .x 2﹣x ﹣6=(x +2)(x ﹣3)7.(2017秋•朝阳区校级月考)已知圆的半径为r ,减少2后,这个圆的面积减少了( ) A .4π(r ﹣1)B .4(r ﹣1)C .2π(r ﹣1)D .2πr8.(2013•宁波)7张如图1的长为a ,宽为b (a >b )的小长方形纸片,按图2的方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )A .a =52bB .a =3bC .a =72bD .a =4b9.(2011•南平)化简:√64=.10.(2011•许昌二模)已知:a、b为两个连续的整数,且a<√5<b,则a+b=.11.(2017秋•朝阳区校级月考)若2m=3,8n=2,则22m+3n=.12.(2017秋•朝阳区校级月考)计算22017×(12)2016=.13.(2017秋•朝阳区校级月考)如果代数式x2−mx+14是一个完全平方式,那么m=.14.(2012•佛山)如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为.三、解答题(共4小题;共35分)15.(10分)(2017秋•朝阳区校级月考)计算(1)a(a+1)(a﹣1)(2)(﹣2x+3y)2.16.(12分)(2017秋•朝阳区校级月考)分解因式(1)4﹣4x2 (2)9x3+6x2y+xy2.17.(6分)(2017秋•朝阳区校级月考)用简便方法计算20172﹣2017×4032+20162.18.(7分)(2017秋•朝阳区校级月考)解方程:2x(x﹣y)+2xy=8.19.(7分)(2017秋•朝阳区校级月考)已知a的平方根是它本身,b是2a+8的立方根,求ab2+b的值.20.(7分)(2017秋•朝阳区校级月考)先化简,再求值:a(a+2b)﹣(a+b)2,其中a=2017,b=√5.21.(8分)(2017秋•朝阳区校级月考)求图中阴影部分图形面积.22.(9分)(2017秋•朝阳区校级月考)已知2x﹣3y=0,求代数式(x+2y)2+(x﹣2y)(x+2y)﹣2x(3x﹣y)的值.23.(12分)(2017秋•朝阳区校级月考)阅读下列材料:利用完全平方公式,可以将多项式变形为a(x+m)2+n的形式,我们把这样的变形方法叫做多项式ax2+bx+c(a≠0)的配方法.运用多项式的配方法及平方差公式能对一些多项式进行分解因式.例如:x2+9x−10=x2+9x+(92)2−(92)2−10#/DEL/#=(x+92)2−1214#/DEL/#=(x+92+112)(x+92−112)#/DEL/# =(x+10)(x−1)#/DEL/#根据以上材料,解答下列问题:(1)用配方法及平方差公式把多项式x2﹣7x+12进行分解因式;(2)用多项式的配方法将x2+6x﹣9化成a(x+m)2+n的形式,并求出多项式的最小值;(3)求证:x,y取任何实数时,多项式x2+y2﹣4x+2y+6的值总为正数.2017-2018学年吉林省长春市新朝阳实验学校大班八年级(上)月考数学试卷(9月份)参考答案与试题解析一、选择题(共8小题;共24分)1.D.2.A.3 C正确;4.C.5.A.6.D.7 A.8.【解答】解:左上角阴影部分的长为AE,宽为AF=3b,右下角阴影部分的长为PC,宽为a,∵AD=BC,即AE+ED=AE+a,BC=BP+PC=4b+PC,∴AE+a=4b+PC,即AE﹣PC=4b﹣a,∴阴影部分面积之差S=AE•AF﹣PC•CG=3bAE﹣aPC=3b(PC+4b﹣a)﹣aPC=(3b ﹣a)PC+12b2﹣3ab,则3b﹣a=0,即a=3b.解法二:既然BC是变化的,当点P与点C重合开始,然后BC向右伸展,设向右伸展长度为X,左上阴影增加的是3bX,右下阴影增加的是aX,因为S不变,∴增加的面积相等,∴3bX=aX,∴a=3b.故选:B.二、填空题(共6小题;共18分)9.(2011•南平)化简:√64=8.10.5.11.18.12.213.±1.14.【解答】解:设拼成的矩形的另一边长为x,则4x=(m+4)2﹣m2=(m+4+m)(m+4﹣m),解得x=2m+4.故答案为:2m+4.三、解答题(共4小题;共35分)15.(=a3﹣a;4x2﹣12xy+9y2.16.=4(1+x)(1﹣x);=x(3x+y)2.17.【解答】解:原式=20172﹣2×2017×2016+20162=(2017﹣2016)2=1.18.x=±2√2,四、解答题(共5小题;共43分)19.【解答】解:∵a的平方根是它本身,∴a=0,∵b是2a+8的立方根,即b是8的立方根,∴b=2,则ab2+b=0×22+2=2.20.=﹣b2,当b=√5时,原式=﹣(√5)2=﹣5.21.【解答】解:阴影部分面积=a2+b2−12a2−12(a+b)b=12a2+12b2−12ab.22.【解答】解:(x+2y)2+(x﹣2y)(x+2y)﹣2x(3x﹣y)=x2+4xy+4y2+x2﹣4y2﹣6x2+2xy=﹣4x2+6xy=﹣2x(2x﹣3y),当2x﹣3y=0时,原式=0.23【解答】解:(1)x2﹣7x+12=x2﹣7x+494−494+12=(x−72)2−14=(x−74+12)(x−72−12)=(x−54)(x﹣4);(2)x2+6x﹣9=x2+6x+9﹣18=(x+3)2﹣18≥﹣18,即多项式的最小值为﹣18;(3)x2+y2﹣4x+2y+6=(x﹣2)2+(y+1)2+1≥1>0,则x,y取任何实数时,多项式x2+y2﹣4x+2y+6的值总为正数.。
安徽省池州市2024-2025学年九年级上学期九月月考数学试题(沪科版)
安徽省池州市2024-2025学年九年级上学期九月月考数学试题(沪科版)一、单选题1.下列函数是二次函数的是( )A .25y x =+B .21y x x =+C .2321y x x =+-D .2(1)y x x x =-+2.已知点P (a ,m ),Q (b ,n )都在反比例函数y=2x-的图象上,且a <0<b ,则下列结论一定正确的是( )A .m+n <0B .m+n >0C .m <nD .m >n 3.已知二次函数y =ax 2+bx +c ,当x =1时,有最大值8,其图象的形状、开口方向与抛物线y =-2x 2相同,则这个二次函数的表达式是( )A .y =-2x 2-x +3B .y =-2x 2+4C .y =-2x 2+4x +8D .y =-2x 2+4x +64.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①b 2﹣4ac >0;②abc <0;③4a +b =0;④4a ﹣2b +c >0.其中正确结论的个数是( )A .4B .3C .2D .15.已知两点12A(5,y ),B(3,y )-均在抛物线2(0)y ax bx c a =++≠上,点00C(x ,y )是该抛物线的顶点,若120y y y >≥,则x 0的取值范围是( )A .0x 5>-B .0x 1>-C .05x 1-<<-D .02x 3-<<6.二次函数()220y ax ax c a =-+>的图象过1234()()3,,1,,2(),,)4,(A y B y C y D y --四个点,下列说法一定正确的是( )A .若120y y >,则340y y >B .若140y y >,则230y y >C .若240y y <,则130y y <D .若340y y <,则120y y <7.某公园草坪的防护栏由100段形状相同的抛物线形构件组成,为了牢固起见,每段护栏需要间距0.4m 加设一根不锈钢的支柱,防护栏的最高点距底部0.5m (如图),则这条防护栏需要不锈钢支柱的总长度至少为( )A .50mB .100mC .160mD .200m8.如图,在平面直角坐标系中,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数(0,0)k y k x x=>>的图象经过顶点D ,分别与对角线AC ,边BC 交于点E ,F ,连接EF ,AF .若点E 为AC 的中点,AEF △的面积为1,则k 的值为( )A .125B .32C .2D .39.已知二次函数222(2)1y x b x b =--+-的图象不经过第三象限,则实数b 的取值范围是( ).A .54b ≥B .1b ≥或1b ≤-C .2b ≥D .12b ≤≤10.如图,在正方形ABCD 中,AB =4,动点M 从点A 出发,以每秒1个单位长度的速度沿射线AB 运动,同时动点N 从点A 出发,以每秒2个单位长度的速度沿折线AD →DC →CB 运动,当点N 运动到点B 时,点M ,N 同时停止运动.设V AMN 的面积为y ,运动时间为x (s ),则下列图象能大致反映y 与x 之间函数关系的是( )A .B .C .D .二、填空题11.二次函数()()2()y x a x b a b =---<与x 轴的两个交点的横坐标分别为m 和n ,且m n <,则a ,b ,m ,n 四个数的大小关系是(用<号连接)12.如图,Rt △ABC 的两个锐角顶点A ,B 在函数y =k x(x >0)的图象上,AC ∥x 轴,AC =2,若点A 的坐标为(2,2),则点B 的坐标为.13.如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长为900m (篱笆的厚度忽略不计),当AB=m 时,矩形土地ABCD 的面积最大.14.如图,抛物线2286y x x =-+-与x 轴交于点A 、B ,把抛物线在x 轴及其上方的部分记作1C ,将1C 向右平移得2C ,2C 与x 轴交于点B ,D ,若直线y x m =+与1C ,2C 共有3个不同的交点,请你探究:(1)2C 对应的函数表达式为;(2)m 的取值范围是.三、解答题15.已知二次函数22y x x m =-+-(m 是常数).(1)若该函数的图象与x 轴有两个不同的交点,求m 的取值范围.(2)若该二次函数的图象与x 轴的其中一个交点坐标为()1,0-,求一元二次方程220x x m -+-=的解.16.已知反比例函数k y x=的图象经过点M(2,1). (1)求该函数的表达式;(2)当2<x<4时,求y 的取值范围(直接写出结果).17.把抛物线()2y a x h k =++先向左平移2个单位长度,再向上平移4个单位长度,得到抛物线()21112y x =+-. (1)试确定,,a h k 的值;(2)作原抛物线关于x 轴对称的图形,求所得抛物线的函数表达式.18.某果园有100棵橙子树,平均每棵树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x 棵橙子树. (1)直接写出平均每棵树结的橙子个数y (个)与x 之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?19.已知顶点为()2,1A -的抛物线经过点B 0,3 ,与x 轴交于C ,D 两点(点C 在点D 的左侧).(1)求抛物线对应的函数表达式;(2)连接AB BD DA ,,,求ABD △的面积.20.如图,在平面直角坐标系中,Y OABC 的顶点A, C 的坐标分别为A(2,0),C(-1,2),反比例函数()k y=k 0x≠的图像经过点B .(1)求k 的值.(2)将Y OABC 沿着x 轴翻折,点C 落在点C′处.判断点C′是否在反比例函数()k y=k 0x≠的图像上,请通过计算说明理由.21.如图,在平面直角坐标系中,抛物线2y ax bx =+经过(2,4)A --,(2,0)B .(1)求抛物线2y ax bx =+的解析式.(2)若点M 是该抛物线对称轴上的一点,求AM OM +的最小值.22.某公司开发一款与教育配套的软件,年初上市后,经历了从亏损到盈利的过程,变化过程可用如图所示的抛物线描述,它刻画了该软件上市以来累积利润S (万元)与销售时间t (月)之间的函数关系(即前t 个月的利润总和S 与t 之间的函数关系),根据图象提供的信息,解答下列问题:(1)此软件上市第几个月后开始盈利?(2)求累积利润S (万元)与销售时间t (月)间的函数表达式;(3)第几个月公司的月利润为2.5万元?23.如图,两条抛物线214y x =-+,2215y x bx c =-++相交于A ,B 两点,点A 在x 轴负半轴上,且为抛物线2y 的最高点.(1)求抛物线2y 的解析式和点B 的坐标;(2)点C 是抛物线1y 上A ,B 之间的一点,过点C 作x 轴的垂线交2y 于点D ,当线段CD 取最大值时,求BCD S △.。
贵州省2024-2025学年高三上学期第一次联考(9月月考)数学试题答案
数学参考答案·第1页(共9页)贵阳第一中学2025届高考适应性月考卷(一)数学参考答案一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 题号 1 2 3 4 5 6 7 8 答案 DCBCBCAA【解析】1.由题,{|13}A x x x =<->或,{1234}B =,,,,则{4}A B = ,故选D .2.对于A 选项,1y x=-的定义域为(0)(0)-∞+∞,,,该函数在(0)-∞,和(0)+∞,上单调递增,在定义域内不单调;对于B 选项,2ln y x =的定义域为(0)(0)-∞+∞ ,,,该函数在(0)-∞,上单调递减,在(0)+∞,上单调递增, 在定义域内不单调;对于C 选项,32y x ==[0)+∞,,该函数在定义域上单调递增;对于D 选项,e x y x =的定义域为R . (1)e x y x '=+∵,当(1)x ∈-∞-,时,0y '<;当(1)x ∈-+∞,时,0y '>,e x y x =∴在(1)-∞-,上单调递减,在(1)-+∞,上单调递增,因此该函数在定义域内不单调,故选C .3.537232a a a =+=∵,516a =,6426d a a =-=,3d =,1544a a d =-=,故选B .4.设点00()A x y ,,则20000252||4y px p x y ⎧=⎪⎪+=⎨⎪=⎪⎩,,,整理得582p p ⎛⎫-= ⎪⎝⎭,解得2p =或8p =,故选C .5.(23)f x -∵的定义域为[23],. 当23x ≤≤时,1233x -≤≤,()f x ∴的定义域为[13],,即[13]A =,. 令1213x -≤≤,解得12x ≤≤,(21)x f -∴的定义域为[12],, 即[12]B =,. B A ⊆∵,∴“x A ∈”是“x B ∈”的必要不充分条件,故选B .6.由题,()()()e ()e ()()()5e ()5e x xx xg x g x f x fx hx h x f x f x --⎧=-+=-+⎧⎪⇒⎨⎨=---=--+⎩⎪⎩,,,解得()3e 2e x xf x -=+,所以()3e 2e x x f x -=+≥,当且仅当3e 2e x x -=,即12ln 23x =时,等号成立,min ()f x =∴C .数学参考答案·第2页(共9页)7.设51x ⎫+⎪⎭的二项展开式的通项公式为53521551C C kkk k kk T xx --+⎛⎫== ⎪⎝⎭,0k =,1,2,3,4,5,所以二项展开式共6项. 当0k =,2,4时的项为无理项;当1k =,3,5时的项为有理项. 两项乘积为有理数当且仅当此两项同时为无理项或同时为有理项,故其概率为223326C C 25C +=,故选A . 8.由题,1C :22(1)(1)2x y -+-=,即圆心为1(11)C ,(20)M ,,(02)N ,,MN 为1C 的直径. 1C ∵与2C 相外切,12||C C =+=∴. 由中线关系,有222222121||||2(||||)2(182)40C M C N C C C M +=+=⨯+=,22||||C M C N ∴≤2222||||202C M C N +=,当且仅当22||||C M C N =时,等号成立,所以22||||C M C N 的最大值为20,故选A .二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,选对但不全的得部分分,有选错的得0分)题号 9 10 11 答案 ACDBCBCD【解析】9.对于A 选项,由分布列性质可知正确;对于B 选项,由两点分布定义可知错误;对于C 选项,()202420252024(1)20252024E X m n n n n =+=-+=+. 01n <<∵,2024()2025E X <<∴,正确;对于D 选项,令2024Y X =-,则Y 服从两点分布,()(1)D Y n n mn =-=,()(2024)()D X D Y D Y mn =+==∴,正确,故选ACD.10.令2()21g x ax ax =-+,244a a ∆=-,对于A 选项,()f x 的定义域为0a ⇔=R 或0010a a >⎧⇔<⎨∆<⎩,≤,故A 错误;对于B 选项,()f x 的值域为()g x ⇔R 在定义域内的值域为0(0)0a a >⎧+∞⇔⇔⎨∆⎩,,≥1≥,故B 正确;对于C 选项,()f x 的最大值为2()g x ⇔在定义域内的最小值为011511616(1)16a a g >⎧⎪⇔⇔=⎨=⎪⎩,,故C 正确;对于D 选项,()f x 有极值()g x ⇔在定义域内有极值01(1)0a a g ≠⎧⇔⇔<⎨>⎩,且0a ≠,故D 选项错误,故选BC.数学参考答案·第3页(共9页)11.对于A 选项,因为(1)g x +为奇函数,所以(1)0g =,又由()(1)1g x f x --=,可得(1)(0)1g f -=,(0)1f =-,故A 错误;对于B 选项,由()(3)f x g x ''=+可得()(3)f x g x C =++,C 为常数,又由()(1)1g x f x --=,可得(1)()1g x f x --=,则(1)(3)1g x g x C --+-=,令1x =-,得(2)(2)1g g C --=,所以1C =-,所以(1)(3)g x g x -=+,()g x 的图象关于直线2x =对称,故B 正确;对于C 选项,因为(1)g x +为奇函数,所以(3)(1)(1)g x g x g x +=-=-+,所以(2)()g x g x +=-,(4)(2)g x g x +=-+ ()g x =,所以()g x 是一个周期为4的周期函数,()(3)1f x g x =+-,(4)(7)f x g x +=+ 1(3)1()g x f x -=+-=,所以()f x 也是一个周期为4的周期函数,故C 正确;对于D 选项,因为(1)g x +为奇函数,所以(1)0g =,(2)(0)(4)g g g =-=-,又(3)(1)0g g ==,又()g x 是周期为4的周期函数,所以20251()(1)0k g k g ===∑,故D 正确,故选BCD.三、填空题(本大题共3小题,每小题5分,共15分)题号 12 13 14 答案 e14433e 6-【解析】12.设切点坐标为()t t a ,,ln x y a a '=∵,∴切线方程为ln x y a a x = . 将()t t a ,代入得ln t t a a t a = ,可得1log e ln a t a==,∴切点纵坐标为e log e t a a a ==. 13.先对小七孔和千户苗寨两个相邻元素捆绑共有22A 种方法,再安排梵净山的位置共有13C 种方法,再排其余元素共有44A 种排法,故共有214234A C A 144= 种不同的方案.14.设123()()()f x f x f x t ===,由()f x 的函数图象知,23t <≤,又122x x +=-,3ln x t =∵,3e t x =,112233()()()2e t x f x x f x x f x t t ++=-+∴. 令()2e t t t t ϕ=-+,23t <≤,()t ϕ'= (1)e 20t t +->,()t ϕ∴在(23],上单调递增,则3max ()(3)3e 6t ϕϕ==-,112233()()()x f x x f x x f x ++∴的最大值为33e 6-.四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)(1)解:数列{n a }是首项为1,公比为3的等比数列,因此11133n n n a --=⨯=;…………………………………………………………………………………(3分)数学参考答案·第4页(共9页)数列{n b }是首项为1,公比为34的等比数列,因此,1133144n n n b --⎛⎫⎛⎫=⨯= ⎪⎪⎝⎭⎝⎭.…………………………………………………………………………………(6分)(2)证明:由(1)可得121121121333344n n n n n n n c a b a b a b a b ----⎛⎫⎛⎫=++++=++ ⎪⎪⎝⎭⎝⎭121333344n n --⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭ 12101111141111331444414n n n n n ----⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎛⎫⎛⎫⎛⎫⎣⎦=++++=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦- 214314n n -⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ , ………………………………………………………(10分)因为2114314411334n n n nn nc a --⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 所以413n n c a <≤,所以4.3n n n a c a <≤ …………………………………………………(13分) 16.(本小题满分15分)(1)证明:如图1,连接1A C ,设11A C C G O = ,连接1HO A G ,,三棱台111A B C ABC -,则11A C AC ∥,又122CG AC ==, ∴四边形11A C CG 为平行四边形,则1.CO OA = ………………………………………………………………(2分)∵点H 是BC 的中点,∴1BA OH ∥. …………………………………………………………………(4分)又OH ⊂平面1C HG ,1A B ⊄平面1C HG ,∴1A B ∥平面1C HG . …………………………………………………………………(6分)(2)解:因为平面1C GH 分三棱台111A B C ABC -所成两部分几何体的体积比为2∶5, 所以111127C GHC A B C ABC V V --=,即11111121()373GHC ABC A B C S CC S S CC =++ △△△, 化简得12GHC ABC S S =△△, 图1数学参考答案·第5页(共9页)此时点H 与点B 重合. ……………………………………………………………(8分)1190C CA BCC ∠=∠=︒,∵11C C BC CC AC BC AC C ⊥⊥= ∴,,且都在平面ABC ,则1CC ⊥平面ABC , 又ABC △为等腰直角三角形,则BG AC ⊥. 又由(1)知11A G CC ∥,则1A G ⊥平面ABC , 建立如图2所示的坐标系G xyz -,…………………………………………………(10分)则(200)(020)(000)(020)H A G C -,,,,,,,,,,,,11(02(122)1)C B --,,,,,.设平面1C HG 的法向量()n x y z =,,,1(022)(200)GC GH =-= ,,,,,, 则22020y z x -+=⎧⎨=⎩,,令1y =,解得(011)n =,,, 设平面1B GH 的法向量1()(112)m a b c GB ==-,,,,,,则2020a b c a -+=⎧⎨=⎩,,令2b =,解得(021)m = ,,. ……………………………………(12分) 设二面角11C GH B --的平面角为θ,|||cos |=|cos |||||m n m n m n θ〈〉==,=, ………………(14分)所以sin θ==所以二面角11C GH B --的正弦值为10. …………………………………………(15分)解得21m =,即双曲线N :2212y x -=. ………………………………………………(3分) 因为双曲线M 与双曲线N 的离心率相同, 不妨设双曲线M 的方程为222y x λ-=, 因为双曲线M 经过点(22),,所以42λ-=,解得2λ=,则双曲线M 的方程为221.24x y -= ………………………………………………(6分) 图2数学参考答案·第6页(共9页)(2)易知直线l 的斜率存在,不妨设直线l 的方程为11223344()()()()y kx t A x y B x y C x y D x y =+,,,,,,,,,联立222y kx t y x λ=+⎧⎪⎨-=⎪⎩,,消去y 并整理得222(2)220k x ktx t λ----=,此时222222Δ44(2)(2)0202k k t t t k λλ⎧=+-+>⎪⎨--<⎪-⎩,,可得22k <,…………………………………(8分)当2λ=时,由韦达定理得21222kt x x k +=-,221242t x x k --=-;当1λ=时,由韦达定理得23422kt x x k +=-,232422t x x k --=-,………………………(10分)则||||2AB CD ==== 化简可得222t k +=, …………………………………………………………………(13分) 由(1)可知圆O :222x y +=,则圆心O 到直线l的距离d ==== 所以直线l 与圆O 相切或相交. …………………………………………………(15分) 18.(本小题满分17分)解:(1)由频率分布直方图知,200只小白鼠按指标值分布为: 在[020),内有0.00252020010⨯⨯=(只); 在[2040),内有0.006252020025⨯⨯=(只); 在[4060),内有0.008752020035⨯⨯=(只); 在[6080),内有0.025********⨯⨯=(只); 在[80100],内有0.00752020030⨯⨯=(只).…………………………………………(1分) 由题意,有抗体且指标值小于60的有50只;而指标值小于60的小白鼠共有10253570++=(只),所以指标值小于60且没有抗体的小白鼠有20只,同理,指标值不小于60且没有抗体的小白鼠有20只,故列联表如下:数学参考答案·第7页(共9页)单位:只指标值抗体小于60不小于60合计有抗体 50 110 160 没有抗体 20 20 40 合计70130200……………………………………………………………………………………………(3分) 零假设为0H :注射疫苗后小白鼠产生抗体与指标值不小于60无关联.…………………………………………………………………………………………(4分) 根据列联表中数据,得220.01200(502020110) 4.945 6.6351604070130x χ⨯⨯-⨯=≈<=⨯⨯⨯. ………………………………………………………………………………………(6分) 根据0.01α=的独立性检验,没有充分证据认为注射疫苗后小白鼠产生抗体与指标值不小于60有关.…………………………………………………………………………………(7分) (2)(i )令事件A =“小白鼠第一次注射疫苗产生抗体”,事件B =“小白鼠第二次注射疫苗产生抗体”,事件C =“小白鼠注射2次疫苗后产生抗体”. 记事件A ,B ,C 发生的概率分别为()P A ,()P B ,()P C , 则160()0.8200P A ==,20()0.540P B ==, ……………………………………………(9分) 0.20.509()1()().1P C P A P B =-=-⨯=,所以一只小白鼠注射2次疫苗后产生抗体的概率0.9P =.……………………………(11分) (ii )由题意,知随机变量(1000.9)X B ,,所以()1000.990.E X np ==⨯= ………………………………………………(13分)又()C 0.90.1()012k k n kn P k n X k -=⨯⋅⋅==⨯⋅,,,,,设0k k =时,()P X k =最大, 所以000000000000100119910010010011101100100C 0.90.1C 0.90.1C 0.90.1C 0.90.1k k k k k k k k k k k k -++-----⎧⨯⨯⨯⨯⎪⎨⨯⨯⨯⨯⎪⎩≥,≥, ………………………………(15分) 解得089.990.9k ≤≤,因为0k 是整数,所以090k =.…………………………………(17分)数学参考答案·第8页(共9页)19.(本小题满分17分)(1)若选①,证明如下:22sin 3sin(2)sin 2cos cos 2sin 2sin cos (12sin )sin θθθθθθθθθθθ=+=+=+-2232sin (1sin )(12sin )sin 3sin 4sin θθθθθθ=-+-=-.………………………………(4分)若选②,证明如下:22cos3cos(2)cos 2cos sin 2sin (2cos 1)cos 2sin cos θθθθθθθθθθθ=+=-=--3232cos cos 2(1cos )cos 4cos 3cos θθθθθθ=---=-. ………………………………(4分)(2)(i)解:2()33f x x a =-', …………………………………………………………(5分) 当0a ≤时,()0f x '≥恒成立,所以()f x 在()-∞+∞,上单调递增,至多有一个零点;令()0fx '>,得x <x >,所以()f x 在(上单调递减,在(-∞,,)+∞上单调递增.0f <⎪⎩,220a -<⎪⎩,且3222(4)(4)3(4)(4)(516)0f a a a a aa aa a +=+-++=++++>,所以()f x 在4)a +上有唯一一个零点,同理-<2(22)0g a-=-+=<, 所以()f x 在(-上有唯一一个零点.又()f x 在(上有唯一一个零点,所以()f x 有三个零点,综上可知a 的取值范围为(04)., …………………………………………………(10分) (ii)证明:设22133()()3())(x f x x x x x ax x a x ==----+, 则23211(0)f x x x a ==-=.又04a <<,所以1a =. ………………………………………………………………(11分) 此时(2)10(1)30(1)10(2)30f f f f -=-<-=>=-<=>,,,,方程3031x x -+=的三个根均在(22)-,内,…………………………………………(12分)数学参考答案·第9页(共9页)方程3031x x -+=变形为3143222x x =⎛⎫- ⎪⎝⎭ ,令ππsin 222x θθ⎛⎫=-<< ⎪⎝⎭,则由三倍角公式31sin 33sin 4sin .2θθθ=-= 因为3π3π322θ⎛⎫∈- ⎪⎝⎭,,所以7ππ5π3666θ=-,,,7ππ5π.181818θ=-,,…………………………………………………………………………………………(14分) 因为123x x x <<,所以12327ππ52sin2si π181n n 81si 8x x x =-==, ……………………………………………………………………………(15分)所以222221π7ππ7π21cos 21cos 18184sin4sin 99x x ⎛⎫⎛⎫-=--- ⎪ ⎪⎝⎭⎝=⎭- 137ππ5π7π2cos2cos 2sin 2sin .991818x x =-=--=- …………………………………(17分)。
高一9月月考(数学)试题含答案
高一9月月考(数学)(考试总分:150 分)一、 单选题 (本题共计25小题,总分100分) 1.(4分)1.下列语言叙述中,能表示集合的是( )A .数轴上离原点距离很近的所有点B .太阳系内的所有行星C .某高一年级全体视力差的学生D .与ABC 大小相仿的所有三角形2.(4分)2.下列五个写法,其中错误..写法的个数为( ) ①{}{}00,2,3∈; ①∅ {}0; ①{}{}0,1,21,2,0⊆; ①N R ∈; ①0∅=∅;A .1B .2C .3D .43.(4分)3.已知集合{}327A x x =->,B ={}1,2,3,4,5,则A B =( )A .{}1,2,3B .C .{}3,4,5D .{}4,54.(4分)4.设集合{}3A x x =≥,{}14B x x =≤≤,则RBA =( )A. B. C .D . 5.(4分)5.已知集合{}{}U x 010,x 410N x A N x =∈≤≤=∈≤≤,则UA =( )A .{}|03x x ≤≤B .{}|04x x ≤<C .{}0,1,2,3D .{}1,2,36.(4分)6.若集合{}0,1,2A =,则集合{},B x y x A y A =-∈∈中元素的个数是( )A .9B .5C .3D .17.(4分)7.已知全集U ,集合M ,N 满足M N U ⊆⊆,则下列结论正确的是( )A .M N U ⋃=B .()()U U M N ⋂=∅C .()U M N ⋂=∅D .()()U U M N U ⋃=8.(4分)8.设a ,R b ∈,集合 {}10ba b a b a ⎧⎫+=⎨⎬⎩⎭,,,,,则 b a -=( )A .1B .1-C .2D .2-9.(4分)9.已知集合{}{}1,21,2,3,4,5,6A ⊆⊆,则满足条件的A 的个数为( ){}1,2{|1}x x ≥{|34}x x ≤≤{|4}x x ≤{}13x x≤<10.(4分)10.已知集合{}13A x N x *=∈-<<,{}20B x ax =+=,若A B B =,则实数a 的取值集合为( ) A .{}1,2--B .{}1,0-C .2,0,1D .{}2,1,0--11.(4分)11.已知M 、N 为R 的子集,若M N ⋂=∅R ,{1,2}N =,则满足题意的M 的个数为( ) A .1B .2C .3D .412.(4分)12.已知集合A ={x |a -1≤x ≤a +2},B ={x |3<x <5},则能使A ⊇B 成立的实数a的取值范围是( ) A .{a | 3<a ≤4} B .{a | 3≤a ≤4} C .{a | 3<a <4}D .∅13.(4分)13.若集合1|(21),9A x x k k Z ⎧⎫==+∈⎨⎬⎩⎭,41|,99B x x k k Z ⎧⎫==±∈⎨⎬⎩⎭,则集合,A B 之间的关系为( ) A .ABB .B AC .A B =D .A B ≠14.(4分)14.设数集3|4M x m x m ⎧⎫=≤≤+⎨⎬⎩⎭,1|3N x n x n ⎧⎫=-≤≤⎨⎬⎩⎭,且M ,N 都是集合{|01}x x ≤≤的子集.如果把b a -叫做{|}x a x b ≤≤的长度,那么集合M N ⋂的长度的最小值是( ) A .13B .1C .112D .3415.(4分)15.对于集合M ,N ,定义{|M N x x M -=∈,且}x N ∉,()()M N M N N M ⊕=-⋃-,设9{|}4A x x x R =-∈,,{|0}B x x x R =<∈,,则A B ⊕=( ) A .B .C .D . 16.(4分)16.已知非空集合A ,B 满足以下两个条件()1{1A B ⋃=,2,3,4,5,6},A B ⋂=∅; ()2若x A ∈,则1x B +∈.则有序集合对()A B ,的个数为( )9{|0}4x x -≤<9{|0}4x x -<<9{|0}4x x x ≤->或9{|0}4x x x >-≥或17.(4分)17.设{}1,2,3,4,I =,A 与B 是I 的子集,若{}1,3A B =,则称(,)A B 为一个“理想配集”.那么符合此条件的“理想配集”(规定(,)A B 与(,)B A 是两个不同的“理想配集”的个数是( ) A .16B .9C .8D .418.(4分)18.命题“存在0x R ∈,使得00e 0x x +=”的否定是( )A .不存在0x R ∈,使得00e 0xx +≠B .存在0x R ∈,使得00e 0xx +≠C .任意x ∈R ,e 0x x +=D .任意x ∈R ,e 0x x +≠19.(4分)19.设集合{|2}M x x =>.{|3}N x x =<,那么“x M ∈且x ∈N ”是“x M N ∈⋂”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件20.(4分)20.若,a b 为实数,则0ab >是0,0a b >>的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件21.(4分)21.如果对于任意实数[],x x 表示不超过x 的最大整数,那么“[][]=x y ”是“1x y -<成立”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件22.(4分)22.已知命题“ 0R x ∃∈,2040x ax a +-< ”为假命题,则实数 a 的取值范围为( ) A .{|-160}a a B . {|-160}a a << C .{|-40}a a ≤≤D .{|-40}a a <<23.(4分)23.若命题“2,10x R x ax ∃∈-+≤”是真命题,则实数a 的取值范围是( )A .2{|}2a a -≤≤B .2{2}|a a a ≤-≥或C .2{}2|a a a <->或D .2{|2}a a -<<24.(4分)24.已知a b c R ∈、、,则下列语句能成为“a b c 、、都不小于1”的否定形式的个数是( )(1)a b c 、、中至少有一个大于1;(2)a b c 、、都小于1;(3)1a <或1b <或1c < A .0个;B .1个;C .2个;D .3个.25.(4分)25.已知关于x 的方程26(0)x x a a -=>的解集为P ,则P 中所有元素的和可能是( ) A .3,6,9B .6,9,12C .9,12,15D .6,12,15二、 多选题 (本题共计10小题,总分50分)26.(5分)26.已知集合M ,N ,P 为全集U 的子集,且满足M ①P ①N ,则下列结论正确的是( ) A .U N ①U PB .N P ①N MC .(U P ) ∩ M = ① D .(U M ) ∩ N = ①27.(5分)27.已知全集U 的两个非空真子集A ,B 满足()U A B B =,则下列关系一定正确的是( ) A .AB =∅ B .A B B =C .A B U ⋃=D .()U B A A =28.(5分)28.图中阴影部分用集合符号可以表示为( )A .()ABC ⋂⋃ B .()A B CC .()UA B C ⋂⋂ D .()()A B A C ⋂⋃⋂29.(5分)29.集合{}220,A x mx x m m =++=∈R 中有且只有一个元素,则m 的取值可以是( ) A .1B .1-C .0D .230.(5分)30.设集合{|11A x a x a =-<<+,}x R ∈,{|15B x x =<<,}x R ∈,则下列选项中,满足AB =∅的实数a 的取值范围可以是( )A .{|06}a aB .{|2a a 或4}aC .{|0}a aD .{|8}a a31.(5分)31.设集合M ={x |x =2m +1,m ①Z },P ={y |y =2m ,m ①Z },若x 0①M ,y 0①P ,a =x 0+y 0,b =x 0y 0,则( )A .a ①MB .a ①PC .b ①MD .b ①P32.(5分)32.对下列命题进行否定,得到的新命题是全称量词命题且为真命题的有( )A .21,04x R x x ∃∈-+< B .所有的正方形都是矩形C .2,220x x x ∃∈++≤RD .至少有一个实数x ,使210x +=33.(5分)33.下列命题正确的有( )A .2x >是(2)(1)0x x -->的充分不必要条件B .2,10x x ∃∈+=RC .22,4213x R x x x ∀∈>-+D .对于任意两个集合,A B ,关系()()A B A B ⋂⊆⋃恒成立34.(5分)34.下列说法正确的是( )A .命题“2,1x R x ”的否定是“2,1xR x ”B .命题“()23,,9x x ∞∃∈-+”的否定是“()23,,9x x ∀∈-+∞>”C .命题2:,0p x R x ∀∈>,则2:,0⌝∃∈<p x R xD .“5a <”是“3a <”的必要条件35.(5分)35.下列叙述正确的是( )A .()2,R,210a b a b ∃∈-++≤ B .R,R a x ∀∈∃∈,使得2>axC .已知R x ∈,则“0x >”是“11x -<”的必要不充分条件D .:8p a ≥;q :对13x ≤≤不等式20x a -≤恒成立,p 是q 的充分不必要条件答案一、 单选题 (本题共计25小题,总分100分) 1.(4分)1. B 2.(4分) 2. C 3.(4分)3. D 4.(4分) 4. A 5.(4分) 5. C 6.(4分) 6. B 7.(4分) 7. C 8.(4分)8. C9.(4分)9. A 满足条件的集合A 为{}12,,{1,2,3},{1,2,4},{1,2,5},{1,2,6},{1,2,3,4},{1,2,3,5},{1,2,3,6},{1,2,4,5},{1,2,4,6},{1,2,5,6},{1,2,3,4,5},{1,2,3,4,6},{1,2,3,5,6},{1,2,4,5,6},{1,2,3,4,5,6}共16个.10.(4分)10. D 因为A B B =,所以B A ⊆,当0a =时,集合{}20B x ax φ=+==,满足B A ⊆; 当0a ≠时,集合{}220B x ax x a ⎧⎫=+===-⎨⎬⎩⎭, 由B A ⊆,{}1,2A =得21a -=或22a-=,解得2a =-或1a =-, 综上,实数a 的取值集合为{}2,1,0--.11.(4分)11. D 可得M N ⊆, 所以{1}M =或{2}M =或M =∅或{1,2}M =, 12.(4分)12. B 因为A ⊇B ,所以⎩⎪⎨⎪⎧a -1≤3,a +2≥5.所以3≤a ≤4.13.(4分)13. C 设任意1x A ∈,则111(21),9x k k Z =+∈,当12,k n n Z =∈时1141(41)999x n n =+=+,所以1x B ∈;当121,k n n Z =-∈时,1141(41)999x n n =-=-,所以1x B ∈.所以A B ⊆又设任意2x B ∈,则2222414(41),999x k k k Z =±=±∈ 因为22412(2)1k k +=+,22412(21)1k k -=-+,且22k 表示所有的偶数,221k -表示所有的奇数.所以2241k k Z ±∈()与21()n n Z +∈都表示所有的奇数. 所以2x A ∈.所以B A ⊆ 故A B =.14.(4分)14. C 解:根据新定义可知集合M 的长度为34,集合N 的长度为13,当集合M N ⋂的长度最小时,M 与N 应分别在区间[]01,上的左右两端,故M N ⋂的长度的最小值是31114312+-=. 15.(4分)15. C 集合9{|}4A x x x R =-∈,,{|0}B x x x R =<∈,,则9|4R C A x x x R ⎧⎫=<-∈⎨⎬⎩⎭,,{}|0R C B x x x R =≥∈,,由定义可得:{}{}[)||00R A B x x Ax B A C B x x x R ∞-=∈∉=⋂=≥∈=+,且,,, {|B A x x B -=∈,且9}{|4R x A B C A x x ∉=⋂=<-,9}4x R ∞⎛⎫∈=-- ⎪⎝⎭,, 故A ()()[)904B A B B A ∞∞⎛⎫⊕=-⋃-=--⋃+ ⎪⎝⎭,,,选项 ABD 错误,选项C 正确.16. 16.(4分)C 若A 为单元素集,则{}1A =时,{2B =,3,4,5,6};{}2A =时,{1B =,3,4,5,6};{}3A =时,{1B =,2,4,5,6};{}4A =时,{2B =,3,1,5,6};{}5A =时,{2B =,3,4,1,6};若A 为双元素集合,则{}13A =,时 ,{2B =,4,5,6};{}14A =,时,{2B =,3,5,6};{}15A =,时 ,{2B =,3,4,6};{}24A =,时,{1B =,3,,5,6};{}25A =,时 ,{1B =,3,4,6};{}35A =,时 ,{1B =,2,4,6};若A 为三元素集合,则{1A =,3,5}时,{2B =,4,6},共12个;选项C 正确17. 17.(4分)B 由题意,对子集A 分类讨论:当集合{}1,3A =,集合B 可以是{1,2,3,4},{1,3,4},{1,2,3},{1,3},共4中结果; 当集合{}1,2,3A =,集合B 可以是{1,3,4},{1,3},共2种结果; 当集合{}1,3,4A =,集合B 可以是{1,2,3},{1,3},共2种结果; 当集合{}1,2,3,4A =,集合B 可以是{1,3},共1种结果, 根据计数原理,可得共有42219+++=种结果.18.(4分)18. D 19.(4分) 19. C 20.(4分) 20. B21.(4分)21. A 若“[][]x y =”,设[][]x a y a x a b y a c ===+=+,,, 其中[01b c ∈,,) 1x y b c x y ∴-=-∴-< 即“[][]x y =”成立能推出“[]1x y -<”成立反之,例如 1.2 2.1x y ==, 满足[]1x y -<但[][]12x y ==,,即[]1x y -<成立,推不出[][]x y = 故“[][]x y =”是“|x-y|<1”成立的充分不必要条件22.(4分)22. A 由题意可知“ R x ∀∈,240x ax a +- ”为真命题,所以 2Δ160a a =+,解得 160a -.23. 23.(4分)B24. 24.(4分)B 若“a b c 、、都不小于1”,则1,1,1a b c ≥≥≥, 否定为“至少有一个小于1”, 故(1),(2)错误,(3)正确.25. 25.(4分)B 解:关于x 的方程26(0)x x a a -=>等价于260x x a --=①,或者260x x a -+=①.由题意知,P 中元素的和应是方程①和方程①中所有根的和.0a >,对于方程①,()2(6)413640a a ∆=--⨯⨯-=+>.∴方程①必有两不等实根,由根与系数关系,得两根之和为6.而对于方程①,364a ∆=-,当9a =时,0∆=可知方程①有两相等的实根为3, 在集合中应按一个元素来记,故P 中元素的和为9; 当9a >时,∆<0方程①无实根,故P 中元素和为6;当09a <<时,方程①中0∆>,有两不等实根,由根与系数关系,两根之和为6, 故P 中元素的和为12.二、 多选题 (本题共计10小题,总分50分) 26.(5分)26. ABC 27.(5分)27. CD采用特值法,可设{}1,2,3,4U =,{}2,3,4A =,{}1,2B =,根据集合之间的基本关系,对选项,,,A B C D 逐项进行检验,即可得到结果.28.(5分)28. AD29. 29.(5分)ABC 解:集合{}220,A x mx x m m =++=∈R 表示方程220mx x m ++=的解组成的集合,当0m =时,{}{}200A x x ===符合题意; 当0m ≠要使A 中有且只有一个元素 只需2440m ∆=-=解得1m =± 故m 的取值集合是{}0,1,1-,30.(5分)30. CD 解:集合{|11A x a x a =-<<+,}x R ∈,{|15B x x =<<,}x R ∈,满足AB =∅,15a ∴-或11a +,解得6a 或0a .31.(5分)31. AD 设x 0=2m +1,y 0=2n ,m ,n ①Z ,则a =x 0+y 0=2m +1+2n =2(m +n )+1, ①m +n ①Z ,①a ①M ,b=x 0y 0=2n (2m +1)=2(2mn +n ), ①2mn +n ①Z ,①b ①P , 即a ∈M ,b ∈P ,32.(5分)32. ACD33.(5分)33. AD 对于A ,当2x >时,(2)(1)0x x -->成立,但当3x =-时,(2)(1)0x x -->也成立,所以“2x >”是“(2)(1)0x x -->”的充分不必要条件,所以A 正确; 对于B ,2,10x R x ∀∈+≠,所以B 错误;22224(213)21(1)0x x x x x x --+=-+=-≥,即当1x =时,224213x x x =-+成立,所以C错误; 因为()AB A ⊆,而()A A B ⊆,所以()()A B A B ⋂⊆⋃恒成立,D 正确.34.(5分)34. BD 对于A ,命题“2,1x R x ”的否定是“2,1x R x ”,故A 错误;对于B ,命题“()23,,9x x∞∃∈-+”的否定是“()23,,9x x ∀∈-+∞>”,故B 正确;对于C ,由命题2:,0p x R x ∀∈>为全称命题,可得p ⌝:x R ∃∈,20x ≤,故C 错误; 对于D ,由5a <不能推出3a <,但3a <时一定有5a <成立,“5a <”是“3a <”的必要条件,故D 正确.35.(5分)35. AC 对于选项A :当2a =,1b =-时,不等式成立,故A 正确;对于选项B :当0a =时,不存在实数x 使得不等式成立,故B 错误;对于选项C :11x -<⇔02x <<,因为{}0x x > {}02x x <<,所以“0x >”是“11x -<”的必要不充分条件,故C 正确;对于选项D :9q a ⇔≥,因为{}8a a ≥ {}9a a ≥,所以p 是q 的必要不充分条件,故D 错误.。
2024-2025学年初中八年级上学期9月月考数学试题及答案(人教版)
人教版数学2024-2025学年八年级上学期数学9月月考模拟试卷(全国通用)一.选择题(共10小题,满分30分,每小题3分)1. 下列各组图形中,属于全等图形的是( )A. B.C. D.2. 以下列数据为三边长能构成三角形的是( )A. 1,2,3B. 2,3,4C. 14,4,9D. 7,2,4 3. 下列各组图形中,BD 是ABC 的高的图形是( )A B.C. D.4. 已知三角形两边的长分别是3和5,则这个三角形第三边的长可能为( )A. 1B. 2C. 7D. 95. 两个同样大小的直角三角板按如图所示摆放,其中两条一样长的直角边交于点M ,另一直角边BE ,CD 分别落在PAQ ∠的边AP 和AQ 上,且AB AC =,连接AM ,则在说明AM 为PAQ ∠的平分线的过程中,理由正确的是( )A. SASB. SSAC. HLD. SSS.6. 一个多边形的内角和是720°,这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形7. 如图,已知ABC 六个元素,则下面甲、乙、丙三个三角形中,和ABC 全等的图形是( )A. 甲和乙B. 乙和丙C. 只有乙D. 只有丙8. 如图在BCD △中,A 为BD 边上一点,AE CD ∥,AC 平分BCD ∠,235∠=°,60D ∠=°,则B ∠=( )A 50° B. 45° C. 40° D. 25°9. 下列多边形材料中,不能单独用来铺满地面的是( )A. 三角形B. 四边形C. 正五边形D. 正六边形10. 如图所示,△ABC 中,点D 、E 、F 分别在三边上,E 是AC 的中点,AD 、BE 、CF 交于一点G ,BD =2DC ,S △GEC =3,S △GDC =4,则△ABC 的面积是( )A. 25B. .30C. 35D. 40二.填空题(共6小题,满分18分,每小题3分)11. 如图,已知AB ∥CF ,E 为AC 的中点,若FC =6cm ,DB =3cm ,则AB =________.12. 如图,A B C D E F ∠+∠+∠+∠+∠+∠=______.的.13. 一个n 边形内角和等于1620°,则边数n 为______.14. 如图,在ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且ABC 的面积等于24cm ,则阴影部分图形面积等于_____2cm .15. 已知,如图ABC ,点D 是ABC 内一点,连接BD CD ,,则BDC ∠与12A ∠∠∠,,之间的数量关系为______.16. △ABC 中,AD 是BC 边上的高,∠BAD=50°,∠CAD=20°,则∠BAC=___________.三.解答题(共9小题,满分72分)17. 如果一个三角形一边长为9cm ,另一边长为2cm ,若第三边长为x cm .(1)求第三边x 的范围;(2)当第三边长为奇数时,求三角形周长.18. 已知:如图,点B ,F ,C ,E 在一条直线上,AB DE =,AB DE ∥,BF EC =.求证:ABC DEF ≌△△.的的19. 如图,CE 是ABC 外角ACD ∠的平分线,且CE 交BA 的延长线于点E ,42B ∠=°,25E ∠=°,(1)求ECD ∠的度数;(2)求BAC ∠的度数.20. 将两个三角形纸板ABC 和DBE 按如图所示的方式摆放,连接DC .已知DBA CBE ∠=∠,BDE BAC ∠=∠,ACDE DC ==.(1)试说明ABC DBE ≌△△.(2)若72ACD ∠=°,求∠21. 如图,在44×的正方形网格中,点A ,B ,C 均为小正方形的顶点,用无刻度的直尺作图,不写作法,保留作图痕迹;(1)在图1中,作ABD △与ABC 全等(点D 与点C 不重合);(2)在图2中,作ABC 的高BE ;(3)在图3中,作AFC ABC ∠=∠(点F 为小正方形的顶点,且不与点B 重合); (4)在图3中,在线段AC 上找点P ,使得BPC ABC ∠=∠.22. (1)阅读理解:课外兴趣小组活动时,老师提出了如下问题:在ABC 中,9AB =,5AC =,求BC 边上的中线AD 的的取值范围.小明在组内经过合作交流,得到了如下的解决方法(如图1):①延长AD 到Q ,使得DQ AD =;②再连接BQ ,把2AB AC AD 、、集中在ABQ 中;根据小明的方法,请直接写出图1中AD 的取值范围是 .(2)写出图1中AC 与BQ 的位置关系并证明.(3)如图2,在ABC 中,AD 为中线,E 为AB 上一点,AD 、CE 交于点F ,且AE EF =.求证:AB CF =.23. 如图,在四边形ABCD 中,60120AD AB DC BC DAB DCB ==∠=°∠=°,,,,E 是AD 上一点,F 是AB 延长线上一点,且DE BF =.(1)求D ∠的度数;(2)求证:CE CF =;(3)若G 在AB 上且60ECG ∠=°,试猜想DE EG BG ,,之间的数量关系,并证明.24. 在ABC 中,90ACB ∠=°,分别过点A 、B 两点作过点C 的直线m 的垂线,垂足分别为点D 、E . (1)如图,当AC CB =,点A 、B 在直线m 的同侧时,猜想线段DE ,AD 和BE 三条线段有怎样的数量关系?请直接写出你的结论:__________;(2)如图,当AC CB =,点A 、B 在直线m 的异侧时,请问(1)中有关于线段DE 、AD 和BE 三条线段的数量关系的结论还成立吗?若成立,请你给出证明;若不成立,请给出正确的结论,并说明理由.(3)当16cm AC =,30cm CB =,点A 、B 在直线m 的同侧时,一动点M 以每秒2cm 的速度从A 点出发沿A →C →B 路径向终点B 运动,同时另一动点N 以每秒3cm 的速度从B 点出发沿B →C →A 路径向终点A 运动,两点都要到达相应的终点时才能停止运动.在运动过程中,分别过点M 和点N 作MP m ⊥于P ,NQ m ⊥于Q .设运动时间为t 秒,当t 为何值时,MPC 与NQC 全等?25. 在平面直角坐标系中,点A (0,5),B (12,0),在y 轴负半轴上取点E ,使OA =EO ,作∠CEF =∠AEB ,直线CO 交BA D .(1)根据题意,可求得OE = ;(2)求证:△ADO ≌△ECO ;(3)动点P 从E 出发沿E ﹣O ﹣B 路线运动速度为每秒1个单位,到B 点处停止运动;动点Q 从B 出发沿B ﹣O ﹣E 运动速度为每秒3个单位,到E 点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM ⊥CD 于点M ,QN ⊥CD 于点N .问两动点运动多长时间△OPM 与△OQN 全等?人教版数学2024-2025学年八年级上学期数学9月月考模拟试卷(全国通用)一.选择题(共10小题,满分30分,每小题3分)1. 下列各组图形中,属于全等图形的是( )A. B.C. D.【答案】C【解析】【分析】本题考查了全等图形.根据全等图形的定义(能够完全重合的两个图形叫做全等形)逐项判断即可得.【详解】解:A 、两个图形的大小不相同,不能够完全重合,不是全等图形,则此项不符合题意; B 、两个图形的大小不相同,不能够完全重合,不是全等图形,则此项不符合题意;C 、两个图形能够完全重合,是全等图形,则此项符合题意;D 、两个图形的形状不相同,不能够完全重合,不是全等图形,则此项不符合题意;故选:C .2. 以下列数据为三边长能构成三角形的是( )A 1,2,3B. 2,3,4C. 14,4,9D. 7,2,4【答案】B【解析】【分析】利用三角形三边关系进行判定即可.【详解】解:A 、123+=,不符合三角形三边关系,错误,不符合题意;B 、234+>,成立,符合题意;C 、4913+<,不符合三角形三边关系,错误,不符合题意;D 、247+<,不符合三角形三边关系,错误,不符合题意;故选B .【点睛】本题考查三角形三边关系,判定形成三角形的标准是两小边之和大于最大边,熟练掌握运用三角形.三边关系是解题关键.3. 下列各组图形中,BD 是ABC 的高的图形是( )A. B.C. D.【答案】B【解析】【分析】三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念即可得到答案.【详解】解:根据三角形高的定义可知,只有选项B 中的线段BD 是△ABC 的高,故选:B .【点睛】考查了三角形的高的概念,掌握高的作法是解题的关键.4. 已知三角形两边的长分别是3和5,则这个三角形第三边的长可能为( )A. 1B. 2C. 7D. 9 【答案】C【解析】【分析】先根据三角形的三边关系求出x 的取值范围,再求出符合条件的x 的值即可.【详解】解:设三角形第三边的长为x ,则5-3<x <5+3,即2<x <8,只有选项C 符合题意.故选C .【点睛】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边. 5. 两个同样大小的直角三角板按如图所示摆放,其中两条一样长的直角边交于点M ,另一直角边BE ,CD 分别落在PAQ ∠的边AP 和AQ 上,且AB AC =,连接AM ,则在说明AM 为PAQ ∠的平分线的过程中,理由正确的是( )A. SASB. SSAC. HLD. SSS【答案】C【解析】 【分析】根据全等三角形的判定和性质定理以及角平分线的定义即可得结论,从而作出判断.【详解】解:根据题意可得:90ABM ACM ∠=∠=°,∴ABM 和ACM △都是直角三角形,在Rt ABM 和Rt ACM 中,AB AC AM AM = =∴()Rt Rt HL ABM ACM ≌,∴BAM CAM ∠=∠,∴AM 为PAQ ∠的平分线,故选:C .【点睛】本题考查角平分线的判定和全等三角形的判定和性质的应用,解题的关键是掌握全等三角形的判定方法.6. 一个多边形的内角和是720°,这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形【答案】B【解析】【分析】本题考查了多边形的内角和公式,根据多边形的内角和公式解答即可.【详解】设边数为n ,根据题意,得 ()2180720n −⋅°=°,解得6n =. ∴这个多边形为六边形,故选:B .7. 如图,已知ABC 的六个元素,则下面甲、乙、丙三个三角形中,和ABC 全等的图形是( )A. 甲和乙B. 乙和丙C. 只有乙D. 只有丙【答案】B【解析】 【分析】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,分别利用全等三角形的判定方法逐个判断即可.【详解】解:在ABC 中,边a 、c 的夹角为50°,∴与乙图中的三角形满足SAS ,可知两三角形全等,在丙图中,由三角形内角和可求得另一个角为58°,且58°角和50°角的夹边为a ,ABC ∴ 和丙图中的三角形满足ASA ,可知两三角形全等,在甲图中,和ABC 满足的是SSA ,可知两三角形不全等,综上可知能和ABC 全等的是乙、丙,故选:B .8. 如图在BCD △中,A 为BD 边上一点,AE CD ∥,AC 平分BCD ∠,235∠=°,60D ∠=°,则B ∠=( )A. 50°B. 45°C. 40°D. 25°【答案】A【解析】 【分析】本题主要考查了平行线的性质,三角形内角和定理,角平分线的定义,根据平行线的性质和角平分线的定义,可以求得BCD ∠的度数,再根据三角形内角和.即可求得B ∠的度数.【详解】解:∵AE CD ∥,235∠=°,∴1235∠=∠=°,∵AC 平分BCD ∠,∴2170BCD ∠=∠=°,∵60D ∠=°,∴180180607050B D BCD ∠=°−∠−∠=°−°−°=°,故选:A .9. 下列多边形材料中,不能单独用来铺满地面的是( )A. 三角形B. 四边形C. 正五边形D. 正六边形【答案】C【解析】【分析】一个多边形的镶嵌应该符合其内角度数可以整除360°【详解】A 、三角形内角和为180°,能整除360°,能密铺,故此选项不合题意;B 、四边形内角和为360°,能整除360°,能密铺,故此选项不合题意;C 、正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能密铺,故此选项合题意;D 、正六边形每个内角为180°﹣360°÷6=120°,能整除360°,能密铺,故此选项不合题意; 故选C .【点睛】本题主要考查图形的镶嵌问题,重点是掌握多边形镶嵌的原理.10. 如图所示,△ABC 中,点D 、E 、F 分别在三边上,E 是AC 的中点,AD 、BE 、CF 交于一点G ,BD =2DC ,S △GEC =3,S △GDC =4,则△ABC 的面积是( )A. 25B. .30C. 35D. 40【答案】B【解析】 【分析】由于BD=2DC ,那么结合三角形面积公式可得S △ABD =2S △ACD ,而S △ABC =S △ABD +S △ACD ,可得出S △ABC =3S △ACD ,而E 是AC 中点,故有S △AGE =S △CGE ,于是可求S △ACD ,从而易求S △ABC . 【详解】.解:BD =2DC ,∴S △ABD =2S △ACD , ∴S △ABC =3S △ACD ,∵E 是AC 的中点,∴S△AGE=S△CGE,又∵S△GEC=3,S△GDC=4,∴S△ACD=S△AGE+S△CGE+S△CGD=3+3+4=10,∴S△ABC=3S△ACD=3×10=30.故选B.【点睛】此题考查三角形的面积公式、三角形之间的面积加减计算.解题关键在于注意同底等高的三角形面积相等,面积相等、同高的三角形底相等.二.填空题(共6小题,满分18分,每小题3分)11. 如图,已知AB∥CF,E为AC的中点,若FC=6cm,DB=3cm,则AB=________.【答案】9cm【解析】【详解】试题解析:AB∥CF,∴∠=∠∠=∠A FCE ADE CFE..E为AC的中点,∴=AE CE.△ADE≌△CFE,∴==DA FC6.AB AD DB cm∴=+=+=639.cm故答案为9.∠+∠+∠+∠+∠+∠=______.12. 如图,A B C D E F【答案】180°##180度【解析】【分析】本题主要考查三角形的外角的性质,三角形的内角和为180°,将所求角的度数转化为某些三角形的内角和是解题的关键;将所求的角的度数转化为HNG △的内角和,即可得到答案.【详解】解:,,A B GHN C D GNH E F HGN ∠+∠=∠∠+∠=∠∠+∠=∠ ,∴180A B C D E F GNH GHN HGN ∠+∠+∠+∠+∠+∠=∠+∠+∠=°,故答案为:180°.13. 一个n 边形内角和等于1620°,则边数n 为______.【答案】11【解析】【分析】根据多边形内角和公式,列方程求解即可.【详解】解:由题意,得()18021620n −=,解得:11n =,故答案为:11.【点睛】本题考查多边形内角和,熟练掌握多边形内角和公式是解题的关键.14. 如图,在ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且ABC 的面积等于24cm ,则阴影部分图形面积等于_____2cm .【答案】1【解析】【分析】此题考查了三角形中线的性质,根据三角形的中线分得的两个三角形的面积相等,就可证得12BEF BEC S S = ,12BDE ABD S S = ,12DE CD S S =△C △A ,12ABD ABC S S = ,再由ABC 的面积为4,就可得到BEF △的面积,解题的关键是熟练掌握三角形中线的性质及其应用.【详解】解:∵点F 是CE 的中点, ∴12BEF BEC S S = , ∵点E 是AD 的中点, ∴12BDE ABD S S = , 同理可证12DE CD S S =△C △A , ∵点D 是BC 的中点, ∴114222ABD ABC S S ==×= , ∴1212BDE CDE S S ==×= , ∴112BEC S =+= , ∴1212BEF S =×=△, 故答案为:1.15. 已知,如图ABC ,点D 是ABC 内一点,连接BD CD ,,则BDC ∠与12A ∠∠∠,,之间的数量关系为______.【答案】12BDC A ∠=∠+∠+∠【解析】【分析】本题考查了三角形的外角性质,延长BBBB 交AC 于点E ,由三角形外角性质可得1BEC A ∠=∠+∠,2BDC BEC ∠=∠+∠,进而即可求解,正确作出辅助线是解题的关键.【详解】解:延长BBBB 交AC 于点E ,如图,∵BEC ∠是ABE 的外角,∴1BEC A ∠=∠+∠,∵BDC ∠是CDE 的外角,∴2BDC BEC ∠=∠+∠,即12BDC A ∠=∠+∠+∠,故答案为:12BDC A ∠=∠+∠+∠.16. △ABC 中,AD 是BC 边上的高,∠BAD=50°,∠CAD=20°,则∠BAC=___________.【答案】70°或30°【解析】【分析】根据AD 的不同位置,分两种情况进行讨论:AD 在△ABC 的内部,AD 在△ABC 的外部,分别求得∠BAC 的度数.【详解】①如图,当AD 在△ABC 的内部时,∠BAC=∠BAD+∠CAD=50°+20°=70°.②如图,当AD 在△ABC 的外部时,∠BAC=∠BAD -∠CAD=50°-20°=30°.故答案为:70°或30°.【点睛】本题主要考查了三角形高的位置情况,充分考虑三角形的高在三角形的内部或外部进行分类讨论是解题的关键.三.解答题(共9小题,满分72分)17. 如果一个三角形的一边长为9cm ,另一边长为2cm ,若第三边长为x cm .(1)求第三边x 的范围;(2)当第三边长为奇数时,求三角形的周长.【答案】(1)7<x <11(2)20cm【解析】【分析】(1)根据三角形的三边关系得到有关第三边的取值范围即可;(2)根据(1)得到的取值范围确定第三边的值,从而确定三角形的周长.【小问1详解】由三角形的三边关系得:9292x −<<+,即711x <<;【小问2详解】∵第三边长的范围为711x <<,且第三边长为奇数,∴第三边长为9,则三角形的周长为:99220cm ++=【点睛】本题考查了三角形的三边关系,解题的关键是能够根据三角形的三边关系列出有关x 的取值范围,难度不大.18. 已知:如图,点B ,F ,C ,E 在一条直线上,AB DE =,AB DE ∥,BF EC =.求证:ABC DEF ≌△△.【答案】证明见解析【解析】【分析】根据两直线平行,内错角相等,得出ABC DEF ∠=∠,再根据线段之间的数量关系,得出BC EF =,再根据“边角边”,即可得出结论.【详解】证明:∵AB DE ∥,∴ABC DEF ∠=∠,∵BF EC =,∴BF FC EC FC +=+,∴BC EF =,在ABC 和DEF 中,AB DE ABC DEF BC EF = ∠=∠ =, ∴()ABC DEF SAS ≌.【点睛】本题考查了平行线的性质、全等三角形的判定定理,解本题的关键在熟练掌握全等三角形的判定方法.19. 如图,CE 是ABC 外角ACD ∠的平分线,且CE 交BA 的延长线于点E ,42B ∠=°,25E ∠=°,(1)求ECD ∠的度数;(2)求BAC ∠的度数.【答案】(1)67°(2)92°【解析】【分析】本题考查角平分线定义及三角形外角性质.(1)根据三角形外角性质求出ECD ∠;(2)由已知可求出ACE ∠,根据三角形外角性质求出BAC ∠即可.【小问1详解】解:ECD ∠ 是BCE 的外角,ECD B E ∴∠=∠+∠,42B ∠=° ,25E ∠=°,∴67ECD ∠=°;【小问2详解】解:EC 平分ACD ∠,67ACE ECD ∠=∠=°∴,BAC ∠ 是ACE △的外角,BAC ACE E ∴∠=∠+∠,672592BAC ∴∠=°+°=°.20. 将两个三角形纸板ABC 和DBE 按如图所示方式摆放,连接DC .已知DBA CBE ∠=∠,BDE BAC ∠=∠,AC DE DC ==.(1)试说明ABC DBE ≌△△.(2)若72ACD ∠=°,求BED ∠的度数.【答案】(1)见解析 (2)36BED ∠=°【解析】【分析】(1)利用AAS 证明三角形全等即可;(2)全等三角形的性质,得到BED BCA ∠=∠,证明()SSS DBC ABC ≌,得到1362BCD BCA ACD ∠=∠=∠=°,即可得解.【小问1详解】解:因为DBA CBE ∠=∠,所以DBA ABE CBE ABE ∠+∠=∠+∠,即DBE ABC ∠=∠.在ABC 和DBE 中,ABC DBEBAC BDE AC DE∠=∠ ∠=∠ = ,所以()AAS ABC DBE ≌.【小问2详解】因为ABC DBE ≌△△,所以BD BA =,BCA BED ∠=∠.的在DBC △和ABC 中,DC AC CB CB BD BA = = =,所以()SSS DBC ABC ≌, 所以1362BCD BCA ACD ∠=∠=∠=°, 所以36BED BCA ∠=∠=°.【点睛】本题考查全等三角形的判定和性质.解题的关键是证明三角形全等.21. 如图,在44×的正方形网格中,点A ,B ,C 均为小正方形的顶点,用无刻度的直尺作图,不写作法,保留作图痕迹;(1)在图1中,作ABD △与ABC 全等(点D 与点C 不重合);(2)在图2中,作ABC 的高(3)在图3中,作AFC ABC ∠=∠(点F 为小正方形的顶点,且不与点B 重合); (4)在图3中,在线段AC 上找点P ,使得BPC ABC ∠=∠.【答案】(1)见解析 (2)见解析(3)见解析 (4)见解析【解析】【分析】本题考查作图-应用与设计作图,全等三角形的判定与性质等知识,作三角形的高,三角形内角和,勾股定理,解题的关键是学会利用数形结合的思想解决问题.(1)利用全等三角形的判定方法,构造全等三角形即可;(2)取格点T ,连接BT 交AC 于点E ,线段BE 即为所求;(3)构造全等三角形即可;(4)利用勾股定理可知45A ∠=°,根据三角形内角和定理,作45QBC A ∠=∠=°,QB 交AC 点P 即可.【小问1详解】如图1,ABD △即为所求;【小问2详解】如图,BE 即为所求;【小问3详解】如图,AFC ∠即为所求;【小问4详解】如图,点P 即为所求.22. (1)阅读理解:课外兴趣小组活动时,老师提出了如下问题:在ABC 中,9AB =,5AC =,求BC 边上的中线AD 的的取值范围. 小明在组内经过合作交流,得到了如下的解决方法(如图1):①延长AD 到Q ,使得DQ AD =;②再连接BQ ,把2AB AC AD 、、集中在ABQ 中;根据小明的方法,请直接写出图1中AD 的取值范围是 .(2)写出图1中AC 与BQ 的位置关系并证明.(3)如图2,在ABC 中,AD 为中线,E 为AB 上一点,AD 、CE 交于点F ,且AE EF =.求证:AB CF =.【答案】(1)27AD <<;(2)AC BQ ∥,证明见解析;(3)见解析 【解析】【分析】(1)先证()SAS BDQ CDA ≌ ,推出5BQCA ==,再利用三角形三边关系求解; (2)根据BDQ CDA ≌可得BQD CAD ∠=∠,即可证明AC BQ ∥; (3)(3)延长AD 至点G ,使GD AD =,连接CG ,先证明()SAS ≌ADB GDC ,即可得出AB GC G BAD =∠=∠,,再根据AE EF =,得出AFE FAE ∠=∠,最后根据等角对等边,即可求证AB CF =.【详解】解:(1)延长AD 到Q ,使得DQ AD =,再连接BQ ,∵AD 是ABC 的中线,∴BD CD =,又∵DQ AD =,BDQ CDA ∠=∠, ∴()SAS BDQ CDA ≌ ,∴5BQCA ==, 在ABQ 中,AB BQ AQ AB BQ −<<+,∴9595AQ −<<+,即414AQ <<,∴27AD <<,故答案为:27AD <<;(2)AC BQ ∥,证明如下:由(1)知BDQ CDA ≌,∴BQD CAD ∠=∠, ∴AC BQ ∥;(3)延长AD 至点G ,使GD AD =,连接CG ,∵AD 为BC 边上中线,∴BD CD =,在ADB 和GDC 中,的BD CD ADB GDC AD GD = ∠=∠ =, ∴()SAS ≌ADB GDC ,∴AB GC G BAD =∠=∠,,∵AE EF =,∴AFE FAE ∠=∠,∴DAB AFE CFG ∠=∠=∠,∴∠=∠G CFG ,∴CG CF =,∴AB CF =.【点睛】本题考查全等三角形的判定和性质,平行线的判定和性质,三角形三边关系的应用等,解题的关键是通过倍长中线构造全等三角形.23. 如图,在四边形ABCD 中,60120AD AB DC BC DAB DCB ==∠=°∠=°,,,,E 是AD 上一点,F 是AB 延长线上一点,且DE BF =.(1)求D ∠的度数;(2)求证:CE CF =;(3)若G 在AB 上且60ECG ∠=°,试猜想DE EG BG ,,之间的数量关系,并证明.【答案】(1)见解析 (2)见解析(3)EG BG DE =+,证明见解析【解析】【分析】本题考查了全等三角形的判定与性质、四边形内角和定理以及角的计算;根据全等三角形的性质找出相等的边角关系是关键.(1)结合AD AB DC BC ==、即可证出ABC ADC △△≌,由此即可得出30DAC ∠=°,60DCA ∠=°,即可求解;(2)通过角的计算得出D CBF ∠=∠,证出()CDE CBF SAS ≌,由此即可得出CE CF =; (3)结合AD AB DC BC ==、即可证出ABC ADC △△≌,由此即可得出60BCA DCA ∠=∠=°,再根据60ECG ∠=°即可得出DCE ACG ∠=∠,ACE BCG ∠=∠,由(2)可知CDE CBF △△≌,进而得知DCE BCF ∠=∠,根据角的计算即可得出ECG FCG ∠=∠,结合DE DF =即可证出CEG CFG ≌ ,即得出EG FG =,由相等的边与边之间的关系即可证出DE BG EG +=.【小问1详解】解:ABC 和ADC △中,AB AD AC AC BC DC = = =, ()ABC ADC SSS ∴ ≌,BCA DCA ∴∠=∠,DAC BAC ∠=∠,60120DAB DCB ∠=°∠=° ,,1302DAC DAB ∴∠=∠=°,1602DCA DCB ∠=∠=°, 180D DAC DCA ∠+∠+∠=° ,180306090D ∴∠=°−°−°=°;【小问2详解】证明:36060120D DAB ABC DCBDAB DCB ∠+∠+∠+∠=°∠=°∠=°,, , 36060120180D ABC ∴∠+∠=°−°−°=°.180CBF ABC ∠+∠=° ,D CBF ∴∠=∠.在CDE 和CBF 中,DC BC D CBF DE BF = ∠=∠ =, ()CDE CBF SAS ∴ ≌.CE CF ∴=.【小问3详解】解:猜想DE EG BG 、、之间的数量关系为:DE BG EG +=.理由如下:在在ABC 和ADC △中,AB AD AC AC BC DC = = =, ()ABC ADC SSS ∴ ≌,111206022BCA DCA DCB °=°∴∠=∠=∠=×. 60ECG ∠=° ,DCE ACG ACE BCG ∴∠=∠∠=∠,.由(2)可得:CDE CBF △△≌,DCE BCF ∴∠=∠.60BCG BCF ∴∠+∠=°,即60FCG ∠=°.ECG FCG ∴∠=∠.在CEG 和CFG △中,CE CF ECG FCG CG CG = ∠=∠ =, ()CEG CFG SAS ∴ ≌,EG FG ∴=.DE BF FG BF BG ==+, ,DE BG EG ∴+=.24. 在ABC 中,90ACB ∠=°,分别过点A 、B 两点作过点C 的直线m 的垂线,垂足分别为点D 、E . (1)如图,当AC CB =,点A 、B 在直线m 的同侧时,猜想线段DE ,AD 和BE 三条线段有怎样的数量关系?请直接写出你的结论:__________;(2)如图,当AC CB =,点A 、B 在直线m 的异侧时,请问(1)中有关于线段DE 、AD 和BE 三条线段的数量关系的结论还成立吗?若成立,请你给出证明;若不成立,请给出正确的结论,并说明理由.(3)当16cm AC =,30cm CB =,点A 、B 在直线m 的同侧时,一动点M 以每秒2cm 的速度从A 点出发沿A →C →B 路径向终点B 运动,同时另一动点N 以每秒3cm 的速度从B 点出发沿B →C →A 路径向终点A 运动,两点都要到达相应的终点时才能停止运动.在运动过程中,分别过点M 和点N 作MP m ⊥于P ,NQ m ⊥于Q .设运动时间为t 秒,当t 为何值时,MPC 与NQC 全等?【答案】(1)DE AD BE =+;(2)不成立,理由见解析;(3)当9.2t =或14或16秒时,MPC 与NQC 全等【解析】【分析】(1)根据AD m ⊥,BE m ⊥,得90ADC CEB ∠=∠=°,而90ACB ∠=°,根据等角的余角相等得CAD BCE ∠=∠,然后根据“AAS”可判断()ACD CBE AAS ∆∆≌,则=AD CE ,CD BE =,于是DE CE CD AD BE =+=+;(2)同(1)易证()ACD CBE AAS ∆∆≌,则=AD CE ,CD BE =,于是DE CE CD AD BE =−=−;(3)只需根据点M 和点N 的不同位置进行分类讨论即可解决问题.【详解】(1)猜想:DE AD BE =+(2)不成立;理由:∵AD m ⊥,BE m ⊥,∴90ADC CEB ∠=∠=°,∵90ACB ∠=°,∴90ACD CAD ACD BCE ∠+∠=∠+∠=°,∴CAD BCE ∠=∠,在ACD 和CBE △中,ADC CEB CAD BCE AC CB ∠=∠ ∠=∠ =∴()ACD CBE AAS ∆∆≌,∴=AD CE ,CD BE =,∴DE CE CD AD BE =−=−;(3)①当08t ≤<时,点M 在AC 上,点N 在BC 上,如图,此时2AM t =,3BN t =,16AC =,30CB =,则MC AC AM =−,NC BC BN =−,当MC NC =,即162303t t −=−,解得:14t =,不合题意;②当810t ≤<时,点M 在BC 上,点N 也在BC 上,此时相当于两点相遇,如图,∵MC NC =,点M 与点N 216303t t −=−,解得:9.2t =; ③当46103t ≤<时,点M 在BC 上,点N 在AC 上,如图,∵MC NC =,∴216330t t −=−,解得:14t =; ④当46233t ≤≤时,点N 停在点A 处,点M 在BC 上,如图,∵MC NC =,∴21616t −=,解得:16t =;综上所述:当9.2t =或14或16秒时,MPC ∆与NQC ∆全等.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,同角的余角相等,判断出ACD CBE ∆∆≌是解本题的关键,还用到了分类讨论的思想.25. 在平面直角坐标系中,点A (0,5),B (12,0),在y 轴负半轴上取点E ,使OA =EO ,作∠CEF =∠AEB ,直线CO 交BA 的延长线于点D .(1)根据题意,可求得OE = ;(2)求证:△ADO ≌△ECO ;(3)动点P 从E 出发沿E ﹣O ﹣B 路线运动速度为每秒1个单位,到B 点处停止运动;动点Q 从B 出发沿B ﹣O ﹣E 运动速度为每秒3个单位,到E 点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM ⊥CD 于点M ,QN ⊥CD 于点N .问两动点运动多长时间△OPM 与△OQN 全等?【答案】(1)5;(2)见解析;(3)当两动点运动时间为72、174、10秒时,△OPM 与△OQN 全等 【解析】【分析】(1)根据OA=OE 即可解决问题.(2)根据ASA 证明三角形全等即可解决问题.(2)设运动的时间为t 秒,分三种情况讨论:当点P 、Q 分别在y 轴、x 轴上时;当点P 、Q 都在y 轴上时;当点P 在x 轴上,Q 在y 轴时若二者都没有提前停止,当点Q 提前停止时;列方程即可得到结论.【详解】(1)∵A (0,5),∴OE =OA =5,故答案为5.(2)如图1中,∵OE =OA ,OB ⊥AE ,∴BA =BE ,∴∠BAO =∠BEO ,∵∠CEF =∠AEB ,∴∠CEF =∠BAO ,∴∠CEO =∠DAO ,在△ADO 与△ECO 中,CE0DA0OA 0ECOE AOD ∠=∠ = ∠=∠, ∴△ADO ≌△ECO (ASA ).(2)设运动的时间为t 秒,当PO =QO 时,易证△OPM ≌△OQN .分三种情况讨论:①当点P 、Q 分别在y 轴、x 轴上时PO =QO 得:5﹣t =12﹣3t ,解得t =72(秒), ②当点P 、Q 都在y 轴上时PO =QO 得:5﹣t =3t ﹣12,解得t =174(秒), ③当点P x 轴上,Q 在y 轴上时,若二者都没有提前停止,则PO =得:t ﹣5=3t ﹣12,解得t =72(秒)不合题意; 当点Q 运动到点E 提前停止时,有t ﹣5=5,解得t =10(秒), 综上所述:当两动点运动时间为72、174、10秒时,△OPM 与△OQN 全等. 【点睛】本题属于三角形综合题,考查了全等三角形的判定,坐标与图形的性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.在。
2024-2025学年高三上学期第一次联考(9月月考) 数学试题[含答案]
2024~2025学年高三第一次联考(月考)试卷数学考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:集合、常用逻辑用语、不等式、函数、导数及其应用.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则集合的真子集的个数为(){}4,3,2,0,2,3,4A =---{}2290B x x =-≤A B ⋂A.7B.8C.31D.322.已知,,则“,”是“”的( )0x >0y >4x ≥6y ≥24xy ≥A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件3.国家速滑馆又称“冰丝带”,是北京冬奥会的标志性场馆,拥有亚洲最大的全冰面设计,但整个系统的碳排放接近于零,做到了真正的智慧场馆、绿色场馆,并且为了倡导绿色可循环的理念,场馆还配备了先进的污水、雨水过滤系统,已知过滤过程中废水的污染物数量与时间(小时)的关系为()mg /L N t (为最初污染物数量,且).如果前4个小时消除了的污染物,那么污染物消0e kt N N -=0N 00N >20%除至最初的还需要( )64%A.3.8小时 B.4小时C.4.4小时D.5小时4.若函数的值域为,则的取值范围是()()()2ln 22f x x mx m =-++R m A.B.()1,2-[]1,2-C.D.()(),12,-∞-⋃+∞(][),12,-∞-⋃+∞5.已知点在幂函数的图象上,设,(),27m ()()2n f x m x =-(4log a f =,,则,,的大小关系为( )()ln 3b f =123c f -⎛⎫= ⎪⎝⎭a b c A.B.c a b <<b a c<<C. D.a c b <<a b c<<6.已知函数若关于的不等式的解集为,则的()()2e ,0,44,0,x ax xf x x a x a x ⎧->⎪=⎨-+-+≤⎪⎩x ()0f x ≥[)4,-+∞a 取值范围为( )A.B. C. D.(2,e ⎤-∞⎦(],e -∞20,e ⎡⎤⎣⎦[]0,e 7.已知函数,的零点分别为,,则( )()41log 4xf x x ⎛⎫=- ⎪⎝⎭()141log 4xg x x ⎛⎫=- ⎪⎝⎭a b A. B.01ab <<1ab =C.D.12ab <<2ab ≥8.已知,,,且,则的最小值为( )0a >0b >0c >30a b c +-≥6b a a b c ++A. B. C. D.29495989二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是( )A.函数是相同的函数()f x =()g x =B.函数6()f x =C.若函数在定义域上为奇函数,则()313xx k f x k -=+⋅1k =D.已知函数的定义域为,则函数的定义域为()21f x +[]1,1-()f x []1,3-10.若,且,则下列说法正确的是()0a b <<0a b +>A. B.1a b >-110a b+>C. D.22a b <()()110a b --<11.已知函数,则下列说法正确的是( )()()3233f x x x a x b=-+--A.若在上单调递增,则的取值范围是()f x ()0,+∞a (),0-∞B.点为曲线的对称中心()()1,1f ()y f x =C.若过点可作出曲线的三条切线,则的取值范围是()2,m ()()3y f x a x b =+-+m ()5,4--D.若存在极值点,且,其中,则()f x 0x ()()01f x f x =01x x ≠1023x x +=三、填空题:本题共3小题,每小题5分,共15分.12.__________.22lg 2lg3381527log 5log 210--+⋅+=13.已知函数称为高斯函数,表示不超过的最大整数,如,,则不等式[]y x =x []3.43=[]1.62-=-的解集为__________;当时,的最大值为__________.[][]06x x <-0x >[][]29x x +14.设函数,若,则的最小值为__________.()()()ln ln f x x a x b =++()0f x ≥ab 四、解答题:本题共5小题、共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知全集,集合,.U =R {}231030A x x x =-+≤{}220B x xa =+<(1)若,求和;8a =-A B ⋂A B ⋃(2)若,求的取值范围.()UA B B ⋂= a 16.(本小题满分15分)已知关于的不等式的解集为.x 2280ax x --<{}2x x b-<<(1)求,的值;a b (2)若,,且,求的最小值.0x >2y >-42a bx y +=+2x y +17.(本小题满分15分)已知函数.()()()211e 2x f x x ax a =--∈R (1)讨论的单调性;()f x (2)若对任意的恒成立,求的取值范围.()e x f x x ≥-[)0,x ∈+∞a 18.(本小题满分17分)已知函数是定义在上的奇函数.()22x xf x a -=⋅-R(1)求的值,并证明:在上单调递增;a ()f x R (2)求不等式的解集;()()23540f x x f x -+->(3)若在区间上的最小值为,求的值.()()442x x g x mf x -=+-[)1,-+∞2-m 19.(本小题满分17分)已知函数.()()214ln 32f x x a x x a =---∈R (1)若,求的图像在处的切线方程;1a =()f x 1x =(2)若恰有两个极值点,.()f x 1x ()212x x x <(i )求的取值范围;a (ii )证明:.()()124ln f x f x a+<-数学一参考答案、提示及评分细则1.A 由题意知,又,所以{}2290B x x ⎡=-=⎢⎣∣ {}4,3,2,0,2,3,4A =---,所以的元素个数为3,真子集的个数为.故选.{}2,0,2A B ⋂=-A B ⋂3217-=A 2.A 若,则,所以“”是“”的充分条件;若,满足4,6x y 24xy 4,6x y 24xy 1,25x y ==,但是,所以“”不是“”的必要条件,所以“”是24xy 4x <4,6x y 24xy 4,6x y “”的充分不必要条件.故选A.24xy 3.B 由题意可得,解得,令,可得4004e 5N N -=44e 5k -=20004e 0.645t N N N -⎛⎫== ⎪⎝⎭,解得,所以污染物消除至最初的还需要4小时.故选B.()248e e ek kk---==8t =64%4.D 依题意,函数的值域为,所以,解得()()2ln 22f x x mx m =-++R ()2Δ(2)420m m =--+ 或,即的取值范围是.故选D.2m 1m - m ][(),12,∞∞--⋃+5.C 因为是軍函数,所以,解得,又点在函数的图()()2nf x m x =-21m -=3m =()3,27()n f x x =象上,所以,解得,所以,易得函数在上单调递增,又273n=3n =()3f x x =()f x (),∞∞-+,所以.故选C.1241ln3lne 133log 2log 2->==>=>=>a c b <<6.D 由题意知,当时,;当时,;当时,(),4x ∞∈--()0f x <[]4,0x ∈-()0f x ()0,x ∞∈+.当时,,结合图象知;当时,,当()0f x 0x ()()()4f x x x a =-+-0a 0x >()e 0x f x ax =- 时,显然成立;当时,,令,所以,令,解0a =0a >1e x x a (),0e x x g x x =>()1e xxg x -='()0g x '>得,令0,解得,所以在上单调递增,在上单调递减,所以01x <<()g x '<1x >()g x ()0,1()1,∞+,所以,解得综上,的取值范围为.故选D.()max 1()1e g x g ==11e a0e a < a []0,e 7.A 依题意得,即两式相减得4141log ,41log ,4a b a b ⎧⎛⎫=⎪ ⎪⎝⎭⎪⎨⎛⎫⎪= ⎪⎪⎝⎭⎩441log ,41log ,4a ba b ⎧⎛⎫=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪-= ⎪⎪⎝⎭⎩.在同一直角坐标系中作出的图()44411log log log 44a ba b ab ⎛⎫⎛⎫+==- ⎪ ⎪⎝⎭⎝⎭4141log ,log ,4xy x y x y ⎛⎫=== ⎪⎝⎭象,如图所示:由图象可知,所以,即,所以.故选A.a b >1144ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭()4log 0ab <01ab <<8.C 因为,所以,所以30a b c +- 30a b c +> 11911121519966399939911b a b a b b b b a b c a b a b a a a a ⎛⎫++=+=++--=-= ⎪+++⎝⎭++ ,当且仅当,即时等号成立,所以的最小值为.故选C.1911991b b a a ⎛⎫+= ⎪⎝⎭+29b a =6b aa b c ++599.AD 由解得,所以,由,解得10,10x x +⎧⎨-⎩ 11x - ()f x =[]1,1-210x -,所以的定义域为,又,故函数11x - ()g x =[]1,1-()()f x g x ===与是相同的函数,故A 正确;,()f x ()g x ()6f x ==当且仅当方程无解,等号不成立,故B 错误;函数=2169x +=在定义域上为奇函数,则,即,即()313x x k f x k -=+⋅()()f x f x -=-331313x xx x k k k k ----=-+⋅+⋅,即,整理得,即,()()33313313x x xxxxk k k k ----=-+⋅+⋅313313x x x x k kk k ⋅--=++⋅22919x x k k ⋅-=-()()21910x k -+=所以,解得.当时,,该函数定义域为,满足,210k -=1k =±1k =()1313xx f x -=+R ()()f x f x -=-符合题意;当时,,由可得,此时函数定义域为1k =-()13311331x x xxf x --+==--310x -≠0x ≠,满足,符合题意.综上,,故C 错误;由,得{}0x x ≠∣()()f x f x -=-1k =±[]1,1x ∈-,所以的定义域为,故D 正确.故选AD.[]211,3x +∈-()f x []1,3-10.AC 因为,且,所以,所以,即,故A 正确;0a b <<0a b +>0b a >->01a b <-<10ab -<<因为,所以,故В错误;因为,所以,0,0b a a b >->+>110a ba b ab ++=<0a b <<,a a b b =-=由可得,所以,故C 正确;因为当,此时,故0a b +>b a >22a b <11,32a b =-=()()110a b -->D 错误.故选AC.11.BCD 若在上单调递增,则在上佰成立,所以()f x ()0,∞+()23630f x x x a '=-+- ()0,x ∞∈+,解得,即的取值范围是,故A 错误;因为()min ()13630f x f a '==--'+ 0a a (],0∞-,所以,又()()32333(1)1f x x x a x b x ax b =-+--=---+()11f a b =--+,所以点()()()332(21)21(1)1222f x f x x a x b x ax b a b -+=-----++---+=--+为曲线的对称中心,故B 正确;由题意知,所以()()1,1f ()y f x =()()3233y f x a x b xx =+-+=-,设切点为,所以切线的斜率,所以切线的方程为236y x x =-'()32000,3x x x -20036k x x =-,所以,整理得()()()3220000336y x x x x x x --=--()()()322000003362m xx x x x --=--.记,所以3200029120x x x m -++=()322912h x x x x m =-++()26h x x '=-,令,解得或,当时,取得极大值,当时,1812x +()0h x '=1x =2x =1x =()h x ()15h m =+2x =取得极小值,因为过点可作出曲线的三条切线,所以()h x ()24h m=+()2,m ()()3y f x a x b =+-+解得,即的取值范围是,故C 正确;由题意知()()150,240,h m h m ⎧=+>⎪⎨=+<⎪⎩54m -<<-m ()5,4--,当在上单调递增,不符合题意;当,()223633(1)f x x x a x a =-+-=--'()0,a f x (),∞∞-+0a >令,解得,令,解得在()0f x '>1x <-1x >+()0f x '<11x -<<+()f x 上单调递增,在上单调递堿,在上单调递增,因为,1∞⎛- ⎝1⎛+ ⎝1∞⎛⎫+ ⎪ ⎪⎝⎭存在极值点,所以.由,得,令,所以,()f x 0x 0a >()00f x '=()2031x a-=102x x t+=102x t x =-又,所以,又,()()01f x f x =()()002f x f t x =-()()32333(1)1f x x x a x b x ax b =-+--=---+所以,又,所以()()()330000112121x ax b t x a t x b ---+=-----+()2031x a-=,化简得()()()()()()()322320000000013112121312x x x b x x b t x x t x b----=----=------,又,所以,故D 正确.故选BCD.()()20330t x t --=010,30x x x t ≠-≠103,23t x x =+=12. 由题意知10932232862log 184163381255127log 5log 210log 5log 121027---⎛⎫+⋅+=+⋅-+ ⎪⎝⎭62511411410log 5log 2109339339=-⋅+=-+=13.(2分)(3分) 因为,所以,解得,又函数[)1,616[][]06x x <-[][]()60x x -<[]06x <<称为高斯函数,表示不超过的最大整数,所以,即不等式的解集为.当[]y x =x 16x < [][]06x x <-[)1,6时,,此时;当时,,此时01x <<[]0x =[]2[]9x x =+1x []1x ,当且仅当3时等号成立.综上可得,当时,的[][][]2119[]96x x x x ==++[]x =0x >[]2[]9x x +最大值为.1614. 由题意可知:的定义域为,令,解得令,解21e -()f x (),b ∞-+ln 0x a +=ln ;x a =-()ln 0x b +=得.若,当时,可知,此时,不合题1x b =-ln a b -- (),1x b b ∈--()ln 0,ln 0x a x b +>+<()0f x <意;若,当时,可知,此时,不合ln 1b a b -<-<-()ln ,1x a b ∈--()ln 0,ln 0x a x b +>+<()0f x <题意;若,当时,可知,此时;当ln 1a b -=-(),1x b b ∈--()ln 0,ln 0x a x b +<+<()0f x >时,可知,此时,可知若,符合题意;若[)1,x b ∞∈-+()ln 0,ln 0x a x b ++ ()0f x ln 1a b -=-,当时,可知,此时,不合题意.综上所ln 1a b ->-()1,ln x b a ∈--()ln 0,ln 0x a x b +<+>()0f x <述:,即.所以,令,所以ln 1a b -=-ln 1b a =+()ln 1ab a a =+()()ln 1h x x x =+,令,然得,令,解得,所以在()ln 11ln 2h x x x '=++=+()0h x '<210e x <<()0h x '>21e x >()h x 上单调递堿,在上单调递增,所以,所以的最小值为.210,e ⎛⎫ ⎪⎝⎭21,e ∞⎛⎫+ ⎪⎝⎭min 2211()e e h x h ⎛⎫==- ⎪⎝⎭ab 21e -15.解:(1)由题意知,{}2131030,33A x x x ⎡⎤=-+=⎢⎥⎣⎦∣ 若,则,8a =-{}()22802,2B x x =-<=-∣所以.(]1,2,2,33A B A B ⎡⎫⋂=⋃=-⎪⎢⎣⎭(2)因为,所以,()UA B B ⋂= ()UB A ⊆ 当时,此时,符合题意;B =∅0a 当时,此时,所以,B ≠∅0a <{}220Bx x a ⎛=+<= ⎝∣又,U A ()1,3,3∞∞⎛⎫=-⋃+ ⎪⎝⎭13解得.209a -< 综上,的取值范围是.a 2,9∞⎡⎫-+⎪⎢⎣⎭16.解:(1)因为关于的不等式的解集为,x 2280ax x --<{2}xx b -<<∣所以和是关于的方程的两个实数根,且,所以2-b x 2280ax x --=0a >22,82,b a b a⎧=-⎪⎪⎨⎪-=-⎪⎩解得.1,4a b ==(2)由(1)知,所以1442x y +=+()()()221141422242241844242y xx y x y x y x y y x ⎡⎤+⎛⎫⎡⎤+=++-=+++-=+++-⎢⎥ ⎪⎣⎦++⎝⎭⎣⎦,179444⎡⎢+-=⎢⎣ 当且仅当,即时等号成立,所以.()2242y x y x +=+x y ==2x y +74-17.解:(1)由题意知,()()e e x x f x x ax x a=-=-'若,令.解得,令,解得,所以在上单调递琙,在0a ()0f x '<0x <()0f x '>0x >()f x (),0∞-上单调递增.()0,∞+若,当,即时,,所以在上单调递增;0a >ln 0a =1a =()0f x ' ()f x (),∞∞-+当,即时,令,解得或,令,解得,ln 0a >1a >()0f x '>0x <ln x a >()0f x '<0ln x a <<所以在上单调递增,在上单调递减,在上单调递增;()f x (),0∞-()0,ln a ()ln ,a ∞+当,即时,令,解得或,令,解得,ln 0a <01a <<()0f x '>ln x a <0x >()0f x '<ln 0a x <<所以在上单调递增,在上单调递减,在上单调递增.()f x (),ln a ∞-()ln ,0a ()0,∞+综上,当时,在上单调递减,在上单调递增;当时,在0a ()f x (),0∞-()0,∞+01a <<()f x 上单调递增,在上单调递减,在上单调递增当时,在上(,ln )a ∞-()ln ,0a ()0,∞+1a =()f x (),∞∞-+单调递增;当时,在上单调递增,在上单调递减,在上单调递增.1a >()f x (),0∞-()0,ln a ()ln ,a ∞+(2)若对任意的恒成立,即对任意的恒成立,()e xf x x - [)0,x ∞∈+21e 02xx ax x -- [)0,x ∞∈+即对任意的恒成立.1e 102x ax -- [)0,x ∞∈+令,所以,所以在上单调递增,当()1e 12x g x ax =--()1e 2x g x a=-'()g x '[)0,∞+,即时,,所以在上单调递增,所以()10102g a =-' 2a ()()00g x g '' ()g x [)0,∞+,符合题意;()()00g x g = 当,即时,令,解得,令,解得,所()10102g a =-<'2a >()0g x '>ln 2a x >()0g x '<0ln 2a x < 以在上单调递减,()g x 0,ln 2a ⎡⎫⎪⎢⎣⎭所以当时,,不符合题意.0,ln 2a x ⎛⎫∈ ⎪⎝⎭()()00g x g <=综上,的取值范围是.a (],2∞-18.(1)证明:因为是定义在上的奇函数,所以,()f x R ()010f a =-=解得,所以,1a =()22x xf x -=-此时,满足题意,所以.()()22x x f x f x --=-=-1a =任取,所以12x x <,()()()()211122121211122222122222222122x x x x x x x x x x x x f x f x x x --⎛⎫--=---=--=-+ ⎪++⎝⎭又,所以,即,又,12x x <1222x x <12220x x -<121102x x ++>所以,即,所以在上单调递增.()()120f x f x -<()()12f x f x <()f x R (2)解:因为,所以,()()23540f x x f x -+->()()2354f x x f x ->--又是定义在上的奇函数,所以,()f x R ()()2354f x x f x ->-+又在上单调递增,所以,()f x R 2354x x x ->-+解得或,即不等式的解集为.2x >23x <-()()23540f x x f x -+->()2,2,3∞∞⎛⎫--⋃+ ⎪⎝⎭(3)解:由题意知,令,()()()44244222xxxxxxg x mf x m ---=+-=+--322,,2x x t t ∞-⎡⎫=-∈-+⎪⎢⎣⎭所以,所以.()2222442x xxxt --=-=+-()2322,,2y g x t mt t ∞⎡⎫==-+∈-+⎪⎢⎣⎭当时,在上单调递增,所以32m -222y t mt =-+3,2∞⎡⎫-+⎪⎢⎣⎭,解得,符合题意;2min317()323224g x m m ⎛⎫=-++=+=- ⎪⎝⎭2512m =-当时,在上单调递减,在上单调递增,32m >-222y t mt =-+3,2m ⎛⎫- ⎪⎝⎭(),m ∞+所以,解得或(舍).222min ()2222g x m m m =-+=-=-2m =2m =-综上,的值为或2.m 2512-19.(1)解:若,则,所以,1a =()214ln 32f x x x x =---()14f x x x =--'所以,又,()14112f =--='()1114322f =--=所以的图象在处的切线方程为,即.()f x 1x =()1212y x -=-4230x y --=(2)(i )解:由题意知,()22444a x a x x x af x x x x x '---+=--==-又函数恰有两个极值点,所以在上有两个不等实根,()f x ()1212,x x x x <240x x a -+=()0,∞+令,所以()24h x x x a =-+()()00,240,h a h a ⎧=>⎪⎨=-<⎪⎩解得,即的取值范围是.04a <<a ()0,4(ii )证明:由(i )知,,且,12124,x x x x a +==04a <<所以()()2212111222114ln 34ln 322f x f x x a x x x a x x ⎛⎫⎛⎫+=---+--- ⎪ ⎪⎝⎭⎝⎭()()()2212121214ln ln 62x x a x x x x =+-+-+-,()()()21212121214ln 262x x a x x x x x x ⎡⎤=+--+--⎣⎦()116ln 1626ln 22a a a a a a =----=-+要证,即证,只需证.()()124ln f x f x a+<-ln 24ln a a a a -+<-()1ln 20a a a -+-<令,所以,()()()1ln 2,0,4m a a a a a =-+-∈()11ln 1ln a m a a a a a -=-++=-'令,所以,所以即在上单调递减,()()h a m a ='()2110h a a a =--<'()h a ()m a '()0,4又,所以,使得,即,()()1110,2ln202m m '-'=>=<()01,2a ∃∈()00m a '=001ln a a =所以当时,,当时,,所以在上单调递增,在()00,a a ∈()0m a '>()0,4a a ∈()0m a '<()m a ()00,a 上单调递减,所以.()0,4a ()()()max 00000000011()1ln 2123m a m a a a a a a a a a ==-+-=-+-=+-令,所以,所以在上单调递增,所以()()13,1,2u x x x x =+-∈()2110u x x =->'()u x ()1,2,所以,即,得证.()000111323022u a a a =+-<+-=-<()0m a <()()124ln f x f x a +<-。
2024北京交大附中高三9月月考数学(教师版)
2024北京交大附中高三9月月考数学一、选择题(四个选项中只有一个答案正确)4×10=401.设复数3i z =-,则复数i z ⋅在复平面内对应的点的坐标是()A.()1,3 B.()1,3- C.()3,1 D.()3,1-2.已知集合2{|log (1)}A x y x ==+,2{|0}3xB x N x +=∈≤-,则A B = A.{0,1,2}B.(1,3)- C.{2,3}D.{1,2}3.已知定义域为I 的奇函数()0,f x x I ∃∈,使()00f x <,则下列函数中符合上述条件的是()A.()32f x x= B.()2log f x x= C.()21log 1x f x x+=- D.()1sin f x x=+4.记n S 为等差数列{}n a 的前n 项和.若6724a a =+,848S =,则{}n a 的公差为()A.1B.3C.4D.85.若直线2y x =是曲线()()=-2e xf x x a 的切线,则a =()A.e- B.1- C.1D.e6.设0a >,0b >则“221a b +≥”是“1a b ab +≥+”的条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要7.已知函数是定义在R 上的偶函数,且在区间[)0,+∞单调递减,若a +∈R ,且满足()()313log log 22f a f a f ⎛⎫+≤ ⎪⎝⎭,则a 的取值范围是()A.1,99⎡⎤⎢⎥⎣⎦B.1,9⎛⎤-∞ ⎥⎝⎦ C.1,22⎡⎤⎢⎥⎣⎦D.[)10,9,9⎛⎤+∞ ⎥⎝⎦8.()f x 是定义在R 上的偶函数,()1f x +是奇函数,当[]0,1x ∈时,()22f x x m =-,则112f ⎛⎫=⎪⎝⎭()A.32B.32-C.12D.12-9.已知函数(),0ln ,0x xe x f x x x ⎧≤=⎨>⎩,若()()g x f x ax =-有四个不同的零点,则a 的取值范围为()A.10,e ⎛⎫ ⎪⎝⎭B.1,1e ⎡⎫⎪⎢⎣⎭C.[)1,eD.[),e +∞10.集合论是德国数学家康托尔于十九世纪末创立的,希尔伯特赞誉其为“数学思想的惊人产物,在纯粹理性范畴中人类活动的最美表现之一”.取一条长度为1的线段,将它三等分,去掉中间一段,留下的两段分割三等分,各去掉中间一段,留下更短的四段,……,将这样操作一直继续下去,直至无穷.由于在不断分割舍弃过程中,所形成的线段的数目越来越多,长度越来越小,在极限情况下,得到一个离散的点集,称为康托尔三分集.若在前n 次操作中共去掉的线段长度之和不小于2930,则n 的最小值为()(参考数据:lg 20.3010=,lg 30.4771=)A.9B.8C.7D.6二、填空题(5×5=25)11.在6a x x ⎛⎫- ⎪⎝⎭的展开式中,4x 的系数为12,则a 的值为______.12.在ABC V 中,M 是BC 的中点,4AM =,点P 在AM 上,且满足3AP PM →→=,则PA PB PC →→→⎛⎫⋅+ ⎪⎝⎭的值为___________.13.已知函数21()cos sin 2f x x x x =-+,若将其图象向右平移()0ϕϕ>个单位长度后所得的图象关于原点对称,则ϕ的最小值为___________.14.设函数()21,=3+3,<x x af x x a a x a-≥--⎧⎪⎨⎪⎩,若函数()f x 存在最小值,则a 的一个取值为___________;a 最大值为___________.15.已知数列{}n a 的各项均为正数,{}12,n a a =的前n 项和n S 满足211(1,2,3,)++=+⋅= n n n n n a S a a S n .给出下列四个结论:①{}n a 的第2项小于1;②{}n n a S ⋅为常数列;③{}n a 为递增数列;④{}n a 中存在小于1100的项.其中所有正确结论的序号是____________.三、解答题16.设ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,且sin cos a B A =.(1)求角A 的大小;(2)再从以下三组条件中选择一组条件作为已知条件,使三角形存在且唯一确定,并求ABC V 的面积.第①组条件:a =,5c =;第②组条件:AB 边上的高h =,3a =;第③组条件:1cos 3C =,c =.17.如图所示,在四棱锥P ABCD -中,PD ⊥底面ABCD ,底面ABCD 是矩形,M 是线段PC 的中点.已知2PD CD ==,1AD =.(1)求证://PA 平面BDM ;(2)求二面角M BD C --的余弦值;(3)直线BD 上是否存在点N ,使得MN 与PA 垂直?若存在,求MN 的长;若不存在,请说明理由.18.某汽车品牌为了了解客户对于其旗下的五种型号汽车的满意情况,随机抽取了一些客户进行回访,调查结果如下表:汽车型号ⅠⅡⅢⅣⅤ回访客户(人数)250100200700350满意率0.50.50.60.30.2满意率是指:某种型号汽车的回访客户中,满意人数与总人数的比值.假设客户是否满意互相独立,且每种型号汽车客户对于此型号汽车满意的概率与表格中该型号汽车的满意率相等.(1)从所有的回访客户中随机抽取1人,求这个客户满意的概率;(2)若以样本的频率估计概率,从Ⅰ型号和Ⅴ型号汽车的所有客户中各随机抽取1人,设其中满意的人数为ξ,求ξ的分布列和期望;(3)用“11η=”,“21η=”,“31η=”,“41η=”,“51η=”分别表示Ⅰ,Ⅱ,Ⅲ,Ⅳ,Ⅴ型号汽车让客户满意,“10η=”,“20η=”,“30η=”,“40η=”,“50η=”分别表示不满意.写出方差1D η,2D η,3D η,4D η,5D η的大小关系.19.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为,12,F F ,若2F 到过椭圆左焦点、斜率为的直线的距离为3,连接椭圆的四个顶点得到的四边形面积为4.(1)求椭圆C 的方程;(2)设椭圆C 的左、右顶点分别为A B 、,过点()1,0M 的直线l 与椭圆C 相交于P Q 、两点,证明:直线AP BQ 、的交点在垂直于x 轴的定直线上.20.已知函数1()ln (1)2f x x a x =--(R a ∈).(1)若2a =-,求曲线()y f x =在点(1,(1))f 处的切线方程;(2)若不等式()0f x <对任意(1,)x ∈+∞恒成立.(i)求实数a 的取值范围;(ii )试比较2e a -与e 2a -的大小,并给出证明(e 为自然对数的底数,e 2.71828≈).21.已知无穷数列{}{}{},,n n n x y z 满足:*111,,,n n n n n n n n n x y z y z x z x y n +++=-=-=-∈N .记{}max ,,n n n n u x y z =(max{,,}x y z ,表示3个实数x ,y ,z 中的最大值).(1)若1112,3,4x y z ===,求123,,u u u ;(2)若11232,3,x y u u ===,求1z ;(3)设111,,x y z 是有理数,数列{}{}{},,n n n x y z 中是否一定存在无穷个0?请说明理由.参考答案一、选择题(四个选项中只有一个答案正确)4×10=401.【答案】A【分析】根据复数的乘法运算法则,将i z ⋅求出,即可得该复数在复平面内对应的点的坐标.【详解】解:由题知3i z =-,()i i 3i 13i z ∴⋅=⋅-=+,i z ∴⋅在复平面内对应的点的坐标是()1,3.故选:A 2.【答案】A【分析】求出A 中x 的范围确定出A,求出B 中不等式的解集确定出B,求出两集合的交集即可.【详解】由A 中y=log 2(x+1),得到x +1>0,即x>-1,∴A=(-1,+∞),由B 中不等式变形得:(x﹣3)(x +2)≤0且x 3≠解得:﹣2≤x<3,又x N ∈,{}B 21012∴=--,,,,则A ∩B={}012,,,故选A .【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.3.【答案】C【分析】利用奇偶性的定义逐项判断即可.【详解】对于A ,()32f x x ==A 错误;对于B ,()()2log f x x f x -=-=,为偶函数,故B 错误;对于C ,()21log 1xf x x +=-,故10,111x x x +>-<<-,且()()2211log log 11x x f x f x x x-+-==-=-+-,故()f x 为奇函数,且211log 023f ⎛⎫-=< ⎪⎝⎭,满足条件,故C 正确;对于D ,()010f =≠,故()f x 不是奇函数,故D 错误.故选:C 4.【答案】B【分析】设数列{}n a 的首项为1a ,公差为d ,根据题设条件易得出关于1a 和d 的方程组,解方程组求得公差d 即可.【详解】设数列{}n a 的首项为1a ,公差为d ,由题意得:1121124878482a d a d =⎧⎪⎨⨯+=⎪⎩+,解之得:3d =.故选:B .【点睛】本题考查等差数列基本量的计算问题,考查对基础知识的理解和掌握,考查逻辑思维能力和计算能力,属于常考题.5.【答案】B【分析】利用导数,根据切点及切线的斜率求得正确答案.【详解】()()=-2e xf x x a ,()()212exf x x a '=+-,依题意,直线2y x =是曲线()()=-2e xf x x a 的切线,设切点为(),2t t ,则()()22e 212e 2t tt a t t a ⎧-=⎪⎨+-=⎪⎩,()()22e 212e 2t t t a t t a ⎧=+⎪⎨+=+⎪⎩,通过对比系数可得()212,20,0t t t t t +===,则1a =-.故选:B 6.【答案】B【分析】由于原命题与逆否命题是等价命题,所以问题可以转化为:设>0,0b >则“1a b ab +<+”是“221a b +<”的()条件,这样可以先判断这个命题题设与【详解】由于原命题与逆否命题是等价命题,所以问题可以转化为:设>0,0b >则“1a b ab +<+”是“221a b +<”的()条件,题设:1a b ab +<+10(1)(1)0a b ab a b ⇔+--<⇔-->(>0,0b )>,结论:221a b +<1010a b -<⎧⇔⎨-<⎩(>0,0b )>,显然由题设不一定能推出结论,但是从结论一定能推出题设,故本题选B.【点睛】本题考查了充分条件和必要条件的判断.通过原命题与逆否命题是等价问题,使不等式的问题变得简单.7.【答案】D【分析】根据函数的奇偶性、单调性、对数运算等知识列不等式,由此求得a 的取值范围.【详解】依题意,()f x 是偶函数,且在区间[)0,+∞单调递减,由()()313log log 22f a f a f ⎛⎫+≤ ⎪⎝⎭得()()()()333log log 2log 22f a f a f a f +-=≤,所以()()3log 2f a f ≤,所以3log 2a ≤-或3log 2a ≥,所以109a <≤或9a ≥,所以a 的取值范围是[)10,9,9⎛⎤+∞ ⎥⎝⎦.故选:D 8.【答案】A【分析】分析可得()10f =,可得出m 的值,求出12f ⎛⎫⎪⎝⎭的值,推导出函数()f x 是以4为周期的周期函数,利用函数()f x 的周期性和对称性可求得112f ⎛⎫ ⎪⎝⎭的值.【详解】因为()1f x +是奇函数,所以()()11f x f x -+=-+,则()()11f f =-,所以,()120f m =-=,解得2m =,所以,211322222f ⎛⎫⎛⎫=⨯-=- ⎪ ⎪⎝⎭⎝⎭,又()f x 是偶函数,所以()()11f x f x -+=-,故()()()113f x f x f x +=--=-,则()f x 是以4为周期的周期函数,因此,11313.2222f f f ⎛⎫⎛⎫⎛⎫==-= ⎪ ⎪ ⎝⎭⎝⎭⎝⎭故选:A.9.【答案】A【分析】讨论0x ≤、0x >,应用导数研究单调性,要使()0g x =有四个不同的解,即当两个区间均存在两个零点时,求a 的范围即可.【详解】由题意知:()()g x f x ax =-有四个不同的零点,∴,0()ln ,0x xe ax x g x x ax x ⎧-≤=⎨->⎩,则()0g x =有四个不同的解,当0x ≤时,()()0x g x x e a =-=,其零点情况如下:1)当0a ≤或1a =时,有0x =;2)当01a <<或1a >时,0x =或ln x a =;当0x >时,1()g x ax'=-,则有如下情况:1)当0a ≤时()0g x '>,即()g x 单调递增,不可能出现两个零点,不合题意;2)当0a >时,在10x a <<上()0g x '>,()g x 单调递增,在1x a>上()0g x '<,()g x 单调递减,而0x +→有()g x →-∞,x →+∞有()g x →+∞,所以只需1(ln 10g a a =-->,得1a e<时,()g x 必有两个零点.∴综上,有10a e<<时,()g x 在0x ≤、0x >上各有两个零点,即共有四个不同的零点.故选:A.【点睛】关键点点睛:应用分类讨论,利用导数研究函数的单调性,求在满足零点个数的情况下参数范围.10.【答案】A【分析】通过归纳法归纳出每次舍弃的线段的长度,然后由等比数列的前n 项和公式求得前n 次舍弃的线段的和,然后列不等式求解.【详解】第一次操作去掉的线段长度为13,第二次操作去掉的线段长度和为2133⨯,第三次操作去掉的线段长度和为221333⨯⨯,…,第n 操作去掉的线段长度和为121()33n -⋅,由此得121()12121123()1()2333333313nn n --+⨯++⨯==-- ,所以2291(330n-≥,21()330n ≤,2lglg 303n ≤-,lg 301lg 310.47718.4lg 3lg 2lg 3lg 20.47710.3010n ++≥==≈---,所以n 的最小值是9.故选:A .二、填空题(5×5=25)11.【答案】2-【分析】先写出通项公式,即可求出a 的值.【详解】解:因为6a x x ⎛⎫- ⎪⎝⎭的展开式的通项为:616C (1)r r r r r r T x a x --+=-626(1)C r r r ra x-=-,又因为4x 的系数为12,所以当624r -=时,1r =,所以166(1)C (1)C 612rrra a a -=-⋅⋅=-=,解得2a =-故答案为:2-12.【答案】6-【分析】根据向量的加法及线性运算可得23PB PC AP →→→+=,再利用向量数量积的运算性质求解即可.【详解】如图,4AM =Q ,又由点P 在AM 上且满足3APPM →→=,3,1AP PM →→∴==,M 是BC 的中点,223PB PC PM AP →→→→∴+==,2229633PA PB PC AP →→→⎛⎫∴⋅+=-=-⨯=- ⎪⎝⎭ 故答案为:6-.13.【答案】12π【分析】利用二倍角的正弦公式以及两角和的正弦公式将函数()y f x =的解析式化简为()sin 26f x x π⎛⎫+ ⎝=⎪⎭,并求出平移后的函数解析式,利用所得函数图象过原点,求出ϕ的表达式,即可得出正数ϕ的最小值.【详解】2131()cos sin 2cos 2sin 22226f x x x x x x x π⎛⎫=-+=+=+ ⎪⎝⎭Q ,将其图象向右平移()0ϕϕ>个单位长度后所得的图象的函数解析式为()sin 226g x x πϕ⎛⎫=-+ ⎪⎝⎭,由于函数()y g x =的图象关于原点对称,则函数为奇函数,()26k k Z πϕπ∴-=∈,()122k k Z ππϕ∴=-∈,由于0ϕ>,当0k =时,ϕ取得最小值12π.故答案为:12π.【点睛】关键点点睛:本题考查利用三角函数的对称性求参数的最值,同时也考查了三角函数的图象变换,解题的关键就是要结合对称性得出参数的表达式,考查推理能力与计算能力,属于中等题.14.【答案】①.0(答案不唯一)②.4【分析】化简()21,=3+3,<x x af x x a a x a-≥--⎧⎪⎨⎪⎩,分类讨论去掉绝对值符号,继而分类讨论a 的取值范围,确定每类中每段函数的取值范围,根据题意列出相应不等式,即可求得答案.【详解】由题意得()21,=3+3,<x x af x x a a x a -≥--⎧⎪⎨⎪⎩21,=+3+4,<x x a x a x a -≥-⎧⎨⎩,当=0a 时,21,0()=+3,<0x x f x x x -≥-⎧⎨⎩,则0x ≥时,()[)1f x ∈-+∞,,0x <时,()(3)f x ∈+∞,,此时()f x 存在最小值1-,故a 的一个取值为0;②当0a >时,则x a ≥时,()f x 在[)a +∞,上单调递增,2()[1,)f x a ∈-+∞,x a <时,()f x 在(,)a -∞上单调递减,()(33)f x a ∈++∞,,要使()f x 存在最小值,2331a a +≥-,解得14a -≤≤,故04a <≤;③当0a <时,则x a ≥时,2()1f x x =-在[)a +∞,上的最小值为1-,x a <时,()f x 在(,)a -∞上单调递减,()(33)f x a ∈++∞,,要使()f x 存在最小值,33a +≥,即43a ≥-,则403a -≤<;综上所述,a 的取值范围为[44]3-,则a 的一个取值为0;a 最大值为4,故答案为︰0;4.15.【答案】②④【分析】依题意可得11n n n n a S a S ++=,即可得到4n n a S =,从而判断②,再令2n =,求出2a ,即可判断①,证明111n n n na S a S ++=>,即可说明③,利用反证法说明④.【详解】解:因为211(1,2,3,)++=+⋅= n n n n n a S a a S n ,所以()2111111n n n n n n n n n n a S a a S a a S a S ++++++=+⋅+==,又12a =,所以114a S =,则4n n a S =,即{}n n a S ⋅为常数列,故②正确;因为{}n a 的各项均为正数,当2n =时()222124a S a a a =+=,即()2224a a +=,解得211a =->,故①错误;由于4(1,2,3,)n n a S n == ,所以11n n n n a S a S ++=⋅,又数列{}n a 的各项均为正数,所以10n n S S +>>,所以111n n n na S a S ++=>,所以1n n a a +>,故{}n a 为递减数列,故③错误;假设{}n a 中每一项均大于或等于1100,当n 取值变大时,n S 也逐渐增大,当40000n >时,400n S >,又1100n a ≥,所以14004100n n a S ⋅>⨯=,与4n n a S =矛盾,故④正确;故答案为:②④三、解答题16.【答案】(1)π3A =(2)选①不符合题意;选②3322S =;选③S =【分析】(1)利用正弦定理的边角互化即可求解;(2)选①利用余弦定理可求出边b ,可判断不满足题意;选②先利用高h 和角A 列式可求出b ,然后利用余弦定理可求出边c ,进而求出面积;选③先求sin C ,然后利用正弦定理求出边a ,再结合两角和的正弦公式求sin B ,进而可求出面积.【小问1详解】因为sin cos a B A =,所以由正弦定理得sin sin cos A B B A =,又因为(0,π)B ∈,所以sin 0B >,所以sin A A =,显然cos 0A ≠,则tan A =,又因为(0,π)A ∈,所以π3A =.【小问2详解】若选①,由余弦定理得2222cos a b c bc A =+-,即219255b b =+-,即2560b b -+=,解得2b =或3,不符合题意;若选②,因为AB边上的高h =,所以πsin 3b =,则232b ==,由余弦定理得2222cos a b c bc A =+-,即2942c c =+-,即2250c c --=,解得11c c =+=-,故ABC V 唯一,符合题意,此时ABC V的面积113332sin 2(12222S bc A ==创+�;若选③,因为知道角A ,cos C ,边c ,所以ABC V 唯一,符合题意,因为(0,π)C ∈,1cos 3C =,所以22sin 3C =,由正弦定理sin sin a c A C=得sin sin 223c Aa C ===则11sin sin()sin cos cos sin 23236B AC A C A C =+=+=⨯⨯,此时ABC V的面积11223sin 226S ac B ==创.17.【答案】(1)证明见解析;(2)66;(3)存在,MN【分析】(1)连接AC 交BD 于N ,连接MN ,利用线面平行的判定定理即可证得结论.(2)利用线面垂直的性质定理可知PD AD ⊥,PD CD ⊥,以D 为原点,建立空间直角坐标系D xyz -,求出平面BDM 的法向量为n,利用空间向量求二面角的余弦值即可.(3)设(),2,0N λλ,其中R λ∈,通过20MN AP λ⋅=--=uuu r uu u r,求解N 的坐标,再求解MN 的长度即可.【详解】(1)连接AC 交BD 于N ,连接MN .因为底面ABCD 是矩形,所以N 是线段AC 的中点.M 是线段PC 的中点,//PA MN ∴.又PA ⊄平面BDM ,MN ⊂平面BDM ,//PA ∴平面BDM .(2)因为PD ⊥底面ABCD ,AD ⊂底面ABCD ,CD ⊂底面ABCD ,所以PD AD ⊥,PD CD ⊥.因为底面ABCD 是矩形,所以AD CD ⊥.如图,以D 为原点,,,DA DC DP 分别为,,x y z 轴,建立空间直角坐标系D xyz -,则()0,0,0D ,1,0,0,()0,2,0C ,()0,0,2P ,()1,2,0B .因为M 是线段PC 的中点,故()0,1,1M ,()1,2,0DB ∴= ,()0,1,1DM =.设平面BDM 的法向量为(),,n x y z =,则00n DB n DM ⎧⋅=⎨⋅=⎩,即200x y y z +=⎧⎨+=⎩,令1y =,则2x =-,1z =-,于是()2,1,1n =--.因为PD ⊥底面ABCD ,所以DP为平面BDC 的法向量.又()0,0,2DP =,所以cos ,6DP nDP n DP n ⋅===- .由题知二面角M BD C --是锐角,所以其余弦值为6.(3)因为N 为直线BD 上一点,(),2,0N λλ∴,其中R λ∈,(),21,1MN λλ∴=--.又()1,0,2AP =-,且MN 与PA 垂直20MN AP λ∴⋅=--=uuu r uu u r,解得2λ=-.所以存在点()2,4,0N --,使得MN 与PA 垂直,此时2λ=-,()2,5,1MN =---,MN=.【点睛】方法点睛:本题考查线面平行垂直,线面垂直及面面角的求法,利用空间向量求立体几何常考查的夹角:设直线l m ,的方向向量分别为,a b ,平面,αβ的法向量分别为,u v,则①两直线l m ,所成的角为θ(02πθ<≤),cos a b a b θ⋅= ;②直线l 与平面α所成的角为θ(02πθ≤≤),sin a u a u θ⋅=;③二面角l αβ--的大小为θ(0θπ≤≤),cos .u vu vθ⋅= 18.【答案】(1)2364;(2)分布列答案见解析,数学期望:0.7;(3)12345D D D D D ηηηηη=>>>.【分析】(1)设“从所有的回访客户中随机抽1人,这个客户满意”为事件M .求得回访客户的总数,及满意的客户人数,从而求得概率;(2)由题知,0,1,2ξ=,设“从Ⅰ型号汽车所有客户中随机抽取的人满意”为事件A ,“从Ⅴ型号汽车所有客户中随机抽取的人满意”为事件B .根据题意,()P A 估计为0.5,()P B 估计为0.2,A 与B 相互独立.从而求得()0P ξ=、(1)P ξ=、(2)P ξ=,列出分布列,求得期望;(3)分别求得12345,,,,D D D D D ηηηηη,比较大小即可.【详解】(1)设“从所有的回访客户中随机抽1人,这个客户满意”为事件M .由题意知,样本中的回访客户的总数是2501002007003501600++++=,满意的客户人数是2500.51000.52000.67000.33500.2575⨯+⨯+⨯+⨯+⨯=,故所求概率为()57523160064P M ==.(2)0,1,2ξ=.设“从Ⅰ型号汽车所有客户中随机抽取的人满意”为事件A ,“从Ⅴ型号汽车所有客户中随机抽取的人满意”为事件B .根据题意,()P A 估计为0.5,()P B 估计为0.2,A 与B 相互独立.所以(0)()(1())(1())0.50.80.4P P AB P A P B ξ===--=⨯=;(1)()()()(1())(1())()P P AB P AB P A P B P A P B ξ==+=-+-0.50.80.50.20.5=⨯+⨯=;(2)()()()0.50.20.1P P AB P A P B ξ====⨯=.所以ξ的分布列为所以的期望.(3)由题知:10.5(10.5)0.25D η=⨯-=;20.5(10.5)0.25D η=⨯-=;30.6(10.6)0.24D η=⨯-=;40.3(10.3)0.21D η=⨯-=;50.2(10.2)0.16D η=⨯-=故12345D D D D D ηηηηη=>>>19.【答案】(1)2214x y +=(2)见解析【分析】(1)根据椭圆的几何性质列出方程组求出,,a b c ,即可得出椭圆C 的方程;(2)设直线l 的方程为1x my =+,求出直线AP 、BQ 的方程,联立即可求出交点的坐标,从而可知其在定直线上.【小问1详解】的直线倾斜角为60o ,2F3,故1232,sin 60F F c ===连接椭圆的四个顶点得到的四边形为对角线互相垂直的四边形,故面积12242S a b =⨯⨯=,则2ab =,结合c ==解得2,1a b ==,故椭圆C 的方程为:2214xy +=.【小问2详解】由题意知,直线l 的斜率不为0,故设过点()1,0M 的直线l 的方程为:1x my =+,()()1122,,P x y Q x y 、,联立22114x my x y =+⎧⎪⎨+=⎪⎩得:()224230m y my ++-=,故()22Δ41240m m=++>,1221223424y y m m y y m ⎧=-⎪⎪+⎨⎪+=-⎪+⎩,易知()()2,02,0A B -、,故112AP k y x +=,所以直线AP 的方程为:=2,同理可得,直线BQ 的方程为:()2222y y x x --,联立()()11222222y y x x y y x x ⎧=+⎪+⎪⎨⎪=-⎪-⎩得:()()12122222y y x x x x +=-+-,即()()12122231y y x x my my +=-+-,化简得:1211224132my y y my y y x -=-++,因为()121223342m my y y y m =-=++,故()()12112234213232y y y x y y y +-=-+++,即14132x =-+,故4x =,所以直线AP BQ 、的交点在垂直于x 轴的定直线4x =上.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,x y x y 、;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、21x x 的形式;(5)代入韦达定理求解.20.【答案】(1)22y x =-(2)(i )[)2,+∞;(ii )答案见解析.【分析】(1)2a =-时()ln 1f x x x =+-求导,得到在切点(1,0)处切线斜率,代入点斜式即可;(2)(i )求导()22axf x x-'=对a 分情况讨论,讨论函数的单调性,结合题目要求()0f x <对任意(1,)x ∈+∞恒成立即可得到实数a 的取值范围;(ii )比较大小可将两个值看成函数值,然后利用函数的性质求解.【小问1详解】因为2a =-时,()()1ln 11f x x x f x x'=+-⇒=+,所以切点为(1,0),(1)2k f '==,所以2a =-时,曲线()y f x =在点(1,(1))f 处的切线方程22y x =-.【小问2详解】因为()()112ln (1)222a ax f x x a x f x x x-'=--⇒=-=,①当0a ≤时,()(),1,0f x x ∈'∞>+,所以()f x 在(1,)+∞上单调递增,()()10f x f >=,所以0a ≤不合题意.②当2a ≥时,即201a<≤时,()2()2022a x ax a f x x x--'==<在(1,)+∞恒成立,所以()f x 在(1,)+∞上单调递减,有()()10f x f <=,所以2a ≥满足题意.③当02a <<时,即21>a 时,由()0f x '>,可得21x a <<,由()0f x '<,可得2x a>,所以()f x 在2(1,a上单调递增,()f x 在2(,)a+∞上单调递减,所以()2(10f f a>=所以02a <<不合题意,综上所述,实数a 的取值范围是[)2,+∞.(ii )2a ≥时,“比较2e a -与e 2a -的大小”等价于“比较2a -与e 2ln a -的大小”,设()()2e 2ln g x x x =---,(2x ≥),则()()2ee 210x g x x x+--'=-=>,∴()g x 在[)2,+∞上单调递增,因为()e 0g =,当[)2,e x ∈时,()0g x <,即()2e 2ln x x -<-,所以2e 2e x x --<,当()e,x ∈+∞时,()0g x >,即()2e 2ln x x ->-,∴2e 2e x x -->,综上所述,当[)2,e a ∈时,2e 2e a a --<;当e a =时,2e 2e a a --=;当()e,a ∈+∞时,2e 2e a a -->.21.【答案】(1)12342,1,u u u ===;(2)13,2,2z =--或3;(3)证明见解析.【分析】(1)利用已知关系代入特殊值即可求解;(2)利用已知分析出{}{}111max ,,max ,,n n n n n n a b c a b c +++≤,即1n n u u +≤(当且仅当中,,n n n a b c 至少有一项为0时等号成立),再根据已知条件即可求解;(3)利用反证法证明即可.【详解】(1)因为1112,3,4x y z ===,所以2221,2,1x y z =-==-,3331,0,1x y z ===-,所以12342,1,u u u ===;(2)设n n a x =,n n b y =,n n c z =,*n N ∈,0n a ≥,0n b ≥,0n c ≥,由题意知,{}max ,,n n n nu x y z =,1n n na b c +=-,1n n n b c a +=-,1n n n c a b +=-,所以1n a +,r1,{}1max ,,n n n n c a b c +≤,所以{}{}111max ,,max ,,n n n n n n a b c a b c +++≤,即1n n u u +≤(当且仅当中,,n n n a b c 中至少有一项为0时等号成立),因为23u u =,所以222,,a b c 中至少有一项为0,因为112,3x y ==,所以112,3a b ==,所以212123,2,231a c b c c =-=-=-=,所以12c =或3,所以13,2,2z =--或3.(3)数列{}{}{},,n n n x y z 中一定存在无穷个0.设111,,x y z 的最小公分母为p ,将,,n n n x y z 均改为原来的p 倍,则111,,x y z 均为整数,题目的其他条件仍然成立,且问题不变.于是对任意的*n N ∈,,,n n n x y z 均为整数,n a ,n b ,n c ,n u 均为自然数,反证法:假设{}{}{},,n n n x y z 中没有0,或者有有限个0,则存在m N ∈,对任意的k m >,均有k a ,k b ,k c ,1k u ≥,设1n n n d u u +=-(*n N ∈),则1112m n m m m m n u u d d ++++++=+++…+d ,由(2)知,1n n u u +≤,故10n n n d u u +=-≤,假设对任意的k m >,k d 均不为0,则1k d ≤-,11m n m u u n +++≤-,令1m n u +=,则10m n u ++≤与11m n u ++≥矛盾.所以存在0n m >,使得00n d =,即001n n u u +=,由(2)知,000,,n n n a b c 中至少有一项为0,与000,,1n n n a b c ≥矛盾,所以假设不成立,数列{}{}{},,n n n x y z 中一定存在无穷个0.【点睛】关键点点睛:解决本题的关键是利用新定义,对n 合理赋值,结合反证法、特殊与一般、或然与必然的联系,即可得解.。
高一9月月考考试(数学)试题含答案
高一9月月考考试(数学)(考试总分:150 分)一、单选题(本题共计12小题,总分60分)1.(5分)1.已知集合A={1,2,3},B={2,3,4,5},记集合P=A∪B,Q=A∩B,则()A.1∈P B.3∉P C.5∈Q D.2∉Q2.(5分)2.设全集U={x∈N*|x<9},集合A={3,4,5,6},则∁U A=()A.{1,2,3,8}B.{1,2,7,8}C.{0,1,2,7}D.{0,1,2,7,8}3.(5分)3.已知集合A={(0,1)},B={y|y=x+1,x∈R},则A,B的关系可以是()A.A∈B B.A⊆B C.A=B D.A∩B=∅4.(5分)4.函数的定义域为()A.B.C.D.5.(5分)5.与事件“我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速”吻合得最好的图象是()A.B.C.D.6.(5分)6.集合A={n∈N|x=,x∈N}的元素个数为()A.3B.4C.5D.67.(5分)7.与y=|x|为相等函数的是()A.B.C.D.8.(5分)8.设集合A={x|0<x<2},B={x|﹣2<x<2},则∁B A=()A.(﹣2,0)B.(﹣2,0]C.(﹣2,2]D.(0,2)9.(5分)9.已知集合A={1,2,3},B={﹣1,0,1,2},若M⊆A且M⊆B,则M的个数为()A.1B.3C.4D.610.(5分)10.设全集U={2,4,a2},集合A={4,a+3},∁U A={1},则实数a的值为()A.1B.﹣1C.±1D.11.(5分)11.定义域是一个函数的三要素之一,已知函数Jzzx(x)定义域为[211,985],则函数shuangyiliu(x)=Jzzx(2018x)+Jzzx(2021x)的定义域为()A.B.C.D.12.(5分)12.已知函数f(x)=x2+ax+b(a,b∈R)的最小值为0,若关于x的不等式f(x)<c的解集为(m,m+4),则实数c的值为()A.9B.8C.6D.4二、填空题(本题共计5小题,总分32分)13.(5分)二.填空题(共4小题)13.某中学的学生积极参加体育锻炼,其中有75%的学生喜欢足球或游泳,56%的学生喜欢足球,38%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是.14.(5分)14.设函数f(x)=,若f(α)=9,则α=.15.(5分)15.已知集合A={x|x2﹣3x<0},B={1,a},且A∩B有4个子集,则实数a的取值范围是.16.(5分)16.设函数,区间M=[a,b](其中a<b)集合N={y|y=f(x),x∈M},则使M=N成立的实数对(a,b)有个.17.(12分)18.已知全集U=R,集合A={x∈R|﹣2<x≤5},B={x∈R|x≤1或x>4}.(1)求A∩B;(2)求A∪(∁U B).三、解答题(本题共计5小题,总分58分)18.(10分)三.解答题(共6小题)17.已知集合P={0,x,y},Q={2x,0,y2},且P=Q,求x,y的值.19.(12分)19.已知二次函数y=f(x)的图像与x轴的交点(﹣1,0),(3,0),与y轴的交点为(0,﹣3).(1)求f(x)的解析式;(2)若f(x)+m>0对一切实数x恒成立,求实数m的取值范围.20.(12分)20.设全集U=R,集合A={x|﹣1≤x<3},B=(2,4],C=[a,a+1](a∈R).(1)求A∪B,A∩(∁U B);(2)若A∩C=C,求实数a的取值范围.21.(12分)21.已知函数f(x)满足2f(x)﹣f(﹣x)=x2+6x+1.(1)求f(x)的解析式;(2)若g(x)=,解不等式.22.(12分)22.已知M={x|1<x<3},N={x|x2﹣6x+8≤0}.(1)设全集U=R,定义集合运算△,使M△N=M∩(∁U N),求M△N和N△M;(2)若H={x||x﹣a|≤2},按(1)的运算定义求:(N△M)△H.答案一、单选题(本题共计12小题,总分60分)1.(5分)1.已知集合A={1,2,3},B={2,3,4,5},记集合P=A∪B,Q=A∩B,则()A.1∈P B.3∉P C.5∈Q D.2∉Q【解答】解:由题意,P=A∪B={1,2,3,4,5},Q=A∩B={2,3},故1∈P,3∈P,5∉Q,2∈Q,故选:A.2.(5分)2.设全集U={x∈N*|x<9},集合A={3,4,5,6},则∁U A=()A.{1,2,3,8}B.{1,2,7,8}C.{0,1,2,7}D.{0,1,2,7,8}【解答】解:∵U={1,2,3,4,5,6,7,8},A={3,4,5,6},∴∁U A={1,2,7,8}.故选:B.3.(5分)3.已知集合A={(0,1)},B={y|y=x+1,x∈R},则A,B的关系可以是()A.A∈B B.A⊆B C.A=B D.A∩B=∅【解答】解:∵集合A={(0,1)},B={y|y=x+1,x∈R}={y|y∈R},集合A是点集,集合B是数集,∴A,B的关系可以是A∩B=∅.故选:D.4.(5分)4.函数的定义域为()A.B.C.D.【解答】解:要使f(x)有意义,则,解得,且x≠0,∴f(x)的定义域为.故选:C.5.(5分)5.与事件“我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速”吻合得最好的图象是()A.B.C.D.【解答】解:我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速”,可得图象:先缓后陡.因此吻合得最好的图象是B.故选:B.6.(5分)6.集合A={n∈N|x=,x∈N}的元素个数为()A.3B.4C.5D.6【解答】解:由题意知,x,n都是16的正整数因数,故n的取值有:1,2,4,8,16,故集合A={1,2,4,8,16},故共有5个元素,故选:C.7.(5分)7.与y=|x|为相等函数的是()A.B.C.D.【解答】解:对于A,函数y==x,定义域为[0,+∞),函数y=|x|的定义域为R,两函数的定义域不同,不是相等函数;对于B,函数y==|x|,定义域为R,函数y=|x|的定义域为R,两函数的定义域相同,对应关系也相同,是相等函数;对于C,函数y==|x|,定义域为(﹣∞,0)∪(0,+∞),函数y=|x|的定义域为R,两函数的定义域不同,不是相等函数;对于D,函数y==x,定义域为R,函数y=|x|的定义域为R,两函数的对应关系不同,不是相等函数.故选:B.8.(5分)8.设集合A={x|0<x<2},B={x|﹣2<x<2},则∁B A=()A.(﹣2,0)B.(﹣2,0]C.(﹣2,2]D.(0,2)【解答】解:∵A={x|0<x<2},B={x|﹣2<x<2},∴∁B A=(﹣2,0].故选:B.9.(5分)9.已知集合A={1,2,3},B={﹣1,0,1,2},若M⊆A且M⊆B,则M的个数为()A.1B.3C.4D.6【解答】解:集合A={1,2,3},B={﹣1,0,1,2},∴A∩B={1,2},∵M⊆A且M⊆B,∴M可能为∅,{1},{2},{1,2},∴M的个数为4.故选:C.10.(5分)10.设全集U={2,4,a2},集合A={4,a+3},∁U A={1},则实数a的值为()A.1B.﹣1C.±1D.【解答】解:因为全集U={2,4,a2},集合A={4,a+3},∁U A={1},则1∈A,所以a2=1,解得a=±1,当a=1时,集合A不满足元素的互异性,不成立,故a=﹣1.故选:B.11.(5分)11.定义域是一个函数的三要素之一,已知函数Jzzx(x)定义域为[211,985],则函数shuangyiliu(x)=Jzzx(2018x)+Jzzx(2021x)的定义域为()A.B.C.D.【解答】解:根据题意得,解得:x∈[,].故选:A.12.(5分)12.已知函数f(x)=x2+ax+b(a,b∈R)的最小值为0,若关于x的不等式f(x)<c的解集为(m,m+4),则实数c的值为()A.9B.8C.6D.4【解答】解:f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),∴=0,∴b=,∵f(x)<c的解集为(m,m+4),∴f(x)﹣c=0的根为m,m+4,即x2+ax+﹣c=0的根为m,m+4,∵(m+4﹣m)2=(﹣a)2﹣4(﹣c),∴4c=16,c=4.故选:D.二、填空题(本题共计5小题,总分32分)13.(5分)二.填空题(共4小题)13.某中学的学生积极参加体育锻炼,其中有75%的学生喜欢足球或游泳,56%的学生喜欢足球,38%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是19%.【解答】解:设有x%的学生既喜欢足球又喜欢游泳,则有(56﹣x)%只喜欢足球,有(38﹣x)%只喜欢游泳,由题意得:(56﹣x)%+x%+(38﹣x)%=75%,解得x=19.故该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是19%.故答案为:19%.14.(5分)14.设函数f(x)=,若f(α)=9,则α=﹣9或3.【解答】解:由题意可得或∴α=﹣9或α=3故答案为:﹣9或315.(5分)15.已知集合A={x|x2﹣3x<0},B={1,a},且A∩B有4个子集,则实数a的取值范围是{a|0<a<3且a≠1}.【解答】解:A={x|0<x<3},∴1∈A,∵A∩B有4个子集,∴A∩B中有两个不同的元素,∴a∈A,∴0<a<3且a≠1,∴a的取值范围是{a|0<a<3且a≠1}.故答案为:{a|0<a<3且a≠1}16.(5分)16.设函数,区间M=[a,b](其中a<b)集合N={y|y=f(x),x∈M},则使M=N成立的实数对(a,b)有3个.【解答】解:由题意知,当x≥0时,令M=[0,1]验证满足条件,又因为x>1时,f(x)=<x故不存在这样的区间.当x≤0时,令M=[﹣1,0]验证满足条件.又因为x<﹣1时,f(x)=>x故不存在这样的区间.又当M=[﹣1.1]时满足条件.故答案为:3.17.(12分)18.已知全集U=R,集合A={x∈R|﹣2<x≤5},B={x∈R|x≤1或x>4}.(1)求A∩B;(2)求A∪(∁U B).【解答】解:(1)∵A={x∈R|﹣2<x≤5},B={x∈R|x≤1或x>4},∴A∩B=(﹣2,1]∪(4,5],(2)∵∁U B=(1,4],∴A∪(∁U B)=(﹣2,5]三、解答题(本题共计5小题,总分58分)18.(10分)三.解答题(共6小题)17.已知集合P={0,x,y},Q={2x,0,y2},且P=Q,求x,y的值.【解答】解:∵集合P={0,x,y},Q={2x,0,y2},且P=Q,∴或,解得(舍)或(舍)或.∴,.19.(12分)19.已知二次函数y=f(x)的图像与x轴的交点(﹣1,0),(3,0),与y轴的交点为(0,﹣3).(1)求f(x)的解析式;(2)若f(x)+m>0对一切实数x恒成立,求实数m的取值范围.【解答】解:(1)设f(x)=ax2+bx+c(a≠0)把点(﹣1,0),(3,0),(0,﹣3)代入f(x)得,,∴,∴f(x)=x2﹣2x﹣3.(2)∵f(x)+m>0对一切实数x恒成立,∴x2﹣2x﹣3+m>0对一切实数x恒成立,∴m>(﹣x2+2x+3)max,∵y=﹣x2+2x+3开口向下且对称轴为x=1,∴(﹣x2+2x+3)max=4,∴m>4.20.(12分)20.设全集U=R,集合A={x|﹣1≤x<3},B=(2,4],C=[a,a+1](a∈R).(1)求A∪B,A∩(∁U B);(2)若A∩C=C,求实数a的取值范围.【解答】解:(1)∵全集U=R,集合A={x|﹣1≤x<3},B=(2,4],∴A∪B={x|﹣1≤x<3}∪(2,4]={x|﹣1≤x≤4}.∁U B={x|x≤2或x>4}.∴A∩(∁U B)={x|﹣1≤x≤2}.(2)∵集合A={x|﹣1≤x<3},B=(2,4],C=[a,a+1](a∈R).A∩C=C,∴C⊆A,∴,解得﹣1≤a<2,∴实数a的取值范围为[﹣1,2).21.(12分)21.已知函数f(x)满足2f(x)﹣f(﹣x)=x2+6x+1.(1)求f(x)的解析式;(2)若g(x)=,解不等式.【解答】解:(1)∵2f(x)﹣f(﹣x)=x2+6x+1 ①,∴用﹣x代换x,可得2f(﹣x)﹣f(x)=x2﹣6x+1 ②,由①②求得f(x)=x2+2x+1.(2)∵g(x)==,由不等式可得,当0<<2时,应有x+6≤0或x+6≥2,求得x≤﹣6;当≤0时,应有x+6>2,求得x>1;当≥2时,应有x+6>,求得﹣4<x<﹣1.综上可得,不等式的解集为{x|x≤﹣6,或﹣4<x<﹣1,或x>1}.22.(12分)22.已知M={x|1<x<3},N={x|x2﹣6x+8≤0}.(1)设全集U=R,定义集合运算△,使M△N=M∩(∁U N),求M△N和N△M;(2)若H={x||x﹣a|≤2},按(1)的运算定义求:(N△M)△H.【解答】解:(1)M={x|1<x<3},N={x|x2﹣6x+8≤0}={x|2≤x≤4};根据题意,U=R,∁U N={x|x<2或x>4},∴M△N=M∩(∁U N)={x|1<x<2},又∁U M={x|x≤1或x≥3},∴N△M=N∩(∁U M)={x|3≤x≤4};(2)∵H={x||x﹣a|≤2}=[a﹣2,a+2],∴(N△M)△H=(N△M)∩(∁U H)=[3,4]∩[(﹣∞,a﹣2)∪(a+2,+∞)],当a﹣2>4,或a+2<3,即a>6,或a<1时,(N△M)△H=[3,4];当3≤a﹣2≤4,即5≤a≤6时,(N△M)△H=[3,a﹣2);当3≤a+2≤4,即1≤a≤0时,(N△M)△H=(a+2,4];当a﹣2<3,且a+2>4,即2<a<5时,(N△M)△H=∅.。
陕西省西安市城六区2024-2025学年九年级上学期9月月考数学试题
陕西省西安市城六区2024-2025学年九年级上学期9月月考数学试题一、单选题1.下列方程中,是关于x 的一元二次方程的是( ) A .232x x -= B .213x x+= C .2(1)1x x x +=-D .223x x y ++=2.一元二次方程290x -=的根为( ) A .123x x == B .123x x ==- C .13x =,23x =-D .10x =,29x = 3.如图,在平面直角坐标系中,菱形ABCO 的边AO 在y 轴上.若点C 的坐标为()12,5--,则点A 的坐标为( )A .()0,12B .()13,0C .()0,13D .()0,154.下列说法正确的是( ) A .菱形的对角线相等B .四个内角都相等的四边形是矩形C .有一组邻边相等的菱形是正方形D .两条对角线垂直且平分的四边形是正方形5.参加足球友谊赛的每两支球队之间都要进行一场比赛,共比赛了21场,设参加比赛的球队有x 支,根据题意,下面列出的方程正确的是( ) A .()11212x x += B .()11212x x -=C .()121x x +=D .()121x x -=6.关于x 的方程()200ax bx c a ++=≠,其中a ,b ,c 满足420a b c ++=且0a b c -+=,则该方程的根是( ) A .11x =,22x = B .11x =,22x =- C .11x =-,22x =D .11x =-,22x =-7.如图,用圆中两个可以自由转动的转盘做“配紫色”游戏,若其中一个转盘转出红色,另一个转盘转出蓝色就可以配成紫色,则可以配成紫色的概率是( )A .12B .13C .14D .238.一元二次方程2240x x --=的两个根为1x ,2x ,则()()12611x x ++的值是( )A .67B .2C .65-D .6-二、填空题9.一元二次方程25410x x --=一次项系数为.10.若关于x 的方程160m x x m -+-=是一元二次方程,则m 的值为.11.如图,菱形ABCD 的对角线AC BD ,的长分别是3和6,则菱形ABCD 的面积是.12.如图,电路中有3个开关a ,b ,c ,已知电路及其他元件都能正常工作,现任意闭合两个开关,能使得小灯泡发光的概率为.13.如图,在Rt ABC △中,3,4AB AC ==,P 为BC 上一动点,PE AB ⊥于点E ,PF AC ⊥于点F ,则EF 的最小值为.三、解答题14.解方程:()()323x x x -=-.15.如图,在ABC V 中,90ACB ∠=︒,5BC =,D 是边AB 的中点,BCD △的周长是18,求BD 的长.16.已知关于x 的一元二次方程2210x x m -+-=有两个实数根,求m 的取值范围. 17.如图,四边形ABCD 是矩形,请用尺规作图法作菱形AECF ,使点E F ,分别落在边BC AD ,上.(保留作图痕迹,不写作法).18.山西省某旅游区2021年暑期共接待游客人数为60万,2023年暑期共接待游客人数增加到72.6万.求这两年游客人数的年平均增长率.19.如图,在平行四边形ABCD 中,E ,F 分别是BC 和AD 的中点,且AE EC =. 求证:四边形AECF 是菱形.20.在一个不透明的口袋里装有颜色不同的黑、白两种颜色的球共5个,这些球除颜色不同外,其他均相同.某学习小组做摸球试验,将球搅匀后,从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动中的统计数据.(1)请估计:当n 很大时,摸到白球的频率将会接近___________(精确到0.1). (2)试估算口袋中白球的个数. 21.解:22480x x +-=,二次项系数化为1,得2240x x +-=,……第一步 移项,得224x x +=,……第二步配方,得22444x x ++=+,既2(2)8x +=,……第三步由此,可得2x +=±…….第四步所以12x =-+22x =--…….第五步(1)任务一:小华同学的解答过程是从第___________步开始出错的,错误的原因是___________.(2)任务二:请写出该方程的正确解答过程.22.西安地铁5号线“汉城南路站”有标识为B ,C ,D 的三个出入口.某周六上午,甲、乙两位学生志愿者随机选择该站一个出入口,开展志愿服务活动. (1)甲在C 出入口开展志愿服务活动的概率为___________. (2)求甲、乙两人在同一出入口开展志愿服务活动的概率. 23.阅读与思考(1)根据上述定义,一元二次方程2210x x +-=______(填“是”或“不是”)“倍根方程”.(2)若()()()200x mx n m --=≠是“倍根方程”,求代数式222223m mn n m n -++的值.24.熊猫,学名大熊猫,是中国特有的珍稀动物,并且深受人们的喜爱,每件某商店销售熊猫玩偶,在销售过程中发现,进价为每件40元的熊猫玩偶,以售价每件165元卖出,每天可出售50件,为了扩大销售量,经市场调查发现,每件熊猫玩偶每降价5元,平均可多售出1件.为了实现平均每天5980元的销售利润,每件熊猫玩偶的售价应为多少元? 25.如图,四边形BCED 是平行四边形,D 为边AB 上的中点,AC BC =,连接AE ,CE .(1)求证:四边形ADCE 是矩形.(2)若AC BC ⊥,判断四边形ADCE 的形状,并说明理由. 26.问题提出(1)如图1,在边长为4的正方形ABCD 的中心作直角EOF ∠,EOF ∠的两边分别与正方形ABCD 的边BC ,CD 交于点E ,F (点E 与点B ,C 不重合),则四边形OECF 的面积为__________. 问题解决(2)如图2,有一个菱形菜园ABCD ,AC ,BD 为人行步道,且交于点O .现要在菜园的右下角建一四边形储藏间OECF .已知点E 在BC 上,点F 在CD 上,60ABC EOF ∠=∠=︒.若四边形储藏间OECF 的占地面积为2(人行步道的面积忽略不计),要在菱形菜园ABCD 围一圈篱笆,则需要篱笆多少m ?。
贵州省贵阳市第一中学2024-2025学年高三上学期9月月考试题 数学 (解析版)
数学试卷注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号、在试题卷上作答无效.3.考试结束后,请将本试卷和答题卡一并交回.满分150分,考试用时120分钟.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合,则( )A. B. C. D.2.下列函数在其定义域内单调递增的是( )A. B.C. D.3.已知等差数列满足,则( )A.2B.4C.6D.84.已知点是抛物线上一点,若到抛物线焦点的距离为5,且到轴的距离为4,则( )A.1或2B.2或4C.2或8D.4或85.已知函数的定义域为.记的定义域为集合的定义域为集合.则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知函数的定义域为.设函数,函数.若是偶函数,是奇函数,则的最小值为( )A.B.C.D.7.从的二项展开式中随机取出不同的两项,则这两项的乘积为有理项的概率为( ){}{}2230,1,2,3,4A xx x B =-->=∣A B ⋂={}1,2{}1,2,3{}3,4{}41y x=-2ln y x =32y x =e xy x ={}n a 376432,6a a a a +=-=1a =A ()2:20C y px p =>A A x p =()23f x -[]2,3()f x (),21xA f -B x A ∈x B ∈()f x R ()()e xg x f x -=+()()5e xh x f x =-()g x ()h x ()f x e 2e51x ⎫⎪⎭A.B. C. D.8.已知圆,设其与轴、轴正半轴分别交于,两点.已知另一圆的半径为,且与圆相外切,则的最大值为( )A.20B.C.10D.二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得6分,部分选对的得部分分,有选错的得0分)9.离散型随机变量的分布列如下表所示,是非零实数,则下列说法正确的是( )20242025A.B.服从两点分布C.D.10.已知函数,下列说法正确的是( )A.的定义域为,当且仅当B.的值域为,当且仅当C.的最大值为2,当且仅当D.有极值,当且仅当11.设定义在上的可导函数和的导函数分别为和,满足,且为奇函数,则下列说法正确的是( )A.B.的图象关于直线对称C.的一个周期是4D.三、填空题(本大题共3小题,每小题5分,共15分)12.过点作曲线且的切线,则切点的纵坐标为__________.13.今年暑期旅游旺季,贵州以凉爽的气候条件和丰富的旅游资源为依托,吸引了各地游客前来游玩.由安25351323221:220C x y x y +--=x y M N 2C 1C 22C M C N ⋅X ,m n X Pm n1m n +=X ()20242025E X <<()D X mn=()()214log 21f x ax ax =-+()f x R 01a <<()f x R 1a …()f x 1516a =()f x 1a <R ()f x ()g x ()f x '()g x '()()()()11,3g x f x f x g x --=''=+()1g x +()00f =()g x 2x =()f x 20251()0k g k ==∑()0,0(0x y a a =>1)a ≠顺黄果树瀑布、荔波小七孔、西江千户苗寨、赤水丹霞、兴义万峰林、铜仁梵净山6个景点谐音组成了贵州文旅的拳头产品“黄小西吃晚饭”.小明和家人计划游览以上6个景点,若铜仁梵净山不安排在首末位置,且荔波小七孔和西江千户苗寨安排在相邻位置,则一共有__________种不同的游览顺序方案.(用数字作答)14.已知函数若存在实数且,使得,则的最大值为__________.四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)下图中的一系列三角形图案称为谢尔宾斯基三角形.图(1)是一个面积为1的实心正三角形,分别连接这个正三角形三边的中点,将原三角形分成4个小正三角形,并去掉中间的小正三角形得到图(2),再对图(2)中的每个实心小正三角形重复以上操作得到图(3),再对图(3)中的每个实心小正三角形重复以上操作得到图(4),…,依此类推得到个图形.记第个图形中实心三角形的个数为,第n 个图形中实心区域的面积为.(1)写出数列和的通项公式;(2)设,证明.16.(本小题满分15分)如图,在三棱台中,和都为等腰直角三角形,为线段的中点,为线段上的点.(1)若点为线段的中点,求证:平面;(2)若平面分三棱台所成两部分几何体的体积比为,求二面角的正弦值.()223,0,ln ,0,x x x f x x x ⎧++=⎨>⎩…123,,x x x 123x x x <<()()()123f x f x f x ==()()()112233x f x x f x x f x ++n n n a n b {}n a {}n b 121121n n n n n c a b a b a b a b --=++++ 43n n n a c a <…111A B C ABC -111A B C V ABC V 111112,4,90,CC C A CA ACC BCC CBA G ∠∠∠====== AC H BC H BC 1A B ∥1C GH 1C GH 111A B C ABC -2:511C GH B --17.(本小题满分15分)已知双曲线与双曲线的离心率相同,且经过点的焦距为.(1)分别求和的方程;(2)已知直线与的左、右两支相交于点,与的左、右两支相交于点,D,,判断直线与圆的位置关系.18.(本小题满分17分)为了检测某种抗病毒疫苗的免疫效果,需要进行动物与人体试验.研究人员将疫苗注射到200只小白鼠体内,一段时间后测量小白鼠的某项指标值,按分组,绘制频率分布直方图如图所示.试验发现小白鼠体内产生抗体的共有160只,其中该项指标值不小于60的有110只.假设小白鼠注射疫苗后是否产生抗体相互独立.(1)填写下面的列联表,并根据列联表及的独立性检验,判断能否认为注射疫苗后小白鼠产生抗体与指标值不小于60有关;单位:只指标值抗体小于60不小于60合计有抗体没有抗体合计(2)为检验疫苗二次接种的免疫抗体性,对第一次注射疫苗后没有产生抗体的40只小白鼠进行第二次注射疫苗,结果又有20只小白鼠产生抗体.(i )用频率估计概率,求一只小白鼠注射2次疫苗后产生抗体的概率;(ii )以(i )中确定的概率作为人体注射2次疫苗后产生抗体的概率,进行人体接种试验,记100个人注射2次疫苗后产生抗体的数量为随机变量.求及取最大值时的值.()2222:10,0x y M a b a b -=>>2222:12x y N m m-=M ()2,2,N M N l M ,A B N C AB CD=l 222:O x y a +=[)[)[)[)[]0,20,20,40,40,60,60,80,80,10022⨯0.01α=P P X ()E X ()P X k =k参考公式:(其中为样本容量)参考数据:0.1000.0500.0100.0052.7063.8416.6357.87919.(本小题满分17分)三角函数是解决数学问题的重要工具.三倍角公式是三角学中的重要公式之一,某数学学习小组研究得到了以下的三倍角公式:①;②.根据以上研究结论,回答:(1)在①和②中任选一个进行证明;(2)已知函数有三个零点且.(i )求的取值范围;(ii )若,证明:.()()()()22()n ad bc a b c d a c b d χ-=++++n a b c d =+++αx α3sin33sin 4sin θθθ=-3cos34cos 3cos θθθ=-()323f x x ax a =-+123,,x x x 123x x x <<a 1231x x x =-222113x x x x -=-贵阳第一中学2025届高考适应性月考卷(一)数学参考答案一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)题号12345678答案DCBCBCAA【解析】1.由题,或,则,故选D.2.对于A 选项,的定义域为,该函数在和上单调递增,在定义域内不单调;对于B 选项,的定义域为,该函数在上单调递减,在上单调递增,在定义域内不单调;对于C 选项,,该函数在定义域上单调递增;对于D 选项,的定义域为,当时,;当时,,在上单调递减,在上单调递增,因此该函数在定义域内不单调,故选C.3.,故选B.4.设点,则整理得,解得或,故选C.5.的定义域为.当时,的定义域为,即.令,解得的定义域为,即.“”是“”的必要不充分条件,故选B.{1A xx =<-∣{}3},1,2,3,4x B >={}4A B ⋂=1y x=-()(),00,∞∞-⋃+(),0∞-()0,∞+2ln y x =()(),00,∞∞-⋃+(),0∞-()0,∞+32y x ==[)0,∞+e x y x =().1e xy x =+'R (),1x ∞∈--0y '<()1,x ∞∈-+0y '>x e y x ∴=(),1∞--()1,∞-+53756415232,16,26,3,44a a a a d a a d a a d =+===-===-= ()00,A x y 200002,5,24,y px p x y ⎧=⎪⎪+=⎨⎪=⎪⎩582p p ⎛⎫-= ⎪⎝⎭2p =8p =()23f x - []2,323x ……()1233,x f x -∴……[]1,3[]1,3A =1213x -……()12,21xx f ∴-……[]1,2[]1,2B =,B A ⊆∴ x A ∈x B ∈6.由题,解得,所以,即时,等号成立,C.7.设的二项展开式的通项公式为,,所以二项展开式共6项.当时的项为无理项;当时的项为有理项.两项乘积为有理数当且仅当此两项同时为无理项或同时为有理项,故其概率为,故选A.8.由题,,即圆心为,且,为的直径.与相外切,.由中线关系,有,当且仅当时,等号成立,所以的最大值为20,故选A.二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,选对但不全的得部分分,有选错的得0分)题号91011答案ACDBCBCD【解析】9.对于A 选项,由分布列性质可知正确;对于B 选项,由两点分布定义可知错误;对于C 选项,,正确;对于D 选项,令,则服从两点分布,,,正确,故选ACD.10.令,对于A 选项,的定义域为或,故A 错误;对于B 选项,的值域为在定义域内的值域为()()()()()()()(),e e ,5e 5e ,x xx xg x g x f x f x h x h x f x f x --⎧⎧=-+=-+⎪⎪⇒⎨⎨=---=--+⎪⎪⎩⎩()3e 2e x xf x -=+()3e 2e xxf x -=+…3e 2e x x -=12ln 23x =min ()f x ∴=51x ⎫⎪⎭53521551C C ,0,1,2kkk k kk T x k x --+⎛⎫=== ⎪⎝⎭3,4,50,2,4k =1,3,5k =223326C C 2C 5+=221:(1)(1)2C x y -+-=()11,1C ()()2,0,0,2M N MN 1C 1C 2C 12C C ∴=+=()()2222222222121222218240,202C M C NC M C N C C C MC M C N ++=+=⨯+=∴⋅=…22C M C N =22C M C N ⋅()()()202420252024120252024.01,20242025E X m n n n n n E X =+=-+=+<<∴<< 2024Y X =-Y ()()1D Y n n mn =-=()()()2024D X D Y D Y mn ∴=+==()2221,Δ44g x ax ax a a =-+=-()f x 0a ⇔=R 0,01Δ0a a >⎧⇔<⎨<⎩…()f x ()g x ⇔R,故B 正确;对于C 选项,的最大值为在定义域内的最小值为,故C 正确;对于D 选项,有极值在定义域内有极值且,故D 选项错误,故选BC.11.对于A 选项,因为为奇函数,所以,又由,可得,故A 错误;对于B 选项,由可得为常数,又由,可得,则,令,得,所以,所以的图象关于直线对称,故B 正确;对于C 选项,因为为奇函数,所以,所以,所以是一个周期为4的周期函数,,所以也是一个周期为4的周期函数,故C 正确;对于D 选项,因为为奇函数,所以,又,又是周期为4的周期函数,所以,故D 正确,故选BCD.三、填空题(本大题共3小题,每小题5分,共15分)题号121314答案144【解析】12.设切点坐标为切线方程为.将代入得,可得切点纵坐标为.13.先对小七孔和千户苗寨两个相邻元素捆绑共有种方法,再安排梵净山的位置共有种方法,再排其()0,0,1Δ0a a ∞>⎧+⇔⇔⎨⎩……()f x ()2g x ⇔()0,11511616116a a g >⎧⎪⇔⇔=⎨=⎪⎩()f x ()g x ⇔()0,110a a g ≠⎧⇔⇔<⎨>⎩0a ≠()1g x +()10g =()()11g x f x --=()()()101,01g f f -==-()()3f x g x '=+'()()3,f x g x C C =++()()11g x f x --=()()11g x f x --=()()131g x g x C --+-=1x =-()()221g g C --=1C =-()()()13,g x g x g x -=+2x =()1g x +()()()311g x g x g x +=-=-+()()()()()2,42g x g x g x g x g x +=-+=-+=()g x ()()()()()()31,47131f x g x f x g x g x f x =+-+=+-=+-=()f x ()1g x +()()()()10,204g g g g ==-=-()()310g g ==()g x 20251()(1)0k g k g ===∑e33e 6-(),,ln ,txt a y a a ='∴ ln x y a a x =⋅(),tt aln tta a t a ⋅=1log e,ln a t a==∴e log e t a a a ==22A 13C余元素共有种排法,故共有种不同的方案.14.设,由的函数图象知,,又,.令在上单调递增,则,的最大值为.四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)(1)解:数列是首项为1,公比为3的等比数列,因此;数列是首项为1,公比为的等比数列,因此,.(2)证明:由(1)可得因为,所以,所以.16.(本小题满分15分)(1)证明:如图1,连接,设,连接,44A 214234A C A 144⋅⋅=()()()123f x f x f x t ===()f x 23t <…1232,ln x x x t +=-= ()()()3112233e ,2e t t x x f x x f x x f x t t =∴++=-+()()()()2e ,23,1e 20,t t t t t t t t t ϕϕϕ'=-+<=+->∴…(]2,3()3max ()33e 6t ϕϕ==-()()()112233x f x x f x x f x ∴++33e 6-{}n a 11133n n n a --=⨯={}n b 341133144n n n b --⎛⎫⎛⎫=⨯= ⎪⎪⎝⎭⎝⎭1210121121121333333334444n n n n n n n n n c a b a b a b a b ------⎛⎫⎛⎫⎛⎫⎛⎫=++++=⋅+⋅++⋅+⋅ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭12101111134444n n n ---⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=++++⎢⎥⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦121114134311414n nn n --⎡⎤⎛⎫⋅-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦=⋅=⋅⋅-⎢⎥⎪⎝⎭⎢⎥⎣⎦-2114314411334n n nnn nc a --⎡⎤⎛⎫⋅⋅-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==-⎢⎥⎪⎝⎭⎢⎥⎣⎦413n n c a <…43n n n a c a <…1AC 11AC C G O ⋂=1,HO A G三棱台,则,又,四边形为平行四边形,则.点是的中点,.又平面平面,平面.(2)解:因为平面分三棱台所成两部分几何体的体积比为,所以,即,化简得,此时点与点重合.,且都在平面,则平面,111A B C ABC -11AC ∥AC 122CG AC ==∴11AC CG 1CO OA = H BC 1BA ∴∥OH OH ⊂11,C HG A B ⊄1C HG 1A B ∴∥1C HG 1C GH 111A B C ABC -2:511127C GHC AB V V B C ABC -=-()1111121373GHC ABC AB C S CC S S CC ⋅⋅=⋅⋅+⋅V V V 12GHC ABC S S =V V H B 1190C CA BCC ∠∠== 11,,C C BC CC AC BC AC C ∴⊥⊥⋂=ABC 1CC ⊥ABC又为等腰直角三角形,则.又由(1)知,则平面,建立如图2所示的坐标系则,设平面的法向量,则令,解得,设平面的法向量,则令,解得.设二面角的平面角为,,所以,所以二面角.17.(本小题满分15分)解:(1)由题意可知双曲线的焦距为,解得,即双曲线.因为双曲线与双曲线的离心率相同,不妨设双曲线的方程为,因为双曲线经过点,所以,解得,则双曲线的方程为.ABC V BG AC ⊥1A G ∥1CC 1A G ⊥ABC ,G xyz -()()()()2,0,0,0,2,0,0,0,0,0,2,0H A G C -()()110,2,2,1,1,2C B --1C HG ()()()1,,,0,2,2,2,0,0n x y z GC GH ==-= 220,20,y z x -+=⎧⎨=⎩1y =()0,1,1n = 1B GH ()()1,,,1,1,2m a b c GB ==- 20,20,a b c a -+=⎧⎨=⎩2b =()0,2,1m = 11C GH B --θcos cos ,m n m n m n θ⋅=<>=== sin θ==11C GH B --N =21m =22:12y N x -=M N M 222y x λ-=M ()2,242λ-=2λ=M 22124x y -=(2)易知直线的斜率存在,不妨设直线的方程为,联立消去并整理得此时可得,当时,由韦达定理得;当时,由韦达定理得,则,化简可得,由(1)可知圆,则圆心到直线的距离,所以直线与圆相切或相交.18.(本小题满分17分)解:(1)由频率分布直方图知,200只小白鼠按指标值分布为:在内有(只);在)内有(只);在)内有(只);在)内有(只);在内有(只)由题意,有抗体且指标值小于60的有50只;而指标值小于60的小白鼠共有(只),所以指标值小于60且没有抗体的小白鼠有20只,同理,指标值不小于60且没有抗体的小白鼠有20只,故列联表如下:单位:只l l ()()()()11223344,,,,,,,,y kx t A x y B x y C x y D x y =+22,,2y kx t y x λ=+⎧⎪⎨-=⎪⎩y ()2222220,k x ktx t λ----=()()222222Δ44220,20,2k t k tt k λλ⎧=+-+>⎪⎨--<⎪-⎩22k <2λ=212122224,22kt t x x x x k k--+==--1λ=234342222,22kt t x x x x k k--+==--ABCD ====222t k +=22:2O x y +=O l d ====l O [)0,200.00252020010⨯⨯=[20,400.006252020025⨯⨯=[40,600.008752020035⨯⨯=[60,800.025********⨯⨯=[]80,1000.00752020030⨯⨯=10253570++=指标值抗体小于60不小于60合计有抗体50110160没有抗体202040合计70130200零假设为:注射疫苗后小白鼠产生抗体与指标值不小于60无关联.根据列联表中数据,得.根据的独立性检验,没有充分证据认为注射疫苗后小白鼠产生抗体与指标值不小于60有关.(2)(i )令事件“小白鼠第一次注射疫苗产生抗体”,事件“小白鼠第二次注射疫苗产生抗体”,事件“小白鼠注射2次疫苗后产生抗体”.记事件发生的概率分别为,则,.所以一只小白鼠注射2次疫苗后产生抗体的概率.(ii )由题意,知随机变量,所以.又,设时,最大,所以解得,因为是整数,所以.19.(本小题满分17分)(1)若选①,证明如下:若选②,证明如下:.0H 220.01200(502020110) 4.945 6.6351604070130x χ⨯⨯-⨯=≈<=⨯⨯⨯0.01α=A =B =C =,,A B C ()()(),,P A P B P C ()()160200.8,0.520040P A P B ====()1P C =-()()10.20.50.9P A P B =-⨯=0.9P =()100,0.9X B ~()1000.990E X np ==⨯=()()C 0.90.10,1,2,,k k n k n P X k k n -==⨯⨯= 0k k =()P X k =00000000000010011910010010011101100100C 0.90.1C 0.90.1,C 0.90.1C 0.90.1,k k k k k k k k k k k k -++-----⎧⨯⨯≥⨯⨯⎪⎨⨯⨯≥⨯⨯⎪⎩089.990.9k ……0k 090k =()()22sin3sin 2sin2cos cos2sin 2sin cos 12sin sin θθθθθθθθθθθ=+=+=+-()()2232sin 1sin 12sin sin 3sin 4sin θθθθθθ=-+-=-()()22cos3cos 2cos2cos sin2sin 2cos 1cos 2sin cos θθθθθθθθθθθ=+=-=--()3232cos cos 21cos cos 4cos 3cos θθθθθθ=---=-(2)(i )解:,当时,恒成立,所以在上单调递增,至多有一个零点;当时,令,得;令,得令,得或所以在上单调递减,在上单调递增.有三个零点,则即解得,当时,,且,所以在上有唯一一个零点,同理所以在上有唯一一个零点.又在上有唯一一个零点,所以有三个零点,综上可知的取值范围为.(ii )证明:设,则.又,所以.此时,方程的三个根均在内,方程变形为,令,则由三倍角公式.因为,所以.()233f x x a =-'0a …()0f x '…()f x (),∞∞-+0a >()0f x '=x =()0f x '<x <<()0f x '>x <x >()f x ((),,∞∞-+()f x (0,0,f f ⎧>⎪⎨<⎪⎩2220,20,a a ⎧+>⎪⎨-<⎪⎩04a <<04a <<4a +>()()()()32224(4)3445160f a a a a a a a a a +=+-++=++++>()f x )4a +()2220,g a -<-=-=-<()f x (-()f x (()f x a ()0,4()()()()321233f x x ax a x x x x x x =-+=---()212301f a x x x ==-=04a <<1a =()()()()210,130,110,230f f f f -=-<-=>=-<=>3310x x -+=()2,2-3310x x -+=3134222x x ⎛⎫=⋅-⋅ ⎪⎝⎭ππsin 222x θθ⎛⎫=-<< ⎪⎝⎭31sin33sin 4sin 2θθθ=-=3π3π3,22θ⎛⎫∈- ⎪⎝⎭7ππ5π7ππ5π3,,,,,666181818θθ=-=-因为,所以,所以.123x x x <<1237ππ5π2sin ,2sin ,2sin 181818x x x =-==222221π7ππ7π4sin 4sin 21cos 21cos 181899x x ⎛⎫⎛⎫-=-=--- ⎪ ⎪⎝⎭⎝⎭137ππ5π7π2cos 2cos 2sin 2sin 991818x x =-=--=-。
上海市华东师范大学第二附属中学2024-2025学年九年级上学期9月月考数学试题
上海市华东师范大学第二附属中学2024-2025学年九年级上学期9月月考数学试题一、单选题1.下列一定相似的图形是( ) A .等边三角形B .矩形C .菱形D .直角三角形2.下列方程中,没有实数根的方程是( )A 1=B .210x x +-=C .1122x x -=+ D x -3.已知2b a =-r r,那么下列判断错误的是( )A .2b a =r rB .20a b +=r rC .b a r r∥ D .b a ≠r r4.在△ABC 中,点D 、E 分别在边AB 、AC 上,如果AD=1,BD=2,那么由下列条件能够判断DE ∥BC 的是( ) A .DE 12BC = B .DE 13BC = C .AE 12AC = D .AE 13AC = 5.下列命题中,正确命题的个数为( )①若样本数据3、6、a 、4、2的平均数是4,则其方差为2 ②“相等的角是对顶角”的逆命题 ③对角线互相垂直的四边形是菱形④若抛物线2()31y x k =-+上有点123)(2)()y y y 、,、,则321y y y >>. A .1个B .2个C .3个D .4个6.某学习小组开展测量太阳高度角的数学活动.太阳高度角是指某时刻太阳光线和地平面所成的角.测量时,假设太阳光线均为平行的直线,地面为水平平面.如图,两竖直墙面所成的二面角为120︒,墙的高度均为3米.在时刻t ,实地测量得在太阳光线照射下的两面墙在地面的阴影宽度分别为1米、1.5米.在线查阅天文资料,当天的太阳高度角和对应时间的部分数据如表所示,则时刻t 最可能为( )4583≈.,tan 49.53 1.17︒≈,tan 62.29 1.96︒≈,tan 74.49 3.60︒≈,tan827.12︒≈)A .09:00B .10:00C .11:00D .12:00二、填空题 7.|2|-=8.若:2a b =,:3b c =,则:a c =9.已知反比例函数y =kx的图象经过点(2,﹣1),则k =.10.“二十大”报告中对新时代好青年提出了四个要求:“有理想”“敢担当”“能吃苦”“肯奋斗”,现有四张卡片,正面分别写有这四个词语,它们除此之外完全相同,现反面朝上洗匀,从中随机抽取一张,记下词语后放回洗匀;再随机抽取一张,则这两次抽取的卡片正面的词语恰好是“有理想”和“肯奋斗”的概率是 .11.铁的密度为37.9g cm ,铁块的质量m (单位:g )与它的体积V (单位:3cm )之间的函数关系式为7.9V m =.当310cm V =时,m =g .12.航天飞机从某个时间t 秒开始,其飞行高度为21070021000h t t =-++(单位:英尺),对人而言不低于31000英尺时会感觉到失重,则整个过程中能体会到失重感觉的时间为秒. 13.如图,将一个装有水的杯子倾斜放置在水平的桌面上,其截面可看作一个宽BC=6厘米,长CD=16厘米的矩形.当水面触到杯口边缘时,边CD 恰有一半露出水面,那么此时水面高度是厘米.14.如图,点C 是线段AB 的黄金分割点(AC >BC ),如果分别以点C 、B 为圆心,以AC 的长为半径作弧相交于点D ,那么∠B 的度数是.15.如图,PAB V 中120APB ∠=︒,19AB =,C 、D 在AB 边上,(C 在D 的左边)且PCD △是边长为6的等边三角形,则AC =.16.如图,一副三角板的三个内角分别是90︒,45︒,45︒和90︒,60︒,30︒,如图,若固定ABC V ,将BDE V 绕着公共顶点B 顺时针旋转α度()090α︒<<︒,当边DE 与ABC V 的某一边平行时,相应的旋转角α的正切值为.17.在平面直角坐标系xOy 中,对于两点A ,B ,给出如下定义:以线段AB 为边的等边三角形称为点A ,B 的“确定三角形”.如果点E 在以边长为ABC V 的边上,且AB y ∥轴,AB 的中点为(,0)P m ,点F 在直线2y x =-+上,若要使所有的E ,F 的“确定三角形”的周长都不小于m 的取值范围为.三、解答题182cot 45sin 45tan 45-︒︒⎛⎫⎪︒⎝⎭.19.如图,D 是ABC V 边上的一点,2,CD AD AE BC =⊥,垂足为点E ,若9AE =,3sin 4CBD ∠=.(1)求BD 的长;(2)若BD CD =,求tan BAE ∠的值.20.数学兴趣小组设计了一款含杯盖的奶茶纸杯(如图1),图2为该纸杯的透视效果图,在图3的设计草图中,由»AF 、线段EF 和 »ED 构成的图形为杯盖部分,其中»AF 、与»ED 均在以AD 为直径的O e 上,且 »»AF ED=,G 为EF 的中点,点G 是吸管插孔处(忽略插孔直径和吸管直径),由点A ,B ,C ,D 构成的图形(杯身部分)为等腰梯形,已知杯壁13.6cm AB =,杯底直径 5.8cm BC =,杯壁与直线l 的夹角为84︒.(1)求杯口半径OD 的长;(2)若杯盖顶 3.2cm FE = ,吸管22cm BH =,当吸管斜插,即吸管的一端与杯底点B 重合时,求吸管漏出杯盖部分GH 的长.(参考数据:2sin840.995cos840.105tan849.514 3.9917.52230702≈≈≈≈≈o o o ,,,.,17.760.1cm ≈,结果精确到).21.如图1,将九个数填在33⨯(三行三列)的方格中,如果满足每个横行、每个竖列和每条对角线上的三个数之和都相等,这样的图为广义的三阶幻方(1)请利用三阶幻方的性质填满图2(2)走法是每步直一格再斜一格,即先横着或直着走一格,然后再斜着走一个对角线,可进可退.中国象棋中的马可越过河界,俗称“马走日”,则在图二的左下角一点放入一个马,是否可以不遗漏的走完图二边框的所有点?若能,请直接写出最少需要几步,若不能,请说明理由22.如图,ABCD Y 中的对角线AC ,BD 交于点O ,点E 在边CD 的延长线上,且OE OA =.连接AE .(1)求∠AEC 的度数;(2)若OE AD ⊥,求证:AE CA AD CE ⋅=⋅. 23.综合实践对于下图中的三个四边形,通常可以说,缩小四边形ABCD ,得到四边形1111D C B A ;放大四边形ABCD ,得到四边形2222A B C D .图形的放大或缩小,称为图形的放缩运动.将一个图形放大或缩小后,就得到与它形状相同的图形.图中,四边形1111D C B A 和四边形2222A B C D 都与四边形ABCD 形状相同.我们把形状相同的两个图形说成是相似的图形,或者就说是相似形.如图,对于两个多边形,如果它们的对应顶点的连线相交于一点,并且这点与对应顶点所连线段成比例,那么这两个多边形就是位似多边形,这个点就是位似中心.(1)填空:在上图中位似中心是点________;________多边形是特殊的________多边形.(填“位似”或“相似”)(2)在平面直角坐标系xOy 中(如下图),二次函数2132y x x =-的图像与x 轴交于点A ,点B 是此函数图像上一点(点A 、B 均不与点O 重合),已知点B 的横坐标与纵坐标相等,以点O 为位似中心,相似比为12,将OAB △缩小,得到它的位似11OA B V.①画出11OA B V,并求经过O 、1A 、1B 三点的抛物线的表达式; ②直线()0y kx k =>与二次函数2132y x x =-的图像交于点M ,与①中的抛物线交于点N ,请判断1OA N △和OAM △是否为位似三角形,并根据新定义说明理由.24.如图,在ABC V 中,90ACB ∠=︒,2AC =,点D 为射线CA 上一动点,连接BD ,做BD 的中垂线交边AB 于E ,作EF AC ⊥交边AC 于F ,设BE x =,DF y =(1)是否存在ABC V 使得当点D 为AC 中点时点E 为AB 中点,若存在,请求出tan A ,若不存在,请说明理由(2)若tan 2A =,当点D 与点C 重合时,将AEF △绕点A 顺时针旋转,点E ,F 的对应点分别为M ,N ;当点E 落在射线BC 上时,连接CN ,求:CN 的长(3)若tan A D 在边CA 上时,求:y 关于x 的函数解析式及其定义域。
数学月考9月试卷附答案
XX学年XX学期XX年级月考数学试题卷姓名________________ 准考证号________________成绩____________本试题卷共3大题,共X页。
满分100分,考试时间X分钟。
注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔填写在答题卡和试卷上。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
非选择题用0.5毫米黑色字迹的签字笔将答案写在答题卡规定位置上。
3.所有试题均需在答题卡上作答,在试卷和草稿纸上作答无效。
4.考试结束后,将试卷和答题卡一并交回。
一、单项选择题(本大题共10小题,每小题3.0分,共30分)在每小题列出的四个备选答案中,只有一个是符合题目要求的。
错选、多选或未选均无分。
1.满足条件{1,3}∪A={1,3,5}的所有集合A的个数是()A.1个B.2个C.3个D.4个2.下列各组集合中,表示同一集合的是()A.M={(3,2)},N={(2,3)}B.M={3,2},N={2,3}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={1,2},N={(1,2)}3.由全体实数组成的集合可表示为:①{实数};②{实数集};③R;④{R},其中表示正确的个数是()A.1个B.2个C.3个D.4个4.对于集合A={2,4},B={2,4,6},则下列关系不正确的是()A.A⊆BB.A⊇BC.ABD.A≠B5.设集合M={x|-1<x<4},N={x|0x5},则M∪N=()A.{x|4<x5}B.{x|-1<x5}C.{x|0x<4}D.{x|-1<x0}6.已知集合P={x∈Z|-3<x7},Q={x|x<-2或x4},则P∩Q=()A.{x|-3<x<-2或4x7}B.{x|4x7}C.{4,5,6,7}D.7.用描述法表示集合M={-1,0,1,2}为()M={x|x>-1} B.M={x|-2<x<3,xZ}C.M={x|x<-2}D.M={-1<x<2}8.集合M={1,2,3,4}的子集的个数()A.4个B.5个C.8个D.16个9.已知集合,,则=()A. B.C.RD.10.已知集合A={-2,2},,则=()A.{2}B.C.{-2,2}D.{-2}二、填空题(本大题共8小题,每小题3.0分,共24分)11.用适当的符号填空(1)0_________{0};(2)0_________;(3){0}_________;(4)a_________{a,b};(5){a}_________{a,b};(6){1,-1}_____{x|x2=1}.12.含有有限个元素的集合叫做________,含有无限个元素的集合叫做________,不含任何元素的集合叫做________,记作________.13.集合的主要表示方法有________、________,利用元素特征性质来表示集合的方法叫________.14.用适当的符号填空:(1)0_________N;(2)_________Z;(3)N+_________R;(4){x|x2<4,x∈Z}_________{-1,0,1}.15.在研究某些集合时,这些集合往往是一个给定集合的子集,这个给定的集合叫做________,一般用________来表示,在研究数集时,经常把________作为全集.16.是任何集合的,是任何非空集合的.17.设集合,则与集合M的关系是.18.若集合,用列举法表示为.三、解答题(本大题共7小题,共46分。
9月数学月测卷
10月16日数学9月测试卷姓名:班级:得分:一.选择题(共10小题,满分30分,每小题3分)1.下列长度的三条线段,能组成三角形的是()A.4cm ,5cm ,9cmB.8cm ,8cm ,15cmC.5cm ,5cm ,10cmD.6cm ,7cm ,14cm2.在△AOC 中,OB 交AC 于点D ,量角器的摆放如图所示,则∠CDO 的度数为()A.90°B.95°C.100°D.120°3.若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°4.如图,AB ⊥CD ,且AB=CD.E 、F 是AD 上两点,CE ⊥AD ,BF ⊥AD.若CE=a ,BF=b ,EF=c ,则AD 的长为()A.a +cB.b +cC.a ﹣b +cD.a +b ﹣c5.5.如图,△ABC ≌△ADE ,∠DAC=60°,∠BAE=100°,BC 、DE 相交于点F ,则∠DFB 的度数是()A.15° B.20°C.25°D.30°6.如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 的平分线BP 交于点P ,若∠BPC=40°,则∠CAP=()A.40°B.45°C.50°D.60°7.如图,在五边形ABCDE 中,∠A +∠B +∠E=300°,DP 、CP 分别平分∠EDC 、∠BCD ,则∠P 的度数是()A.50° B.55° C.60°D.65°第4题图第5题图第6题图第7题图8.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB=AC ,现添加以下的哪个条件仍不能判定△ABE ≌△ACD()A.∠B=∠CB.AD=AEC.BD=CED.BE=CD9.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD +∠ACD=()A.75° B.80° C.85° D.90°10.如图,在四边形ABCD 中,AD ∥BC ,若∠DAB 的角平分线AE 交CD 于E ,连接BE ,且BE 边平分∠ABC ,则以下命题不正确的个数是①BC +AD=AB ;②E 为CD 中点;③∠AEB=90°;④S △ABE =S 四边形ABCD ;⑤BC=CE.()A.0个 B.1个 C.2个 D.3个二.填空题(共4小题,满分20分,每小题5分)11.(5分)用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE ,其中∠BAC=度.12.(5分)如图所示,在△ABC 中,∠B=∠C=50°,BD=CF ,BE=CD ,则∠EDF的度数是.13.(5分)如图,已知△ABC ≌△ADE ,若AB=7,AC=3,则BE 的值为.14.(5分)如图,已知△ABC 的周长是32,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD=6,△ABC 的面积是.请将1~14题的答案填在下面表格中:11题图12题图13题图14题图第9题图第8题图第10题图三.解答题(共8小题,满分70分)15.(7分)在一个正多边形中,一个外角等于一个内角的,求这个多边形每一个内角的度数和它的边数.16.(7分)如图,∠BAD=∠CBE=∠ACF,∠FDE=64°,∠DEF=43°,求△ABC各内角的度数.17.(7分)如图,在△ABC和△DEF中,点B、F、C、E在同一直线上BF=CE,AC∥DF且AC=DF.求证:AB∥DE.18.(7分)如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.19.(10分)如图,点B、F、C、E存同一直线上,AC、DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,BF=CE.(1)求证:△ABC≌△DEF;(2)若∠A=65°,求∠AGF的度数.20.(10分)如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE 交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.21.(10分)静止时秋千位于铅垂线BD上,转轴B到地面的距离BD=3m.当秋千摆动到最高点A 时,测得点A到BD的距离AC=2m,点A到地面的距离AE=1.8m;当他从A处摆动到A′处时,有A'B⊥AB.(1)求A′到BD的距离;(2)求A′到地面的距离.22.(12分)如图,已知BD是△ABC的角平分线,CD是△ABC的外角∠ACE的外角平分线,CD 与BD交于点D。
福建省福州屏东中学2024-2025学年九年级上学期九月月考数学试题(含答案)
福州屏东中学2024-2025学年第一学期九月适应性练习九年级数学一.选择题(共10小题,每小题4分,共40分)1.观察下列每组图形,是相似图形的是()A .B .C .D .2.下列选项中,y 不是x 的函数的是()A .B .C .D .3.已知两个相似三角形的周长比为,则它们的对应角平分线比为()A .B .C .D .4.我国的乒乓球“梦之队”在巴黎奥运赛场上大放异彩,奥运会乒乓球比赛的第一阶段是团体赛,赛制为单循环赛(每两队之间都赛一场).计划分为4组,每组安排28场比赛,设每组邀请个球队参加比赛,可列方程得()A .B .C.D .5.如图,在矩形中,对角线相交于点,,,则的长为()第5题图A .2B .C .4D .6.若是方程的两个实数根,则的值为()A .2022B .2023C .2024D .20257.学校要求学生每天坚持体育锻炼.小亮记录了自己一周内每天校外锻炼的时间,并制作了如图所示的统计图,下列关于小亮该周每天校外锻炼时间的描述,正确的是()第7题图4:92:34:98:1816:81x ()128x x +=()128x x -=()11282x x +=()11282x x -=ABCD ,AC BD O 60AOD ∠=︒4AC =AD ,m n 2220260x x +-=23m m n ++A .中位数为67分钟B .众数为88分钟C .平均数为73分钟D .方差为08.函数与在同一平面直角坐标系中的图象可能是()A .B .C .D .9.抛物线上部分点的横坐标,纵坐标的对应值如下表:…012……4664…从上表可知,下列说法中不正确的是( )A .抛物线与轴的一个交点为B .在对称轴左侧,随的增大而增大C .抛物线的对称轴是直线D .函数的最大值为610.小明用七巧板拼了一个对角线长为2的正方形,再用这副七巧板拼成一个长方形(如图所示),则长方形的对角线长为()第10题图A .2.5B .3CD二.填空题(共6小题,每小题4分,共24分)11.如果点在函数的图象上,那么的值等于______.12.把抛物线先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为______.13.如图,,若,,,则的长是______.第13题图21y ax =-()0y ax a =≠2y ax bx c =++x y x2-1-yx ()3,0y x 12x =2y ax bx c =++()2,A a -132y x =-+a 22y x =AD BE CF ∥∥2AB =5AC =4DE =EF14.如图,菱形的对角线交于点,过点作于点,连接,若,,则对角线的长为______.第14题图15.小明在计算一组数据的方差时,列出的算式如下:,根据算式信息,这组数据的平均数是______.16.已知抛物线经过,两点,若分别位于抛物线对称轴的两侧,且,则的取值范围是______.三.解答题(共9小题,共86分)17.(8分)解方程(1)(2)18.(8分)如图,已知点是的边上一点,,交于点,.求证:四边形是平行四边形.第18题图19.(8分)某商场以每件20元的价格购进一种商品,经市场调查发现:该商品每天的销售量(件)与每件售价(元)之间满足一次函数关系,其图象如图所示,设该商场销售这种商品每天获利(元).第19题图ABCD ,AC BD O D DE AB ⊥E OE 10AB =6OE =AC ()()()22221273896S x x x ⎡⎤=-+-+-⎣⎦22y x x c =-+()13,A n y +()221,B n y -,A B 12y y <n ()2116x +=2610x x -+=D ABC △CN AB ∥DN AC M MA MC =ADCN y x w(1)求与之间的函数关系式;(2)求与之间的函数关系式.20.(8分)如图,在中,平分,点在上,且.第20题图(1)求证:;(2)若,,求的值21.(8分)已知:二次函数.(1)求证:该抛物线与轴一定有两个交点;(2)设抛物线与轴的两个交点是(在原点左边,在原点右边),且,求此时抛物线的解析式.22.(10分)某学校开展劳动教育,并在活动前、后实施两次调查.活动前随机抽取50名同学,调查他们一周的课外劳动时间(单位:h ),并分组整理,绘制成如下的条形统计图(其中组,B 组,C 组,D 组,E 组).活动开展一个月后,数学社团再次随机抽取50名同学,调查他们一周的课外劳动时间(单位:h ),按照同样的分组方法绘制成如下扇形统计图,发现活动后调查的数据组人数与活动前组人数相同.请根据图中信息解答下列问题:第22题图(1)请将条形统计图补充完整;(2)活动后调查数据的中位数落在______组;(3)若该校共有2400名学生,请根据活动后调查结果,估计该校学生一周课外劳动时间不小于4小时的人数.23.(10分)如图,在平行四边形中,为对角线,,是的中线.y x w x ABC △AD BAC ∠E AC EAD ADE ∠=∠DCE BCA ∽△△6AB =4DE =BDCD()221y x m x m =-++-x x A B 、A B 3AB =t A 02t ≤<24t ≤<46t ≤<68t ≤<8t ≥t C B ABCD AC AC BC =AE ABC △第23题图(1)按要求作图①在取一点使得;(要求:尺规作图,不写作法,保留作图痕迹).②画出的高.(要求:仅使用无刻度的直尺画图).(2)在(1)的条件下,若,,求的长.24.(12分)已知抛物线经过,.是抛物线上一点,且在直线的上方.第24题图(1)求抛物线的表达式;(2)若面积是面积的2倍,求点的坐标;(3)如图,交于点,.记,的面积分别为,,判断是否存在最大值.若存在,求出最大值;若不存在,请说明理由.25.(14分)在一次课上,王老师请同学们思考如何通过折纸的方法来确定正方形一边上的一个三等分点.【操作探究】“乘风”小组的同学经过一番思考和讨论交流后,进行了如下操作:第1步:如图1,将边长为6的正方形纸片对折,使点与点重合,展开铺平,折痕为;第2步:再将边沿翻折得到;第3步:延长交于点,则点为边的三等分点.AD F EF CD ∥ABC △CH 2AB =60B ∠=︒CH 2y ax bx =+()4,0A ()1,3B P AB OAB △PAB △P OP AB C PD OB ∥CPB △BCO △1S 2S 12S S ABCD A B EF BC CE GC EG AD H H AD证明如下:连接,正方形沿折叠,,,又,(①).设,是的中点,则,在中,可列方程:___②___,解得:,即是边的三等分点.“破浪”小组进行如下操作:第1步:如图2所示,先将正方形纸片对折,使点与点重合,展开铺平,折痕为;第2步:再将正方形纸片对折,使点与点重合,展开铺平,折痕与折痕交于点;第3步:过点折叠正方形纸片,使折痕.【过程思考】(1)“乘风”小组的证明过程中,①处的推理依据是______;②处所列方程是______;(2)结合“破浪”小组操作过程,判断点是否为边的三等分点,并证明你的结论;【拓展提升】(3)①如图3,将矩形纸片对折,使点和点重合,展开铺平,折痕为,将沿翻折得到,过点折叠矩形纸片,使折痕,若点为边的三等分点,请求出的值;②在边长为6的正方形中,点是射线上一动点,连接,将沿翻折得到,直线EG 与直线AD 交于点H .若,请直接写出BE 的长.CH ABCD CE 90D B CGH ∴∠=∠=∠=︒CG CB CD ==CH CH = CGH CDH ∴≌△△GH DH ∴=DH x =E AB 132AE BE EG AB ====Rt AEH △2DH =H AD A B EF B D AC DE G G ABCD MN AD ∥M AB ABCD A D EF EDC △CE EGC △G MN AB ∥M AD AD DCABCD E BA CE EBC △CE EGC △13DH AD =2024-2025学年第一学期九月适应性练习参考答案一、选择题(本大题共10小题,每小题4分,满分40分)1~5:ABBDA6~10:CCBDC二、填空题(本大题共6小题,每小题4分,满分24分)11.412.13.614.1615.16.三、解答题(本大题共9题,满分86分)17.解:(1) ,解:(2) ,18.证明:,,在和中,,,,四边形是平行四边形.(答案不唯一)19.解:(1)设与之间的函数关系式为,由所给函数图象可知:,解得,故与的函数关系式为;(2),()2234yx =++47620n -<<14x +=±13x =25x =-26919x x -+=-+()238x -=3x -=±13x =+23x =-CN AB ∥DAM NCM ∴∠=∠ADM △CNM △DAM NCM MA MC AMD CMN ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA AMD CMN ∴≌△△MD MN ∴=∴ADCN y x ()0y kx b k =+≠25703550k b k b +=⎧⎨+=⎩2120k b =-⎧⎨=⎩y x 2120y x =-+2120y x =-+,即与之间的函数关系式为.20.解:(1)证明:平分,,,,,;(2)解:,,,即,,.21.(1)证明:,,,故抛物线与轴一定有两个交点;(2)解:令,得,由(1)知,,,,,解得,在原点左边,在原点右边,,,,故抛物线的表达式为:;22.解:(1)(人),活动前组人数为20人,活动前组人数为(人),补全统计图如下所示:()()()22020212021602400w x y x x x x ∴=-=--+=-+-w x 221602400w x x =-+-AD BAC ∠BAD CAD ∴∠=∠EAD ADE ∠=∠ ADE BAD ∴∠=∠DE AB ∴∥DCE BCA ∴∽△△DCE BCA∽△△DE CD AB CB ∴=4263CD CB ∴==32CB CD =3112CB CD ∴-=-12BD CD ∴=()()22Δ2418m m m =+--=+20m ≥ 2Δ880m ∴=+≥>x 0y =()2210x m x m -++-=Δ0>2A B x x m ∴+=+1A B x x m ⋅=-()()()()22224241A B A B A B AB x x x x x x m m =-=+-⋅=+--()()22419m m ∴+--=1m =±A B 10A B x x m ∴⋅=-<1m ∴<1m ∴=-22y x x =--5040%20⨯=∴B ∴D 5010201424----=(2)活动前一共调查了50人,将这50人的课外劳动时长从低到高排列,处在第25名和第26名的时长都落在组,活动后调查数据的中位数落组;(3)人,估计该校学生一周课外劳动时间不小于4小时的人数为1920人.23.解:(1)①如图,点为所作;法一:连接与交于点,连接并延长,的延长线与的交点即为点;法二:以点为圆心,长为半径画弧,弧与的交点即为点;法三:作,与的交点即为点.②如图1,CH 为所作;(2),,是等边三角形,,,,,.C ∴C ()240016%14%1920⨯--=∴F BD AC O EO EO AD F A BE ADF BEF ECD ∠=∠EF AD F AC BC = 60B ∠=︒ABC ∴△2AC BC AB ∴===1302BCH BCA ∠=∠=︒90CHB =︒∠ 112BH BC ∴==CH ∴==24.解:(1)将,代入得,解得:,抛物线的解析式为:;(2)设直线的解析式为:,将,代入得,解得:,直线的解析式为:,,,,,即,过点作轴于点,与交于点,过点作于点,如图,,.设点的横坐标为,,,.()4,0A ()1,3B 2y ax bx =+16403a b a b +=⎧⎨+=⎩14a b =-⎧⎨=⎩∴24y x x =-+AB y kx t =+()4,0A ()1,3B y kx t =+403k t k t +=⎧⎨+=⎩14k t =-⎧⎨=⎩∴AB 4y x =-+()4,0A ()1,3B 14362OAB S ∴=⨯⨯=△26OAB PAB S S ∴==△△3PAB S =△P PM x ⊥M PM AB N B BE PM ⊥E 1133222PAB PNB PNA S S S PN BE PN AM PN ∴=+=⨯+⨯==△△△2PN ∴=P m ()()2,414P m m m m ∴-+<<(),4N m m -+()2442PN m m m ∴=-+--+=解得:或;或;(3)存在最大值.理由如下:,,,,,,设直线交轴于点,把代入,解得,则,过点作轴,垂足为,交于点,如图,,,,,,,设,则点坐标为,,.,2m =3m =()2,4P ∴()3,312S S PD OB ∥DPC BOC ∴∠=∠PDC OBC ∠=∠DPC BOC ∴∽△△CP CD PD CO CB OB∴==12S CD PD S CB OB== AB y F 0x =4y x =-+4y =()0,4F P PH x ⊥H PH AB G PDC OBC ∠=∠ PDG OBF ∴∠=∠PG OF ∥PGD OFB ∴∠=∠PDG OBF ∴∽△△PD PG OB OF∴=()()2,414P n n n n -+<<G (),4n n -+254PG n n ∴=-+-()221211595444216S PD PG n n n S PO OF ⎛⎫∴===-+-=--+ ⎪⎝⎭14n <<当时,的最大值为.25.解:(1)由题意得:①,②.(2)点是边的三等分点,证明如下:分别是的中点,是正方形,,,,,,,,,,,,即,点是边的三等分点.(3)①根据折叠可知.点为边的三等分点,.设,则,,..∴52n =12S S 916HL ()()222633x x -+=+M AB ,E F ,AB CD ABCD AD BC ∴∥AB CD ∥AB CD =AED CDG ∴∠=∠EAG DCG ∠=∠AEG CDG ∴∽△△12AG AE CG CD ∴==MN AD ∥AD BC ∥MN BC ∴∥12AM AG BM CG ∴==13AM AB =∴M AB AE DE = M AD 13AM AD ∴=AM a =3AD a =32DE a =2MD a =CDE CGE ≌△△,.,.四边形是矩形,,.由勾股定理,得,设,则.,,,,,,,解得.故②当点在线段上时,如题干中的图1所示,此时点是的中点,,当点在的延长线上时,连接,如图所示.32EG ED a ∴==CD CG =MN AD ∥90DMG A B ∴∠=∠=∠=︒∴MBCN MN DC ∴=2MD CN a ==MG ===DC x =GN x =90MGE MEG ∠+∠=︒ 90MGE CGN ∠+∠=︒MEG CGN ∴∠=∠90EMG GNC ∠︒∠== EMG GNC ∴∽△△EG EM GC GN ∴=32a x ∴=x =AD DC ∴==AD DCH AD E AB 3BE ∴=H AD HC正方形的边长为6,,.由折叠的性质得,又,,.设.,.在,由勾股定理,可知,,解得.综上所述,的长为3或12. ABCD 6AB AD BC CD ∴====2HD =CG BC CD ==CH CH =()Rt Rt HL HGC HDC ∴≌△△2HG HD ∴==BE y =6AE y ∴=-2EH GE HG y =-=-AEH Rt △222AE AH EH +=()()222682y y ∴-+=-12y =BE。
重庆市第八中学校2024-2025学年九年级上学期9月月考数学试题
重庆市第八中学校2024-2025学年九年级上学期9月月考数学试题一、单选题1.下列式子中,是分式的是( )A .5x -B .3πx y+ C .4a D .2xy2.在以下节水、节能、回收、绿色食品四个标志中,是轴对称图形的是( )A .B .C .D .3.反比例函数8y x=的图象一定经过的点是( ) A .()2,4- B .()1,8- C .()4,2 D .()2,4-4.估计的值应该在( )A .7和8之间B .8和9之间C .9和10之间D .10和11之间5.如图,ABC V 和DEF V 是以点O 为位似中心的位似图形,:1:2OC CF =,若36DEF S =△,则ABC S V 为( )A .6B .3C .4D .86.如图,已知直线a b ∥,直线l 与直线a b 、分别交于点A B 、,AC AB ⊥交直线b 于点C .若250∠=︒,则1∠的度数为( )A .50︒B .40︒C .60°D .30︒7.如图,直角三角形ABC 中,90C ∠=︒,分别以AB AC BC 、、为直径向上作半圆.若26BC AC ==,则图中阴影部分的面积为( )A .9B .9π2C .27π2D 8.如图,下列图形均是由完全相同的小圆点按照一定规律所组成的,第①个图形中一共有5个小圆点,第②个图形中一共有8个小圆点,第③个图形中一共有11个小圆点,L ,按此规律排列下去,第⑩个图形中小圆点的个数是( )A .30B .31C .32D .339.如图,在正方形ABCD 中6AB =,点E 是对角线AC 上的一点,连结DE ,过点E 作EF ED ⊥,交AB 于点F ,以,DE EF 为邻边作矩形DEFG ,连结AG ,若F 恰为AB 的中点,则AG 的长为( )A .32B .34C .94D 10.有如下的一列等式:23200110221033210T a T a x a T a x a x a T a x a x a x a ==-=-+=-+-,,,,L ,其中n 为正整数,nT的各项系数均不为0.交换任意两项的系数得到的新多项式称为“友好多项式”那么以下说法正确的有( )①多项式3T 有6个不同的“友好多项式”;②求多项式3T 所有不同的“友好多项式”之和,其中3x 的系数为:3212a a a -+; ③若()21nn T x =-,那么n T 的所有系数之和为1;④若()21n n T x =-,那么当2025n =时,20252025202320211132a a a a +++++=L .A .0个B .1个C .2个D .3个二、填空题11.计算:tan60cos60cos30︒⋅︒+︒=.12.已知一个正多边形的内角为140︒,这个多边形的条数为.13.一个不透明的口袋中有2个黄色球和3个红色球,这些球除颜色外其余均相同,从中随机摸出一个球,记下颜色后放回,搅匀后再从中随机摸出一个球,则两次都摸出红球的概率是.14.已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.若蓄电池电流为6A 时,电阻为Ω.15.若()2610425mm y m x x -+=-++是关于x 的二次函数,则m 的值为.16.若关于x 的不等式组3532122x x x a x +⎧≤+⎪⎪⎨+⎪+>⎪⎩无解,且关于y 的分式方程53122ay y y --=--有整数解,则满足条件的所有整数a 的和为. 17.如图,四边形ABCD 为矩形,52AB =,BC =,点E 为AB 边上一点,将BCE V 沿CE 翻折,点B 的对应点为点F ,过点F 作FG CE ∥交DC 于点G ,若:1:4DG GC =,则FG 的长为.18.对于一个三位自然数m ,将各个数位上的数字分别乘以3后,取其个位数字,得到三个新的数字,,x y z ,我们对自然数m 规定一个运算:()222F m x y z =++,例如:136m =,其各个数位上的数字分别乘以3后,再取其个位数字分别是:3,9,8,则()222136398154F =++=.则()432F =;若已知两个三位数4,22p a a q b ==(,a b 为整数,且25,25a b ≤≤≤≤),若p q +能被7整除,则()F p q +的最大值是.三、解答题 19.计算(1)()()22x y x x y ++-;(2)22269133a a a a a a ++⎛⎫-÷ ⎪-+⎝⎭. 20.当前,电信网络诈骗犯罪形势严峻,某中学组织了关于防诈安全知识的专题讲座,并进行了防诈安全知识测评,现从该校初中、高中两个学段中各随机抽取20名学生的测试成绩(120分制)进行整理和分析(成绩得分用x 表示,共分成四组:A .090x ≤<,B .90100x ≤<,C .100110x ≤<,D .110120x ≤≤,下面给出了部分信息:初中20名学生的测试成绩是:110,111,100,99,100,89,88,88,87,118,97,96,85,86,106,106,120,112,106,106高中20名学生的测成绩在C 组中的数据是:104,106,107,108,106,109. 初中、高中抽取的学生测试成绩统计表根据上述信息,解答下列问题: (1)直接写出上述图表中a b m 、、的值;(2)该校哪个学段学生掌握防诈安全知识更好?请说明理由.(写出一条理由即可) (3)该校初中4400名学生,高中560名学生,估计两个学段测试成绩优秀()110120x ≤≤的学生共有多少名?21.如图,等腰直角三角形ABC ,90ABC ∠=︒,点D 是AC 的中点,连接BD ,点E 是AC 上的一点,AB AE =.(1)用直尺和圆规完成以下基本操作:过点A 作BAC ∠的角平分线,交BD 和BE 分别于点G 和点F (保留作图痕迹,不写作法) (2)求证:AB GD BD =+.证明:在Rt ABC △中,90ABC AB BC ∠=︒=,,点D 是AC 的中点,AC BD AD DC BD ∴⊥==,,90ADB ∴∠=︒,AB AE AG =Q ,平分BAC ∠,∴_______, 90AFB ∴∠=︒,又AGD BGF ∠=∠Q ,9090AGD BGF ∴︒-∠=︒-∠,∴______________,在ADG △和BDE V 中,________AD BD DAG DBE ⎧⎪=⎨⎪∠=∠⎩,(ASA)ADG BDE ∴V V ≌,DG DE ∴=,GD BD ∴+=_______AE AB ==.22.喷灌和滴灌是目前较常用的两种节水灌溉方式,去年,某专家小组用两块相同大小的试验田分别采用喷灌和滴灌的方式,滴灌总用水2000吨,喷灌总用水3000吨,据测算,喷灌时每亩用水量比滴灌时每亩用水量多10吨. (1)求喷灌和滴灌每亩用水量分别是多少;(2)今年,专家小组计划将滴灌和喷灌试验田面积分别增加%a ,同时,通过改进灌溉输水管道,使喷灌的每亩用水量减少了2%3a ,滴灌的用水量不变,据测算,今年的灌溉用水量比去年的用水量增加了1%2a ,求a 的值.23.如图,在直角梯形ABCD 中,490,tan ,4cm 3B D AB BC ∠=︒===,现有一动点Q 从C点出发沿C D A →→的方向移动到A 点(含端点C 和点A ),当它到A 时停止.设Q 点经过的路程为cm x ,线段,,AQ CQ AC 围成的封闭图形面积为21cm y .(1)直接写出1y 与x 的函数关系式,并注明x 的取值范围;(2)在x 的取值范围内画出1y 的图象,写出函数1y 的一条性质:______________; (3)结合函数图象,当直线212y x m =+与1y 的函数图象有两个交点时,直接写出常数m 的取值范围.(结果保留一位小数,误差不超过0.2).24.如图,四边形ABCD 是某公园的游览步道(步道可以骑行),把四个景点连接起来,为了方便,在景点C 的正东方设置了休息区K ,其中休息区K 在景点A 的南偏西30︒方向A 在景点B 的北偏东75︒方向,景点B 和休息区K 两地相距()90ABK ∠<︒,景点D 分别在休息区K 、景点A 的正东方向和正南方向.(参考数据:2.24 2.45)(1)求步道AB 的长度;(2)周末小明和小宏相约一起去公园游玩,他们在景点C 一起向正东出发,不久到达休息区K ,他们发现有两条路线到达景点A ,于是小宏想比赛看谁先到达景点A .他们分别租了一辆共享单车,两人同时在K 点出发,小明选择①K B A --路线,速度为每分钟320米;小宏选择②K D A --路线,速度为每分钟240米,其中两人在各个景点停留的时间不计.请你通过计算说明,小明和小宏谁先到达景点A 呢?25.如图,一次函数y =kx +b k ≠0 与反比例函数()0,0my m x x=≠<的图象相交于点()1,A n -,与x 轴交于点B ,与y 轴交于点C ,已知122OB OC ==.(1)求反比例函数与一次函数的解析式;(2)将点B 沿x 轴负半轴平移5个单位长度得到点E ,连接AE ,交反比例函数图象于点D ,连接BD .若在y 轴上有一动点F ,直线BD 上有一动点P .当35A P PB +最小时,求DPF V 周长的最小值以及点F 的坐标;(3)如图2,将线段AD 以D 为圆心,逆时针旋转90︒,得到线段DN ,连接CN ,在反比例函数上是否存在一点Q ,使得90CND QCO ∠+∠=︒?直接写出点Q 的坐标.26.如图,等腰直角三角形中,90,ACB CB CA ∠=︒=,点D 是线段BC 中点,以D 为直角顶点作等腰直角三角形,MDN M 在N 的左侧.(1)如图1,若点M 与点A重合,连接,BN AB =BN 的长度;(2)如图2,若点M 在AC 左侧,且90AMC ∠=︒时,过点D 作DE BC ⊥交AB 于点E ,连接ME CN 、,在线段CN 上取一点F 且满足45NDF DMC ∠=︒-∠,求证:AM CM +=;(3)如图3,若点M 在AC 左侧,且90AMC ∠=︒时,将AMC V 和MCD △分别沿AC CD 、翻折得到AM C 'V 和CM D ''V,连接BN DM '、,若12M DM AMC S S '''=V V ,请直接写出DMBN的值.。
福建省福州第十中学2024-—2025学年上学期九月月考九年级数学试题
福建省福州第十中学2024-—2025学年上学期九月月考九年级数学试题一、单选题1.若2是关于x 的方程240x -=的一个根,则这个方程的另一个根是( )A .2x =-B .xC .2x =D .4x =2.抛物线225=-+y x 的对称轴是( ) A .x 轴B .y 轴C .直线5x =D .直线2x =-3.一元二次方程x 2+1=0的根的情况是( ) A .没有实数根 B .只有一个实数根 C .有两个相等的实数根D .有两个不相等的实数根4.将抛物线212y x =-向左平移2个单位长度,再向下平移6个单位长度所得到的抛物线的解析式是( ) A .()21262y x =--- B .()22612y x =-++ C .()21262y x =-+- D .()21262y x =--+ 5.根据下列表格对应值,判断关于x 的方程20ax bx c ++=的一个解x 的范围是( )A .3x <B .2x <C .45x <<D .34x <<6.根据福建省统计局数据,福建省2020年的地区生产总值为43903.89亿元,2022年的地区生产总值为53109.85亿元.设这两年福建省地区生产总值的年平均增长率为x ,根据题意可列方程( )A .()43903.89153109.85x +=B .243903.89(1)53109.85x +=C .243903.8953109.85x =D .()243903.89153109.85x +=7.水平地面上一个小球被推开后向前滑行,滑行的距离s 与时间t 的函数关系如图所示(图为抛物线的一部分,其中P 是该抛物线的顶点),则下列说法正确的是( )A .小球滑行6秒停止B .小球滑行12秒停止C .小球向前滑行的速度不变D .小球向前滑行的速度越来越大8.已知方程20x bx a -+=的一个根是()0a a ≠,则下列代数式的值恒为1的是( ) A .a b +B .abC .a b -D .b a -9.函数236y x x k =-+的图象经过点()11,A y -,()22,B y ,()34,C y ,则有( ) A .321y y y >>B .312y y y >>C .123y y y >>D .132y y y >>10.已知()1,2024A x ,()2,2024B x 是二次函数()250y ax bx a =++≠的图象上两点,则当12x x x =+时,二次函数的值是( )A .225b a +B .254b a-+C .2024D .5二、填空题11.抛物线2y x =的顶点坐标是.12.关于x 的一元二次方程2310x x a ++-=有一个根是0,则a 的值为.13.若关于x 的一元二次方程220x x m -+=有两个不相等的实数根,实数m 的取值范围是. 14.若一个二次函数的最小值为2,则该二次函数的解析式可以是(写出一个符合题意的解析式).15.如图,若抛物线2y ax bx c =++上的()4,0P ,它的对称轴1x =对称,则当0y <时,x 的取值范围是.16.已知抛物线2y ax bx c =++过(),a m ,()3,c n +,()4,c 三点.若0n >,则下列判断①0a >,②0b <,③b n >,④c m <,其中正确的是(填序号即可)三、解答题 17.解方程: (1)()220x x x -+-= (2)2310x x -+=18.已知二次函数2246y x x =--,请用配方法将其化成()2y a x h k =-+的形式,并写出对称轴和顶点坐标.19.抛物线y =ax 2+bx +c 经过(0,0),(12,0)两点,其顶点的纵坐标是3,求这个抛物线的解析式.20.已知关于x 的一元二次方程22x 2mx m 90-+-=.(1)求证:无论m 为何值,该一元二次方程都有两个不相等的实数根; (2)若该一元二次方程的两根为1x ,2x ,且213x x =,求m 的值.21.一人一盔安全守规,一人一带平安常在.某商店销售一批头盔,售价为每顶80元,每月可售出200顶,在“创建文明城市”期间,计划将头盔降价销售,但不能亏本且降价不低于10元.经调查发现:每顶降价1元,每月可多售出10顶.已知头盔的成本为每顶50元. (1)当每月获利5250元时,求此时每顶头盔的售价;(2)当每顶头盔售价多少元时,每月的销售利润最大?最大利润是多少元? 22.已知二次函数2y ax bx c =++中的x ,y 满足下表:(1)求这个二次函数的解析式;(2)利用上表,在平面直角坐标系画出这条抛物线;(3)直接写出,当x 取什么值时,0y >?23.为了迎接2023年杭州亚运会,杭州市某社区文化广场修建一个人工喷水池,在池中心竖直安装一根喷水管OA ,喷水口为A ,喷出水流的轨迹是抛物线.建立如图所示的平面直角坐标系,水流沿抛物线2134y x bx =-++喷出.(1)若当水流与喷水管OA 的水平距离为1m 时,水流达到最大高度B 点.求b 的值和水流达到的最大高度(即水流最高点B 到地面的距离);(2)若水流的正前方4m (4m OC =)处有一个截面长方形的物体CDEF ,其中长CD 为2m ,宽DE 为1m ,为避免物体被水流淋到,求b 的取值范围.24.大约于公元前2000年,古巴比伦人用“长”,“宽”及“面积”来代表未知数及它们的乘积.例如图1,长代表a ,宽代表b ,长方形的面积代表ab ,大约于公元830年,阿尔·花拉子米(AI -Khwarizmi )在《代数学》中介绍了用几何学方式求方程的解.(1)某实践小组对《代数学》的内容进行研习后,也尝试用几何学方式解方程()24500x x x +-=>,并形成以下操作步骤:第一步:将方程变形成245x x +=;第二步:构造边长为2x +的正方形(如图2);第三步:求得右下角正方形面积S 的值是 ① ;第四步:用两种方法表示图中大正方形的面积()22222x x x x S +=+++,将245x x +=代入, 可得()22x += ② ∵0x >, ∴x =③请补全该实践小组求解过程中①②③所缺的内容;(2)请参照上述方法解方程()251400x x x +-=>.25.根据以下素材,探索完成任务. 素材。