人教版六年级数学分数应用题之假设法解题
六年级假设法解题思路和步骤
假设法是一种常用的解决问题的方法,特别适用于一些复杂的实际问题。
在六年级的数学学习中,假设法主要用于解决一些百分比、倍数等比例关系的问题。
以下是一般的解题思路和步骤:1. 阅读问题:仔细阅读问题,确保理解问题的要求和条件。
2. 确定假设:根据问题内容,确定一个合适的假设。
假设是对问题中未知部分的猜测或推测。
3. 推导结果:利用所给条件和已知信息,推导出与假设相关的结果。
使用逻辑推理和数学运算等方法进行推导。
4. 验证假设:将推导出的结果与问题中给出的要求进行对比,验证假设是否成立。
5. 分析结果:根据验证结果,判断假设是否正确。
如果假设成立,则得到最终答案;如果假设不成立,则需重新考虑假设并重复上述步骤。
下面是一个简单的示例来说明假设法解题的步骤:问题:某个数字的百位数字是3,十位数字是4,个位数字是1,它能被5整除吗?步骤:1. 阅读问题:数字的百位数字是3,十位数字是4,个位数字是1,要求判断是否能被5整除。
2. 确定假设:假设这个数字是XYZ(百位是X,十位是Y,个位是Z),所以假设这个数字是341。
3. 推导结果:由于我们已经假设百位是3,十位是4,个位是1,所以数字341能被5整除的条件是个位是0或者5。
但是341的个位数字是1,所以假设不成立。
4. 验证假设:根据推导结果,我们发现341不能被5整除,与问题要求相反,说明假设不正确。
5. 分析结果:根据验证结果,我们得出结论:数字341不能被5整除。
通过以上步骤,我们使用假设法解题,最终得出了数字341不能被5整除的结果。
在使用假设法时,一定要确保假设是合理且能够帮助解答问题的。
同时,要记住最后一步是对结果的检验,以确保答案的正确性。
人教版六年级下册数学第6单元 总复习 第15招 用“假设思想”解决问题
类 型 5 假设法解分数应用题
5.甲厂与乙厂去年共上缴税金 112 万元,已知甲厂上缴税 金的49与乙厂上缴税金的72共是 42 万元,问甲、乙两个厂 去年各上缴税金多少万元? 假设甲厂上交的税金也是 2 7 甲厂上交的税金是42-112×27 对应分率为 49-27
类 型 6 假设法解页码问题
类 型 3 比与分率的转化
3.有一堆黑、白棋子,黑棋子的数量是白棋子的2倍, 现在从这堆棋子中每次取出黑棋子4颗,白棋子3颗, 取若干次后,白棋子取完,而黑棋子还有16颗,问 黑、白棋子各有多少颗?
假设每次取3颗白棋,6颗黑棋(保证黑棋是白棋的2倍) 同时取完 黑棋子每次多取了2颗 取了16÷2=8(次)
类 型 1 假设法解代换问题
1.某鞋厂将600双皮鞋分装在4个木箱和12个纸箱里,
已知2个纸箱和1个木箱装的皮鞋一样多,问每纸箱装
600÷(4×2+12)=30(双) 需要(4×2+12)个纸箱
30×2=60(双)
可得每个纸箱装多少双皮鞋
答:每个纸箱装30双,每个木箱装60双。
类 型 4 假设法解一般应用题
4.红星机械厂十一月份计划生产一批机器,实际每 天比计划多生产80台机器,结果25天就完成了全月 计划,问该厂十一月份计划生产多少台机器?
实际生产的天数×每天多生产的台数=25天多生产的台数 多生产的台数÷(计划天数-实际天数)=计划每天生产的台数
机器总数=计划每天生产的台数×计划时间
成人票比学生票多卖:(6×700+6200)元 假设售出的成人票与学生票同样多 每张成人票比学生票多 (14-6)元 可得成人票票数
6.给一本书编页码,一共用了732个数字,则这本书 共有多少页? 假设每页都用了3个数字 这本书共有732÷3=244(页) 实际有9页是1个数字,90页是2个数字
人教版六年级数学分数应用题之假设法解题
2
5
几小时可以返回?
4、一条铁路,修完 800 千米后,剩余部分比全长的 3 少 200 千米,这条铁路长多少千米? 5
5、某修路对三天修完了一条路,第一天修了全长的 1 多 150 米,第二天修了全长的 2 少 100
3
5
米,第三天修了 1950 米,这条路全长多少米?
6、五年级一班和二班共有学生 96 人。抽一班人数的 3 ,二班人数的 3 ,组成 66 人的鼓号
14、师徒两人各加工一批两件,师傅加工的零件数比徒弟多 1 ,而徒弟加工零件的时间比 3
师傅多 1 ,那么,师傅的工作效率比徒弟高百分之几? 8
15、东方小学六(1)班举行数学竞赛,全班平均分为 85 分,男生人数是女生人数的 3 , 4
女生平均分比男生平均分多 7 分。六(1)班男生平均分是多少?
16、A、B 两种商品售价相同,已知 A 商品赚了 1 ,B 商品亏了 1 ,两者合算共亏 2 元,求
5
5
每种商品的成本价?
17、甲、乙两种商品,甲的成本价是乙的 1 2 倍,出售时甲得利 20%,乙亏损 25%,两者核 3
算还得利 20 元,求甲、乙两种商品的成本价?
18、修一段路,甲工程队单独修 75 天完成,乙工程队单独修 50 天完成,现在由两个工程队 合修,中途甲工程队临时支援别的工程几天,结果整段修了 40 天才完工,甲工程队中途离
5、 把发生的事件假设为未发生的事件。
1、甲、乙、丙三个数的和是 100,已知甲数的 1 等于乙数的 1 等于丙数的一半。甲、乙、
3
5
丙三个数各是多少?
2、某修路队修一条公路,原计划每天修 300 米,12 天修完,实际每天比原计划多修 20%, 实际几天可以修完?
小学数学奥数六年级《运用假设法解分数应用题》教案设计
剪去 后剩下
(米),把乙绳剪去 米后剩下
(米)。因为 0.4 米比来自米长,所以甲绳剩下的部分长。(3)假设两根绳子都比 1 米长,均为 1.5 米,那么把甲绳剪
去 后剩下 分长。DXDiTa9E3d
(米),把乙绳剪去 米后剩下
(米),所以乙绳剩下的部
三、运用假设法解“需要调整数据的”分数应用题
例 3. 小华看一本故事书,第一天看了全书的 多 6 页,第二天看了全书的 少 5 页,还 剩下 21 页没看。小华第一天看了多少页?RTCrpUDGiT
四、运用假设法解“需要变换条件的”分数应用题 例 4. 一项工程,甲、乙两队合作 10 天可以完成。实际上,甲队先做 4 天,乙队再做 6 天,完成了这项工程的 。这项工程由甲队单独做需要几天完成?jLBHrnAILg
[分析与解]因为“实际上,甲队先做 4 天,乙队再做 6 天”,甲、乙两队做的天数不一
[分析与解]先假设小华第一天少看 6 页,即小华第一天只看了全书的 ;再假设小华第
二天多看 5 页,即小华第二天恰好看了全书的 。那么,剩下没看的页数为 21+6-5=22(页)。
这没看的 22 页正好占全书页数的
,由此可求出这本书的页数为 22÷ =40(页),
从而求出小华第一天看的页数为
(页)。5PCzVD7HxA
二、运用假设法解“需要分情况讨论的”分数应用题
例 2. 有两根同样长的绳子,把甲绳剪去 ,把乙绳剪去 米,问哪根绳子剩下的部分长?
[分析与解]我们运用假设法解此题,可分三种情况来讨论:(1)假设两根绳子长都是 1
米,那么把甲绳剪去 后剩下
(米),把乙绳剪去 米后剩下
(米),所以
两根绳子剩下的部分同样长。(2)假设两根绳子的长都不足 1 米,均为 0.6 米,那么把甲绳
六上素养第四讲假设法解分数应用题
第四讲 假设法解分数应用题一、知识要点假设法解题的思考方法是先通过假设来改变题目的条件,然后再和已知条件对比推算。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
二、自我探究【例1】 某工厂开展劳动竞赛,三月份甲车间生产的零件个数的32正好等于乙车间生产的53。
问三月份哪个车间生产的零件多?多百分之几?【例2】某班有学生70人,抽出男生的21和女生的51共20人参加课外活动小组,这个班有男、女生各多少人?(提示:假设女生也抽出21。
)【例3】甲、乙两人合做200个零件,甲做的41比乙做的52多24个,乙做了多少个?【例4】甲、乙两个容器里共盛有盐水1000克,从甲容器中取出21,从乙容器中取出31,结果两个容器里共剩下600克盐水。
问甲、乙两个容器里原来各盛有多少克盐水?三、自我挑战第一关:1. 已知甲校学生数是乙校的40%,甲校女生数是甲校学生数的30%,乙校男生数是乙校学生数的42%,那么两校女生数占两校学生总数的百分之几?(假设具体数的方法亦称数字化方法,如假设乙校有学生1000人。
)2. 小华读一本课外书,第一天读了全书的13 多2页,第二天读了全书的12少 1页,第三天读了10页,把全书读完,这本书共有多少页?3. 纯金放在水中重量减轻191,纯银放在水中重量减轻101,现在一块合金重 840克,放入水中减轻了48克,求这块合金中含金、银各多少克?第二关:1. 甲、乙两班共有84人,甲班人数的85与乙班人数的43共58人,问两班各 有多少人?2. 两段铁丝共长24米,第一段的31与第二段的52和是8.6米,两段铁丝各长多少米?3. 某地区有两个防汛队共336人,抽调甲队人数的75,乙队人数的73共188 人去参加防汛抢险工作。
问原来的甲、乙各有多少人?第三关:1. 某车间有工人176人,其中男工人数的31比女工人数的41多12人,这个 车间有男、女工各多少人?2. 学校买来足球和排球共64个,从中借出排球个数的41和足球个数的31 后,还剩下46个,买来排球和足球各是多少个?。
小学数学应用题解题思路—假设法
小学数学应用题解题思路—假设法例1:自行车和汽车共有24 辆,全部轮胎有54 只〔每辆汽车以4 只轮胎计算〕,自行车和汽车各有几辆?假设一:假设24 辆车都是汽车,那么按每辆汽车 4 只轮胎计算,轮胎只数应为96 只,这比题中说的全部轮胎54 只多算了42 只〔96-54〕,怎么会多算42 只轮胎,这是由于假定自行车的辆数,把它当作汽车来计算。
每辆自行车是 2 只轮胎,比每辆汽车少 2 只轮胎,现在把自行车假设为汽车后,每辆自行车就多算了 2 只轮胎,那么,多算42 只轮胎就可求出有几辆自行车算作汽车。
据此,可以推算出自行车的辆数。
〔4×24-54〕÷〔4-2〕=42÷2=21〔辆〕自行车有21 辆,而自行车和汽车总计是24 辆,减法计算,可得汽车的辆数:24-21=3〔辆〕答:自行车有21 辆,汽车有 3 辆。
假设二:假设24 辆车全部是自行车,那么,该有轮胎48 只〔2×24〕。
这比题中的“54 只轮胎〞少算了 6 只〔54-48〕,怎么会少算 6 只轮胎,这是由于假定汽车的辆数当作自行车来计算。
每辆汽车少算 2 只轮胎,那么少算 6 只轮胎,就可求出有几辆汽车算作自行车。
据此,列式计算〔54-2×24〕÷〔4-2〕=6÷2=3〔辆〕既知汽车有 3 辆,汽车和自行车总计24 辆,减法计算,可得自行车辆数24-3=21〔辆〕例2:某农机厂制造一批农具,原方案18 天完成,实际每天比方案多制造50 件,照这样做了12 天,就超过原方案产量240 件,这批农具原方案制造多少件?分析:这道题要求原方案制造多少件,不是从题目的条件来看,既不知道原计划每天制造多少件,也不知道实际每天制造多少件,所以要想按照一般的数量关系,通过分析来寻找解题线索,是一个比拟困难的问题,在这种情况下,可以用假设法来解答。
题目告诉我们,“原方案18 天完成〞我们就假设实际生产了18 天。
(完整版)六年级数学假设法解题
分数应用题解决策略(七)---假设法班级: 姓名:假设法-----根据题目特征,把两个不同的数量,或者分率假设成为相同的数量和分率,再寻找两次的量相差数,从而理清数量关系,以达到解决问题的目的。
1、有甲、乙两块地共4.8公顷,已知甲地的13 加上乙地的25共1.73公顷。
两块地各有多少公顷?2、学校买来足球和篮球共91个,从中借出足球的27 和篮球的38后,还剩60个。
足球和篮球各买来多少个?3、小红和小明共有图书78本,如果小红捐出图书的110,还比小明多17本,小红和小明原来各有多少本图书?4、学校绿化买来杨树和柏树共200棵,后来杨树增加了14 ,柏树减少了15,杨树和柏树的总棵数变为196棵。
原来杨树和柏树各有多少棵?5、甲、乙、丙三所学校共有学生2900人,如果甲校学生减少111,乙校学生增加14人,则三所学校人数相等。
求甲、乙、丙三校原来各有多少人?6、水果店有梨和苹果共72筐,卖出梨的35 和苹果的58后,还剩28筐,问水果店原有梨和苹果各多少筐?7、甲乙两个容器中共装有药水2000克,从甲容器中取出13 ,从乙容器中取出14,这是两个容器里还剩药水1400克,问两个容器中原来各有药水多少克?8、纯金放在水里重量减轻119 ,纯银放在水里重量会减轻110,现有一块金银合金共重840克,放在水中减轻了48克,求这块合金的含金量?9、一块长方形土地的周长是100米,如果长增加13 ,宽增加14,那么周长就增加30米,这块土地原来的面积是多少平方米?10、一辆卡车司机为玻璃厂运送一批玻璃,厂里规定:每块运费1元钱,但是如果到达目的地后如果破损不但不给运费,还要每块赔偿0.5元。
该司机共运送3000块玻璃,结果只领到2985元的运费。
问途中破损了多少块玻璃?。
用假设法解分数应用题
用假设法解分数应用题例1、小亮家养鸡和鸭共有200只,如果将鸭卖掉201,还比鸡多34只,小亮家原有鸡和鸭各多少只? 同类练习:1、商店里彩电与冰箱共350台,如果彩电卖出91后,就比冰箱少10台,问彩电与冰箱原来各有多少台?2、某校五年级共有学生152人,选出男同学的111和5个女同学参加科技小组,剩下的男女同学人数刚好相等。
问:这个年级男女同学各有多少人? 例2、师徒两人共加工零件320个,已知师傅加工的零件数的53与徒弟加工零件数的32共200个,师徒各加工零件多少个? 同类练习:1、 甲乙两班共84人,甲班人数的85与乙班人数的43共有58人,两班各有多少人?2、有两块地共72公顷,第一块地的52与第二块地的95中草莓,两块地余下的共39公顷种葡萄,问两块地各有多少公顷? 例3、一个长方形的周长是200cm ,如果长增加21,宽增加31,那么周长增加80cm ,求这个长方形原来的面积是多少平方厘米? 同类练习:1、纯金放在水中重量减轻191,纯银放在水中重量减轻101,现有一块合金重840克,放在水中减轻48克,求这块合金重含金、银各多少克?2、小张从甲地到乙地需坐火车,从乙地到丙地需坐轮船,原来从甲地到丙地需250元的交通费,现在由于火车票上涨101,轮船要上涨51,结果从甲地到丙地共花支280元,那么现在火车票、轮船票各要用多少元? 例4、袋子里原有红球和黑球共180个,将红球减少41,黑球增加31后,红球和黑球的总数变为170个。
原来袋子里有红球和黑球各多少个? 同类练习:1、某小学上学期共有学生750人,本学期男生减少51,女生增加61后,共有710人,本学期男、女生各有多少人?2、文具店有高级算术本和英语练习本共180本,后来,高级算术本卖掉21,英语练习本运来52,现在高级算术本和英语练习本一共还是180本。
现在高级算术本和英语练习本各有多少本?例5、师徒二人共同加工170个零件,已知师傅加工个数的31比徒弟加工个数的41多10个,那么徒弟加工多少个? 同类练习:1、甲、乙两数的和是600,甲数的52比乙数的41多110,求甲、乙两数各是多少?2、饲养场有白兔和灰兔共200只,白兔只数的101比灰兔的31少32只,问白兔和灰兔各有多少只?例6、六(1)班举行数学竞赛,全班平均分为88分,男生人数是女生人数的32,女生平均分比男生平均分多5分,六(1)班女生平均分是多少? 同类练习1、 六年级参加数学竞赛,其中男生占女生人数的54,而男生的总分数女生的76,已知男生的平均分是90分,那么女生的平均分是多少分? 2、在一次语文测试中,五(3)班全班平均分是90分,男生人数是女生人数的43,女生平均分比男生平均分多7分,五(3)班女生平均分是多少? 例7、凡凡的水彩笔支数是闹闹的51,两人各买12支后,凡凡的水彩笔是闹闹的73,两人原来各有多少支? 同类练习:1、小红图书本数是小强的21,两人各买了5本后,小红图书本数是小强的32,两人原来各有图书多少本?2、某校五年级男生人数是女生人数的32,后来转进2名男生,转走3名女生,这时男生人数是女生的43,五年级现有男、女生各多少名? 综合练习:1、学校有篮球和排球共37个,篮球借出92后,就比排球少5个,问原有篮球和排球各多少个?2、某校六年级共有学生235人,选出男同学的121和5名同学参加科技活动小组,剩下的男、女同学人数刚好相等,六年级男、女同学各有多少人? 3、某商店有冰箱和洗衣机共252台,卖出冰箱的61和洗衣机的92一共46台,原来冰箱和洗衣机各有多少台?4、某学校上年度男、女生共2900人,这一年度男生增加251,女生增加201,共增加130人。
六年级上册数学思维训练讲义-第十一讲 假设法解题(二) 人教版
第十一讲假设法解题(二)第一部分:趣味数学《算学宝鉴》古算题几个牧童闲耍,张家院内偷瓜。
将来林下共分拿,三人七枚便罢。
分讫剩余一个,内有伴歌兜搭。
四人九个又分拿,又余两个厮打。
试问精明能算者,问有多少人和瓜。
【答案】12个牧童,29个瓜第二部分:习题精讲【例题1】两根铁丝,第一根长度是第二根的3倍,两根各用去6米,第一根剩下的长度是第二根剩下的长度的5倍,第二根原来有多少米?【思路导航】假设第一根用去6×3=18米,那么第一根剩下的长度仍是第二根剩下长度的3倍,而事实上第一根比假设的少用去(6×3-6)=12米,也就多剩下第二根剩下的长度的(5-3)=2倍。
(6×3-3)÷(5-3)+6=12(米)答:第二根原来有12米。
练习一:1.丁晓原有书的本数是王阳的5倍,若两人同时各借出5本给其他同学,则丁晓书的本数是王阳的10倍,两人原来各有书多少本?2.在植树劳动中,光明中学植树的棵数是光明小学的3倍,如果中学增加450棵,小学增加400棵,则中学是小学的2倍。
求中、小学原来各植树多少棵?3.两堆煤,第一堆是第二堆的2倍,第一堆用去8吨,第二堆用去11吨,第一堆剩下的重量是第二堆的4倍。
求第二堆煤原来是多少吨?【例题2】王明平时积蓄下来的零花钱比陈刚的3倍多6.40元,若两个人各买了一本4.40元的故事书后,王明的钱就是陈刚的8倍,陈刚原来有零花钱多少元?【思路导航】假设仍然保持王明的钱比陈刚的3倍多6.40元,则王明要相应地花去4.40×3 =13.20元,但王明只花去了4.40元,比13.20元少13.20-4.40=8.80元,那么王明买书后的钱比陈刚买书后的钱的3倍多6.40+8.80=15.20元,而题中已告诉:买书后王明的钱是陈刚的8倍,所以,15.20元就对应着陈刚花钱后剩下钱的8-3=5倍。
【6.40+(4.40×3-4.40】÷(8-3)+4.40=7.44(元)答:陈刚原来有零花钱7.44元。
六年级数学假设法解题技巧
六年级数学假设法解题技巧
假设法是一种常用的解题方法,在六年级数学中也被广泛应用。
以下是一些假设法解题的技巧。
1.明确题目要求:在解题之前,要明确题目要求,了解需要解决的问题和目标。
2.仔细分析题意:在解题之前,要仔细分析题意,了解题目中的已知条件和未知条件,以
及它们之间的关系。
3.提出合理假设:根据题目的已知条件和未知条件,提出合理的假设,假设未知量为某个
值,或者某个变量为某个值。
4.建立数学模型:根据题目的已知条件和未知条件,以及提出的假设,建立数学模型,用
数学表达式表示问题。
5.求解数学模型:根据建立的数学模型,求解数学表达式,得到问题的解。
6.检验答案:在得到问题的解后,要检验答案是否符合题意,是否符合实际情况。
例如,在解决追及问题时,我们可以假设两个物体的速度分别为v1和v2,初始距离为s0,追及时间为t。
根据这些假设,我们可以建立数学模型:s=s0+v1×t-v2×t,其中s为两个物体之间的距离。
通过求解这个表达式,可以得到两个物体之间的距离随时间的变化情况。
总之,假设法是一种非常有用的解题方法,可以帮助我们快速找到问题的解决方案。
在解题时,要灵活运用假设法,结合其他解题方法,提高解题效率和准确性。
六年级假设法的解题技巧
六年级假设法的解题技巧在六年级的数学学习中,假设法是一种常用的解题技巧,它能够帮助学生们更有效地解决一些复杂的问题。
假设法是一种通过假设、推理和验证来解决问题的策略,它特别适用于一些需要从多个可能的情况中找出正确答案的问题。
本文将详细介绍假设法的解题技巧,帮助六年级学生更好地理解和应用这一技巧。
一、理解假设法的解题步骤假设法的解题步骤主要包括:提出问题、假设可能的情况、逐步验证、得出结论。
首先,学生们需要明确问题,理解问题的核心,然后根据问题提出各种可能的情况,并逐一进行验证。
在这个过程中,学生们需要保持清晰的思路,避免受到其他因素的干扰。
二、掌握假设法的应用技巧1. 灵活运用语言描述:在假设法中,语言描述是非常重要的。
学生们需要用准确、清晰的语言描述问题,以便更好地理解问题并找出可能的情况。
同时,学生们也要注意语言的逻辑性,确保假设的情况是符合逻辑的。
2. 多种可能情况的假设:假设法并非只是一种解决问题的方法,而是要通过各种可能的情况进行推理和验证。
因此,学生们在假设时不要过于局限,要尝试从不同的角度进行思考,这样才能更好地找出问题的答案。
3. 验证假设的准确性:在假设法中,验证是非常关键的一步。
学生们需要仔细检查每个假设的准确性,确保它们符合问题的实际情况。
如果发现有误,需要及时进行调整,直到找到正确的答案。
三、应用实例解析下面我们通过一个实例来解析假设法的解题技巧:问题:六年级某班有40名学生,其中有20名男生和20名女生。
现在需要将这40名学生分成两组,每组都要有女生并且人数相等。
请问应该如何分配这40名学生?1. 提出问题:如何将40名学生分成两组,每组人数相等且都有女生。
2. 假设可能的情况:我们可以假设每组都有20名学生(包括男生和女生),或者每组有30名学生(其中10名男生和20名女生)。
3. 逐步验证:根据上述假设,我们可以通过简单的计算来验证这些假设是否符合问题的要求。
如果符合,则继续寻找其他可能的情况;如果不符合,则进行调整。
小学六年级奥数--假设法解题
假设法解题假设法解题的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾来求解。
例1:学校阅览室有文艺书和科技书一共125本,如果文艺书借出1/7,比科技书还多5本。
原来文艺书和科技书各有多少本?例2:二年级两个班共有学生90人,其中少先队员71人。
一班少先队员占本班人数的75%,二班少先队员人数占本班人数的5/6,一班少先队员比二班少先队员多几人?例3:甲乙两数的和是300,甲数的2/5比乙数的1/4多55,甲乙两数各是多少?例4:水果店里西瓜与白瓜个数比是7:5,如果每天卖白瓜40个、西瓜50个,若干天后白瓜正好卖完,西瓜还剩36个。
水果店里原有西瓜多少个?例5:王明平时积蓄下来的零花钱比陈刚的3倍还多6.4元,若两人各买了一本4.4元的故事书后,王明的钱是陈刚的8倍。
陈刚原有零花钱多少元?作业:1.甲乙两种商品成本价共200元,若甲乙商品分别按20%和30%的利润定价,并按9折出售,共可获得利润27.7元,则乙商品的成本价是多少元?2.一项工程,小王单独干6天后,小刘接着单独干9天,可以完成任务总量的2/5,如果小王单独干9天后,小刘接着干6天,可以完成任务总量的7/20。
则小王和小刘一起完成这项工程需要多少天?3.田径世锦赛男子4*100米接力,每队可报6名选手参赛,唯一一个起跑最快的跑第一棒,第四棒有2个人选,则可排出的组合有多少种?4.某商场搞促销,消费100元送20元代金券,某顾客先花100元买了一件衬衫,再用代金券及现金买了同样的衬衫,则顾客得到的折扣相当于几折?5.王老师在课堂上出了一道加法算术题,张明把个位上的4看成9,把十位上的8看成3,结果算错为118,那么正确答案是?6.一本300页的书,将所有页码排成一列,其中数字3一共有多少个?7.某学校共有10个获奖名额分配到某年级各个班,每个班至少有一个名额,若有36种不同的分配方案,该年级最多有多少个班?8.某知识竞赛,共有50道选择题,评分标准是:答对一题得3分,答错一题扣1分,不答的题得0分。
小学数学解题方法解题技巧之假设法
第一章小学数学解题方法解题技巧之假设法当应用题用一般方法很难解答时,可假设题中的情节发生了变化,假设题中两个或几个数量相等,假设题中某个数量增加了或减少了,然后在假设的基础上推理,调整由于假设而引起变化的数量的大小,题中隐蔽的数量关系就可能变得明显,从而找到解题方法。
这种解题方法就叫做假设法。
用假设法解应用题,要通过丰富的想象,假设出既合乎题意又新奇巧妙,既简单又便于计算的条件。
有些用一般方法能解答的应用题,用假设法解答可能更简捷。
(一)假设情节变化解:假设篮球没有借出,足球借出一个,那么,可以把现有篮球的个数看作是3份数,把现有足球的个数看作2份数,两种球的总份数是:3+2=5(份)原来篮球的个数是:原来足球的个数是:21-12=9(个)答略。
例2 甲乙两个煤场共存煤92吨,从甲场运出28吨后,乙场的存煤比甲场的4倍少6吨。
两场原来各存煤多少吨?(适于六年级程度)解:假设从甲场运出的不是28吨,而是比28吨少6吨的22吨,那么,乙场的存煤数就正好是甲场的4倍,甲场的存煤是1份数,乙场的存煤是4甲场原来存煤:92-50=42(吨)答略。
(二)假设两个(或几个)数量相等例1有两块地,平均亩产粮食185千克。
其中第一块地5亩,平均亩产粮食203千克。
如果第二块地平均亩产粮食170千克,第二块地有多少亩?(适于五年级程度)解:假设两块地平均亩产粮食都是170千克,则第一块地的平均亩产量比两块地的平均亩产多:203-170=33(千克)5亩地要多产:33×5=165(千克)两块地实际的平均亩产量比假设的平均亩产量多:185-170=15(千克)因为165千克中含有多少个15千克,两块地就一共有多少亩,所以两块地的亩数一共是:165÷15=11(亩)第二块地的亩数是:11-5=6(亩)答略。
解:此题可以有三种答案。
答:剩下的两根绳子一样长。
答:甲绳剩下的部分比乙绳剩下的部分长。
(3)假设两根绳子都比1米长。
第六讲 分数除法应用题(四)假设法解题
第六讲 分数除法应用题(四)假设法解题一、夯实基础假设法的思维方法是数学中经常使用的一种推测性思维方法。
当有些应用题用直接推理或其他推理方法不能寻找解题途径时,就可以将题目中的两个或两个以上的未知条件,假设成相等的数量,或将一个未知条件假设成已知,从而使题目中隐蔽或复杂的数量关系趋于明朗化和简单化,这是假设思维的一个突出特点。
用假设法解题时,一定要抓住假设的结果与实际结果之间的不同,找出不同的缘由,就是解题的突破口。
二、典型例题例1.甲、乙两筐苹果共195千克,如果从甲筐取出73,从乙筐取出31,两筐共取出75千克,问:甲、乙两筐原来各重多少千克?例2.学校有排球和足球共58个,排球借出61后,还比足球多8个。
原来排球和足球各有多少个?一、知识回顾知识点1、某厂工会组织集体游园,买了99张门票,共花340元,其中儿童票每张2元,成人票每张4元,问两种票相差几张?知识点2、一次数学竞赛共有12道题,每道题做对得10分,每做错或不做都扣8分。
王亮最后得了66分,他答对了几道题?二、例题辨析例1、甲、乙两数之和是185,已知甲数的14 与乙数的15的和是42,求两数各是多少?练一练:甲、乙两人共有钱150元,甲的12 与乙的110 的钱数和是35元,求甲、乙两人各有多少元钱?2、彩色电视机和黑白电视机共250台。
如果彩色电视机卖出19 ,则比黑白电视机多5台。
问:两种电视机原来各有多少台?练一练:姐妹俩养兔120只,如果姐姐卖掉17 ,还比妹妹多10只,姐姐和妹妹各养了多少只兔?例3、甲、乙两数的和是300,甲数的52比乙数的41多55,甲、乙两数各是多少?练一练:博文六年级甲、乙两个班共种100棵树,乙班种的101比甲班种的31少16棵。
两个班各种多少棵?三、归纳总结1、假设法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
2、假设数量增加或减少,从而与已知条件产生联系。
3、假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
六年级下册数学教案9假设法解应用题人教版
六年级下册数学教案9 假设法解应用题人教版教学内容本节课我们将学习如何利用假设法解决数学应用题。
假设法是一种通过设定合理的假设条件,来简化问题并找到解决方法的方法。
我们将通过具体的例子,让学生了解假设法的原理和应用。
教学目标1. 理解假设法的概念和原理。
2. 学会利用假设法解决数学应用题。
3. 培养学生的逻辑思维能力和问题解决能力。
教学难点1. 如何引导学生正确设定假设条件。
2. 如何将假设法应用到具体的数学问题中。
教具学具准备1. 教学PPT。
2. 数学题目练习纸。
3. 白板和笔。
教学过程1. 引入:通过一个简单的数学问题,让学生了解假设法的基本概念和原理。
2. 讲解:通过具体的例子,详细讲解如何利用假设法解决数学应用题。
3. 练习:让学生独立完成一些数学题目,巩固假设法的应用。
4. 讨论:分组讨论,让学生分享自己的解题过程和心得。
板书设计1. 板书假设法解应用题。
2. 板书内容:包括假设法的概念、原理、应用步骤和注意事项。
作业设计1. 完成练习纸上的数学题目。
2. 选择一道题目,写下解题过程和心得。
课后反思通过本节课的学习,学生应该能够掌握假设法的基本原理和应用方法。
在教学过程中,要注意引导学生正确设定假设条件,并将假设法应用到具体的数学问题中。
同时,也要培养学生的逻辑思维能力和问题解决能力。
在课后,可以通过布置适量的作业,让学生巩固所学知识,提高解题能力。
重点关注的细节是“教学难点”中的“如何引导学生正确设定假设条件”。
教学难点详细补充和说明1. 引导学生理解假设条件的概念在教学中,要让学生明确假设条件的概念。
假设条件是一种为了简化问题而设定的条件,它可以是任意的,但必须合理。
通过设定假设条件,我们可以将复杂的问题转化为简单的问题,从而更容易找到解决方法。
为了让学生更好地理解假设条件的概念,可以举一些生活中的例子,让学生亲身体验和感受。
2. 引导学生掌握设定假设条件的方法从简单到复杂:先从简单的问题入手,让学生尝试设定假设条件,然后逐步增加问题的难度,让学生逐步掌握设定假设条件的方法。
用假设法解分数应用题
假设思想:假设法是解答应用题时经常用到的一种方法。
所谓“假设法”就是依据题目中的已知条件或结论作出某种设想,然后按照已知条件进行推算,根据数量上出现的矛盾,再适当调整,从而得到正确答案。
例:小华读一本课外书,第一天读了全书的13多2页,第二天读了全书的12少1页,第三天读了10页,把全书读完,这本书共有多少页?【分析与解】从条件分析“比全书的13多2页”,“比全书的12少1页”,不利于找到量与率的确切对应关系。
故而进行下列假设:①、假设第一天刚好读了全书的13,那么第三天读了10+2=12(页)。
②、假设第二天刚好读了全书的12,那么应从12页中拨1页给第二天,则第三天视为读了12-1=11(页)。
概括为:全书的(1-13-12)是(10+2-1)页。
全书共有多少页列式为:(10+2-1)÷(1-13-12)= 66(页)1、有两根铁丝共长44米,如果将第一根铁丝截去20%,将第二根铁丝接上2.8米,那么两根铁丝长度相等,原来两根铁丝各长多少米?2、有两根铁丝共长44米,如果将第一根铁丝截去15,将第二根铁丝截去2.6米后,则两根铁丝同样长,原来两根铁丝各长多少米?3、已知甲学校学生数是乙校的40%,甲校女生数是甲校学生数的30%,乙校男生数是乙校学生数的42%,那么两校女生数占两校学生总数的百分之几?(假设具体数的方法亦称数字化方法。
此题可以假设乙校有学生1000人。
)4、李华替图书馆买一批新书,第一天买的本书比总数的17.5%多18本,第二天买的本书比总数的18少3本,还剩下125本没有买,这个图书馆共要买多少本书?5、红山小学原有学生492人,如果女生转来3人,男生转走150,那么男生人数和女生人数相等,原来有男生多少人?6、文具店运进红、蓝墨水共130瓶,当蓝墨水卖出22瓶,红墨水卖出15后,剩下的蓝墨水和红墨水的瓶数相等。
卖出红墨水多少瓶?7、一捆电线,第一次用去全长的13多3米,第二次用去全长的12少10米,第三次用去全长的18多1米,最后还剩下2米,这捆电线原有多长?8、甲乙二人共同生产280个零件,如果甲生产的零件减少10个,乙生产的零件增加14,则甲乙二人生产的零件数就同样多,甲乙原来各生产多少个零件?9、小明读一本书,第一天读了全书的12又3页,第二天读的页数比余下的13少2页,第三天读的页数比余下的58多2页,还有16页没读,这本书共有多少页?。
第七讲 假设法解分数应用题
第七讲 假设法解分数应用题一、学法指导1、用假设法解题中常用的假设方法把真实的情节假设为虚构的,使原来不易产生对应关系的“量”和“率”产生对应。
2、把不同的分率假设为相同的分率,再分析产生差异的原因。
3、将两个量之间变化了倍数关系,假设为不变来解答。
4、把某些未知量假设为已知量,以加强建立数量之间的联系。
二、例题选讲例题1、学校有排球和足球共58个,排球借出61后,还比足球多8个,排球和足球各有多少个?思路点拨:假设足球增加8个,就和排球借出61后剩余的同样多,即足球的个数相当于排球的(1-61),这样就可以找出“量”和“率”的对应关系。
例题2、六年级一班和二班共有学生96人,现在抽一班人数的43和二班人数的53,组成66人的鼓号队,一班和二班各有学生多少人?思路点拨:`假设二班也抽出43,就和条件抽一班人数的43与二班人数的53,组成66人的鼓号队产生差异,如果两个班都抽出43,就抽出了96×43=72人,比实际多抽了6人,这6人就是二班人数的43与二班人数53相差的人数,这样就可以求出二班的人数了。
例题3、水果店上午运来苹果和梨共100箱,下午卖出苹果箱数的31,卖出梨子箱数的101,已知卖出苹果比梨多16箱,求水果店运来梨多少箱?思路点拨:假设梨也卖出31,那么苹果和梨共卖出100×31=3100箱,因为苹果箱数的31比梨的101多16箱,所以3100箱减去16箱的差就可以看成是梨箱数的31与梨箱数的101的和,从而可求出梨子的箱数。
例题4、小红的图书的本数是小强的21,两人各买5本后小红的图书本数是小强的32,两人原来各有图书多少本?思路点拨:假设小强买了5本后,小红的图书本数仍为小强的21,那么小红只需买5×21=221本,但小红实际买了5本,多买了5-221=221本,这221本就是现在小强的32和现在小强的21相差的本数,这样就可以求出小强现在的本数,再求原来的本数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
假设法解题:运用假设创设一个新条件进行运算,使结果与题目中的原有条件产生矛盾,最后加以适当调整,消除因假设而产生的差异的解题方法就是假设法。
通常有以下几种假设类型:
1、 把未知量假设为已知数量。
2、 将不同的分率假设为相同的分率。
3、 将变化了的倍数(或分率)假设为不变的倍数(或分率)。
4、 把中途发生的事件假设为一开始就发生。
5、 把发生的事件假设为未发生的事件。
1、甲、乙、丙三个数的和是100,已知甲数的
31等于乙数的5
1
等于丙数的一半。
甲、乙、丙三个数各是多少?
2、某修路队修一条公路,原计划每天修300米,12天修完,实际每天比原计划多修20%,实际几天可以修完?
3、一辆汽车从甲地往乙地送货,每小时行45千米,121小时到达,返回时速度是原来的5
6
,几小时可以返回?
4、一条铁路,修完800千米后,剩余部分比全长的53
少200千米,这条铁路长多少千米? 5、某修路对三天修完了一条路,第一天修了全长的31多150米,第二天修了全长的5
2
少100
米,第三天修了1950米,这条路全长多少米? 6、五年级一班和二班共有学生96人。
抽一班人数的43,二班人数的5
3
,组成66人的鼓号队。
五年级一班和二班各有多少学生? 7、今年小华的年龄是他爸爸年龄的51,12年后小华的年龄是他爸爸年龄的7
3
,今年小华多少岁?
8、两堆煤,第一堆的重量是第二堆重量的7
6
,第一堆用去9吨,第二堆用去8吨,第一堆剩下的重量是第二堆剩下重量的
4
3
,两堆煤原来各有多少吨? 9、去年光明小学的学生人数是红星小学学生人数的5
3
,今年光明小学转入学生60名,红
星小学转出学生20名,现在光明小学的学生人数是红星小学学生人数的4
3
,去年两个小学
各有多少名学生?
10、有甲、乙两筐苹果,甲筐比乙筐轻7千克,甲筐苹果卖出53,乙筐卖出16
11
后,两筐剩下的苹果重量相等,问甲、乙两筐原来有多少千克苹果?
11、某大学开学时,新生分三批报到,第一批是市内的,报到的比全体新生数的3
1
少40人,第二批是省内的,报到的是第一批市内报到人数的5
3
,第三批是省外的,报到的计260人,问该校有新生多少人?
12、实验室里有一杯浓度为15%的盐水,杯中加入8克盐,12克水,浓度变为20%,这杯盐水原来有多少克?
13、已知甲校学生数是乙校学生数的40%,甲校女生数是甲校学生总数的30%,乙校男生数是乙校学生总数的42%,两校女生数占两校学生总数的百分之几? 14、师徒两人各加工一批两件,师傅加工的零件数比徒弟多3
1
,而徒弟加工零件的时间比师傅多
8
1
,那么,师傅的工作效率比徒弟高百分之几? 15、东方小学六(1)班举行数学竞赛,全班平均分为85分,男生人数是女生人数的4
3,女生平均分比男生平均分多7分。
六(1)班男生平均分是多少? 16、A 、B 两种商品售价相同,已知A 商品赚了51,B 商品亏了5
1
,两者合算共亏2元,求每种商品的成本价?
17、甲、乙两种商品,甲的成本价是乙的1
3
2
倍,出售时甲得利20%,乙亏损25%,两者核算还得利20元,求甲、乙两种商品的成本价?
18、修一段路,甲工程队单独修75天完成,乙工程队单独修50天完成,现在由两个工程队合修,中途甲工程队临时支援别的工程几天,结果整段修了40天才完工,甲工程队中途离开几天?
19、甲乙两人合加工一批零件,8天可以完成,中途甲因事停工3天,因此两人共用了10天才完成,如果由单独加工这批零件需要多少天才能完成?
20、一件工作,甲独做要20天完成,乙独做要12天完成。
这件工作,先由甲做了若干天,然后由乙继续做完,从开始到完工共用了14天。
问:甲、乙两人各做了多少天?。