【单元测试题】第二章《代数式》测试卷N

合集下载

人教版七年级数学第二章单元测试卷附答案

人教版七年级数学第二章单元测试卷附答案

人教版七年级数学第二章单元测试卷一、单选题(共10题;共20分)1.代数式,4xy,,a,2009,,中单项式的个数是()A. 3B. 4C. 5D. 62.下列说法正确的是()A. 单项式的系数是;B. 单项式的次数是;C. 是四次多项式;D. 不是整式;3.已知单项式与是同类项,那么a的值是()A. -1B. 0C. 1D. 24.下列计算正确的是()A. B. C. D.5.下列去括号中,正确的是()A. B. .C. D.6.任意给定一个非零数,按下列箭头顺序执行方框里的相应运算,得出结果后,再进行下一方框里的相应运算,最后得到的结果是()平方结果A. B. C. D.7.一组按规律排列的多项式:ab,a2b3,a3b5,a4b7,⋯⋯,其中第10 个式子是()A. a10 b15B. a10 b19C. a10 b17D. a10 b218.一个长方形的宽是,长是,则这个长方形的周长是()A. B. C. D.9.下列结论中,正确的是()A. 单项式的系数是3,次数是2.B. 单项式m的次数是1,没有系数.C. 单项式﹣xy2z的系数是﹣1,次数是4.D. 多项式5x2-xy+3是三次三项式.10.下列说法中正确是A. 是分数B. 实数和数轴上的点一一对应C. 的系数为D. 的余角二、填空题(共7题;共19分)11.计算:________.12.多项式2x2y-xy的次数是________.13.把多项式按字母升幂排列后,第二项是________.14.关于m、n的单项式的和仍为单项式,则这个和为________15.多项式中不含项,则常数的值是________.16.一组按规律排列的式子:…照此规律第9个数为________17.已知香蕉,苹果,梨的价格分别为a,b,c(单位:元/千克),用20元正好可以买三种水果各1千克;买1千克香蕉,2千克苹果,3千克梨正好花去42元,若设买b千克香蕉需w元,则w=________.(用含c的代数式表示)三、计算题(共6题;共38分)18.化简求值:3x3-(4x2+5x)-3(x2-2x2-2x),其中x=-2。

代数式单元测试卷(解析版)

 代数式单元测试卷(解析版)

一、初一数学代数式解答题压轴题精选(难)1.任何一个整数N,可以用一个的多项式来表示:N= .例如:325=3×102+2×10+5.一个正两位数的个位数字是x,十位数字y.(1)列式表示这个两位数;(2)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明新数与原数的和能被11整除.(3)已知是一个正三位数.小明猜想:“ 与的差一定是9的倍数。

”请你帮助小明说明理由.(4)在一次游戏中,小明算出、、、与等5个数和是3470,请你求出这个正三位数.【答案】(1)解:10y+x(2)解:根据题意得:10y+x+10x+y=11(x+y),则所得的数与原数的和能被11整除(3)解:∵ - =100a+10b+c-(100b+10c+a)=99a-90b-9c =9(11a-10b-c),∴与的差一定是9的倍数(4)解:∵ + + + + + =3470+ ∴222(a+b+c)=222×15+140+ ∵100<<1000,∴3570<222(a+b+c)<4470,∴16<a+b+c≤20.尝试发现只有a+b+c=19,此时 =748成立,这个三位数为748.【解析】【分析】(1)由已知一个正两位数的个位数字是x,十位数字y ,因此这个两位数是:十位上的数字×10+个位数的数字。

(2)根据题意将新的两位数和原两位数相加,再化简,即可得出结果。

(3)分别表示出两个三位数,再求出它们的差,就可得出它们的差是否为9的倍数。

(4)根据题意求出a+b+c的取值范围,再代入数据进行验证即可。

2.为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收贵的价目表如下(注:水费按月份结算,m3表示立方米)价目表每月用水量价格不超过6m3的部分2元/m3超出6m3不超出10m3的部分4元/m3超出10m3的部分6元/m35m3和8m3,则应收水费分别是________元和________元.(2)若该户居民3月份用水量am3(其中6<a≤10),则应收水费多少元?(用含a的式子表示,并化简)(3)若该户层民4、5两个月共用水14m3(5月份用水量超过4月份),设4月份用水xm3,求该户居民4、5两个月共交水费多少元?(用含x的式子表示,并化简)【答案】(1)10;20(2)解:由依题意得:6×2+(a﹣6)×4=4a﹣12(元)答:应收水费(4a﹣12)元。

《代数式》综合测试卷

《代数式》综合测试卷

《代数式》综合测试卷一、选择题1.下列说法错误的是 ( ) A .代数式x 2+y 2的意义是x ,y 的平方和 B .代数式5(x +y )的意义是5与(x +y )的积 C .x 的5倍与y 的和的一半,用代数式表示为5x +2y D .比x 的2倍多3的数,用代数式表示为2x +32.已知a 是两位数,b 是一位数,把b 放在百位上,a 放在b 的后面,就成为一个三位数.这个三位数可表示成 ( ) A .10b +aB .baC .100b +aD .b +10a3.下列各式中,正确的是 ( )A .-(x -6) =x -6B .-a + b=-(a + b )C .30-x =5(6-x )D .3(x -8) =3x -24 4.若0〈x <1,则x ,1x,x 2的大小关系是 ( )A .1x<x <x 2 B .x <x 2 C .x 2〈x 〈1xD .1x〈x 2〈x5.当x =2与x =-2时,代数式x 4-2x 2+3的两个值 ( ) A .相等 B .互为倒数C .互为相反数D .既不相等也不互为相反数 6.已知整式x 2-52x =6,则2x 2-5x + 6的值为 ( )A .9B .12C .18D .24 7.化简-[-(-a 2)-b 2]-[+(-b 2)]的结果是 ( ) A .2b 2-a 2B .-a 2C .a 2D .a 2-2b 28.某商店在甲批发市场以每包m 元的价格进了40包茶叶,又在乙批发市场以每包n (m >n )的价格进了同样的60包茶叶,如果商家以每包2m n +元的价格卖出这种茶叶,卖完后,这家商店 ( )A .盈利了B .亏损了C .不赢不亏D .盈亏不能确定9.一个商标图案如图中阴影部分,在长方形ABCD 中,AB =8cm ,BC =4cm ,以点A 为圆心,AD 为半径作圆与BA 的延长线相交于点F ,则商标图案的面积是 ( )A .2(48)cm π+B .2(416)cm π+C .2(38)cm π+D .2(316)cm π+10.若a ,b 两数在数轴上的位置如图所示,则化简代数式12a b a b +--++的结果是( )A .1B .2b +3C .2a -3D .-1二、填空题11.若代数式2ab n +5与-3a m -1b 2是同类项,则m + n = .12.一个多项式M 减去多项式2x 2+5x -3,马虎同学将减号抄成了加号,运算结果得-x 2+3x -7,多项式M 是_______________.13.合并同类项7(a -b )-3(a -b )-2(a -b ) = . 14.已知3x -2y =5,则代数式6y -9x -5的值是 . 15.若23a b -=,则924a b -+的值为 . 16.已知-b 2+14ab +A =7a 2+4ab -2b 2,则A = .17.已知当x =1时,3ax 2 + bx 的值为2,则当x =3时,ax 2 + bx 的值为 .18.已知A 是关于a 的三次多项式,B 是关于a 的二次多项式,则A +B 的次数是 . 19.已知2a+b =1,a +2b =2,则a +b 的值为 ,a -b 的值为 . 20.观察如图所示图形:它们是按照一定规律排列的,依照此规律,第九个图形中共有 个★.三、解答题 (共60分)21.计算 (每小题4分,共16分)(1) 2xy -12x 3 + 2xy +0。

代数式单元测试卷(含答案解析)

 代数式单元测试卷(含答案解析)

一、初一数学代数式解答题压轴题精选(难)1.如图所示,在边长为a米的正方形草坪上修建两条宽为b米的道路.(1)为了求得剩余草坪的面积,小明同学想出了两种办法,结果分别如下:方法①:________ 方法②:________请你从小明的两种求面积的方法中,直接写出含有字母a,b代数式的等式是:________(2)根据(1)中的等式,解决如下问题:①已知:,求的值;②己知:,求的值.【答案】(1)(a-b)2;a2-2ab+b2;(a-b)2=a2-2ab+b2(2)解:①把代入∴,∴②原式可化为:∴∴∴【解析】【解答】解:(1)方法①:草坪的面积=(a-b)(a-b)= .方法②:草坪的面积= ;等式为:故答案为:,;【分析】(1)方法①是根据已知条件先表示出矩形的长和宽,再根据矩形的面积公式即可得出答案;方法②是正方形的面积减去两条道路的面积,即可得出剩余草坪的面积;根据(1)得出的结论可得出;(2)①分别把的值和的值代入(1)中等式,即可得到答案;②根据题意,把(x-2018)和(x-2020)变成(x-2019)的形式,然后计算完全平方公式,展开后即可得到答案.2.先阅读下面文字,然后按要求解题.例:1+2+3+…+100=?如果一个一个顺次相加显然太繁,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算,提高计算速度的.因为1+100=2+99=3+98=…=50+51=101,所以将所给算式中各加数经过交换、结合以后,可以很快求出结果.解:1+2+3+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)= =5050.(1)补全例题解题过程;(2)计算a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).【答案】(1)解:101×50(2)解:原式=50×(2a+99b)=100a+4950b.【解析】【分析】(1)根据算式可得共有50个101,据此解答即可.(2)仿照(1)利用加法的交换律和结合律进行计算即可.3.请观察图形,并探究和解决下列问题:(1)在第n个图形中,每一横行共有________个正方形,每一竖列共有________个正方形;(2)在铺设第n个图形时,共有________个正方形;(3)某工人需用黑白两种木板按图铺设地面,如果每块黑板成本为8元,每块白木板成本6元,铺设当n=5的图形时,共需花多少钱购买木板?【答案】(1)(n+3);(n+2)(2)(n+2)(n+3)(3)解:当n=5时,有白木板5×(5+1)=30块,黑木板7×8-30=26块,共需花费26×8+30×6=388(元).【解析】【解答】⑴第n个图形的木板的每行有(n+3)个,每列有n+2个,故答案为:(n+3)、(n+2);⑵所用木板的总块数(n+2)(n+3),故答案为:(n+2)(n+3);【分析】本题主要考查的是探索图形规律,并根据所找到的规律求值;根据所给图形找出正方形个数的规律是解决问题的关键.4.用正方形硬纸板做三棱柱盒子,每个盒子的侧面为长方形,底面为等边三角形.(1)每个盒子需________个长方形,________个等边三角形;(2)硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).现有相同规格的 19 张正方形硬纸板,其中的 x 张按方法一裁剪,剩余的按方法二裁剪.①用含 x 的代数式分别表示裁剪出的侧面个数,底面个数;②若裁剪出的侧面和底面恰好全部用完,求能做多少个盒子.【答案】(1)3;2(2)解:①∵裁剪x张时用方法一,∴裁剪(19−x)张时用方法二,∴侧面的个数为:6x+4(19−x)=(2x+76)个,底面的个数为:5(19−x)=(95−5x)个;②由题意,得解得:x=7,经检验,x=7是原分式方程的解,∴盒子的个数为:答:裁剪出的侧面和底面恰好全部用完,能做30个盒子.【解析】【解答】(1)由图可知每个三棱柱盒子需3个长方形,2个等边三角形;故答案为3,2.【分析】(1)由图可知两个底面是等边三角形,侧面是长方形,所以需要2个等边三角形和3个长方形。

湘教 版七年级上册数学 第2章 代数式 单元测试卷

湘教 版七年级上册数学 第2章 代数式 单元测试卷

2020-2021学年湘教新版七年级上册数学《第2章代数式》单元测试卷一.选择题1.下列各式中是单项式的是()A.m+n B.2x﹣3y C.2xy2D.(5a+2b)2 2.已知2x3y1﹣n与﹣6x3m y2是同类项,则式子m2019﹣n2020的值是()A.﹣1B.0C.1D.23.如图,有一张边长为4米的正方形纸片,第1次在纸片的左上角剪去边长为2米的小正方形(如图1),第2次在剩下纸片的上剪去边长为1米的正方形纸片(如图2),第3次再在剩下纸片的上剪去边长为米的正方形纸片(如图3),每次剪去的正方形边长为前一次的一半,记第n次剪去的小正方形的面积为S n,则S n的值为()A.()2B.()2C.()2D.()2 4.若代数式2x2﹣3x+1的值是3,则代数式4x2﹣6x+3的值是()A.9B.7C.5D.65.下列说法正确的是()A.是单项式B.﹣πx的系数为﹣1C.﹣3是单项式D.﹣27a2b的次数是106.下列各式中,符合整式书写要求的是()A.x•5B.4m×n C.﹣1x D.﹣ab7.用代数式表示“m的4倍与n的差的立方”,正确的是()A.4(m﹣n)3B.4m﹣n3C.(4m﹣n)3D.(m﹣4n)3 8.式子,﹣b,7,,,x2y2﹣2x2+3中整式有()A.3个B.4个C.5个D.6个9.下列说法正确的是()A.若|a|=﹣a,则a<0B.去括号:4n﹣(m2﹣2mn)=4n+m2+2mnC.若a<0,ab<0,则b>0D.1是最小的正数10.已知有理数a≠1,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=,如果a1=﹣3,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数……依此类推,那么a1﹣a2+a3﹣a4+…+a2017﹣a2018+a2019﹣a2020的值是()A.﹣3B.﹣C.D.二.填空题11.在“整式”章节复习时,某学习小组绘制了如图知识结构图,其中知识点A是.12.﹣4m+3n=﹣.13.已知a4b2n与2a3m+7b6的和仍然是一个单项式,则m n=.14.把多项式2x3y﹣4y2x+5x2﹣1重新排列:则按x降幂排列:.15.单项式的系数是.16.若x+y=1,xy=2,则=.17.若m2+3mn=﹣5,则9mn﹣3m2﹣(3mn﹣5m2)=.18.一个三角形的第一条边长为a+2b,第二条边比第一条边短b﹣2,第三条边比第二条边短3,请用含有a、b的式子表示此三角形的周长.19.一次知识竞赛共有20道选择题,规定:答对一道得5分,不答或答错一道扣1分,如果某位学生答对了x道题,则用含x的代数式表示他的成绩为分.20.对单项式“0.8a”可以解释为:一件商品原价为a元,若按原价的8折出售,这件商品现在的售价是0.8a元,请你对“0.8a”再赋予一个含义:.三.解答题21.已知整式p=x2+x﹣1,Q=x2﹣x+1.R=﹣x2+x+1,若一个次数不高于二次的整式可以表示为aP+bQ+cR(其中a、b、c为常数).则可以进行如下分类:①若a≠0,b=c=0,则称该整式为P类整式;②若a≠0,b≠0,c=0,则称该整式为PQ类整式;③若a≠0,b≠0,c≠0.则称该整式为PQR类整式.…(1)模仿上面的分类方式,请给出R类整式和QR类整式的定义.若,则称该整式为“R类整式”.若,则称该整式为“QR类整式”.(2)例如x2﹣5x+5则称该整式为“PQ类整式”,因为﹣2P+3Q=﹣2(x2+x﹣1)+3(x2﹣x﹣1)=﹣2x2﹣2x+2+3x2﹣3x+3=x2﹣5x+5.即x2﹣5x+5=﹣2P+3Q,所以x2﹣5x+5是“PQ类整式”问题:x2+x+1是哪一类整式?请通过列式计算说明.(3)试说明4x2+11x+2015是“PQR类整式”,并求出相应的a,b,c的值.22.下列去括号正确吗?如有错误,请改正.(1)+(﹣a﹣b)=a﹣b;(2)5x﹣(2x﹣1)﹣xy=5x﹣2x+1+xy;(3)3xy﹣2(xy﹣y)=3xy﹣2xy﹣2y;(4)(a+b)﹣3(2a﹣3b)=a+b﹣6a+3b.23.已知代数式A=2x2+3xy+2y,B=x2﹣xy+x.(1)若(x+2)2+|y﹣3|=0,求A﹣2B;(2)若A﹣2B的值与x的取值无关,求y的值.24.已知a,b,c满足a﹣b=12,ab+3c2+36=0.(1)用含b的代数式表示a,则a=;(2)求2a+b+c的值.25.某商店售出一种商品,质量x与售价y之间的关系如下表所示:质量x/kg102030405060售价y/元30+0.660+0.690+0.6120+0.6150+0.6180+0.6(1)写出用商品质量x表示售价y的代数式.(2)小明想买此种商品100kg,则应付款多少元?26.已知﹣2a2b x+y与的和仍为单项式,求多项式的值.27.根据你的生活与学习经验,对代数式2(x+y)表示的实际意义作出两种不同的解释.参考答案与试题解析一.选择题1.解:A、m+n是多项式,不合题意;B、2x﹣3y是多项式,不合题意;C、2xy2是单项式,符合题意;D、(5a+2b)2是多项式,不合题意;故选:C.2.解:∵2x3y1﹣n与﹣6x3m y2是同类项,∴3m=3,1﹣n=2,解得m=1,n=﹣1,∴m2019﹣n2020=12019﹣(﹣1)2020=1﹣1=0.故选:B.3.解:观察图形,可知:S1=22=()2,S2=12=()2,S3=()2=()2,…,∴S n=()2(n为正整数).故选:B.4.解:由题意得:2x2﹣3x+1=3,即2x2﹣3x=2,∴4x2﹣6x+3=2(2x2﹣3x)+3=7.故选:B.5.解:A、是多项式,原说法错误,故此选项不符合题意;B、﹣πx的系数为﹣π,原说法错误,故此选项不符合题意;C、﹣3是单项式,原说法正确,故此选项符合题意;D、﹣27a2b的次数是3,原说法错误,故此选项不符合题意;故选:C.6.解:A、x•5不符合代数式的书写要求,应为5x,故此选项不符合题意;B、4m×n不符合代数式的书写要求,应为4mn,故此选项不符合题意;C、﹣1x不符合代数式的书写要求,应为﹣x,故此选项不符合题意;D、﹣ab符合代数式的书写要求,故此选项符合题意;故选:D.7.解:m的4倍与n的差的平方表示为(4m﹣n)3.故选:C.8.解:整式有,﹣b,7,,x2y2﹣2x2+3,共5个;故选:C.9.解:A、若|a|=﹣a,则a≤0;B、去括号:4n﹣(m2﹣2mn)=4n﹣m2+2mn;C、若a<0,ab<0,则b>0,正确;D、没有最小的正数;故选:C.10.解:由题意可得,当a1=﹣3时,a2==,a3==,a4==﹣3,…,∴这列数是以﹣3,,为一个循环,循环出现的,∵2020÷6=336…4,∴a1﹣a2+a3﹣a4+…+a2017﹣a2018+a2019﹣a2020=(a1﹣a2+a3)﹣(a4﹣a5+a6)+…+(a2017﹣a2018+a2019)﹣a2020=0+0+…+0+(﹣3﹣+)﹣(﹣3)=﹣3﹣++3=﹣=﹣=,故选:D.二.填空题11.解:整式分为单项式和多项式,所以A指的是单项式,故答案为:单项式.12.解:原式=﹣(4m﹣3n),故答案为:(4m﹣3n)13.解:∵a4b2n与2a3m+7b6的和仍然是一个单项式,∴3m+7=4且2n=6,解得:m=﹣1,n=3,∴m n=(﹣1)3=﹣1,故答案为:﹣1.14.解:多项式2x3y﹣4y2x+5x2﹣1的各项为2x3y,﹣4y2x,5x2,﹣1,按x降幂排列,得2x3y+5x2﹣4y2x﹣1;故答案为:2x3y+5x2﹣4y2x﹣1.15.解:单项式﹣的系数是:﹣.故答案为:﹣.16.解:∵x+y=1,xy=2,∴==.故答案为:.17.解:∵m2+3mn=﹣5,∴9mn﹣3m2﹣(3mn﹣5m2)=9mn﹣3m2﹣3mn+5m2=2m2+6mn=2(m2+3mn)=2×(﹣5)=﹣10.故答案为:﹣10.18.解:根据题意,第二条边的长度为a+2b﹣(b﹣2)=a+2b﹣b+2=a+b+2,第三条边的长度为a+b+2﹣3=a+b﹣1,则三角形的周长为a+2b+a+b+2+a+b﹣1=3a+4b+1,故答案为:3a+4b+1.19.解:由题意可得,他的成绩为:5x+(20﹣x)×(﹣1)=5x﹣20+x=(6x﹣20)(分),故答案为:(6x﹣20).20.解:答案不唯一,例如:练习本每本0.8元,小明买了a本,共付款0.8a元.三.解答题21.解:(1)若a=b=0,c≠0,则称该整式为“R类整式”.若a=0,b≠0,c≠0,则称该整式为“QR类整式”.(2)∵x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1),∴该整式为PQR类整式.(3)∵4x2+11x+2015是“PQR类整式”,∴设4x2+11x+2015=a(x2+x﹣1)+b(x2﹣x+1)+c(﹣x2+x+1),∴a+b﹣c=4,a﹣b+c=11,﹣a+b+c=2015,解得:a=7.5,b=1009.5,c=1013.22.解:(1)错误,应该是:+(﹣a﹣b)=﹣a﹣b;(2)错误,应该是:5x﹣(2x﹣1)﹣xy=5x﹣2x+1﹣xy;(3)错误,应该是:3xy﹣2(xy﹣y)=3xy﹣2xy+2y;(4)错误,应该是:(a+b)﹣3(2a﹣3b)=a+b﹣6a+9b.23.解:(1)由题意知:x=﹣2,y=3∴A﹣2B=(2x2+3xy+2y)﹣(x2﹣xy+x)=5xy+2y﹣2x=﹣20(2)由于A﹣B=(5y﹣2)x+2y,∵A﹣2B的值与x取值无关,∴5xy﹣2x=0,∴5y﹣2=0,∴y=24.解:(1)∵a﹣b=12,∴a=b+12,故答案为:a=b+12;(2)∵a=b+12,ab+3c2+36=0,∴(b+12)b+3c2+36=0,即(b+6)2+3c2=0,又∵(b+6)2≥0,3c2≥0,∴b=﹣6,c=0,∴a=6,∴2a+b+c=12﹣6+0=6.25.解:(1)由表格可得,y=3x+0.6;(2)当x=100时,y=3×100+0.6=300.6,即小明想买此种商品100kg,则应付款300.6元.26.解:由﹣2a2b x+y与的和仍为单项式,得﹣2a2b x+y与是同类项,即x=2,x+y=5.解得x=2,y=3.当x=2,y=3时,原式=×23﹣×2×32+×33=10.27.解:(1)某水果超市推出两款促销水果,其中苹果每斤x元,香蕉每斤y元,小明买了2斤苹果和2斤香蕉,共花去2(x+y)元钱;(2)一个篮球的价格为x元,一个足球的价格为y元,购买了2个篮球和2个排球,共花去2(x+y)元钱.。

七年级数学第2章代数式单元测试题

七年级数学第2章代数式单元测试题

七年级数学第2章代数式单元测试题(时间:90分钟,满分120分)班级:__________姓名:_____________学号:______得分:_______一.填空题:(每题3分,共30分)1.商店运来一批苹果,共8箱,每箱n 个,则共有___________个苹果.2.去年某公司的利润为a 万元,今年增长了x % ,今年的利润为__________万元.3.铅笔每枝x 元,钢笔每支y 元,小明买了a 枝铅笔和若干支钢笔,共用去了23元,则钢笔买了__________支.4.单项式2323x y -的系数为__________,次数为____________.5.多项式3323247x x y y x y --+-+是_____次____项式,次数最高的项是_________.6.计算:(1)2______a a a ---=;(2)222223______a b b a --=.7.当a=3,b=-1时,代数式2a a b-的值是__________. 8.去括号:=+--)354(c b a9.一个两位数,若个位上的数字是y ,十位上的数字是y 则这个两位数是___________.10.已知32,134-=+-=x B x y A 则A -B= 。

二.选择题:(每题3分,共30分)1.下列语句正确的是( )A.单独的一个数12不是代数式.B.2c R π=是一个代数式. C.0是代数式. D.单独一个字母a 不是代数式.2.有一个两位数,十位数字是a ,个位数字是b ,若把它们的位置交换,得到新的两位数是( )A. baB. abC. 10b+aD. 10a+b3.x 是最大的负整数,多项式1n n x x ++的值为(其中n 为自然数) ( )A.-2B.2C.0D.不能确定4.某学校食堂有煤m 吨,计划每天用煤n 吨,实际每天节约a 吨,节约后可多用的天数为( ) A.m m n a n -+ B.m m n m a -+ C.m m n a n -- D.m m n n a-- 5.已知多项式ax bx +合并的结果为0,则下列说法正确的是( ) A.a=b=0 B.A=b=x=0 C.a -b=0 D.a+b=06.代数式22a b +的值( )A.大于0B.大于2C.等于0D.大于或等于07.下列计算正确的是( )A. 224a b ab +=B. 2232x x -= C .550mn nm -= D. 2a a a +=8.把2()5()a b b a a b +-+++化简后等于( )A.a b -B.()a b -+C.2()a b -+D.a b -+9.某同学自己装订笔记本,第一本用了a 张纸,第二本用的纸张数是第一本的78,两本共用了( )张纸。

代数式单元测试卷(含答案解析)

 代数式单元测试卷(含答案解析)

一、初一数学代数式解答题压轴题精选(难)1.民谚有云:“不到庐山辜负目,不食螃蟹辜负腹.”,又到了食蟹的好季节啦!某经销商去水产批发市场采购太湖蟹,他看中了A、B两家的某种品质相近的太湖蟹.零售价都为60元/千克,批发价各不相同.A家规定:批发数量不超过100千克,按零售价的92%优惠;批发数量超过100千克但不超过200千克,按零售价的90%优惠;超过200千克的按零售价的88%优惠.B家的规定如下表:数量范围(千克)0~50部分(含50)50以上~150部分(含150,不含50)150以上~250部分(含250,不含150)250以上部分(不含250)价格(元)零售价的95%零售价的85%零售价的75%零售价的70%________元;(2)如果他批发x千克太湖蟹(150<x<200),则他在A家批发需要________元,在B 家批发需要________元(用含x的代数式表示);(3)现在他要批发170千克太湖蟹,你能帮助他选择在哪家批发更优惠吗?请说明理由.【答案】(1)4968;4890(2)54x;45x+1200(3)解:当x=170时,54x=54×170=9180,45x+1200=45×170+1200=8850,因为9180>8850,所以他选择在B家批发更优惠【解析】【解答】解:(1)A:90×60×92%=4968(元),B:50×60×95%+40×60×85%=4890(元)。

( 2 )A:60×90%x=54x,B:50×60×95%+100×60×85%+(x-150)×60×75%=45x+1200.【分析】(1)根据A、B两家的优惠办法分别列式求出在两家批发需要的费用。

(2)根据题意列式分别表示出在A、B两家批发x千克太湖蟹(150<x<200)所需的费用。

七年级数学(上册)第二章《代数式》综合测试卷(含答案)

七年级数学(上册)第二章《代数式》综合测试卷(含答案)

七年级数学(上册)第二章《代数式》测试卷(含答案)一、选择题(30分)1、下列数量关系中,用代数式表示,结果为单项式的是( )A. a 与b 的平方差。

B. 比a 的倒数大9的数。

C. a 与b 的和的2倍。

D. A 的3倍的相反数。

2、在式子bc a +,2m ,πbxa xy ++2,a ,5,34xyz ,a b ,mn b a +中,有( ) A. 5个多项式,3个单项式 B. 4个单项式,2个多项式C. 7个整式D. 8个整式3、在下列代数式中,次数为3的单项式是( )A. xy 2B. x 3+y 3C. x 3yD. 3xy4、下列说法正确的是( )A. 5a 2b 与-3ba 2是同类项。

B. x1与3x 是同类项。

C. xyz 43与xy 43是同类项。

D. 325.0y x -与2x 3y 2是同类项。

5、下列运算正确的是( )A. 5a +7b =12abB. 3y 2-2y 2=1C. 05.123=-ab ab D. 3x 3+5x 2=8x 5 6、若243y x 与n m y x 231-是同类项,则9m 2-5mn -17的值是( ) A. -1 B. -2 C. -3 D. -47、一个多项式减去x 2-y 2等于x 2+y 2,则这个多项式是( )A. 2y 2B. 2x 2C. -2y 2D. -2x 28、计算a+(-a)的结果是( )A. 2aB. 0C. -a 2D. -2a9、如右图,阴影部分的面积是( )A. 2xyB. 4xyC. xy 27D. xy 29 10、当x =5,y =4时,式子2y x -的值是( ) A. 3 B. 21 C. -3 D. 23- 二、填空题:(24分)11、单项式3221y x -的次数是 。

12、一个关于x 的二次三项式的二次项系数和常数项都是1,一次项系数为31-,则这个二次三项式是 。

13、若y x y x y x b a 2234-=+-,则a+b = .14、“x 与y 的差”用代数式表示为 。

湘教版七年级数学上册第二章测试题

湘教版七年级数学上册第二章测试题

第2章《代数式》单元测试卷一.选择题(共10小题共20分)1.(2015•镇江)计算﹣3(x﹣2y)+4(x﹣2y)的结果是()A.x﹣2y B.x+2y C.﹣x﹣2y D.﹣x+2y2.(2015•临淄区校级模拟)若2y m+5x n+3与﹣3x2y3是同类项,则m n=()A.B. C.1 D.﹣23.(2015•盐城校级三模)下列各式中,是3a2b的同类项的是()A.2x2y B.﹣2ab2C.a2b D.3ab4.(2015•石峰区模拟)若﹣x3y m与x n y是同类项,则m+n的值为()A.1 B.2 C.3 D.45.(2015•达州模拟)下列计算正确的是()A.3a﹣2a=1 B.B、x2y﹣2xy2=﹣xy2 C.3a2+5a2=8a4 D.3ax﹣2xa=ax6.(2015•重庆校级模拟)若单项式2x n y m﹣n与单项式3x3y2n的和是5x n y2n,则m与n的值分别是()A.m=3,n=9 B.m=9,n=9 C.m=9,n=3 D.m=3,n=37.(2015•宝应县校级模拟)下列判断错误的是()A.若x<y,则x+2010<y+2010 B.单项式的系数是﹣4C.若|x﹣1|+(y﹣3)2=0,则x=1,y=3 D.一个有理数不是整数就是分数8.(2015•泰安模拟)化简m﹣n﹣(m+n)的结果是()A.0 B.2m C.﹣2n D.2m﹣2n9.(2015•泗洪县校级模拟)已知a,b两数在数轴上对应的点的位置如图所示,则化简代数式|a+b|﹣|a﹣2|+|b+2|的结果是()A.2a+2b B.2b+3 C.2a﹣3 D.﹣110.(2015春•淅川县期末)若x﹣y=2,x﹣z=3,则(y﹣z)2﹣3(z﹣y)+9的值为()A.13 B.11 C.5 D.7二.填空题(共10小题共30分)11.(2015•遵义)如果单项式﹣xy b+1与x a﹣2y3是同类项,那么(a﹣b)2015= .12.(2015•泗洪县校级模拟)若单项式2x2y m与的和仍为单项式,则m+n的值是.13.(2015•诏安县校级模拟)若﹣2x2y m与6x2n y3是同类项,则mn= .14.(2015•衡阳县校级二模)单项式﹣4x2y3的系数是,次数.15.(2015•长沙校级二模)单项式的系数与次数之积为.16.(2015•徐州模拟)多项式与m2+m﹣2的和是m2﹣2m.17.(2015秋•开封校级月考)多项式﹣2m2+3m﹣的各项系数之积为.18.(2015春•乐平市期中)在代数式3xy2,m,6a2﹣a+3,12,,中,单项式有个,多项式有个.19.(2014•高港区二模)单项式﹣2πa2bc的系数是.20.(2015春•滨海县校级月考)观察一列单项式:x,3x2,5x3,7x,9x2,11x3…,则第2013个单项式是.三.解答题(共6小题共70分21题每小题4分、每题6分、27与28题各8分21.(2014秋•镇江校级期末)合并同类项/化简(每小题4分)(1)3a﹣2b﹣5a+2b (2)(2m+3n﹣5)﹣(2m﹣n﹣5)(3)7x﹣y+5x﹣3y+3 (4)2(x2y+3xy2)﹣3(2xy2﹣4x2y)(5)a2+(2a2﹣b2)+b2 (6)6a2b+(2a+1)﹣2(3a2b﹣a)23、已知|a﹣2|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]的值(6分)24、已知x=3时,多项式ax3﹣bx+5的值是1,求当x=﹣3时,ax3﹣bx+5的值(6分)25.(2014秋•江西期末)化简:8n2﹣[4m2﹣2m﹣(2m2﹣5m)].(6分)26.(武侯区期末)已知代数式mx3+x3﹣nx+2015x﹣1的值与x的取值无关.求m x的值;(6分)27.(2014秋•腾冲县校级期末)已知:A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1.若3A+6B的值与x的值无关,求y的值.(8)28.(2014•咸阳模拟)已知A=5a+3b,B=3a2﹣2a2b,C=a2+7a2b﹣2,当a=1,b=2时,29.求A﹣2B+3C的值.(8)第2章《代数式》单元测试卷参考答案与试题解析一.选择题(共10小题)1.(2015•镇江)计算﹣3(x﹣2y)+4(x﹣2y)的结果是()A.x﹣2y B.x+2y C.﹣x﹣2y D.﹣x+2y考点:整式的加减.专题:计算题.分析:原式去括号合并即可得到结果.解答:解:原式=﹣3x+6y+4x﹣8y=x﹣2y,故选A点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.2.(2015•临淄区校级模拟)若2y m+5x n+3与﹣3x2y3是同类项,则m n=()A.B. C.1 D.﹣2考点:同类项.专题:计算题.分析:根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程m+5=3,n+3=2,求出n,m的值,再代入代数式计算即可.解答:解:∵2y m+5x n+3与﹣3x2y3是同类项,∴m+5=3,n+3=2,∴m=﹣2,n=﹣1,∴m n=(﹣2)﹣1=﹣.故选B.点评:本题考查同类项的定义、方程思想,是一道基础题,比较容易解答,但有的学生可能会把x与y的指数混淆.3.(2015•盐城校级三模)下列各式中,是3a2b的同类项的是()A.2x2y B.﹣2ab2C.a2b D.3ab考点:同类项.分析:运用同类项的定义判定即可解答:解:A、2x2y,字母不同,故A选项错误;B、﹣2ab2,相同字母的指数不同,故B选项错误;C、a2b是3a2b的同类项,故C选项正确;D、3ab,相同字母的指数不同,故D选项错误.故选:C.点评:本题主要考查了同类项,解题的关键是运用同类项的定义判定即可.4.(2015•石峰区模拟)若﹣x3y m与x n y是同类项,则m+n的值为()A.1 B.2 C.3 D.4考点:同类项.分析:根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.解答:解:根据题意得:n=3,m=1,则m+n=4.故选D.点评:本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.5.(2015•达州模拟)下列计算正确的是()A.3a﹣2a=1 B.x2y﹣2xy2=﹣xy2C.3a2+5a2=8a4D.3ax﹣2xa=ax考点:合并同类项.分析:根据合并同类项的法则,把同类项的系数加减,字母与字母的指数不变,进行计算作出正确判断.解答:解:A、3a﹣2a=a,错误;B、x2y与2xy2不是同类项,不能合并,故错误;C、3a2+5a2=8a2,故错误;D、符合合并同类项的法则,正确.故选D.点评:本题属于简单题型,只要熟记合并同类项法则即可.6.(2015•重庆校级模拟)若单项式2x n y m﹣n与单项式3x3y2n的和是5x n y2n,则m与n的值分别是()A.m=3,n=9 B.m=9,n=9 C.m=9,n=3 D.m=3,n=3考点:合并同类项.分析:根据同类项的概念,列出方程求解.解答:解:由题意得,,解得:.故选C.点评:本题考查了合并同类项,解答本题的关键是掌握同类项定义中的相同字母的指数相同.7.(2015•宝应县校级模拟)下列判断错误的是()A.若x<y,则x+2010<y+2010B.单项式的系数是﹣4C.若|x﹣1|+(y﹣3)2=0,则x=1,y=3D.一个有理数不是整数就是分数考点:单项式;有理数;非负数的性质:绝对值;有理数大小比较;非负数的性质:偶次方.分析:分别根据单项式系数的定义、不等式的性质、非负数的性质即及有理数的定义对各选项进行逐一分析即可.解答:解:A、∵x<y,∴x+2010<y+2010,故本选项正确;B、∵单项式﹣的数字因数是﹣,∴此单项式的系数是﹣,故本选项错误;C、∵|x﹣1|+(y﹣3)2=0,∴x﹣1=0,y﹣3=0,解得x=1,y=3,故本选项正确;D、∵整数和分数统称为有理数,∴一个有理数不是整数就是分数,故本选项正确.故选:B.点评:本题考查的是单项式,熟知单项式系数的定义、不等式的性质、非负数的性质即及有理数的定义是解答此题的关键.8.(2015•泰安模拟)化简m﹣n﹣(m+n)的结果是()A.0 B.2m C.﹣2n D.2m﹣2n考点:整式的加减.分析:根据整式的加减运算法则,先去括号,再合并同类项.注意去括号时,括号前是负号,去括号时,括号里各项都要变号;合并同类项时,只把系数相加减,字母和字母的指数不变.解答:解:原式=m﹣n﹣m﹣n=﹣2n.故选C.点评:解决此类题目的关键是熟记去括号法则,及熟练运用合并同类项的法则,其是各地中考的常考点.注意去括号法则为:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.9.(2015•泗洪县校级模拟)已知a,b两数在数轴上对应的点的位置如图所示,则化简代数式|a+b|﹣|a﹣2|+|b+2|的结果是()A.2a+2b B.2b+3 C.2a﹣3 D.﹣1考点:整式的加减;数轴;绝对值.分析:根据a,b两数在数轴上对应的点的位置可得:b<﹣1<1<a<2,然后进行绝对值的化简,最后去括号合并求解.解答:解:由图可得:b<﹣1<1<a<2,则有:|a+b|﹣|a﹣2|+|b+2|=a+b+(a﹣2)+b+2=a+b+a﹣2+b+2=2a+2b.故选A.点评:本题考查了整式的加减,解答本题的关键是根据a、b在数轴上的位置进行绝对值的化简.10.(2015春•淅川县期末)若x﹣y=2,x﹣z=3,则(y﹣z)2﹣3(z﹣y)+9的值为()A.13 B.11 C.5 D.7考点:整式的加减—化简求值.分析:先求出z﹣y的值,然后代入求解.解答:解:∵x﹣y=2,x﹣z=3,∴z﹣y=(x﹣y)﹣(x﹣z)=﹣1,则原式=1+3+9=13.故选A.点评:本题考查了整式的加减﹣化简求值,解答本题的关键是根据题目所给的式子求出z﹣y的值,然后代入求解.二.填空题(共10小题)11.(2015•遵义)如果单项式﹣xy b+1与x a﹣2y3是同类项,那么(a﹣b)2015= 1 .考点:同类项.分析:根据同类项的定义(所含字母相同,相同字母的指数相同)可得:a﹣2=1,b+1=3,解方程即可求得a、b的值,再代入(a﹣b)2015即可求解.解答:解:由同类项的定义可知a﹣2=1,解得a=3,b+1=3,解得b=2,所以(a﹣b)2015=1.故答案为:1.点评:考查了同类项,要求代数式的值,首先要求出代数式中的字母的值,然后代入求解即可.12.(2015•泗洪县校级模拟)若单项式2x2y m与的和仍为单项式,则m+n的值是 5 .考点:同类项.专题:计算题.分析:根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程m=3,n=2,再代入代数式计算即可.解答:解:由题意得:n=2,m=3,∴m+n=5,故答案为:5.点评:本题考查同类项的知识,注意掌握同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.13.(2015•诏安县校级模拟)若﹣2x2y m与6x2n y3是同类项,则mn= 3 .考点:同类项.分析:根据同类项的定义中相同字母的指数也相同,可先列出关于m和n的二元一次方程组,再解方程组求出它们的值,即可解答.解答:解:∵﹣2x2y m与6x2n y3是同类项,∴,解得,mn=3,故答案为:3.点评:本题考查了同类项,利用同类项得出关于m、n的方程组是解题关键.14.(2015•衡阳县校级二模)单项式﹣4x2y3的系数是﹣4 ,次数是 5 .考点:单项式.专题:计算题.分析:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.解答:解:单项式﹣4x2y3的系数是﹣4,次数是5.故答案为:﹣4、5.点评:此题考查了单项式的知识,掌握单项式的系数、次数的定义是解答本题的关键.15.(2015•长沙校级二模)单项式的系数与次数之积为﹣2 .考点:单项式.分析:根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.求出次数和系数,再将其相乘即可.解答:解:根据单项式定义得:单项式的系数是﹣,次数是3;其系数与次数之积为﹣×3=﹣2.点评:确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.16.(2015•徐州模拟)多项式﹣3m+2 与m2+m﹣2的和是m2﹣2m.考点:整式的加减.专题:计算题.分析:根据题意列出关系式,去括号合并即可得到结果.解答:解:根据题意得:(m2﹣2m)﹣(m2+m﹣2)=m2﹣2m﹣m2﹣m+2=﹣3m+2.故答案为:﹣3m+2.点评:此题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.17.(2015秋•开封校级月考)多项式﹣2m2+3m﹣的各项系数之积为 3 .考点:多项式.分析:根据多项式各项系数的定义求解.多项式的各项系数是单项式中各项的系数,由此即可求解.解答:解:多项式﹣2m2+3m﹣的各项系数之积为:﹣2×3×(﹣)=3.故答案为:3.点评:此题主要考查了多项式的相关定义,解题的关键是熟练掌握多项式的各项系数和次数的定义即可求解.18.(2015春•乐平市期中)在代数式3xy2,m,6a2﹣a+3,12,,中,单项式有 3 个,多项式有 2 个.考点:多项式;单项式.专题:计算题.分析:数字与字母或字母与字母的乘积为单项式,单独一个数字或字母也是单项式;多项式为几个单项式的和组成,即可做出判断.解答:解:代数式3xy2,m,6a2﹣a+3,12,4x2yz﹣xy2,中,单项式有3xy2,m,12共3个,多项式有6a2﹣a+3,4x2yz﹣xy2共2个.故答案为:3;2点评:此题考查了多项式与单项式,熟练掌握各自的定义是解本题的关键.19.(2014•高港区二模)单项式﹣2πa2bc的系数是﹣2π.考点:单项式.分析:根据单项式系数的定义来判断,单项式中数字因数叫做单项式的系数.解答:解:根据单项式系数的定义,单项式﹣2πa2bc的系数是﹣2π,故答案为:﹣2π.点评:本题属于简单题型,注意单项式中的数字因数叫做单项式的系数.20.(2015春•滨海县校级月考)观察一列单项式:x,3x2,5x3,7x,9x2,11x3…,则第2013个单项式是4025x3.考点:单项式.专题:规律型.分析:根据题意找出规律,根据此规律即可得出结论.解答:解:第一个单项式=x;第二个单项式=(1+2)x2=3x2;第三个单项式=(1+2+2)x3=5x3;第四个单项式=(1+2+2+2)x2=x2;…,∴第四个单项式的系数为1+2+…+2,(n﹣1)个2相加,∴第2013个单项式的系数2012个2与1的和=1+2012×2=4025,∵=671,∴第2013个单项式的次数是3,∴第2013个单项式是4025x3.故答案为:4025x3.点评:本题考查的是单项式,根据题意找出规律是解答此题的关键.三.解答题(共6小题)21.(2014秋•镇江校级期末)合并同类项①3a﹣2b﹣5a+2b②(2m+3n﹣5)﹣(2m﹣n﹣5)③2(x2y+3xy2)﹣3(2xy2﹣4x2y)考点:合并同类项;去括号与添括号.分析:(1)根据合并同类项:系数相加字母部分不变,可得答案;(2)根据去括号,可化简整式,根据合并同类项,可得答案;(3)根据去括号,可化简整式,根据合并同类项,可得答案.解答:解:(1)原式=(3a﹣5a)+(﹣2b+2b)=﹣2a;(2)原式=2m+3n﹣5﹣2m+n+5=(2m﹣2m)+(3n+n)+(﹣5+5)=4n;(3)原式=2x2y+6xy2﹣6xy2+12x2y=(2x2y+12x2y)+(6xy2﹣6xy2)=14x2y.点评:本题考查了合并同类项,合并同类项:系数相加字母部分不变,去括号要注意符号.22.(2014秋•海口期末)化简:(1)16x﹣5x+10x(2)7x﹣y+5x﹣3y+3(3)a2+(2a2﹣b2)+b2(4)6a2b+(2a+1)﹣2(3a2b﹣a)考点:整式的加减.专题:计算题.分析:(1)原式合并同类项即可得到结果;(2)原式合并同类项即可得到结果;(3)原式去括号合并即可得到结果;(4)原式去括号合并即可得到结果.解答:解:(1)原式=(16﹣5+10)x=21x;(2)原式=7x﹣y+5x﹣3y+3=12x﹣4y+3;(3)原式=a2+2a2﹣b2+b2=3a2;(4)6a2b+2a+1﹣6a2b+2a=4a+1.点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.23.(2014秋•江西期末)化简:8n2﹣[4m2﹣2m﹣(2m2﹣5m)].考点:整式的加减.分析:运用整式的加减的法则求解即可.解答:解:8n2﹣[4m2﹣2m﹣(2m2﹣5m)]=8n2﹣(4m2﹣2m﹣2m2+5m)=8n2﹣4m2+2m+2m2﹣5m=8n2﹣2m2﹣3m.点评:本题主要考查了整式的加减,解题的关键是熟记整式的加减运算法则.24.(2014秋•武侯区期末)已知代数式mx3+x3﹣nx+2015x﹣1的值与x的取值无关.(1)求m x的值;(2)若关于y的方程﹣y=2的解是y=m x,求|1﹣2a|考点:项式;解一元一次方程.分析:(1)根据题意知,x3、x的系数为0,由此求得m、n的值.(2)把(1)中的m x的值代入已知方程求得a的值,然后来求|1﹣2a|的值.解答:解:(1)mx3+x3﹣nx+2015x﹣1=(m+1)x3+(2015﹣n)x﹣1.∵代数式mx3+x3﹣nx+2015x﹣1的值与x的取值无关,∴m+1=0,2015﹣n=0,解得 m=﹣1,n=2015.∴m x=1或m x=﹣1;(2)由(1)知,m x=1或m x=﹣1.①当m x=1时,y=1,则﹣1=2,解得 a=3,则|1﹣2a|=|1﹣2×3|=5;当m x=﹣1时,y=﹣1,则+1=2,解得 a=7,则|1﹣2a|=|1﹣2×7|=13;综上所,|1﹣2a|=5或|1﹣2a|=13.点评:本题考查了多项式,先合并同类项,再根据x3、x的系数都为零得出方程.25.(2014秋•腾冲县校级期末)已知:A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1.若3A+6B的值与x的值无关,求y的值.考点:整式的加减.分析:先求出3A+6B的结果,然后根据3A+6B的值与x的值无关,可知x的系数为0,据此求出y的值.解答:解:3A+6B=3(2x2+3xy﹣2x﹣1)+6(﹣x2+xy﹣1)=(15y﹣6)x﹣9,∵3A+6B的值与x的值无关,∴15y﹣6=0,解得:y=.点评:本题考查了整式的加减,解答本题的关键是掌握去括号法则和合并同类项法则.26.(2014•咸阳模拟)已知A=5a+3b,B=3a2﹣2a2b,C=a2+7a2b﹣2,当a=1,b=2时,求A﹣2B+3C的值.考点:整式的加减.分析:先把A、B、C代入,再进行化简,最后代入求出即可.解答:解:∵A=5a+3b,B=3a2﹣2a2b,C=a2+7a2b﹣2,∴A﹣2B+3C=(5a+3b)﹣2(3a2﹣2a2b)+3(a2+7a2b﹣2)=5a+3b﹣6a2+4a2b+3a2+21a2b﹣6=﹣3a2+25a2b+5a+3b﹣6,当a=1,b=2时,原式=﹣3×12+25×12×2+5×1+3×2﹣6=52.点评:本题考查了整式的化简求值和有理数的混合运算的应用,主要考查学生的计算能力和化简能力.双休日放松但别太放纵——养成合理的作息习惯我国实行双休日后,无疑给学生们创造了更广泛的、可自已支配的空间,每年52个双休日就是104天时间,这是一个不小的数目。

最新2019-2020年度湘教版七年级数学上册《代数式》单元测试题2及答案-精编试题

最新2019-2020年度湘教版七年级数学上册《代数式》单元测试题2及答案-精编试题

《第2章代数式》一、选择题1.代数式﹣x3+2x+24是()A.多项式B.三次多项式C.三次三项式D.四次三项式2.下列代数式中单项式共有()个.,﹣xy3,﹣0.5,,,ax2+bx+c,.A.2 B.3 C.4 D.53.将整式﹣[a﹣(b+c)]去括号,得()A.﹣a+b+c B.﹣a+b﹣c C.﹣a﹣b+c D.﹣a﹣b﹣c4.下面说法正确的是()A.的系数是B.的系数是C.﹣5x2的系数是5 D.3x2的系数是35.用代数式表示a与5的差的2倍是()A.a﹣(﹣5)×2 B.a+(﹣5)×2 C.2(a﹣5)D.2(a+5)6.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()元.A.4m+7n B.28mn C.7m+4n D.11mn7.原产量n吨,增产30%之后的产量应为()A.(1﹣30%)n吨B.(1+30%)n吨C.n+30%吨D.30%n吨8.某市出租车收费标准为:起步价4元,2千米后每千米a元,李老师乘车x(x>2)千米,应付费()A.(4+ax)元B.(4+a)x元C.[4+a(x﹣2)]元D.(ax﹣4)元9.若代数式2x2+3x+7的值是8,则代数式4x2+6x+15的值是()A.2 B.17 C.3 D.1610.有理数a、b在数轴上的位置如图所示,则化简|a|﹣|a﹣b|+|b﹣a|的结果是()A.﹣3a+2b B.2b﹣a C.a﹣2b D.﹣a二、填空题11.0.4xy3的系数是______,次数为______.12.多项式次数为______.13.写出﹣5x3y2的一个同类项______.14.化简:a﹣(a+1)+(a﹣1)=______.15.把(x﹣1)当作一个整体,合并3(x﹣1)4﹣2(x﹣1)3﹣5(1﹣x)4+4(1﹣x)3的结果是______.16.三个连续奇数,中间的一个是n,则这三个数的和是______.17.当2x﹣1与3互为相反数时,﹣3﹣7x的值是______.18.若a、b互为相反数,c、d互为倒数,x的绝对值是2,则2a+2b﹣3cd+x2=______.19.七年级(1)班同学参加数学课外活动小组的有x人,参加合唱队的有y人,而参加合唱队人数是参加篮球队人数的5倍,且每位同学至多只参加一项活动,则三个课外小组的人数共______人.20.观察下列算式:12﹣02=1+0=1;22﹣12=2+1=3;32﹣22=3+2=5;42﹣32=4+3=7;52﹣42=5+4=9;…若字母n表示自然数,请你观察到的规律用含n式子表示出来:______.三、解答题21.用代数式表示:(1)m的倒数的3倍与m的平方差的50%;(2)x的与y的差的;(3)甲数a与乙数b的差除以甲、乙两数的积.22.计算:(1)xy﹣3xy+6(2)﹣8a﹣a3﹣a2+4a3+a2+7a﹣6(3)7xy﹣xy3+4+6x+xy3﹣5xy﹣3(4)2(x2﹣xy)﹣3(2x2﹣3xy)﹣2[x2﹣(2x2﹣xy+y)].23.先化简,再求值:2x3+4x﹣x2﹣(x+3x2﹣2x3),其中x=﹣3.24.若﹣0.3m x n3与m4n y是同类项,求下列式子的值(﹣5x2y﹣4y3﹣2xy2+3x3)﹣2(x3﹣xy2﹣y3﹣x2y).25.有四个数,第一个数是a2+b,第二个数比第一个数的2倍少3,第三个数是第一个数与第二个数的差,第四个数是第一个数加上﹣b,再减去﹣b2+2a2,当a=,b=﹣时,求这四个数的和.26.学校组织羽毛球比赛,七(1)班准备购买羽毛球拍和羽毛球用于训练.询问两家商店后得知:球拍25元/副,球2元/个.甲店说:球拍和球都打9折销售.乙店说:买一副球拍送2个球.(1)准备花90元买2副球拍及若干个球,到哪家商店买更合算?(2)若必须买2副球拍,则在甲店再买多少个球时到两家商店买一样合算?27.如图1,2,3,…是由花盆摆成的图案,图1中有1盆花,图2中有7盆花,图3中有19盆花,…(1)根据图中花盆摆放的规律,图4中,应该有______盆花,图5中,应该有______盆花;(2)请你根据图中花盆摆放的规律,写出第n个图形中花盆的盆数______.《第2章代数式》参考答案一、选择题1.代数式﹣x3+2x+24是()A.多项式B.三次多项式C.三次三项式D.四次三项式【解答】解:代数式﹣x3+2x+24是﹣x3、2x、24这三项的和,其中﹣x3是最高次项,∴﹣x3+2x+24是三次三项式.故选C.2.下列代数式中单项式共有()个.,﹣xy3,﹣0.5,,,ax2+bx+c,.A.2 B.3 C.4 D.5【解答】解:根据单项式的定义可以做出选择,代数﹣xy3,﹣0.5,,是单项式,共4个,故选:C.3.将整式﹣[a﹣(b+c)]去括号,得()A.﹣a+b+c B.﹣a+b﹣c C.﹣a﹣b+c D.﹣a﹣b﹣c【解答】解:根据去括号法则:﹣[a﹣(b+c)]=﹣(a﹣b﹣c)=﹣a+b+c.故选A.4.下面说法正确的是()A.的系数是B.的系数是C.﹣5x2的系数是5 D.3x2的系数是3【解答】解:A、的系数是π,故本选项错误;B、的系数是,故本选项错误;C、﹣5x2的系数是﹣5,故本选项错误;D、3x2的系数是3,故本选项正确.故选D.5.用代数式表示a与5的差的2倍是()A.a﹣(﹣5)×2 B.a+(﹣5)×2 C.2(a﹣5)D.2(a+5)【解答】解:a与5的差为a﹣5,所以,a与5的差的2倍为2(a﹣5).故选C.6.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()元.A.4m+7n B.28mn C.7m+4n D.11mn【解答】解:∵一个足球需要m元,买一个篮球需要n元.∴买4个足球、7个篮球共需要(4m+7n)元.故选:A.7.原产量n吨,增产30%之后的产量应为()A.(1﹣30%)n吨B.(1+30%)n吨C.n+30%吨D.30%n吨【解答】解:由题意得,增产30%之后的产量为n+n×30%=n(1+30%)吨.故选B.8.某市出租车收费标准为:起步价4元,2千米后每千米a元,李老师乘车x(x>2)千米,应付费()A.(4+ax)元B.(4+a)x元C.[4+a(x﹣2)]元D.(ax﹣4)元【解答】解:由题意知:李老师超过2千米的路程为(x﹣2)千米,所以费用为a(x﹣2)所以李老师的总费用为[4+a(x﹣2)]元.故选C.9.若代数式2x2+3x+7的值是8,则代数式4x2+6x+15的值是()A.2 B.17 C.3 D.16【解答】解:∵2x2+3x+7的值是8,∴2x2+3x=1,∴4x2+6x+15=2(2x2+3x)+15=2×1+15=17.故选B.10.有理数a、b在数轴上的位置如图所示,则化简|a|﹣|a﹣b|+|b﹣a|的结果是()A.﹣3a+2b B.2b﹣a C.a﹣2b D.﹣a【解答】解:根据题目中的数轴可得,a<0,b>0,∴a﹣b<0,b﹣a>0.∴|a|﹣|a﹣b|+|b﹣a|=﹣a﹣(b﹣a)+(b﹣a)=﹣a.故答案为:D.二、填空题11.0.4xy3的系数是0.4 ,次数为 4 .【解答】解:∵单项式0.4xy3的数字因数是0.4,所有字母指数的和=1+3=4,∴此单项式的系数是0.4,次数是4.故答案为:0.4,4.12.多项式次数为 3 .【解答】解:根据题意得:多项式次数为3.故答案为:3.13.写出﹣5x3y2的一个同类项x3y2.【解答】解:答案不唯一,如x3y2.14.化简:a﹣(a+1)+(a﹣1)= .【解答】解:原式=a﹣a﹣+a﹣=﹣.15.把(x﹣1)当作一个整体,合并3(x﹣1)4﹣2(x﹣1)3﹣5(1﹣x)4+4(1﹣x)3的结果是﹣2(x﹣1)4﹣6(x﹣1)3.【解答】解:原式=﹣2(x﹣1)4﹣6(x﹣1)3.故答案为:﹣2(x﹣1)4﹣6(x﹣1)3.16.三个连续奇数,中间的一个是n,则这三个数的和是3n .【解答】解:由题意得,其它两个数为:n﹣2,n+2,则三个数的和=n﹣2+n+n+2=3n.故答案为:3n.17.当2x﹣1与3互为相反数时,﹣3﹣7x的值是 4 .【解答】解:由题意可得:2x﹣1+3=0,解得x=﹣1,把x=﹣1代入:﹣3﹣7x=﹣3﹣7×(﹣1)=4.故答案为:4.18.若a、b互为相反数,c、d互为倒数,x的绝对值是2,则2a+2b﹣3cd+x2= 1 .【解答】解:∵a、b互为相反数,c、d互为倒数,x的绝对值是2,∴a+b=0,cd=1,x=2或﹣2,∴2a+2b﹣3cd+x2=2(a+b)﹣3cd+x2=0﹣3+4=1.故答案为:1.19.七年级(1)班同学参加数学课外活动小组的有x人,参加合唱队的有y人,而参加合唱队人数是参加篮球队人数的5倍,且每位同学至多只参加一项活动,则三个课外小组的人数共(x+y)人.【解答】解:参加合唱队人数是参加篮球队人数的5倍.∴参加篮球队的人数为:.∴三个课外小组的人数共有x+y+=x+y(人).20.观察下列算式:12﹣02=1+0=1;22﹣12=2+1=3;32﹣22=3+2=5;42﹣32=4+3=7;52﹣42=5+4=9;…若字母n表示自然数,请你观察到的规律用含n式子表示出来:(n+1)2﹣n2=2n+1 .【解答】解:根据题意,分析可得:(0+1)2﹣02=1+2×0=1;(1+1)2﹣12=2×1+1=3;(1+2)2﹣22=2×2+1=5;…若字母n表示自然数,则有:n2﹣(n﹣1)2=2n﹣1;故答案为(n+1)2﹣n2=2n+1.三、解答题21.用代数式表示:(1)m的倒数的3倍与m的平方差的50%;(2)x的与y的差的;(3)甲数a与乙数b的差除以甲、乙两数的积.【解答】解:(1)50%(﹣m2);(2)(x ﹣y );(3).22.计算:(1)xy ﹣3xy+6(2)﹣8a ﹣a 3﹣a 2+4a 3+a 2+7a ﹣6(3)7xy ﹣xy 3+4+6x+xy 3﹣5xy ﹣3(4)2(x 2﹣xy )﹣3(2x 2﹣3xy )﹣2[x 2﹣(2x 2﹣xy+y )].【解答】解:(1)原式=﹣xy+6;(2)原式=﹣a+3a 3﹣6;(3)原式=2xy ﹣xy 3+6x+1;(4)原式=2x 2﹣2xy ﹣6x 2+9xy ﹣2x 2+4x 2﹣2xy+2y=﹣2x 2+5xy+2y .23.先化简,再求值:2x 3+4x ﹣x 2﹣(x+3x 2﹣2x 3),其中x=﹣3.【解答】解:原式=2x 3+4x ﹣x 2﹣x ﹣3x 2+2x 3=4x 3﹣x 2+3x , 当x=﹣3时,原式=﹣108﹣30﹣9=﹣147.24.若﹣0.3m x n 3与m 4n y 是同类项,求下列式子的值(﹣5x 2y ﹣4y 3﹣2xy 2+3x 3)﹣2(x 3﹣xy 2﹣y 3﹣x 2y ).【解答】解:∵﹣0.3m x n 3与m 4n y 是同类项,∴x=4,y=3,则原式=﹣5x2y﹣4y3﹣2xy2+3x3﹣2x3+5xy2+3y3+2x2y=﹣3x2y﹣y3+3xy2+x3=﹣144﹣27+108+64=1.25.有四个数,第一个数是a2+b,第二个数比第一个数的2倍少3,第三个数是第一个数与第二个数的差,第四个数是第一个数加上﹣b,再减去﹣b2+2a2,当a=,b=﹣时,求这四个数的和.【解答】解:根据题意得:a2+b+2(a2+b)﹣3+a2+b﹣2(a2+b)+3+a2+b﹣b﹣(﹣b2+2a2)=a2+b+2a2+2b﹣3+a2+b﹣2a2﹣2b+3+a2+b﹣b+b2﹣2a2=a2+2b+b2,当a=,b=﹣时,原式=﹣+=﹣.26.学校组织羽毛球比赛,七(1)班准备购买羽毛球拍和羽毛球用于训练.询问两家商店后得知:球拍25元/副,球2元/个.甲店说:球拍和球都打9折销售.乙店说:买一副球拍送2个球.(1)准备花90元买2副球拍及若干个球,到哪家商店买更合算?(2)若必须买2副球拍,则在甲店再买多少个球时到两家商店买一样合算?【解答】解:(1)在甲店能买球:(90﹣25×2×0.9)÷(2×0.9)=25(个),在乙店能买球:(90﹣25×2)÷2+2×2=24(个),所以,在甲店买合算.(2)设再买x个球,则0.9(25×2+2x)=2(x﹣2×2)+25×2,解得:x=15.故再买15个球时两家商店买一样合算.27.如图1,2,3,…是由花盆摆成的图案,图1中有1盆花,图2中有7盆花,图3中有19盆花,…(1)根据图中花盆摆放的规律,图4中,应该有37 盆花,图5中,应该有61 盆花;(2)请你根据图中花盆摆放的规律,写出第n个图形中花盆的盆数3n(n﹣1)+1 .【解答】解:(1)∵图1中有1盆花,图2中有1+6=7盆花,图3中有1+6+6×2=19盆花,…∴第n个图中有1+6×(1+2+3+…+n﹣1)=3n(n﹣1)+1盆花;∴图4中,应该有12×(4﹣1)+1=37盆花,图5中,应该有15×(5﹣1)+1=61盆花;(2)第n个图形中花盆的盆数为3n(n﹣1)+1.故答案为:37,61;3n(n﹣1)+1.。

《第2章代数式》含单元测试卷答案解析

《第2章代数式》含单元测试卷答案解析

湘教新版七年级上册《第2章代数式》2019年单元测试卷一、选择题(每小题3分,共30分)1.代数式﹣x3+2x+24是( )A.多项式B.三次多项式C.三次三项式D.四次三项式2.下列代数式中单项式共有( )个.,﹣xy3,﹣0.5,,,ax2+bx+c,.A.2 B.3 C.4 D.53.将整式﹣[a﹣(b+c)]去括号,得( )A.﹣a+b+c B.﹣a+b﹣c C.﹣a﹣b+c D.﹣a﹣b﹣c4.下面说法正确的是( )A.的系数是 B.的系数是C.﹣5x2的系数是5 D.3x2的系数是35.用代数式表示a与5的差的2倍是( )A.a﹣(﹣5)×2 B.a+(﹣5)×2 C.2(a﹣5)D.2(a+5)6.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要( )元.A.4m+7n B.28mn C.7m+4n D.11mn7.原产量n吨,增产30%之后的产量应为( )A.(1﹣30%)n吨B.(1+30%)n吨 C.n+30%吨D.30%n吨8.某市出租车收费标准为:起步价4元,2千米后每千米a元,李老师乘车x(x>2)千米,应付费( )A.(4+ax)元B.(4+a)x元C.[4+a(x﹣2)]元D.(ax﹣4)元9.若代数式2x2+3x+7的值是8,则代数式4x2+6x+15的值是( )A.2 B.17 C.3 D.1610.有理数a、b在数轴上的位置如图所示,则化简|a|﹣|a﹣b|+|b﹣a|的结果是( )A.﹣3a+2b B.2b﹣a C.a﹣2b D.﹣a二、填空题(每小题3分,共30分)11.0.4xy3的系数是__________,次数为__________.12.多项式次数为__________.13.写出﹣5x3y2的一个同类项__________.14.化简:a﹣(a+1)+(a﹣1)=__________.15.把(x﹣1)当作一个整体,合并3(x﹣1)4﹣2(x﹣1)3﹣5(1﹣x)4+4(1﹣x)3的结果是__________.16.三个连续奇数,中间的一个是n,则这三个数的和是__________.17.当2x﹣1与3互为相反数时,﹣3﹣7x的值是__________.18.若a、b互为相反数,c、d互为倒数,x的绝对值是2,则2a+2b﹣3cd+x2=__________.19.七年级(1)班同学参加数学课外活动小组的有x人,参加合唱队的有y人,而参加合唱队人数是参加篮球队人数的5倍,且每位同学至多只参加一项活动,则三个课外小组的人数共__________人.20.观察下列算式:12﹣02=1+0=1;22﹣12=2+1=3;32﹣22=3+2=5;42﹣32=4+3=7;52﹣42=5+4=9;…若字母n表示自然数,请你观察到的规律用含n式子表示出来:__________.三、解答题(共60分)21.用代数式表示:(1)m的倒数的3倍与m的平方差的50%;(2)x的与y的差的;(3)甲数a与乙数b的差除以甲、乙两数的积.22.计算:(1)xy﹣3xy+6(2)﹣8a﹣a3﹣a2+4a3+a2+7a﹣6(3)7xy﹣xy3+4+6x+xy3﹣5xy﹣3(4)2(x2﹣xy)﹣3(2x2﹣3xy)﹣2[x2﹣(2x2﹣xy+y)].23.先化简,再求值:2x3+4x﹣x2﹣(x+3x2﹣2x3),其中x=﹣3.24.若﹣0.3m x n3与m4n y是同类项,求下列式子的值(﹣5x2y﹣4y3﹣2xy2+3x3)﹣2(x3﹣xy2﹣y3﹣x2y).25.有四个数,第一个数是a2+b,第二个数比第一个数的2倍少3,第三个数是第一个数与第二个数的差,第四个数是第一个数加上﹣b,再减去﹣b2+2a2,当a=,b=﹣时,求这四个数的和.26.学校组织羽毛球比赛,七(1)班准备购买羽毛球拍和羽毛球用于训练.询问两家商店后得知:球拍25元/副,球2元/个.甲店说:球拍和球都打9折销售.乙店说:买一副球拍送2个球.(1)准备花90元买2副球拍及若干个球,到哪家商店买更合算?(2)若必须买2副球拍,则在甲店再买多少个球时到两家商店买一样合算?27.如图1,2,3,…是由花盆摆成的图案,图1中有1盆花,图2中有7盆花,图3中有19盆花,…(1)根据图中花盆摆放的规律,图4中,应该有__________盆花,图5中,应该有__________盆花;(2)请你根据图中花盆摆放的规律,写出第n个图形中花盆的盆数__________.湘教新版七年级上册《第2章代数式》2019年单元测试卷一、选择题(每小题3分,共30分)1.代数式﹣x3+2x+24是( )A.多项式B.三次多项式C.三次三项式D.四次三项式【考点】多项式.【分析】多项式中的每个单项式叫做多项式的项,有几个单项式即是几项式,由此判定﹣x3+2x+24有三项,是三项式;一个多项式里次数最高项的次数,叫做这个多项式的次数,由于﹣x3是最高次项,由此得出﹣x3+2x+24的次数是3.【解答】解:代数式﹣x3+2x+24是﹣x3、2x、24这三项的和,其中﹣x3是最高次项,∴﹣x3+2x+24是三次三项式.故选C.【点评】本题考查了对多项式的项数和次数的掌握情况,难度不大.多项式的次数是多项式中最高次项的次数,多项式的项数为组成多项式的单项式的个数.2.下列代数式中单项式共有( )个.,﹣xy3,﹣0.5,,,ax2+bx+c,.A.2 B.3 C.4 D.5【考点】单项式.【分析】根据数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式.【解答】解:根据单项式的定义可以做出选择,代数﹣xy3,﹣0.5,,是单项式,共4个,故选:C.【点评】本题主要考查了单项式的定义,要准确掌握定义,较为简单.3.将整式﹣[a﹣(b+c)]去括号,得( )A.﹣a+b+c B.﹣a+b﹣c C.﹣a﹣b+c D.﹣a﹣b﹣c【考点】去括号与添括号.【分析】根据去括号法则,先去小括号,再去中括号,有时可简化计算.【解答】解:根据去括号法则:﹣[a﹣(b+c)]=﹣(a﹣b﹣c)=﹣a+b+c.故选A.【点评】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是”+“,去括号后,括号里的各项都不改变符号;括号前是”﹣“,去括号后,括号里的各项都改变符号.4.下面说法正确的是( )A.的系数是 B.的系数是C.﹣5x2的系数是5 D.3x2的系数是3【考点】单项式.【分析】根据单项式系数的定义求解.【解答】解:A、的系数是π,故本选项错误;B、的系数是,故本选项错误;C、﹣5x2的系数是﹣5,故本选项错误;D、3x2的系数是3,故本选项正确.故选D.【点评】本题考查了单项式的系数,单项式中的数字因数叫做这个单项式的系数.5.用代数式表示a与5的差的2倍是( )A.a﹣(﹣5)×2 B.a+(﹣5)×2 C.2(a﹣5)D.2(a+5)【考点】列代数式.【分析】先求出a与5的差,然后乘以2即可得解.【解答】解:a与5的差为a﹣5,所以,a与5的差的2倍为2(a﹣5).故选C.【点评】本题考查了列代数式,读懂题意,先求出差,然后再求出2倍是解题的关键.6.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要( )元.A.4m+7n B.28mn C.7m+4n D.11mn【考点】列代数式.【专题】应用题.【分析】根据题意可知4个足球需4m元,7个篮球需7n元,故共需(4m+7n)元.【解答】解:∵一个足球需要m元,买一个篮球需要n元.∴买4个足球、7个篮球共需要(4m+7n)元.故选:A.【点评】注意代数式的正确书写:数字写在字母的前面,数字与字母之间的乘号要省略不写.7.原产量n吨,增产30%之后的产量应为( )A.(1﹣30%)n吨B.(1+30%)n吨 C.n+30%吨D.30%n吨【考点】列代数式.【专题】应用题.【分析】原产量n吨,增产30%之后的产量为n+n×30%,再进行化简即可.【解答】解:由题意得,增产30%之后的产量为n+n×30%=n(1+30%)吨.故选B.【点评】本题考查了根据实际问题列代数式,列代数式要分清语言叙述中关键词语的意义,理清它们之间的数量关系.8.某市出租车收费标准为:起步价4元,2千米后每千米a元,李老师乘车x(x>2)千米,应付费( )A.(4+ax)元B.(4+a)x元C.[4+a(x﹣2)]元D.(ax﹣4)元【考点】列代数式.【专题】整式.【分析】审题知:这是一道费用问题,我们只要用基本费用(起步价)+超出费用即可列式,超出费用等于超出2千米的路程乘以单价即可.【解答】解:由题意知:李老师超过2千米的路程为(x﹣2)千米,所以费用为a(x﹣2)所以李老师的总费用为[4+a(x﹣2)]元.故选C.【点评】此题主要考查了用代数式表示费用问题,准确把握题中数量关系是解题的关键,注意计费中不要重复计费,避免出现(4+ax)元的错误.9.若代数式2x2+3x+7的值是8,则代数式4x2+6x+15的值是( )A.2 B.17 C.3 D.16【考点】代数式求值.【专题】整体思想.【分析】由2x2+3x+7的值为8,可以求得2x2+3x的值,代入所求的式子即可求解.【解答】解:∵2x2+3x+7的值是8,∴2x2+3x=1,∴4x2+6x+15=2(2x2+3x)+15=2×1+15=17.故选B.【点评】考查了代数式求值,代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式2x2+3x的值,然后利用“整体代入法”求代数式的值.10.有理数a、b在数轴上的位置如图所示,则化简|a|﹣|a﹣b|+|b﹣a|的结果是( )A.﹣3a+2b B.2b﹣a C.a﹣2b D.﹣a【考点】整式的加减;数轴;绝对值.【专题】探究型.【分析】根据数轴可以判断a,b,a﹣b,b﹣a的正负情况,从而可以把绝对值符号去掉,然后化简即可解答本题.【解答】解:根据题目中的数轴可得,a<0,b>0,∴a﹣b<0,b﹣a>0.∴|a|﹣|a﹣b|+|b﹣a|=﹣a﹣(b﹣a)+(b﹣a)=﹣a.故答案为:D.【点评】本题考查绝对值、数轴和整式的加减,解题的关键是去绝对值符号时,判断绝对值内式子的值的正负.二、填空题(每小题3分,共30分)11.0.4xy3的系数是0.4,次数为4.【考点】单项式.【分析】根据单项式系数及次数的定义进行解答即可.【解答】解:∵单项式0.4xy3的数字因数是0.4,所有字母指数的和=1+3=4,∴此单项式的系数是0.4,次数是4.故答案为:0.4,4.【点评】本题考查的是单项式,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解答此题的关键.12.多项式次数为3.【考点】多项式.【专题】常规题型.【分析】根据多项式的次数的定义来求解,多项式的次数是多项式中最高次项的次数.【解答】解:根据题意得:多项式次数为3.故答案为:3.【点评】本题主要考查了多项式的次数的定义.多项式中未知数的次数总和的最大值即为多项式的次数.13.写出﹣5x3y2的一个同类项x3y2.【考点】同类项.【专题】开放型.【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,同类项与字母的顺序无关,与系数无关.【解答】解:答案不唯一,如x3y2.【点评】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关,与系数无关.14.化简:a﹣(a+1)+(a﹣1)=.【考点】整式的加减.【分析】根据去括号法则和合并同类项法则进行.【解答】解:原式=a﹣a﹣+a﹣=﹣.【点评】去括号的时候,特别注意括号前是负号,括号内的各项要变号.熟练运用合并同类项法则.15.把(x﹣1)当作一个整体,合并3(x﹣1)4﹣2(x﹣1)3﹣5(1﹣x)4+4(1﹣x)3的结果是﹣2(x﹣1)4﹣6(x﹣1)3.【考点】合并同类项.【分析】根据合并同类项系数相加字母及指数不变,可得答案.【解答】解:原式=﹣2(x﹣1)4﹣6(x﹣1)3.故答案为:﹣2(x﹣1)4﹣6(x﹣1)3.【点评】本题考查了合并同类项,把(x﹣1)当作一个整体合并是解题关键.16.三个连续奇数,中间的一个是n,则这三个数的和是3n.【考点】整式的加减;列代数式.【分析】中间数为n,分别表示出其它两个数,求和即可.【解答】解:由题意得,其它两个数为:n﹣2,n+2,则三个数的和=n﹣2+n+n+2=3n.故答案为:3n.【点评】本题考查了整式的加减,关键是表示出这三个连续奇数,属于基础题.17.当2x﹣1与3互为相反数时,﹣3﹣7x的值是4.【考点】代数式求值;相反数.【分析】审题义:由互为相反数即两数相加和为0,得到2x﹣1+3=0,求解即可得到x的值,再代入所求代数式求值即可.【解答】解:由题意可得:2x﹣1+3=0,解得x=﹣1,把x=﹣1代入:﹣3﹣7x=﹣3﹣7×(﹣1)=4.故答案为:4.【点评】此题主要考查互为相反数的意义,根据相反数的意义列出方程并准确求解是解题的关键,在代入求值时一定要注意数的符号.18.若a、b互为相反数,c、d互为倒数,x的绝对值是2,则2a+2b﹣3cd+x2=1.【考点】代数式求值;相反数;绝对值;倒数.【分析】利用相反数,倒数,以及绝对值的意义求出a+b,cd,以及x的值,代入原式计算即可得到结果.【解答】解:∵a、b互为相反数,c、d互为倒数,x的绝对值是2,∴a+b=0,cd=1,x=2或﹣2,∴2a+2b﹣3cd+x2=2(a+b)﹣3cd+x2=0﹣3+4=1.故答案为:1.【点评】此题考查了代数式求值,相反数,倒数,以及绝对值,熟练掌握基本概念的意义是解决问题的关键.19.七年级(1)班同学参加数学课外活动小组的有x人,参加合唱队的有y人,而参加合唱队人数是参加篮球队人数的5倍,且每位同学至多只参加一项活动,则三个课外小组的人数共(x+y)人.【考点】列代数式.【分析】三个课外小组的人数=参加数学课外活动小组的人数+参加合唱队的人数+参加篮球队的人数.【解答】解:参加合唱队人数是参加篮球队人数的5倍.∴参加篮球队的人数为:.∴三个课外小组的人数共有x+y+=x+y(人).【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.20.观察下列算式:12﹣02=1+0=1;22﹣12=2+1=3;32﹣22=3+2=5;42﹣32=4+3=7;52﹣42=5+4=9;…若字母n表示自然数,请你观察到的规律用含n式子表示出来:(n+1)2﹣n2=2n+1.【考点】规律型:数字的变化类.【专题】规律型.【分析】根据题意,分析可得:(0+1)2﹣02=1+2×0=1;(1+1)2﹣12=2×1+1=3;(1+2)2﹣22=2×2+1=5;…进而发现规律,用n表示可得答案.【解答】解:根据题意,分析可得:(0+1)2﹣02=1+2×0=1;(1+1)2﹣12=2×1+1=3;(1+2)2﹣22=2×2+1=5;…若字母n表示自然数,则有:n2﹣(n﹣1)2=2n﹣1;故答案为(n+1)2﹣n2=2n+1.【点评】本题要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.三、解答题(共60分)21.用代数式表示:(1)m的倒数的3倍与m的平方差的50%;(2)x的与y的差的;(3)甲数a与乙数b的差除以甲、乙两数的积.【考点】列代数式.【分析】根据文字表示代数式的时候,一要注意运算顺序;二要注意代数式的正确书写.【解答】解:(1)50%(﹣m2);(2)(x﹣y);(3).【点评】注意代数式的正确书写:数字写在字母的前面,之间的乘号要省略不写;有除号的时候要写成分数的形式.22.计算:(1)xy﹣3xy+6(2)﹣8a﹣a3﹣a2+4a3+a2+7a﹣6(3)7xy﹣xy3+4+6x+xy3﹣5xy﹣3(4)2(x2﹣xy)﹣3(2x2﹣3xy)﹣2[x2﹣(2x2﹣xy+y)].【考点】整式的加减.【分析】(1)直接合并同类项求解;(2)直接合并同类项求解;(3)直接合并同类项求解;(4)先去括号,然后合并同类项求解.【解答】解:(1)原式=﹣xy+6;(2)原式=﹣a+3a3﹣6;(3)原式=2xy﹣xy3+6x+1;(4)原式=2x2﹣2xy﹣6x2+9xy﹣2x2+4x2﹣2xy+2y=﹣2x2+5xy+2y.【点评】本题考查了整式的加减,解答本题的关键是掌握去括号法则和合并同类项法则.23.先化简,再求值:2x3+4x﹣x2﹣(x+3x2﹣2x3),其中x=﹣3.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=2x3+4x﹣x2﹣x﹣3x2+2x3=4x3﹣x2+3x,当x=﹣3时,原式=﹣108﹣30﹣9=﹣147.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.24.若﹣0.3m x n3与m4n y是同类项,求下列式子的值(﹣5x2y﹣4y3﹣2xy2+3x3)﹣2(x3﹣xy2﹣y3﹣x2y).【考点】整式的加减—化简求值;同类项.【专题】计算题;整式.【分析】利用同类项定义求出x与y的值,原式去括号合并后代入计算即可求出值.【解答】解:∵﹣0.3m x n3与m4n y是同类项,∴x=4,y=3,则原式=﹣5x2y﹣4y3﹣2xy2+3x3﹣2x3+5xy2+3y3+2x2y=﹣3x2y﹣y3+3xy2+x3=﹣144﹣27+108+64=1.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.25.有四个数,第一个数是a2+b,第二个数比第一个数的2倍少3,第三个数是第一个数与第二个数的差,第四个数是第一个数加上﹣b,再减去﹣b2+2a2,当a=,b=﹣时,求这四个数的和.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】根据题意表示出四个数,求出之和,把a与b的值代入计算即可求出值.【解答】解:根据题意得:a2+b+2(a2+b)﹣3+a2+b﹣2(a2+b)+3+a2+b﹣b﹣(﹣b2+2a2)=a2+b+2a2+2b﹣3+a2+b﹣2a2﹣2b+3+a2+b﹣b+b2﹣2a2=a2+2b+b2,当a=,b=﹣时,原式=﹣+=﹣.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.26.学校组织羽毛球比赛,七(1)班准备购买羽毛球拍和羽毛球用于训练.询问两家商店后得知:球拍25元/副,球2元/个.甲店说:球拍和球都打9折销售.乙店说:买一副球拍送2个球.(1)准备花90元买2副球拍及若干个球,到哪家商店买更合算?(2)若必须买2副球拍,则在甲店再买多少个球时到两家商店买一样合算?【考点】一元一次方程的应用.【分析】(1)分别计算在甲、乙两店购买的物品数量,比较后得到在哪家商店购买合算;(2)设再买x个球,则可分别表示出甲商店需要的钱数及乙商店需要的钱数,列出方程解答即可.【解答】解:(1)在甲店能买球:(90﹣25×2×0.9)÷(2×0.9)=25(个),在乙店能买球:(90﹣25×2)÷2+2×2=24(个),所以,在甲店买合算.(2)设再买x个球,则0.9(25×2+2x)=2(x﹣2×2)+25×2,解得:x=15.故再买15个球时两家商店买一样合算.【点评】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.27.如图1,2,3,…是由花盆摆成的图案,图1中有1盆花,图2中有7盆花,图3中有19盆花,…(1)根据图中花盆摆放的规律,图4中,应该有37盆花,图5中,应该有61盆花;(2)请你根据图中花盆摆放的规律,写出第n个图形中花盆的盆数3n(n﹣1)+1.【考点】规律型:图形的变化类.【分析】(1)由题意可知:图1中有1盆花,图2中有1+6=7盆花,图3中有1+6+6×2=19盆花,…由此得出第n个图中有1+6×(1+2+3+…+n﹣1)=3n(n﹣1)+1盆花;由此代入求得答案即可;(2)由(1)直接得出答案即可.【解答】解:(1)∵图1中有1盆花,图2中有1+6=7盆花,图3中有1+6+6×2=19盆花,…∴第n个图中有1+6×(1+2+3+…+n﹣1)=3n(n﹣1)+1盆花;∴图4中,应该有12×(4﹣1)+1=37盆花,图5中,应该有15×(5﹣1)+1=61盆花;(2)第n个图形中花盆的盆数为3n(n﹣1)+1.故答案为:37,61;3n(n﹣1)+1.【点评】此题考查图形的变化规律,找出图形的摆放规律,得出数字之间的运算方法,利用计算规律解决问题.。

代数式单元测试卷(解析版)

 代数式单元测试卷(解析版)

一、初一数学代数式解答题压轴题精选(难)1.如图,在数轴上点A表示数a,点C表示数c,且多项式x3﹣3xy29﹣20的常数项是a,次数是c.我们把数轴上两点之间的距离用表示两点的大写字母一起标记,比如,点A与点B之间的距离记作AB.(1)求a,c的值;(2)若数轴上有一点D满足CD=2AD,则D点表示的数为________;(3)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度.同时点A,C在数轴上运动,点A,C的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t 秒.①若点A向右运动,点C向左运动,AB=BC,求t的值;②若点A向左运动,点C向右运动,2AB-m×BC的值不随时间t的变化而改变,直接写出m的值.【答案】(1)解:∵多项式x3﹣3xy29﹣20的常数项是a,次数是c.∴a=-20,c =30(2)-70或(3)解:①如下图所示:当t=0时,AB=21,BC=29. 下面分两类情况来讨论: a.点A,C在相遇前时,点A,B之间每秒缩小1个单位长度,点B,C每秒缩小4个单位长度. 在t=0时,BC -AB=8, 如果AB=BC,那么AB-BC=0,此时t= 秒, b.点A,C在相遇时,AB=BC,点A,C之间每秒缩小5个单位长度,在t=0时,AC=50,秒, c.点A,C在相遇后,BC 大于AC,不符合条件. 综上所述,t= ②当时间为t时,点A表示得数为-20+2t,点B表示得数为1+t,点C表示得数为30+3t,2AB-m×BC=2[(1+t)-(-20+2t)]-m[(30+3t)-(1+t)],=(6-2m)t+(42-29m),当6-2m=0时,上式的值不随时间t的变化而改变,此时m=3.【解析】【解答】解:(2)分三种情况讨论,•当点D在点A的左侧,∵CD=2AD,∴AD=AC=50,点C点表示的数为-20-50=-70,‚当点D在点A,C之间时,∵CD=2AD,∴AD= AC= ,点C点表示的数为-20+ =- ,ƒ当点D在点C的右侧时,AD>CD与条件CD=2AD相矛盾,不符合题意,综上所述,D点表示的数为-70或 ;【分析】(1)根据多项式 x3﹣3xy29﹣20的常数项是a,次数是c.就可得出a、c的值。

代数式单元测试卷 (word版,含解析)

 代数式单元测试卷 (word版,含解析)

一、初一数学代数式解答题压轴题精选(难)1.从2开始,连续的偶数相加时,它们的和的情况如下表:S和n之间有什么关系?用公式表示出来,并计算以下两题:(1)2a+4a+6a+…+100a;(2)126a+128a+130a+…+300a.【答案】(1)解:依题可得:S=n(n+1).2a+4a+6a+…+100a,=a×(2+4+6+…+100),=a×50×51,=2550a.(2)解:∵2a+4a+6a+…+126a+128a+130a+…+300a,=a×(2+4+6+…+300),=a×150×151,=22650a.又∵2a+4a+6a+…+124a,=a×(2+4+6+…+124),=a×62×63,=3906a,∴126a+128a+130a+…+300a,=22650a-3906a,=18744a.【解析】【分析】(1)根据表中规律可得出当n个连续偶数相加时,它们的和S=n(n+1);由此计算即可得出答案.(2)根据(1)中公式分别计算出2a+4a+……+300a和2a+4a+……+124a的值,再用前面代数式的值减去后面代数式的值即可得出答案.,2.某服装厂生产一种夹克和T恤,夹克每件定价100元,T恤每件定价60元.厂方在开展促销活动期间,向客户提供两种优惠方案:① 买一件夹克送一件T恤;② 夹克和T恤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,T恤x件(x >30).(1)若该客户按方案①购买,夹克需付款________元,T恤需付款________元(用含x的式子表示);若该客户按方案②购买,夹克需付款________元,T恤需付款________元(用含x的式子表示);(2)若x=40,通过计算说明按方案①、方案②哪种方案购买较为合算?(3)若两种优惠方案可同时使用,当x=40时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并说明理由.【答案】(1)3000;;2400;(2)解:当x=40时,方案①3000+60(40-30)=3600元方案②2400+48×40=4320元因为3600<4320,所以按方案①合算(3)解:先买30套夹克,此时T恤共有30件,剩下的10件的T恤用方案②购买,此时10件的T恤费用为:10×60×0.8=480,∴此时共花费了:3000+480=3480<3600 所以按方案①买30套夹克和T恤,再按方案②买10件夹克和T恤更省钱【解析】【解答】解:(1)方案①:夹克的费用:30×100=3000元,T恤的费用为:60(x-30)元;方案②:夹克的费用:30×100×0.8=2400元,T恤的费用为:60×0.8x=48x元;故答案为:(1)3000,60(x-30),2400,48x;【分析】(1)夹克每件定价100元,T恤每件定价60元根据向客户提供两种优惠方案,分别列式计算可求解。

最新代数式单元测试卷 (word版,含解析)

最新代数式单元测试卷 (word版,含解析)

一、初一数学代数式解答题压轴题精选(难)1.从2开始,连续的偶数相加时,它们的和的情况如下表:S和n之间有什么关系?用公式表示出来,并计算以下两题:(1)2a+4a+6a+…+100a;(2)126a+128a+130a+…+300a.【答案】(1)解:依题可得:S=n(n+1).2a+4a+6a+…+100a,=a×(2+4+6+…+100),=a×50×51,=2550a.(2)解:∵2a+4a+6a+…+126a+128a+130a+…+300a,=a×(2+4+6+…+300),=a×150×151,=22650a.又∵2a+4a+6a+…+124a,=a×(2+4+6+…+124),=a×62×63,=3906a,∴126a+128a+130a+…+300a,=22650a-3906a,=18744a.【解析】【分析】(1)根据表中规律可得出当n个连续偶数相加时,它们的和S=n(n+1);由此计算即可得出答案.(2)根据(1)中公式分别计算出2a+4a+……+300a和2a+4a+……+124a的值,再用前面代数式的值减去后面代数式的值即可得出答案.,2.某商场将进货价为40元的台灯以50元的销售价售出,平均每月能售出800个.市场调研表明:当销售价每上涨1元时,其销售量就将减少10个.若设每个台灯的销售价上涨元.(1)试用含的代数式填空:①涨价后,每个台灯的销售价为________元;②涨价后,商场的台灯平均每月的销售量为________台;③涨价后,商场每月销售台灯所获得总利润为________元.(2)如果商场要想销售总利润平均每月达到20000元,商场经理甲说“在原售价每台50元的基础上再上涨40元,可以完成任务”,商场经理乙说“不用涨那么多,在原售价每台50元的基础上再上涨30元就可以了”,试判断经理甲与乙的说法是否正确,并说明理由.【答案】(1);;(2)解:甲与乙的说法均正确,理由如下:依题意可得该商场台灯的月销售利润为:(600﹣10a)(10+a);当a=40时,(600﹣10a)(10+a)=(600﹣10×40)(10+40)=10000(元);当a=10时,(600﹣10a)(10+a)=(600﹣10×10)(10+10)=10000(元);故经理甲与乙的说法均正确【解析】【解答】解:(1)①涨价后,每个台灯的销售价为50+a(元);②涨价后,商场的台灯平均每月的销售量为800-10a(元);③涨价后,商场的台灯台每月销售台灯所获得总利润为( 10 + a ) ( 800 − 10 a );故答案为:50+a,800-10a,( 10 + a ) ( 800 − 10 a ).【分析】(1)根据题意由每个台灯的销售价上涨a元,得到每个台灯的销售价为50+a;商场的台灯平均每月的销售量为800-10a;商场每月销售台灯所获得总利润为( 10 + a ) ( 800 − 10 a );(2)根据题意商场每月销售台灯所获得总利润为( 10 + a ) ( 800 − 10 a ),把a=40时和a=10时代入,求出月销售利润的值,判断即可.3.已知(其中是各项的系数,是常数项),我们规定的伴随多项式是,且. 如,则它的伴随多项式.请根据上面的材料,完成下列问题:(1)已知,则它的伴随多项式 ________.(2)已知,则它的伴随多项式 ________;若,x=________(3)已知二次多项式,并且它的伴随多项式是,若关于的方程有正整数解,求的整数值.【答案】(1)5x4(2)10x-27;x=4;(3)解:∵∴g(x)=2(a+3)x+16=(2a+6)x+16,由g(x)=-2x,得(2a+6)x+16=-2x,化简整理得:(2a+8)x=-16,∵方程有正整数解,,∴,∵a为整数,∴a+4=-1或-2或-4或-8,∴a=-5或-6或-8或-12.【解析】【解答】解:(1)∵,∴g(x)=5x4;故答案为:5x4;( 2 )解:∵ = ,∴g(x)=10x-27,由g(x)=13,得10x-27=13,解得:x=4;故答案为:10x-27;x=4;【分析】(1)由题意可知n=5,根据题中的新定义确定出g(x)即可;(2)先变形为 = ,再根据题中的新定义确定出g(x),并求出所求x的值即可;(3)确定出f(x)的伴随多项式g(x)=(2a+6)x+16,由g(x)=-2x得,再根据方程有正整数解,确定出整数a的值即可.4.小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤,下面是爸爸妈妈的对话:妈妈:“上个月萝卜的单价是元/斤,排骨的单价比萝卜的7倍还多2元”;爸爸:“今天,报纸上说与上个月相比,萝卜的单价上涨了25%,排骨的单价上涨了20%”请根据上面的对话信息回答下列问题:(1)请用含的式子填空:上个月排骨的单价是________元/斤,这个月萝卜的单价是________元/斤,排骨的单价是________元/斤。

2020-2021学年湘教版七年级数学第一学期第2章代数式 单元同步试卷(含答案)

2020-2021学年湘教版七年级数学第一学期第2章代数式 单元同步试卷(含答案)

七年级数学上册《第2章代数式》单元测试卷一.选择题(共15小题)1.代数式x2﹣的正确解释是()A.x与y的倒数的差的平方B.x的平方与y的倒数的差C.x的平方与y的差的倒数D.x与y的差的平方的倒数2.用代数式表示“x与y的和的平方”,结果是()A.(x+y)2B.x+y2C.x2+y2D.x2+y3.a、b互为倒数,x、y互为相反数且y≠0,那么代数式:(a+b)(x+y)﹣ab﹣的值为()A.2B.1C.﹣1D.04.若是同类项,则m+n=()A.﹣2B.2C.1D.﹣15.下列各式中,运算正确的是()A.3a2+2a2=5a4B.a2+a2=a4C.6a﹣5a=1D.3a2b﹣4ba2=﹣a2b6.已知a﹣b=﹣3,c+d=2,则(a﹣d)﹣(b+c)的值为()A.1B.5C.﹣5D.﹣17.计算=()A.B.C.D.8.找出以如图形变化的规律,则第101个图形中黑色正方形的数量是()A.149B.150C.151D.152 9.下列式子:x2+2,+4,,,﹣5x,0中,整式的个数有()A.3个B.4个C.5个D.6个10.下列各式中,不是整式的是()A.B.C.D.0 11.下列关于单项式﹣的说法中,正确的是()A.系数是3,次数是2B.系数是﹣,次数是3C.系数是,次数是3D.系数,次数是212.单项式﹣3x2y的系数和次数分别是()A.﹣3和2B.3和﹣3C.﹣3和3D.3和2 13.下列说法正确的是()A.单项式﹣2πR2的次数是3,系数是﹣2B.单项式﹣的系数是3,次数是4C.不是多项式D.多项式3x2﹣5x2y2﹣6y4﹣2是四次四项式14.如果多项式x2﹣7ab+b2+kab﹣1不含ab项,则k的值为()A.0B.7C.1D.不能确定15.已知多项式A=x2+2y2﹣z2,B=﹣4x2+3y2+2z2且A+B+C=0,则C为()A.5x2﹣y2﹣z2B.3x2﹣5y2﹣z2C.3x2﹣y2﹣3z2D.3x2﹣5y2+z2二.填空题(共6小题)16.代数式2a+b表示的实际意义:.17.长方形的长是a米,宽比长的2倍少b米,则宽为米.18.按照如图的程序计算,若开始输入x的值为﹣3,则最后的输出结果是.19.和统称为整式.20.单项式﹣x2的系数是,次数是.21.把多项式x2﹣1+4x3﹣2x按x的降幂排列为.三.解答题(共3小题)22.请将下列代数式进行分类(至少三种以上),a,3x,,,,a2+x,4x2ay,x+8.23.某公园的门票价格是:成人单价是10元,儿童单价是4元.某旅行团有a名成人和b 名儿童;那么:(1)该旅行团应付多少的门票费.(2)如果该旅行团有32个成人,10个儿童,那么该旅行团应付多少的门票费.24.试至少写两个只含有字母x、y的多项式,且满足下列条件:(1)六次三项式;(2)每一项的系数均为1或﹣1;(3)不含常数项;(4)每一项必须同时含字母x、y,但不能含有其他字母.参考答案与试题解析一.选择题(共15小题)1.代数式x2﹣的正确解释是()A.x与y的倒数的差的平方B.x的平方与y的倒数的差C.x的平方与y的差的倒数D.x与y的差的平方的倒数【分析】根据代数式的意义,可得答案.【解答】解:代数式x2﹣的正确解释是x的平方与y的倒数的差,故选:B.【点评】本题考查了代数式,理解题意(代数式的意义)是解题关键.2.用代数式表示“x与y的和的平方”,结果是()A.(x+y)2B.x+y2C.x2+y2D.x2+y【分析】本题考查列代数式,要明确给出文字语言中的运算关系,x与y的和是(x+y),和的平方是(x+y)2.【解答】解:依题材意:(x+y)2.故选:A.【点评】列代数式的关键是正确理解文字语言中的关键词,比如该题中的“平方”、“和”等,从而明确其中的运算关系,正确地列出代数式.3.a、b互为倒数,x、y互为相反数且y≠0,那么代数式:(a+b)(x+y)﹣ab﹣的值为()A.2B.1C.﹣1D.0【分析】根据a、b互为倒数,x、y互为相反数且y≠0,可以得到ab=1,x+y=0,=﹣1,代入所求解析式即可求解.【解答】解:∵a、b互为倒数,x、y互为相反数且y≠0,∴ab=1,x+y=0,=﹣1.∴原式=1×0﹣1﹣(﹣1)=﹣1+1=0.故选:D.【点评】本题考查了倒数,相反数的定义,正确根据定义得到ab=1,x+y=0,=﹣1是关键.4.若是同类项,则m+n=()A.﹣2B.2C.1D.﹣1【分析】本题考查同类项的定义,所含字母相同,相同字母的指数也相同的项叫做同类项,由同类项的定义可先求得m和n的值,从而求出m+n的值.【解答】解:由同类项的定义可知m+2=1且n﹣1=1,解得m=﹣1,n=2,所以m+n=1.故选:C.【点评】本题考查同类项的定义,关键要注意同类项定义中的两个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.5.下列各式中,运算正确的是()A.3a2+2a2=5a4B.a2+a2=a4C.6a﹣5a=1D.3a2b﹣4ba2=﹣a2b【分析】根据:合并同类项是系数相加字母和字母的指数不变,进行判断.【解答】解:A、3a2+2a2=5a2,故本选项错误;B、a2+a2=2a2,故本选项错误;C、6a﹣5a=a,故本选项错误;D、3a2b﹣4ba2=﹣a2b,故本选项正确;故选:D.【点评】此题考查的知识点是合并同类项,关键明确:合并同类项是系数相加字母和字母的指数不变.6.已知a﹣b=﹣3,c+d=2,则(a﹣d)﹣(b+c)的值为()A.1B.5C.﹣5D.﹣1【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可.【解答】解:根据题意:(a﹣d)﹣(b+c)=(a﹣b)﹣(c+d)=﹣3﹣2=﹣5,故选:C.【点评】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案.7.计算=()A.B.C.D.【分析】根据算式计算即可.【解答】解:=,故选:C.【点评】此题考查数字的变化问题,关键是根据算式计算.8.找出以如图形变化的规律,则第101个图形中黑色正方形的数量是()A.149B.150C.151D.152【分析】仔细观察图形并从中找到规律,然后利用找到的规律即可得到答案.【解答】解:∵当n为偶数时第n个图形中黑色正方形的数量为n+个;当n为奇数时第n个图形中黑色正方形的数量为n+个,∴当n=101时,黑色正方形的个数为101+51=152个.故选:D.【点评】本题考查了图形的变化类问题,解题的关键是仔细的观察图形并正确的找到规律.9.下列式子:x2+2,+4,,,﹣5x,0中,整式的个数有()A.3个B.4个C.5个D.6个【分析】直接利用单项式和多项式统称为整式,进而判断得出即可.【解答】解:x2+2,+4,,,﹣5x,0中,整式有x2+2,,﹣5x,0,共4个.故选:B.【点评】此题主要考查了整式的概念,正确把握定义是解题关键.10.下列各式中,不是整式的是()A.B.C.D.0【分析】整式是单项式与多项式的统称,根据定义即可判断.【解答】解:A、是多项式,是整式,故本选项不符合题意;B、是单项式,是整式,故本选项不符合题意;C、分母中含有字母,是分式,不是整式,故本选项符合题意;D、是单项式,是整式,故本选项不符合题意.故选:C.【点评】本题主要考查了整式的定义,注意分式与整式的区别在于分母中是否含有未知数.11.下列关于单项式﹣的说法中,正确的是()A.系数是3,次数是2B.系数是﹣,次数是3C.系数是,次数是3D.系数,次数是2【分析】根据单项式系数及次数的定义进行解答即可.【解答】解:∵单项式﹣的数字因数是﹣,字母指数的和是1+2=3,∴此单项式的系数是﹣,次数是3.故答案为:﹣,3.故选:B.【点评】本题考查的是单项式,熟知单项式系数及次数的定义是解答此题的关键.12.单项式﹣3x2y的系数和次数分别是()A.﹣3和2B.3和﹣3C.﹣3和3D.3和2【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:单项式的系数就是字母前面的数字因式,所以为﹣3;次数是所有字母的指数之和为2+1=3.故选:C.【点评】本题考查了单项式的有关概念,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.13.下列说法正确的是()A.单项式﹣2πR2的次数是3,系数是﹣2B.单项式﹣的系数是3,次数是4C.不是多项式D.多项式3x2﹣5x2y2﹣6y4﹣2是四次四项式【分析】分别根据单项式以及多项式的定义判断得出即可.【解答】解:A、单项式﹣2πR2的次数是2,系数是﹣2π,故此选项错误;B、单项式﹣的系数是﹣,次数是4,故此选项错误;C、是多项式,故此选项错误;D、多项式3x2﹣5x2y2﹣6y4﹣2是四次四项式,故此选项正确.故选:D.【点评】此题考查了多项式和单项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.14.如果多项式x2﹣7ab+b2+kab﹣1不含ab项,则k的值为()A.0B.7C.1D.不能确定【分析】根据题意“不含ab项”故ab项的系数为0,由此可得出k的值.【解答】解:∵不含ab项,∴﹣7+k=0,k=7.故选:B.【点评】此题主要考查了多项式,以及合并同类项,关键是掌握一个多项式中不含哪一项,则使哪一项的系数=0.15.已知多项式A=x2+2y2﹣z2,B=﹣4x2+3y2+2z2且A+B+C=0,则C为()A.5x2﹣y2﹣z2B.3x2﹣5y2﹣z2C.3x2﹣y2﹣3z2D.3x2﹣5y2+z2【分析】由于A+B+C=0,则C=﹣A﹣B,代入A和B的多项式即可求得C.【解答】解:由于多项式A=x2+2y2﹣z2,B=﹣4x2+3y2+2z2且A+B+C=0,则C=﹣A﹣B=﹣(x2+2y2﹣z2)﹣(﹣4x2+3y2+2z2)=﹣x2﹣2y2+z2+4x2﹣3y2﹣2z2=3x2﹣5y2﹣z2.故选:B.【点评】解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.二.填空题(共6小题)16.代数式2a+b表示的实际意义:一本笔记本a元,一支铅笔b元,购买两本笔记本和一只铅笔应付的价格.【分析】此类问题应结合实际,根据代数式的特点解答.【解答】解:代数式2a+b表示的实际意义:一本笔记本a元,一支铅笔b元,购买两本笔记本和一只铅笔应付的价格,故答案为:一本笔记本a元,一支铅笔b元,购买两本笔记本和一只铅笔应付的价格.【点评】本题考查了代数式,代数式的书写要求:在代数式中出现的乘号,通常简写成“•”或者省略不写;数字与字母相乘时,数字要写在字母的前面;在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.17.长方形的长是a米,宽比长的2倍少b米,则宽为2a﹣b米.【分析】长方形的宽=2×长﹣b;【解答】解:∵长方形的长是a米,宽比长的2倍少b米,∴长方形的宽为2a﹣b,故答案为:2a﹣b【点评】本题考查列代数式,找到长方形的宽是解决问题的重点,得到所求式子的等量关系是解决本题的关键.18.按照如图的程序计算,若开始输入x的值为﹣3,则最后的输出结果是﹣23.【分析】把x=﹣3代入3x+1,依次求出结果后比较即可.【解答】解:当x=﹣3时,3x+1=﹣8>﹣20,当x=﹣8时,3x+1=﹣23<﹣20,故答案为:﹣23.【点评】本题考查了求代数式的值,能理解题意是解此题的关键.19.单项式和多项式统称为整式.【分析】根据整式的定义进行解答.【解答】解:整式包括单项式和多项式.故答案为:单项式和多项式.【点评】本题重点考查整式的定义:整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除数不能含有字母.单项式和多项式统称为整式.20.单项式﹣x2的系数是﹣,次数是2.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义,单项式﹣x2的数字因数是﹣,故系数是﹣,次数是2.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.21.把多项式x2﹣1+4x3﹣2x按x的降幂排列为4x3+x2﹣2x﹣1.【分析】首先分清各项次数,进而按将此排列得出答案.【解答】解:把多项式x2﹣1+4x3﹣2x按x的降幂排列为:4x3+x2﹣2x﹣1.故答案为:4x3+x2﹣2x﹣1.【点评】此题主要考查了多项式,正确把握各项次数的确定方法是解题关键.三.解答题(共3小题)22.请将下列代数式进行分类(至少三种以上),a,3x,,,,a2+x,4x2ay,x+8.【分析】根据代数式的分类解答:.【解答】解:本题答案不唯一.单项式:,a,3x,4x2ay;多项式:,a2+x,x+8;整式:,a,3x,4x2ay,,a2+x,x+8;分式:.【点评】本题考查了代数式的定义及其分类.由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式.注意,分式和无理式都不属于整式.23.某公园的门票价格是:成人单价是10元,儿童单价是4元.某旅行团有a名成人和b 名儿童;那么:(1)该旅行团应付多少的门票费.(2)如果该旅行团有32个成人,10个儿童,那么该旅行团应付多少的门票费.【分析】(1)首先表示出成人的总花费,再表示出儿童的花费,然后求和即可;(2)把数值代入(1)中的代数式求得答案即可.【解答】解:(1)该旅行团应付(10a+4b)元的门票费;(2)把a=32,b=10代入代数式10a+4b,得:10×32+4×10=360(元),因此,他们应付360元门票费.【点评】此题考查列代数式,关键是正确理解题意,注意代数式的书写方法.24.试至少写两个只含有字母x、y的多项式,且满足下列条件:(1)六次三项式;(2)每一项的系数均为1或﹣1;(3)不含常数项;(4)每一项必须同时含字母x、y,但不能含有其他字母.【分析】多项式的次数是“多项式中次数最高的项的次数”,满足条件(1),即最高项的次数为6,满足条件(2),多项式的系数是1或﹣1,满足条件(3),即多项式没有常数项,满足条件(4)多项式中每项都含xy,不能有其它字母.【解答】解:此题答案不唯一,如:x3y3﹣x2y4+xy5;﹣x2y4﹣xy﹣xy2.【点评】多项式的次数是“多项式中次数最高的项的次数”,要看清每项条件的要求.1、人不可有傲气,但不可无傲骨。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【单元测试题】第二章《代数式》测试卷
一.填空题。

(每题4分,共32分)
1.实数a ()0a ≠的相反数的倒数是 。

2.一个负数的绝对值等于它的相反数,若这个负数用字母a 表示,则这条数学规律可表示成 。

3.单项式2r π-的系数是 ,次数是 。

4.多项式2112
a a -+的最高次项是 ,最高次项的系数是 。

5.一年期的存款的年利率为%p ,利息个人所得税的税率为20%。

某人存入的本金为a 元,则到期支出时实得本利和为 元。

6.
7.已知多项式53
9ax bx cx +++,当1x =-时,多项式的值为17。

则该多项式当1x =时的值是 。

8.已知甲、乙两种糖果的单价分别是x 元/千克和12元/千克。

为了使甲乙两种糖果分别销售与把它们混合成什锦糖后再销售收入保持不变,则由20千克甲种糖果和y 千克乙种糖果混合而成的什锦糖的单价应是 元/千克。

二.选择题(每题4分,共24分)
( )9。

下列说法正确的是:(A )a -是负数 (B )a 一定是非负数 (C )不论a 为什么数,
11a a = (D )7
a 一定是分数 ( )10。

已知a 是两位数,
b 是一位数,把a 接写在b 的后面,就成为一个三位数。

这个三位数可表示成:
(A )10b a + (B )ba (C )100b a + (D )10b a +
( )11。

一个代数式的2倍与2a b -+的和是2a b +,这个代数式是:
(A )3a b + (B )1122
a b -+ (C )3322a b + (D )3122a b + ( )12。

在下列代数式中:(),0,a a a a a -+≤,a b b a -+-
()()(),a b b c c a -+-+-其中值永远等于0的有:
(A)4个 (B)3个 (C)2个 (D)个
( )13。

已知,a b 两数在数轴上的表示如图1所示,那么化简代数式12a b a b +--++的
结果是:
(A )1 (B )23b +
(C )23a - (D )—1
( )14。

在排成每行七天的日历表中取下一个33⨯方块(如 图2)。

若所有日期数之和为189,则n 的值为:
(A )21 (B )11 (C )15 (D )9
三.解答题。

(共44分)
15.(12分)化简并求值。

()()(
)1223321
x y x y --++,其中2,0.5;x y ==-
()()()22234222a ab a a ab ⎡⎤--+-+⎣⎦,其中 2.a =-
16.(10分)同一时刻的北京时间、巴黎时间、东京时间如图所示。

(1)设北京时间为()723a a ≤,
分别用代数式表示同一时刻
的巴黎时间和东京时间;
(2)2001年7月13日,北京时间22:08,国际奥委会主席萨马兰奇宣布,北京获得2008年第29届夏季奥运会的主办权。

问这一时刻的巴黎时间、东京时间分别为几时?
17.(10分)1千瓦时电(即通常所说的1度电)可供一盏40瓦的电灯点亮25小时。

(1) 1千瓦时的电量可供n 瓦的电灯点亮多少时间?
(2) 若每度电的电费为a 元,一个100瓦的电灯使用12时的电费是几元?
18.(12分)任意写出一个数位不含零的三位数,任取三个数字中的两个,组合成所有可能的二位数(有6个)。

求出所有这些二位数的和,然后将它除以原三位数的各个数位上的数之和。

例如,对三位数223,取其两个数字组成所有可能的二位数:22,23,22,23,32,32。

它们的和是154。

三位数223各位数的和是7,154722÷=。

再换几个数试一试,你发现了什么?请写出你按上面方法的探索过程和所发现的结果,并运用代数式的知识说明所发现的结果正确。

相关文档
最新文档