光敏电阻特性测试实验
光敏电阻的特性实验报告
![光敏电阻的特性实验报告](https://img.taocdn.com/s3/m/1ed5435e58eef8c75fbfc77da26925c52cc591a8.png)
光敏电阻的特性实验报告光敏电阻的特性实验报告引言:光敏电阻是一种能够根据光照强度改变电阻值的器件。
它在各种电子设备中被广泛应用,如光敏开关、光敏传感器等。
本实验旨在探究光敏电阻的特性,并通过实验数据分析其工作原理。
实验材料:1. 光敏电阻2. 电压源3. 电流表4. 电阻箱5. 光源6. 实验电路板实验步骤:1. 将光敏电阻连接到电路板上,注意正确连接极性。
2. 将电流表与电阻箱串联,连接到电路板上。
3. 将电压源与电路板相连,调节电压值为适当范围。
4. 将光源照射到光敏电阻上,并记录电流表的读数。
5. 改变光源的距离或强度,重复步骤4,记录多组数据。
实验结果:通过实验记录的数据,我们可以得到以下结论:1. 光敏电阻的电阻值随光照强度的增加而减小。
当光照强度较弱时,电阻值较大;当光照强度较强时,电阻值较小。
这与光敏电阻的工作原理相符。
2. 光敏电阻的电阻值与光照距离成反比关系。
当光源距离光敏电阻较远时,光照强度较弱,电阻值较大;当光源距离光敏电阻较近时,光照强度较强,电阻值较小。
3. 光敏电阻的电阻值变化不仅与光照强度有关,还与光源的波长有关。
不同波长的光照射到光敏电阻上,其电阻值的变化程度也不同。
讨论与分析:光敏电阻的特性实验结果与我们对其工作原理的理解相符。
光敏电阻的工作原理是基于光敏材料的光电效应。
当光照射到光敏电阻上时,光子的能量被光敏材料吸收,使其内部电子跃迁到导带中,从而导致电阻值下降。
因此,光敏电阻能够根据光照强度的变化来改变电阻值。
在实际应用中,光敏电阻常用于光敏传感器中。
通过测量光敏电阻的电阻值,可以获得环境光照强度的信息。
在自动照明系统中,光敏电阻可以根据光照强度的变化来控制灯光的亮度,实现自动调节。
此外,光敏电阻还可以用于光敏开关的设计。
通过光敏电阻的电阻值变化,可以实现光敏开关的开关控制。
当光照强度达到一定阈值时,光敏电阻的电阻值发生变化,从而触发开关动作。
结论:通过本次实验,我们深入了解了光敏电阻的特性和工作原理。
光敏电阻特性研究实验报告
![光敏电阻特性研究实验报告](https://img.taocdn.com/s3/m/a1fd87abe109581b6bd97f19227916888486b9ad.png)
课程名称:大学物理实验(一)实验名称:光敏电阻特性研究图3 光敏电阻光照特性光敏电阻器是利用半导体的光电效应制成的一种电阻值随入射光(可见光)的强弱而改变的电阻器;入射光强,电阻减小,入射光弱,电阻增大。
在黑暗条件下,它的阻值(暗阻)可图4 无光照时的光敏电阻原理示意图图5 有光照时的光敏电阻原理示意图光敏电阻是一种能够感知光的电子元件,其原理在于光照射到光敏电阻表面时,会激发其中的电子发生跃迁,导致电阻值发生变化。
具体来说,光敏电阻中含有一种半导体材料的物质作为感光元件如硒化铋、硫化镉等,当光线照射到这种材料上时,会让一些电子从价带跃迁到导带,使得电子数量增加,从而导致电阻值降低。
导体材料在没有光照射时,其中的电子处于价带中,不能自由移动。
因此,当光线强度增加时,电阻值就会相应地减小;反之,当光线强度减小或消失时,电阻值则会增大。
4.光敏电阻的伏安特性:光敏电阻在光强一定的情况下(偏振片角度θ不变)时,电阻是一个定值电阻。
根据R = U/I,可得到光强不变时电阻是一条直线,它的斜率就是电阻的阻值。
图1 光敏电阻特性研究实验装置图图2偏振片角度θ=30°时光敏电阻的伏安特性曲线由图可知:直线斜率即为此时的光敏电阻的阻值。
由于电压单位是(V)而电流单位是(mA),根据欧姆定律,其中U的单位是(V),I的单位是(A),故此时光敏电阻阻值为1505Ω。
变形式R=UI3.光敏电阻的光照特性和电阻特性研究表3 光敏电阻电流随相对光照强度变化数据表θ0º10º20º30º40º50º60º70º80º90º图3 光敏电阻光照特性曲线由图可知:电压一定时,当相对光强增大时,电流也逐渐增大。
当相对光照强度达到最大时,电流也取到最大值。
当相对光照强度为0时,电流不为0,但接近0,因为光敏电阻的暗阻较大。
除此之外,实验时电压恒定为2V,故可根据欧姆定律变形式R=UI计算不同相对光照强度时的电阻。
光敏电阻特性研究实验报告
![光敏电阻特性研究实验报告](https://img.taocdn.com/s3/m/2ae706c1b8d528ea81c758f5f61fb7360b4c2ba3.png)
光敏电阻特性研究实验报告光敏电阻是一种能够根据光照强度改变电阻值的元件,它在光敏元件中具有重要的应用价值。
本实验旨在研究光敏电阻的特性,通过实验数据的采集和分析,探讨光敏电阻在不同光照条件下的电阻变化规律,为光敏电阻在实际应用中的选型和设计提供参考依据。
实验一,光照强度对光敏电阻的影响。
在实验室条件下,我们利用可调光源和万用表进行了一系列实验。
首先,我们将光敏电阻置于黑暗环境中,记录下此时的电阻值;随后,逐渐增加光源的亮度,每隔一定时间记录光敏电阻的电阻值。
实验结果表明,光照强度与光敏电阻的电阻值呈现出负相关的关系,即光照强度越大,光敏电阻的电阻值越小。
这一结果与光敏电阻的基本特性相符,也为后续实验提供了重要的数据支撑。
实验二,光敏电阻的响应速度。
为了研究光敏电阻的响应速度,我们设计了一组实验。
在实验中,我们利用光敏电阻和示波器搭建了一个简单的实验电路,通过改变光源的亮度,观察光敏电阻电阻值的变化情况。
实验结果显示,光敏电阻的响应速度较快,当光源亮度发生变化时,光敏电阻的电阻值能够迅速做出相应调整。
这一特性使得光敏电阻在光控自动调节系统中具有广泛的应用前景。
实验三,光敏电阻的温度特性。
在实验室条件下,我们对光敏电阻的温度特性进行了研究。
通过改变环境温度,记录光敏电阻的电阻值,得出了光敏电阻在不同温度下的电阻变化规律。
实验结果表明,光敏电阻的电阻值随着温度的升高而减小,这一特性需要在实际应用中进行合理的温度补偿,以确保系统的稳定性和可靠性。
结论。
通过本次实验,我们深入研究了光敏电阻的特性,并取得了一系列有意义的实验数据。
光敏电阻在光照强度、响应速度和温度特性等方面表现出了一系列重要的特点,这些特性为光敏电阻在光控自动调节系统、光电传感器等领域的应用提供了重要的理论依据。
同时,我们也发现了一些需要进一步深入研究的问题,比如光敏电阻的光谱特性、长期稳定性等方面的研究仍有待深入。
希望通过本次实验,能够为光敏电阻的应用和研究提供一定的参考价值,推动光敏电阻领域的进一步发展和应用。
实验5:光敏电阻特性实验
![实验5:光敏电阻特性实验](https://img.taocdn.com/s3/m/fe8c1ee28e9951e79a892796.png)
实验5 光敏电阻特性实验一、实验目的:了解光敏电阻的光照特性和伏安特性。
二、基本原理:在光线的作用下,电子吸收光子的能量从键合状态过渡到自由状态,引起电导率的变化,这种现象称为光电导效应。
光电导效应是半导体材料的一种体效应。
光照愈强,器件自身的电阻愈小。
基于这种效应的光电器件称光敏电阻。
光敏电阻无极性,其工作特性与入射光光强、波长和外加电压有关。
实验原理图如图4-1。
图4-1 光敏电阻实验原理图三、需用器件与单元:主机箱中的转速调节0~24V电源、±2V~±10V步进可调直流稳压电源、电流表、电压表;光电器件实验(一)模板、光敏电阻、发光二极管、庶光筒。
四、实验步骤:1.发光二极管(光源)的照度标定1)按图4—2安装接线,接线时注意+、-极性,并将主机箱中的0~24V可调电压调节至最小值;2)将电压表量程拧至20V档,合上主机箱电源,调节主机箱中的0~24V可调电压就可以改变光源(发光二极管)的光照度值按照表4-1进行标定(调节电压源),得到照度——电压对应值,根据表4-1数据做出发光二极管的电压——照度特性曲线。
图4-2 发光二极管工作电压与光照度的对应关系实验接线示意图表4-1 发光二极管电压与光照度的对应关系光照度(Lx)0 10 20 30 40 50 60 70 80 90 100 电压(V)电压U(V)照度(Lx)2.亮电阻和暗电阻测量1)按图4-3安装接线,接线时注意+、-极性,并将主机箱中的0~24V可调电压调节至最小值。
打开主机箱电源,将±2V~±10V的可调电源开关打到10V档,再缓慢调节0~24V可调电源,使发光二极管二端电压为光照度100Lx时对应的电压(实验步骤1中的标定值)值。
2)10秒钟左右读取电流表(可选择电流表合适的档位20mA档)的值为亮电流I亮。
图4-3 光敏电阻特性实验接线图3)将0~24V可调电源的调节旋钮逆时针方旋到底后10秒钟左右读取电流表(20μA档)的值为暗电流I暗。
光敏电阻特性测试实验
![光敏电阻特性测试实验](https://img.taocdn.com/s3/m/0f37d6e3bb4cf7ec4afed029.png)
光敏电阻特性测试实验一、实验目的1、学习掌握光敏电阻工作原理2、学习掌握光敏电阻的基本特性3、掌握光敏电阻特性测试的方法4、了解光敏电阻的基本应用三、实验内容1、光敏电阻的暗电阻、暗电流测试实验2、光敏电阻的亮电阻、亮电流测试实验3、光敏电阻光电流测试实验;4、光敏电阻的伏安特性测试实验5、光敏电阻的光电特性测试实验6、光敏电阻的光谱特性测试实验7、光敏电阻的时间响应特性测试实验三、实验仪器1、光电探测综合实验仪 1个2、光通路组件 1套3、光敏电阻及封装组件 1套4、光照度计 1台5、2#迭插头对(红色,50cm) 10根6、2#迭插头对(黑色,50cm) 10根7、三相电源线 1根8、实验指导书 1本四、实验原理1. 光敏电阻的结构与工作原理光敏电阻又称光导管,它几乎都是用半导体材料制成的光电器件。
光敏电阻没有极性,纯粹是一个电阻器件,使用时既可加直流电压,也可以加交流电压。
无光照时,光敏电阻值(暗电阻)很大,电路中电流(暗电流)很小。
当光敏电阻受到一定波长范围的光照时,它的阻值(亮电阻)急剧减小,电路中电流迅速增大。
一般希望暗电阻越大越好,亮电阻越小越好,此时光敏电阻的灵敏度高。
实际光敏电阻的暗电阻值一般在兆欧量级,亮电阻值在几千欧以下。
光敏电阻的结构很简单,图1-1(a)为金属封装的硫化镉光敏电阻的结构图。
在玻璃底板上均匀地涂上一层薄薄的半导体物质,称为光导层。
半导体的两端装有金属电极,金属电极与引出线端相连接,光敏电阻就通过引出线端接入电路。
为了防止周围介质的影响,在半导体光敏层上覆盖了一层漆膜,漆膜的成分应使它在光敏层最敏感的波长范围内透射率最金属电极检流计E大。
为了提高灵敏度,光敏电阻的电极一般采用梳状图案, 如图1-1(b )所示。
图1-1(c )为光敏电阻的接线图。
2. 光敏电阻的主要参数有:(1) 暗电阻 光敏电阻在不受光照射时的阻值称为暗电阻, 此时流过的电流称为暗电流。
光敏电阻特性测试实验(精)
![光敏电阻特性测试实验(精)](https://img.taocdn.com/s3/m/baab7ed958f5f61fb7366665.png)
光敏电阻特性测试实验一、实验目的1、学习掌握光敏电阻工作原理2、学习掌握光敏电阻的基本特性3、掌握光敏电阻特性测试的方法4、了解光敏电阻的基本应用三、实验内容1、光敏电阻的暗电阻、暗电流测试实验2、光敏电阻的亮电阻、亮电流测试实验3、光敏电阻光电流测试实验;4、光敏电阻的伏安特性测试实验5、光敏电阻的光电特性测试实验6、光敏电阻的光谱特性测试实验7、光敏电阻的时间响应特性测试实验三、实验仪器1、光电探测综合实验仪 1个2、光通路组件 1套3、光敏电阻及封装组件 1套4、光照度计 1台5、2#迭插头对(红色,50cm) 10根6、2#迭插头对(黑色,50cm) 10根7、三相电源线 1根8、实验指导书 1本四、实验原理1. 光敏电阻的结构与工作原理光敏电阻又称光导管,它几乎都是用半导体材料制成的光电器件。
光敏电阻没有极性,纯粹是一个电阻器件,使用时既可加直流电压,也可以加交流电压。
无光照时,光敏电阻值(暗电阻)很大,电路中电流(暗电流)很小。
当光敏电阻受到一定波长范围的光照时,它的阻值(亮电阻)急剧减小,电路中电流迅速增大。
一般希望暗电阻越大越好,亮电阻越小越好,此时光敏电阻的灵敏度高。
实际光敏电阻的暗电阻值一般在兆欧量级,亮电阻值在几千欧以下。
光敏电阻的结构很简单,图1-1(a)为金属封装的硫化镉光敏电阻的结构图。
在玻璃底板上均匀地涂上一层薄薄的半导体物质,称为光导层。
半导体的两端装有金属电极,金属电极与引出线端相连接,光敏电阻就通过引出线端接入电路。
为了防止周围介质的影响,在半导体光敏层上覆盖了一层漆膜,漆膜的成分应使它在光敏层最敏感的波长范围内透射率最金属电极半导体电源检流计R LE I(a)(b)(c)R a玻璃底板大。
为了提高灵敏度,光敏电阻的电极一般采用梳状图案, 如图1-1(b )所示。
图1-1(c )为光敏电阻的接线图。
2. 光敏电阻的主要参数 光敏电阻的主要参数有:(1) 暗电阻 光敏电阻在不受光照射时的阻值称为暗电阻, 此时流过的电流称为暗电流。
光敏电阻基本特性测量
![光敏电阻基本特性测量](https://img.taocdn.com/s3/m/88f6880def06eff9aef8941ea76e58fafab0453a.png)
实验报告课程名称:大学物理实验(一)实验名称:光敏电阻基本特性测量
五:数据处理
1、伏安特性:当保持偏振片夹角为0不变时(即光照强度不变),根据测量得出的电压与电流值绘制电阻的伏安特性曲线,如下图
I/mA
将偏振片夹角变为30°(改变光强)所测得的伏安特性曲线如下图:
I/mA
由图可以得出,当光照不变时,电流随着电压线性增长,在实验误差允许范围内,电阻阻值R=U/I保持不变。
2、光照特性:当保持电阻电压不变时,通过改变偏振片夹角来改变光照强度,选取电压等于2.00V时绘制曲线,如下图:
由图可知,电压不变时,随着光照强度减小电流逐渐变小,而后趋于稳定,相同光照强度下,电压越大,对应光电流越大。
即光敏电阻阻值随光照强度的减小而增大,随光照强度增大而减小。
光敏电阻特性实验报告
![光敏电阻特性实验报告](https://img.taocdn.com/s3/m/e0764c5215791711cc7931b765ce0508763275f8.png)
光敏电阻特性实验报告实验目的:通过实验研究光敏电阻的特性,并探究光敏电阻的光照度对电阻值的影响。
实验器材:1.光敏电阻2.电阻箱3.多用电表4.正弦波信号发生器5.光源6.PPT实验执行时序图实验原理:光敏电阻是一种根据光照强度变化而改变电阻值的电子元件。
光敏电阻由光敏材料制成,其电阻值与光照强度成反比。
当光敏电阻暴露在光线下时,光敏材料吸收光子,并产生载流子,从而使电阻值减小。
实验步骤:1.将光敏电阻与电阻箱和电源相连,组成电路。
2.将多用电表设置为电阻测量模式,并连接到电路中,用于测量光敏电阻的电阻值。
3.使用正弦波信号发生器,连接到电路中的电源,提供交流电源。
4.将光源对准光敏电阻,并调整光照强度。
5.分别测量不同光照强度下光敏电阻的电阻值。
6.记录测量结果,并对实验数据进行分析和总结。
实验结果:根据实验数据测量结果,在不同光照强度下记录了光敏电阻的电阻值。
随着光照强度的增加,光敏电阻的电阻值逐渐减小。
这表明光敏电阻的电阻值与光照强度成反比。
实验总结与分析:通过本次实验,我们了解了光敏电阻的特性,并验证了光敏电阻的电阻值与光照强度的关系。
光敏电阻在光线下表现出明显的特性变化,可以被应用于光敏开关、自动调光等领域。
在实际应用中,我们还可以通过调整光敏电阻的参数来满足不同的要求。
然而,本实验还存在一些限制和改进空间。
首先,光敏电阻的光照度与电阻值的关系是非线性的,在高光照强度时,电阻值接近零,而在低光照强度时,电阻值较大。
因此,我们可以进一步研究光敏电阻在不同光照强度下的电阻值变化曲线,探索其非线性特性。
此外,本实验的光照强度调节仅使用了光源的近距离调节,可以尝试使用不同光源、不同距离和不同角度进行光照度的变化,以进一步研究光敏电阻的响应特性。
综上所述,实验结果表明,光敏电阻的电阻值受光照强度的影响,并且具有非线性特性。
进一步研究光敏电阻的特性可以为其在光电领域的应用提供更多可能性。
光敏电阻的光电特性实验报告
![光敏电阻的光电特性实验报告](https://img.taocdn.com/s3/m/87b6a035a200a6c30c22590102020740bf1ecd59.png)
光敏电阻的光电特性实验报告竭诚为您提供优质文档/双击可除光敏电阻的光电特性实验报告篇一:光敏电阻的光敏特性研究实验报告光敏电阻光敏特性的研究一、实验设计方案1.1、实验目的1、了解光敏电阻的基本特性,测出它的光照特性曲线。
2、学习使用电脑实测。
3、学习使用Datastudio软件。
4、学习了解设计性实验的基本方法。
1.2、实验原理光敏电阻器是利用半导体的光电效应制成的一种电阻值随入射光的强弱而改变的电阻器,(如图1);入射光强,电射光弱,电阻增大。
光敏电敏感性与人眼对可见光μm的响应很接近,只要人光,都会引起它的阻值变化。
路时,通用白炽灯泡光线或控制光源,但本实验采用激通过两偏振片控制光照强度传感器测出。
阻减小,入阻器对光的(0.4~0.76)眼可感受的设计光控电自然光线作光做光源,并由角速度1.2.1光敏电阻的光照特光电流随照度的变化而称为光照特性。
不同类型的光照特性不同,大多数光敏特性是非线性的。
某种光敏特性如图1所示。
利用光敏电阻的光照特一些材料的光吸收系数。
性改变的规律光敏电阻的电阻的光照电阻的光照性可以测出1.2.2光敏电阻特性图3为某光敏电阻的的关系,利用光敏电阻的光敏阻值与光强特性,可以分别模拟设计一个简单的光控自动报警实验与一个光控自动照明实验。
光敏电阻的电阻与光强间关系曲线的线性关系,不可以用在线性的光感测量中.1.3.2选用仪器列表二、实验内容及具体步骤:2.1、测绘光敏电阻的光照特性曲线。
(1)按右图连接好电路,电压传感器连接到750接口。
(2)光敏电阻的光源由一激光提供。
并经过两偏振片调整光强后照射在光敏电阻上。
其中一偏振片与角速度传感器相连到750接口。
试验中保持光强从最弱到最强间变化。
(3)打开Datastudio软件,创建一个新实验。
(4)在Datastudio软件的窗口中设置750接口的传感器连接,并设置采样率。
(5)在Datastudio软件的窗口打开一个图表。
光敏电阻特性实验
![光敏电阻特性实验](https://img.taocdn.com/s3/m/b4ee266c7e21af45b307a8a8.png)
实验一光敏电阻特性实验一:;实验原理:光敏电阻又称为光导管,是一种均质的半导体光电器件,其结构如图(1)所示。
由于半导体在光照的作用下,电导率的变化只限于表面薄层,因此将掺杂的半导体薄膜沉积在绝缘体表面就制成了光敏电阻,不同材料制成的光敏电阻具有不同的光谱特性。
光敏电阻采用梳状结构是由于在间距很近的电阻之间有可能采用大的灵敏面积,提高灵敏度。
实验所需部件:稳压电源、光敏电阻、负载电阻(选配单元)、电压表、各种光源、遮光罩、激光器二:实验步骤:1、测试光敏电阻的暗电阻、亮电阻、光电阻观察光敏电阻的结构,用遮光罩将光敏电阻完全掩盖,用万用表测得的电阻值为暗电阻R暗,移开遮光罩,在环境光照下测得的光敏电阻的阻值为亮电阻,暗电阻与亮电阻之差为光电阻,光电阻越大,则灵敏度越高。
在光电器件模板的试件插座上接入另一光敏电阻,试作性能分析。
2、光敏电阻的暗电流、亮电流、光电流按照图(3)接线,电源可从+2~+8V间选用,分别在暗光和正常环境光照下测出输出电压V暗和V亮则暗电流L暗=V暗/RL,亮电流L亮=V亮/RL,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。
分别测出两种光敏电阻的亮电流,并做性能比较。
3、光敏电阻的光谱特性:用不同的材料制成的光敏电阻有着不同的光谱特性,见图(2)光敏电阻的光谱特性曲线。
当不同波长的入射光照到光敏电阻的光敏面上,光敏电阻就有不同的灵敏度。
按照图(3)接线,电源电压可采用直流稳压电源的负电源。
用高亮度LED(红、黄、绿、蓝、白)作为光源,其工作电源可选用直流稳压电源的正电源。
发光管的接线可参照图(15)。
限流电阻用选配单元上的1K~100K档电位器,首先应置电位器阻值为最大,打开电源后缓慢调小阻值,使发光管逐步发光并至最亮,当发光管达到最高亮度时不应再减小限流电阻阻值,确定限流电阻阻值后不再改变。
依次将各发光管接入光电器件模板上的发光管插座,发光管与光敏电阻顶端可用附件中的黑色软管连接。
光敏电阻基本特性测量实验报告
![光敏电阻基本特性测量实验报告](https://img.taocdn.com/s3/m/7c701dc303d276a20029bd64783e0912a2167cd4.png)
光敏电阻基本特性测量实验报告光敏电阻基本特性测量实验报告引言:光敏电阻是一种能够感知光线强度并将其转化为电阻变化的器件。
它在光电传感、光控开关和光电自动控制等领域有着广泛的应用。
本实验旨在通过测量光敏电阻的基本特性,了解其工作原理和性能。
一、实验目的通过测量光敏电阻在不同光照条件下的电阻变化,了解光敏电阻的光敏特性和光照强度与电阻之间的关系。
二、实验器材1. 光敏电阻:采用具有高灵敏度的光敏电阻器件,如CdS光敏电阻。
2. 光源:使用恒定光源,如白炽灯或LED灯。
3. 变阻器:用于调节电阻值,以控制电路中的电流。
4. 电流表:用于测量电路中的电流。
5. 电压表:用于测量光敏电阻两端的电压。
三、实验步骤1. 搭建电路:将光敏电阻与变阻器、电流表和电压表连接成电路,确保电路连接正确。
2. 测量电阻:通过调节变阻器的阻值,使电流表读数保持恒定,记录此时光敏电阻的电阻值。
3. 测量电压:调节光源的亮度,记录光敏电阻两端的电压值。
4. 重复步骤2和步骤3,分别在不同的光照条件下进行测量。
四、实验结果与分析根据实验步骤所得到的数据,我们可以绘制光敏电阻的电阻-光照强度曲线。
根据实验结果,我们可以得出以下结论:1. 光敏电阻的电阻随光照强度的增加而减小。
这是因为光敏电阻的材料在光照下会发生光致电离,导致载流子浓度增加,从而降低了电阻值。
2. 光敏电阻的响应速度较快,但存在一定的时间延迟。
当光源亮度发生变化时,光敏电阻的电阻值并不会立即改变,而是在一定时间内逐渐调整到新的稳定值。
3. 光敏电阻的灵敏度取决于材料的特性和制造工艺。
不同的光敏电阻材料对不同波长的光源具有不同的响应特性,因此在实际应用中需要根据具体需求选择合适的光敏电阻。
五、实验误差分析在实验过程中,可能存在以下误差源:1. 光源的稳定性:光源的亮度可能会随时间变化,导致光敏电阻的测量结果存在一定的误差。
2. 电路接线的稳定性:电路接线不牢固或接触不良可能会导致电流和电压的测量值不准确。
光敏电阻特性测定实验及分析
![光敏电阻特性测定实验及分析](https://img.taocdn.com/s3/m/c8c7e8c6b8d528ea81c758f5f61fb7360b4c2b9f.png)
光敏电阻特性测定实验及分析光敏电阻是一种基于光电效应的元件,当受光照射时,电阻值会发生变化。
光敏电阻的特性测定实验可以通过改变光照强度、波长和角度等条件,来研究光敏电阻的响应特性。
实验步骤:1.搭建电路:将光敏电阻与电源和电阻串联,将电流表与光敏电阻并联。
2.调节电源电压:通过调节电源的电压,使光敏电阻的工作在合适的电压范围内,一般在3V~5V之间。
3.测量光照强度和电流:使用光照度计测量光敏电阻所处环境的光照强度,并使用电流表测量流过光敏电阻的电流。
4.改变光照条件:依次改变光照强度、波长和角度等条件,记录每次的光照强度和电流数值。
5.数据处理和分析:根据测量到的数据,画出光照强度与电流的关系曲线,分析其规律。
实验所需仪器和材料:1.光敏电阻:选择具有较高灵敏度和稳定性的光敏电阻。
2.电源:提供适当的电压供给光敏电阻。
3.电流表:用于测量流过光敏电阻的电流。
4.光照度计:测量光照强度。
实验需要注意的问题:1.光敏电阻的工作电压范围要合适,过高的电压可能导致光敏电阻烧毁,而过低的电压可能使光敏电阻失去响应能力。
2.测量过程中需保证实验环境的稳定性,避免外界光照干扰实验结果。
3.为了获得更准确的结果,需要多次测量并取平均值。
实验结果分析:通过实验可以得到光敏电阻对不同光照条件的响应规律。
一般情况下,光敏电阻的电阻值随着光照强度的增加而减小,即光敏电阻对光的强度呈负相关。
这是因为光敏电阻受光照射时,内部光电效应引起的载流子的产生和迁移,使电阻值发生变化。
随着光照强度的增大,载流子的产生和迁移速度加快,电阻值变小。
另外,光敏电阻对不同波长的光的响应也有所差异。
不同波长的光子能量不同,因此光子在光敏电阻中产生的影响也不同。
以宽禁带的半导体材料为基础的光敏电阻,在不同波长的光照下,载流子密度和迁移规律不同,导致光敏电阻电阻值的改变也不同。
此外,光敏电阻对光照的角度也有一定的响应特性。
光照角度的改变会导致光在光敏电阻中入射深度的变化,进而影响载流子的密度和迁移情况,从而改变光敏电阻的电阻值。
光敏电阻特性测试实验
![光敏电阻特性测试实验](https://img.taocdn.com/s3/m/c51d5b6ebdd126fff705cc1755270722192e598f.png)
光敏电阻特性测试实验一、实验目的了解光敏电阻工作原理、光照特性及伏安特性。
二、实验内容1、光敏电阻暗电阻和亮电阻的测量;2、光敏电阻光照特性测量;3、光敏电阻伏安特性测量;三、实验器件简介光敏电阻又叫光感电阻,是利用半导体的光电效应制成的一种电阻值随入射光的强弱而改变的电阻器;一般情况下入射光强,电阻减小,入射光弱,电阻增大。
光敏电阻器一般用于光的测量、光的控制和光电转换(将光的变化转换为电的变化)。
通常光敏电阻都制成薄片结构,以便吸收更多的光能。
当它受到光的照射时,半导体片(光敏层)内就激发出电子—空穴对,参与导电,使电路中电流增强。
光敏电阻的主要参数有亮电阻,暗电阻,光电特性,光谱特性,频率特性,温度特性。
在光敏电阻两端的金属电极之间加上电压,其中便有电流通过,受到适当波长的光线照射时,电流就会随光强的增加而变大,从而实现光电转换。
没有极性,属于纯电阻器件,使用时可加直流也可以加交流。
用于制造光敏电阻的材料主要是金属的硫化物、硒化物和碲化物等半导体。
通常采用涂敷、喷涂、烧结等方法,在绝缘衬底上制作很薄的光敏电阻体及梳状欧姆电极,然后接出引线,封装在具有透光镜的密封壳体内,以免受潮影响其灵敏度。
在黑暗环境里,它的电阻值很高,当受到光照时,只要光子能量大于半导体材料的价带宽度,则价带中的电子吸收一个光子的能量后可跃迁到导带,并在价带中产生一个带正电荷的空穴,这种由光照产生的电子—空穴对增加了半导体材料中载流子的数目,使其电阻率变小,从而造成光敏电阻阻值下降。
光照愈强,阻值愈低。
入射光消失后,由光子激发产生的电子—空穴对将逐渐复合,光敏电阻的阻值也就逐渐恢复原值。
四、实验原理光敏电阻是用光电导体制成的光电器件,又称光导管。
它是基于半导体光电效应工作的。
当无光照时,光敏电阻值(暗电阻)很大,电路中电流很小。
当光敏电阻受到一定波长范围的光照时,它的阻值(亮电阻)急剧减少,因此电路中电流迅速增加。
光敏电阻的暗电阻越大,亮电阻越小,则性能越好,也就是说,暗电流要小,光电流要大,这样的光敏电阻的灵敏度就高。
光敏电阻特性测试实验
![光敏电阻特性测试实验](https://img.taocdn.com/s3/m/8b2dda596c85ec3a87c2c574.png)
光敏电阻特性测试实验一、实验目的:1、了解光敏电阻的基本原理和特性。
2、掌握使用本仪器测定光敏电阻的特性。
二、实验设备:光电传感器实验模块、直流稳压电源、恒流源、万用表,计算机三、实验原理:光敏电阻的工作原理是基于光电导效应。
在无光照时,光敏电阻具有很高的阻值,在有光照时,当光子的能量大于材料的禁带宽度,价带中的电子吸收光子能量后跃迁到导带,激发出电子—空穴对,使电阻降低;入射光愈强,激发出的电子—空穴对越多,电阻值越低;光照停止后,自由电子与空穴复合,导电性能下降,电阻恢复原值。
由于存在非线性,因此光敏电阻一般用在控制电路中,不适用作测量组件。
光敏电阻的光照度—电阻值的典型特性曲线如下图所示。
光敏电阻照度—电阻特性曲线图低照度a区曲线斜率较大,中间照度区b区可近似视为直线区,也是光敏电阻的主要工作区,光电流随着光照度增长较快,在高照度区,电阻值随照度下降较慢,光电流随照度增长也变慢。
本实验用恒流源控制光敏电阻上的电流大小,从而改变光敏电阻光照度的大小。
发光二极管输出光功率P与驱动电流I的关系由下式确定:P=ηE p I/e其中,η为发光效率,E p为光子能量,e为电子电荷常数。
输出光功率与驱动电流呈线性关系,因此本实验用一个驱动电流可调的红色超高亮度发光二极管作为实验用光源。
四、实验内容与步骤:1、光敏电阻置于光电传感器模块上的暗盒内,其两个引脚引出到面板上。
暗盒的另一端装有发光二极管,通过驱动电流控制暗盒内的光照度。
2、如图连接实验台恒流源输出到光电传感器模块驱动LED,电流大小通过直流毫安表内测检测,用万用表的欧姆档测量光敏电阻阻值。
光敏电阻试验电路连接图3、打开LabVIEW程序“光敏电阻特性测试实验”,在步长中输入每次采样输入电流的变化量为2mA。
4、开启实验台电源,通过改变LED的驱动电流,按设定的步长调节驱动电流的大小,并将光敏电阻阻值记录到电阻值一栏中,点击采样,经过十次采样后得到电阻-电流曲线,然后确定光敏电阻的线性工作区域5、根据确定下的光敏电阻的线性工作区域确定初始位移、步长,重复上述试验得到电阻-电流曲线及灵敏度等信息。
光敏电阻特性的测量
![光敏电阻特性的测量](https://img.taocdn.com/s3/m/b6fc90156bd97f192379e901.png)
实验4.5 光敏电阻基本特性的测量光敏传感器是将光信号转换为电信号的传感器,也称为光电式传感器,它可用于检测直接引起光强度变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其它非电量,如零件直径、表面粗糙度、位移、速度、加速度及物体形状、工作状态识别等。
光敏传感器具有非接触、响应快、性能可靠等特点,因而在工业自动控制及智能机器人中得到广泛应用。
【实验目的】1. 了解光敏电阻的基本特性,测出它的伏安特性曲线和光照特性曲线。
2. 了解光纤传感器基本特性和光纤通讯基本原理。
【实验原理】1. 光敏电阻的工作原理在光照作用下能使物体的电导率改变的现象称为内光电效应。
大多数光电控制应用的传感器,如光敏电阻、光敏二极管、光敏三极管、硅光电池等都是内光电效应传感器。
对于光敏电阻来说,当内光电效应发生时,固体材料吸收的能量使部分价带电子迁移到导带,同时在价带中留下空穴,这样由于材料中载流子个数增加,使材料的电导率增加,电导率的改变量为:n p ne pe μμσ∆+∆=∆ (4.5.1) (4.5.1) 式中e 为电荷量,p ∆空穴浓度的改变量,n ∆电子浓度的改变量,p μ为空穴的迁移率,n μ为电子的迁移率。
当光敏电阻两端加上电压U 后,光电流为 U dAI ph σ∆=(4.5.2) (4.5.2)式中A 为与光电流垂直的截面积,d 为电极间的距离。
用于制造光敏电阻的材料主要有金属的硫化物、硒化物和锑化物等半导体材料,目前生产的光敏电阻主要是硫化镉,光敏电阻具有灵敏度高、光谱特性好、使用寿命长、稳定性能高、体积小以及制造工艺简单等特点,被广泛地用于自动化技术中。
2. 光敏电阻的基本特性光敏电阻的基本特性包括伏安特性、光照特性、光电灵敏度、光谱特性、频率特性和温度特性等,本实验主要研究光敏电阻的伏安特性和光照特性2.1 伏安特性光敏传感器在一定的入射光强照度下,光敏元件的电流Ph I 与所加电压U 之间的关系称为光敏电阻的伏安特性。
光敏电阻特性实验1
![光敏电阻特性实验1](https://img.taocdn.com/s3/m/d22418f6941ea76e58fa04ee.png)
补充实验2 光敏电阻特性实验一、实验目的1、了解光敏电阻的基本特性,测出它的伏安特性曲线和光照特性曲线。
二、光敏电阻的基本特性及实验原理1、伏安特性光敏电阻在一定的入射光强照度下,光敏电阻的电流I与所加电压U之间的关系称为光敏电阻的伏安特性。
改变照度则可以得到一组伏安特性曲线,它是传感器应用设计时选择电参数的重要依据。
某种光敏电阻的伏安特性曲线如图1所示。
图1光敏电阻的伏安特性曲线光敏电阻类似一个纯电阻,其伏安特性线性良好,在一定照度下,电压越大光电流越大,但必须考虑光敏电阻的最大耗散功率,超过额定电压和最大电流都可能导致光敏电阻的永久性损坏。
2、光照特性光敏电阻的光谱灵敏度与入射光强之间的关系称为光照特性,有时光敏电阻的输出电压或电流与入射光强之间的关系也称为光照特性,它也是光敏电阻应用设计时选择参数的重要依据之一。
某种光敏电阻的光照特性如图2所示。
图2 光敏电阻的光照特性曲线光敏电阻的光照特性呈非线性,一般不适合作线性检测元件。
三、实验仪器DH-CGOP光敏传感器实验仪由光敏电阻、光敏二极管、光敏三极管、硅光电池四种光敏传感器及直流恒压源DH-VC3、发光二极管、Ф2.2光纤、光纤座、暗箱(九孔板实验箱)、数字电压表、电阻箱(自备)、低频信号发生器(自备)、示波器(自备)、短接桥和导线等组成,见图3所示。
图3-1 DH-VC3直流恒压源面板图图3-2灯泡盒图3-3 发射管图3-4接收管图3-5接收管图3-6 光敏电阻图3-7 硅光电池图3-8 光电二极管图3-9 光电三极管图3-10 电阻盒1kΩ图3-11 电阻盒1kΩ图3-12 电阻盒470ΩΩ图3-14 电阻盒4.7KΩ图3-15 电阻盒47Ω图3-16 电容盒1uF图3-17 喇叭盒图3-18 NPN三极管盒图3-19 短接桥图3-20 九孔实验主板(箱内)图3 主要实验仪器和元器件示意图实验时,实验元件都置于暗箱中的九孔插板中,通过暗箱左边的连接孔来实现箱内元件同外部电源以及测量仪表的连接;光强可以通过改变光源(灯泡元件盒)的供电电压或调节光源到传感器的距离来实现(改变元件插在九孔板中的位置),该实验仪既可以在自然光条件下进行实验也可以在暗光的条件下做实验。
光敏电阻的特性实验
![光敏电阻的特性实验](https://img.taocdn.com/s3/m/5b249f2b647d27284b7351b4.png)
实验一光敏电阻的特性实验一、实验目的:1、熟悉光敏电阻的光电转换原理;2、掌握光敏电阻的暗电阻、亮电阻、光电阻的测量方法;3、了解光敏电阻光电特性:即供电电压一定时,光电流与光照度的关系。
二、实验原理:光敏电阻是一种当光照射到材料表面上被吸收后,在其中激发载流子,使材料导电性能发生变化的内光电效应器件。
最简单的光敏电阻的原理和符号如图1-1所示,由一块涂在绝缘基底上的光电导体薄膜和两个电极所构成。
当加上一定电压后,光生载流子在电场的作用下沿一定的方向运动,在电路中产生电流,这就达到了光电转换的目的。
图1-1 光敏电阻原理图与符号根据半导体的分类光敏电阻有两种类型——本征半导体光敏电阻和掺杂型半导体光敏电阻,前者只有当入射光子能量h v等于或大于半导体材料的禁带宽度Eg时才能激发一个电子-空穴对,在外加电场作用下形成光电流,能带图如图1-2(a)所示,后者如图1-2(b)所示的N型半导体,光子的能量h v只要等于或大于△E(杂质电离能)时,就能把施主能级上的电子激发到导带而形成导电电子,在外加电场的作用下形成电流。
从原理上说,P型、N型半导体均可制成光敏电阻,但由于电子的迁移比空穴大,而且用N型半导体材料制成的光敏电阻性能较稳定,特性较好,故目前大都使用N型半导体光敏电阻。
为了减少杂质能级上电子的热激发,常需要在低温下工作。
图1-2 两种类型光敏电阻的能带图三、实验仪器及部件:直流稳压电源、光敏电阻、照度测量器件、照度表、光源、微安表、F/V表。
四、实验步骤:1、了解所需单元、部件在实验仪上的位置、观察光敏电阻的结构。
2、测量光敏电阻的暗电阻、亮电阻、光电阻:装上光源,对准光敏电阻,关闭发光管电源,移出遮光罩,光敏电阻完全被遮盖,用万用表(自备)测得电阻值为暗电阻;移去光源,在环境光照下测得的电阻值为亮电阻;暗电阻与亮电阻之差为光电阻,光电阻越大说明灵敏度越高。
3、测量光敏电阻的光电特性:图1-3 测量接线图安装好光源及接线,接线如图1-3所示,直流稳压电源置4V档。
光敏电阻特性测定实验及分析(最全)word资料
![光敏电阻特性测定实验及分析(最全)word资料](https://img.taocdn.com/s3/m/a3889de816fc700aba68fc98.png)
光敏电阻特性测定实验及分析(最全)word资料光敏电阻特性测定实验及分析何乾伟1张钰2摘要:随着电子技术的不断发展,光敏电阻作为一种重要的电子元件,由于其具有灵敏度高、反应速度快、体积小和可靠性好等特点而不断被开发,但科学研究以及市场应用对光敏电阻的性能要求也越来越高。
首先简单介绍了光敏电阻的工作原理及主要参数,然后针对光敏电阻的伏安特性和光照特性的测量需要进行了实验设计,完成了对光敏电阻暗电阻、亮电阻、灵敏度、光谱特性、响应时间和频率特性等参数的测量,并分析其中的规律。
关键词:光敏电阻特性分析实验0引言光敏电阻是利用材料或器件的电导率会随外加光源的改变而变化的性质制作的一种不同于普通定值电阻的可变电阻。
由于其灵敏度高、反应速度快、体积小和可靠性好等原因,被广泛运用于各种光控电路之中。
作为一种重要的电子元件,光敏电阻具有许多特性参数。
光敏电阻在无光照的条件下电阻一般很大,当存在光照时,其电阻便会大大下降。
本文针对光敏电阻的伏安特性和光照特性的测量需要进行了实验设计,完成了对光敏电阻暗电阻、亮电阻、灵敏度、光谱特性、响应时间和频率特性等参数的测量,并分析其中的规律,为以后对光敏电阻的研究提供了资料。
1光敏电阻的工作原理及主要参数1.1光敏电阻的工作原理材料或器件受到光照时电导率发生变化的现象称为内光效应。
当光源存在时,发生内光效应,材料或器件吸收的能量使部分价带电子变迁到导带,与此同时,在价带中便形成了空穴,由于载流子个数的增加,材料或器件的导电率也随之增加。
光源消失后,由光子激发产生的电子──空穴对将逐渐复合,光敏电阻的阻值也将恢复原值。
光敏电阻的制作材料为半导体,它是利用内光效应原理而制作的光电元件。
在光照条件下阻值一般会减小,这种现象称之为光导效应。
光敏电阻是一个可变电阻器件,没有极性,在直流电和交流电压下都可以正常工作。
1.2主要参数暗电流:在一定温度下,光敏电阻不受光照时,通过的电流称为暗电流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验系列二、光敏电阻特性测试实验
光通路组件
图1-2 光敏电阻实验仪光通路组件
功能说明:
分光镜:50%透过50%反射镜,将平行光一半给照度计探头,一半给等测光器件,实验测试方便简单,照度计可实时检测出等测器件所接收的光照度。
1、实验之前,J4通过彩排线缆与光通路组件的光源接口相连,连接之后电路部分方可对光源对行控制。
光照度计与照度计探头相连(颜色要相对应)
2、BM2拨向上时,光源发光为脉冲光,脉冲宽度由“脉冲宽度调节电位器”进行调节(用于做光敏电阻时间响应特性实验)。
一、实验目的
1、学习掌握光敏电阻工作原理
2、学习掌握光敏电阻的基本特性
3、掌握光敏电阻特性测试的方法
4、了解光敏电阻的基本应用 二、实验内容
1、光敏电阻的暗电阻、暗电流测试实验
2、光敏电阻的亮电阻、亮电流测试实验
3、光敏电阻光电流测试实验;
4、光敏电阻的伏安特性测试实验
5、光敏电阻的光电特性测试实验
6、光敏电阻的光谱特性测试实验
7、光敏电阻的时间响应特性测试实验
8、精密的暗激发开关电路设计实验 三、实验仪器
1、光敏电阻综合实验仪 1个
2、光通路组件 1套
3、光照度计 1台
4、2#迭插头对(红色,50cm ) 10
根 5、2#迭插头对(黑色,50cm ) 10根 6、三相电源线 1根 7、实验指导书 1本 8、20M 示波器 1台
四、实验原理
1. 光敏电阻的结构与工作原理
它几乎都是用半导体材料制成的光电器件。
光敏电阻没有极性。
无光照时,光敏电阻值很大,电路中电流很小。
当光敏电阻受到一定波长范围的光照时,它的阻值急剧减小,电路中电流迅速增大。
2. 光敏电阻的主要参数
光敏电阻的主要参数有:
(1)光敏电阻在不受光照射时的阻值称为暗电阻, 此时流过的电流称为暗电流。
(2)光敏电阻在受光照射时的电阻称为亮电阻,此时流过的电流称为亮电流。
(3)亮电流与暗电流之差称为光电流。
3. 光敏电阻的基本特性
(1) 伏安特性 在一定照度下,流过光敏电阻的电流与光敏电阻两端的电压的关系称为光敏电阻的伏安特性。
图2-2为硫化镉光敏电阻的伏安特性曲线。
由图可见,光敏电阻在一定的电压范围内,其I-U 曲线为直线。
(2)光照特性 光敏电阻的光照特性是描述光电流I 和光照强度之间的关系,不同材料的光照特性是不同的,绝大多数光敏电阻光照特性是非线性的。
图2-3为硫化镉光敏电阻的光照特性。
(3) 光谱特性 光敏电阻对入射光的光谱具有选择作用,即光敏电阻对不同波长的入射光有不同的灵敏度。
光敏电阻的相对光敏灵敏度与入射波长的关系称为光敏电阻的光谱特性,亦称为光谱响应。
图2-4 为几种不同材料光敏电阻的光谱特性。
对应于不同波长,光敏电阻的灵敏度是不同的,而且不同材料的光敏电阻光谱响应曲线也不同。
五、实验步骤
1、光敏电阻的暗电阻、暗电流测试实验 (1)将光敏电阻完全置入黑暗环境中(将光敏电阻装入光通路组件,不通电即为完全黑暗),使用万用表测试光敏电阻引脚输出端,即可得到光敏电阻的暗电阻R 暗。
(注:由于光敏电阻个性差异,某些暗电阻可能大于200M 欧,属于正常。
)
(2)组装好光通路组件,将照度计显示表头与光通路组件照度计探头输出正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口使用彩排数据线相连。
4030
2010
I / m A
10010001 x
500 mW 1001 x
200
101 x
0.05
0.100.150.200.250.300.350.40I / m A
S r / (%)
20
40
60
80
100
0 1.53
S6,S7均拨下。
(4)将直流电源正负极与电压表头对应相连,打开电源,将直流电流调到12V,关闭电源,拆除导线。
(5) 按照如下电路连接电路图,RL取RL=RL6=1M。
(6)打开电源,记录电压表的读数,使用欧姆定理I=U/R得出支路中的电流值I暗
实验测得R暗=12.3M U=6V 所以I暗=U/R=6uA
2、光敏电阻的亮电阻、亮电流、光电阻、光电流测试实验
(1)组装好光通路组件,将照度计显示表头与光通路组件照度计探头输出正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口使用彩排数据线相连。
(2)“光源驱动单元”的三掷开关BM2拨到“静态特性”,将拨位开关S1拨上,S2,S3,S4,S5,S6,S7均拨下。
(3)打开电源,缓慢调节光照度调节电位器,直到光照为300lx(约为环境光照),使用万用表测试光敏电阻引脚输出端,即可得到光敏电阻的亮电阻R亮。
(4)将直流电源两极与电压表两端相连,调节直流电源到12V,关闭电源;
(5) 按照如下电路连接电路图,RL取RL4=10K欧。
(6)打开电源,记录此时电流表的读数,即为光敏电阻在300lx的亮电流I亮;
图2-7 光敏电阻测量电路
(7)亮电阻与暗电阻之差即为光电阻,R光=R暗-R亮,光电阻越大,灵敏度越高。
(8)亮电流与暗电流之差即为光电流,I光=I亮-I暗,光电流越大,灵敏度越高。
(9)实验完成,关闭电源,拆除各导线。
实验测得 R亮=8.6k R光=R暗-R亮=6600-8.6=6591.4k
I亮=640uA I光=I亮-I暗=640-6=634uA
3. 光敏电阻伏安特性测试
光敏电阻伏安特性即为光敏电阻两端所加的电压与光电流之间的关系。
(1)组装好光通路组件,将照度计显示表头与光通路组件照度计探头输出正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口使用彩排数据线相连。
S6,S7均拨下。
(3) 按照图2-7连接电路图,RL取RL3=1K,直流电源电位器调至最小
(4)打开电源,将光照度设置为200lx不变,调节电源电压,分别测得电压表显示为2V、4V、6V、8V、10V时的光电流填入下表。
(5)按照上述步骤(4),改变光源的光照度为400lx,分别测得偏压为2V、4V、6V、8V、10V、12V时的光电流填入下表
(6)根据表中所测得的数据,在同一坐标轴中做出V-I曲线,并进行分析比较。
(7)实验完成,关闭电源,拆除各导线。
4.光敏电阻的光电特性测试实验
在一定的电压作用下,光敏电阻的光电流与照射光照度的关系为光电特性。
(1)组装好光通路组件,将照度计显示表头与光通路组件照度计探头输出正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口使用彩排数据线相连。
(2)“光源驱动单元”的三掷开关BM2拨到“静态”,将拨位开关S1拨上,S2,S3,S4,S5,S6,S7均拨下。
(3) 按照图2-7连接电路图,RL取RL2=100欧。
(4)打开电源,将电压设置为8V不变,调节光照度电位器,依次测试出光照度在50lx、100lx、200lx、300lx、400lx、500lx、600lx、700lx、800lx、900lx并测得光电流填入下
(5)根据所测试得到数据,描出光敏电阻的光电特性曲线。
(6)实验完成,关闭电源,拆除各导线。
5、光敏电阻的光谱特性测试实验
用不同的材料制成的光敏电阻有着不同的光谱特性,当不同波长的入射光照到光敏电阻的光敏面上,光敏电阻就有不同的灵敏度。
(1)组装好光通路组件,将照度计显示表头与光通路组件照度计探头输出正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口使用彩排数据线相连。
(2)“光源驱动单元”的三掷开关BM2拨到“静态特性”,将拨位开关S1,S2,
S4,S3,S5,S6,S7均拨下。
(3)打开电源,缓慢调节光照度调节电位器到最大,依次将S2,S3,S4,S5,S6,S7拨上后拨下,记下在上述开关拨上后照度计最小值E 作为参考。
(注意:请不要同时将两个拨位开关拨上)
(4)S2拨上,缓慢调节电位器直到照度计显示为E ,使用万用表测试光敏电阻的输出端,将测试所得的数据填入下表,再将S2拨下;
(5)按照步骤(4),分别测试出橙光,黄光,绿光,蓝光,紫光在光照度E 下时光敏电阻的阻值,填入下表。
(6)根据所测试得到的数据,做出光敏电阻的光谱特性曲线: (7)实验完成,关闭电源,拆除各导线。