高中数学椭圆的教学设计

高中数学椭圆的教学设计
高中数学椭圆的教学设计

选修1-1《2.1.1 椭圆及其标准方程》教学设计

一、指导思想与理论依据

1. 新课程标准理念——高中数学新课程标准指出:“强调本质,注意适度形式化。高中数学课程应该返璞归真,努力揭示数学概念、法则、结论的发展过程和本质,让学生体会蕴涵在其中的思想方法。”在“椭圆及其标准方程”的引入与推导中,遵循学生的认识规律,通过动手实践、观察思考、合作交流、应用反思等过程,让学生逐步将认识由感性上升到理性,把学生学习知识当作认识事物的过程来进行教学,努力揭示知识的发生、发展过程。

2. 建构主义理论——建构主义认为:知识不是通过教师讲授得到的,而是学习者在一定的情境即社会文化背景下,借助其他人(包括教师和学习伙伴)的帮助,充分利用各种学习资源(包括文字教材、音像资料、多媒体课件、软件工具以及从Internet上获取的各种教学信息等等),通过意义建构而获得。由于学习是在一定的情境下借助其他人的帮助即通过人际间的协作活动而实现的意义建构过程,因此建构主义学习理论认为“情境创设”、“协作学习”、“会话交流”是学习环境的基本要素。

二、教学背景分析

1. 教材分析

解析几何是数学一个重要的分支,它沟通了数学内数与形、代数与几何等最基本对象之间的联系。平面解析几何问题,就是借助建立适当的坐标系,科学合理地把几何问题代数化,运用代数的方法来研究几何问题。

在必修2中学生已初步掌握了解析几何研究问题的主要方法,并在平面直角坐标系中研究了直线和圆这两个基本的几何图形。在选修1中,教材利用三种圆锥曲线进一步深化如何利用代数方法研究几何问题。本章所研究的三种圆锥曲线都是重要的曲线,因为对这几种曲线研究的问题基本一致,方法相同,所以教材对这三种圆锥曲线的学习的重点放在了椭圆上,通过求椭圆的标准方程,是学生掌握推导出这一类轨迹方程的一般规律和化简的常用方法。因此,“椭圆及其标准方程”起到了承上启下的重要作用。

2. 学情分析

知识方面

(1)在必修2第二章里学生已经学习了直线和圆的方程,并初步熟悉了求曲线方程的一般方法和步骤,具备主动探究椭圆知识的基础;

(2)根据日常生活中的经验,学生对椭圆有了一定的认识,但仍没有上升到成为“概念”的水平,将感性认识理性化将会是对他们的一个挑战;

(3)在初中阶段没有涉及过含两个字母、两个根式的方程化简问题;

自身特征方面

(1)我所教授的班级是文科班,他们普遍对数学有一定的畏难情绪,但是他们思维比较活跃,对新鲜事物有一定的好奇心和探索欲望,对老师的讲授敢于质疑,有自己的想法和主见,愿意自己去探索是什么和为什么。并且具备了初步的探索能力;

(2)对数学概念的学习只是停留在表面,对概念的形成过程不重视,所以无法深刻理解;

(3)对于较复杂的计算问题,往往不知如何动手或懒得动手,计算能力较弱。但他们同时又乐于小组合作学习,学习气氛浓厚;

3. 教学方法及手段

新课程倡导学生自主学习,要求教师成为学生学习的引导者、组织者、合作者和促进者,使教学过程成为师生交流、积极互动、共同发展的过程。本节课采用让学生动手实践、自主探究、合作交流及教师启发引导的教学方法,并以多媒体手段辅助教学,使学生经历实践、观察、交流、分析、概括等理性思维的基本过程,切实改进学生的学习方式,使学生真正成为学习的主人。

根据本节内容的特点,教学过程中可充分发挥信息技术的作用,用几何画板的动态作图优势为学生的数学探究与数学思维提供支持。

三、教学目标及重难点

1. 教学目标

知识与技能

(1)掌握椭圆的定义;

(2)理解椭圆标准方程的推导过程,掌握椭圆标准方程的两种形式,会运用待定系数法求椭圆的标准方程;

过程与方法

(1)经历从具体情境中抽象出椭圆模型的过程,逐步提高学生的观察、分析、归纳、类比、概括能力;

(2)通过椭圆标准方程的推导,进一步掌握求曲线方程的一般方法——坐标法,并渗透数形结合、等价转化的数学思想方法。

情感、态度与价值观

在动手折纸得出椭圆的定义的学习过程中,培养学生思维的严密性;亲身经历椭圆标准方程的获得过程,感受数学的对称、简洁、和谐美,同时养成扎实严谨的学习习惯,增强学生战胜困难的意志品质和锲而不舍的钻研精神。

2. 教学重难点

重点:椭圆的定义和椭圆标准方程的两种形式

难点:椭圆的标准方程的建立和推导

四、教学流程示意图

五、教学过程设计

情景引入【折纸活动】

请拿出预先准备的圆形纸片(圆心为O,

F是圆内异于圆心的一点),将圆纸片翻折,

使翻折上去的圆弧通过F点,将折痕用笔画

上颜色,继续上述过程,绕圆心一周,观察

所得到的图形。

动画演示折纸的过程。

【提问】在我们的日常生活中,椭圆随处可

见。你能举出椭圆形的例子吗?

在肯定学生的回答后,老师加以补充。

比如:

①嫦娥二号绕月球运行的是椭圆形的轨道;

②斜着切起出来的四色卷是椭圆的;

③装饰品项链中间的饰物是椭圆形的;

由此可见,椭圆是我们生活中一种重要

的曲线。引出课题——椭圆及其标准方程。

动手实践,课前完

学生展示成果

学生踊跃回答

通过折纸游戏充

分调动学生的学

习兴趣,激发学生

的探究心理。为引

出新知做铺垫。

通过举例和展示

生活中椭圆形的

图片,让学生认识

到椭圆和日常生

活关系密切。

概念形成

让我们回到折纸活动中,看看得到的椭

圆究竟是怎样形成的。我们不妨来分析其中

的一个折叠过程。此时圆周上的点A与点F

重合,连结OA,交折痕BC于点M,那么

点M的轨迹是什么?(动画演示)

【提问】

也就是说,椭圆就是满足一定条件的点

M的轨迹,那么点M满足什么条件呢?

如学生有困难,可按如下提示铺设认

知阶梯:

1.如何用数学语言表达点A与定点F重

合?

2.线段垂直平分线上的点有什么几何性

质?

3.动点M与定点之间有什么关系?

【提问】

你能否给椭圆下个定义?

预设:与两个定点的距离之和等于定长的点

的轨迹叫做椭圆

教师引导,学生补充“平面内”。

【提问】要成为椭圆的定义,必须保证它足

够严谨,经得起推敲。那么这个常数是任意

实数吗?有什么限制条件吗?

回答:就是刚才得

到的椭圆

学生以组为单位,

合作探究,教师巡

视指导

点A与定点F2关

于折痕轴对称,折

痕即对称轴是线

段AF的垂直平分

线

到线段两个端点

距离相等

与两个定点O、F

的距离之和等于

半径OA

预设:点在定圆

通过分析动点

与定点的关

系,使学生经历椭

圆概念的生成和

完善过程,提高其

归纳概括能力,加

深对椭圆本质的

认识,培养思维的

概念形成

预设:学生可能会遇到障碍,此时教师提醒:如何体现点

在圆的内部?

【提问】继续深化问题:如果常数,常数

时,将是什么样的情形? 的内部即点到

圆心

的距离小

于圆的半径,也就

是在定义中需要加上“常数

”的限制。 常数,轨迹是线段

; 常数,轨迹

不存在;

严谨性

经概括总结后得到:【板书】 文字语言:平面内与两个定点的距离

之和等于定长(大于)的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。

数学语言:

概念深化

1. 已知、

是定点,

,动点

满足,则点M 的轨迹是

( )

A .椭圆 B. 直线 C.圆 D.线段 2.已知是两个定点,

,以

线段为一边画三角形,试问满足条件“

的周长为20”的顶点

的轨迹是

什么样的图形?为什么?

认真思考后回答

学生初步理解了

椭圆的概念,接下去还必须消化、巩固。怎么消化巩固?基于“双基”和学生的认知规律,这里设计了两道比较基础的题目(第1题是自编题,第2道选自课本 2.1.1练习B 第2题)。理解数学往往不可能一次完成,通过这两道题,学生来“做”数学,在“做”的过程中,认识到对椭圆定义的理解,一要抓住椭圆上的点所满足的条

件,二要注意定义中对“常数”的限定,从而进一步加深对椭圆概念的理解。

方程推导

我们已经知道,在直角坐标平面上直线

和圆都有相应的方程,从而就可以用代数的

方法来研究它们的几何性质、位置关系等。

那么如何求椭圆的方程呢?

【提问】求圆的方程的一般步骤是什么?

①建系设点:

【提问】根据简单和优化的原则,如何建立

平面直角坐标系?

以两定点、所在直线为轴,线

段的垂直平分线为轴,建立直角坐

标系(如图).设.,

为椭圆上的任意一点,则

、.又设与、的

距离的和等于.

②集合表示:

由椭圆定义得:动点M的集合为:

③坐标化:

用含有动点坐标的方程表示:

④化简:

预案:移项后两次平方法

引导学生观察椭圆图形和推导出的椭圆方

①建系设点

②集合表示

③坐标化

④化简

⑤证明(一般省

略)

回答

建立如图坐标系:

小组交流,尝试化

观察方程的特点,

得出标准方程。

通过对必修2中

坐标法研究曲线

性质方法的复习,

让学生认识到本

节课研究椭圆的

一般方法和思路。

在标准方程的推

导过程中,问题的

设问让学生认识

到在推导方程的

过程中进行等价

变形的重要性,培

养严谨的数学演

算习惯。提高运算

能力,养成不怕困

难的钻研精神;感

受数学的简洁美、

对称美

让学生对椭圆的两种标准方程有个清晰的认识,体会问题的本质所在,只是位置的不同,图形是一样的,为后面的应用做准备

本题是根据教学需要将课本的例2前置的一道题,目的是加深学生对椭圆的焦点位置与标准方程之间关系的理解,明确不是标准方程的要先将方程化为椭圆的标准方程,确定出

,再求出

c。从而进一步认清椭圆标准方程两种形式,再次突破本节课的重点——椭圆标准方程的两种形式。

初步应用例1根据下列条件,求椭圆的标准方程。

(1)两个焦点的坐标分别是(-3,0),

(3,0),椭圆上一点P与两焦点的

距离的和等于8;

(2)两个焦点的坐标分别是(0,-4),

(0,4),并且椭圆经过点

()

(3)已知椭圆的焦距是6,椭圆上的一

点到两焦点距离的和等于10

学生思考后回答

例1(1)(2)小

题是教材上的例

题,设计目的:一

是进一步理解椭

圆的焦点位置与

椭圆标准方程的

关系(注意焦点在

轴还是在轴

上),掌握运用待

定系数法求解椭

圆标准方程的方

法;二是加深学生

对椭圆定义的理

解与运用,学会运

用椭圆定义求解

椭圆标准方程。

(3)小题是对(1)

(2)的变式题,

其目的是对学生

进行分类讨论数

学思想的渗透,达到拓展知识、提高能力的目的。

阅读课本33页内容。阅读课本椭圆的生成方式有多种,课本33页给出了我们另外一种生成的方式,学生通过阅读这部分内容,再一次感受椭圆的形成过程。

目标检测1.已知椭圆的焦点坐标为和

,且经过点,求椭

圆的标准方程。(课本练习A 第1

题(5))

2.设是椭圆上一

点,是椭圆的焦点。如果点与

焦点的距离为4,那么点与焦点

的距离是多少?(课本练习 A

第2题的改编题)

学生独立完成

这两道题考查的

知识点和方法与

本节课所讲解的

内容完全一致,通

过这两个小题对

学生进行检测,一

方面可以加深学

生对本节课的理

解,同时也能够及

时反馈出学生对

本节课知识和方

法的落实情况,便

于及时调整。

归纳小结

【课堂总结】 1. 知识层面 2. 方法层面 3. 学习反思

学生小结归纳,不足的地方老师补充说明。

让学生自己小结,不仅仅总结知识,更重要的是总结数学思想方法,这样可帮助学生自行构建知识体系,理清知识脉络,养成良好的学习习惯。

作业布置

1.必做题:

课本练习A 1,练习A 1(1)(2)(3)(4) 2. 思考题: (2)已知F 1、F 2是椭圆的两个焦点,过F 1的直线交

椭圆于M 、N 两点,则的周长为 ; (3)若方程

表示焦点在轴上的椭圆,则

的取值范围是 .

分层次布置作业,帮助学生巩固所

学知识;为学有余力的学生留有进

一步探索、发展的

空间。

六、学习效果评价设计 1. 已知椭圆的焦点坐标为和

,且经过点,求椭圆的标

准方程。(课本

练习A 第1题(5))

2. 设是椭圆

上一点,是椭圆的焦点。如果点与焦点

的距离为4,那么点与焦点的距离是多少?(课本

练习A 第2题的改编题) 学习效果评价标准:

高中数学新课程创新教学设计案例等比数列

高中数学新课程创新教学设计案例等比数列 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

47 等比数列 教学内容分析 这节课是在等差数列的基础上,运用同样的研究方法和研究步骤,研究另一种特殊数列———等比数列.重点是等比数列的定义和通项公式的发现过程及应用,难点是应用. 教学目标 1. 熟练掌握等比数列的定义、通项公式等基本知识,并熟练加以运用. 2. 进一步培养学生的类比、推理、抽象、概括、归纳、猜想能力. 3. 感受等比数列丰富的现实背景,进一步培养学生对数学学习的积极情感. 任务分析 这节内容由于是在等差数列的基础上,运用同样的方法和步骤,研究类似的问题,学生接受起来较为容易,所以应多放手让学生思考,并注意运用类比思想,这样不仅有利于学生分清等差和等比数列的区别,而且可以锻炼学生从多角度、多层次分析和解决问题的能力.另外,与等差数列相比等比数列须要注意的细节较多,如没有零项、q≠0等,在教学中应注意加以比较. 教学设计 一、问题情景 在前面我们学习了等差数列,在现实生活中,我们还会遇到下面的特殊数列: 1. 在现实生活中,经常会遇到下面一类特殊数列.下图是某种细胞分裂的模型. 细胞分裂个数可以组成下面的数列: 1,2,4,8,… 2. 一种计算机病毒可以查找计算机中的地址薄,通过电子函件进行传播.如果把病毒制造者发送病毒称为第一轮,函件接收者发送病毒称为第二轮,依此类推.假设每一轮每一台计算机都感染20台计算机,那么,在不重复的情况下,这种病毒每一轮感染的计算机数构成的数列是 1,20,202,203,…

(3)除了单利,银行还有一种支付利息的方式———复利,即把前一期的利息和本金加在一起算作本金,再计算下一期的利息,也就是通常说的“利滚利”.按照复利计算本利和的公式是 本利和=本金×(1+利率)存期 例如,现在存入银行10000元钱,年利率是%,那么按照复利,5年内各年末得到的本利和分别是(计算时精确到小数点后2位): 表47-1 时间年初本金(元)年末本利和(元) 第1年10000 10000× 第2年10000×10000× 第3年10000×10000× 第4年10000×10000× 第5年10000×10000× 各年末的本利和(单位:元)组成了下面的数列: 10000×10198,10000×101982,10000×101983,10000×101984,10000×101985. 问题:回忆等差数列的研究方法,我们对这些数列应作如何研究 二、建立模型 结合等差数列的研究方法,引导学生运用从特殊到一般的思想方法分析和探究,发现这些数列的共同特点,从而归纳出等比数列的定义及符号表示: 一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列 叫作等比数列,这个常数叫作等比数列的公比,公比通常用字母q表示(q≠0).即 [问题] 1. q可以为0吗有没有既是等差,又是等比的数列 2. 运用类比的思想可以发现,等比数列的定义是把等差数列的定义中的“差”换成了“比”,同样,你能类比得出等比数列的通项公式吗如果能得出,试用以上例子加以检验. 对于2,引导学生运用类比的方法:等差数列通项公式为an=a1+(n-1)d,即a1与(n-1)个d的和,等比数列的通项公式应为an等于a1与(n-1)个q的乘积,即an=a1qn-1.上面的几个例子都满足通项公式. 3. 你如何论证上述公式的正确性.

高中数学《椭圆》教案设计

教案设计高中数学 《椭圆》 一、椭圆的定义 1、平面内与两定点F1,F2的距离的和等于常数2a(2a>|F1F2|)的点的轨迹叫做椭圆。 定点F1, F2叫做椭圆的焦点,|F1F2|叫做椭圆的焦距。 2、点集P=﹛M | |MF1| + |MF2|=2a,2a2a>|F1F2|﹜,其中两定点F1,F2叫做椭圆的焦点,两 焦点的距离叫做椭圆的焦距。 二、椭圆的标准方程 1、焦点在x轴上,焦点坐标(±c,0),焦距为2c。 2、焦点在y轴上,焦点坐标(0,±c),焦距为2c。 三、一般方程式 1、Ax2+By2=C 2、Ax2+By2=1 四、椭圆标准方程的求解方法 1、定义法 2、待定系数法 五、几种题型的讲解 1、共焦点 2、焦点三角形 3、与椭圆有关的的轨迹方程的求解 4、直线与椭圆关系 5、中点弦问题及点差法 例题1:过已知圆内的一个定点作圆C与已知圆相切,则圆心C的轨迹是()。 A.圆 B.椭圆 C.圆或椭圆 D.线段 例题2:如图,Rt△ABC中,|AB|=|AC|=1,以点C为一个焦点的椭圆,使这个椭圆的另一个焦点在AB边上,且这个椭圆过A,B两点,则这个椭圆的焦距长为。

例题3:求适合下列条件的椭圆的标准方程。 (1)、两个焦点的坐标分别是(-4,0),(0,-4),椭圆上任意一点p 到两焦点距离之和等于10; (2)、两个焦点的坐标分别为(0,-2),(0,2),并且椭圆经过 (23 -,25) (3)、焦点在y 轴上,且经过两个点(0,2),(1,0); (4)、经过点P(-23,1),Q(3,-2). 共焦点问题: 例题4:过点(-3,2)且与92x +142 =y 有相同焦点的椭圆的方程为 。 焦点三角形问题: 例题5:已知P 为椭圆174252 2=+y x 上的一点,F 1,F 2是椭圆的焦点,∠F 1PF 2=60°,求△F 1PF 2的面积。 与椭圆有关的的轨迹方程的求解问题: 例题6:已知圆922=+y x ,从这个圆上任意一点P 向x 轴作垂线段PP ′,点M 在PP ′上,并且 求点M 的轨迹。 直线与椭圆关系问题 例题7:已知椭圆的中心在原点,焦点在x 轴上,直线y=x+1与该椭圆交于点P 、Q ,且 0·=→ → OQ OP ,|PQ|=210 ,求椭圆的方程。 ' =→→MP PM 2

高中数学-选修2-1-椭圆题型大全-(1)

高中数学-选修2-1-椭圆题型大全-(1)

椭圆题 1、命题甲:动点P 到两点B A ,的距离之和);,0(2常数>=+a a PB PA 命题乙: P 的轨迹是以A 、B 为焦点的椭圆,则命题甲是命题乙的 ( ) A 、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分又不必要条件 2、已知1 F 、2 F 是两个定点,且4 2 1=F F ,若动点P 满足4 2 1 =+PF PF 则动点P 的轨迹是( ) A 、椭圆 B 、圆 C 、直线 D 、线段 3、已知1 F 、 2 F 是椭圆的两个焦点, P 是椭圆上的一个动点,如果延长1 F P 到Q ,使得2 PF PQ =,那么动点Q 的轨迹是 ( ) A 、椭圆 B 、圆 C 、直线 D 、点 4、已知1 F 、2 F 是平面α内的定点,并且) 0(22 1>=c c F F ,M 是α 内的动点,且a MF MF 221 =+,判断动点M 的轨迹. 5、椭圆 19 252 2=+y x 上一点M 到焦点1 F 的距离为2,N 为1 MF 的中 点,O 是椭圆的中心,则ON 的值是 。 6、若方程13 52 2=-+-k y k x 表示椭圆,求k 的范围. 7、 轴上的椭圆”的 表示焦点在”是“方程“y ny mx n m 1022=+>>( ) A 、充分而不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分又不必要条件

8、已知方程 11 252 2=-+-m y m x 表示焦点在y 轴上的椭圆,则实数 m 的范围是 . 9、已知方程2 22 =+ky x 表示焦点在y 轴上的椭圆,则实数k 的范围是 . 10、方程2 31y x -= 所表示的曲线是 . 11、如果方程2 22 =+ky x 表示焦点在y 轴上的椭圆,求实数k 的取值范围。 12、已知椭圆0 6322 =-+m y mx 的一个焦点为)2,0(,求m 的值。 13、已知方程2 22 =+ky x 表示焦点在X 轴上的椭圆,则实数k 的范围是 . 14、根据下列条件求椭圆的标准方程: (1)两个焦点的坐标分别为(0,5)和(0,-5),椭圆上一点P 到两焦点的距离之和为26; (2)长轴是短轴的2倍,且过点(2,-6); (3)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点) 2,3(),1,6( 21 --P P ,求椭圆方程. 15、以)0,2(1 -F 和)0,2(2 F 为焦点的椭圆经过点)2,0(A 点,则该椭 圆的方程为 。 16、如果椭圆:k y x =+22 4上两点间的最大距离为8,则k 的 值为 。 17、已知中心在原点的椭圆C 的两个焦点和椭圆 36 94:222=+y x C 的两个焦点一个正方形的四个顶点,且椭圆C

高中数学教学设计模版及案例

联系已学知识,可以解决这个问题。 对应问题1. 第三边c 是确定的,如何利用条件求之? 首先用正弦定理试求,发现因A 、B 均未知,所以较难求边c 。 由于涉及边长问题,从而可以考虑用向量来研究这个问题。 A 如图,设CB a =,CA b =,AB c =,那么c a b =-,则 b c ()() 222 2 2c c c a b a b a a b b a b a b a b =?=--=?+?-?=+-? C a 从而2222cos c a b ab C =+-,同理可证2222cos a b c bc A =+-,2222cos b a c ac B =+- 于是得到以下定理 余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。即2222cos a b c bc A =+-;2222cos b a c ac B =+-;2222cos c a b ab C =+- 教学情境二 对余弦定理的理解、定理的推论 对应问题2 公式有什么特点?能够解决什么问题? 等式为二次齐次形式,左边的边对应右边的角。主要作用是已知三角形的两边及夹角求对边。 对应问题3 从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角? 从余弦定理,又可得到以下推论:(由学生推出)

222cos 2+-=b c a A bc ; 222cos 2+-=a c b B ac ; 222 cos 2+-=b a c C ba [理解定理]余弦定理及其推论的基本作用为: ①已知三角形的任意两边及它们的夹角求第三边; ②已知三角形的三条边求三个角。 思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系? (由学生总结)若?ABC 中,C=90,则cos 0=C ,这时222=+c a b 由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。 教学情境三 例题与课堂练习 例题.在?ABC 中,已知=a c 060=B ,求b 及A ⑴解:2222cos =+-b a c ac B =222+-?cos 045=2121)+-=8 ∴=b 求A 可以利用余弦定理,也可以利用正弦定理: ⑵解法一:∵cos 2221,22+-=b c a A bc ∴060.=A 解法二:∵0sin sin sin45a A B = 又 a <c ,即00<A <090, ∴060.=A 评述:解法二应注意确定A 的取值范围。 课堂练习 在?ABC 中,若222a b c bc =++,求角A (答案:A=120°) 教学情境四 课堂小结 (1)余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例; (2)余弦定理的应用范围:①.已知三边求三角;②.已知两边及它们的夹角,求第三边。 (3)正、余弦定理从数量关系的角度解释了三角形全等,已知边角求做三角形两类问题,使其化为可以计算的公式。 习题设计 1. 在?ABC 中,a=3,b=4,?=∠60C ,求c 边的长。 2. 在?ABC 中,a=3,b=5,c=7,求此三角形的最大角的度数。 3. 若sin :sin :sin 5:7:8A B C =,求此三角形的最大角与最小角的和的大小。 4. △ABC 中,若()222tan a c b B +-=,求角B 的大小。 5. ?ABC 的三内角,,A B C 所对边的长分别为,,a b c 设向量(,)p a c b =+,(,)q b a c a =--,若//p q ,求角C 的大小) (本案例由河北师大附中 刘建良设计,由汉沽五中 纪昌武 在目标设计和习题设计方面略作改动) 编写要求: 1、页面设置:A4,上、下、左、右边距都为2cm ;教学课题:小四宋体加粗;问题设计:课本上没有的有价值的情境、问题、例题、习题用五号黑体字,并简要说明设计意图。其他都用五号宋体。“目标设计、情境设计、问题设计、习题设计”要加粗。 2、目标设计主要写知识目标的设计。目标要具体明确、具有可操作性、可测性。

完整word版,人教版高中数学选修2-1《椭圆及其标准方程》教案

人教版高中数学选修2-1《椭圆及其标准方程》教案 一、课型 新授课 二、教学内容 1、椭圆的定义; 2、椭圆的两类标准方程; 3、根据椭圆的定义及标准方程的知识解决一些简单的问题。 三、教学目标 1、知识与技能:理解并掌握椭圆的定义;明确焦点、焦距的概念;掌握椭圆标 准方程的两种形式及其推导过程;掌握a、b、c三个量的几何意义及它们之间的关系。能根据条件确定椭圆的标准方程,掌握运用待定系数法求椭圆的标准方程; 2、过程与方法:通过对椭圆概念的引入教学,培养学生的观察能力和探索能力; 通过椭圆的标准方程的推导,使学生进一步掌握求曲线方程的一般方法,并渗透数形结合和等价转化的思想方法,提高运用坐标法解决几何问题的能力。让学生感知数学知识与实际生活的普遍联系; 3、情感态度与价值观:通过让学生大胆探索椭圆的定义和标准方程,激发学生学 习数学的积极性,培养学生的学习兴趣和创新意识。培养学生的探索能力和进取精神,提高学生的数学思维的情趣,给学生以成功的体验,形成学习数学知识的积极态度。通过椭圆的形成过程培养学生的数学美感,同时培养团队协作的能力。 四、教学重点、难点 重点:椭圆的定义及椭圆的标准方程; 难点:椭圆标准方程的推导过程。 五、教学方法 教师引导为主、学生自主探究为辅。 六、教学媒体

幻灯片、黑板。 七、教学过程 (一)创设情境,导入新课 用多媒体演示神舟飞船绕地球旋转的模型,它运行的轨迹又是什么图形呢?可以看出,它的运行轨迹是椭圆。此时老师指出:在实际生活中,椭圆随处可见,很多学科也涉及到椭圆的应用,所以学习椭圆的相关知识是十分必要的。这就是我们这节课所要学习的内容——椭圆及其标准方程。 (二)问题探究 老师提问:我们从直观上认识了椭圆,那么椭圆它是如何形成的呢?椭圆满足什么样的条件呢?它的定义又是如何? 1、椭圆的形成 下面请各小组拿出老师之前让大家准备的工具:一段固定长的细绳、两颗钉子、一块长3分米,宽3分米的硬纸板。然后将钉子系在细绳的两头,将钉子固定在图板上,使得两个钉子之间的距离小于细绳的长度(请同学们考虑一下,为什么两顶子之间的距离要小于细绳的长度?),我们用笔尖将细绳拉紧,让笔尖在图板上慢慢移动,请同学们观察笔尖运动的轨迹是什么图形呢? 如果我们将两个钉子之间的距离变大,使得两个钉子之间的距离恰好等于细绳的长度,同样用笔尖将细绳拉紧,让笔尖在图板上慢慢移动。我们发现笔尖只能在两个钉子之间来回运动,这时笔尖运动的轨迹是两个钉子之间的线段。 将两个钉子之间的距离再增大,此时就可以发现,细绳的长度比两个钉子之间的距离小,笔尖没有轨迹。 再用课件给学生进行演示: 通过演示可以发现,绳长大于图钉间的距离是画出椭圆的关键。 请同学们根据作图的过程和老师刚才的演示,思考:在作图过程中,有哪些物体的位置没变化?有哪些量没有变化?如何来归纳椭圆的定义呢? 2、椭圆的定义 平面内到两定点F 1、F 2 的距离之和等于常数(大于|F 1 F 2 |)的点的轨迹叫做 椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。通常常数

高中数学选修椭圆公式大全(精选课件)

高中数学选修椭圆公式大全 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P处的外角,则焦点在直线PT上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点。...文档交流 仅供参考... 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切。 5. 若000(,)P x y 在椭圆22 221x y a b +=上,则过0P 的椭圆的切线方程 是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切 线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a 〉b>0)的左右焦点分别为F 1,F 2, 点P为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为1 2 2tan 2 F PF S b γ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y )。 9. 设过椭圆焦点F作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ分别交相应于焦点F 的椭圆准线于M 、N两点,则MF⊥NF ....文档交流 仅 供参考...

10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N,则M F⊥NF 。...文档交流 仅供参考... 11. A B是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为 AB 的中点,则2 2OM AB b k k a ?=-, 即020 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被 Po 所平分的中点弦 的方程是22 00002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22 221x y a b +=内,则过 Po 的弦中点的轨迹方 程是22002222x x y y x y a b a b +=+。 推 导 1. 椭圆22 221x y a b +=(a 〉b>o)的两个顶点为1(,0)A a -,2(,0)A a , 与y 轴平行的直线交椭圆于P1、P 2时A 1P 1与A 2P 2交 点的轨迹方程是22 221x y a b -=。...文档交流 仅供参考... 2. 过椭圆22 221x y a b += (a >0, b >0)上任一点00(,)A x y 任 意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定向且20 20 BC b x k a y =(常数)....文档交流 仅供参考... 3. 若P 为椭圆22 221x y a b +=(a 〉b >0)上异于长轴端点的任 一点,F 1, F 2是焦点, 12PF F α∠=, 21PF F β∠=,则 tan t 22 a c co a c αβ -=+。 4. 设椭圆22 221x y a b +=(a>b>0)的两个焦点为 F 1、F 2,

高中数学优秀教学案例设计汇编(上册)

高中数学教学设计大赛获奖作品汇编 (上部)

目 录 1、集合与函数概念实习作业…………………………………… 2、指数函数的图象及其性质…………………………………… 3、对数的概念………………………………………………… 4、对数函数及其性质(1)…………………………………… 5、对数函数及其性质(2)…………………………………… 6、函数图象及其应用…………………………………… 7、方程的根与函数的零点…………………………………… 8、用二分法求方程的近似解…………………………………… 9、用二分法求方程的近似解…………………………………… 10、直线与平面平行的判定…………………………………… 11、循环结构 ………………………………………………… 12、任意角的三角函数(1)………………………………… 13、任意角的三角函数(2)…………………………………… 14、函数sin()y A x ω?=+的图象………………………… 15、向量的加法及其几何意义……………………………………… 16、平面向量数量积的物理背景及其含义(1)……………… 17、平面向量数量积的物理背景及其含义(2)…………………… 18、正弦定理(1)…………………………………………………… 19、正弦定理(2)…………………………………………………… 20、正弦定理(3)……………………………………………………

21、余弦定理……………………………………………… 22、等差数列……………………………………………… 23、等差数列的前n项和……………………………………… 24、等比数列的前n项和……………………………………… 25、简单的线性规划问题……………………………………… 26、拋物线及其标准方程……………………………………… 27、圆锥曲线定义的运用………………………………………

[复习]高中数学课题教学设计案例.docx

高中数学课程可选内容的资源 ——数学建模、数学课题学习的教学设计的案例 1.升旗中的数学问题 (一)问题情景和任务 问题情景:在不同地区,同一天的H出和H落吋间不尽相同;对一个地区而言,H岀日落时间又是随FI期的变化而变化的。北京的天安门广场上的国旗每天伴着太阳升起、伴着太阳降落,下表给出了是天安门广场2003年部分LI期的升、降旗时刻表: 任务1:试根据上表提供的数据,分析升、降旗时间变化的人致规律;建立坐标系,将以上数据描在坐标系中; 任务2:分别建立I」出时间和I」落时间关于I」期的近似函数模型;利用你建立的函数模型,计算“五一”国际劳动节、“十一”国庆节的升、降旗时间; 任务3:利用年鉴、互联网或其它资料,查阅北京天安门2003年升旗时间表,检验模型的准确度,分析误差原因,考虑如何改进口己的模型。 任务4:你所生活地区(城市、省、乡村等)某年不同的日期的“日出和FI落”的时间, 建立一个函数关系。 (二)实施建议与说明 通过对升旗中数学问题的求解和讨论,进一步了解相关数学知识的意义和作用,体验数学

建模的基木过程,增强数学知识的应用意识。理解用函数拟合数据的方法,捉高对数据的 观察、分析、处理、从中获取有益信息的能力。 在这个探求活动屮,要特别重视观察、分析、处理数据的一般方法、现代技术的合理使用、数学得到的结果与实际情况不同的原因分析。 1?组成学习探究小组,集体讨论,互相启发,形成可行的探究方案,独立思考,完成每个人的“成果报告”。 2.任务1的建议: 为了便于在坐标系中观察表中数据,选择适当的计最单位,如升旗时刻以10分之为一个单位,H期可以天为单位,即1月1 H为第0天,12月31日为第364天;可借助图形计算器或其它工具绘制各点, 3.任务2的建议: 利用自己的生活经验,或者访问家长、地理老师等,结合散点图,选择学过的适当函数, 作为刻画该关系的模型;要应注意关键数据(如最早升(降)旗时间和最迟升(降)旗时间等)在确定拟合函数参数小的作用; 4.任务3的建议: 根据观察坐标平而上所绘制点的走向趋势,对以考虑分段拟合函数。 5.“成果报告”的书写建议 成果报告可以下表形式呈现。 表1:探究学习成果报告表年级 ________ 班—完成时间_________

高中数学精讲教案-椭圆及其性质

高中数学-圆锥曲线与方程 第1讲椭圆及其性质 考点一椭圆的标准方程 知识点 1椭圆的定义 (1)定义:在平面内到两定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距. (2)集合语言:P={M||MF1|+|MF2|=2a,且2a>|F1F2|},|F1F2|=2c,其中a>c>0,且a,c为常数. 2椭圆的焦点三角形 椭圆上的点P(x0,y0)与两焦点构成的△PF1F2叫做焦点三角形. 如图所示,设∠F1PF2=θ. (1)当P为短轴端点时,θ最大. (2)S△PF 1F 2 = 1 2|PF1||PF2|·sinθ=b 2· sinθ 1+cosθ =b2tan θ 2=c|y0|,当|y0|=b,即P为短轴端点时,S△PF1F2取最大值,为 bc. (3)焦点三角形的周长为2(a+c). 3椭圆的标准方程 椭圆的标准方程是根据椭圆的定义,通过建立适当的坐标系得出的.其形式有两种: (1)当椭圆的焦点在x轴上时,椭圆的标准方程为x2 a2+ y2 b2=1(a>b>0). (2)当椭圆的焦点在y轴上时,椭圆的标准方程为y2 a2+ x2 b2=1(a>b>0). 4特殊的椭圆系方程 (1)与椭圆x2 m2+y2 n2=1共焦点的椭圆可设为 x2 m2+k + y2 n2+k =1(k>-m2,k>-n2). (2)与椭圆x2 a2+y2 b2=1(a>b>0)有相同离心率的椭圆可设为 x2 a2+ y2 b2=k1(k1>0,焦点在x轴上)或 y2 a2+ x2 b2=k2(k2>0,焦 点在y轴上).

高中数学选修1,1《椭圆》教案_0

高中数学选修1,1《椭圆》教案 (一)教材的地位和作用 本节是继直线和圆的方程之后,用坐标法研究曲线和方程的又一次实际演练。椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础。因此这节课有承前启后的作用,是本章和本节的重点内容之一。 (二)教学重点、难点 1.教学重点:椭圆的定义及其标准方程 2.教学难点:椭圆标准方程的推导 (三)三维目标 1.知识与技能:掌握椭圆的定义和标准方程,明确焦点、焦距的概念,理解椭圆标准方程的推导。 2.过程与方法:通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、类比、归纳问题的能力。https://www.360docs.net/doc/0816431062.html, 3.情感、态度、价值观:通过主动探究、合作学习,相互交流,对知识的归纳总结,让学生感受探索的乐趣与成功的喜悦,增强学生学习的信心。 二、教学方法和手段 采用启发式教学,在课堂教学中坚持以教师为主导,学生为主体,思维训练为主线,能力培养为主攻的原则。 授人以鱼,不如授人以渔。要求学生动手实验,自主探究,合作交流,抽象出椭圆定义,并用坐标法探究椭圆的标准方程,使学生的学习过程成为在教师引导下的再创造过程。 三、教学程序 1.创设情境,认识椭圆:通过实验探究,认识椭圆,引出本节课的教学内容,激发了学生的求知欲。 2.画椭圆:通过画图给学生一个动手操作,合作学习的机会,从而调动学生的学习兴趣。 3.教师演示:通过多媒体演示,再加上数据的变化,使学生更能理性地理解椭圆的形成过程。 4.椭圆定义:注意定义中的三个条件,使学生更好地把握定义。

5.推导方程:教师引导学生化简,突破难点,得到焦点在x轴上的椭圆的标准方程,利用学生手中的图形得到焦点在y轴上的椭圆的标准方程,并且对椭圆的标准方程进行了再认识。 6.例题讲解:通过例题规范学生的解题过程。 7.巩固练习:以多种题型巩固本节课的教学内容。 8.归纳小结:通过小结,使学生对所学的知识有一个完整的体系,突出重点,抓住关键,培养学生的概括能力。 9.课后作业:面对不同层次的学生,设计了必做题与选做题。 10.板书设计:目的是为了勾勒出全教材的主线,呈现完整的知识结构体系并突出重点,用彩色增加信息的强度,便于掌握。 四、教学评价 本节课贯彻了新课程理念,以学生为本,从学生的思维训练出发,通过学习椭圆的定义及其标准方程,激活了学生原有的认知规律,并为知识结构优化奠定了基础。 高中数学选修1-1《椭圆》教案【二】 教学准备 教学目标 教学目标:1.掌握求适合条件的椭圆的标准方程的方法. 2.理解椭圆的比值定义,椭圆的准线的定义. 3.掌握椭圆的准线方程并能运用准线方程判定椭圆的焦点位置. 教学重难点 教学重点:椭圆的比值定义,椭圆的准线的定义及其运用. 教学难点:椭圆的准线的运用https://www.360docs.net/doc/0816431062.html, 教学过程 教学过程: 一、知识回顾:

高中数学新课程创新教学设计案例 角的概念的推广

31 角的概念的推广 教材分析 这节课主要是把学生学习的角从不大于周角的非负角扩充到任意角,使角有正角、负角和零角.首先通过生产、生活的实际例子阐明了推广角的必要性和实际意义,然后又以“动”的观点给出了正、负、零角的概念,最后引入了几个与之相关的概念:象限角、终边相同的角等.在这节课中,重点是理解任意角、象限角、终边相同的角等概念,难点是把终边相同的角用集合和符号语言正确地表示出来.理解任意角的概念,会在平面内建立适当的坐标系,通过数形结合来认识角的几何表示和终边相同的角的表示,是学好这节的关键. 教学目标 1. 通过实例,体会推广角的必要性和实际意义,理解正角、负角和零角的定义. 2. 理解象限角的概念、意义及表示方法,掌握终边相同的角的表示方法. 3. 通过对“由一点出发的两条射线形成的图形”到“射线绕着其端点旋转而形成角”的认识过程,使学生感受“动”与“静”的对立与统一.培养学生用运动变化的观点审视事物,用对立统一规律揭示生活中的空间形式和数量关系. 任务分析 这节课概念很多,应尽可能让学生通过生活中的例子(如钟表上指针的转动、体操运动员的转体、自行车轮子上的某点的运动等)了解引入任意角的必要性及实际意义,变抽象为具体.另外,可借助于多媒体进行动态演示,加深学生对知识的理解和掌握. 教学设计 一、问题情境 [演示] 1. 观览车的运动. 2. 体操运动员、跳台跳板运动员的前、后转体动作. 3. 钟表秒针的转动. 4. 自行车轮子的滚动.

[问题] 1. 如果观览车两边各站一人,当观览车转了两周时,他们观察到的观览车上的某个座位上的游客进行了怎样的旋转,旋转了多大的角 2. 在运动员“转体一周半动作”中,运动员是按什么方向旋转的,转了多大角 3. 钟表上的秒针(当时间过了时)是按什么方向转动的,转动了多大角 4. 当自行车的轮子转了两周时,自行车轮子上的某一点,转了多大角 显然,这些角超出了我们已有的认识范围.本节课将在已掌握的0°~360°角的范围的基础上,把角的概念加以推广,为进一步研究三角函数作好准备. 二、建立模型 1. 正角、负角、零角的概念 在平面内,一条射线绕它的端点旋转有两个方向:顺时针方向和逆时针方向.习惯上规定,按逆时针旋转而成的角叫作正角;按顺时针方向旋转而成的角叫作负角;当射线没有旋转时,我们也把它看成一个角,叫作零角. 2. 象限角 当角的顶点与坐标原点重合、角的始边与x轴正半轴重合时,角的终边在第几象限,就把这个角叫作第几象限的角.如果角的终边在坐标轴上,就认为这个角不属于任何象限. 3. 终边相同的角 在坐标系中作出390°,-330°角的终边,不难发现,它们都与30°角的终边相同,并且这两个角都可以表示成0°~360°角与k个(k∈Z)周角的和,即 390°=30°+360°,(k=1); -330°=30°-360°,(k=-1). 设S={β|β=30°+k·360°,k∈Z},则390°,-330°角都是S中的元素,30°角也是S中的元素(此时k=0).容易看出,所有与30°角终边相同的角,连同30°角在内,都是S中的元素;反过来,集合S中的任一元素均与30°角终边相同.一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合:S={β|β=α+k·360°,k∈Z},即任一与α终边相同的角,都可以表求成角α与整数个周角的和. 三、解释应用 [例题] 1. 在0°~360°范围内,找出与下列各角终边相同的角,并判断它们是第几象限的角.

(新)高中数学教学设计

等比数列的前n项和 (第一课时) 一.教材分析。 (1)教材的地位与作用:《等比数列的前n项和》选自《普通高中课程标准数学教科书·数学(5),是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。 (2)从知识的体系来看:“等比数列的前n项和”是“等差数列及其前n项和”与“等比数列”内容的延续、不仅加深对函数思想的理解,也为以后学数列的求和,数学归纳法等做好铺垫。 二.学情分析。 (1)学生的已有的知识结构:掌握了等差数列的概念,等差数列的通项公式和求和公式与方法,等比数列的概念与通项公式。 (2)教学对象:高二理科班的学生,学习兴趣比较浓,表现欲较强, 逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨。 (3)从学生的认知角度来看:学生很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。 三.教学目标。 根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为: (1)知识技能目标————理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上,并能初步应用公式解决与之有关的问题。

高中数学椭圆的教学设计

选修1-1《2.1.1 椭圆及其标准方程》教学设计 一、指导思想与理论依据 1. 新课程标准理念——高中数学新课程标准指出:“强调本质,注意适度形式化。高中数学课程应该返璞归真,努力揭示数学概念、法则、结论的发展过程和本质,让学生体会蕴涵在其中的思想方法。”在“椭圆及其标准方程”的引入与推导中,遵循学生的认识规律,通过动手实践、观察思考、合作交流、应用反思等过程,让学生逐步将认识由感性上升到理性,把学生学习知识当作认识事物的过程来进行教学,努力揭示知识的发生、发展过程。 2. 建构主义理论——建构主义认为:知识不是通过教师讲授得到的,而是学习者在一定的情境即社会文化背景下,借助其他人(包括教师和学习伙伴)的帮助,充分利用各种学习资源(包括文字教材、音像资料、多媒体课件、软件工具以及从Internet上获取的各种教学信息等等),通过意义建构而获得。由于学习是在一定的情境下借助其他人的帮助即通过人际间的协作活动而实现的意义建构过程,因此建构主义学习理论认为“情境创设”、“协作学习”、“会话交流”是学习环境的基本要素。 二、教学背景分析 1. 教材分析 解析几何是数学一个重要的分支,它沟通了数学内数与形、代数与几何等最基本对象之间的联系。平面解析几何问题,就是借助建立适当的坐标系,科学合理地把几何问题代数化,运用代数的方法来研究几何问题。 在必修2中学生已初步掌握了解析几何研究问题的主要方法,并在平面直角坐标系中研究了直线和圆这两个基本的几何图形。在选修1中,教材利用三种圆锥曲线进一步深化如何利用代数方法研究几何问题。本章所研究的三种圆锥曲线都是重要的曲线,因为对这几种曲线研究的问题基本一致,方法相同,所以教材对这三种圆锥曲线的学习的重点放在了椭圆上,通过求椭圆的标准方程,是学生掌握推导出这一类轨迹方程的一般规律和化简的常用方法。因此,“椭圆及其标准方程”起到了承上启下的重要作用。 2. 学情分析 知识方面 (1)在必修2第二章里学生已经学习了直线和圆的方程,并初步熟悉了求曲线方程的一般方法和步骤,具备主动探究椭圆知识的基础; (2)根据日常生活中的经验,学生对椭圆有了一定的认识,但仍没有上升到成为“概念”的水平,将感性认识理性化将会是对他们的一个挑战; (3)在初中阶段没有涉及过含两个字母、两个根式的方程化简问题; 自身特征方面 (1)我所教授的班级是文科班,他们普遍对数学有一定的畏难情绪,但是他们思维比较活跃,对新鲜事物有一定的好奇心和探索欲望,对老师的讲授敢于质疑,有自己的想法和主见,愿意自己去探索是什么和为什么。并且具备了初步的探索能力;

高中数学选修(人教版)椭圆公式大全

椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直 径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是 002 2 1x x y y a b + =. 6. 若000(,)P x y 在椭圆 222 2 1x y a b + =外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切 点弦P 1P 2的直线方程是002 2 1x x y y a b +=. 7. 椭圆 222 2 1x y a b + = (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122 tan 2 F P F S b γ ?=. 8. 椭圆 222 2 1x y a b + =(a >b >0)的焦半径公式: 10||M F a ex =+,20||M F a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF . 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和 A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. A B 是椭圆 2222 1x y a b + =的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 22 O M A B b k k a ?=- , 即0 2 02y a x b K AB - =。 12. 若000(,)P x y 在椭圆 222 2 1x y a b + =内,则被Po 所平分的中点弦的方程是 2 2 00002 2 2 2 x x y y x y a b a b + = + . 13. 若000(,)P x y 在椭圆 222 2 1x y a b + =内,则过Po 的弦中点的轨迹方程是 22002 2 2 2 x x y y x y a b a b + = + .

高中数学教学设计模版及案例

教学情境一:(问题引入)在ABC中,已知两边a,b和夹角C,作出三角形。 联系已学知识,可以解决这个问题。

对应问题1. 第三边c 是确定的,如何利用条件求之 首先用正弦定理试求,发现因A 、B 均未知,所以较难求边c 。 由于涉及边长问题,从而可以考虑用向量来研究这个问题。 A 如图,设CB a =,CA b =,AB c =,那么c a b =-,则 b c ()() 222 2 2c c c a b a b a a b b a b a b a b =?=--=?+?-?=+-? C a 从而2222cos c a b ab C =+-,同理可证2222cos a b c bc A =+-,2222cos b a c ac B =+- 于是得到以下定理 余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。即2222cos a b c bc A =+-;2222cos b a c ac B =+-;2222cos c a b ab C =+- 教学情境二 对余弦定理的理解、定理的推论 对应问题2 公式有什么特点能够解决什么问题 等式为二次齐次形式,左边的边对应右边的角。主要作用是已知三角形的两边及夹角求对边。 对应问题3 从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角 从余弦定理,又可得到以下推论:(由学生推出) 222cos 2+-=b c a A bc ; 222cos 2+-=a c b B ac ; 222 cos 2+-=b a c C ba [理解定理]余弦定理及其推论的基本作用为: ①已知三角形的任意两边及它们的夹角求第三边; ②已知三角形的三条边求三个角。 思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系 (由学生总结)若?ABC 中,C=90,则cos 0=C ,这时222=+c a b 由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。 教学情境三 例题与课堂练习 例题.在?ABC 中,已知=a c 060=B ,求b 及A ⑴解:2222cos =+-b a c ac B =222+-?cos 045=2121)+-=8 ∴=b 求A 可以利用余弦定理,也可以利用正弦定理: ⑵解法一:∵cos 2221,22+-==b c a A bc ∴060.=A 解法二:∵0sin sin sin45a A B b = 又 a <c ,即00<A <090, ∴060.=A 评述:解法二应注意确定A 的取值范围。

椭圆的标准方程教案

河北阜城中学--高二数学组 组题人:高泽宁 审核人:沈志华 日期:2019年 月 日 …………○…………内…………○…………装…………○…………订…………○ 学校: 姓名:___________ 班级:___________ 考号:___________ …………○…………内…………○…………装…………○…………订…………○ 第 1 页 共 3 页 学习目标: 1:熟练掌握椭圆的定义。 2:熟练掌握椭圆的标准方程,会根据所给的条件画出椭圆并确定椭圆的标准方程。 学习重点:椭圆的定义及标准方程。 学习难点:椭圆的定义及标准方程的推导。 教学过程: 一:椭圆概念的引入: 1:动画演示:(1)天体行星和卫星运行的轨道。 (2)立体几何中作圆的一种直观图。 2:手工操作演示椭圆的形成:取一条定长的细绳,把它的两端固定在画图板上的F 1,F 2两点,当绳长大于两点间的距离时,用铅笔把绳子拉近,使笔尖在图板上慢慢移动,就可以画出一个椭圆。 分析:在这个运动过程中,什么是不变的? 答:两个定点,绳长。 即不论运动到何处,绳长不变(即轨迹上与两个定点距离之和不变) 3:由此总结椭圆定义: 平面内与两个定点F 1,F 2的距离之和等于常熟(大于)的点的轨迹叫作椭圆, 这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。 说明 注意椭圆定义中容易遗漏的两处地方: (1)两个定点------两点间距离确定。 (2) 绳长------轨迹上任意点到两定点距离和确定。 思考: 改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗? 绳长能小于两图钉之间的距离吗? 二:根据定义推导椭圆标准方程: 1:复习求轨迹方程的基本步骤: 2:推导:取过焦点21F F 的直线为x 轴,线段21F F 的垂直平分线为y 轴。 设P (x,y )为椭圆上的任意一点,椭圆的焦距是2c ( c>0). 则:)0,()0,(21c F c F -,又设M 与F 1,F 2距离之和等于2a (常数) {}a PF PF P P 221=+=∴ 221)(y c x PF ++= 又, a y c x y c x 2)()(2222=+-+++∴,化简,得: )()(22222222c a a y a x c a -=+-,由定义c a 22> 022>-∴c a 令222b c a =-∴代入,得: 222222b a y a x b =+,两边同除22b a 得: 选修2-1 第一章 2.2.2 椭圆的标准方程 教案 试卷类型 学案 ※ 数学是一切知识的最高形式----柏拉图 条件 结论 2a>|F1F2| 动点的轨迹是椭圆 2a =|F1F2| 动点的轨迹是线段F1F2 2a<|F1F2| 动点不存在,因此轨迹不存在

相关文档
最新文档