隧道光面爆破钻爆设计方案

合集下载

隧道爆破设计方案(台阶法)

隧道爆破设计方案(台阶法)

隧道爆破设计方案(台阶法)一、工程概述本合同段有四座隧道。

隧道区域处于构造剥蚀丘陵—低山地貌区,主要出第四系全新统残坡积碎石土、中元古武当山群片岩和上元古界震旦系上统灯组片岩。

本段内短隧道为Ⅳ、Ⅴ级围岩,中长隧道为Ⅲ、Ⅳ、Ⅴ级围岩,其中Ⅳ级围岩采用台阶法爆破开挖(Ⅴ级围岩主要采取人工配合机械开挖,不需要爆破)、锚、喷、格栅、网、初期支护,全断面复合式衬砌。

爆破方法采用光面爆破。

二、光面爆破的特点光面爆破施工,可以减少对围岩的扰动,增强围岩的自承能力,特别是在不良地质条件下效果更为显著,不仅可以减少危石和支护的工程量,而且保证了施工的安全;由于光面爆破使开挖面平整,岩石无破碎,减少了裂隙,这样可以大大减少超欠挖量。

据有关资料统计,光面爆破与普通爆破相比,超挖量由原来的15%~20%降低到4%~7%,不但减少出碴量,而且还很大程度的减少了支护的工作量,从而降低的成本,加快了施工进度。

根据公路隧道“新奥法”施工的需要和工程地质条件,结合施工现场实际情况,我标段的四座隧道中的Ⅲ、Ⅳ级围岩决定采用光面爆破施工。

三、光面爆破方案的确定目前,大断面隧道光面爆破施工有2种方法:一是预留光爆层法;二是全断面一次性开挖法。

根据施工现场的实际条件及围岩情况,本段隧道采用全断面一次性开挖法。

四、台阶法(Ⅳ级围岩)光面爆破设计方案(结合前文内容)1.光面爆破不偶合系数、装药直径公式:/k i D d d == 式中 D 一不偶合系数; dk —炮眼直径,mm; di —炸药直径,mm;a —爆生气体分子余容系数; P —爆生气体初始压力;cσ—岩石的三轴抗压强度;r —绝热指数,;在实际操作过程中,对于周边眼的药卷,我们采取将标准φ32mm 的2号岩石乳化炸药沿轴线对半切(相当于φ20mm )。

这个数值与理论计算值相近,则实际周边眼不偶合系数D=dk/di =42/20=2.1,符合规范中软岩装药不耦合系数D=2.0-2.5的要求。

隧道爆破方案

隧道爆破方案

目录一、工程概况 (1)1.工程简介 (1)2.重要工程数量 (2)3.重要技术标准 (2)二、钻爆设计控制要点 (3)三、减震措施 (3)四、重要部位爆破设计 (4)1.Ⅲ级围岩采用上下台阶法钻爆施工 (4)2.Ⅳ级围岩采用台阶法弧形导坑留核心土钻爆施工 (6)3.V级围岩CRD法钻爆施工 (12)4.V级围岩紧急停车带采用双侧壁导坑法开挖 (15)五、爆破施工程序及作业标准 (20)六、爆破震动监测 (23)七、施工中异常现象应对措施 (24)隧道爆破施工方案一、工程概况1.工程简介⑴宝鸡至坪坎高速公路项目位于陕西西部的宝鸡市南部秦岭山区, 路线起于银洞峡隧道进口, 在神沙河设连续钢构桥后折向南设15.5公里专长隧道翻越秦岭, 沿车道河河谷向南, 经岩湾、田坝, 止于凤县坪坎, 向南与拟建定汉线坪坎至汉中(石门)公路衔接。

路线全长42.558公里。

其中秦岭专长隧道建筑规模(双向六车道)目前居世界第一, 是全线控制性工程, 我标段承建此隧道出口段施工, 设计为分离式隧道。

左线长3735m, 设计纵坡1.65%, 起讫里程为ZK164+265~ZK168+000;右线长3790m, 设计纵坡 1.65%, 起讫里程为K164+350~K168+140,设计净空为1400cm*500cm, 洞门形式均采用端墙式。

⑵地形、地貌及工程地质本标段跨越秦岭中山地貌区(K164+265~K168+150)和车道河河谷(K168+150-k168+217)。

中山地貌区属于花岗岩侵蚀地貌, 山高坡陡, 高耸的山峰与深切峡谷相间出现, 地形起伏大, “V”型谷发育, 相对高差一般在400m以上, 河流纵比降大, 河流冲积物重要为漂卵石, 两岸谷坡上基岩裸露;车道河属汉江一级支流褒河的支流。

发源于秦岭南坡, 由北向南流经岩湾、核桃坝、坪坎, 在留坝县江西营北侧汇入褒河。

车道河两岸谷坡较缓, 呈阶梯状, 谷坡上发育高阶地, 谷底宽阔平坦, 发育一级阶地, 冲积物为漂卵石和砂砾土, 厚度不超过15m。

钻爆法施工组织设计

钻爆法施工组织设计

因为铰接式自卸汽车最高设计
车速比整体车架式自卸汽车同吨位 时一般要低10~20km/h,载重量 与自重比值上Stare 1491型自卸汽 车的优势,特别是VolvoA25C车长 长了近 500mm,这对隧道的断面 宽度来讲,是十分不利的。单台购 置价相比,又是1:4.77的关系。
另一方面的问题,则是排气污染 问题。洞内作业的机械,应毫不犹豫 地装设废气净化装置,以便尽一切努 力保护洞内作业人员的身体健康。如 果短时间内实在无法解决加装废气净 化装置的话,应加大洞内通风量作为 补偿。其计算参数为:
2、复合式衬砌由一次支护和二次模筑衬砌 组成,两层之间设防水隔离层。
3、一次支护主要由喷射混凝土、钢筋网、 钢拱架(工字钢、网构钢拱架)锚杆组成,一 次支护承受全部地层荷载,二次模筑衬砌是承 受流变荷载和安全储备,其厚度基本不随地层 的变化而改变。如铁路隧道一般都是30厘米厚。
4、及时进行初喷是改善围岩受力的重 要措施,然后复喷。
钻爆法施工组织设计
一、钻爆法施工必须遵守的四项原则
1、光面爆破 2、喷锚支护 3、信息化施工监控量测与信息反馈 4、动态管理:做到及时支护、及时量 测、及时反馈、及时修正。
二、钻爆法施工必备的条件
1、机械设备必须配套形成作业 线,隧道的安全、优质、快速施工 的关键在于机械设备的投入,投入 量起码是工程造价的25%左右,机 械投入量所产生的产值一般为5~10 倍机械的投入造价。
1、硬岩首先用全断面法开挖
2、软弱岩用正台阶法开挖
3、断层软弱带大断面可用中隔 壁法(CD)法、中隔壁交叉临时仰 拱法(CRD法)、眼镜工法等, 半 断面法禁止使用。
4、稳定工作面可用小导管超前注 浆法
六、施工过程中的四条主作业线

隧道钻爆法施工案例

隧道钻爆法施工案例

隧道钻爆法施工案例
隧道钻爆法施工是一种常见的隧道施工方法,以下是一个隧道钻爆法施工的案例:
工程概况:某高速公路隧道,全长 2000 米,隧道穿越山体,地质条件复杂,有断层、溶洞等不良地质。

施工方案:采用钻爆法施工,先进行洞口开挖和支护,然后进行隧道主体的开挖和支护。

施工工艺:
钻孔:采用钻孔机在隧道岩壁上钻孔,钻孔深度和间距根据设计要求确定。

装药:将炸药装入钻好的孔中,根据地质条件和爆破要求确定炸药的种类和用量。

爆破:在装药完成后,进行爆破作业,爆破产生的冲击波和振动会将隧道岩壁破碎。

通风:爆破后,需要进行通风,将隧道内的烟尘和有害气体排出。

出渣:通风后,使用挖掘机等设备将爆破产生的石渣清理出隧道。

支护:在隧道主体开挖完成后,进行初期支护和二次衬砌,以确保隧道的稳定性。

施工质量控制:
严格按照设计要求进行钻孔和装药,确保爆破效果符合要求。

加强通风管理,确保隧道内的空气质量符合要求。

严格控制出渣量和出渣速度,避免对隧道周围环境造成影响。

加强支护施工质量控制,确保隧道的稳定性和安全性。

通过采用钻爆法施工,该隧道顺利完成了施工任务,并且在施工过程中没有发生安全事故,保证了施工质量和进度。

隧洞钻爆设计

隧洞钻爆设计

附件一. 全断面光面爆破开挖钻爆设计1.主要钻爆参数选择1.1每循环掘进钻眼深度L: 对于二长浅粒岩和绿泥石片岩L=4m,对于节理裂隙密集发育的围岩L=2.0m。

1.2炮眼直径d:采用液压钻孔台车钻眼,炮眼直径d=50mm。

1.3周边光爆眼间距E: E=(8-12)d,岩石坚硬时取最大值。

对于微风化的含岩块二长浅粒岩和绿泥石片岩E=593 mm,对于节理裂隙密集发育的围岩E=509 mm。

1.4光爆层厚度W:W=E(0.7-1.0)。

对于微风化的含岩块二长浅粒岩和绿泥石片岩W=650 mm, 对于节理裂隙密集发育的围岩W=600 mm。

1.5周边光爆眼装药集中密度q:采用Φ32二号岩石或二号抗水硝铵炸药,对于裂隙水发育的炮孔采用Φ32岩石乳化炸药。

微风化二长浅粒岩,取q=300g/m;微风化绿泥石片岩, 取q=220g/m; 节理裂隙密集发育的围岩, 取q=150g/m。

1.6周边光爆装药不耦合系数K:K=炮眼直径/药卷直径=50/32=1.6。

2.隧洞钻爆设计根据以上参数选择,进行全断面光面爆破钻孔设计,对于二长浅粒岩和绿泥石片岩钻爆设计见“图1”及“图2”,两类岩石炮孔布置图相同,钻爆参数不同。

对于节理裂隙密集发育的围岩钻爆设计见“图3”和“图4”钻爆参数参见相应的表格。

雷管段别 102中空眼炮孔布置图掏槽眼掏槽眼布置图图1 二长浅粒岩和绿泥石片岩全断面光面爆破钻爆设计图周边光爆眼装药结构图内圈眼装药结构图连续装药结构图炮泥导爆管竹片堵塞段长度4.1Φ32药卷4.0炮泥炮泥导爆管导爆管堵塞长度竹片堵塞段眼深Φ40药卷Φ40药卷导爆索间隔装药段非电导爆雷管Φ40药卷非电导爆雷管导爆索Φ32药卷间隔装药段装药段非电导爆雷管图2 二长浅粒岩和绿泥石片岩 全断面光面爆破装药结构图二长浅粒岩钻爆参数表绿泥石片岩钻爆参数表1.图中尺寸均以米计。

2.掏槽形式为中空直眼掏槽,中空眼直径为Ф102mm,其它炮眼直径为Ф50mm,采用液压钻孔台车钻眼。

隧道常用爆破全参数及爆破设计

隧道常用爆破全参数及爆破设计

一、单位耗药量单位耗药量(一)单位耗药量(二)炸药换算系数e值单位耗药量(四)单位耗药量K及其它参数(五)二、隧道爆破设计爆破设计(一)、规范规定《铁路隧道施工规范》(TB10204-2002)规定:光面爆破参数预裂爆破参数说明:1、上表所列参数适用于炮眼深度1.0~3.5m ,炮眼直径40~50mm ,药卷直径20~25mm ;2、当断面较小或围岩软弱、破碎或对曲线、折线开挖成形要求较高时,周边眼间距E 应取小值;3、周边眼抵抗线W 值在一般情况下均应大于周边眼间距E 值。

软岩在取较小E 值时,W 值应适当增大;4、E/W :软岩取小值,硬岩及断面小时取大值;5、表列装药集中度q 为2号硝铵炸药,选用其它类型炸药时,应修正。

换算系数:⎪⎭⎫ ⎝⎛+=换算炸药爆力号硝铵炸药爆力换算炸药猛度号硝铵炸药猛度2221K (二)、爆破器材的选择⑴炸药:一般情况下,多采用二号硝铵炸药,洞内有水时应采用乳化油炸药、水胶炸药或其他防水性炸药;有瓦斯的隧道内,应采用煤矿安全炸药(如2、3号煤矿炸药,2、3号煤矿抗水炸药,煤矿水胶炸药,煤矿乳化油炸药,被筒炸药,当量炸药,离子交换炸药);在软弱围岩周边爆破时,选择低爆速光爆专用炸药,如二号低爆速炸药。

隧道常用炸药国产光面爆破专用炸药⑵雷管:在无瓦斯隧道内,可首先考虑采用非电毫秒雷管或半秒雷管;在有瓦斯的隧道内,采用煤矿瞬发电雷管或毫秒延期电雷管。

雷管的段间隔时间差应考虑控制在100ms左右,在软弱围岩中爆破,为避免振动强度的迭加作用,雷管最好跳段使用,特别是1~5段的雷管。

大断面隧道爆破,至少要求有1~15段雷管。

(三)、参数确定一个φ32*25cm 药卷用药量0.195kg 一个φ25*25cm 药卷用药量0.125kg 一个φ20*25cm 药卷用药量0.0875kg 炸药密度0.85~1.05g/cm 3 光面爆破岩石饱和抗压强度39.7~46.25MPa ,属于中硬岩 规范参数装药不偶和系数D (炮眼直径Rh/药卷直径Rc )1.5~2,宜取2.0 周边眼间距E 取45~60cm最小抵抗线V,应大于周边眼间距,取60~75cm 相对距E/V 取0.8~1周边眼装药集中度q (kg/m )0.2~0.3 眼深:全断面3~3.5m ,台阶法1~3m单位用药:全断面0.9~2kg/m3,台阶法0.4~0.8kg/m3 炮眼直径取43mm ,考虑油压凿岩机炮眼直径42~46mm 时,V =0.5~0.7,q =0.28~0.38 炮眼直径34~38mm 时,V =0.4~0.6,q =0.14~0.21 中空孔到装药眼间距λ:岩层系数,中硬岩以上取1.9~2.2:中空孔径(mm ) d :装药眼径(mm )掏槽炮眼间距不小于20cm ,掏槽炮眼比辅助眼深10cm 周边眼炮泥堵塞长度不小于20cm 全断面开挖:222dd d A ++⎪⎪⎭⎫ ⎝⎛++=ϕϕϕλπϕ断面尺寸:72.97m2,宽11m ,高8m 1.3循环进尺的选定在软弱围岩中,宜采用0.8~1.5m ,一般取1.1m 。

铁路隧道爆破专项施工方案

铁路隧道爆破专项施工方案

铁路隧道爆破专项施工方案隧道爆破施工方案一、工程概况本施工方案针对一条铁路隧道爆破施工工程进行设计,隧道总长1000米,断面尺寸为6米×6米,隧道主要由砂岩组成,其中含有少量的硬破碎带。

本施工方案旨在通过爆破施工方式,达到开挖隧道的目的。

二、施工准备1.施工区划划定:将施工区域划分为爆破区、清理区和安全区三个区域,确保施工过程中人员的安全。

2.清理区准备:设置专门的清理区,将爆破产生的碎石等物料及时清理,以保证隧道畅通。

3.安全措施:在施工现场设置警示标志,并配备专业的爆破工具和设备,确保人员的施工安全。

三、方案实施1.爆破孔设计:根据隧道的尺寸和岩性,合理设计爆破孔的位置和数量。

常用的爆破孔布置方式为正交网状孔布置。

爆破孔的直径为80毫米,间距为1.5米。

2.钻孔施工:采用钻石钻头进行钻孔,钻孔深度为8米。

钻孔完成后,将孔口清理干净,并进行测量,以保证孔深的准确性。

3.装药与装载:在爆破孔中放入爆破药品,使用专门的装药管进行装药。

每个爆破孔装药量为1.2kg。

装药后,进行装载,使用钢筒将装药管放入孔中,并用砂浆将孔口封堵。

4.起爆:在装药完成后,待所有爆破孔都装载完成后,进行起爆。

起爆采用电起爆方式,并设置合理的爆炸延时时间,以实现同步起爆。

5.清理炮口:爆破后,将隧道内的碎石和残留的炸药清理出来,确保隧道畅通,以便后续开挖施工。

四、安全控制1.施工现场安全:施工现场周边设置警示标志,划定安全区,严禁无关人员进入施工现场,在工人之间设置警戒线,确保施工期间的人员安全。

2.装药安全:装药时必须佩戴防爆眼镜和手套,并进行良好的防护。

在装药完成后,装药工具和装药管必须妥善存放,防止发生意外。

3.爆破起爆安全:起爆时严格按照操作规程进行,保证安全起爆。

起爆前必须确认无人员在爆破区域内,以免造成人员伤亡。

五、施工效果评估在爆破完成后,对隧道进行观察和测量。

观察爆破区域的情况,检查隧道内是否有裂缝和滑坡等现象;测量隧道的尺寸和地形,以评估爆破效果。

光面爆破专项施工方案

光面爆破专项施工方案

爆破施工方案1:隧洞开挖采取钻孔、光面爆破工艺,炸药采用二号岩石或二号抗水硝铵炸药。

导火索、8#工业雷管、导爆管、毫秒雷管组成爆破系统。

药卷采取Ф32和Ф25两种。

钻孔采用YT23(7655)或YT28型气腿式风动钻凿岩机。

2:钻爆设计钻爆设计内容包括以下各点:①炮眼:分为掏槽眼、辅助眼、周边眼、周边眼又分为顶眼、帮眼、底眼。

②炮眼的布置、数目、深度和角度、装药量和装药结构、起爆方法和爆破顺序等。

(3)、炮眼的布置总则:本工程根据围岩的类型,掏槽眼初选为桶形掏槽和楔形掏槽两种形式。

在今后再经过施工实践,根据爆破效果调整改进,定出符合具体情况的掏槽形式。

掏槽眼布置在断面中下部合适的位置。

辅助眼交错均匀地布置在周边眼和掏槽眼之间,眼深较掏槽眼浅150~200mm 并垂直于开挖面,力求爆破下的渣块大小适合装渣的要求。

辅助眼采用环行布置形式,抵抗线均应小于同一环行炮眼间距,常为炮眼间距的80~100%。

周边眼沿设计开挖轮廓线均匀的布置,深度与辅助眼的眼底在同一垂直面上,保证开挖面平整。

周边眼的布置原则是周边眼的间距为炮眼直径的8~18倍。

炮眼布置同时应遵循以下几点:a、炮眼方向在一个临空面的情况下最小抵抗线不与炮眼重合;b、炮眼垂直层理面;c、眼间距基本匀称的原则。

d、炮眼的数目炮眼数根据岩石强度、地质构造、自由面数、断面尺寸、炸药性质、炮眼布置、炮眼直径、炮眼深度等确定,经试验调整后决定。

初步确定炮眼数目可按下述方法进行:N=qs/γη式中:q---单位用药量S---坑道断面面积γ每米长度炸药的重量η---炮眼装药系数,一般为0.60--0.75(4)、炮眼深度和角度本工程结合投入的钻孔设备、隧洞的断面尺寸、围岩状况、进度要求等,结合经验初步选定掏槽眼炮眼深度为:Ⅱ、Ⅲ类围岩2.7M,Ⅳ类围岩为2.2M,Ⅴ类围岩1.8M。

辅助眼、周边眼深度较掏槽眼浅0.2M左右。

掏槽眼、辅助眼炮眼角度以垂直掌子面为主,周边眼布置在距开挖断面边缘0.2M左右处,眼底朝轮廓外方向稍稍倾斜,当穿过坚硬岩石时,眼底可达到或稍稍超出轮廓线位置,岩石中等坚硬时,眼底距轮廓线约0.1M左右,在松软岩体中可不倾斜。

隧道常用爆破参数及爆破设计

隧道常用爆破参数及爆破设计

一、单位耗药量单位耗药量(一)单位耗药量(二)炸药换算系数e值单位耗药量(四)单位耗药量K及其它参数(五)二、隧道爆破设计爆破设计(一)、规范规定《铁路隧道施工规范》(TB10204-2002)规定:光面爆破参数预裂爆破参数说明:1、上表所列参数适用于炮眼深度1.0~3.5m ,炮眼直径40~50mm ,药卷直径20~25mm ;2、当断面较小或围岩软弱、破碎或对曲线、折线开挖成形要求较高时,周边眼间距E 应取小值;3、周边眼抵抗线W 值在一般情况下均应大于周边眼间距E 值。

软岩在取较小E 值时,W 值应适当增大;4、E/W :软岩取小值,硬岩及断面小时取大值;5、表列装药集中度q 为2号硝铵炸药,选用其它类型炸药时,应修正。

换算系数:⎪⎭⎫ ⎝⎛+=换算炸药爆力号硝铵炸药爆力换算炸药猛度号硝铵炸药猛度2221K (二)、爆破器材的选择⑴炸药:一般情况下,多采用二号硝铵炸药,洞内有水时应采用乳化油炸药、水胶炸药或其他防水性炸药;有瓦斯的隧道内,应采用煤矿安全炸药(如2、3号煤矿炸药,2、3号煤矿抗水炸药,煤矿水胶炸药,煤矿乳化油炸药,被筒炸药,当量炸药,离子交换炸药);在软弱围岩周边爆破时,选择低爆速光爆专用炸药,如二号低爆速炸药。

隧道常用炸药国产光面爆破专用炸药⑵雷管:在无瓦斯隧道内,可首先考虑采用非电毫秒雷管或半秒雷管;在有瓦斯的隧道内,采用煤矿瞬发电雷管或毫秒延期电雷管。

雷管的段间隔时间差应考虑控制在100ms左右,在软弱围岩中爆破,为避免振动强度的迭加作用,雷管最好跳段使用,特别是1~5段的雷管。

大断面隧道爆破,至少要求有1~15段雷管。

(三)、参数确定一个φ32*25cm 药卷用药量0.195kg 一个φ25*25cm 药卷用药量0.125kg 一个φ20*25cm 药卷用药量0.0875kg 炸药密度0.85~1.05g/cm 3 光面爆破岩石饱和抗压强度39.7~46.25MPa ,属于中硬岩 规范参数装药不偶和系数D (炮眼直径Rh/药卷直径Rc )1.5~2,宜取2.0 周边眼间距E 取45~60cm最小抵抗线V,应大于周边眼间距,取60~75cm 相对距E/V 取0.8~1周边眼装药集中度q (kg/m )0.2~0.3 眼深:全断面3~3.5m ,台阶法1~3m单位用药:全断面0.9~2kg/m3,台阶法0.4~0.8kg/m3 炮眼直径取43mm ,考虑油压凿岩机炮眼直径42~46mm 时,V =0.5~0.7,q =0.28~0.38 炮眼直径34~38mm 时,V =0.4~0.6,q =0.14~0.21 中空孔到装药眼间距λ:岩层系数,中硬岩以上取1.9~2.2:中空孔径(mm ) d :装药眼径(mm )掏槽炮眼间距不小于20cm ,掏槽炮眼比辅助眼深10cm 周边眼炮泥堵塞长度不小于20cm 全断面开挖:222dd d A ++⎪⎪⎭⎫ ⎝⎛++=ϕϕϕλπϕ断面尺寸:72.97m2,宽11m ,高8m 1.3循环进尺的选定在软弱围岩中,宜采用0.8~1.5m ,一般取1.1m 。

隧道爆破设计

隧道爆破设计

隧道爆破设计(1)爆破设计的原则尽量提高炸药能量利用率,以减少炸药用量。

采用光面爆破,要求炮眼痕迹残留率硬岩±90%;中硬岩±80%;软岩三60%。

减少对围岩的破坏,控制好开挖轮廓。

合理设计起爆顺序,提高光爆效果。

在保证安全的前提下,尽可能提高掘进速度、缩短工期。

掏槽及底板眼按抛掷爆破设计,采用楔形掏槽法,及充分利用楔形掏槽的易抛掷来减轻震动,保持围岩稳定。

其它炮眼采用浅孔微振动控制爆破,在保证爆破效果的前提下,尽量减少炮眼的炸药用量。

采用微差爆破,减少对围岩的扰动及降低振动强度,采取光面爆破。

(2)爆破参数的选定在进行钻爆参数设计前,先用工程模拟法初选爆破参数,再在洞外做单段爆破漏斗试验及三眼爆破成缝试验,通过现场的试验确定有关爆破参数。

结合隧道工程地质情况及类似工程施工经验进行爆破设计。

光面爆破参数见表3-1。

3)爆破器材的选定炸药选用2号岩石硝铵炸药,其规格为©25X200、©32X200两种。

有水地段选用乳化油炸药。

采用©32直径药卷,周边眼采用高效能控制爆破劈裂管耦合连续装药,其余眼采用集中装药,炮眼堵塞采用水压爆破技术堵塞,非电毫秒雷管起爆,火雷管引爆。

施工中根据地质变化不断调整爆破参数,以取得良好的光爆效果。

(4)钻爆作业施工工艺钻爆作业工艺框图见图3-1o图3-1光面钻爆作业施工工艺框图(5)钻爆施工①开挖准备风、水、电就绪,施工人员、机具准备就位。

②测量放线洞内导线控制网测量采用全站仪进行。

施工测量采用光电测距仪配水准仪进行。

测量作业由专业人员实施,每排炮后进行设计规格线测放,并根据爆破设计参数点布孔位。

周边轮廓线的放样允许误差应控制在土2cm以内。

断面测量滞后开挖面10〜15m,按5m间距进行,每个月进行一次洞轴线及坡度的全面检查、复核,确保测量控制工序质量。

③钻孔作业全断面法施工时,使用凿岩台车钻孔。

上下台阶法施工时,上台阶采用风钻人工钻孔,下台阶采用凿岩台车钻孔。

隧道工程爆破设计方案

隧道工程爆破设计方案

隧道工程爆破设计方案一、工程概况表1 隧道工程统计二、地质概况本段隧道工程沿线地质复杂,不良地质发育,尤其是岩溶地质发育,哪嗙隧道洞身处于岩溶水平循环带内,可溶岩与非可溶岩接触带突泥、突水,地表失水,按I级风险隧道管理;同时煤层瓦斯及采空区、顺层、危岩落石众多,高山、竹林山、甲界坡、苗天隧道属高瓦斯或具有瓦斯突出隧道。

地层岩性:沿线地层出露较为完全,自前震旦系至第四系地层皆有分布。

岩性以灰岩、白云岩类可溶岩为主,相间分布板岩、泥岩、砂岩、页岩及煤系地层,局部地段有玄武岩分布。

地质构造:区域范围内地质构造复杂,构造线密集,断层发育,以近SN和NE向断层为主。

水文地质特征:沿线通过长江水系上游地带,线路通过的主要河流有洛北河、南明河等。

不良地质:沿线不良地质主要有岩溶、煤层瓦斯和采空区、滑坡、危岩落石、岩堆、泥石流、顺层、软质岩风化剥落等。

特殊岩土:特殊岩土有人工弃土(碴)、软土及松软土、膨胀土、红黏土等。

根据《中国地震动参数区划图》(GB18306-2001,1/400万),测区地震动峰值加速度0.05g,地震动反应谱特征周期为0.35s。

三、光面爆破理论隧道光面爆破采取微震动控制爆破技术。

为控制超挖,周边采用光面爆破方法。

隧道光面爆破要求周边眼爆破既能将岩石爆落下来,又能形成规整的轮廓,尽可能保留半孔痕迹,减小爆破对围岩的扰动,减少超挖量。

装药集中度(q)、最小抵抗线(W)直接影响周边岩石的爆落效果;“规整轮廓”主要与炮眼间距(E)、炮眼密集系数(m=E/W)和最小抵抗线有关(W);半孔率主要与不耦合系数(D=d炮眼/d炸药)有关。

因此,影响隧道光面爆破效果的主要参数应是:炮眼间距(E)、炮眼密集系数(m)、装药集中度(q)、最小抵抗线(W)、不耦合系数(D)。

而它们之间又是相互联系的,只有这些参数整体上处在某一正确的范围内,才能达到理想的光爆效果。

影响光面爆破效果的因素有很多,主要有围岩地质条件、炸药特性、断面形状和大小、钻孔质量等。

隧洞爆破施工专项方案

隧洞爆破施工专项方案

XXX隧洞钻爆施工专项方案一、编制依据:1、XXX隧洞工程施工图设计2、《水工建筑物地下开挖工程施工规范》(SL 365—2007)3、《水利水电工程锚喷支护技术规范》(SL 377—2007)4、《水利水电工程施工质量检验与评定规程》(SL 176—2007)5、《爆破安全规程实施手册》(人民交通出版社)二、编制原则1、坚持科学性、先进性、经济性、合理性与实用性相结合的原则。

2、整体推进,均衡生产,确保总工期的原则。

3、保持施组设计严肃性与动态控制相结合的原则.4、强化组织指挥,加强管理,保工期、保质量、保安全.5、优化资源配置,实行动态管理.6、文明施工,保护环境。

三、工程概况XX隧洞共0.5座。

(主洞长度XX米,支洞长度XX米)四、地质概况输水隧洞位于哈达岭所处的低山丘陵区,地表多为次生林覆盖,表层岩性为0~2。

50m坡残积的角砾,其下为侏罗系泥砂岩。

隧洞沿线均为侏罗系泥砂岩.地下水为基岩裂隙水,赋存于基岩裂隙中,水量分布不均一。

(1)岩体的风化特征岩体按风化程度可划分为全风化、强风化、弱风化,以弱风化岩体为主。

全风化岩体岩石的组织结构已完全破坏,分解呈土砂状。

强风化岩体岩石的组织结构大部分已破坏,小部分岩石已分解成土砂状,大部分岩石呈不连续的骨架或心石,除石英外,长石、云母等矿物已风化蚀变,锤击声哑,节理裂隙面呈褐色。

厚度为0。

30m~8.00m,强风化下限高程293.55m~296。

89m。

弱风化岩体钻探取芯呈碎块状和短柱状,局部可见长柱状,厚度大于23。

2m。

(2)地质构造隧洞出口走向110°的节理较发育,但岩石节理裂隙对隧洞成洞影响不大。

(3)岩体的渗透性隧洞洞身及出口处均为砂岩,出口岩体为弱透水性.(4)岩体的稳定性隧洞全部处在弱透水弱风化砂岩岩体内,初步围岩分类为Ⅲ类岩石,围岩整体稳定,质地坚硬,强度高,局部可能产生掉块。

施工中可不支护或局部锚杆或喷薄层砼。

其间可能有断层破碎带发育,可按Ⅳ类~Ⅴ类围岩处理,需在施工期间观察划定。

隧道钻爆施工方案

隧道钻爆施工方案

隧道钻爆施工方案隧道钻爆开挖采用硬质岩采用光面爆破技术,软质岩采用弱爆破开挖。

光面爆破是新奥法的第一要素,实施光面爆破可减弱对围岩的扰动,减小松动范围,使开挖轮廓圆顺;是保证本标段隧道工程质量、安全和进度的一个关键技术。

1 钻爆设计(1)钻爆设计理论在岩石爆破机理研究中,一般认为造成岩石破坏的原因是冲击波和爆生气体膨胀压力共同作用的结果。

但是关于爆炸冲击波和爆生气体准静态压力哪个起主要作用,目前仍存在着两种不同的观点。

一种观点认为冲击波的作用只表现在对形成初始径向裂纹起先导作用,而大量破碎岩石则是依靠爆生气体膨胀压力作用。

另一种观点则认为爆破过程中哪种载荷起主要作用取决于岩石的波阻抗,即高波阻抗岩石应力波起主要作用,低波阻抗岩石爆生气体起主要作用;对于均质岩体以应力波作用为主;而对于整体性不好,节理裂隙发育的岩体,以爆生气体为主。

炸药在炮孔中起爆后,岩石将发生如下破碎过程:(1)强大的冲击波压应力使炮孔周围岩石受压破碎,在瞬间形成压缩破碎和初始裂隙;(2)环向拉应力及应力波反射拉应力使岩石中的裂隙扩展,引起岩石进一步破裂,包括初始裂隙的扩展和二次裂隙的形成;(3)爆生气体膨胀作用使岩石中的裂隙贯穿形成破碎块度,碎胀体积增加,岩石成块或成片运动,形成爆堆及爆破漏斗。

岩石爆破过程在炮孔周围的空间上可分为下列三个区域:①.爆破近区,即强烈冲击区(流体力学区) 。

由于靠近炮孔周围的爆炸脉冲压力大大超过岩石的抗压强度,又因应力衰减速度很快,压力脉冲的能量消耗使得此区的岩石遭受粉碎性破坏。

爆破近区的范围不大于2-3倍的炮孔直径。

②.爆破中区(非线性过渡区) 。

爆破中区是岩石破碎的主要区域。

冲击波压力在该区靠近炮孔周围的部分超过岩石的强度,该处仍可发生岩--石的进一步破坏,但比爆破近区的破坏程度要轻微。

随着单位体积的能量密度降低,岩石破碎程度随应力波峰值的衰减而减弱。

瞬态应力场的应力波作用可分解为径向压应力和切向拉应力;切向拉应力虽然只有径向压应力的一半,但由于岩石的抗拉强度平均只有其抗压强度的1/16,所以仍可产生拉伸破坏,形成径向裂纹。

爆破设计

爆破设计

地下建筑施工课程作业作业一设计资料某隧道断面为圆形,直径为6m 。

经勘查,隧道穿过岩层为石英砂岩,抗压强度为100~150Mpa ,岩石致密坚硬,裂隙发育轻微,属难爆性岩体。

根据进度要求,循环掘进进尺不小于,要求采用光面爆破,试确定钻爆法开挖该断面的钻爆参数。

要求:确定参数的依据或公式;作出炮孔断面布置图(1/50),标定参数;画出炮孔(掏槽眼、辅助眼、周边眼)装药结构图; 爆破设计表设计过程该隧道采用光面爆破,开挖断面直径为6m ,断面面积为S=2m ,钻孔深度为3m,孔径为40mm ,炸药选用硝铵2#岩石炸药。

1)光面爆破参数1、周边孔间距:a=15d=600mm 。

2、炮孔密集系数m 和最小抵抗线w :由岩石抗压强度为100-150Mpa ,即2m ,查表取m=。

6008000.75a w mm m === 3、装药量1q 和装药不偶合系数k :由岩石坚固系数f 为10-15,取k=,1q =250g/m. 2)单位岩体炸药消耗量S F K K S K L f q 32118.33⎥⎦⎤⎢⎣⎡+-=η 式中:1L ――平均凿岩深度(m ),此处取1L =3m ;1K ――炮孔装药充填系数(%),由f=10~15,此处取;η--炮孔利用系数,取;2K ――等效炸药换算系数,2K =Q/Q 0=902/1000= ; Q 0 ――标准炸药的热能值(1000kcal/kg ); Q ――炸药释放的爆热(kcal/kg ),选用硝铵2#岩石炸药,其爆热为902Kj/Kg ;3K ――岩体裂隙率的修正系数,查表取;S F ――自由面数量,只有一个自由面,取1;f =13;将以上所有的参数带入 式中,计算出q =m 33)炮孔数量12N a a s =+岩体的性质属于中等可爆的,故查表得出1a =,2a =,由于是采用硝铵2号岩石炸药,且为光面爆破,故1a 增加2倍。

37.63 1.3628.27151.24152N =⨯+⨯=≈4)总装药量Q..Q q L S =q —炸药单耗量,L —炮孔深度,S —断面面积1.32328.27111.95Q kg =⨯⨯=5)掏槽方式由于岩石硬度f=10~15,较坚硬,选用螺旋形中空直眼掏槽,中空眼直径为100mm ,掏槽孔布置如图3所示。

高铁隧道光面爆破施工专项方案

高铁隧道光面爆破施工专项方案

合肥至福州铁路安徽段站前二标DK84+593.42革古山隧道光面爆破施工专项方案编制:复核:审核:中铁十三局合福铁路安徽段站前二标二分部二O一一年七月五日革古山隧道光面爆破施工专项方案1.编制依据(1)《合肥至福州铁路DK84+416.84~DK84+770革古山隧道设计图》(合福施图(隧)04);(2)《合肥至福州铁路双线隧道复合式衬砌施工图》(合福隧参01);(3)《合肥至福州铁路双线隧道辅助施工措施、防排水及施工方法施工图》(合福隧参04);(4)《民用爆炸物品安全管理条例》(2006.9.1);(5)《爆破安全规程》(GB6722-2003);(6)《高速铁路隧道工程施工技术指南》(铁建设【2010】241号);(7)《高速铁路隧道工程施工质量验收标准》(TB10753-2010);(8)隧道爆破现代技术,刘正雄等;中国铁道出版社。

2.适用范围本施工方案适用于合肥至福州铁路安徽段站前二标DK84+416.84~DK84+770革古山隧道暗洞段V级围岩光面爆破施工。

3.工程概况新建合福线合肥至福州高速铁路工程HFZQ-2标段革古山隧道全长353.16m,隧道分界里程分别为:DK84+416.84、DK84+770,位于居巢区银屏镇和无为县石涧镇的交界处。

DK84+444.84~DK84+686为暗洞,V级围岩。

(1)地形地貌:本隧道所通过的地层主要为剥蚀低山区,局部为低丘缓坡及丘间沟谷,地势起伏较小,自然坡度约为10º~25º,地表植被发育,多为自然山林。

(2)地层岩性:隧道表层为Q(el+dl)含砾粉质粘土,黄褐色硬塑,厚度为0.2~2m,进出口段下伏岩为S1ɡ砂质泥岩,全风化,黄褐色,岩芯呈土状,厚度为0~2m;洞身岩体松散,较破碎。

(3)水文地质:地下水为基岩裂隙潜水,较发育,环境水无化学侵蚀性,碳化环境等级T2。

在岩层破碎带及其影响带中,主要受大气降水及河水补给,以蒸发及人工开采方式排泄,局部以基岩裂隙潜水为主,局部具有承压性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

隧道光面爆破钻爆设计方案一工程概况xx隧道地处xx山脉中段,属中低山丘陵地貌。

区内地形起伏大,绝对高程为230~978m,相对高程200~600m。

由于构造格局及岩性的控制,山脉走向与构造走向近于一致,多呈北东走向,形成沟谷及山脊走向亦多呈北东走向,沟谷呈“V”字型,两侧山坡坡度为25°~45°,局部形成陡坡。

植被发育,森林覆盖率达60%以上,为双牌县主要林区之一,区内居民点零星分布。

隧道进出口端均有乡村便道与双牌~江村公路(碎石路面)相通,交通条件差。

隧道进口里程为D3K77+565,出口里程为D3K83+946,中心里程为全和进度要求,因此我院受铁三局委托,承担xx隧道D3K81+600~D3K83+946段的光面爆破咨询任务。

二工程地质条件(一)地层岩性、地质构造及地震(1)地层岩性隧道上覆第四系全新统冲洪积(Q4al+pl)、坡崩积(Q4dl+col)、坡残积(Q4dl+ell)粉质粘土、卵石土、碎块石土等;出露基岩为泥盆系中统跳马涧组(D2t)石英砂岩、粉砂岩夹页岩,下统(D1)石英砂岩、粉砂岩,奥陶系上统中组(O32)、下组(O31)浅变质石英砂岩、板岩。

现将段内岩性分述如下:1)粉质黏土(Q4al+pl):灰褐、褐黄、棕黄、棕红、紫红色,软~硬塑状。

含石英砂岩、粉砂岩、板岩质漂石、卵石、砾石。

厚约0~7m,属Ⅱ级普通土。

主要分布于沟谷、沟槽内。

2)卵石土(Q4al+pl):紫红、灰黄、褐灰等色,松散~中密,潮湿~饱和状。

卵石含量约60~70%,φ20~200mm,余为圆砾、漂石、碎石、块石及黏性土充填。

局部为漂石土,石质成分为石英砂岩质,磨圆度较好,分选性差。

厚约2~11m,属Ⅲ级硬土。

主要分布于沟谷、沟槽内。

3)块石土(Q4dl+col):棕红、紫红色,潮湿~稍湿,松散~中密,石质以石英砂岩、粉砂岩为主,块径为φ200~1500mm,厚4~20m,属Ⅳ级软石。

主要分布于隧道出口左侧80m 附近坡面。

4)粉质黏土(Q4dl+ell):灰褐、褐黄、棕黄、棕红、紫红色,硬塑状。

含石英砂岩、粉砂岩、板岩、灰岩质块石、碎石、角砾。

厚约0~2m,属Ⅱ级普通土。

广泛分布于测区坡面。

4-1)断层角砾(Fbr):岩性与断层两盘的地层有关,由于构造作用,岩体完整性差,基本上多呈碎石状、角砾状,松散~中密状,潮湿状,属Ⅲ级硬土。

粉砂质结构,钙质、铁质胶结;页岩紫红、灰白色,薄层状,质相对较软,出露者多为强风化(W3),厚0.30m左右。

强风化(W3)岩体破碎,质较软,厚0~4m左右,属Ⅳ级软石;弱风化(W2)属Ⅴ级次坚石,与下伏D1地层呈平行不整合接触。

据深孔钻探揭示:节理裂隙发育,裂隙偶见泥质充填及水蚀痕迹,具水平层理及小型交错层理。

6)石英砂岩、粉砂岩、细砂岩、含砾砂岩(D1):紫红、紫灰、浅灰色夹灰黄色,石英砂岩细粒~粗粒结构,厚~巨厚层状,质坚硬;粉砂岩薄~中厚层状,钙质胶结。

弱风化(W2)属Ⅴ级次坚石。

底部为黄褐、灰褐色花岗碎屑岩、含砾岩。

与下伏O32、O31地层呈角度不整合接触。

据深孔钻探揭示:中厚层状,具水平层理,加薄层泥岩。

7)浅变质石英砂岩、板岩(O32):浅变质石英砂岩灰、深灰、灰绿色,薄层~中层状,中厚~巨厚状,变质结构,节理发育。

砂质板岩、炭质板岩,质软,易风化,全风化(W4)原岩结构清晰,易击碎呈土夹碎石角砾状,属Ⅲ级硬土;强风化(W3)锤易击碎呈碎石、角砾状,锤击声沉闷,属Ⅳ级软石;弱风化(W2),锤击声脆,属Ⅳ级软石。

石英砂岩弱风化(W2),岩石坚硬,锤击声脆,属Ⅴ级次坚石。

与下伏O31呈整合接触。

据深孔钻探揭示:炭质板岩,薄层状,节(劈)理面平整光滑、质软、污手。

8)浅变质石英砂岩、板岩(O31):浅变质石英砂岩紫红、灰绿、深灰色、灰黑色,中厚~厚层状,变质结构,质坚硬;板岩深灰、灰黑、灰绿色,薄~中厚层状,板状构造,劈理发育,致密,质较软。

据钻探揭示强风化(W3)厚0~3m,属Ⅳ级软石;弱风化(W2)属Ⅴ级次坚石。

据深孔钻探揭示:层面偶夹有薄层炭质薄膜、污手。

(2)地质构造隧区处于xx华夏系构造带紫金山区中部,构造线方向为SN向至NNE方向,山脉与河流走向大致平行主要构造线方向。

区内褶皱主要为牟江口向斜。

主要断裂为平岭-东岭压扭性断裂(F34)。

现将区内主要的构造分述如下:1)褶皱牟江口向斜:属区域性向斜,与线路交于D3K79+400处,夹角约59°。

向斜轴延伸方向为N57°E,于区内呈倒转向斜,轴面倾向南东,倾角40°左右,地层为奥陶系上统中组(O32),下组(O31)浅变质石英砂岩、板岩。

NW翼主要岩层产状为:N50°~70°E/27°~80°SE;主要层理产状:N35~55°W/90°、N30°W /57°NE、N15°E/68°NW。

SE翼主要岩层产状为:N50°~65°E/45°~78°SE;主要节理产状:N45°W/90°、N45°W/38°NE。

据深孔钻探揭示:岩层倾角变化极大,从上至下岩层倾角由35°、30°变为75°、85°、65°,直立、45°、75°、40°、30°等,具有上下部倾角较平缓,中间倾角陡甚至直立,挤压褶皱明显的特点,如孔深108~137m及202~205m段,岩芯为半边砂岩半边炭质板岩,岩层倾角近似直立,有倒转趋势。

2)断裂个别地段地层陡立或出现牵引褶皱。

上升盘层理产状盘层理产状N8~45°E/9~57°SE。

(3)地震动参数区划根据国家地震局《中国地震动峰值加速度区划图》(1/400万GB18306~2001图A1)该段地震动峰值加速度<0.05g。

(二)不良地质现象及特殊岩土测区内未见特殊岩土分布。

(1)围岩岩爆及变形预测该隧道在DK80+590~DK82+220段埋深在500~643m,围岩由石英砂岩、炭质板岩构成;有产生隧道变形的可能,施工过程中岩层将产生剥落和发生岩爆,预测会发生中等岩爆。

(2)有害气体测试该段隧道围岩由浅变质石英砂岩、炭质板岩构成。

炭质板岩节理裂隙中有瓦斯及有害气体溢出,预测隧道甲烷相对涌出量0.00067m3/T.d,属低沼气溢出型。

当瓦斯浓度达5~16%时有爆炸危险,H2S浓度>0.00066%及SO2浓度0.0007%时对人体有伤害危险。

(3)发射性特征经自然伽玛测井测定,该孔岩层的自然伽玛放射性强度在105~217API,平均为161API,在隧道施工时,对人体无放射性伤害。

(4)井温隧道内温度23.3~24.5℃,地温梯度1.25~1.7℃/100m,属正常地温范围。

三光面爆破理论隧道光面爆破采取微振动控制爆破技术。

为控制超挖,周边采用光面爆破方法。

隧道光面爆破要求周边眼爆破既能将岩石爆落下来,又能形成规整的轮廓,尽可能保留半孔痕迹,减小爆破对围岩的扰动,减少超挖量。

装药集中度(q)、最小抵抗线(W)直接影响周边岩石的爆落效果;“规整轮廓”主要与炮眼间距(E)、炮眼密集系数(m=E/W)和最小抵抗线有关(W);半孔率主要与不耦合系数(D=d炮眼/d炸药)有关。

因此,影响隧道光面爆破效果的主要参数应是:炮眼间距(E)、炮眼密集系数(m)、装药集中度(q)、最小抵抗线(W)、不耦合系数(D)。

而它们之间又是相互联系的,只有这些参数整体上处在某一正确的范围内,才能达到理想的光爆效果。

影响光面爆破效果的因素有很多,主要有围岩地质条件、炸药特性、断面形状和大小、钻孔质量等。

其中岩地质条件和钻孔质量是最主要的影响因素。

q=0.04~0.4(kg/m)具体计算设计方法有:工程类比法、半经验半公式法、理论计算法。

四xx隧道爆破施工概况隧道光面爆破原始条件表xx隧道爆破施工采用微振动控制爆破技术,周边孔采用光面爆破方法。

由于隧道围岩较差;同时隧道开工时间较短,爆破队伍对围岩性质认识不清,且对光面爆破技术的理解不到位、钻孔质量不高,造成了隧道光面爆破效果差,主要表现为半孔率低、光爆面不整齐、超欠挖严重等现象,最终影响到作为洛湛铁路控制工程的xx 隧道的施工安全及掘进速度。

五 光面爆破的主要参数(1)理论计算隧道爆破炮孔钻孔时由外侧向中间分别为周边孔、辅助孔和掏槽孔。

其中周边孔和辅根据光面爆破的理论数据,取周边孔孔距E =(10~15)d ,则炮眼间距E =(10~15)d =45~63cm ,周边孔沿开挖边线均匀布置。

装药集中度q=0.1~0.15(kg/m);不耦合系数D =1.5~2.0。

钻孔时,周边孔孔口边紧贴设计开挖边线,向外侧偏斜3~5°钻孔。

与周边孔紧邻的一排辅助眼决定了周边眼最小抵抗线(W ),一般要求W =1.2E =55~60cm ,辅助孔孔距设为0.7~0.8m ,排距为0.6~0.8m 。

具体见《炮孔布置示意图》。

爆破参数的理论计算 A. 全断面钻孔数量N根据泽波尔建议公式: N =a 1+a 2Sa 1、a 2——为岩体可爆程度确定的系数,经查a 1=20, a 2=1 则N =20+1×49=69,取N =65~75个 B. 周边孔平均炸药用量q p 根据公式:q p =aWL p (0.5~0.9)q q p ——周边孔平均炸药用量kg a ——周边孔孔距cm W ——周边孔最小抵抗线cm L p ——周边孔孔深q ——单位岩体耗药量kg/m 3 取a =0.5m W =50cm L p =3m q =1.1kg/m 3则q p=0.4~0.6kg。

(2)现场光面爆破试验效果分析通过对先期爆破效果的观察和钻工钻孔质量、孔网参数的了解以及与钻工交流了解情况,认为主要是钻孔质量不高、孔网参数不当影响了爆破效果,决定从这两方面入手,通过试验手段不断提高光面爆破效果。

通过与铁三局技术人员、爆破施工负责人的具体协商,决定光面爆破参数如下:隧道光面爆破试验参数表光爆孔外插角掏槽眼孔深在试爆前组织钻工培训,讲解光面爆破的理论知识及有关操作技巧,提升他们对光面爆破的认知水平。

通过五次试爆,隧道光面爆破效果有了一定程度的提高,半孔率控制在85%以上、超欠挖有所改善。

钻工不断掌握钻孔方法、提高钻孔精度,在后续的爆破施工过程中,光爆面的整齐度、超欠挖控制水平将越来越好。

(3)试验结论现场试验参数是在理论计算与先期爆破参数的基础上得出的数值,光面爆破效果较先期有所改善。

通过综合分析,将光面爆破参数确定如下:光面爆破参数表8 不耦合系数在后续爆破施工作业过程中,可参照上表确定光面爆破参数,参见附图。

相关文档
最新文档