3.2.4立体几何中的向量方法——点面距

合集下载

立体几何中的向量方法----利用向量方法求距离

立体几何中的向量方法----利用向量方法求距离

§立体几何中的向量方法(三)——利用向量方法求距离知识点一求两点间的距离已知矩形ABCD中,AB=4,AD=3,沿对角线AC折叠,使面ABC 与面ADC 垂直,求BD 间的距离.解 方法一过D 和B 分别作DE ⊥AC 于E ,BF ⊥AC 于F ,则由已知条件可知AC =5,∴DE =3×45=125,BF =3×45=125.∵AE =AD 2AC =95=CF ,∴EF =5-2×95=75,∴DBu u u r =DE →+EF u u u r +FB→. |DBu u u r|2= (DE →+B 1E →+FB →)2=DE →2+EF u u u r 2+FB →2+2DE →·EF u u u r +2DE →·FB →+2EF u u u r ·FB →.∵面ADC ⊥面ABC ,而DE ⊥AC ,∴DE ⊥面ABC , ∴ DE ⊥BF, DE→ ⊥FB →, |DBu u u r|2=DE →2+B 1E →2+FB →2=14425+4925+14425=33725, ∴|DBu u u r |=3375.故B 、D 间距离是3375. 方法二同方法一.过E 作FB 的平行线EP ,以E 为坐标原点,以EP ,EC ,ED 所在直线分别为x 、y 、z 轴建立空间直角坐标系如图.则由方法一知DE =FB =125,EF =75,∴D ⎝ ⎛⎭⎪⎫0,0,125,B ⎝ ⎛⎭⎪⎫125,75,0,∴BD u u u r=⎝ ⎛⎭⎪⎫125,75,-125,| BDu u u r|=⎝ ⎛⎭⎪⎫1252+⎝ ⎛⎭⎪⎫752+⎝⎛⎭⎪⎫-1252=3375. 【反思感悟】 求两点间的距离或某线段的长度的方法: (1)把此线段用向量表示,然后用|a |2=a·a 通过向量运算去求|a |.(2)建立空间坐标系,利用空间两点间的距离公式d =x 1-x 22+y 1-y 22+z 1-z 22求解.如图所示,正方形ABCD,ABEF的边长都是1,而且平面ABCD⊥平面ABEF,点M在AC上移动,点N在BF上移动,若CM=BN=a(0<a <2).(1)求MN的长;(2)当a为何值时,MN的长最小.解(1)建立如图所示的空间直角坐标系,则A(1,0,0),F(1,1,0),C(0,0,1)∵CM=BN=a(0<a<2),且四边形ABCD、ABEF为正方形,∴M(22a,0,1-22a),N(22a,22a,0),∴|MN→=(0,22a,22a-1),∴|MN→|=a2-2a+1.(2)由(1)知MN=a-222+12,所以,当a=22时,MN=22.即M、N分别移到AC、BF的中点时,MN的长最小,最小值为2 2.知识点二求异面直线间的距离如图所示,在三棱柱ABC—A1B1C1中,AB⊥侧面BB1C1C,E为棱CC1上异于C、C1的一点,EA⊥EB1,已知AB=2,BB1=2,BC=1,∠BCC1=π3,求异面直线AB与EB1的距离.→、BA→所在直线分解.以B为原点,BA别为y、z轴,如图建立空间直角坐标系.由于BC =1,BB 1=2,AB =2,∠BCC 1=π3,在三棱柱ABC —A 1B 1C 1中有B(0,0,0),A(0,0,2),B 1(0,2,0),设 E (3,,02a ),由EA ⊥EB 1,得EAu u u r ·1EB u u u r =0, 即⎝ ⎛⎭⎪⎪⎫-32,-a ,2·⎝ ⎛⎭⎪⎪⎫-32,2-a ,0=0, 得⎝ ⎛⎭⎪⎫a -12⎝ ⎛⎭⎪⎫a -32=0,即a =12或a =32(舍去),故E ⎝ ⎛⎭⎪⎪⎫32,12,0.设n 为异面直线AB 与EB 1公垂线的方向向量,由题意可设n =(x ,y,0),则有n ·1EB u u u r=0. 易得n =(3,1,0),∴两异面直线的距离d =BE n n⋅u u u r=⎪⎪⎪⎪⎪⎪⎪⎪⎝⎛⎭⎪⎪⎫32,12,0·3,1,03+1=1.【反思感悟】 求异面直线的距离,一般不要求作公垂线,若公垂线存在,则直接求解即可;若不存在,可利用两异面直线的法向量求解.如图所示,在长方体ABCD —A 1B 1C 1D 1中,AB =4,AD =3,AA 1=2,M 、N 分别为DC 、BB 1的中点,求异面直线MN 与A 1B 的距离.解 以A 为原点,AD 、AB 、AA 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,则A 1(0,0,2),B(0,4,0),M(3,2,0),N(0,4,1).∴|MN →=(-3,2,1),1A B u u u u r =(0,4,-2).设MN 、A 1B 公垂线的方向向量为n =(x ,y ,z), 则10,0,n MN n A B ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u u r即⎩⎪⎨⎪⎧-3x +2y +z =04y -2z =0.令y =1,则z =2,x =43, 即n =⎝ ⎛⎭⎪⎫43,1,2,|n |=613.1MA u u u u r =(-3,-2,2)在n 上的射影的长度为d =1MA n nu u u u r ,故异面直线MN 与A 1B 的距离为66161.知识点三 求点到平面的距离在三棱锥B —ACD 中,平面ABD ⊥平面ACD ,若棱长AC =CD =AD =AB =1,且∠BAD =30°,求点D 到平面ABC 的距离.解如图所示,以AD 的中点O 为原点,以OD 、OC 所在直线为x 轴、y 轴,过O 作OM ⊥面ACD 交AB 于M ,以直线OM 为z 轴建立空间直角坐标系,则A ⎝ ⎛⎭⎪⎫-12,0,0,B ⎝ ⎛⎭⎪⎪⎫3-12,0,12, C ⎝ ⎛⎭⎪⎪⎫0,32,0,D ⎝ ⎛⎭⎪⎫12,0,0,∴AC u u u r=⎝ ⎛⎭⎪⎪⎫12,32,0,AB u u u r=⎝ ⎛⎭⎪⎪⎫32,0,12,DC u u u r =⎝ ⎛⎭⎪⎪⎫-12,32,0, 设n =(x ,y ,z)为平面ABC 的一个法向量,则1·0,21·0,2AB x z AC x y ⎧⎫=+=⎪⎪⎪⎪⎨⎪⎪==⎪⎪⎩⎭n n u u u r u u u r ,∴y =-33x ,z =-3x ,可取n =(-3,1,3),代入d =DC nn ⋅u u u r ,得d =32+3213=3913,即点D 到平面ABC 的距离是3913.【反思感悟】 利用向量法求点面距,只需求出平面的一个法向量和该点与平面内任一点连线表示的向量,代入公式求解即可.正方体ABCD —A 1B 1C 1D 1的棱长为4,M 、N 、E 、F 分别为A 1D 1、A 1B 1、C 1D 1、B 1C 1的中点,求平面AMN 平面与EFBD 间的距离.解 如图所示,建立空间直角坐标系D —xyz ,则A(4,0,0),M(2,0,4),D(0,0,0),B(4,4,0),E(0,2,4),F(2,4,4),N(4,2,4),从而EFu u u r=(2,2,0),MN→=(2,2,0), AMu u u u r =(-2,0,4),BF →=(-2,0,4), ∴EFu u u r =MN→, AMu u u u r=BF→, ∴EF ∥MN ,AM ∥BF ,∴平面AMN ∥平面EFBD. 设n =(x ,y ,z)是平面AMN 的法向量,从而·220,·240,MN x y AM x z ⎧⎫=+=⎪⎪⎨⎪=-+=⎪⎩⎭n n u u u u r u u u u r解得⎩⎪⎨⎪⎧x =2zy =-2z.取z =1,得n =(2,-2,1), 由于ABu u u r 在n 上的投影为n AB n⋅u u u r=-84+4+1=-83.∴两平行平面间的距离d =n AB n⋅u u u r =83.课堂小结:1.求空间中两点A ,B 的距离时,当不好建系时利用|AB|=|AB u u u r|=x 1-x 22+y 1-y 22+z 1-z 22来求. 2.两异面直线距离的求法.如图(1),n 为l 1与l 2的公垂线AB 的方向向量,d =|AB u u u r|=|CD →·n ||n |.3点B 到平面α的距离:|BOuuu r|=AB n n⋅u u u r .(如图(2)所示)4.面与面的距离可转化为点到面的距离.一、选择题1.若O 为坐标原点,OAu u u r=(1,1,-2),OB uuu r=(3,2,8),OCu u u r =(0,1,0),则线段AB 的中点P 到点C 的距离为( )B .214答案 D解析 由题意OP uuu r =(1-t )OA →=12(OA →+OB →)=(2,32,3), PC →=OC →-OP uuu r =(1-t )OA →=(-2,-12,-3),PC =|PC →|= 4+14+9=532.2.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,O 是底面A 1B 1C 1D 1的中心,则O 到平面ABC 1D 1的距离是( )A .12答案 B解析 以D 为坐标原点,以DA ,DC ,DD 1所在直线分别为x,y,z 轴建立空间直角坐标系,则有D 1(0,0,1),D (0,0,0),A (1,0,0),B (1,1,0),A 1(1,0,1),C 1(0,1,1).因O 为A 1C 1的中点,所以O (12,12,1),1C O u u u u r =(12, -12,0),设平面ABC 1D 1的法向量为 n=(x,y,z ),则有10,0,n AD n AB ⎧⋅=⎪⎨⋅=⎪⎩u u u u ru u u r即0,0,x z y -+=⎧⎨=⎩则 n = (1,0,1),∴O 到平面ABC 1D 1的距离为:1C O n d n⋅=u u u u r ,. 3.在直角坐标系中,设A (-2,3),B (3,-2),沿x 轴把直角坐标平面折成120°的二面角后,则A 、B 两点间的距离为( )A .211 D .311 答案 A解析 AB AE EF =+u u u r u u u r u u u r +FB→AB u u u r 2=AE u u u r 2+EF u u u r 2+FB →2+2AE u u u r ·EF u u u r +2AE u u u r ·FB →+2EF u u u r ·FB →=9+25+4+2×3×2×12=44.∴|AB u u u r|=211.4.已知正方体ABCD —A 1B 1C 1D 1的棱长为2,点E 是A 1B 1的中点,则点A 到直线BE 的距离是( )答案 B解析 如图所示,BA u u u r=(2,0,0), BE u u u r=(1,0,2), ∴cos θ= BA BEBA BEu u u r u u u r u u u r u u u r=225=55, ∴sin θ=1-cos 2θ=255,A 到直线BE 的距离d =|-*6]·OC→|sin θ=2×255=455.二、填空题5.已知A (2,3,1),B (4,1,2),C (6,3,7),D (-5,-4,8),则点D 到平面ABC 的距离为________.答案 491717解析 设平面ABC 的法向量为n =(x ,y ,z ), 则0,0,n AB n AC ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u ur 即⎩⎪⎨⎪⎧(x ,y ,z )·(2,-2,1)=0,(x ,y ,z )·(4,0,6)=0.∴n =⎝ ⎛⎭⎪⎫-32,-1,1,又ADu u u r =(-7,-7,7). ∴点D 到平面ABC 的距离d =AD n n⋅u u u r=491717.6.在正方体ABCD —A 1B 1C 1D 1中,棱长为2,E 为A 1B 1的中点,则异面直线D 1E 和BC 1间的距离是________.答案 263解析 如图所示建立空间直角坐标系,设n 为异面直线D1E 与BC1公垂线的方向向量,并设n =(x,y,z),则有110,0,n BC n D E ⎧⋅=⎪⎨⋅=⎪⎩u u u u ru u u u r易求得n =(1, -2,1),∴d=11D C n n⋅u u u u u r=|(0,2,0)·(1,-2,1)|1+4+1=46=263.7.在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,点A 到平面A 1BD 的距离为________.答案 33a解析 以D 为空间直角坐标原点,以DA 、DC 、DD 1所在直线分别为x 轴、y 轴、z 轴建立坐标系,则D (0,0,0),A (a,0,0),B (a ,a,0),A 1(a,0,a ).设n =(x ,y ,z )为平面A 1BD 的法向量,则有10,0,n DA n DB ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u r ,即⎩⎪⎨⎪⎧(x ,y ,z )(a ,0,a )=0,(x ,y ,z )(a ,a ,0)=0.∴⎩⎪⎨⎪⎧x +z =0,x +y =0,令x =1,∴n =(1,-1,-1).∴点A 到平面A 1BD 的距离d =DA nn ⋅u u u r =a 3=33a .三、解答题8.如图所示的多面体是由底面为ABCD 的长方体被截面AEC 1F 所截而得到的,其中AB =4,BC =2,CC 1=3,BE =1.(1)求BF 的长;(2)求点C到平面AEC1F的距离.解(1)建立如图所示的空间直角坐标系,则D(0,0,0),B(2,4,0),A(2,0,0),C(0,4,0),E(2,4,1),C1(0,4,3).设F(0,0,z).∵四边形AEC1F为平行四边形,u u u r u u u u r∴由1AF EC得(-2,0,z)=(-2,0,2),∴z=2.∴F(0,0,2).∴BF u u u r=(-2,-4,2).于是|BF u u u r|=26(2)设n1为平面AEC1F的一个法向量,显然n1不垂直于平面ADF,故可设n1=(x,y,1),由0,0,n AE n AF ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r得 0410,2020,x y x y ⨯+⨯+=⎧⎨-⨯+⨯+=⎩ 即410,220,y x +=⎧⎨-+=⎩∴1,1,4x y =⎧⎪⎨=-⎪⎩∴n 1=(1,14-,1).又1CC u u u u r=(0,0,3),设1CC u u u u r与n 1的夹角为α,则 cos α= 1111CC nCC n ⋅u u u u ru u u u r43313331116==⋅++∴C 到平面AEC 1F 的距离为d=|1CC u u u u r |cos α=3×43333433=9.已知:正四棱柱ABCD —A 1B 1C 1D 1中,底面边长为22,侧棱长为4,E 、F 分别为棱AB 、BC 的中点.(1)求证:平面B 1EF ⊥平面BDD 1B 1; (2)求点D 1到平面B 1EF 的距离. (1)证明建立如右图所示的空间直角坐标系,则D(0,0,0),B(22,22,0),E(22,2,0), F(2,22,0),D 1(0,0,4), B 1(22,22,4).EFu u u r =(-2,2,0), DB→=(22,22,0),1DD u u u u r =(0,0,4),EFu u u r·DB→=0. ∴EF ⊥DB ,EF ⊥DD 1,DD 1∩BD =D , ∴EF ⊥平面BDD 1B 1.又EF ⊂平面B 1EF ,∴平面B 1EF ⊥平面BDD 1B 1.(2)解由(1)知11D B u u u u r =)(22,2,0EFu u u r =)(2,2,0-,1B Eu u u u r =)(0,2,4--,设平面B 1EF 的法向量为n ,且n = (x,y,z),则n ⊥EF u u u r ,n⊥1B Eu u u u r ,即n ·EF u u u r =(x ,y ,z )·)(2,2,0=-2x+2y =0, n ·1B E u u u u r=(x ,y ,z)·(0,-2,-4)=-2y -4z =0.令x =1,则y =1,z =-24,∴n =⎝ ⎛⎭⎪⎪⎫1,1,-24. ∴D 1到平面B 1EF 的距离 11D B nd n ⋅=u u u u r =|22+22|12+12+⎝⎛⎭⎪⎪⎫-242=161717 10.直四棱柱ABCD -A 1B 1C 1D 1的高为3,底面是边长为4且∠DAB =60°的菱形,AC ∩BD =O ,A 1C 1∩B 1D 1=O 1,E 是O 1A 的中点.(1)求二面角O 1—BC -D 的大小; (2)求点E 到平面O 1BC 的距离. 解 (1)∵OO 1⊥平面AC ,∴OO 1⊥OA ,OO 1⊥OB ,又OA ⊥OB , 建立如图所示的空间直角坐标系,∵底面ABCD 是边长为4,∠DAB=60°的菱形,∴,OB=2,则,B(0,2,0),C(-,O 1(0,0,3)设平面O 1BC 的法向量为n 1=(x,y,z ),则n 1⊥1O B u u u u r , n 1⊥1O C u u u u r,∴⎩⎪⎨⎪⎧2y -3z =0-23x -3z =0,若z =2,则x =-3,y =3, ∴n 1=(-3,3,2),而平面AC的法向量n2=(0,0,3)∴cos〈n1,n2〉=n1·n2|n1|·|n2|=63×4=12,设O1-BC-D的平面角为α,∴cosα=12,∴α=60°.故二面角O1-BC-D为60°.(2)设点E到平面O1BC的距离为d,∵E是O1A的中点,∴1EO u u u u r=(-3,0,32),则d=111EO nnu u u u r=|(-3,0,32)·(-3,3,2)|(-3)2+32+22=3 2∴点E到面O1BC的距离等于32.。

立体几何求点到面距离问题

立体几何求点到面距离问题

立体几何求点到面距离问题引言立体几何是研究空间中的图形和空间关系的一个分支学科。

在立体几何中,求点到面的距离是一个常见的问题。

本文将从基本概念出发,深入探讨立体几何中求点到面距离的问题。

什么是点到面的距离点到面的距离是指空间中一个点到平面的最短距离。

这个距离可以用于求解一系列实际问题,例如工程中的装配问题、机器人导航问题等。

点到面距离的计算方法在立体几何中,求点到面的距离可以采用多种方法。

下面将介绍几种常用的计算方法。

求点到平面的公式假设平面的方程为Ax+By+Cz+D=0,点的坐标为(x0,y0,z0),点到平面的距离可以通过公式计算:距离= |Ax0 + By0 + Cz0 + D| / √(A^2 + B^2 + C^2)其中,|x|表示x的绝对值。

点到三角形的距离若平面上有一个三角形ABC,点P到三角形的距离可以按照以下步骤计算:1.求三角形ABC的法向量N;2.用三角形ABC的一条边向量B-A和两个边向量C-A、P-A构造Gram矩阵,记作G;3.求Gram矩阵的特征值λ1、λ2、λ3;4.计算点到三角形的距离d = √(2* (λ1^2 + λ2^2 + λ3^2) / (λ1 +λ2 + λ3));其中,√表示平方根。

点到立方体的距离立方体是一个六个面都是正方形的多面体。

点到立方体的距离可按照以下步骤计算:1.将立方体视为六个平面;2.对于每个平面,计算点到平面的距离;3.取最小的平面距离作为点到立方体的距离。

点到面距离的应用点到面的距离在计算机图形学、计算机辅助设计、计算机视觉等领域有着广泛的应用。

计算机图形学中的应用在计算机图形学中,点到面的距离可以用于线框模型的绘制、曲面的包围盒计算等。

例如,当我们需要绘制一个线框模型时,可以通过计算点到平面的距离,来确定哪些线是显示的,哪些线是隐藏的。

计算机辅助设计中的应用在计算机辅助设计中,点到面的距离可以用于零件装配的碰撞检测、表面贴花等。

点到平面距离的若干典型求法

点到平面距离的若干典型求法

点到平面距离的若干典型求法1.引言点到平面的距离是高考立体几何部分必考的热点题型之一,也是学生较难准确把握的难点问题之一。

本文将介绍七种较为典型的求解方法,包括几何方法(如体积法、二面角法)、代数方法(如向量法、公式法)以及常用数学思维方法(如转化法、最值法),以达到秒杀得分的效果。

2.预备知识1) 正射影的定义:从平面外一点P向平面α引垂线,垂足为P',则点P'叫做点P在平面α上的正射影,简称为射影。

同时,把线段PP'叫作点P与平面α的垂线段。

2) 点到平面距离定义:一点到它在一个平面上的正射影的距离叫作这点到这个平面的距离,也即点与平面间垂线段的长度。

3) 四面体的体积公式:V = Sh/3,其中V表示四面体体积,S、h分别表示四面体的一个底面的面积及该底面所对应的高。

4) 直线与平面垂直的判定定理:一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直。

5) 三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它和这条斜线也垂直。

3.求点到平面距离的若干求法3.1 定义法求点到平面距离定义法是最基本的求解方法之一,根据点到平面距离的定义,可以通过求点在平面上的正射影来求解点到平面的距离。

3.2 转化法求点到平面距离转化法是一种常用的求解方法,通过将问题转化为等价的问题来求解。

在点到平面距离的求解中,可以通过将平面方程转化为标准式,然后代入点的坐标,求解点到平面的距离。

3.3 等体积法求点到平面距离等体积法是一种几何方法,通过构造等体积的四面体来求解点到平面的距离。

具体方法是在点与平面之间构造一个四面体,使其与另一四面体等体积,然后根据四面体的体积公式来求解点到平面的距离。

3.4 利用二面角求点到平面距离二面角法是一种几何方法,通过求解点与平面所夹二面角的正弦值来求解点到平面的距离。

具体方法是求解点到平面的垂线与平面法线的夹角,然后根据正弦定理求解点到平面的距离。

3.2立体几何中的向量方法(三)

3.2立体几何中的向量方法(三)

不共线, 一个法向量为 n ,且 AP 与 n 不共线,能否用 AP 与 n 表示 d ?
分析:过 P 作 PO⊥ α 于 O,连结 OA. 过 ⊥ 连结
P
n
则 d=| PO |= | PA | cos ∠APO . ∵ PO ⊥ α , n ⊥ α , ∴ PO ‖ n . cos∠ ∴cos∠APO=|cos PA, n |.
4
详细答案
思考题: 如图, 思考题: 如图,已知正方形 ABCD 的边长为 4,E,F , , AD GC⊥ 分别是 AB, 的中点, ⊥平面 ABCD, GC=2, , 的中点, , 且 = , z 的距离. 求点 B 到平面 EFG 的距离 G 如图, 解:如图,建立空间直角坐标系 C-xyz. - . 由题设 C(0,0,0),A(4,4,0),B(0,4,0), , , , D(4,0,0),E(2,4,0),F(4,2,0),G(0,0,2). , , , . EF = (2, 2, 0), EG = ( 2, 4, 2), D C
a, a, b), BC1 = (0, a , b), 2 2 12 2 由于AB1 ⊥ BC1 ,所以A 1 B 1 = a +b =0 所以 B C
2 2 B 1 ( 0 , a , b ), D ( 3 a , 1 a , 0) 4 3 1 4
z C1 A1 B1
2 a ∴ b= 2 C 在坐标平面yoz中 ∵ CC1 B 在坐标平面 中 D x ∴ 可取 n =( ,0,0)为面 CC1 B 的法向量 =(1, , )
= a + c + b 2CA DB
2 2 2
2ab cos θ = a + b + c d .

高中数学空间向量与立体几何知识点归纳总结

高中数学空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结一.知识要点。

1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。

注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。

(2)向量具有平移不变性2. 空间向量的运算。

定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。

OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a ++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。

(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a//。

(2)共线向量定理:空间任意两个向量a 、b(b ≠0 ),a //b 存在实数λ,使a=λb 。

(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a 共线的单位向量为aa ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。

说明:空间任意的两向量都是共面的。

(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。

(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。

若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。

高中数学第三章空间向量与立体几何点到平面的距离若干求解方法素材1

高中数学第三章空间向量与立体几何点到平面的距离若干求解方法素材1

点到平面的距离若干求法1定义法求点到平面距离(直接法)定义法求点到平面距离是根据点到平面的定义直接作出或者寻找出点与平面间的垂线段,进而根据平面几何的知识计算垂线段长度而求得点与平面距离的一种常用方法.定义法求点到平面距离的关键在于找出或作出垂线段,而垂线段是由所给点及其在平面射影间线段,应而这种方法往往在很多时候需要找出或作出点在平面的射影。

以下几条结论常常作为寻找射影点的依据:(1)两平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们交线的直线垂直于另一个平面。

(2)如果一个角所在平面外一点到角的两边的距离相等,那么这个点在该平面内的射影在这个角的角平分线所在的直线上。

(3)经过一个角的顶点引这个角所在平面的斜线。

设斜线和已知两边的夹角为锐角且相等,则这条斜线在这个平面的射影是这个角的角平分线.(4)若三棱锥的三条棱长相等,则顶点在底面上的射影是底面三角形的外心。

例如图4所示,所示的正方体ABCD A B C D''''-棱长为a,求点A'到平面AB D''的距离。

(注:本文所有解法均使用本例)图4解法一(定义法):如图5所示,连结交B D ''于点E ,再连结AE ,过点A '作A H '垂直于AE ,垂足为H ,下面证明A H '⊥平面AB D ''。

图5AA '⊥平面A B C D ''''∴B D ''⊥AA ' 又在正方形A B C D ''''中,对角线B D A C ''''⊥,且AA A C A ''''=AA '⊂平面AA E ', A C ''⊂平面AA E '∴由线面垂直的判定定理知道B D ''⊥平面AA E 'A H '⊂平面AA E '∴A H '⊥B D ''又由A H '的作法知道A H '⊥AE ,且有B D ''AE E =,B D ''⊂平面AB D '',AE ⊂平面AB D ''∴由线面垂直的判定定理知道A H '⊥平面AB D ''根据点到平面距离定义,A H '的长度即为点A '到平面AB D ''的距离,下面求A H '的长度。

立体几何中的向量方法(距离问题)

立体几何中的向量方法(距离问题)
解:如图1,设 AB AA1 AD 1,BAD BAA1 DAA1 60
化为向量问题
D1 A1 D A 图1
B B1
C1
依据向量的加法法则, AC1 AB AD AA1
进行向量运算
C
AC1 ( AB AD AA1 ) 2
2 2 2
2
AB AD AA1 2( AB AD AB AA1 AD AA1 )
由 A1 AB A1 AD BAD 且 AB AD AA1 H 在 AC上.
AC ( AB BC )2 1 1 2cos 60 3
2
D1 A1 B1 H D B
C1
C
A
AC 3
AA1 AC AA1 ( AB BC ) AA1 AB AA1 BC cos60 cos60 1.
即 a 2 3 x 2 2(3 x 2 cos ) x
1 a 3 6cos
∴ 这个四棱柱的对角线的长可以确定棱长.
思考(3)本题的晶体中相对的两个平面之间的距离是多少? 分析:面面距离转化为点面距离来求
解: 过 A1点作 A1 H 平面 AC 于点 H . 则 A1 H 为所求相对两个面之间 的距离 .
A1 B1 D C D1 C1
(3)本题的晶体中相对的两个平面之间的距离 A B 是多少? (提示:求两个平行平面的距离,通常归结为求点到平 面的距离或两点间的距离)
思考(1)分析: BD BA BC BB 1 1 其中 ABC ABB1 120 , B1 BC 60
空间“距离”问题
复习回顾:
1.异面直线所成角:
C

3.2立体几何中的向量方法点到平面的距离

3.2立体几何中的向量方法点到平面的距离

C
x
A M
B
y
练习4:
已知正方形ABCD的边长为4,CG⊥平面 ABCD,CG=2,E、F分别是AB、AD的中点, z G 求点B到平面GEF的距离。
x
F
D
C
A
E
B
y
解:如图,建立空间直角坐标系 C-xyz. 由题设 C(0,0,0),A(4,4,0),B(0,4,0), D(4,0,0),E(2,4,0),F(4,2,0),G(0,0,2).
立体几何中的向量方法
----点到平面的距离
一、求点到平面的距离
一般方法:
利用定义先作出过 这个点到平面的垂 线段,再计算这个 垂线段的长度。
P
d

O
还可以用等积法求距离.
向量法求点到平面的距离
sin
sin
d A P
| AP n | AP n
d | AP | sin
P
n
d

d
| AP n | n

A
O
其中A P 为斜向量, n 为法向量。
如图,在正方体ABCD-A1B1C1D1中,棱长为1, E为D1C1的中点,求: B1到面A1BE的距离;
z
D
A
1
1
E
C
1
B
D
1
A
C
y
x
B
练习1:
已知棱长为1的正方体ABCD-A1B1C1D1中, E、F分别是B1C1和C1D1 的中点,求点A1到平 面DBEF的距离。 z D1 F C
x
F A
D
C
E
y
B
2 11 答:点 B 到平面 EFG 的距离为 . 11

高中数学优质课件【立体几何中的向量方法——求空间角与距离】

高中数学优质课件【立体几何中的向量方法——求空间角与距离】

面直线 AB 和 CD 所成角的余弦值为________.
1 4
解析:设等边三角形的边长为 2.取 BC 的
中点 O,连接 OA,OD.因为等边三角形 ABC 和
BCD 所在平面互相垂直,所以 OA,OC,OD 两
两垂直,以 O 为坐标原点,OD,OC,OA 所在
直线分别为 x 轴、y 轴、z 轴建立如图所示的空间
直角坐标系.
则 A(0,0, 3),B(0,-1,0),C(0,1,0),D( 3,0,0), 所以A→B=(0,-1,- 3),C→D=( 3,-1,0), 所以 cos〈A→B,C→D〉=|AA→→BB|·|CC→→DD|=2×1 2=14, 所以异面直线 AB 和 CD 所成角的余弦值为14.
1 2 3 45
4.在空间直角坐标系 Oxyz 中,平面 OAB 的一个法向量为 n=(2,
-2,1),已知点 P(-1,3,2),则点 P 到平面 OAB 的距离 d 等于( )
A.4
B.2
C.3
D.1
B 解析:P 点到平面 OAB 的距离为 d=|O→|Pn·|n|=|-2-96+2|=2.
12345
B1(1,1, 3),所以A→D1=(-1,0, 3),D→B1=(1,1, 3).设异面直线
AD1 与 DB1 所成的角为 θ,
所以 cos θ=|AA→→DD11|·|DD→→BB11|=2×2
5=5 5.Fra bibliotek所以异面直线
AD1

DB1
所成角的余弦值为
5 5.
2.有公共边的等边三角形 ABC 和 BCD 所在平面互相垂直,则异
l1与l2所成的角θ
a与b的夹角β
范围

高中数学第三章空间向量与立体几何3.2立体几何中的向量方法3向量法解决空间角和距离问题省公开课一等奖

高中数学第三章空间向量与立体几何3.2立体几何中的向量方法3向量法解决空间角和距离问题省公开课一等奖

则点 P0 到直线 l 的距离 d= =|1a| |P→P0|·|a|2-|P→P0·a|2.
|P→P0|2-P→P|a0|·a2
11/64
(2)点到平面距离 用空间向量法求点到平面距离详细步骤以下: 先确定平面的法向量,再求点与平面内一点的连线形成的斜线段在平面 的法向量上的射影长.如图,设 n=(a,b,c)是平面 α 的一个法向量, P0(x0,y0,z0)为 α 外一点,P(x,y,z)是平面 α 内
答案 解析
A. 2
√B. 3
C. 5
D.3
以O为坐标原点,建立如图所表示空间直角坐标系.
由题意可知A(1,0,0),B(0,2,0),C(0,0,2),
∴A→B=(-1,2,0),B→C=(0,-2,2),
|A→B|=
1+4+0=
→→ 5,|AB→·BC|=
2.
|BC|
∴点 A 到直线 BC 的距离 d= 5-2= 3.
∠O1OB=60°,∠AOB=90°,且OB=OO1=2,OA= 3,求异面直线
A1B与AO1所成角余弦值大小.
解答
14/64
反思与感悟
在处理立体几何中两异面直线所成角问题时,若能构建空间直角坐标系, 则建立空间直角坐标系,利用向量法求解.但应用向量法时一定要注意向 量所成角与异面直线所成角区分.
√D.
615或-
15 6
0,-1,3·2,2,4 由 1+9× 4+4+16 =
-2+12 10× 24=
615,
知这个二面角的余弦值为 615或- 615,故选 D.
1 2 3 4 555/64
2.已知三棱锥O-ABC,OA⊥OB,OB⊥OC,OC⊥OA,且OA=1,OB

立体几何中的向量方法及二面角的平面角求法总结

立体几何中的向量方法及二面角的平面角求法总结

讲义:立体几何中的向量方法及二面角的平面角求法总结一、几种角的范围1、 _________________________________ 二面角平面角的范围:2、 _________________________________ 线面角的范围:3、 _________________________________ 直线倾斜角范围:4、异面直线夹角范围:_______________5、向量夹角范围:_________________二、立体几何中的向量方法1.三个重要向量(1)直线的方向向量:直线的方向向量是指和这条直线平行(或重合)的向量,一条直线的方向向量有 ______ .(2)平面的法向量:直线I丄平面a取直线I的方向向量,则这个向量叫做平面a的法向量.显然一个平面的法向量有 ____ ,它们是共线向量.(3)直线的正法向量:直线L:Ax+By+C=O的正法向量为n=(A,B).2.直线的方向向量与平面的法向量在确定直线和平面位置关系中的应用(1)直线l i的方向向量为u 1= (a i, b i, c i),直线l2的方向向量为比=(a2, b2, C2).女口果丨1 //丨2,那么U1 // U2? 5=右2? _____________________________ ;女口果丨1丄l2, 那么U1丄U2? U1 U2= 0? ________________⑵直线I的方向向量为u= (a1, b1, C1),平面a的法向量为n= (a2, b2, C2).若I // a 贝U u 丄n? u n = 0? _________________若I 丄a 贝U u // n? u = k n? _____________________(3)平面a的法向量为U1 = (a1, b1, C1),平面B的法向量为u2= (a2, b2, C2).若all B U1 / U2? U1 = k u2? (a1, b1, G)=_________ ;若a丄B 贝y U1 丄U2? U1 U2= 0? ____________________3.利用空间向量求空间角(1)求两条异面直线所成的角:设a, b分别是两异面直线I1, I2的方向向量,则(2) 求直线与平面所成的角:设直线I 的方向向量为a ,平面a 的法向量为n ,直线I 与平面a 所成的角为 0,则 si nA |cos 〈 a , n > |=(3) 求二面角的大小:(I )若 AB , CD 分别是二面角a — I — B 的两个半平面内与棱I 垂直的异面直线,则二面角的大 小就是向量AB , CD 的夹角(如图①所示).(H )设n i , n 2分别是二面角a — I — B 的两个半平面a, B 的法向量,贝U 向量n i 与n 2的夹角(或其补角)的大小就是二面角的大小(如图②③).4. 求点面距:平面a 外一点P 到平面a 的距离为:其中n 为平面a 的法向量,PQ 为平面a 的斜线,Q 为斜足 5. 平面法向量的求法设出平面的一个法向量n = (x , y , z),利用其与该平面内的两个不共线向量垂直,即数量积为 0, 列出方程组,两个方程,三个未知数,此时给其中一个变量恰当赋值,求出该方程组的一个非零 解,即得到这个法向量的坐标.注意,赋值不同得到法向量的坐标也不同, 法向量的坐标不唯一. 6. 射影面积公式:二面角的平面角为 a ,则cos a=7. 利用空间向量求角要注意的问题(1)异面直线所成的角、直线和平面所成的角、二面角都可以转化成空间向量的夹角来求.⑵空间向量的夹角与所求角的范围不一定相同,如两向量的夹角范围是[0, n,两异面直线所成的角的范围是o , n . (3)用平面的法向量求二面角时,二面角的大小与两平面法向量的夹角有相等和互补两种情况 .三、二面角的平面角的求法1、定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角 ,这条直线叫做二面角的棱,这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线d=② ③所成的角的大小就是二面角的平面角。

立体几何中的向量方法(距离、角度)专题选择性必修第一册

立体几何中的向量方法(距离、角度)专题选择性必修第一册
3.如图,已知正方形 ABCD 的边长为 1,PD⊥平面 ABCD,且 PD=1,E,F 分别为 AB,BC 的中点.则点 D 到平面 PEF 的距离为________;直线 AC 到平 面 PEF 的距离为________.
类型一 用空间向量求距离 【典例】已知四边形ABCD是边长为4的正方形,E,F分别是边AB,AD的中 点,CG垂直于正方形ABCD所在的平面,且CG=2,求: (1)点B到直线FG的距离; (2)点B到平面EFG的距离.
05 平面与平面所成角
两个平面的法向量所成角是这两个平面的夹角吗?
, 的夹角为,cos | u v|
| u || v |
例题 如图,在直三棱柱ABC-A1B1C1中,AC=CB=2,AA1=3, ∠ACB=90°,P为BC中点,点Q,R分别在棱AA1,BB1上,A1Q=2AQ, BR=2RB1,求平面PQR与平面A1B1C1夹角的余弦值 z
D1 F
C1
N
A1
E
M B1
D
Cy
A
B
x
AB n
d
n
1.4.2 立体几何中的向量方法 ——角度问题
03 异面直线所成角
l
l
m
m
l, m的夹角为,cos | a b|
| a || b |
(0, ]
2
类型二 向量法求异面直线所成的角(数学运算,直观想象) 【典例】如图,在直三棱柱 A1B1C1-ABC 中,AB⊥AC,AB=AC=2,A1A=4, 点 D 是 BC 的中点.求异面直线 A1B 与 C1D 所成角的余弦值.
(1)证明:DC1⊥BC.
(2)求平面A1B1BD与平面C1BD的夹角的大小.
在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,

立体几何典型问题的向量解法

立体几何典型问题的向量解法

立体几何中几类典型问题的向量解法空间向量的引入为求立体几何的空间角和距离问题、证线面平行与垂直以及解决立体几何的探索性试题提供了简便、快速的解法。

它的实用性是其它方法无法比拟的,因此应加强运用向量方法解决几何问题的意识,提高使用向量的熟练程度和自觉性,注意培养向量的代数运算推理能力,掌握向量的基本知识和技能,充分利用向量知识解决图形中的角和距离、平行与垂直问题。

一、利用向量知识求点到点,点到线,点到面,线到线,线到面,面到面的距离(1)求点到平面的距离除了根据定义和等积变换外还可运用平面的法向量求得,方法是:求出平面的一个法向量的坐标,再求出已知点P 与平面内任一点M 构成的向量MP u u u r的坐标,那么P 到平面的距离cos ,n MP d MP n MP n •=•<>=r u u u r u u u r r u u u rr(2)求两点,P Q 之间距离,可转化求向量PQ uuu r的模。

(3)求点P 到直线AB 的距离,可在AB 上取一点Q ,令,AQ QB PQ AB λ=⊥u u u r u u u r u u u r u u u r或PQ u u u r 的最小值求得参数λ,以确定Q 的位置,则PQ u u u r为点P 到直线AB 的距离。

还可以在AB 上任取一点Q 先求<AB ,cos ,再转化为><,sin ,则PQ u u u r><,sin 为点P 到直线AB 的距离。

(4)求两条异面直线12,l l 之间距离,可设与公垂线段AB 平行的向量n r,,C D 分别是12,l l 上的任意两点,则12,l l 之间距离CD nAB n•=u u u r r r例1:设(2,3,1),(4,1,2),(6,3,7),(5,4,8)A B C D --,求点D 到平面ABC 的距离例2:如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直。

立体几何求点到面距离问题

立体几何求点到面距离问题

立体几何求点到面距离问题一、引言在立体几何中,求点到面的距离是一个重要的问题。

这个问题在很多领域都有应用,比如机械工程、建筑设计、计算机图形学等等。

本文将从基础概念开始,逐步深入探讨求点到面距离的方法。

二、基础概念1. 点点是空间中最基本的几何元素,它没有大小和方向,只有位置。

2. 面面是由三个或三个以上的点组成的平面图形。

在空间中,一个面可以看做是无限多个平行于该面的平面叠加而成。

3. 距离距离是两个点之间的长度。

在空间中,两个点之间的距离可以看做是它们连线上最短的长度。

三、求解方法1. 向量法向量法是一种常见且直观的求解方法。

首先将点和面表示为向量形式,然后通过向量运算求出它们之间的距离。

具体步骤如下:(1)设点P(x1, y1, z1)和平面Ax+By+Cz+D=0;(2)设该平面上任意一点Q(x2, y2, z2),则Q到P的向量为v=<x2-x1, y2-y1, z2-z1>;(3)平面的法向量为n=<A, B, C>;(4)点P到平面的距离d=|n·v|/|n|,其中“·”表示向量点积。

向量法的优点是简单易懂,适用于任意维度空间。

但是需要注意的是,如果点在平面上或者与平面非常接近时,计算结果可能会出现误差。

2. 坐标法坐标法是一种基于坐标系的求解方法。

它将点和面都表示为坐标系中的坐标,并通过公式求出它们之间的距离。

具体步骤如下:(1)设点P(x1, y1, z1)和平面Ax+By+Cz+D=0;(2)设该平面上任意一点Q(x2, y2, z2),则Q到P的距离为d=|(A·x1+B·y1+C·z1+D)/(√(A^2+B^2+C^2))|;坐标法的优点是简单易懂,适用于三维空间。

但是需要注意的是,如果点在平面上或者与平面非常接近时,计算结果可能会出现误差。

3. 利用三角形求解利用三角形求解也是一种常见的方法。

它将点和面之间的距离转化为点到平面所在三角形的距离。

立体几何的向量方法-空间向量求距离

立体几何的向量方法-空间向量求距离

BIG DATA EMPOWERS TO CREATE A NEW
ERA
向量的表示与运算
向量的表示
空间中一个点可以表示为一个有序实数对(x,y,z),与该点对应的向量可以表示为 $overrightarrow{OP} = (x,y,z)$。
向量的加法
对于任意两个向量$overrightarrow{a} = (a_1, a_2, a_3)$和$overrightarrow{b} = (b_1, b_2, b_3)$,它们的和为$overrightarrow{a} + overrightarrow{b} = (a_1 + b_1, a_2 + b_2, a_3 + b_3)$。
04
空间向量求距离的实例分析
BIG DATA EMPOWERS TO CREATE A NEW
ERA
球面距离问题
总结词
利用向量方法求球面上的两点之间的最 短距离
VS
详细描述
将球面上的两点分别表示为向量,通过向 量的模长和夹角计算两点之间的距离。具 体步骤包括将球面距离转化为平面距离, 利用向量的模长和夹角公式计算距离。
平面距离问题
总结词
利用向量方法求平面上的两点之间的最短距 离
详细描述
将平面上的两点分别表示为向量,通过向量 的模长和夹角计算两点之间的距离。具体步 骤包括将平面距离转化为直线距离,利用向 量的模长和夹角公式计算距离。
异面直线间的距离问题
总结词
利用向量方法求异面直线间的最短距离
详细描述
将异面直线分别表示为向量,通过向量的模 长和夹角计算直线之间的距离。具体步骤包 括将异面直线间的距离转化为平面距离,利
用向量的模长和夹角公式计算距离。

【全程复习方略】2014-2015学年高中数学 3.2.4空间向量与空间距离课件 新人教A版选修2-1

【全程复习方略】2014-2015学年高中数学 3.2.4空间向量与空间距离课件 新人教A版选修2-1
n 3
【题型示范】
类型一
点到点、点到线、线到线的距离
【典例1】
(1)(2014·临汾高二检测)如图,在60°的二面角α -AB-β
内,AC⊂β ,BD⊂α ,AC⊥AB于A,BD⊥AB于B,且AC=AB=BD=1,则CD 的长为 .
(2)如图,在空间直角坐标系中有棱长为a的正方体ABCDA1B1C1D1,点M是线段DC1上的动点,试求点M到直线AD1距离的最小 值.
的距离 点到平
面的距离
设平面α 的法向量为n,B∉α ,A∈α ,则B点到
| BA n | 平面α 的距离d= n
2.解决立体几何问题的三种方法
逻辑推理 作为工具解决问题. (1)综合方法:是以_________
向量 的概念及其运算解决问题. (2)向量方法:是利用_____ (3)坐标方法:利用数及其运算来解决问题. 坐标方法经常与向量运算结合.
AD AB BC CD AB BC CD 2AB BC 2AB CD 2BC CD AB BC CD 12,
2 2 2 2 2 2 2 2
所以 AD =2 3,故选D.
【补偿训练】直角△ABC的两条直角边BC=3,AC=4,PC⊥平
面ABC,PC=
OP n 2 6 2 =| |=| |=2. n 3
(2)如图所示,以AD的中点O为原点, 以OD,OC所在直线为x轴、y轴,过O作 OM⊥平面ACD交AB于M,以直线OM为z轴 建立空间直角坐标系,则A( ,0,0),
B(
2 1 2
3 1 1 3 D( 1 ,0,0),所以 AC=( 1 , 3 ,, 0) AB =( , 0, ), DC =( , ,, 0) 2 2 2 2 2 2

立体几何的向量法(四)——求点到面距离

立体几何的向量法(四)——求点到面距离
因为直线到平面的距离、平行平面的距离一般都转化为点到平面的距离来求,所以我们重点研究点到平面的距离。
一.点到平面的距离:
1。定义:叫做这一点到这个平面的距离.
2。求解方法:
(1)几何法:
①找到(或作出)表示距离的线段;抓住线段(所求距离)所在三角形解之.
②等体积法。
(2)向量法:
已知平面 外一点P,平面 .先求出平面 的法向量 ,在平面内任取一定点A,则点P到平面 的距离d等于 在 上的射影长,
即d=
二、问题探究
1:在长方体ABCD—A1B1C1D1中,已知AB= 4, AD =3,AA1= 2. E是线段AB上的点,且EB=1,求点C到面 的距离。
2:在三棱锥D—ABC中,DA 平面ABC,且AB=BC=AD=1, ABC=90 ,
求点A到面BCD的距离。
课后练习:
1。如图,四棱锥 的底面为直角梯形, ,
学校年级学科导学案
主备审核授课人授课时间班级姓名小组
课题:立体几何的向量法(四)—-求点到面的距离新课课时:二
【学习目标】
1、能理解点到面距离的】
一、自学理解
一条直线上的任一点到与它平行的平面的距离,叫做这条直线到平面的距离.
两个平行平面的公垂线段的长度,叫做两个平行平面的距离.
, , , 底面 , 为 的中点.
⑴求证:平面 平面 ;
⑵求直线 与平面 所成的角的正弦值;
⑶求点 到平面 的距离。
2、如图,正三棱柱 的所有棱长都为 , 为 中点.
⑴求证: 平面 ;
⑵求二面角 的平面角的正弦值;
⑶求点 到平面 的距离.
(教师“复备”栏或学生笔记栏)
提示:
提示:
此题能否用两种方法求解
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2.4 立体几何中的向量方法——点面距
【学习目标】
掌握用法向量求点到面的距离的方法.
【自主学习与检测】
已知点,A B αα∉∈平面平面,AB 是平面α的斜线段,AO α⊥于点O, n 是平面α的法向量,那么如何求得点A 到平面α的距离AO ? 提示:不妨先求线面角,再在直角三角形中求点到平面的距离。

【典型例题】
例1如图,已知正三角形ABC 的边形为6cm ,点D 到ABC ∆各顶点的距离都
是4cm ,求点A 到平面BCD 的距离.
例2.已知直角三角形ABC 中AC BC ⊥,且1AC BC ==,点O 到ABC ∆各顶点 的距离都是1,求点O 到三角形ABC 所在平面的距离
例3.已知钝角三角形ABC 中120BCA ∠=,且1AC BC ==,点O 到ABC ∆各顶点的距离都是2,求点0到三角形ABC 所在平面的距离
n α B O A
【目标检测】
1.在棱长为1的正方体ABCD-A 1B 1C 1D 1中,求:
(1)点A 到平面BD 1的距离;
(2)点A 1到平面AB 1D 1的距离;
(3)平面AB 1D 1与平面BC 1D 的距离;
(4)直线AB 与平面CDA 1B 1的距离.
2.在三棱锥P ABC -中,AC=BC=2,AP=BP=AB, 90,ACB PC AC ∠=⊥.
(1)求证PC AB ⊥; (2)求点C 到平面APB 的距离;
(3)求点B 到平面APC 的距离.
3.在直角梯形ABCD 中,AB ⊥AD ,BC ∥AD ,又SA ⊥平面ABCD ,SA=AB=BC=a,AD=2a.
(1)求点C 到平面SAD 的距离;
(2)点A 到平面SCD 的距离.
A C
B P A D
B C S。

相关文档
最新文档