2010级本科高数一经管类期末A
2010成人高考专升本高数一真题及答案解析
内容:以按劳分配为主体、多种分配方式并存;
意义:有利于发挥激励作用,调动人们的积极性、创造性,吸引人才,发挥人才的作用,促进国家和社会的发展。
☆基本经济制度、分配制度与人民的职业及收入来源的关系:
是因果关系,由于我国实行这种充满生机和活力的基本经济制度、分配制度,极大地调动人民的积极性、创造性,
非公有制经济:个体、私营、外资
☆基本经济制度的意义:
1.是由我国基本国情决定的;
2.公有制是社会主义经济制度的基础,占主体地位,是维护广大人民根本利益和实现共同富裕的保证;
3.非公有制经济是我国经济的重要组成部分;
4.有利于促进经济发展、社会进步,解放、发展生产力;
5.有利于提高人民生活水平,为公民施展才干提供极大的活动舞台和发展空间。
质文明的发展提供政治保证和法律保障;精神文明为物质文明的发展提供思想保证、精神动力和智
力支持;生态文明有利于促进我国经济、社会的可持续发展。
基本经济制度:以公有制为主体,多种所有制经济共同发展。
国有经济
公有制经济 集体经济
经济 混合所有制经济中的国有成分和集体成分
不要嫌多,这可是初中全部的精点,热点,希望可以帮助你 社会主义初级阶段
历史原因:由于中国脱胎于半殖民地半封建社会,是在一穷二白的基础上起步建设的;
.. 1.生产力水平还比较低(根本原因);
原因 现实原因(表现)2.地区发展不平衡;
是否有利于发展社会主义社会的生产力;
“三个有利于”是否有利于增强社会主义国家的综合国力;
是否有利于提高人民的生活水平。
☆我国发展的有利条件:
建立社会主义公有制,能集中力量办大事,有较雄厚的工业基础和经济基础;科学技术提高很大,农业和农
2010高考数学全国卷1(题题详细解析)
2010年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I 卷1至2页。
第Ⅱ卷3 至4页。
考试结束后,将本试卷和答题卡一并交回。
第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)kkn kn n P k C p p k n -=-=…一.选择题 (1)复数3223i i+=-(A)i (B)i - (C)12-13i (D) 12+13i1.A 【命题意图】本小题主要考查复数的基本运算,重点考查分母实数化的转化技巧.【解析】32(32)(23)694623(23)(23)13i i i i i i ii i +++++-===--+.(2)记cos(80)k -︒=,那么tan 100︒=A.21k k- B. -21k k- C.21k k- D. -21k k-2.B 【命题意图】本小题主要考查诱导公式、同角三角函数关系式等三角函数知识,并突出了弦切互化这一转化思想的应用.【解析】222sin 801cos 801cos (80)1k=-=--=-,所以tan 100tan 80︒=-2sin 801.cos 80k k-=-=-(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)13.B 【命题意图】本小题主要考查线性规划知识、作图、识图能力及计算能力.【解析】画出可行域(如右图),由图可知,当直线l 经过点A(1,-1)时,z 最大,且最大值为m ax 12(1)3z =-⨯-=.(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则a a a=(A) 52(B) 7 (C) 6 (D) 424.A 【命题意图】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.【解析】由等比数列的性质知31231322()5a a a a a a a === ,37897988()a a a a a a a ===10,所以132850a a =,所以13336456465528()()(50)52a a a a a a a a a =====(5)353(12)(1)x x +-的展开式中x 的系数是(A) -4 (B) -2 (C) 2 (D) 45.B 【命题意图】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式0x y += 1Oy x = y20x y --=xA0:20l x y -=2-2 AA BC DA 1B 1C 1D 1O的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.【解析】35533(12)(1)(16128)(1)x x x x x x x +-=+++-故353(12)(1)x x +-的展开式中含x 的项为3303551()1210122C x xC x x x ⨯-+=-+=-,所以x 的系数为-2.(6)某校开设A 类选修课3门,B 类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有 (A) 30种 (B)35种 (C)42种 (D)48种6.A 【命题意图】本小题主要考查分类计数原理、组合知识,以及分类讨论的数学思想.【解析】:可分以下2种情况:(1)A 类选修课选1门,B 类选修课选2门,有1234C C 种不同的选法;(2)A 类选修课选2门,B 类选修课选1门,有2134C C 种不同的选法.所以不同的选法共有1234C C +2134181230C C =+=种.(7)正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A23B33C 23D637.D 【命题意图】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D 到平面AC 1D 的距离是解决本题的关键所在,这也是转化思想的具体体现.【解析】因为BB 1//DD 1,所以B 1B 与平面AC 1D 所成角和DD 1与平面AC 1D 所成角相等,设DO⊥平面AC 1D ,由等体积法得11D A C D DA C DV V --=,即111133A C D A C D S D O S D D ∆∆⋅=⋅.设DD 1=a,则12211133sin 60(2)2222AC D S AC AD a a ∆==⨯⨯=,21122A C D S A D C D a ∆== .所以1312333AC D AC D S D D aD O a S a∆∆===,记DD 1与平面AC 1D 所成角为θ,则13sin 3D O D D θ==,所以6cos 3θ=.(8)设a=3log 2,b=In2,c=125-,则A a<b<c Bb<c<a C c<a<b D c<b<a8.C 【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用. 【解析】 a=3log 2=21log 3, b=In2=21log e,而22log 3log 1e >>,所以a<b,c=125-=15,而2252log 4log 3>=>,所以c<a,综上c<a<b.(9)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点p 在C 上,∠1F p 2F =060,则P 到x 轴的距离为 (A)32(B)62(C) 3 (D) 69.B 【命题意图】本小题主要考查双曲线的几何性质、第二定义、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力. 【解析】不妨设点P 00(,)x y 在双曲线的右支,由双曲线的第二定义得21000||[()]12a P F e x a e x x c=--=+=+,22000||[)]21aPF e x ex a x c=-=-=-.由余弦定理得cos ∠1F P 2F =222121212||||||2||||P F P F F F P F P F +-,即cos 0602220000(12)(21)(22)2(12)(21)x x x x ++--=+-,解得2052x =,所以2200312y x =-=,故P 到x 轴的距离为06||2y =(10)已知函数F(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b 的取值范围是 (A)(22,)+∞ (B)[22,)+∞ (C)(3,)+∞ (D)[3,)+∞10.A 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+2b 222a a=+>,从而错选A,这也是命题者的用苦良心之处.【解析】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或1b a=,所以a+2b=2a a+又0<a<b,所以0<a<1<b ,令2()f a a a=+,由“对勾”函数的性质知函数()f a 在a ∈(0,1)上为减函数,所以f(a)>f(1)=1+21=3,即a+2b 的取值范围是(3,+∞).(11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ∙的最小值为 (A) 42-+(B)32-+(C) 422-+ (D)322-+11.D 【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力. 【解析】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠APB=2α,PO=21x +,21sin 1xα=+,||||cos 2P A P B P A P B α∙=⋅ =22(12sin )x α-=222(1)1x x x -+=4221x x x -+,令P A P B y ∙= ,则4221x x y x -=+,即42(1)0x y x y -+-=,由2x 是实数,所以2[(1)]41()0y y ∆=-+-⨯⨯-≥,2610y y ++≥,解得322y ≤--或322y ≥-+.故min ()322PA PB ∙=-+.此时21x =-.(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A)233(B)433(C) 23 (D)83312.B 【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析】过CD 作平面PCD ,使AB ⊥平面PCD,交AB 与P,设点P 到CD 的距离为h ,则有A B C D 11222323V h h =⨯⨯⨯⨯=四面体,当直径通过AB 与CD 的中点时,22max 22123h =-=,故max 433V =.PABO。
2010成人高考专升本高数一真题及答案解析
2010成人高考专升本高数一真题及答案解析2010成人高考专升本高数一真题及答案解析——2010年成人高等学校招生全国统一考试高等数学(一)答案必须答在答题卡上指定的位置,答在试卷上无效。
一、选择题:1-10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的,将近选项前的字母填涂在答题卡相应题号的信息点上。
A、3B、2C、1D、0正确答案:C【安通名师解析】根据函数的连续性立即得出结果【安通名师点评】这是计算极限最常见的重要题型。
在教学中一直被高度重视。
在上课时多次强调的重点,必须记住。
正确答案:B【安通名师解析】根据基本初等函数求导公式复合函数求导法则或直接用微分计算【安通名师点评】这样的题目已经在安通学校保过班讲义中练习过多次,属于特别重要内容。
【安通名师解析】基本积分公式,直接积分法。
【安通名师点评】这是每年都有的题目。
考的就是公式是否记住了。
课堂上讲过练过多次,要求学生对基本积分公式背熟。
正确答案:C【安通名师解析】使用基本初等函数求导公式【安通名师点评】这是本试卷中第二个直接使用基本初等函数求导公式的计算题。
考的就是公式是否掌握了。
我们在平时教学中一再要求学生对基本公式背熟。
否则寸步难行。
正确答案:D【安通名师解析】用洛必达法则求解【安通名师点评】这类问题在以往的考试中经常出现,重要但并不难。
是一种典型的题目。
也始终是讲课的重点。
正确答案:A【安通名师解析】把y看作常数,对x求导。
【安通名师点评】本题仍然属于基本题目,是年年考试都有的内容正确答案:A【安通名师解析】因为是选择题,只要验证点的坐标满足方程就可以了。
【安通名师点评】本题如果是填空或解答题,难度将大为增加。
现在是选择题,理解概念就行。
正确答案:B【安通名师解析】直接使用公式【安通名师点评】这是计算收敛半径最常见的题型。
比较简单比较重要。
在教学中一直被高度重视。
二、11-20小题,每小题4分,共40分,把答案写在答题卡相应题号后。
大一上学期高数期末考试试题(五套)详解答案
2010级高等数学(上)A 解答一、填空题:(每题3分,共18分)(请将正确答案填入下表,否则不给分)1.已知极限01lim 2=⎪⎪⎭⎫⎝⎛--+∞→b ax x x x ,则常数b a ,的值分别是(空1)。
解:0x b a 1x x lim b ax 1x x x 1lim x 2x =⎪⎭⎫ ⎝⎛--+=⎪⎪⎭⎫ ⎝⎛--+∞→∞→ ⇒1-a=0⇒a=1⎪⎪⎭⎫⎝⎛-+=⎪⎪⎭⎫ ⎝⎛-+=∞→∞→x 1x x lim ax 1x x lim b 2x 2x 1x111lim 1x x lim 1x x x x lim x x 22x -=+-=+-=⎪⎪⎭⎫ ⎝⎛+--=∞→∞→∞→ 或:01x b x )b a (x )a 1(lim b ax 1x x lim 2x 2x =⎪⎪⎭⎫⎝⎛+-+--=⎪⎪⎭⎫ ⎝⎛--+∞→∞→ 所以1-a=0,a+b=0⇒a=1,b=-1。
或:⎪⎪⎭⎫⎝⎛++--+-=⎪⎪⎭⎫ ⎝⎛--+∞→∞→1x 1b ax 1x 1x lim b ax 1x x lim 2x 2x 01x 1)b 1(x )a 1(lim 1x 1b ax 1x lim x x =⎪⎭⎫ ⎝⎛+++--=⎪⎭⎫ ⎝⎛++---=∞→∞→ 所以1-a=0,1+b=0⇒a=1,b=-1。
2.函数xx x x x f 323)(23---=的第一类间断点是(空2)。
解:f(x)在x=3,0,-1处无定义,是间断点。
121)3x )(1x (x 3x lim x 3x 2x 3x lim)x (f lim 3x 233x 3x =-+-=---=→→→,x=3是第一类间断点。
∞=---=-→-→x3x 2x 3x lim)x (f lim 231x 1xx=-1是第二类间断点。
∞=---=→→x3x 2x 3x lim)x (f lim 230x 0xx=0是第二类间断点。
3.设函数)(x f 可导,)(1)(2x f x g +=,则)('x g =(空3)。
高等数学期末考试试题及答案(大一考试)
五、设函数由方程确定,求。
(8分)六、若有界可积函数满足关系式,求。
(8分)七、求下列各不定积分(每题6分,共12分)(1).八、设求定积分。
(6分)九、讨论函数的单调区间、极值、凹凸区间和拐点坐标。
(10分)十、求方程的通解(6分)十一、求证:。
(5分)第一学期高等数学(上)(A)卷分标准题3分,共15分)2。
B 3。
D 4.B 5。
D分,共18分)为任意常数),4. 2 ,5。
6。
分………………………………………..6分分解:………………3分 (6) (8)导 (3)数)…………6分分解:(1)。
……。
.3分…………………….6分分分=……………6分时有极大值2,有极小值. 在上是凸的,在上是凹的,拐点为(0,0)………10分十、解; (3)设方程(1)的解为代入(1)得………5分 (6)十一、证明:令………………1 分又…。
3分的图形是凸的,由函数在闭区间连续知道最小值一定在区间端点取到。
,所以………….5分。
(2010至2011学年第一学期)一、单项选择题(15分,每小题3分)1、当时,下列函数为无穷小量的是()(A)(B) (C)(D)2.函数在点处连续是函数在该点可导的( )(A)必要条件(B)充分条件(C)充要条件(D)既非充分也非必要条件3.设在内单增,则在内( )(A)无驻点(B)无拐点(C)无极值点(D)4.设在内连续,且,则至少存在一点使()成立。
(A) (B)(C) (D)5.广义积分当()时收敛。
(A) (B)(C)(D)二、填空题(15分,每小题3分)1、若当时,,则;2、设由方程所确定的隐函数,则;3、函数在区间单减;在区间单增;4、若在处取得极值,则;5、若,则;三、计算下列极限。
(12分,每小题6分)1、2、四、求下列函数的导数(12分,每小题6分)1、,求2、,求五、计算下列积分(18分,每小题6分)1、2、3、设,计算六、讨论函数的连续性,若有间断点,指出其类型. (7分)七、证明不等式:当时,(7分)八、求由曲线所围图形的面积。
2010高数试卷及答案(经济管理类)
高数试卷及答案一.(本题30分,每题3分)1.极限lim2nn→+∞⎛⎫=⎪⎪⎝⎭。
解:记))112nα+=,则ln6lim2nnnα→+∞=,))()ln61211lim lim1lim122nnnn nnn n neααα→+∞→+∞→+∞⎛⎫+⎛⎫⎡⎤⎪=+=+== ⎪⎢⎥⎪ ⎪⎣⎦⎝⎭⎝⎭2. 设()f x在1x=处可导,且(1)0f=,(1)1f'=,则极限()1131()d dlim(1)xtxt f u u tx→=-⎰⎰。
解:()()()()()()()()111132111d d d dlim lim lim61131xt x xx x xt f u u t x f u u f u u xf xxx x→→→-==---⎰⎰⎰⎰()()()1'1lim66xf x f x xf x→---==-。
3.设yx=⎰,则334d y dydx dx-=。
解:将yx=⎰y微分得到dxdy=dydx=224'4d y yyydx==,334'd yydx==,简单计算可得3340d y dydx dx-=。
4. 设()f x有一个原函数是sin xx,那么2()xf x dxππ'=⎰。
解:首先由分部积分公式有2222()()()()xf x dx xdf x xf x f x dxππππππππ'==-⎰⎰⎰,又()f x 有一个原函数sin x x,所以'2sin cos sin ()x x x x f x x x -⎛⎫== ⎪⎝⎭, 222cos sin sin 4()1x x xx xf x dx xxπππππππ-'=-=-⎰。
5. 曲线211y x=+绕其渐近线旋转所得旋转体体积V = 。
解:渐近线为x 轴,22224221111seccos 2V dx dt x t tπππππ+∞-∞-⎛⎫==⋅=⎪+⎝⎭⎰⎰。
10-11第一学期经管高数期末(A)卷答案
中国矿业大学徐海学院2010~2011学年第一学期《经管高数》试卷(A )卷答案一、填空题(每空3分,共15分)1、[1,2] 22e -、 3、> 4、1 5、π3二、选择题(每题3分,共15分)1、D2、B3、C4、D5、A三、计算下列各题(共42分) 1、(7分)求极限tan 000sin lim ln(1tan )x x x tdt t dt →+⎰⎰.解:原式=20sin(tan )sec lim ln(1tan )x x x x →⋅-+ 20tan lim tan cos x x x x→=-1=- 2、(7分)求由参数方程ln arctan x y t t⎧⎪=⎨=-⎪⎩所确定的隐函数的一阶导数,dy dx 二阶导数22d y dx. 解:21dx t dt t =+,221dy t dt t=+ 22211dy t dy dt t t dx t dxdt t +===+22d y dx =22()111d dy t dt dx dx t tdt t +==+ 3、(7分)设sin sec(3)(cos )x y x x dy =⋅,求.解:两边取对数得ln sin ln(cos )lnsec(3)y x x x =+,两边对x 求导得sin 1cos ln(cos )sin 3sec(3)tan(3)cos sec(3)y x x x x x x y x x '-=++⋅ 即 [cos ln(cos )sin tan 3tan(3)]y y x x x x x '=-+[cos ln(cos )sin tan 3tan(3)]dy y x x x x x dx =-+4、(7分)计算不定积分2322(4)x dxx -⎰.解:令 x t =2sin ,)2,2(ππ-∈t ,tdt dx cos 2= 234sin 2cos 8cos t tdt t=⋅⎰原式2tan tdt =⎰2(sec 1)t dt =-⎰ t a n t t C =-+arcsin 2x C =+ 5、(7分)计算不定积分x解:原式ln x =ln )x =+.C =6、(7分)计算不定积分10x ⎰.解:22t x t dx tdt === 00;1,1x t x t ==== 时, 时112001112222000arctan 2arctan 11arctan (1)141t tdt tdt t t t dt dt t tπ=⋅==-⋅=--++⎰⎰⎰⎰原式 10(arctan )4t t π=-- 12π=- 四、综合题(共28分)1、(8分)设某商品的总成本为502,C Q =+,需求函数为20,2Q P =-,其中P 为该商品单价,Q 为产量,求总利润最大时的产量即最大产量. 解:总利润为2()1850,2Q L Q PQ C Q =-=-- ()18L Q Q '=- ,令()0L Q '=得18Q =,又()10L Q ''=-<,因此18Q =为唯一的极大值点,即为最大值点. 因此当产量为18Q =时,总利润最大.2、(8分)()[1,2],(1,2),(2)0,f x f =设在上连续在内可导且 ()(1,2),()ln()f f ξξξξξ'∈=-证明至少存在一点使. 证明令:()()ln F x f x x =则在上连续在内可导且 F x F f F f ()[,],(,),()()ln ()()ln 121211102220====即在上满足罗尔定理的条件F x ()[,]12则至少存在使ξξ∈'=(,)()120F而,即有'='+⋅'=-F x f x x f x x f f ()()ln ()()()ln 1ξξξξ 3、(12分)过曲线3x y =(0≥x )上点A 作切线,使该切线与曲线及x 轴围成的平面图形D 的面积43=S . (1)求点A 的坐标;(2)求平面图形D 绕x 轴旋转一周所得旋转体的体积.解:(1)设点A 的坐标为()3,t t ,其中0>t ,于是曲线3x y =在点A 的切线方程为()2313y x t t =-令0y =,可得此切线与x 轴的交点的横坐标t x 20-=,从而区域D 的面积为303343321t t dx x t t S t =-=⎰ 因43=S ,则1=t ,于是A 的坐标为()1,1 (2)图形D 绕x 轴旋转一周所得旋转体的体积 ()()πππ523131102323=-=⎰dx x V。
高数必不挂-高等数学A(一)2010-2011(A)解答
第 1 页 共 6 页上 海 海 事 大 学 试 卷2010 — 2011 学年第一学期期末考试 《 高等数学A (一)》(A 卷)解答一、单项选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中) (本大题分3小题, 每小题4分, 共12分).)( ;)(;2)( ; 0)(2coslim 120不存在,但不是无穷大为无穷大 等于 等于)(的值为、D C ••B A •••A••••••••••••••••xx x +→个不同的实根 有 有三个不同的实根 有唯一实根 无实根 )(则方程适合、设5)()()()(0432,,53,,2352D C •••B A ••••B•••••c bx ax x b a b a =+++< 为正常数 恒为零 为负常数 不为常数 )(则、设)()()()()(,)(32sin D C •••B A •••D•••••••••••x F dt e x F •x •xt ⎰+=π二、填空题(将正确答案填在横线上)(本大题分2小题, 每小题4分, 共8分)1、的值为201lim x x e x x --→ 212、设a b c ,,均为非零向量,满足c b a a c b b a c ⨯=⨯=⨯=,,,b ++三 计算题(必须有解题过程,否则不给分) (本大题分10小题,每题6分,共 60分)1、极限xx xx 2)4(lim +∞→ 884)41(lim e xxx =+=⋅∞→原式 6分2、)0(,)cos()(y y xy e x y y xy '=+=求确定由方程设--------------------------------------------------------------------------------------装 订线第 2 页 共 6 页解:y xy y x y y x y e xy '='+-'+)sin()()(, 4分2)0(,2.,0='==y y x 时当 6分3、.求dx xx••⎰--1145 解:令 ,541452-==-x t x t () 1分 原式=-⎰185213()t dt4分 =166分 4、.d )1(arctan x x x x⎰+求解:x x x xd )1(arctan ⎰+)d(arctan arctan 2x x ⎰= 3分C x +=2)(arctan 6分(遗留C 扣1分)5、.点处的连续性和可导性在试讨论,,已知 0)( , 00cos )(20=⎪⎩⎪⎨⎧≤>=⎰x x f x •••x x tdt t x f •x •解:0)0(0lim )(lim )0(0cos lim )0(200====-==+--+→→→⎰f x x f f tdt t f x x xx 又 2分∴= 在点处连续f x x ()0 3分lim )0()(lim )0(0)cos (lim cos lim )0()(lim )0(200000==-='===-='--+++→→-→→→+⎰x x xf x f f x x xtdt t xf x f f x x x xx x 5分第 3 页 共 6 页'==f f x x ()()000,在点处可导. 6分.,试求: 斜率等于处的切线,且它在原点通过原点具有连续导数,又曲线、设函数xx dtt f •••x f y x f •x•x sin )(lim100)()(60⎰→=解:,,由题意知,1)0(0)0(='=f f 2分lim()sin lim ()sin cos x xx f t dt x x f x x x x→→⎰=+000 4分='-→lim()cos sin x f x x x x 02 5分='=12012f () 6分7、)为驻点,,使得点(中的试确定442,,,,23-+++=d c b a d cx bx ax y(1,—10)为拐点。
经管类高等数学答案
经管类高等数学答案【篇一:《高等数学》(经管类)期末考试试卷】class=txt>《高等数学》(经管类)期末考试试卷班级:姓名:学号:分数:1. ???0e?4xdx? 2. 已知点a(1,1,1),b(2,2,1),c(2,1,2)则?bac?3. 交换二次积分次序:?dy?0112?yf(x.y)dxxn4. 已知级数 ?n,其收敛半径r= 。
n?12?n?5. 已知二阶线性常系数齐次常微分方程的特征根为1和?2则此常微分方程是6. 差分方程2yx?1?3yx?0的通解为1. 求由x?0,x??,y?sinx,y?cosx 所围平面图形的面积。
《高等数学》(经管类)第 1 页共8页2. 求过点(2,0,且与两平面x?2y?4z?7?0,3x?5y?2z?1?平行的直线方?3)0程。
3.求x y??00 《高等数学》(经管类)第 2 页共8页4. 设可微函数z?z(x,y)由函数方程 x?z?yf(x2?z2) 确定,其中f有连续导数,求?z。
?x?z?2z5. 设 z?f(xy,xy),f具有二阶连续偏导数,求 ,2。
?x?x22《高等数学》(经管类)第 3 页共8页6. 计算二重积分???x2?y2d?,其中d为圆域x2?y2?9。
d7. 求函数 f(x,y)?x3?y3?3x2?3y2?9x 的极值。
《高等数学》(经管类)第 4 页共8页n221. 判断级数 ?nsinnx 的敛散性。
n?12?2. 将f(x)?x展开成x的幂级数,并写出展开式的成立区间。
x2?x?2《高等数学》(经管类)第 5 页共8页【篇二:高等数学经管类第一册习题答案】1.1 --1.1.3函数、函数的性质、初等函数一、选择题1.c;2.d;3.d 二、填空题1.x?5x?11;2. 1;3. ?0,1?2三、计算下列函数的定义域。
1. ???,2???3,???;2. ???,0???3,???;3. ?2,3???3,???;4. ?0,1?四、(1)y?u2,u?sinv,v?lnx.(2) y?u2,u?lnt,t?arctanv,v?2x.?sinx?1,x?1?五、 f?x???sinx?1,0?x?1??sinx?3,x?0?1.2.1 数列的极限一、选择题1.c;2.d;3.d 二、填空题1.111;2. ;3. 22311三、计算下列极限1. . 2. . 3. 1.4.231.2.2 函数的极限?2???. 5. 10 ?3?4一、选择题1.c;2.d;3.d 二、填空题1. a?4,b??2;2. 1;3.三、计算下列极限1. 2. 2. 6 . 3. 2x.4.1. 5. 1 33?;3. ;4. 05?1.2.3---1.2.5 无穷小与无穷大;极限的运算法则和极限存在准则;两个重要极限一、选择题1.ab;2.c;3. c 二、填空题1. ?1;2.?3?6三、计算下列极限1. e. 2. ?? . 3. e.4.?2??6205. e21.2.5--1.2.6 两个重要极限;无穷小的比较一、选择题1.c;2.b;3.a二、填空题1.1;2. k?0;3. 高. 21?1?22三、计算下列极限1. 1. 2. . 3. e.4. e2. 5. e41.3.1 函数的连续性与间断点一、选择题1.b;2.c;3.a 二、填空题1. x?0,?1;2. 三、求下列函数的不连续点并判别间断点的类型。
(完整版)高等数学期末考试试题及答案(大一考试),推荐文档
+∞ (2010 至 2011 学年第一学期)课程名称: 高等数学(上)(A 卷)注意事项:1、 满分 100 分。
要求卷面整洁、字迹工整、无错别字。
2、 考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否则视为废卷。
3、 考生必须在签到单上签到,若出现遗漏,后果自负。
4、 如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷和答题卷分别一同交回,否则不给分。
试题一、单选题(请将正确的答案填在对应括号内,每题 3 分,共 15 分)1. lim sin(x 2- 1) = ()x →1x -11 (A) 1;(B) 0;(C)2;(D)22.若 f (x ) 的一个原函数为 F (x ) ,则⎰e -xf (e -x )dx 为( )(A) F (e x ) + c ;(B) - F (e -x ) + c ;(C) F (e -x ) + c ;(D ) 3.下列广义积分中 ( )是收敛的. F (e -x )+ cx(A) +∞ sin xdx ; (B)⎰1 1dx ; (C)x ⎰dx ; (D)0 e x dx 。
⎰-∞-1x-∞1 + x 2⎰-∞4. f (x ) 为定义在[a , b ]上的函数,则下列结论错误的是()(A) f (x ) 可导,则 f (x ) 一定连续;(B) f (x ) 可微,则 f (x ) 不一定可系专业级班学号姓名密封不 线密封线内要答题⎰⎩导;(C) f (x ) 可积(常义),则 f (x ) 一定有界;(D) 函数 f (x ) 连续,则 xf (t )dt 在[a ,ab ]上一定可导。
5. 设函数 f (x ) = lim 1 + x ,则下列结论正确的为()n →∞1 + x 2n(A) 不存在间断点; (B) 存在间断点 x = 1;(C) 存在间断点 x = 0 ;(D) 存在间断点 x = -1得分评阅教师二、填空题(请将正确的结果填在横线上.每题 3 分,共 18 分)1. 极限limx →0x⎧x = 1 + t 2=.2. 曲线⎨ y = t 3 在t = 2 处的切线方程为 .3. 已知方程 y - 5 y ' + 6 y = xe 2x 的一个特解为- 1(x 2 + 2x )e 2x ,则该方程的通解为.f (x ) 24. 设 f (x ) 在 x = 2 处连续,且lim = 2 ,则 f '(2) =x →2 x - 25. 由实验知道,弹簧在拉伸过程中需要的力 F (牛顿)与伸长量 s 成正比,即 F = ks (k 为比例系数),当把弹簧由原长拉伸 6 cm 时,所作的功为焦耳。
《数理经济学》2010级期末试卷A答案
一、(6%)画出下列函数的水平集。
12 (1)y x x =+12 (2)min(,)y x x=二、(16%)试判断如下集合H 1~H 4是否为凸集,并加以简单说明。
(1)}|),{(21xe y R y x H =∈=(2)欧氏空间中的超平面H 2={x∈R n│p •x=α},其中p∈R n为常向量,α∈R为实常数,p •x 表示两向量的内积。
(3)欧氏空间R n上的以原点为中心、半径为r 的超球为:H 3={x∈R n │x •x≤r 2}(4)224}0,0;1|),{(R y x xy R y x H ⊂≥∈=≻≻解:(1)121221(1)112211212121{(,)|}(,),(,),(1)(1)((1),(1))x x x x x H x y R y e x y x y H y y e e e x x y y H λλλλλλλλλλ+−=∈=∀∈+−=+−≠∴+−+−∉∵不是凸集(2)-(4)是凸集,三、(10%)设某两个商品的需求量1q 和2q 分别是它们的价格1p 、2p 和收入I 的函数,形如:23/2121122126,4q p p I q p p I −−==。
目前的价格*1p =6,*2p =9,收入I *=2.当两种商品的价格均上升0.2,收入下降0.1时,1q 和2q 分别增加多少?1232212121211112222123133222221212121222121212::(,,)(0.2,0.2,0.1)*(6,9,2)6(*)4(*)1296448T Tx p p I x p p I F x p p I q q q pp I DF x q q q p p I p p I p p I p p p I p p I p p I −−−−−−−−∆=∆∆∆=−=⎛⎞⎜⎟=⎜⎟⎝⎠∂∂∂⎛⎞⎜⎟∂∂∂⎜⎟=⎜⎟∂∂∂⎜⎟∂∂∂⎝⎠⎛⎞−⎜⎟=⎜⎟−⎝⎠=解依题意1230.75 4.58/3 1.185232/3(*)(*)(*)0.230.75 4.50.9(*)0.28/3 1.185232/30.2370.1F x x F x DF x xq DF x x q −⎛⎞⎜⎟−⎝⎠+∆−≈∆⎛⎞∆−−⎛⎞⎛⎞⎛⎞⎜⎟≈∆≈≈⎜⎟⎜⎟⎜⎟⎜⎟∆−−⎝⎠⎝⎠⎝⎠⎜⎟−⎝⎠四、(12%)1/41/212121212121212/(,)(,)1(,)()(),x x f x x f x x f ff x x x x x x x y x =∂∂=+∂∂=保持不变的等产量线的斜率相等。
2010-2011年度高数I试题A答案(经院内招生用)(同济版)
2010-2011年度高数I试题A答案(经院内招生用)(同济版)暨 南 大 学 考 试 试 卷一、填空题(将题目的正确答案填写在相应题目划线空白处。
共8小题,每小题2分,共16分)暨南大学《高等数学I 》试卷A 答案及评分(经济学院内招生用)1.2cos limx x tdt x→=⎰2.x →∞-= 03. 极限lim 2sin2n nn x→+∞=x(0x 为不为的常数)4. 函数20 1()2 1 121 2x f x x x x x <⎧⎪=+≤<⎨⎪+≤⎩的间断点是1x =5.设x y a =,则函数的n 阶导数()n y =(ln )n x a a ;6.若21()11x x f x ax x ⎧≤=⎨->⎩ 当a = 2 时,函数)f x ( 在1x =处可导. 7.已知某工厂生产某种商品,该产品的边际成本函数()3C x '=+,其固定成本为2000(元)则总成本为()20003C x x =++(元), 8. 1sin dx x =⎰ln csc cot x x c -+二、单选题(在每小题的备选答案中选出一个正确的答案,并将正确答案的号码填在题干的括号内。
共8小题,每小题2分,共16分)1.下列数列中收敛的是( C )(A) {}(1)n n - (B) 1n n ⎧⎫-⎨⎬⎩⎭(C)212n ⎧⎫+⎨⎬⎩⎭ (D) {}(1)n -2.若1lim(21)1x x →-=,则对于任意给定的0ε>,存在(B )当01x δ<-<时总有(21)1x ε--<成立(A) δε= (B) 2εδ=(C) 3δε= (D) 4δε=解:31232lim lim 12112xx x x x x x x →∞→∞⎛⎫+ ⎪+⎛⎫= ⎪ ⎪+⎝⎭ ⎪+⎝⎭ …………2分 312lim 112xx x x x →∞⎛⎫+ ⎪⎝⎭=⎛⎫+ ⎪⎝⎭……………………3分 32123lim 121lim 12xx xx e x e e x →∞→∞⎛⎫+ ⎪⎝⎭===⎛⎫+ ⎪⎝⎭……………………5分2.(1ln lim xx x →+∞+解:()(11ln ln ln 1x xxx e++=……………………………1分而((ln 1lim ln lim lim1ln ln x x x x x x xx→+∞→+∞→+∞+===…………4分于是()1ln 1lim xx x e e →+∞+==………………………………5分3.sin 0x x x-→解:sin x x x -→03sin lim12x x x x →-= ………………………………………………2分21cos lim32x x x →-= ………………………………………………4分sin 1lim33x x x →== ………………………………………5分4.确定常数 a , b ,的值, 使 02 sin 1lim.2ln(1)d xx ba x xt t→-=+⎰解0sin 0x ax x →-→时,0.b ∴=………………………………2分原式=0022sin sin lim lim ln(1)d ln(1)d x x x x ba x x a x x t t t t →→--=++⎰⎰…………………………3分002200cos cos 1limlim ln(1)2x x a x a x x x →→--===+() ………………………4分故lim cos x a x →-()=0,从而1a = ………………………5分四、计算题(共4小题,每题6分,共24分)1.由方程1y y xe =+确定的函数()y f x =可导,求y '及 1x y =-''。
2010年普通高等学校招生全国统一考试数学卷(全国Ⅰ (1)最新修正版
绝密★启用前2010年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I 卷1至2页。
第Ⅱ卷3 至4页。
考试结束后,将本试卷和答题卡一并交回。
第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k kn k n n P k C p p k n -=-=…一.选择题 (1)复数3223ii+=- (A)i (B)i - (C)12-13i (D) 12+13i1.A 【命题意图】本小题主要考查复数的基本运算,重点考查分母实数化的转化技巧.【解析1】32(32)(23)694623(23)(23)13i i i i i i i i i +++++-===--+. 【解析2】232322323i i ii i i+-+==-- (2)记cos(80)k -︒=,那么tan100︒=B. C.D.2.B 【命题意图】本小题主要考查诱导公式、同角三角函数关系式等三角函数知识,并突出了弦切互化这一转化思想的应用.【解析1】222sin801cos 801cos (80)1k =-=--=-,所以tan100tan80︒=-sin 80cos80k=-=-【解析2】cos(80)k -︒=cos(80)k⇒︒=,()()00000sin 18080sin100sin 80tan1001008018080oo ocon con con -︒===--=(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)13.B 【命题意图】本小题主要考查线性规划知识、作图、识图能力及计算能力.【解析1】画出可行域(如右图),由图可知,当直线l 经过点A(1,-1)时,z 最大,且最大值为max 12(1)3z =-⨯-=.x +20y -=【解析2】11222z x y y x z =-⇒=-,画图知过点()1,1-是最大,()1213Max z =--= (4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a =(A) 4.A 【命题意图】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.【解析1】由等比数列的性质知31231322()5a a a a a a a ===, 37897988()a a a a a a a ===10,所以132850a a =,所以133364564655()(50)a a a a a a a =====【解析2】123a a a =5325a ⇒=;789a a a =103810,a ⇒=6333528456550a a a a a a a ⇒==⇒==(5)35(1(1+的展开式中x 的系数是 (A) -4 (B) -2 (C) 2 (D) 4 5.C 【解析】12451335333322(1(1161281510105x x x x x x x x ⎛⎫⎛⎫+=+++-+-+- ⎪ ⎪⎝⎭⎝⎭x 的系数是 -10+12=2(6)某校开设A 类选修课3门,B 类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有 (A) 30种 (B)35种 (C)42种 (D)48种6.A 【命题意图】本小题主要考查分类计数原理、组合知识,以及分类讨论的数AB C DA 1B 1C 1D 1 O学思想.【解析1】:可分以下2种情况:(1)A 类选修课选1门,B 类选修课选2门,有1234C C 种不同的选法;(2)A 类选修课选2门,B 类选修课选1门,有2134C C 种不同的选法.所以不同的选法共有1234C C +2134181230C C =+=种. 【解析2】33373430C C C --=(7)正方体ABCD-1111A BC D 中,B 1B 与平面AC 1D 所成角的余弦值为A3237.D 【命题意图】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D 到平面AC 1D 的距离是解决本题的关键所在,这也是转化思想的具体体现.与【解析1】因为BB 1//DD 1,所以B 1B 与平面AC 1D 所成角和DD 1平面AC 1D 所成角相等,设DO ⊥平面AC 1D ,由等体积法得11D ACD D ACD V V --=,即111133ACD ACD S DO S DD∆∆⋅=⋅.设DD 1=a,则122111sin 60)22ACD S AC AD ∆==⨯=,21122ACD S ADCD a ∆==. 所以1313A C D A C D S D D D O a S ∆∆==,记DD 1与平面AC 1D 所成角为θ,则1sin 3DO DD θ==,所以cos θ=. 【解析2】设上下底面的中心分别为1,O O ;1O O 与平面AC 1D 所成角就是B 1B 与平面AC 1D所成角,1111cos 1/3O O O OD OD ∠===(8)设a=3log 2,b=In2,c=125-,则A a<b<c Bb<c<a C c<a<b D c<b<a8.C 【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用. 【解析1】 a=3log 2=21log 3, b=In2=21log e,而22log 3log 1e >>,所以a<b, c=125-222log 4log 3>=>,所以c<a,综上c<a<b. 【解析2】a =3log 2=321log ,b =ln2=21log e , 3221log log 2e <<< ,32211112log log e<<<; c=12152-=<=,∴c<a<b (9)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点p 在C 上,∠1F p 2F =060,则P 到x 轴的距离为(A)(C)(D)9.B 【命题意图】本小题主要考查双曲线的几何性质、第二定义、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力.【解析1】不妨设点P 00(,)x y 在双曲线的右支,由双曲线的第二定义得21000||[()]1a PF e x a ex c =--=+=+,22000||[)]1a PF e x ex a c=-=-=-.由余弦定理得cos ∠1F P 2F =222121212||||||2||||PF PF F F PF PF +-,即cos 060=,解得2052x =,所以2200312y x =-=,故P 到x轴的距离为0||2y =【解析2】由焦点三角形面积公式得:120226011cot 1cot 222222F PF S b c h h h θ∆=====⇒=(10)已知函数F(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b 的取值范围是(A))+∞(B))+∞ (C)(3,)+∞ (D)[3,)+∞10.A 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+2b 2a a=+>,从而错选A,这也是命题者的用苦良心之处.【解析1】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或1b a =,所以a+2b=2a a+ 又0<a<b,所以0<a<1<b ,令2()f a a a=+,由“对勾”函数的性质知函数()f a 在a ∈(0,1)上为减函数,所以f(a)>f(1)=1+21=3,即a+2b 的取值范围是(3,+∞). 【解析2】由0<a<b,且f (a )=f (b )得:0111a b ab <<⎧⎪<⎨⎪=⎩,利用线性规划得:0111x y xy <<⎧⎪<⎨⎪=⎩,求2z x y=+的取值范围问题,11222z x y y x z =+⇒=-+,2111y y x x'=⇒=-<-⇒过点()1,1时z 最小为3,∴(C)(3,)+∞(11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ∙的最小值为(A) 4-(B)3-(C) 4-+(D)3-+11.D 【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力. 【解析1】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠APB=2α,,sin α=||||cos 2PA PB PA PB α∙=⋅=22(12sin )x α-=222(1)1x x x -+=4221x x x -+,令PA PB y ∙=,则4221x x y x -=+,即42(1)0x y x y -+-=,由2x 是实数,所以2[(1)]41()0y y ∆=-+-⨯⨯-≥,2610y y ++≥,解得3y ≤--或3y ≥-+故min ()3PA PB ∙=-+.此时x =【解析2】法一: 设,0APB θθπ∠=<<,()()2cos 1/tan cos 2PA PB PA PB θθθ⎛⎫∙== ⎪⎝⎭2222221sin 12sin cos 22212sin 2sin sin22θθθθθθ⎛⎫⎛⎫-- ⎪⎪⎛⎫⎝⎭⎝⎭=⋅-=⎪⎝⎭ 法二:换元:2sin,012x x θ=<≤,()()1121233x x PA PB x xx--∙==+-≥或建系:园的方程为221x y +=,设11110(,),(,),(,0)A x y B x y P x -,()()2211101110110,,001AO PA x y x x y x x x y x x ⊥⇒⋅-=⇒-+=⇒=()222222221100110110221233PA PB x x x x y x x x x x ∙=-+-=-+--=+-≥(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为(A)3(B)3(C)(D) 312.B 【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析1】过CD 作平面PCD ,使AB ⊥平面PCD,交AB 与P,设点P 到CD 的距离为h ,则有ABCD 11222323V h h =⨯⨯⨯⨯=四面体,当直径通过AB 与CD 的中点时,max h =故max V =. 【解析2】()()22210110111001,,2PA PB x x y x x y x x x x y ∙=-⋅--=-+-绝密★启用前2010年普通高等学校招生全国统一考试理科数学(必修+选修II)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。
高等数学期末考试试题及答案(大一考试)
(2010至2011学年第一学期)课程名称: 高等数学(上)(A 卷)考试(考查): 考试 2008年 1 月 10日 共 6 页 注意事项:1、 满分100分。
要求卷面整洁、字迹工整、无错别字。
2、 考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否则视为废卷。
3、 考生必须在签到单上签到,若出现遗漏,后果自负。
4、 如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷和答题卷分别一同交回,否则不给分。
试 题一、单选题(请将正确的答案填在对应括号内,每题3分,共15分)1. =--→1)1sin(lim21x x x ( ) (A) 1; (B) 0; (C) 2; (D)212.若)(x f 的一个原函数为)(x F ,则dx e f e xx )(⎰--为( )(A) c e F x +)(; (B) c eF x+--)(;(C) c e F x+-)(; (D )c xe F x +-)( 3.下列广义积分中 ( )是收敛的. (A)⎰+∞∞-xdx sin ; (B)dx x⎰-111; (C) dx x x ⎰+∞∞-+21; (D)⎰∞-0dx e x。
4. )(x f 为定义在[]b a ,上的函数,则下列结论错误的是( )(A) )(x f 可导,则)(x f 一定连续; (B) )(x f 可微,则)(x f 不一定可导;(C) )(x f 可积(常义),则)(x f 一定有界; (D) 函数)(x f 连续,则⎰xadt t f )(在[]b a ,上一定可导。
5. 设函数=)(x f nn x x211lim++∞→ ,则下列结论正确的为( )(A) 不存在间断点; (B) 存在间断点1=x ; (C) 存在间断点0=x ; (D) 存在间断点1-=x二、填空题(请将正确的结果填在横线上.每题3分,共18分)1. 极限=-+→xx x 11lim 20 _____.2. 曲线⎩⎨⎧=+=321ty t x 在2=t 处的切线方程为______. 3. 已知方程xxe y y y 265=+'-''的一个特解为x e x x 22)2(21+-,则该方程的通解为 .4. 设)(x f 在2=x 处连续,且22)(lim2=-→x x f x ,则_____)2(='f5.由实验知道,弹簧在拉伸过程中需要的力F (牛顿)与伸长量s 成正比,即ks F =(k 为比例系数),当把弹簧由原长拉伸6cm 时,所作的功为_________焦耳。
(整理)-2010学年第一学期期末考试试卷(a卷)参考解答与评分标准.
中国传媒大学2009-2010学年第 一 学期期末考试试卷(A 卷)参考解答与评分标准考试科目: 高等数学A (上) 考试班级: 2009级工科各班 考试方式: 闭卷命题教师:一. 填空题(将正确答案填在横线上。
本大题共3小题,每小题3分,总计9分 ) 1、若在),(b a 内,函数)(x f 的一阶导数0)(>'x f ,二阶导数0)(<''x f ,则函数)(x f 在此区间内单调 增加 ,曲线是 上凸 的。
2、设⎪⎩⎪⎨⎧+=+=232322t t y tt x 确定函数)(x y y =,求=22dx y d )1(23t +。
3、=⎰dx x x1cos 12C x +-1sin 。
二. 单项选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中。
本大题共3小题,每小题3分,总计 9分)1、设A x x ax x x =-+--→14lim 231,则必有 .104)( ; 64)(;104)( ; 52)(=-=-==-====A a D A a C A a B A a A , ,, ,答( C )2、设211)(xx f -=,则)(x f 的一个原函数为 xx D x x C x B x A -++-11ln21)(11ln 21)(arctan )(arcsin )( 答( D ) 3、设f 为连续函数,又,⎰=xe x dt tf x F 3)()(则=')0(F)0()1()( 0)()1()( )(f f D C f B e A - 答( B )三. 解答下列各题(本大题共2小题,每小题5分,总计10分 )1、求极限xe e x x x cos 12lim 0--+-→。
解:=--+-→x e e x x x cos 12lim 0xe e xx x sin lim 0-→- (3分) 2cos lim 0=+=-→xe e x x x 。
高等数学期末考试试题及答案(大一考试)
五、设函数由方程确定,求.(8分)六、若有界可积函数满足关系式,求。
(8分)七、求下列各不定积分(每题6分,共12分)(1).八、设求定积分。
(6分)九、讨论函数的单调区间、极值、凹凸区间和拐点坐标.(10分)十、求方程的通解(6分)十一、求证:.(5分)第一学期高等数学(上)(A)卷分标准题3分,共15分)2。
B 3。
D 4。
B 5.D分,共18分)为任意常数),4. 2 , 5。
6。
分 (6)分解:………………3分…………….6分 (8)导 (3)数)…………6分分解:(1)。
……。
.3分 (6)分分=……………6分时有极大值2,有极小值。
在上是凸的,在上是凹的,拐点为(0,0)………10分十、解;…………………..3分设方程(1)的解为代入(1)得………5分…………………….6分十一、证明:令………………1 分又…。
3分的图形是凸的,由函数在闭区间连续知道最小值一定在区间端点取到。
,所以…………。
5分.(2010至2011学年第一学期)一、单项选择题(15分,每小题3分)1、当时,下列函数为无穷小量的是( )(A)(B) (C)(D)2.函数在点处连续是函数在该点可导的()(A)必要条件(B)充分条件(C)充要条件(D)既非充分也非必要条件3.设在内单增,则在内()(A)无驻点(B)无拐点(C)无极值点(D)4.设在内连续,且,则至少存在一点使()成立。
(A)(B)(C)(D)5.广义积分当( )时收敛。
(A) (B) (C)(D)二、填空题(15分,每小题3分)1、若当时,,则;2、设由方程所确定的隐函数,则;3、函数在区间单减;在区间单增;4、若在处取得极值,则;5、若,则;三、计算下列极限.(12分,每小题6分)1、2、四、求下列函数的导数(12分,每小题6分)1、,求2、,求五、计算下列积分(18分,每小题6分)1、2、3、设,计算六、讨论函数的连续性,若有间断点,指出其类型。
(7分)七、证明不等式:当时,(7分)八、求由曲线所围图形的面积。
2010-2011秋季高数A试题(A卷)答案
中国农业大学2010 ~2011学年秋季学期高等数学A 课程考试试题(A 卷)答案 2011/01(注意:本试卷共有八道大题,满分100分,考试时间100分钟)一、单项选择题(本题共有4道小题,每小题3分,满分12分),请将合适选项填在括号内.1.设函数()f x 在0x =处连续,下列命题错误的是【 D 】.(A )若0()lim x f x x →存在,则(0)0f = (B )若0()()lim x f x f x x→+-存在,则(0)0f =(C )若0()lim x f x x →存在,则(0)f '存在 (D )若0()()lim x f x f x x →--存在,则(0)f '存在.2. 设20()sin x f x tdt =⎰,34()g x x x =+,则当0x →时,()f x 是()g x 的【 A 】.(A )高阶无穷小 (B )同阶但非等价无穷小 (C )等价无穷小 (D )低阶无穷小. 3. 设()x f 是[]a a ,-上的连续函数,则()()cos a af x f x xdx ---⎡⎤⎣⎦⎰=【 B 】.(A )1 (B )0 (C )-1 (D )无法计算.4. 下列选项正确的是【 C 】.(A) ⎰-1121dx x = 2 (B) ⎰-1121dx x = - 2(C) dx x ⎰-1121 不存在 (D) dx x⎰-1121= 0 . 二、填空题(本题共有4道小题,每小题3分,满分12分),请将答案填在横线上. 1. 已知0sin lim3(2)x kxx x →=-+,则k 的值等于 -6 .2.已知cos x x 是()f x 的一个原函数,则cos ()d x f x x x ⋅=⎰____21cos ()2x C x+_______.3. 计算定积分10x =⎰______4π_____________.4. )(x f y =是偶函数,在曲线)(x f y =上点(1,2)处的切线方程为053=+-y x ,则曲线在点(-1,2)处的切线方程为___053=-+y x ________________. 三、计算下列各题(本题共有4道小题,每小题6分,满分24分).1.求极限 30sin lim x x xx→-. 解:33300sin 6lim lim x x x x xx x →→-= ……………………………3分16= ……………………………6分 2.求参数方程231x t y t ⎧=+⎨=⎩(t 为参数)所确定的函数()y f x =的导数22,dy d ydx dx . 解:23322dy t tdx t == ……………………………3分 '223()3224t d y dx t t== ……………………………6分 3. 求不定积分ln d x x x⎰. 解:ln d ln d(ln )xx x x x=⎰⎰ ……………………………3分 2(ln )2x C =+ ……………………………6分4. 已知0()()()d xF x x t f t t =-⎰,求()F x 的二阶导数.解: 0()()()d ()d ()d x x xF x x t f t t xf t t tf t t =-=-⎰⎰⎰ ……………………………2分()[()d ()d ]()d ()()()d x x x xF x x f t t tf t t f t t xf x xf x f t t ''=-=+-=⎰⎰⎰⎰ ………………………4分()(()d )()xF x f t t f x '''==⎰ ……………………………6分四、(本题满分10分)求函数xn e n x x x y -⎪⎪⎭⎫ ⎝⎛++++=!!212 的极值 (其中n 为正奇数).解:xn xn e n x x x en x x x y ---⎪⎪⎭⎫ ⎝⎛++++-⎪⎪⎭⎫ ⎝⎛-++++='!!21)!1(!21212xn e n x --=!, ……………………………3分驻点为0x =, ……………………………5分由于n 为正奇数,当0x <时,0<nx ,故,0>'y 故y 单调上升 ; ……………7分当0x >时,0>n x ,故,0<'y 故y 单调递减 ; ……………………………9分因此0x =为函数的极大值点,且极大值为(0)1y =. ……………………………10分五、(本题满分10分)设()f x 在[0,1]上连续,且()1f x <,证明02()d 1xx f t t -=⎰在[0,1]上只有一个解. 证明:(1)存在性()2()d 1xF x x f t t =--⎰ ……………………………2分(0)1,F =- ……………………………3分1(1)1()1()0F f x dx f ξ=-=->⎰ ……………………………4分函数()f x 在[0,1]上连续,根据介值定理,则存在(0,1)ξ∈,使得()0F ξ=. ……………………………6分(2)唯一性()2()0F x f x '=->, ……………………………8分函数()F x 在[0,1]上单调增加,从而()F x 在[0,1]有唯一的根.……………………10分六、(本题满分10分)求经过三点123(1,1,1),(2,0,1),(1,1,0)P P P --的平面方程. 解:法一:12(1,1,0),PP =-13(2,2,1)PP =--- ……………………………2分 取1213110(1,1,4),221ij kn PP PP =⨯==-=---- ……………………………6分平面方程为(1)(1)4(1)0,x y z -+---= ……………………………10分整理得420.x y z +-+= ……………………………10分法二:所求平面的方程为1111100221x y z ----=--- 整理得420.x y z +-+=七、(本题满分10分) 设函数()f x 在[]0,1上可微,且满足()()-=⎰12012d 0,f x f x x 证明在()0,1内至少存在一点ξ,使'=-()()f f ξξξ.证明: 作辅助函数 )()(x xf x =ϕ, ……………………………2分根据积分中值定理,由-=⎰120(1)2()d 0f x f x x 得到 -⋅=1(1)2()02f c f c即()()1f c f c = ……………………………5分 显然,)(x ϕ在[,1]c 上连续,在(,1)c 内可导,且()(1)c ϕϕ=,可见,)(x ϕ满足罗尔定理,…………………………7分所以,在(),1(0,1)c ⊂内至少有一点ξ,使0)()()(=ξ'ξ+ξ=ξϕ'f f . 即 '=-()()f f ξξξ. ……………………………10分八、(本题满分12分)求曲线22y x x =-与0,1,3y x x ===所围成的平面图形的面积S ,并求该图形绕y 轴旋转一周所得旋转体的体积.解:22221112(02)(2)3S x x dx x x dx =-+=-=⎰⎰. ……………………………2分 32224(2)3S x x dx =-=⎰. ……………………………4分 所以1224233S S S =+=+=. ……………………………6分 平面图形1S 绕y 轴旋转一周所得的体积为:21111(16V dy πππ-=+-=⎰. ……………………………8分平面图形2S 绕y 轴旋转一周所得的体积为:232204333(16V dy πππ=⋅⋅-+=⎰. ……………………………10分 旋转体的体积为121143966V V V πππ=+=+=. ……………………………12分 或222111112()2(2)6V xf x dx x x x dx πππ==-=⎰⎰. 332222432()2(2)6V xf x dx x x x dx πππ==-=⎰⎰. 旋转体的体积为121143966V V V πππ=+=+=.。
华东理工大学2010高数(上)期末试卷及答案
华东理工大学2010–2011学年第一学期学年第一学期《高等数学(上) (A)》期末考试试卷参考解答》期末考试试卷参考解答 2011.1一、(每小题4分,共20分)填空题分)填空题 12345)23,2(2323-ee0=x 2)2(2sin 1px --xxy x x y sin 213cos 22-+21、曲线2ln2x xy =的拐点坐标为的拐点坐标为 。
2、曲线)2)(1(1arctan212+-++=x x x x ey x 的铅直渐近线为的铅直渐近线为 。
3、将x si n 在2p=x 处展开成带拉格朗日型余项的一阶泰勒公式为=x sin ,,其中x 在2p和x 之间。
之间。
4、由32sin 5x y x y +-=确定的隐函数的微分d y = dx 。
5、极限úûùêëé--+¥®1)11(lim 12x x x x x = = 。
二、(每小题4分,共20分)选择题分)选择题12 3 4 5 DBDAC1、设a 与b 为同阶无穷小,则下列说法必定正确的是 (( )) (A ) b a ~; (B) )(a b a o =-;(C )b a +与b 为同阶无穷小;为同阶无穷小; ((D )对一切正整数n ,na 与nb 为同阶无穷小。
小。
2、函数||ln )4(22x x x y -+=的第二类间断点有几个?(的第二类间断点有几个?( ))(A) 4个;个; (B) 3 (B) 3个;个; (C) 2 (C) 2个;个; (D) 1 (D) 1个。
个。
3、设函数)(x f 为可导函数,且12)()(lim-=--®xx a f a f x ,则曲线)(x f y =在))(,(a f a 处的切线的斜率为处的切线的斜率为 (( ))(A) 2(A) 2;; (B) 1-; (C) 1 (C) 1;; (D) 2-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010级高等数学(一)期末试卷A
(本科、经管类)
试卷编号:JG20110111 考试时间:2011年1月11日 考试形式:闭卷
一、单项选择题(本大题共5小题,每小题3分,共15分) 1.函数
x
x sin 在0=x 处间断,其类型应是( ).
A.可去间断点,属于第一类;
B.跳跃间断点,属于第一类;
C.无穷间断点,属于第二类;
D.跳跃间断点,属于第二类.
2.设()f x 的一个原函数为1
x ,则()f x '=( ).
A.
3
2x
; B.ln x ; C.
1x
; D.2
1x
-
.
3.设某商品的价格P 与需求量Q 的关系为105
Q P =-,可以求得需求量为30的边
际收益30
()
2Q R Q ='=-,它表示当需求量为30个单位时,需求量增加
1个单位,其
总收益将会( ).
A.减少60个单位;
B.增加60个单位;
C.减少2个单位;
D.增加2个单位. 4.函数0
()(1)x f x t dt =
-⎰
有( ) A .极大值1
2; B .极大值12-; C .极小值1
2; D .极小值12
-
.
5.设函数()y f x =在区间[1,3]-上的图形如右图所示,
则0
()()x F x f t dt
=
⎰
的图形为( )
二、填空题(本大题共5小题,每小题3分,共15分) 6.1
lim ln(1)x x x
→+∞
+= .
7.设)(x f 在1=x 处连续,且3)1(=f ,则2
1
12lim ()(
)1
1
x f x x x →-
=
-- .
8.设1y x
=
,则()n y = .
9.设()f x 是连续函数,满足220
()3()2f x x f x dx =--⎰,则()f x = . 10.某商品的需求量Q 与价格P 的函数关系为b Q aP =,其中,a b 为常数,且0a ≠,则需求量对价格的弹性是 .
三、解答题(本大题共6小题,每小题8分,共48分) 11.2
3
(1)lim
x t
x e
dt
x
→-⎰
计算.
12.求函数22arctan y x x =在1x =处的微分. 13.求不定积分⎰.
A
B
D
C
14.求定积分2
()f x dx ππ-
⎰
,其中2cos 2,2
()sin ,2
x x f x x x x ππ⎧
≥⎪⎪=⎨
⎪<⎪⎩. 15.设21
()lim (1)t x x f t t x
→∞
=+,求(0)f '.
16.求积分0
x
xe dx +∞-⎰
.
四、解答题(本大题共2小题,每小题6分,共12分) 17.求函数()x f x xe -=的凹凸区间和拐点.
18.已知()f x ''连续,且(0)1,(2)3,(2)5f f f '===,求2
0()xf x dx ''⎰.
五、证明题(本大题共2小题,每小题5分,共10分)
19.已知函数()f x 在[0,)+∞上连续,且(0)0f =,()f x '在(0,)+∞上存在且单调增加,试证:函数()()f x g x x
=
在(0,)+∞上单调增加.
20.已知)(x f 在]2,0[上连续,在)2,0(内可导,且212
2(0)()3
f f x dx =
⎰
,求证:存在
)2,0(∈ξ使得0)(='ξf .。