【华师大版】初二数学上册《全册课件》(45套课件共1095页)

合集下载

2024年华师大版八年级数学上册全套精品课件

2024年华师大版八年级数学上册全套精品课件

2024年华师大版八年级数学上册全套精品课件一、教学内容1. 第一章:实数第一节:无理数的概念与性质第二节:实数的分类与运算第三节:近似数与有效数字2. 第二章:一元二次方程第一节:一元二次方程的概念与解法第二节:一元二次方程的根的判别式第三节:一元二次方程的根与系数的关系3. 第三章:不等式与不等式组第一节:不等式的性质与解法第二节:不等式组的解法与应用第三节:不等式的应用二、教学目标1. 理解实数的概念,掌握实数的分类与运算。

2. 学会解一元二次方程,掌握根的判别式和根与系数的关系。

3. 掌握不等式与不等式组的性质和解法,并能解决实际问题。

三、教学难点与重点1. 教学难点:无理数的概念与运算一元二次方程的根的判别式和根与系数的关系不等式组的解法与应用2. 教学重点:实数的分类与运算一元二次方程的解法不等式与不等式组的性质和解法四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔2. 学具:教材、练习本、文具五、教学过程1. 引入:通过实际问题引入无理数的概念,激发学生学习兴趣。

通过例题讲解,引导学生探索一元二次方程的解法。

以实际情境为例,引入不等式与不等式组的学习。

2. 授课:详细讲解实数的概念、分类与运算。

通过例题讲解,让学生掌握一元二次方程的解法。

结合实际例子,讲解不等式与不等式组的性质和解法。

3. 随堂练习:设计有针对性的练习题,巩固所学知识。

及时解答学生疑问,确保学生掌握重点知识。

强调重点和难点,提高学生解决问题的能力。

六、板书设计1. 实数的分类与运算2. 一元二次方程的解法3. 不等式与不等式组的性质和解法七、作业设计1. 作业题目:课后习题1、2、3题。

拓展题目:设计一道综合性的题目,涵盖本章所学知识。

2. 答案:八、课后反思及拓展延伸1. 反思:针对学生的薄弱环节,调整教学方法,提高教学效果。

2. 拓展延伸:探索实数在生活中的应用。

研究一元二次方程的根与系数的关系在其他领域的应用。

华师大版数学八年级上册全册课件

华师大版数学八年级上册全册课件

∴144的算术平方
∴169的算术平方
2 14 196, • 解:∵ ∴196的算术平方 根为14,即 196 14.
• 7、略
质量检测答案
1、⑴±15;⑵±0.14;⑶-7;⑷±12 ⑸169 2、D 3、5 4、64 5、±2,±12 6、⑴0.9 ; ⑵ ;⑶ 16 ; ⑷
(2)什么数的平
4 4 (4)什么数的平方是 ? 的平方根是什么? 25 25
(5)-4有没有平方根?为什么?
(6) 16,49,64,81都是正数,它们有几个平方根?平方根之间有什么关系?
想一想 通过观察,你能发现一个数的平方根有什 么规律吗?
二、平方根性质:
互为相反 1、一个正数有 两 个平方根,它们
( 3) 2 1 9 , ( 3 ) 2 9 4 4 2 4
1 2 的平方根是 4
(4)∵(±0.7)2=0.49,

∴0.49的平方根为±0.7.
练一练
1、写出下列各数的平方根: (1)49; (2)1600; 请记住老师示 范的解题格式 (3)169; (4)0.81; 噢! (5)0.0036;(6)1.44;
3
3
0.216 0.6 .
(4) ∵

(5) ∵
27 3 , 125 5 问:一个正数有几个 25 27 3 3 3 ,即 立方根?一个负数有 125 的立方根是 125 5 5

几个立方根?零的立 03 0 , 方根是什么? 0的立方根是0,即 3 0 0
华师大版八年级上册
数 学
全册优质课件
数的开方 平方根
预习检测答案
1、1,1;4,4;9,9;16,16;25,25;36,36;49,49;64,64;81,81; 100,100;

华师大版八年级数学上册全套精品课件

华师大版八年级数学上册全套精品课件

华师大版八年级数学上册全套精品课件一、教学内容1. 函数及其性质2. 一次函数图像与性质3. 二次函数图像与性质4. 比例函数与反比例函数5. 函数的运用二、教学目标1. 理解函数的定义,掌握各类函数的性质。

2. 学会使用图像法研究函数的性质,提高几何直观能力。

3. 能够运用所学函数知识解决实际问题。

三、教学难点与重点重点:函数的定义、性质、图像及其应用。

难点:二次函数图像的绘制与性质分析,函数在实际问题中的应用。

四、教具与学具准备1. 教具:多媒体教学设备,PPT课件,黑板,粉笔。

2. 学具:直尺,圆规,计算器,练习本。

五、教学过程1. 引入:通过展示生活中的实际例子,让学生感受函数在生活中的运用,激发学习兴趣。

示例:某商品的价格与购买数量之间的关系。

2. 知识讲解:(1) 函数的定义及表示方法。

(2) 一次函数、二次函数、比例函数、反比例函数的图像与性质。

(3) 函数在实际问题中的应用。

3. 例题讲解:(1) 求解一次函数的解析式。

(2) 分析二次函数的图像与性质。

(3) 利用函数解决实际问题。

4. 随堂练习:(1) 画出给定函数的图像。

(2) 分析给定函数的性质。

六、板书设计1. 函数的定义及表示方法。

2. 各类函数的图像与性质。

3. 函数在实际问题中的应用。

七、作业设计1. 作业题目:(1) 求解一次函数y=2x+3与y=3x1的交点坐标。

(2) 画出二次函数y=x^22x3的图像,并分析其性质。

(3) 某商店举行促销活动,购买数量x(x为正整数)与单价y (元)之间的关系为y=100.2x,求购买数量为5、10、15时的单价。

2. 答案:(1) 交点坐标为(2, 7)。

(2) 图像为开口向上的抛物线,顶点坐标为(1, 4),对称轴为x=1。

(3) 购买数量为5、10、15时的单价分别为8元、7元、6元。

八、课后反思及拓展延伸1. 反思:对本节课的教学过程进行反思,查找不足之处,为今后的教学提供改进方向。

华师大版八年级数学上册经典PPT课件

华师大版八年级数学上册经典PPT课件
华师大版八年级数学上册经典PPT 课件
1 同底数幂的乘法
华师大版八年级数学上册经典PPT 课件
2 幂的乘方
华师大版八年级数学上册经典PPT 课件
3 积的乘方
华师大版八年级数学上册经典PPT 课件
2 单项式与多项式相乘
华师大版八年级数学上册经典PPT 课件
3 多项式与多项式相乘
华师大版八年级数学上册经典PPT 课件
12.3 乘法公式
华师大版八年级数学上册经典PPT 课件
11.2 实数
华师大版八年级数学上册经典PPT 课件
阅读材料 为什么√2不是有理数
华师大版八年级数学上册经典PPT 课件
第12章 整式的乘除
华师大版八年级数学上册经典PPT 课件
12.1 幂的运算
1 两数和乘以这两数的差
华师大版八年级数学上册经典PPT 课件
2 两数和(差)的平方
华师大版八数的开方
华师大版八年级数学上册经典PPT 课件
11.1 平方根与立方根
华师大版八年级数学上册经典PPT 课件
1 平方根/算术平方根
华师大版八年级数学上册经典PPT 课件
2 立方根
华师大版八年级数学上册经典PPT 课件
华师大版八年级数学上册经典PPT 课件
4 同底数幂的除法
华师大版八年级数学上册经典PPT 课件
12.2 整式的乘法
华师大版八年级数学上册经典PPT 课件
1 单项式与单项式相乘
华师大版八年级数学上册经典PPT 课件
华师大版八年级数学上册经典 PPT课件目录
0002页 0025页 0057页 0104页 0140页 0215页 0276页 0314页 0345页 0374页 0448页 0497页 0571页 0590页 0648页 0670页 0688页

华师大版八年级数学上册全套课件

华师大版八年级数学上册全套课件

华师大版八年级数学上册全套课件一、教学内容本节课的教学内容选自华师大版八年级数学上册,主要包括第四章《二次根式》的第一节《平方根与算术平方根》和第二节《立方根》。

本节课将引导学生掌握平方根和立方根的定义,能够熟练运用平方根和立方根进行计算,并解决实际问题。

二、教学目标1. 理解平方根和立方根的概念,掌握求一个数的平方根和立方根的方法。

2. 能够运用平方根和立方根解决实际问题,提高学生的应用能力。

3. 培养学生的逻辑思维能力和团队合作能力。

三、教学难点与重点重点:平方根和立方根的概念及求法。

难点:平方根和立方根在实际问题中的应用。

四、教具与学具准备教具:PPT、黑板、粉笔。

学具:笔记本、尺子、圆规。

五、教学过程1. 实践情景引入:提问:同学们,你们知道我们生活中有哪些地方会用到平方根和立方根吗?引导学生思考,并举例说明。

2. 知识讲解:(1)平方根:引导学生通过PPT演示,了解平方根的定义,讲解平方根的求法。

(2)立方根:同样通过PPT演示,讲解立方根的定义和求法。

3. 例题讲解:(1)求下列数的平方根:4、9、16。

(2)求下列数的立方根:27、64。

4. 随堂练习:(1)求下列数的平方根:16、25、36。

(2)求下列数的立方根:8、125。

5. 学生自主学习:让学生分组讨论,运用平方根和立方根解决实际问题。

6. 成果展示:邀请几组学生分享他们解决的实际问题,并讲解解题过程。

六、板书设计板书内容:平方根:一个非负数a的平方根是另一个数b,使得b²=a。

立方根:一个数a的立方根是另一个数b,使得b³=a。

七、作业设计1. 求下列数的平方根:16、25、36。

答案:16的平方根是4,25的平方根是5,36的平方根是6。

2. 求下列数的立方根:8、125。

答案:8的立方根是2,125的立方根是5。

3. 运用平方根和立方根解决实际问题:一个长方体的长、宽、高分别是2m、3m和4m,求它的体积和表面积。

最全华师大版初中数学八年级上册全册课件

最全华师大版初中数学八年级上册全册课件

实数在实际生活中的应用
长度测量
在现实生活中,很多物体的长度 、距离等都是以实数的形式表示 的,例如身高、体重、路程等。
比例计算
在商业、农业等领域中,常常需要 进行比例计算,如利息计算、成本 与售价的比例等。
数据分析
在统计学中,数据通常以实数的形 式表示和分析,如平均数、中位数 、众数等。
04
第三章:一次函数
Chapter
轴对称图形的概念和性质
轴对称图形的定义
如果一个平面图形沿着一条直线折叠后,直线两旁的部分 能够互相重合,那么这个图形叫做轴对称图形,这条直线 叫做对称轴。
轴对称图形的性质
轴对称图形具有对称性,即图形关于对称轴对称,其对称 轴两侧的图形完全相同。
轴对称图形的特点
轴对称图形具有稳定性,可以用于建筑设计、艺术创作等 领域。
许多建筑物都采用了轴对称的设计,如故宫、天坛等,这种设计可以增加建筑的稳定性和 美感。
商标设计
许多商标采用了轴对称的设计,如中国联通的标志等,这种设计可以增加商标的辨识度和 美感。
艺术创作
轴对称图形在艺术创作中也有广泛应用,如绘画、雕塑等,这种创作方式可以增加艺术作 品的表现力和美感。
THANKS
情感态度与价值观
培养学生对数学的兴趣和 爱好,树立正确的数学观 念,形成良好的学习习惯 和科学态度。
02
第一章:有理数
Chapter
有理数的概念
有理数的定义
有理数是可以表示为两个 整数之比的数,包括整数 、分数和十进制数。
有理数的分类
正有理数、负有理数和零 。
有理数的数轴表示
有理数可以在数轴上表示 ,其中正数位于原点右侧 ,负数位于原点左侧,零 位于原点。

华东师大版八年级上册数学整册教学课件

华东师大版八年级上册数学整册教学课件

华东师大版八年级上册数学整册教学课件一、教学内容1. 第五章:三角形5.1 三角形的性质5.2 三角形的判定5.3 三角形的角平分线、中线、高线5.4 勾股定理及其逆定理2. 第六章:不等式与不等式组6.1 不等式及其性质6.2 不等式的解法6.3 不等式组及其解法3. 第七章:函数及其图像7.1 变量与函数7.2 函数的图像7.3 一次函数7.4 一次函数的图像与性质7.5 一次函数的应用二、教学目标1. 掌握三角形的基本性质、判定方法,以及角平分线、中线、高线的性质和应用。

2. 理解并掌握不等式及其性质,能够熟练求解一元一次不等式及不等式组。

3. 理解函数的概念,掌握一次函数的图像、性质及应用。

三、教学难点与重点1. 教学难点:三角形的判定方法及性质不等式的解法一次函数的图像与性质2. 教学重点:三角形在实际问题中的应用不等式组在实际问题中的求解一次函数在实际问题中的应用四、教具与学具准备1. 教具:三角板、直尺、圆规、多媒体课件2. 学具:三角板、直尺、圆规、练习本、草稿纸五、教学过程1. 实践情景引入:通过实际生活中与三角形、不等式、一次函数相关的问题,激发学生的学习兴趣,引导学生进入学习状态。

2. 例题讲解:通过讲解典型例题,引导学生理解并掌握三角形、不等式、一次函数的基本概念和性质。

3. 随堂练习:设计针对性强的练习题,让学生在实际操作中巩固所学知识。

4. 小组讨论:将学生分组,针对重难点问题进行讨论,培养学生的合作意识和解决问题的能力。

六、板书设计1. 板书内容:知识点框架关键概念、性质、定理典型例题及解题步骤练习题及答案2. 板书要求:结构清晰,层次分明语言简练,重点突出七、作业设计1. 作业题目:第五章:三角形练习题1)证明三角形的内角和为180°。

2)已知三角形两边之和大于第三边,求第三边的取值范围。

第六章:不等式与不等式组练习题1)解一元一次不等式:2x 3 > 5。

华东师大版八年级上册数学整册教学课件

华东师大版八年级上册数学整册教学课件

华东师大版八年级上册数学整册教学课件一、教学内容1. 第十一章:一元二次方程详细内容:一元二次方程的定义、求解方法(因式分解法、配方法、公式法)、根的判别式、根与系数的关系。

2. 第十二章:几何图形详细内容:三角形、四边形、圆的基本性质和判定,以及它们在实际问题中的应用。

3. 第十三章:概率初步详细内容:概率的定义、计算方法,以及在实际问题中的应用。

二、教学目标1. 掌握一元二次方程的定义、求解方法和应用。

2. 掌握三角形、四边形、圆的基本性质和判定,并能解决实际问题。

3. 理解概率的定义和计算方法,能在实际问题中运用。

三、教学难点与重点1. 教学难点:一元二次方程的求解方法,几何图形的性质和判定,概率的计算。

2. 教学重点:一元二次方程的应用,几何图形在实际问题中的应用,概率的意义和计算方法。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:课本、练习本、尺子、圆规。

五、教学过程1. 导入新课:通过实践情景引入,激发学生学习兴趣。

例如:通过生活中的实际问题,引出一元二次方程、几何图形和概率的概念。

2. 例题讲解:详细讲解典型例题,帮助学生理解和掌握知识点。

例如:解一元二次方程、判断几何图形、计算概率。

3. 随堂练习:设计有针对性的练习题,巩固所学知识。

例如:让学生解一元二次方程、识别几何图形、计算概率。

5. 课后作业布置:布置适量作业,巩固所学知识。

六、板书设计1. 华东师大版八年级上册数学课件2. 内容:分章节列出重点知识点、公式、性质、判定方法等。

七、作业设计1. 作业题目:(1)解一元二次方程:x^2 5x + 6 = 0(2)判断四边形ABCD是否为矩形,并说明理由。

(3)投掷一枚硬币三次,求出现两个正面朝上的概率。

2. 答案:(1)x1 = 2, x2 = 3(2)四边形ABCD是矩形,因为对角线相等且互相平分。

(3)概率为3/8。

八、课后反思及拓展延伸1. 反思:本节课学生对一元二次方程、几何图形和概率的理解程度,以及教学方法的适用性。

华东师大版八年级上册数学整册教学课件(1)

华东师大版八年级上册数学整册教学课件(1)

华东师大版八年级上册数学整册教学课件一、教学内容1. 第1章:实数1.1 有理数的平方1.2 无理数的平方1.3 实数的性质1.4 实数的运算2. 第2章:一元二次方程2.1 一元二次方程的定义与标准形式2.2 解一元二次方程2.3 一元二次方程的根与系数的关系2.4 一元二次方程的应用3. 第3章:平面几何3.1 两点间距离公式3.2 直线的斜率3.3 一次函数的图像与性质3.4 一次函数的应用二、教学目标1. 掌握实数的概念、性质和运算方法,能够解决实际问题。

2. 学会解一元二次方程,理解根与系数的关系,并能应用于实际问题的解决。

3. 掌握平面几何中两点间距离公式、直线的斜率等基本概念,了解一次函数的图像与性质,并能解决相关实际问题。

三、教学难点与重点1. 教学难点:实数的运算、一元二次方程的解法、一次函数的图像与性质。

2. 教学重点:实数的概念、一元二次方程的应用、平面几何的基本概念。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:直尺、圆规、三角板、计算器。

五、教学过程1. 导入:通过实际情景引入实数的概念,激发学生兴趣。

2. 基本概念与性质:讲解实数的定义、性质,举例说明实数的运算方法。

3. 例题讲解:选取典型例题,讲解实数的运算、一元二次方程的解法、一次函数的图像与性质。

4. 随堂练习:设计针对性练习题,让学生巩固所学知识。

6. 应用:讲解实际应用问题,让学生运用所学知识解决问题。

六、板书设计1. 实数的概念与性质2. 实数的运算方法3. 一元二次方程的解法4. 一次函数的图像与性质5. 实际应用问题七、作业设计1. 作业题目:(1)计算:(3)²、√9、(2+√3)(2√3)。

(2)解一元二次方程:x²5x+6=0。

(3)已知直线y=2x+1,求点A(3,7)到该直线的距离。

2. 答案:(1)9、3、1。

(2)x1=2,x2=3。

(3)距离为3。

华师大版八年级数学上册全套精品精品课件

华师大版八年级数学上册全套精品精品课件

华师大版八年级数学上册全套精品精品课件一、教学内容1. 数据的收集与整理2. 分式与分式方程3. 几何图形的基本概念4. 三角形的判定与性质5. 平行四边形的性质与判定6. 概率初步二、教学目标1. 让学生掌握数据的收集、整理、描述和分析的方法,培养学生的数据分析能力。

2. 使学生掌握分式与分式方程的概念及解法,提高学生解决实际问题的能力。

3. 让学生了解几何图形的基本概念,培养学生的空间想象力和逻辑思维能力。

4. 让学生掌握三角形的判定与性质,以及平行四边形的性质与判定,提高学生的几何解题能力。

5. 让学生初步了解概率的概念,培养学生的概率思维。

三、教学难点与重点1. 教学难点:(1)数据的整理与分析方法(2)分式方程的解法(3)几何图形的性质与判定(4)概率的计算2. 教学重点:(1)数据的收集与整理(2)分式与分式方程的应用(3)几何图形的认识与应用(4)概率的基本概念四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、教鞭等。

2. 学具:学生用书、练习本、文具等。

五、教学过程1. 导入:通过实践情景引入,激发学生的学习兴趣。

例如:在讲解数据的收集与整理时,可以引入学校运动会成绩统计的例子。

2. 讲解:详细讲解各章节知识点,结合例题进行解析。

例如:在讲解分式方程时,可以给出实际应用的例题,如速度、时间、路程的关系。

3. 随堂练习:针对每个知识点设计相应的练习题,让学生及时巩固所学。

5. 课后作业布置:布置具有代表性的作业题目,巩固所学。

六、板书设计1. 板书章节,用不同颜色粉笔突出重点、难点。

2. 例题、练习题及答案有序排列,便于学生抄写和对照。

七、作业设计1. 作业题目:(1)数据的收集与整理:完成教材课后习题1、2、3。

(2)分式与分式方程:完成教材课后习题4、5、6。

(3)几何图形的基本概念:完成教材课后习题7、8、9。

(4)三角形的判定与性质:完成教材课后习题10、11、12。

华师大版八年级数学上册全套精品课件

华师大版八年级数学上册全套精品课件

华师大版八年级数学上册全套精品课件一、教学内容1. 函数的概念及其性质函数的定义与表示方法函数的性质:单调性、奇偶性、周期性2. 一次函数一次函数的图像与性质一次函数的应用3. 二次函数二次函数的图像与性质二次函数的应用4. 比例函数与反比例函数比例函数的性质与图像反比例函数的性质与图像二、教学目标1. 让学生理解函数的概念,掌握函数的表示方法。

2. 使学生掌握一次函数、二次函数、比例函数与反比例函数的性质及其图像特点。

3. 培养学生运用函数知识解决实际问题的能力。

三、教学难点与重点1. 教学难点:函数的性质及其应用、一次函数与二次函数的图像与性质。

2. 教学重点:函数的定义、表示方法、性质及其在实际问题中的应用。

四、教具与学具准备1. 教具:多媒体教学设备、PPT课件、函数图像模型。

2. 学具:直尺、圆规、函数图像纸、计算器。

五、教学过程1. 实践情景引入通过展示实际生活中的函数关系,激发学生学习兴趣。

2. 例题讲解讲解函数的定义、表示方法,举例说明。

分析一次函数、二次函数、比例函数与反比例函数的性质,结合图像进行讲解。

3. 随堂练习根据讲解内容,设计不同难度的练习题,让学生及时巩固所学知识。

对学生进行个别辅导,解答学生的疑问。

4. 小组讨论将学生分为小组,讨论函数在实际问题中的应用。

各小组汇报讨论成果,进行交流分享。

六、板书设计1. 板书内容:函数的定义、表示方法、性质、图像特点。

2. 板书结构:采用总分结构,条理清晰,重点突出。

七、作业设计1. 作业题目:画出一次函数y=2x+3的图像,并说明其性质。

已知二次函数y=x^24x+4的图像,求其顶点坐标和开口方向。

2. 答案:一次函数y=2x+3的图像是一条斜率为2,截距为3的直线,性质为单调递增。

二次函数y=x^24x+4的顶点坐标为(2,0),开口方向向上。

八、课后反思及拓展延伸2. 拓展延伸:引导学生进一步研究函数的性质,如极值、最值等。

最新华东师大版八年级数学上册教学课件全册

最新华东师大版八年级数学上册教学课件全册

⑷ 16; 25
⑸ ; 2 1 ⑹ 232 ; 4
解:(1) 10; (2) 0.7;(3) 1.3;
(4) 4; (5) 3; (6) 23.
5
2
例2 口答下列各数的平方根:
⑴ 49; 36
⑷ 49 ; ⑺0 ; ⑽ 0.81;
⑵ 1 600; 64
⑸ 25 ; ⑻ 0.09; ⑾ 0.012 1;
第11章 数的开方
11.1 平方根与立方根(课时2)
x3=2
立方根
x=
1、平方根的概念:
如果x2=a(a≥0) , 就称x是a的平方根.通常记作:
x a 2、平方根的情况:
⑴一个正数的平方根有两个,它们是互为相反数; ⑵ 0的平方根只有一个,就是它本身;
⑶负数没有平方根. 3、类比问题:
如果x3=a,就称x是a的立方根,也称三次方根.
如果这个正方体的棱长是 a2 cm,那么它的体积是
cm3(.a2 )3
(a2 )3 a2 a2 a2
a222
a 23 a6
幂的乘方法则:
(am )n amn
其中m,n都是正整数
这就是说, 幂的乘方,底数不变,指数相乘。
例1 计算:
(1)(107 )2 ; (2)(b3 )3; (3)(a2m )4 ; (4) ( y3 )2 ;
根据幂的意义:102 105 (1010) (10 10 10 10 10)
2个10
5个10
= 1010 1010
7个10
=107
我们观察 102可1以05发现, 和 10这2 两1个05因数底数相
同,是同底的幂的形式 所以我们把
102这1种05运
算叫做

华师大版八年级数学上册全套课件

华师大版八年级数学上册全套课件

华师大版八年级数学上册全套课件一、教学内容本节课我们将学习华师大版八年级数学上册的内容。

具体章节包括:第一章“实数”,第二章“一次函数与二元一次方程组”,第三章“不等式与不等式组”,第四章“平行四边形与特殊平行四边形”,第五章“勾股定理及其相关定理”,第六章“数据的收集、整理与描述”。

详细内容如下:1. 实数的概念、分类及运算规则;2. 一次函数的图像、性质、解析式及应用;3. 二元一次方程组的解法及应用;4. 不等式与不等式组的解法及应用;5. 平行四边形及特殊平行四边形的性质与判定;6. 勾股定理及其相关定理的应用;7. 数据的收集、整理与描述方法。

二、教学目标1. 理解并掌握实数的概念、分类及运算规则;2. 掌握一次函数、二元一次方程组、不等式与不等式组的解法及应用;3. 掌握平行四边形及特殊平行四边形的性质与判定;4. 熟练运用勾股定理及其相关定理解决实际问题;5. 学会对数据进行收集、整理与描述。

三、教学难点与重点1. 教学难点:实数的运算规则、一次函数与二元一次方程组的解法、不等式与不等式组的解法、平行四边形的性质与判定;2. 教学重点:实数的概念、分类及运算规则、一次函数的图像与性质、勾股定理及其相关定理的应用。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、直尺、圆规;2. 学具:课本、练习本、笔、直尺、圆规。

五、教学过程1. 实践情景引入:通过生活中的实例,引导学生理解实数的概念及分类;2. 例题讲解:讲解实数的运算规则、一次函数的图像与性质、二元一次方程组的解法等;3. 随堂练习:让学生运用所学知识解决实际问题,巩固所学;4. 知识讲解:讲解平行四边形及特殊平行四边形的性质与判定、勾股定理及其相关定理;6. 课堂练习:布置相关练习题,让学生当堂巩固所学知识。

六、板书设计1. 实数的概念、分类及运算规则;2. 一次函数的图像、性质、解析式;3. 二元一次方程组的解法;4. 不等式与不等式组的解法;5. 平行四边形及特殊平行四边形的性质与判定;6. 勾股定理及其相关定理;7. 数据的收集、整理与描述。

华师大版八年级上册数学全册优秀教学课件

华师大版八年级上册数学全册优秀教学课件
3
,要求精确到0.01,可得
9.263 2.10.
当堂练习
1.判断下列说法是否正确,并说明理由.
2 8 的立方根是 (1) 27 3
(2) 25的平方根是5 (3) -64没有立方根 (4) -4的平方根是±2 (5) 0的平方根和立方根都是0
× × × ×

2.求下列各式的值: (1)
(2)
(3) a· a2+a3=2a3
注意
公式中的底数和指数可以是一个数、字母或一个式子.
4.创新应用 (1)已知an-3· a2n+1=a10,求n的值;
公式运用:am· an=am+n
解:n-3+2n+1=10, n=4;
(2)已知xa=2,xb=3,求xa+b的值. 公式逆用:am+n=am·an 解:xa+b=xa·xb =2×3=6.
(3)请你观察上述结果的底数与指数有何变化? (4)请同学们猜想并通过以上方法验证:
n个am
n个m

(am)n= …· am· am· am am = am+m+ ·
=amn +m
归纳总结 幂的乘方法则 符号语言:(am)n= amn (m,n都是正整数)
不变 相乘. 文字语言:幂的乘方,底数__,指数__
解:- (x4)3 解:[(﹣x)4]3 = = (﹣x)4×3 ﹣x4×3 = (﹣x)12 =﹣x12; = x12;
(7) a2· a4+(a3)2.
解:原式= a2+4+a3×2 = a6+a6
解本小题要注意 什么?里面涉及 到哪些运算?
= 2a6.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
课堂 小结
作业 提升
一个正数如果有平方根*,那么必定有两个,它 们互为相反数.显然,如果我们知道了这两个平方根
中的一 个,那么立即可以得到另一个.
(来自教材)
知1-导
知识点
1
算数平方根的定义
定义:正数a的正的平方根,叫做a的算术平方根. 规定:0的算术平方根是0. 表示方法:正数a的算术平方根记作 a,读作“根号 a”;正数a的平方根可以记作± a ,其中a称为
(来自《点拨》)
知1-讲
例1 求100的平方根. 解:因为 10² = 100,(-10)² =100,除了 10 和 -10以外, 任何数的平方都不等于100,所以100的平方根是10
和-10.也可以说,100的平方根是± 10.
(来自《点拨》)
知1-讲
总 结
求一个正数的平方根,需运用逆向思维法, 寻找平方后等于这个正数的两个互为相反数的 数.要特别注意一个正数有两个互为相反数的平方 根而并非只有一个正的平方根.
被开方数.
知1-讲
【例1】
下列说法正确的是( A ) A.3是9的算术平方根 B.-2是4的算术平方根 C. ( - 2)² 的算术平方根是-2 D.-9的算术平方根是3
导引:要正确把握算术平方根的定义.因为3的平方等于9, 所以3是9的算术平方根;因为-2不是正数,所以
-2不是4的算术平方根;因为(﹣2)² =4,而22=
数;如果一个正数a不能写成有理数的平方形式,那么可以 将a的平方根表示成± a .
1.必做: 完成教材P4,T2
2.补充: 请完成《典中点》剩余部分习题
第十一章
数的开方
11.1
平方根与立方根
第2课时
算数平方根
1
课堂讲解 课时流程
逐点 导讲练
算术平方根的定义
求算术平方根
算术平方根的非负性 ( a≥0,a≥0)
(来自教材)
知2-讲
例2 (1) 3+a的其中一个平方根是5,求a的值. (2) 一个正数x的两个平方根分别是-a+2与2a-1, 求a的值和这个正数x的值.
导引:(1)由平方根的定义知3+a等于52;(2)正数x有两个平方
根,分别是-a+2与2a-1,所以-a+2与2a-1互为相 反数,即(-a+2)+(2a-1)=0,解方程可求出a;根据 x=(-a+2)2,代入a的值可求出x的值.
4,所以2是(-2)2的算术平方根;负数没有算术平方 根.
(来自《点拨》)
知1-讲
归 纳
算术平方根具有双重非负性,被开方数是非 负数,它的算术平方根也是非负数.
(此讲解来源于《点拨》)
知1-练
1
(2015· 滨州)数5的算术平方根为( A. 5 B.25 C.±25 )
) D.± 5
2 下列说法错误的是( A. 3 表示3的平方根 B. C.
(来自《点拨》)
知2-讲
解:(1)由平方根的定义得3+a=52.所以a=22.
(2) 因为正数 x 有两个平方根,分别是- a + 2 与 2a - 1 , 所以(-a+2)+(2a-1)=0,解得a=-1. 所以x=(-a+2)2=(1+2)2=9.
(来自《点拨》)
知2-讲
总 结
本题 (1)运用平方根的定义列方程;
)
A.a
C.±a
B.-a
D.a2
(来自《典中点》)
知3-讲
知识点
3
开平方
开平方的定义: 求一个非负数的平方根的运算,叫做开平方。将
一个正数开平方,关键是找出它的算术平方根.
(来自教材)
知3-讲
例3 将下列各数开平方. 4 (1) 49; (2) .
25
解:(1)因为7² =49,所以
49 =7,
(此讲解来源于《点拨》)
知1-练
1
(中考· 黄冈)9的平方根是( ) 1 A.±3 B.± C.3 3 2 下列说法正确的有( )
①-2是-4的一个平方根; ②a4的平方根;
④4的平方根是2. A.1个 B.2个 C.3个 D.4个
(来自《典中点》)
知2-导
知识点
试一试
(2)运用平方根性质中两个平方根的关系列方程;通
过列方程运用方程思想求相关待定字母的值是数学 中常用的方法.
(此讲解来源于《点拨》)
知2-练
1 下列说法正确的是( A.0的平方根是0 B.1的平方根是1 C.-1的平方根是±1 D.4的平方根是-2
)
2 若a是b(b>0)的一个平方根,则b的平方根是(
1
平方根的定义
本章导图中提出的问题,就是已知正方形的面 积为 25 cm² ,求这个正方形的边长.
容易知道,这个正方形的边长是5 cm.
上述问题实质上就是要求一个数,这个数的平方 等于25.
知1-讲
平方根的定义:
如果一个数的平方等于a,那么这个数叫做 a的平方根.这就是说,如果x2=a,那么x叫做a的 平方根.
2
平方根的性质
1. 144的平方根是什么? 2. 0的平方根是什么?
3. -4有没有平方根?为什么?
请你自己也编三道求平方根的题目,并给出解答.
(来自《点拨》)
知2-讲
1. 平方根的性质: (1)一个正数有两个平方根,它们互为相反数; (2)0的平方根是0; (3)负数没有平方根. 2. 易错警示:不能漏掉负的平方根.
华师大版初二数学上册 全册课件
本文档包含课件目录
第十一章
数的开方
11.1
平方根与立方根
第1课时
平方根
1
课堂讲解
平方根的定义
平方根的性质 开平方
2
课时流程
逐点 导讲练 课堂 小结 作业 提升
要剪出一张面积为25cm² 的正方形纸片,正方形的 边长是多少?
(来自教材)
知1-导
知识点
3 表示3的算术平方根 3 表示3的正平方根
.
所以49的平方根为± 49 =±7. (2)
(来自教材)
知3-讲
总 结
我们是通过观察,利用开平方与平方的关系来 求平方根的. 通常可用计算器直接求出一个正数的 算术平方根(有时得到的是近似值).
(此讲解来源于《教材》)
知2-练
1
(-5)2的平方根是( A.-5 C.±5
) B.25 D.± 5
81 2 的平方根是( ) 16 9 9 A.± B. 4 4 3 C.± D. 3 2 2
(来自《典中点》)
求一个正数的平方根的方法:先找出平方等于这个正数的
数,有两个,然后写出这个正数的平方根 (所找的两个数); 一个正数的平方根有两个,它们互为相反数,不能漏掉其
中负的平方根;如果一个正数为带分数,一般先化为假分
相关文档
最新文档