2020年高考数学专题训练——第46讲 填空题压轴题精选

合集下载

2020年江苏省高考数学押题试卷(6月份) (解析版)

2020年江苏省高考数学押题试卷(6月份) (解析版)

2020年高考数学押题试卷(6月份)一、填空题(共14小题).1.已知集合M={﹣1,0,1,2},集合N={x|x2+x﹣2=0},则集合M∩N=.2.已知复数(i是虚数单位),则z的共轭复数为.3.为了解学生课外阅读的情况,随机统计了n名学生的课外阅读时间,所得数据都在[50,150]中,其频率分布直方图如图所示.已知在[50,100)中的频数为24,则n的值为.4.执行如图所示的算法流程图,则输出的b的值为.5.已知A、B、C三人在三天节日中值班,每人值班一天,那么A排在C后一天值班的概率为.6.底面边长和高都为2的正四棱锥的表面积为.7.在平面直角坐标系xOy中,已知双曲线经过点(﹣,6),且它的两条渐近线方程是y=±3x,则该双曲线标准方程为.8.已知sinα+cosα=,则sin2α+cos4α的值为.9.设S n为等差数列{a n}的前n项和,若2a3﹣a5=1,S10=100,则S20的值为.10.埃及数学中有一个独特现象:除用一个单独的符号表示以外,其它分数都要写成若干个单位分数和的形式.例如可以这样理解:假定有两个面包,要平均分给5个人,如果每人,不够;每人,余,再将这分成5份,每人得,这样每人分得.形如(n=5,7,9,11,…)的分数的分解:,,,按此规律,=(n=5,7,9,11,…).11.在平面直角坐标系xOy中,已知圆C:(x﹣2)2+y2=4,点P是圆C外的一个动点,直线PA,PB分别切圆C于A,B两点.若直线AB过定点(1,1),则线段PO长的最小值为.12.已知正实数x,y满足,则的最小值为.13.如图,在平行四边形ABCD中,AB=2AD,E,F分别为AD,DC的中点,AF与BE 交于点O.若,则∠DAB的余弦值为.14.在△ABC中,角A,B,C的对边分别为a,b,c,且=1,则的最大值为.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.在△ABC中,角A、B、C的对边分别为a、b、c.已知向量,,且.(1)求的值;(2)若,求△ABC的面积S.16.如图直三棱柱ABC﹣A1B1C1中,AC=2AA1,AC⊥BC,D、E分别为A1C1、AB的中点.求证:(1)AD⊥平面BCD;(2)A1E∥平面BCD.17.如图,某大型厂区有三个值班室A、B、C.值班室A在值班室B的正北方向3千米处,值班室C在值班室B的正东方向4千米处.(1)保安甲沿CA从值班室C出发行至点P处,此时PC=2.求PB的距离;(2)保安甲沿CA从值班室C出发前往值班室A,保安乙沿AB从值班室A出发前往值班室B,甲乙同时出发,甲的速度为5千米/小时,乙的速度为3千米/小时,若甲乙两人通过对讲机联系,对讲机在厂区内的最大通话距离为3千米(含3千米),试问有多长时间两人不能通话?18.(16分)在平面直角坐标系xOy中,已知椭圆C:(a>b>0)过点(1,),离心率为.A,B是椭圆上两点,且直线OA与OB的斜率之积为.(1)求椭圆C的方程;(2)求直线AB的斜率;(3)设直线AB交圆O:x2+y2=a2于C,D两点,且,求△COD的面积.19.(16分)已知数列{a n}的前n项和为S n,S n=(a n+λ)(λ为常数)对于任意的n∈N*恒成立.(1)当a1=1时,求λ的值;(2)证明:数列{a n}是等差数列;(3)若a2=2,关于m的不等式|S m﹣2m|<m+1有且仅有两个不同的整数解,求λ的取值范围.20.(16分)已知函数f(x)=(a∈R,且a为常数).(1)若函数y=f(x)的图象在x=e处的切线的斜率为(e为自然对数的底数),求a的值;(2)若函数y=f(x)在区间(1,2)上单调递增,求a的取值范围;(3)已知x,y∈(1,2),且x+y=3.求证:+≤0.附加题【选做题】本题包括,B,C三小题,每小题10分.请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-2:矩阵与变换]21.曲线x2+y2=1在矩阵A=(a>0,b>0)对应的变换下得到曲线=1.(1)求矩阵A;(2)求矩阵A的特征向量.B.[选修4-4:坐标系与参数方程](本小题满分10分)22.已知在平面直角坐标系xOy中,曲线C的参数方程为(α为参数).以原点O为极点,以x轴的非负半轴为极轴的极坐标系中,直线l的极坐标方程为ρ(sinθ+cosθ)=2,直线l与曲线C相交于A,B两点,求线段AB的值.C.[选修4-5:不等式选讲]23.已知a,b,c为正实数,满足a+b+c=3,求的最小值.【必做题】第22题、第23题,每小题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.五个自然数1、2、3、4、5按照一定的顺序排成一列.(1)求2和4不相邻的概率;(2)定义:若两个数的和为6且相邻,称这两个数为一组“友好数”.随机变量X表示上述五个自然数组成的一个排列中“友好数”的组数,求X的概率分布和数学期望E (X).25.已知n≥2,n∈N*,数列T:a1,a2,…,a n中的每一项均在集合M={1,2,…,n}中,且任意两项不相等,又对于任意的整数i,j(1≤i<j≤n),均有i+a i≤j+a j.记所有满足条件的数列T的个数为b n.例如n=2时,满足条件的数列T为1,2或2,1,所以b2=2.(1)求b3;(2)求b n.参考答案一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.已知集合M={﹣1,0,1,2},集合N={x|x2+x﹣2=0},则集合M∩N={1}.【分析】可以求出集合N,然后进行交集的运算即可.解:∵M={﹣1,0,1,2},N={﹣2,1},∴M∩N={1}.故答案为:{1}.2.已知复数(i是虚数单位),则z的共轭复数为1﹣i.【分析】直接利用复数代数形式的乘除运算化简得答案.解:∵=,∴.故答案为:1﹣i.3.为了解学生课外阅读的情况,随机统计了n名学生的课外阅读时间,所得数据都在[50,150]中,其频率分布直方图如图所示.已知在[50,100)中的频数为24,则n的值为60.【分析】由频率分布直方图求出[50,100)中的频率,再由在[50,100)中的频数,能求出n.解:由频率分布直方图得:[50,100)中的频率为:(0.004+0.012)×25=0.4,因为在[50,100)中的频数为24,所以n==60,故答案为:60.4.执行如图所示的算法流程图,则输出的b的值为8.【分析】按照程序框图一步一步代入求值,直到跳出循环,输出结果.解:a=1,b=1;b=2,a=2;b=4,a=3,b=8,a=4;跳出循环,输出b=8,故答案为:8.5.已知A、B、C三人在三天节日中值班,每人值班一天,那么A排在C后一天值班的概率为.【分析】利用排列组合数公式易求三人值班有A种,A排在C后一天值班的情况有C A 种,相比即可.解:因为A、B、C三人在三天节日中值班有A=6种,其中A排在C后一天值班的情况有C A=2种,所以A排在C后一天值班的概率P==,故答案是.6.底面边长和高都为2的正四棱锥的表面积为4+4.【分析】由已知中正四棱锥的底面边长为2,高为2,求出棱锥的侧高,进而求出棱锥的侧面积,加上底面积后,可得答案.解:如下图所示:正四棱锥S﹣ABCD中,AB=BC=CD=AD=2,S0=2,E为BC中点,在Rt△SOE中,OE=AB=1,则侧高SE==,故棱锥的表面积S=2×2+4×(×2×)=4+4.故答案为:4+4.7.在平面直角坐标系xOy中,已知双曲线经过点(﹣,6),且它的两条渐近线方程是y=±3x,则该双曲线标准方程为﹣x2=1.【分析】根据题意,设要求双曲线的方程为x2﹣=t,(t≠0),将点坐标代入计算可得t的值,将t的值代入计算双曲线的方程,变形为标准方程即可得答案.解:根据题意,要求双曲线的两条渐近线方程是y=±3x,设其方程为x2﹣=t,(t ≠0),又由双曲线经过点(﹣,6),则有(﹣)2﹣=3﹣4=t=﹣1,则要求双曲线的方程为﹣x2=1;故答案为:﹣x2=1.8.已知sinα+cosα=,则sin2α+cos4α的值为.【分析】将已知等式两边平方,利用二倍角公式可求sin2α的值,进而根据二倍角的余弦函数公式可求cos4α的值,即可得解.解:∵sinα+cosα=,∴两边平方,可得1+sin2α=,sin2α=﹣,∴cos4α=1﹣2sin22α=1﹣2×(﹣)2=,∴sin2α+cos4α=﹣+=.故答案为:.9.设S n为等差数列{a n}的前n项和,若2a3﹣a5=1,S10=100,则S20的值为400.【分析】利用等差数列前n项和公式和通项公式列方程组,解得a1=1,d=2,由此能求出S20.解:∵S n为等差数列{a n}的前n项和,2a3﹣a5=1,S10=100,∴,解得a1=1,d=2,∴S20=20×1+=400.故答案为:400.10.埃及数学中有一个独特现象:除用一个单独的符号表示以外,其它分数都要写成若干个单位分数和的形式.例如可以这样理解:假定有两个面包,要平均分给5个人,如果每人,不够;每人,余,再将这分成5份,每人得,这样每人分得.形如(n=5,7,9,11,…)的分数的分解:,,,按此规律,=+(n=5,7,9,11,…).【分析】由已知中=+,可以这样来理解:假定有两个面包,要平均分给5个人,每人不够,每人余,再将这分成5份,每人得,这样每人分得+,类比可推导出=+.解:假定有两个面包,要平均分给n(n=5,7,9,11,…)个人,每人不够,每人分则余,再将这分成n份,每人得,这样每人分得+.故=+;故答案为:+11.在平面直角坐标系xOy中,已知圆C:(x﹣2)2+y2=4,点P是圆C外的一个动点,直线PA,PB分别切圆C于A,B两点.若直线AB过定点(1,1),则线段PO长的最小值为.【分析】设P(x0,y0),求出以AB为直径的圆的方程,与圆C联立,可得AB所在直线方程,代入(1,1),得P点轨迹,再由点到直线的距离公式求得线段PO长的最小值.解:设P(x0,y0),则PC的中点坐标为(),又|PC|=,∴以PC为直径的圆的方程为,即x2+y2﹣(x0+2)x﹣y0y+2x0=0,①又圆C:x2+y2﹣4x=0,②①﹣②得:(x0﹣2)x+y0y﹣2x0=0.∵直线AB过(1,1),∴x0﹣y0+2=0.即点P的轨迹为x﹣y+2=0.∴线段PO长的最小值为O到直线x﹣y+2=0的距离等于.故答案为:.12.已知正实数x,y满足,则的最小值为2.【分析】直接利用关系式的变换和不等式的性质的应用求出结果.解:已知正实数x,y满足,整理得:,所以=,所以(当且仅当y=2x等号成立)故的最小值为2.故答案为:213.如图,在平行四边形ABCD中,AB=2AD,E,F分别为AD,DC的中点,AF与BE 交于点O.若,则∠DAB的余弦值为.【分析】用表示出,根据条件列方程计算cos∠DAB.解:=+,设=λ=+λ=+2λ,∵B,O,E三点共线,∴+2λ=1,即λ=.∴==+,=+,∴==﹣,∴5•=(+)•(4﹣2)=﹣2+.若,则﹣2=,又AB=2AD,=AB•AD•cos∠DAB,∴6(4AD2﹣AD2)=51(2AD•AD•cos∠DAB),解得cos∠DAB==.故答案为:.14.在△ABC中,角A,B,C的对边分别为a,b,c,且=1,则的最大值为.【分析】由已知化切为弦可得3sin C=sin B(sin A﹣cos A),结合正弦定理可得3c=b(sin A ﹣cos A),得到,再由辅助角公式化积,利用正弦函数的有界性求得最大值.解:由=1,得,∴4cos A sin B+3cos B sin A=sin A sin B,∴3sin(A+B)+cos A sin B=sin A sin B,即3sin C=sin B(sin A﹣cos A),结合正弦定理可得3c=b(sin A﹣cos A),∴.∵0<A<π,∴<<,则当A﹣时,取得最大值为.即的最大值为.故答案为:.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.在△ABC中,角A、B、C的对边分别为a、b、c.已知向量,,且.(1)求的值;(2)若,求△ABC的面积S.【分析】(1)由可得b(cos A﹣2cos C)+(a﹣2c)cos B=0法一:根据正弦定理可得,sin B cos A﹣2sin B cos C+sin A cos B﹣2sin C cos B法二:根据余弦定理可得,b×=0化简可得,然后根据正弦定理可求(2)由(1)c=2a可求c,由||可求b,结合余弦定理可求cos A,利用同角平方关系可求sin A,代入三角形的面积公式S=可求解:(1)法一:由可得b(cos A﹣2cos C)+(a﹣2c)cos B=0根据正弦定理可得,sin B cos A﹣2sin B cos C+sin A cos B﹣2sin C cos B=0∴(sin B cos A﹣sin A cos B)﹣2(sin B cos C+sin C cos B)=0∴sin(A+B)﹣2sin(B+C)=0∵A+B+C=π∴sin C﹣2sin A=0∴(法二):由可得b(cos A﹣2cos C)+(a﹣2c)cos B=0根据余弦定理可得,b×=0整理可得,c﹣2a=0∴=2(2)∵由(1)可知c=2a=4∴b=3∴cos A==,sin A==∴△ABC的面积S===16.如图直三棱柱ABC﹣A1B1C1中,AC=2AA1,AC⊥BC,D、E分别为A1C1、AB的中点.求证:(1)AD⊥平面BCD;(2)A1E∥平面BCD.【分析】(1)只需证明BC⊥AD,DC⊥AD,证明即可AD⊥平面BCD(2)取BC中点O,连结DO、OE可得四边形A1DOE为平行四边形,即A1E∥OD,A1E∥平面BCD.【解答】证明:(1)∵直三棱柱ABC﹣A1B1C1中CC1⊥平面ABC,又BC⊂平面ABC,∴CC1⊥BC,又∵AC⊥BC,AC∩CC1=C,AC,CC1⊂平面AA1C1C,∴BC⊥平面AA1C1C,而AD⊂平面AA1C1C∴BC⊥AD…①又该直三棱柱中AA1⊥A1C1,CC1⊥A1C1,由已知AA1=AC=A1D,则∠A1DA=,同理∠C1DC=,则∠ADC=,即CD⊥AD,由①BC⊥AD,BC∩CD=C,BC,CD⊂平面BCD,∴AD⊥平面BCD;(2)取BC中点O,连结DO、OE,∵AE=EB,CO=BO∴OE平行等于AC,而A1D平行等于AC,∴A1D平行等于OE∴四边形A1DOE为平行四边形,∴A1E∥OD,而A1E⊄平面BCD,OD⊂平面BCD,∴A1E∥平面BCD.17.如图,某大型厂区有三个值班室A、B、C.值班室A在值班室B的正北方向3千米处,值班室C在值班室B的正东方向4千米处.(1)保安甲沿CA从值班室C出发行至点P处,此时PC=2.求PB的距离;(2)保安甲沿CA从值班室C出发前往值班室A,保安乙沿AB从值班室A出发前往值班室B,甲乙同时出发,甲的速度为5千米/小时,乙的速度为3千米/小时,若甲乙两人通过对讲机联系,对讲机在厂区内的最大通话距离为3千米(含3千米),试问有多长时间两人不能通话?【分析】(1)在△PBC中,根据余弦定理计算PB;(2)设行进时间为t,得出两人距离关于t的函数,解不等式得出t的范围即可得出结论.解:(1)AC==5,cos C==,在△PBC中,由余弦定理可得:PB2=PC2+BC2﹣2PC•BC•cos C=4+16﹣2•2•4•=,∴PB=千米.(2)设两保安出发t小时后,甲保安到达M处,乙保安到达N处(0≤t≤1).则AM=5(1﹣t),AN=3t,又cos A=,则MN2=25(1﹣t)2+9t2﹣2•5(1﹣t)•3t•=52t2﹣68t+25,令MN>3可得52t2﹣68t+25>9,即13t2﹣17t+4>0,又0≤t≤1,解得:0≤t<.∴两保安有小时不能通话.18.(16分)在平面直角坐标系xOy中,已知椭圆C:(a>b>0)过点(1,),离心率为.A,B是椭圆上两点,且直线OA与OB的斜率之积为.(1)求椭圆C的方程;(2)求直线AB的斜率;(3)设直线AB交圆O:x2+y2=a2于C,D两点,且,求△COD的面积.【分析】(1)由椭圆的离心率公式和点满足椭圆方程,解方程可得a,b,进而得到椭圆方程;(2)当直线AB的斜率不存在时,k OA•k OB<0,与条件矛盾;可设直线AB的方程为y =kx+m,代入椭圆方程x2+2y2=4,运用韦达定理和直线的斜率公式,计算可得所求值;(3)不妨设直线AB的方程为y=x+m,运用点到直线的距离公式和弦长公式,化简整理,结合三角形的面积公式,计算可得所求值.解:(1)因为e==,所以a2=2b2,设椭圆方程为+=1,将点(1,)代入可得+=1,解得b=,则a=2,则椭圆的方程为+=1;(2)当直线AB的斜率不存在时,k OA•k OB<0,与条件矛盾.所以直线AB的斜率存在.可设直线AB的方程为y=kx+m,代入椭圆方程x2+2y2=4,可得(2k2+1)x2+4kmx+2m2﹣4=0,设A(x1,y1),B(x2,y2),可得x1+x2=﹣,x1x2=,于是y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=k2•+km(﹣)+m2=,而k OA•k OB==,即x1x2=2y1y2,则=2•,解得k2=,即有k=±,所以直线AB的斜率为±;(3)不妨设直线AB的方程为y=x+m,即x﹣y+m=0,因为原点O到直线AB的距离d=,所以|CD|=2=2,由(2)当k=时,x1+x2=﹣m,x1x2=m2﹣2,所以|AB|=|x1﹣x2|=•=•,于是==,解得m2=3,因此△COD的面积S△OCD=CD•d=•2•=2.19.(16分)已知数列{a n}的前n项和为S n,S n=(a n+λ)(λ为常数)对于任意的n∈N*恒成立.(1)当a1=1时,求λ的值;(2)证明:数列{a n}是等差数列;(3)若a2=2,关于m的不等式|S m﹣2m|<m+1有且仅有两个不同的整数解,求λ的取值范围.【分析】(1)令n=1,结合S1=a1及题设条件可得2a1=a1+λ,进而得解;(2)利用S n+1﹣S n=a n及题设条件可得2a n+1=(n+1)a n+1﹣na n+λ,进而得到2a n+1﹣2a n=(n+1)a n+1﹣2na n+(n﹣1)a n﹣1,化简整理即可得证;(3)由(2)问题等价于,令,题目条件进一步转化为满足不等式t|m(m﹣3)|<m+1的整数解只有两个,然后再分类讨论得出结论.解:(1)当n=1时,,∴2a1=a1+λ,解得λ=a1=1;(2)证明:由题意知,,∴2a n+1=(n+1)a n+1﹣na n+λ,∴,∴2a n+1﹣2a n=(n+1)a n+1﹣2na n+(n﹣1)a n﹣1,∴(n﹣1)a n+1+(n﹣1)a n﹣1=2(n﹣1)a n,又n≥2,n∈N•,∴n﹣1>0,∴a n+1+a n﹣1=2a n对任意n≥2,n∈N•都成立,∴数列{a n}是等差数列;(3)由(2)可知,|S m﹣2m|<m+1,即,即,∴,令,题目条件转化为满足不等式t|m(m﹣3)|<m+1的整数解只有两个,若m=1符合,则2t<2,即t<1;若m=2符合,则2t<3,即;若m=3符合,则t为任意实数,即m=3以外只能有1个m符合要求;当m≥4,m∈N•时,tm(m﹣3)<m+1,解得,令x=m+1≥5,则,令,则,当x≥5时,f′(x)>0恒成立,∴f(x)在[5,+∞)上单调递增,∴,∴,∴当时,至少存在m=2,3,4满足不等式,不符合要求;当时,对于任意m≥4,m∈N•都不满足不等式,m=1也不满足,此时只有m=2,3满足;当时,只有m=3符合;故,即,解得或,∴λ的取值范围为.20.(16分)已知函数f(x)=(a∈R,且a为常数).(1)若函数y=f(x)的图象在x=e处的切线的斜率为(e为自然对数的底数),求a的值;(2)若函数y=f(x)在区间(1,2)上单调递增,求a的取值范围;(3)已知x,y∈(1,2),且x+y=3.求证:+≤0.【分析】(1)根据导数的几何意义知f′(e)=,由此构造方程求得结果.(2)将问题转化为ax+1﹣axlnx≥0且ax+1≠0,恒成立的问题,令φ(x)=ax+1﹣axlnx,分别在a=0,a>0和﹣≤a<0,或a≤﹣1时,结合函数单调性确定最小值,令φ(x)min≥0,从而求得a的取值范围.(3)根据(2)的结论可知f(x)在(1,2)上单调递增,分类讨论可确定≤2ln(2x﹣3),将不等关系代入所求不等式左侧,结合对数运算可整理得到结果.解:(1)由题意得:f′(x)==,因为y=f(x)的函数图象在x=e处的切线的斜率为,所以f′(e)=,所以,解得(ae+1)2=(1﹣e)2,所以ae+1=±(1﹣e),所以a=﹣1或.(2)因为函数f(x)在(1,2)上单调递增,所以对于任意的x∈(1,2),都有f′(x)≥0恒成立,即ax+1﹣axlnx≥0且ax+1≠0,当a=0,1≥0恒成立,满足题意,当a≠0时,由x≠﹣得:﹣,即a>0,或﹣或a≤﹣1,令φ(x)=ax+1﹣axlnx,则φ′(x)=﹣alnx,①当a>0且x∈(1,2)时,φ′(x)<0,所以φ(x)在(1,2)上单调递减,要使得ax+1﹣axlnx≥0,即要求φ(2)≥0,即2a+1﹣2aln2≥0,解得a≥,所以a>0满足题意,②当﹣≤a<0或a≤﹣1,且x∈(1,2)时,φ′(x)>0,所以φ(x)在(1,2)上单调递增,要使得ax+1﹣axlnx≥0,即要求φ(1)≥0,即a+1﹣aln1≥0,解得a≥﹣1,所以﹣≤a<0或a=﹣1,综上所述:a的取值范围是{﹣1}∪[﹣,+∞).(3)证明:由(2)知:当a=﹣1时,函数f(x)在(1,2)上单调递增,此时f(x)==,当1<x≤时,f(x)≤f()=﹣2ln,而2x﹣3≤0,所以(2x﹣3)f(x)≥﹣2ln(2x﹣3),即(2x﹣3)≥﹣2ln(2x﹣3),所以,当≤x<2时,f(x)≥f()=﹣2ln,而2x﹣3≥0,所以(2x﹣3)f(x)≥﹣2ln(2x﹣3),即(2x﹣3)≥﹣2ln(2x﹣3),所以,综上,对于任意x∈(1,2),都有,所以≤2ln(2x﹣3)+2ln(2y﹣3)=2ln(2x+2y﹣6)=0,结论得证.附加题【选做题】本题包括,B,C三小题,每小题10分.请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-2:矩阵与变换]21.曲线x2+y2=1在矩阵A=(a>0,b>0)对应的变换下得到曲线=1.(1)求矩阵A;(2)求矩阵A的特征向量.【分析】(1)推导出=,从而,由点P'(x',y')在曲线=1,得=1.再由x2+y2=1,能求出矩阵A.(2)由|λI﹣A|==0,求出λ1=3,λ2=1,由此能求出矩阵A的特征向量.解:(1)P(x,y)为圆C上的任意一点,在矩阵A对应的变换下变为另一个点P'(x',y'),则=,即,又∵点P'(x',y')在曲线=1,∴=1.由已知条件可知,x2+y2=1,∴a2=9,b2=1.∵a>0,b>0,∴a=3,b=1.∴A=.(2)∵A=.∴|λI﹣A|==0,解得λ1=3,λ2=1,把λ1=3代入|λI﹣A|x=0,得=,∴x2=0,∴λ1=3的特征向量为,把λ1=1代入|λI﹣A|x=0,得=,∴x1=0,∴λ2=1的特征向量为.B.[选修4-4:坐标系与参数方程](本小题满分10分)22.已知在平面直角坐标系xOy中,曲线C的参数方程为(α为参数).以原点O为极点,以x轴的非负半轴为极轴的极坐标系中,直线l的极坐标方程为ρ(sinθ+cosθ)=2,直线l与曲线C相交于A,B两点,求线段AB的值.【分析】化曲线的参数方程为普通方程,化直线的极坐标方程为直角坐标方程,进一步化为参数方程的标准形式,代入曲线的普通方程,得到关于t的一元二次方程,再由根与系数的关系及弦长公式求解.解:由(α为参数),消去参数α,得;由ρ(sinθ+cosθ)=2,得ρsinθ+ρcosθ﹣2=0,即x+y﹣2=0.设直线l的参数方程为,代入,得.∴,.∴|AB|=|t1﹣t2|==.C.[选修4-5:不等式选讲]23.已知a,b,c为正实数,满足a+b+c=3,求的最小值.【分析】根据条件,可得=,然后利用柯西不等式求出其最小值即可.解:∵a,b,c为正实数且满足a+b+c=3,∴,即,当且仅当,即时等号成立,∴的最小值为12.【必做题】第22题、第23题,每小题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.五个自然数1、2、3、4、5按照一定的顺序排成一列.(1)求2和4不相邻的概率;(2)定义:若两个数的和为6且相邻,称这两个数为一组“友好数”.随机变量X表示上述五个自然数组成的一个排列中“友好数”的组数,求X的概率分布和数学期望E (X).【分析】(1)记“2和4不相邻”为事件A,则P(A)=;(2)X的所有可能取值为0,1,2,结合排列组合的思想逐一求出每个X的取值所对应的概率即可得分布列,进而求得数学期望.解:(1)记“2和4不相邻”为事件A,则P(A)=,所以2和4不相邻的概率为.(2)X的所有可能取值为0,1,2,P(X=2)=,P(X=1)=,P(X=0)=(先确定3的位置)或(P(X=0)=1﹣P (X=1)﹣P(X=2)=).所以X的分布列为X012P数学期望E(X)=.25.已知n≥2,n∈N*,数列T:a1,a2,…,a n中的每一项均在集合M={1,2,…,n}中,且任意两项不相等,又对于任意的整数i,j(1≤i<j≤n),均有i+a i≤j+a j.记所有满足条件的数列T的个数为b n.例如n=2时,满足条件的数列T为1,2或2,1,所以b2=2.(1)求b3;(2)求b n.【分析】(1)直接利用关系式的应用求出结果.(2)直接利用数列的通项公式的应用和递推关系式的应用求出结果.解:(1)若a1=3,则1+3≤2+a2,故a2=2,则a3=1.若a2=3,则2+a2≤3+a3,则a3≥2.故a2=2,则a1=1.若a3=3,则a1=1,a2=2,或a1=2,a2=3.所以当n=3时,满足条件的数列T为3,2,1;1,3,2;1,2,3;2,1,3.故满足条件的T为4.(2)设满足条件的数列T的个数为b n,显然b1=1,b2=2,b3=3.不等式i+a i≤j+a j中取j=i+1,则有i+a i≤i+1+a i+1,即a i≤1+a i+1.①当a1=n,则a2=n﹣1,同理a3=n﹣2,…,a n=1.②当a i=n,(2≤i≤n),则a i+1=n﹣1,同理a i+2=n﹣2,…,a n=i.即a i=n以后的各项是唯一确定的.a i=n之前的满足条件的数列的个数为b i﹣1.所以:当n≥2时,b n=b n﹣1+b n﹣2+…+b1+1.(*).当n≥3时,b n﹣1=b n﹣2+b n﹣3+…+b1+1.代入(*)式得到b n=b n﹣1+b n﹣1=2b n﹣1,且满足b2=2b1.所以对任意n≥2的,都有b n=2b n﹣1,又b1=1,所以.综上所述,满足条件的数列T的个数为2n﹣1.。

2020年高考数学选择、填空题专项训练(共40套)含答案

2020年高考数学选择、填空题专项训练(共40套)含答案

2020年高考数学选择、填空题专项训练(共40套)三基小题训练一一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =2x +1的图象是 ( )2.△ABC 中,cos A =135,sin B =53,则cos C 的值为 ( )A.6556B.-6556C.-6516D. 65163.过点(1,3)作直线l ,若l 经过点(a ,0)和(0,b ),且a ,b ∈N *,则可作出的l 的条数为( )A.1B.2C.3D.多于34.函数f (x )=log a x (a >0且a ≠1)对任意正实数x ,y 都有 ( )A.f (x ·y )=f (x )·f (y )B.f (x ·y )=f (x )+f (y )C.f (x +y )=f (x )·f (y )D.f (x +y )=f (x )+f (y )5.已知二面角α—l —β的大小为60°,b 和c 是两条异面直线,则在下列四个条件中,能使b 和c 所成的角为60°的是( )A.b ∥α,c ∥βB.b ∥α,c ⊥βC.b ⊥α,c ⊥βD.b ⊥α,c ∥β6.一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为 ( )A.14B.16C.18D.207.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有 ( )A.8种B.10种C.12种D.32种8.若a ,b 是异面直线,a ⊂α,b ⊂β,α∩β=l ,则下列命题中是真命题的为( )A.l 与a 、b 分别相交B.l 与a 、b 都不相交C.l 至多与a 、b 中的一条相交D.l 至少与a 、b 中的一条相交9.设F 1,F 2是双曲线42x -y 2=1的两个焦点,点P 在双曲线上,且1PF ·2PF =0,则|1PF |·|2PF |的值等于( ) A.2B.22C.4D.810.f (x )=(1+2x )m +(1+3x )n (m ,n ∈N *)的展开式中x 的系数为13,则x 2的系数为( )A.31B.40C.31或40D.71或8011.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率( )A.小B.大C.相等D.大小不能确定12.如右图,A 、B 、C 、D 是某煤矿的四个采煤点,l 是公路,图中所标线段为道路,ABQP 、BCRQ 、CDSR 近似于正方形.已知A 、B 、C 、D 四个采煤点每天的采煤量之比约为5∶1∶2∶3,运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P 、Q 、R 、S 中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在( )A.P 点B.Q 点C.R 点D.S 点二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.抛物线y 2=2x 上到直线x -y +3=0距离最短的点的坐标为_________.14.一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是_________.15.设定义在R 上的偶函数f (x )满足f (x +1)+f (x )=1,且当x ∈[1,2]时,f (x )=2-x ,则f (8.5)=_________.16.某校要从甲、乙两名优秀短跑选手中选一名选手参加全市中学生田径百米比赛,该校预先对这两名选手测试了8次,测试成绩如下:第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 甲成绩(秒) 12.1 12.2 13 12.5 13.1 12.5 12.4 12.2 乙成绩(秒)1212.412.81312.212.812.312.5根据测试成绩,派_________(填甲或乙)选手参赛更好,理由是____________________. 答案:一、1.A 2.D 3.B 4.B 5.C 6.C 7.B 8.D 9.A 10.C 11.B 12.B二、13.(21,1) 14.6 15. 21三基小题训练二一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,点O 是正六边形ABCDEF 的中心,则以图中点 A 、B 、C 、D 、E 、F 、O 中的任意一点为始点,与始点不 同的另一点为终点的所有向量中,除向量OA 外,与向量OA 共线的向量共有( )A .2个B . 3个C .6个D . 7个2.已知曲线C :y 2=2px 上一点P 的横坐标为4,P 到焦点的距离为5,则曲线C 的焦点到准线的距离为 ( )A . 21B . 1C . 2D . 43.若(3a 2 -312a ) n 展开式中含有常数项,则正整数n 的最小值是 ( )A .4B .5C . 6D . 84. 从5名演员中选3人参加表演,其中甲在乙前表演的概率为 ( )A . 203B . 103C . 201D . 1015.抛物线y 2=a(x+1)的准线方程是x=-3,则这条抛物线的焦点坐标是( ) A.(3,0) B.(2,0) C.(1,0) D.(-1,0)6.已知向量m=(a ,b ),向量n⊥m,且|n|=|m|,则n的坐标可以为( ) A.(a ,-b ) B.(-a ,b ) C.(b ,-a ) D.(-b ,-a )7. 如果S ={x |x =2n +1,n ∈Z },T ={x |x =4n ±1,n ∈Z },那么A.S TB.T SC.S=TD.S ≠T8.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有 ( )A .36种B .48种C .72种D .96种9.已知直线l 、m ,平面α、β,且l ⊥α,m β.给出四个命题:(1)若α∥β,则l ⊥m ; (2)若l ⊥m ,则α∥β;(3)若α⊥β,则l ∥m ;(4)若l ∥m ,则α⊥β,其中正确的命题个数是( )A.4B.1C.3D.2EF DOC BA10.已知函数f(x)=log 2(x 2-ax +3a)在区间[2,+∞)上递增,则实数a 的取值范围是( )A.(-∞,4)B.(-4,4]C.(-∞,-4)∪[2,+∞)D.[-4,2)11.4只笔与5本书的价格之和小于22元,而6只笔与3本书的价格之和大于24元,则2只笔与3本书的价格比较( )A .2只笔贵B .3本书贵C .二者相同D .无法确定12.若α是锐角,sin(α-6π)=31,则cos α的值等于 A.6162- B. 6162+ C. 4132+ D. 3132-二、填空题:本大题共4小题,每小题4分,共16分.答案填在题中横线上. 13.在等差数列{a n }中,a 1=251,第10项开始比1大,则公差d 的取值范围是___________.14.已知正三棱柱ABC —A 1B 1C 1,底面边长与侧棱长的比为2∶1,则直线AB 1与CA 1所成的角为 。

2020年全国高考数学·培优复习 第46讲 填空题压轴题精选

2020年全国高考数学·培优复习 第46讲  填空题压轴题精选

2020年全国高考数学·培优复习 第四十六讲 填空题压轴题精选A 组1、如果对定义在R 上的函数)(x f ,对任意两个不相等的实数21,x x ,都有)()()()(12212211x f x x f x x f x x f x +>+,则称函数)(x f 为“H 函数”。

给出下列函数:①x e y x +=;②2x y =;③x x y sin 3-=;④⎩⎨⎧=≠=)0(,0)0(,ln x x x y 。

以上函数是“H 函数”的所有序号为______。

【答案】:①③2、定义在R 上的()f x ,满足22()()2[()],,,f m n f m f n m n R +=+∈且(1)0f ≠,则(2012)f 的值为 。

【答案】:10063、如题(15)图,图中的实线是由三段圆弧连接而成的一条封闭曲线C ,各段弧所在的圆经过同一点P (点P 不在C 上)且半径相等。

设第i 段弧所对的圆心角为(1,2,3)i i α=,则232311cos cos sin sin 3333αααααα++-=____________。

【答案】:21- 4、设圆C 位于抛物线22y x =与直线x=3所围成的封闭区域(包含边界)内,则圆C 的半径能取到的最大值为_________。

【答案】:16-。

5、若实数a ,b ,c 满足b a b a +=+222,c b a c b a ++=++2222,则c 的最大值是 。

【答案】:3log 22-6、(2016全国一卷16)若直线b kx y +=是曲线2ln +=x y 的切线,也是曲线)1ln(+=x y 的切线,则b= 。

【答案】:2ln 1-7、已知椭圆)0(12222>>=+b a by a x 的左、右顶点分别是A ,B ,左、右焦点分别是21,F F ,若21221AF AF F F λ=(0<λ<4),则离心率e 的取值范围是 。

高考数学选择填空压轴题45道(附答案)

高考数学选择填空压轴题45道(附答案)

,
D.
1,
27 e4
21.已知方程
e x 1
x
e2 x1 x aex1
有三个不同的根,则实数
a

取值范围为( )
A. 1,e
B.
e,
1 2
C. 1,1
D.
1,
1 2
22.函数 f (x) ex1 ex1 a sin (x x R ,e 是自然对数的底数,
a 0 )存在唯一的零点,则实数 a 的取值范围为( )
38.若不等式 x e2x a x ln x 1恒成立,则实数 a 的取值范
围是__________.
39.已知函数 f x ln x e a x b ,其中 e 为自然对数的底
数.若不等式
f
x
0
恒成立,则
b a
的最小值为_______.
40.已知函数
f
(x)
x
2 cos
x
,在区间上
0,
4
A.
0,
2
B.
0,
2
C. (0,2]
D. (0,2)
23.已知 a 0 ,b R ,且 ex a(x 1) b 对 x R 恒成立,则 a2b 的 最大值为( )
A. 1 e5
2
B. 1 e5
3
C. 1 e3
2
D. 1 e3
3
k
24.若关于
x
的不等式
1 x
x
1 27
有正整数解,则实数
16 12
7
4
x
x
3y 6 y
的最小值为________.
8
参考答案,仅供参考

2020年全国高考数学试题分类汇编1-选择填空压轴题-含详细答案

2020年全国高考数学试题分类汇编1-选择填空压轴题-含详细答案

2020年全国高考数学试题汇编选择填空压轴题一、选择题(本大题共11小题,共54.0分)1.2020年3月14日是全球首个国际圆周率日(πDay).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似,数学家阿尔⋅卡西的方法是:当正整数n充分大时,计算单位圆的内接正6n边形的周长和外切正6n边形(各边均与圆相切的正6n边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔⋅卡西的方法,π的近似值的表达式是()A. 3n(sin30°n +tan30°n) B. 6n(sin30°n+tan30°n)C. 3n(sin60°n +tan60°n) D. 6n(sin60°n+tan60°n)2.设集合A={(x,y)|x−y≥1,ax+y>4,x−ay≤2},则()A. 对任意实数a,(2,1)∈AB. 对任意实数a,(2,1)∉AC. 当且仅当a<0时,(2,1)∉AD. 当且仅当a≤32时,(2,1)∉A3.根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与MN最接近的是()(参考数据:lg3≈0.48)A. 1033B. 1053C. 1073D. 10934.数学中有许多形状优美、寓意美好的曲线,曲线C:x2+y2=1+|x|y就是其中之一(如图).给出下列三个结论:①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到原点的距离都不超过√2;③曲线C所围成的“心形”区域的面积小于3.其中,所有正确结论的序号是()A. ①B. ②C. ①②D. ①②③5.袋中装有偶数个球,其中红球、黑球各占一半,甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个放入乙盒,否则就放入丙盒,重复上述过程,直到袋中所有球都被放入盒中,则()A. 乙盒中黑球不多于丙盒中黑球B. 乙盒中红球与丙盒中黑球一样多C. 乙盒中红球不多于丙盒中红球D. 乙盒中黑球与丙盒中红球一样多6. 若2a +log 2a =4b +2log 4b ,则( )A. a >2bB. a <2bC. a >D. a <7. 已知函数f(x)={x 3,x ≥0,−x,x <0.若函数g(x)=f(x)−|kx 2−2x|(k ∈R)恰有4个零点,则k 的取值范围是( ) A. (−∞,−12)∪(2√2,+∞) B. (−∞,−12)∪(0,2√2) C. (−∞,0)∪(0,2√2)D. (−∞,0)∪(2√2,+∞)8. 已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为▵ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( )A. 64πB. 48πC. 36πD. 32π9. 0−1周期序列在通信技术中有着重要应用,若序列a 1a 2…a n …满足a i ∈(0,1)(i =1,2,…),且存在正整数m ,使得a i+m =a i (i =1,2,…)成立,则称其为0−1周期序列,并称满足a i+m =a i (i =1,2,…)的最小正整数m 为这个序列的周期.对于周期为m 的0−1序列a 1a 2…a n …,C(k)=1m ∑a i a i+k (k =1,2,…,m −1)m i=1是描述其性质的重要指标.下列周期为5的0−1序列中,满足C(k)≤15(k =1,2,3,4)的序列是( )A. 11010…B. 11011…C. 10001…D. 11001…10. 已知<,<.设a =3,b =5,c =8,则( )A. a <b <cB. b <a <cC. b <c <aD. c <a <b11. 某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段,表中为10名学生的预赛成绩,其中有三个数据模糊.在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则( )A. 2号学生进入30秒跳绳决赛B. 5号学生进入30秒跳绳决赛C. 8号学生进入30秒跳绳决赛D. 9号学生进入30秒跳绳决赛二、不定项选择题(本大题共1小题,共5.0分)12. 信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,,n ,且P(X =i)=>0(i =1,2,,n),=1,定义X 的信息熵H(X)=−( )A. 若n =1,则H (x )=0B. 若n =2,则H(x)随着的增大而增大C. 若=(i =1,2,,n),则H(x)随着n 的增大而增大D. 若n =2m ,随机变量Y 的所有可能取值为1,2,,m ,且P(Y =j)=+(j =1,2,,m)则H(X)H(Y)三、填空题(本大题共12小题,共60.0分)13.为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改.设企业的污水排放量W与时间t的关系为W=f(t),用−f(b)−f(a)b−a的大小评价在[a,b]这段时间内企业污水治理能力的强弱.已知整改期内,甲、乙两企业的污水排放量与时间的关系如图所示.给出下列四个结论:①在[t1,t2]这段时间内,甲企业的污水治理能力比乙企业强;②在t2时刻,甲企业的污水治理能力比乙企业强;③在t3时刻,甲,乙两企业的污水排放都已达标;④甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污水治理能力最强.其中所有正确结论的序号是______.14.某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店①第一天售出但第二天未售出的商品有______种;②这三天售出的商品最少有______种.15.某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(i)男学生人数多于女学生人数;(ii)女学生人数多于教师人数;(iii)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为______.②该小组人数的最小值为______.16.李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为________.17.已知椭圆M:x2a2+y2b2=1(a>b>0),双曲线N:x2m2−y2n2=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为__________;双曲线N的离心率为________.18.三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中A i的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点B i的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.(1)记Q i为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是______ ;(2)记p i为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是______ .19.设函数f(x)={x 3−3x,x≤a−2x,x>a.①若a=0,则f(x)的最大值为______;②若f(x)无最大值,则实数a的取值范围是______.20.如图,在三棱锥P−ABC的平面展开图中,AC=1,AB=AD=,AB AC,AB AD,CAE=,则FCB=__________.21.设有下列四个命题:P1:两两相交且不过同一点的三条直线必在同一平面内.P2:过空间中任意三点有且仅有一个平面.P3:若空间两条直线不相交,则这两条直线平行.P4:若直线l⊂平面α,直线m⊥平面α,则m⊥l.则下述命题中所有真命题的序号是________.①p1∧p4②p1∧p2③¬p2∨p3④¬p3∨¬p422.关于函数f(x)=x+有如下四个命题:f(x)的图像关于y轴对称.f(x)的图像关于原点对称,f(x)的图像关于直线x=对称.f(x)的最小值为2.其中所有真命题的序号是__________.23. 如图,在四边形ABCD 中,∠B =60°,AB =3,BC =6,且AD ⃗⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =−32,则实数λ的值为______,若M ,N 是线段BC 上的动点,且|MN ⃗⃗⃗⃗⃗⃗⃗ |=1,则DM ⃗⃗⃗⃗⃗⃗⃗ ⋅DN ⃗⃗⃗⃗⃗⃗ 的最小值为______.24. 数列{a n }满足a n+2+(−1)n a n =3n −1,前16项和为540,则a 1=____.答案和解析1.【答案】A【解析】【分析】本题考查数学中的文化,考查圆的内接和外切多边形的边长的求法,考查运算能力,属于基础题.设内接正6n边形的边长为a,外切正6n边形的边长为b,运用圆的性质,结合直角三角形的锐角三角函数的定义,可得所求值.【解答】解:如图,设内接正6n边形的边长为a,外切正6n边形的边长为b,可得a=2sin360°12n =2sin30°n,b=2tan360°12n =2tan30°n,则2π≈6na+6nb2=6n(sin30°n+tan30°n),即π≈3n(sin30°n +tan30°n),故选:A.2.【答案】D【解析】【分析】本题考查元素与集合的关系,考查运算求解能力,是中档题.根据题意,取特例判断求解即可.【解答】解:当a=−1时,集合A={(x,y)|x−y≥1,ax+y>4,x−ay≤2}={(x,y)|x−y≥1,−x+y>4,x+ y≤2},显然(2,1)不满足,−x+y>4,x+y≤2,所以A不正确;当a=4时,集合A={(x,y)|x−y≥1,ax+y>4,x−ay≤2}={(x,y)|x−y≥1,4x+y>4,x−4y≤2},可知:此时(2,1)∈A,所以B不正确;当a=1时,集合A={(x,y)|x−y≥1,ax+y>4,x−ay≤2}={(x,y)|x−y≥1,x+y>4,x−y≤2},显然此时(2,1)∉A,所以C不正确;故选:D.3.【答案】D【解析】【分析】本题考查指数形式与对数形式的互化,属于基础题.根据对数的性质:T=a log a T,可得:3=10lg3≈100.48,将M也化为10为底的指数形式,进而可得结果.【解答】解:由题意:M≈3361,N≈1080,根据对数性质有:3=10lg3≈100.48,∴M≈3361≈(100.48)361≈10173,∴MN ≈101731080=1093.故选D.4.【答案】C【解析】【分析】本题考查了方程与曲线,属中档题.将x换成−x方程不变,所以图形关于y轴对称,根据对称性讨论y轴右边的图形可得.【解答】解:将x换成−x方程不变,所以图形关于y轴对称,当x=0时,代入得y2=1,∴y=±1,即曲线经过(0,1),(0,−1),当x>0时,方程变为y2−xy+x2−1=0,所以由△=x2−4(x2−1)≥0,解得x∈(0,2√33],所以x只能取整数1,当x=1时,y2−y=0,解得y=0或y=1,即曲线经过(1,0),(1,1),根据对称性可得曲线还经过(−1,0),(−1,1),故曲线一共经过6个整点,故①正确,当x>0时,由x2+y2=1+xy得x2+y2−1=xy≤x2+y22,(当x=y时取等),∴x2+y2≤2,∴√x2+y2≤√2,即曲线C上y轴右边的点到原点的距离不超过√2,根据对称性可得:曲线C上任意一点到原点的距离都不超过√2,故②正确,×2×1=1,在x轴上方图形面积大于矩形面积=1×2=2,x轴下方的面积大于等腰直角三角形的面积=12因此曲线C所围成的“心形”区域的面积大于2+1=3,故③错误,故选C.5.【答案】B【解析】【分析】本题考查了推理与证明,重点是找到切入点逐步进行分析,对学生的逻辑思维能力有一定要求,属于中档题.取出的两球有四种情况,分别分析三个盒子中球的关系即可得出结果.【解答】解:取两个球共有4种情况:①红+红,则乙盒中红球数加1个;②黑+黑,则丙盒中黑球数加1个;③红+黑(红球放入甲盒中),则乙盒中黑球数加1个;④黑+红(黑球放入甲盒中),则丙盒中红球数加1个.设一共有球2a个,则a个红球,a个黑球,甲中球的总个数为a,其中红球x个,黑球y个,x+y=a.则乙中有x个球,其中k个红球,j个黑球,k+j=x;丙中有y个球,其中l个红球,i个黑球,i+l=y;黑球总数a=y+i+j,又x+y=a,故x=i+j由于x=k+j,所以可得i=k,即乙中的红球等于丙中的黑球.故选B.6.【答案】B【解析】【分析】本题考查指数及对数的运算性质,指数及对数函数的单调性,属中档题.【解答】解:根据指数及对数的运算性质,4b+2log4b=22b+log2b,∵log2(2b)=log2b+1>log2b,∴22b+log2(2b)>22b+log2b=2a+log2a,根据函数f(x)=2x+log2x是定义域上的增函数,由f(2b)>f(a),得a<2b,故答案为B.7.【答案】D【解析】【分析】本题考查函数的零点,参数的取值范围,关键利用分类讨论思想,分析函数的交点,属于难题.问题转化为f(x)=|kx2−2x|有四个根,⇒y=f(x)与y=ℎ(x)=|kx2−2x|有四个交点,再分三种情况当k=0时,当k<0时,当k>0时,讨论两个函数四否能有4个交点,进而得出k的取值范围.【解答】解:若函数g(x)=f(x)−|kx2−2x|(k∈R)恰有4个零点,则f(x)=|kx2−2x|有四个根,即y=f(x)与y=ℎ(x)=|kx2−2x|有四个交点,当k=0时,y=f(x)与y=|−2x|=2|x|图象如下:两图象有2个交点,不符合题意,当k<0时,y=|kx2−2x|与x轴交于两点x1=0,x2=2k(x2<x1)图象如图所示,两图象有4个交点,符合题意,当k>0时,y=|kx2−2x|与x轴交于两点x1=0,x2=2k(x2>x1)在[0,2k)内两函数图象有两个交点,所以若有四个交点,只需y=x3与y=kx2−2x在(2k,+∞)还有两个交点,即可,即x3=kx2−2x在(2k,+∞)还有两个根,即k=x+2x 在(2k,+∞)还有两个根,函数y=x+2x≥2√2,(当且仅当x=√2时,取等号),所以0<2k<√2,且k>2√2,所以k>2√2,综上所述,k的取值范围为(−∞,0)∪(2√2,+∞).故选:D.8.【答案】B【解析】【分析】本题考查球的结构与性质,球的表面积公式,属中档题.【解答】解:由圆O1的面积为4π=πr2,故圆O1的半径ρ=2,∵AB=BC=AC=OO1,则三角形ABC是正三角形,由正弦定理:ABsin60∘=2r=4,得AB=OO1=2√3,由R2=r2+OO12,得球O的半径R=4,表面积为4πR2=64π,故答案为A.9.【答案】C【解析】【分析】本题主要考查新定义类型的问题,属于较难题.【解答】解:对于A选项,C(1)=15∑a i5i=1a i+1=15(1+0+0+0+0)=15,C(2)=15∑a i5i=1a i+2=15(0+1+0+1+0)=25>15,不满足,排除;对于B选项,C(1)=15∑a i5i=1a i+1=15(1+0+0+1+1)=35>15,不满足,排除;对于C选项,C(1)=15∑a i5i=1a i+1=15(0+0+0+0+1)=15,C(2)=15∑a i5i=1a i+2=15(0+0+0+0+0)=0,C(3)=15∑a i5i=1a i+3=15(0+0+0+0+0)=0,C(4)=15∑a i5i=1a i+4=15(1+0+0+0+0)=15,满足;对于D选项,C(1)=15∑a i5i=1a i+1=15(1+0+0+0+1)=25>15,不满足,排除;故选C.10.【答案】A【解析】【分析】本题主要考查对数与对数函数,借助中间值比较大小.【解答】解:a=log53=ln 3ln 5,b=log85=ln 5ln 8,c=log138=ln 8ln 13,a−b=ln 3ln 5−ln 5ln 8=ln 3⋅ln 8−(ln 5)2ln 5⋅ln 8<(ln 3+ln 82)2−(ln 5)2ln 5⋅ln 8=(ln 24+ln 25)(ln 24−ln 25)4ln 5⋅ln 8<0;c−45=ln 8ln 13−45=5ln 8−4ln 135ln 13=ln 85−ln 1345ln 13>0;b−45=ln 5ln 8−45=5ln 5−4ln 85ln 8=ln 55−ln 845ln 13<0;综上所述,a<b<45<c,即a<b<c,故选A.11.【答案】B【解析】解:∵这10名学生中,进入立定跳远决赛的有8人,故编号为1,2,3,4,5,6,7,8的学生进入立定跳远决赛,又由同时进入立定跳远决赛和30秒跳绳决赛的有6人,则3,6,7号同学必进入30秒跳绳决赛,剩下1,2,4,5,8号同学的成绩分别为:63,a,60,63,a−1有且只有3人进入30秒跳绳决赛,故成绩为63的同学必进入30秒跳绳决赛,故选:B根据已知中这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,逐一分析四个答案的正误,可得结论.本题考查的知识点是推理与证明,正确利用已知条件得到合理的逻辑推理过程,是解答的关键.12.【答案】AC【解析】【分析】本题考查离散型随机变量的应用,重点考查对新定义的理解,属于难题.【解答】解:A选项中,由题意知p1=1,此时H(X)=−1×log21=0,故A正确;B选项中,由题意知p1+p2=1,且p1∈(0,1),H(X)=−p1log2p1−p2log2p2=−p1log2p1−(1−p1)log2(1−p1),设f(x)=−xlog2x−(1−x)log2(1−x),x∈(0,1)则f′(x)=−log2x−1ln2+log2(1−x)+1ln2=log2(1x−1),当x∈(12,1)时,f′(x)<0,当x∈(0,12)时,f′(x)>0,故当p1∈(0,12)时,H(X)随着p1的增大而增大,当p1∈(12,1)时,H(X)随着p1的增大而减小,故B错误;C 选项中,由题意知H(X)=n ×(−1n )log 21n =log 2n ,故H(X)随着n 的增大而增大,故C 正确.D 选项中,由题意知H(Y)=−∑(p j +p 2m+1−j )m j=1log 2(p j +p 2m+1−j ),H(X)=−∑p j 2m j=1log 2p j =−∑(p j m j=1log 2p j +p 2m+1−j log 2p 2m+1−j ), H(X)−H(Y)=∑log 2(p j +p 2m+1−j )p j +p 2m+1−j m j=1−∑(log 2p j p j +log 2p 2m+1−jp 2m+1−j m j=1) =∑log 2(p j +p 2m+1−j )p j +p 2m+1−j p j p j p 2m+1−j p 2m+1−j m j=1=∑log 2(p j +p 2m+1−j )p j (p j +p 2m+1−j )p 2m+1−j p j p j p 2m+1−j p 2m+1−j m j=1=∑log 2(1+p 2m+1−j p j )p j (1+p j p 2m+1−j )p 2m+1−j m j=1>0,故D 错误,故答案为AC .13.【答案】①②③【解析】解:设甲企业的污水排放量W 与时间t 的关系为W =f(t),乙企业的污水排放量W 与时间t 的关系为W =g(t).对于①,在[t 1,t 2]这段时间内,甲企业的污水治理能力为−f(t 2)−f(t 1)t 2−t 1, 乙企业的污水治理能力为−g(t 2)−g(t 1)t 2−t 1.由图可知,f(t 1)−f(t 2)>g(t 1)−g(t 2),∴−f(t 2)−f(t 1)t 2−t 1>−g(t 2)−g(t 1)t 2−t 1,即甲企业的污水治理能力比乙企业强,故①正确;对于②,由图可知,f(t)在t 2时刻的切线的斜率小于g(t)在t 2时刻的切线的斜率,但两切线斜率均为负值, ∴在t 2时刻,甲企业的污水治理能力比乙企业强,故②正确;对于③,在t 3时刻,甲,乙两企业的污水排放都小于污水达标排放量,∴在t 3时刻,甲,乙两企业的污水排放都已达标,故③正确;对于④,由图可知,甲企业在[0,t 1],[t 1,t 2],[t 2,t 3]这三段时间中,在[t 1,t 2]的污水治理能力最强,故④错误.∴正确结论的序号是①②③.故答案为:①②③.由两个企业污水排放量W 与时间t 的关系图象结合平均变化率与瞬时变化率逐一分析四个命题得答案. 本题考查利用数学解决实际生活问题,考查学生的读图视图能力,是中档题.14.【答案】16 29【解析】解:①设第一天售出商品的种类集为A ,第二天售出商品的种类集为B ,第三天售出商品的种类集为C ,如图,则第一天售出但第二天未售出的商品有19−3=16种;②由①知,前两天售出的商品种类为19+13−3=29种,第三天售出但第二天未售出的商品有18−4=14种,当这14种商品属于第一天售出但第二天未售出的16种商品中时,即第三天没有售出前两天的商品时,这三天售出的商品种类最少为29种.故答案为:①16;②29.①由题意画出图形得答案;②求出前两天所受商品的种数,由特殊情况得到三天售出的商品最少种数. 本题考查集合的包含关系及其应用,考查了集合中元素的个数判断,考查学生的逻辑思维能力,是中档题. 15.【答案】6 12【解析】解:①设男学生女学生分别为x ,y 人,若教师人数为4,则{x >yy >42×4>x,即4<y <x <8,即x 的最大值为7,y 的最大值为6,即女学生人数的最大值为6.②设男学生女学生分别为x ,y 人,教师人数为z ,则{x >yy >z 2z >x,即z <y <x <2z即z 最小为3才能满足条件,此时x 最小为5,y 最小为4,即该小组人数的最小值为12,故答案为:6,12①设男学生女学生分别为x ,y 人,若教师人数为4,则{x >yy >42×4>x,进而可得答案;②设男学生女学生分别为x,y人,教师人数为z,则{x>yy>z2z>x,进而可得答案;本题考查的知识点是推理和证明,简易逻辑,线性规划,难度中档.16.【答案】①130;②15.【解析】【分析】本题考查不等式在实际问题的应用,考查化简运算能力,属于中档题.①由题意可得顾客一次购买的总金额,减去x,可得所求值;②在促销活动中,设订单总金额为m元,讨论m的范围,可得(m−x)×80%≥m×70%,解不等式,结合恒成立思想,可得x的最大值.【解答】解:①当x=10时,顾客一次购买草莓和西瓜各1盒,可得60+80=140(元),即有顾客需要支付140−10=130(元);②在促销活动中,设订单总金额为m元,当0<m<120时,显然符合题意;当m≥120时,可得(m−x)×80%≥m×70%,即有x≤m8,可得x≤1208=15,则x的最大值为15元.故答案为:130;15.17.【答案】√3−1;2【解析】【分析】本题考查椭圆和双曲线的简单性质,考查计算能力,属于中档题.根据题意,可得正六边形的一个顶点(c2,√3c2),代入椭圆方程,求出椭圆的离心率;再根据双曲线渐近线斜率求出双曲线离心率即可.【解答】解:椭圆M:x2a2+y2b2=1(a>b>0),双曲线N:x2m2−y2n2=1,若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,又椭圆的一个焦点为(c,0),可得正六边形的一个顶点(c2,√3c2),可得:c 24a 2+3c 24b 2=1,可得14e 2+34(1e 2−1)=1,可得e 4−8e 2+4=0,e ∈(0,1), 解得e =√3−1.同时,双曲线的渐近线的斜率为√3,即n m =√3,可得:n 2m 2=3,即m 2+n 2m 2=4,可得双曲线的离心率为√m2+n 2m =2.故答案为:√3−1;2.18.【答案】Q 1;p 2【解析】【分析】本题考查的知识点是函数的图象,分析出Q i 和p i 的几何意义,是解答的关键.(1)若Q i 为第i 名工人在这一天中加工的零件总数,则Q i =A i +B i ,是A i B i 连线的中点的纵坐标的2倍,进而得到答案.(2)若p i 为第i 名工人在这一天中平均每小时加工的零件数,则p i 为A i B i 中点与原点连线的斜率;进而得到答案.【解答】解:(1)设A 1(x A 1,y A 1),B 1(x B 1,y B 1),线段A 1B 1的中点为E(x 1,y 1),则Q 1=y A 1+y B 1=2y 1.因此,要比较Q 1,Q 2,Q 3的大小,只需比较线段A 1B 1,A 2B 2,A 3B 3中点纵坐标的大小,作图比较知Q 1最大.(2)若p i 为第i 名工人在这一天中平均每小时加工的零件数,则p i 为A i B i 中点与原点连线的斜率,故p 1,p 2,p 3中最大的是p 2.故答案为:Q 1,p 2.19.【答案】2;(−∞,−1)【解析】【分析】本题考查的知识点是分段函数的应用,函数的最值,难度中档.①将a =0代入,求出函数的导数,分析函数的单调性,可得当x =−1时,f(x)的最大值为2;②根据y =x 3−3x 与y =−2x 有三个交点,结合f(x)无最大值,可得答案.【解答】解:①若a =0,则f(x)={x 3−3x,x ≤0−2x,x >0,则f′(x)={3x 2−3,x ≤0−2,x >0, 当x <−1时,f′(x)>0,此时函数为增函数,当x >−1时,f′(x)<0,此时函数为减函数,故当x =−1时,f(x)的最大值为2;②对于y =x 3−3x ,可知y′=3x 2−3,令y′=3x 2−3=0得x =±1,当x ∈(−∞,−1)∪(1,+∞)时,y′>0,函数单调递增;当x ∈(−1,1)时,y′<0,函数单调递减;且易知y =x 3−3x 与y =−2x 有三个交点,坐标为(0,0),(1,−2),(−1,2),若f(x)无最大值,则a <−1,故答案为:2,(−∞,−1).20.【答案】−14【解析】【分析】本题考查利用正余弦定理解三角形,属于中档题.【解答】解:由已知得BD =√2AB =√6,∵D 、E 、F 重合于一点,∴AE =AD =√3,BF =BD =√6,∴ △ACE 中,由余弦定理得,∴CE =CF =1,∴在△BCF 中,由余弦定理得.故答案为.21.【答案】①③④【解析】【分析】本题考查含逻辑联结词的命题真假的判断以及立体几何相关知识,属于中档题.【解答】解:对于p1:可设l1与l2,所得平面为α.若l3与l1相交,则交点A必在平面α内.同理l2与l3的交点B在平面α内,故直线AB在平面α内,即l3在平面α内,故p1为真命题.对于p2:过空间中任意三点,若三点共线,可形成无数个平面,故p2为假命题.对于p3:空间中两条直线的位置关系有平行,相交,异面,故p3为假命题.对于p4:若m⊥α,则m垂直于平面α内的所有直线,故m⊥l,故p4为真命题.综上可知,p1∧p4为真命题,¬p2∨p3为真命题,¬p3∨¬p4为真命题.故答案为①③④.22.【答案】②③【解析】【分析】本题主要考查了三角函数的图象与性质及函数的奇偶性、对称性等有关知识,属于中档题.根据函数奇偶性定义可判断出函数图象的对称性;通过函数图象关于直线对称可得等量关系,进而检验等式是否成立即可;特殊值法可判断出函数的最值.【解答】解:根据题意,易得函数定义域关于原点对称,f(−x)=sin(−x)+1sin(−x)=−(sinx+1sinx)=−f(x),所以f(x)是奇函数,图象关于原点对称,故①错误,②正确;若函数f(x)关于直线x=π2对称,则有f(π2−x)=f(π2+x),即sin(π2−x)+1sin(π2−x)=sin(π2+x)+1sin(π2+x),通过化简可得等式成立.故③正确;当x=−π2时,f(−π2)=−2<2,故④错误.故答案为②③.23.【答案】16 132 【解析】【分析】 本题考查了向量在几何中的应用,考查了向量的共线和向量的数量积,以及二次函数的性质,属于中档题. 以B 为原点,以BC 为x 轴建立如图所示的直角坐标系,根据向量的平行和向量的数量积即可求出点D 的坐标,即可求出λ的值,再设出点M ,N 的坐标,根据向量的数量积可得关于x 的二次函数,根据二次函数的性质即可求出最小值.【解答】解:以B 为原点,以BC 为x 轴建立如图所示的直角坐标系,∵∠B =60°,AB =3,∴A(32,3√32), ∵BC =6,∴C(6,0),∵AD ⃗⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ ,∴AD//BC ,设D(x 0,3√32), ∴AD ⃗⃗⃗⃗⃗⃗ =(x 0−32,0),AB ⃗⃗⃗⃗⃗ =(−32,−3√32), ∴AD ⃗⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =−32(x 0−32)+0=−32,解得x 0=52, ∴D(52,3√32), ∴AD ⃗⃗⃗⃗⃗⃗ =(1,0),BC ⃗⃗⃗⃗⃗ =(6,0),∴AD ⃗⃗⃗⃗⃗⃗ =16BC ⃗⃗⃗⃗⃗ , ∴λ=16,∵|MN⃗⃗⃗⃗⃗⃗⃗ |=1, 设M(x,0),则N(x +1,0),其中0≤x ≤5,∴DM ⃗⃗⃗⃗⃗⃗⃗ =(x −52,−3√32),DN ⃗⃗⃗⃗⃗⃗ =(x −32,−3√32), ∴DM ⃗⃗⃗⃗⃗⃗⃗ ⋅DN ⃗⃗⃗⃗⃗⃗ =(x −52)(x −32)+274=x 2−4x +212=(x −2)2+132,当x =2时取得最小值,最小值为132,第21页,共21页 故答案为:16,132. 24.【答案】7【解析】【分析】本题主要考查累加法求通项公式,等差数列的求和公式以及数列的递推关系,属较难题. 对n 取偶数,再结合条件可求得前16项中所有奇数项的和,对n 取奇数时,利用累加法求得a n+2的值,用其表示出前16项和可得答案.【解答】解:因为a n+2+(−1)n a n =3n −1,当n =2,6,10,14时,a 2+a 4=5,a 6+a 8=17, a 10+a 12=29,a 14+a 16=41因为前16项和为540,所以a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15=540−(5+17+29+41), 所以a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15=448,当n 为奇数时,a n+2−a n =3n −1,所以a 3−a 1=2,a 5−a 3=8,a 7−a 5=14⋯a n+2−a n =3n −1,累加得a n+2−a 1=2+8+14+⋯3n −1=(2+3n−1)⋅n+122,∴a n+2=(3n+1)⋅(n+1)4+a 1,∴a 3=2+a 1,a 5=10+a 1,a 7=24+a 1,a 9=44+a 1,a 11=70+a 1,a 13=102+a 1, a 15=140+a 1,因为a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15=448,所以8a 1+392=448,所以a 1=7. 故答案为7.。

高考数学填空题压轴题精选3

高考数学填空题压轴题精选3

江苏高考压轴题精选1.如图为函数()(01)f x x x <<的图象,其在点(())M t f t ,l l y 处的切线为,与轴和直线1=y 分别交于点P 、Q , 点N (0, 1), 若△PQN 的面积为b 时的点M 恰好有两个, 则b 的取值范围为 ▲ . 解:2. 已知⊙A :221x y +=, ⊙B : 22(3)(4)4x y -+-=, P 是平面内一动点, 过P 作⊙A 、⊙B 的切线,切点分别为D 、E , 若PE PD =, 则P 到坐标原点距离的最小值为 ▲ .解:设)(y x P ,, 因为PE PD =, 所以22PD PE =, 即14)4()3(2222-+=--+-y x y x ,整理得:01143=-+y x , 这说明符合题意的点P 在直线01143=-+y x 上,所以点)(y x P ,到坐标原点距离的最小值即为坐标原点到直线01143=-+y x 的距离, 为5113. 等差数列{}n a 各项均为正整数, 13a =, 前n 项和为n S , 等比数列{}n b 中, 11b =,且2264b S =, {}n b是公比为64的等比数列.求n a 与n b ;解:设{}n a 的公差为d , {}n b 的公比为q , 则d 为正整数,3(1)n a n d =+-, 1n n b q -=依题意有1363(1)22642(6)64n n nda d n d ab q q b q S b d q +++-⎧====⎪⎨⎪=+=⎩①由(6)64d q +=知q 为正有理数, 故d 为6的因子1, 2, 3, 6之一,解①得2,8d q == 故132(1)21,8n n n a n n b -=+-=+=y xOP M QN4. 在ABC ∆中, 2=⋅BC AC AB (1)求22AC AB +(2)求ABC ∆面积的最大值.解:(1)因为||||2BC AC AB =-=u u u r u u u r u u u r , 所以4222=+⋅-AB AB AC AC ,又因为 2AB AC ⋅=u u u r u u u r, 所以228AB AC +=u u u r u u u r ; (2)设||||||AB c AC b BC a ===u u u r u u u r u u u r,,, 由(1)知822=+c b , 2=a , 又因为bcbc bc a c b A 22282cos 222=-=-+=,所以A bc A bc S ABC2cos 121sin 21-==∆=222222421cb c b c b ⋅-≤34)2(21222=-+c b , 当且仅当c b a ==时取“=”, 所以ABC ∆的面积最大值为3.5. 设等差数列{}n a 的公差为d , 0d >, 数列{}n b 是公比为q 等比数列, 且110b a =>. (1)若33a b =, 75a b =, 探究使得n m a b =成立时n m 与的关系; (2)若22a b =, 求证:当2>n 时, n n b a <.解:记a b a ==11, 则1,)1(-=-+=m m n aq b d n a a , ……………1分(1)由已知得2426a d aq a d aq ⎧+=⎨+=⎩,,消去d 得4232aq aq a -=, 又因为0≠a , 所以02324=+-q q , 所以2122==q q 或, ……………5分若12=q , 则0=d , 舍去;……………6分 若22=q , 则2a d =, 因此12)1(-=-+⇔=m m n aq a n a b a 1211-=-+⇔m q n , 所以1221-=+m n (m 是正奇数)时, m n b a =;……………8分(2)证明:因为0,0>>a d , 所以111212>+=+===ada d a a ab b q , …………11分2>n 时, 1)1(---+=-n n n aq d n a b a =d n q a n )1()1(1-+--=d n q q q q a n )1()1)(1(22-+++++--ΛΛd n n q a )1()1)(1(-+--<=[]0))(1()1()1(22=--=+--b a n d q a n所以, 当n n b a n <>时,2. …………………………16分6. 已知圆O :221x y +=, O 为坐标原点. (1)边长为2的正方形ABCD 的顶点A 、B 均在圆O 上, C 、D 在圆O 外, 当点A 在圆O 上运动时,C 点的轨迹为E . (ⅰ)求轨迹E 的方程;(ⅱ)过轨迹E 上一定点00(,)P x y 作相互垂直的两条直线12,l l , 并且使它们分别与圆O 、轨迹E相交, 设1l 被圆O 截得的弦长为a , 设2l 被轨迹E 截得的弦长为b , 求a b +的最大值.(2)正方形ABCD 的一边AB 为圆O 的一条弦, 求线段OC 长度的最值.解:(1)(ⅰ)连结OB , OA , 因为OA =OB =1, AB =2, 所以222AB OB OA =+,所以4OBA π∠=, 所以34OBC π∠=, 在OBC ∆中, 52222=⋅-+=BC OB BC OB OC ,所以轨迹E 是以O 为圆心, 5为半径的圆,所以轨迹E 的方程为522=+y x ; (ⅱ)设点O 到直线12l l ,的距离分别为12d d ,,因为21l l ⊥, 所以2222212005d d OP x y +==+=, 则22215212d d b a -+-=+,则[])5)(1(2)(64)(222122212d d d d b a --++-=+≤4⎥⎥⎦⎤⎢⎢⎣⎡--⋅++-262)(622212221d d d d =22124[122()]d d -+=4(1210)8-=,当且仅当221222125,15,d d d d ⎧+=⎨-=-⎩, 即22219,21,2d d ⎧=⎪⎪⎨⎪=⎪⎩时取“=”,所以b a +的最大值为22(2)设正方形边长为a , OBA θ∠=, 则cos 2a θ=, 0,2θπ⎡⎫∈⎪⎢⎣⎭.当A 、B 、C 、D 按顺时针方向时, 如图所示, 在OBC ∆中,2212cos 2a a OC θπ⎛⎫+-+= ⎪⎝⎭,即2(2cos )122cos sin OC θθθ=++⋅⋅24cos 12sin 2θθ=++ 2cos 22sin 2322sin 234θθθπ⎛⎫=++=++ ⎪⎝⎭由2,444θππ5π⎡⎫+∈⎪⎢⎣⎭, 此时(1,21]OC ∈; 当A 、B 、C 、D 按逆时针方向时, 在OBC ∆中,2212cos 2a a OC θπ⎛⎫+--= ⎪⎝⎭,即2(2cos )122cos sin OC θθθ=+-⋅⋅24cos 12sin 2θθ=+-xODB A 11 1- 1-θCy xO DBA11 1-θCy2cos 22sin 2322sin 234θθθπ⎛⎫=-+=--+ ⎪⎝⎭,由2,444θππ3π⎡⎫-∈-⎪⎢⎣⎭, 此时[21,5)OC ∈-, 综上所述, 线段OC 长度的最小值为21-, 最大值为21+.7. 已知函数()1ln ()f x x a x a R =--∈.(1)若曲线()y f x =在1x =处的切线的方程为330x y --=, 求实数a 的值; (2)求证:0)(≥x f 恒成立的充要条件是1a =;(3)若0a <, 且对任意(]1,0,21∈x x , 都有121211|()()|4||f x f x x x -≤-, 求实数a 的取值范围.另解:042≤--ax x 在(]1,0∈x 上恒成立, 设4)(2--=ax x x g , 只需[)0,30041)1(04)0(-∈⇒⎪⎩⎪⎨⎧<≤--=<-=a a a g g .8. 已知函数2()3,()2f x mx g x x x m =+=++. (1)求证:函数()()f x g x -必有零点; (2)设函数()G x =()()1f x g x --(ⅰ)若|()|G x 在[]1,0-上是减函数, 求实数m 的取值范围;,a b ()a G x b ≤≤[],a b ,a b存在,说明理由.9. 已知函数()1ax x ϕ=+, a 为正常数. (1)若()ln ()f x x x ϕ=+, 且92a =, 求函数()f x 的单调增区间;(2)若()|ln |()g x x x ϕ=+, 且对任意12,(0,2]x x ∈, 12x x ≠, 都有2121()()1g x g x x x -<--,求a 的的取值范围.解:(1) 2221(2)1'()(1)(1)a x a x f x x x x x +-+=-=++,∵92a =, 令'()0f x >, 得2x >, 或12x <, ∴函数()f x 的单调增区间为1(0,)2, (2,)+∞.(2)∵2121()()1g x g x x x -<--, ∴2121()()10g x g x x x -+<-,∴221121()[()]0g x x g x x x x +-+<-, 设()()h x g x x =+, 依题意, ()h x 在(]0,2上是减函数.当12x ≤≤时, ()ln 1ah x x x x =+++, 21'()1(1)a h x x x =-++,令'()0h x ≤, 得:222(1)1(1)33x a x x x x x+≥++=+++对[1,2]x ∈恒成立, 设21()33m x x x x =+++,则21'()23m x x x =+-, ∵12x ≤≤, ∴21'()230m x x x=+->, ∴()m x 在[1,2]上是增函数, 则当2x =时, ()m x 有最大值为272, ∴272a ≥.当01x <<时, ()ln 1ah x x x x =-+++, 21'()1(1)a h x x x =--++, 令'()0h x ≤, 得: 222(1)1(1)1x a x x x x x+≥-++=+--, 设21()1t x x x x =+--, 则21'()210t x x x=++>, ∴()t x 在(0,1)上是增函数, ∴()(1)0t x t <=, ∴0a ≥, 综上所述, 272a ≥10. (1)设10+<<a b , 若对于x 的不等式()()22ax b x >-的解集中的整数恰有3个,则实数a 的取值范围是 ▲ .(2)若关于x 的不等式()2221x ax -<的解集中的整数恰有3个, 则实数a 的取值范围是▲ .解:(1)()3,1(2)⎪⎭⎫ ⎝⎛1649,92511. 已知{}n a 是公差不为0的等差数列,{}n b 是等比数列,其中1122432,1,,2a b a b a b ====,且存在常数α、β, 使得n a =log n b αβ+对每一个正整数n 都成立,则βα= ▲ .12. 在直角坐标系平面内两点Q P ,满足条件:①Q P ,都在函数)(x f 的图象上;②Q P ,关于原点对称, 则称点对),(Q P 是函数)(x f 的一个“友好点对”(点对),(Q P 与),(P Q 看作同一个“有好点对”).已知函数⎪⎩⎪⎨⎧≥<++=,0,2,0,142)(2x ex x x x f x 则函数)(x f 的“友好点对”有 ▲ 个.13. 已知ABC ∆的三边长c b a ,,满足b a c a c b 22≤+≤+,, 则a b的取值范围是 ▲ . 解:⎪⎭⎫ ⎝⎛23,32已知ABC ∆的三边长c b a ,,满足b a c a c b 3232≤+≤+,, 则ab的取值范围是 ▲ . 解:⎪⎭⎫ ⎝⎛35,43xyO14. 已知分别以21,d d 为公差的等差数列{}n a ,{}n b ,满足120091,409a b ==. (1)若11=d ,且存在正整数m ,使得200920092-=+m m b a ,求2d 的最小值;(2)若0k a =, 1600k b =且数列200921121,,,,,,b b b b a a a k k k k K K ++-,的前项n 和n S 满足200920129045k S S =+,求 {}n a 的通项公式.解:(1)证明:220092009m m a b +=-Q ,21120092[(1)]2009a m d b md ∴+-=+-, 即200940922-+=md m , ……4分21600160080d m m m m ∴=+≥⋅=. 等号当且仅当"1600"mm =即"40"=m 时成立,故40m =时, 2min []80d = . ……7分(2)0k a =Q , 1600k b =, 120091,409a b ==200912112009()()k k k k S a a a a b b b -+∴=++++++++L L=++2)(1k a a k 2)12009)((2009+-+k b b k 2009(2010)22k k -=+, …10分 200920129045k S S =+Q 1()201290452k a a k +=+=904522012+k201290452k ∴⋅+2009(2010)22k k -=+40202009201018090k ∴=⨯-, 220099k ∴=-, 1000k ∴= ……13分故得1,011000==a a 又, 11999d ∴=-,1210001(1)999999n a a n d n ∴=+-=-, 因此{}n a 的通项公式为n a n 99919991000-=. ……15分15. 已知函数)(3ln )(R a ax x a x f ∈--=. (1)当1a =时, 求函数)(x f 的单调区间;(2)若函数)(x f y =的图像在点))2(,2(f 处的切线的倾斜角为︒45, 问:m 在什么范围取值时,对于任意的[]2,1∈t , 函数⎥⎦⎤⎢⎣⎡++=)('2)(23x f m x x x g 在区间)3,(t 上总存在极值?(3)当2=a 时, 设函数32)2()(-+--=xep x p x h , 若在区间[]e ,1上至少存在一个0x , 使得)()(00x f x h >成立, 试求实数p 的取值范围. 24,1e e ⎛⎫+∞⎪-⎝⎭16. 如图, 在△ABC 中, 已知3=AB , 6=AC , 7BC =, AD 是BAC ∠平分线. (1)求证:2DC BD =;(2)求AB DC ⋅u u u r u u u r的值.(1)在ABD ∆中, 由正弦定理得sin sin AB BDADB BAD=∠∠①, 在ACD ∆中, 由正弦定理得sin sin AC DCADC CAD=∠∠②, 所以BAD CAD ∠=∠, sin sin BAD CAD ∠=∠, sin sin()sin ADB ADC ADC π∠=-∠=∠, 由①②得36BD AB DC AC ==, 所以2DC BD =(2)因为2DC BD =, 所以BC DC 32=. 在△ABC 中, 因为22222237611cos 223721AB BC AC B AB BC +-+-===⋅⨯⨯, 所以22()||||cos()33AB DC AB BC AB BC B π⋅=⋅=⋅-u u u r u u u r u u u r u u u r u u ur u u u r2112237()3213=⨯⨯⨯-=- 17. 已知数列{}n a 的前n 项和为n S , 数列{}1n S +是公比为2的等比数列.(1)证明:数列{}n a 成等比数列的充要条件是13a =;AB CD(2)设n n n n a b )1(5--=(*∈N n ), 若1+<n n b b 对任意*∈N n 成立, 求1a 的取值范围.18. 已知分别以1d 和2d 为公差的等差数列{}n a 和{}n b 满足181=a , 3614=b .(1)若181=d , 且存在正整数m , 使得45142-=+m mb a , 求证:1082>d ; (2)若0==k k b a , 且数列142121b b b a a a k k k ,,,,,,,ΛΛ++的前n 项和n S 满足k S S 214=,求数列{}n a 和{}n b 的通项公式; (3)在(2)的条件下,令>==a a d a c n n b n a n ,,, 且1≠a ,问不等式n n n n d c d c +≤+1是否对一切正整数n 都成立?请说明理由.19. 若椭圆)0(12222>>=+b a by a x 过点(-3, 2), 离心率为33, ⊙O 的圆心为原点,直径为椭圆的短轴, ⊙M 的方程为4)6()8(22=-+-y x , 过⊙M 上任一点P 作⊙O 的切线P A 、PB , 切点为A 、B .(1)求椭圆的方程;(2)若直线P A 与⊙M 的另一交点为Q , 当弦PQ 最大时, 求直线P A 的直线方程; (3)求⋅的最大值与最小值.(1)1101522=+y x ;(2)直线PA 的方程为:0509130103=--=+-y x y x 或 (3)21. 设函数x m mx x x f )4(31)(223-+-=, R x ∈, 且函数)(x f 有三个互不相同的零点βα,,0, 且βα<, 若对任意的[]βα,∈x , 都有)1()(f x f ≥成立, 求实数m 的取值范围. 解:20. 已知集合{}k x x x x x x D =+>>=212121,0,0),(, 其中k 为正常数. (1)设21x x u =, 求u 的取值范围;(2)求证:当1≥k 时, 不等式⎪⎭⎫⎝⎛-≤⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-k k x x x x 22112211对任意D x x ∈),(21恒成立; (3)求使不等式⎪⎭⎫⎝⎛-≥⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-k k x x x x 22112211对任意D x x ∈),(21恒成立的k 取值范围.。

2020版江苏高考数学名师大讲坛一轮复习教程:随堂巩固训练46含解析

2020版江苏高考数学名师大讲坛一轮复习教程:随堂巩固训练46含解析

随堂巩固训练(46)1. 已知方程(2-k)x 2+ky 2=2k -k 2表示焦点在x 轴上的椭圆,则实数k 的取值范围是__(1,2)__.解析:由(2-k)x 2+ky 2=2k -k 2表示椭圆知,2k -k 2≠0,所以+=1.因为方程表x 2k y 22-k示焦点在x 轴上的椭圆,所以k>2-k>0,即1<k<2,所以实数k 的取值范围是(1,2). 2. 若方程+=1表示焦点在y 轴上的椭圆,则实数a 的取值范围是__(0,1)__.x 2a 2y 2a解析:因为方程+=1表示焦点在y 轴上的椭圆,所以a>a 2>0,解得0<a<1.x 2a 2y 2a3. 已知椭圆+=1上一点M 到焦点F 1的距离为2,N 是MF 1的中点,则ON =__4__.x 225y 29解析:设F 1为椭圆的左焦点,F 2为椭圆的右焦点,连结MF 2,由N 是MF 1的中点,O是F 1F 2的中点,可知ON =MF 2.又MF 2=2a -MF 1=8,故ON =4.124. 在平面直角坐标系xOy 中,已知△ABC 的顶点A(-4,0)和C(4,0),顶点B 在椭圆+=1上,则=____.x 225y 29sinA +sinC sinB 54解析:设△ABC 的内角A 、B 、C 所对的边是a 、b 、c ,利用椭圆定义知a +c =2×5=10,b =2×=8,由正弦定理得==.25-9sinA +sinC sinB a +c b 545. P 是椭圆+y 2=1上一点,F 1,F 2分别是左、右焦点,且∠F 1 PF 2=,则△F 1PF 2x 22π2的面积为__1__.解析:由∠F 1PF 2=知,PF 1⊥PF 2,PF +PF 2 2=4c 2,且PF 1+PF 2=2a.由椭圆方程+y 2=π221x 221,得a =,b =1,所以c =1,所以PF 1·PF 2=2,所以S △F 1PF 2=PF 1·PF 2=1.2126. 已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为,且椭圆G 上一点到32两个焦点的距离之和为12,则椭圆G 的方程为__+=1__.x 236y 29解析:椭圆G 的离心率=,且G 上一点到G 的两个焦点的距离之和为12,即2a =12,c a 32解得a =6,所以c =3,由a 2=b 2+c 2,得b 2=9,则椭圆G 的方程为+=1.3x 236y 297. 在△ABC 中,点A(-2,0),B(2,0),且AC ,AB ,BC 成等差数列,则点C 的轨迹方程为__+=1(y ≠0)__.x 216y 212解析:因为AC ,AB ,BC 成等差数列,所以AC +BC =2AB =8>AB.根据椭圆的定义可得,点C 的轨迹是以A ,B 为焦点,长轴为8的椭圆(长轴端点除外),所以2a =8,2c =4,所以a =4,c =2,可得b 2=a 2-c 2=12,故点C 的轨迹方程为+=1(y ≠0).x 216y 2128. 椭圆+=1的左、右焦点分别为F 1,F 2,点P 在椭圆上.若PF 1=4,则PF 2=__2__,x 29y 22∠F 1PF 2的大小为__120°__.解析:由PF 1+PF 2=6且PF 1=4,知PF 2=2.在△PF 1F 2中,cos ∠F 1PF 2==-PF +PF -F 1F 2PF 1·PF 2,所以∠F 1PF 2=120°.129. 已知椭圆C 1与椭圆C 2:+=1有相同的焦点,椭圆C 1过点(-,1),则椭圆C 1x 29y 256的标准方程为__+=1__.x 28y 24解析:设椭圆C 1的方程为+=1,则a 2-b 2=9-5=4,将点(-,1)代入+=1,x 2a 2y 2b 266a 21b 2联立解得则椭圆C 1的标准方程为+=1.{a 2-b 2=4,6a 2+1b 2=1,){a 2=8,b 2=4,)x 28y 2410. 椭圆+=1上一点P 到两个焦点的距离之积为m ,则当m 取得最大值时,点P x 225y 29的坐标是__(0,3)或(0,-3)__.解析:由题意得a =5,b =3,c ==4,由椭圆的定义得PF 1+PF 2=10,所以点Pa 2-b 2到两焦点的距离之积m =PF 1·PF 2≤=25,当且仅当PF 1=PF 2=5时,等号成[12(PF 1+PF 2)]2 立,m 有最大值为25,此时点P 的坐标为(0,3)或(0,-3).11. 已知椭圆的中心在原点,焦点在坐标轴上,长轴长是短轴长的3倍,且过点P(3,2),求椭圆的方程.解析:当焦点在x 轴上时,设椭圆方程为+=1(a>b>0),x 2a 2y 2b2则解得{2a =3×2b ,9a 2+4b 2=1,){a 2=45,b 2=5,)所以椭圆的方程为+=1;x 245y 25当焦点在y 轴上时,设椭圆方程为+=1(a>b>0),y 2a 2x 2b 2则解得所以椭圆的方程为+=1.{2a =3×2b ,9b 2+4a 2=1,){a 2=85,b 2=859,)9x 285y 285综上,椭圆的方程为+=1或+=1.x 245y 259x 285y 28512. 已知椭圆(m +2)x 2+y 2=m(m>0)的焦距F 1F 2=.6(1) 求m 的值及其焦点的坐标;(2) 椭圆上是否存在一点P ,使得∠F 1PF 2=90°?若存在,求出点P 的坐标;若不存在,请说明理由.解析:(1) 把椭圆方程化为+=1,x 2m m +2y 2m因为m>0,所以m>.所以a 2=m ,b 2=,m m +2m m +2所以c 2=a 2-b 2=m -==,m m +2(62)2 32解得m =2或m =-(舍去),32椭圆的焦点坐标为.(0,±62)(2) 由(1)知,椭圆方程为+=1,即4x 2+y 2=2.x 212y 22设点P(x 0,y 0),则有4x +y =2.①2020因为∠F 1PF 2=90°,所以△F 1PF 2为直角三角形,所以PO =F 1F 2=,所以x +y ==.②12622020(62)2 32联立①②,解得x 0=±,y 0=±,66233所以存在4个符合条件的点P ,即(-,-),(-,),(,-),(,).6623366233662336623313. 已知椭圆C :+=1(a>b>0)的长轴长为4.x 2a 2y 2b2(1) 若以原点为圆心、椭圆短半轴长度为半径的圆与直线y =x +2相切,求椭圆C 的焦点坐标;(2) 若P 是椭圆C 上的任意一点,过原点的直线l 与椭圆相交于M ,N 两点,记直线PM ,PN 的斜率分别为k PM ,k PN ,当k PM ·k PN =-时,求椭圆的方程.14解析:(1) 由题意得b ==.又2a =4,所以a =2.21+12因为c 2=a 2-b 2=4-2=2,所以两个焦点坐标为(,0),(-,0).22(2) 由于过原点的直线l 与椭圆相交的两点M ,N 关于坐标原点对称,设点M(x 0,y 0),则点N(-x 0,-y 0),P(x ,y).由于点M ,N ,P 在椭圆上,则+=1,+=1.x a 2y b 2x 2a 2y 2b 2两式相减得=-.y 2-y x 2-x b 2a2由题意可知直线PM ,PN 的斜率存在,则k PM =,k PN =,y -y 0x -x 0y +y 0x +x 0k PM ·k PN =·==-=-,y -y 0x -x 0y +y 0x +x 0y 2-y x 2-x b 2a 214由a =2得b =1,故所求椭圆的方程为+y 2=1.x 24。

高考数学填空压轴练习

高考数学填空压轴练习

高考数学填空压轴练习(20题)时间:80分钟 满分:100分(以中高档题为主,试题新颖,难度较高。

后附详细参考答案)1.在等差数列中,若已知两项a p 和a q ,则等差数列的通项公式a n =a p +(n -p ).类似的,在等比数列中,若已知两项a p 和a q (假设p q ),则等比数列的通项公式a n = . 2. 已知A B C 、、为抛物线21y x =-上三点,且(1,0),A AB BC -⊥ ,当B 点在抛物线上移动时,点C 的横坐标的取值范围是 .3. 设曲线1*()n y x n N +=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,令lg n n a x =,则1299a a a +++ 的值为 .4. 如图,一环形花坛分为A 、B 、C 、D 四块,要求在每块里种一种花,且相邻的2块种不同的花。

若在三种花种选择两种花种植,有______种不同的种法;若有四种花可供选择,种多少种花不限,有________不同的种法5. 已知函数f(x)=x 2+alnx(a 为常数). 若对任意x ∈[1,e],f(x)≤(a+2)x 都成立,实数a 的取值范围是___________6. 对于函数()y f x =,如果存在区间[,]m n ,同时满足下列条件:①()f x 在[,]m n 内是单调的;②当定义域是[,]m n 时,()f x 的值域也是[,]m n ,则称[,]m n 是该函数的“和谐区间”.若函数11()(0)a f x a ax+=->存在“和谐区间”,则a 的取值范围是_________7. 已知经过同一点的n n (∈N 3n *,)≥个平面,任意三个平面不经过同一条直线.若这n 个平面将空间分成()fn 个部分,则()3f =____ ,()fn =__________8. 函数y=f (x ),x ∈D ,若存在常数C ,对任意的x l ∈D ,仔在唯一的x 2∈D ,使得C =,则称函数f (x )在D 上的几何平均数为C .已知f (x )=x 3,x ∈[1,2],则函数f (x )=x 3在[1,2]上的几何平均数为______________9. 设集合A={(x ,y )|(x 一4)2+y 2=1},B={(x ,y )|(x -t )2+(y -at+ 2)2=l},如果命题“t ∃∈R ,A B ≠∅ ”是真命题,则实数a 的取值范围是 _ 。

2020版高考数学一轮复习教程随堂巩固训练46 Word版含解析

2020版高考数学一轮复习教程随堂巩固训练46 Word版含解析

随堂巩固训练(). 已知方程(-)+=-表示焦点在轴上的椭圆,则实数的取值范围是(,).解析:由(-)+=-表示椭圆知,-≠,所以+=.因为方程表示焦点在轴上的椭圆,所以>->,即<<,所以实数的取值范围是(,).. 若方程+=表示焦点在轴上的椭圆,则实数的取值范围是(,).解析:因为方程+=表示焦点在轴上的椭圆,所以>>,解得<<.. 已知椭圆+=上一点到焦点的距离为,是的中点,则=.解析:设为椭圆的左焦点,为椭圆的右焦点,连结,由是的中点,是的中点,可知=.又=-=,故=.. 在平面直角坐标系中,已知△的顶点(-,)和(,),顶点在椭圆+=上,则=.解析:设△的内角、、所对的边是、、,利用椭圆定义知+=×=,=×=,由正弦定理得==.. 是椭圆+=上一点,,分别是左、右焦点,且∠=,则△的面积为.解析:由∠=知,⊥,+=,且+=.由椭圆方程+=,得=,=,所以=,所以·=,所以△=·=..已知椭圆的中心在坐标原点,长轴在轴上,离心率为,且椭圆上一点到两个焦点的距离之和为,则椭圆的方程为+=.解析:椭圆的离心率=,且上一点到的两个焦点的距离之和为,即=,解得=,所以=,由=+,得=,则椭圆的方程为+=.. 在△中,点(-,),(,),且,,成等差数列,则点的轨迹方程为+=(≠).解析:因为,,成等差数列,所以+==>.根据椭圆的定义可得,点的轨迹是以,为焦点,长轴为的椭圆(长轴端点除外),所以=,=,所以=,=,可得=-=,故点的轨迹方程为+=(≠).. 椭圆+=的左、右焦点分别为,,点在椭圆上.若=,则=,∠的大小为°.解析:由+=且=,知=.在△中,∠==-,所以∠=°.. 已知椭圆与椭圆:+=有相同的焦点,椭圆过点(-,),则椭圆的标准方程为+=.解析:设椭圆的方程为+=,则-=-=,将点(-,)代入+=,联立解得则椭圆的标准方程为+=..椭圆+=上一点到两个焦点的距离之积为,则当取得最大值时,点的坐标是(,)或(,-).解析:由题意得=,=,==,由椭圆的定义得+=,所以点到两焦点的距离之积=·≤=,当且仅当==时,等号成立,有最大值为,此时点的坐标为(,)或(,-)..已知椭圆的中心在原点,焦点在坐标轴上,长轴长是短轴长的倍,且过点(,),求椭圆的方程.解析:当焦点在轴上时,设椭圆方程为+=(>>),则解得所以椭圆的方程为+=;当焦点在轴上时,设椭圆方程为+=(>>),则解得所以椭圆的方程为+=.综上,椭圆的方程为+=或+=.. 已知椭圆(+)+=(>)的焦距=.() 求的值及其焦点的坐标;()椭圆上是否存在一点,使得∠=°?若存在,求出点的坐标;若不存在,请说明理由.解析:() 把椭圆方程化为+=,因为>,所以>.所以=,=,所以=-=-==,解得=或=-(舍去),椭圆的焦点坐标为.() 由()知,椭圆方程为+=,即+=.设点(,),则有+=.①因为∠=°,所以△为直角三角形,所以==,所以+==.②联立①②,解得=±,=±,所以存在个符合条件的点,即(-,-),(-,),(,-),(,).. 已知椭圆:+=(>>)的长轴长为.()若以原点为圆心、椭圆短半轴长度为半径的圆与直线=+相切,求椭圆的焦点坐标;。

2020版高考数学一轮复习课后限时集训46椭圆文含解析北师大版201906272109

2020版高考数学一轮复习课后限时集训46椭圆文含解析北师大版201906272109

课后限时集训(四十六)(建议用时:60分钟) A 组 基础达标一、选择题1.(2019·浦东新区模拟)方程kx 2+4y 2=4k 表示焦点在x 轴上的椭圆,则实数k 的取值范围是( )A .k >4B .k =4C .k <4D .0<k <4D [椭圆的标准方程为x 24+y 2k=1,焦点在x 轴上,所以0<k <4.]2.(2019·大同月考)已知焦点在x 轴上的椭圆x 2m +y 23=1的离心率为12,则m =( )A .6B . 6C .4D .2C [由焦点在x 轴上的椭圆x 2m +y 23=1,可得a =m ,c =m -3.由椭圆的离心率为12,可得m -3m=12,解得m =4.故选C .]3.若直线x -2y +2=0经过椭圆的一个焦点和一个顶点,则该椭圆的标准方程为( ) A .x 25+y 2=1B.x 24+y 25=1 C .x 25+y 2=1或x 24+y 25=1D. 以上答案都不对C [直线与坐标轴的交点为(0,1),(-2,0),由题意知当焦点在x 轴上时,c =2,b =1,∴a 2=5,所求椭圆的标准方程为x 25+y 2=1.当焦点在y 轴上时,b =2,c =1,∴a 2=5,所求椭圆的标准方程为y 25+x 24=1.]4.已知三点P (5,2),F 1(-6,0),F 2(6,0),那么以F 1,F 2为焦点且经过点P 的椭圆的短轴长为( )A .3B .6C .9D .12B [因为点P (5,2)在椭圆上,所以|PF 1|+|PF 2|=2a ,|PF 2|=5,|PF 1|=55,所以2a =65,即a =35,c =6,则b =3,故椭圆的短轴长为6,故选B.]5.(2019·唐山模拟)已知F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,椭圆C 上存在点P 使∠F 1PF 2为钝角,则椭圆C 的离心率的取值范围是( )A .⎝⎛⎭⎪⎫22,1 B .⎝ ⎛⎭⎪⎫12,1 C .⎝⎛⎭⎪⎫0,22 D .⎝ ⎛⎭⎪⎫0,12 A [因为椭圆x 2a 2+y 2b2=1上存在点P 使∠F 1PF 2为钝角,所以b <c ,则a 2=b 2+c 2<2c 2,所以椭圆的离心率e =ca>22.又因为e <1,所以e 的取值范围为⎝ ⎛⎭⎪⎫22,1,故选A .] 二、填空题6.已知椭圆的中心在原点,一个焦点为(0,-23)且a =2b ,则椭圆的标准方程为________.y 216+x 24=1 [∵c =23,a 2=4b 2, ∴a 2-b 2=3b 2=c 2=12,b 2=4,a 2=16. 又焦点在y 轴上,∴标准方程为y 216+x 24=1.]7.椭圆x 29+y 22=1的焦点为F 1,F 2,点P 在椭圆上,若|PF 1|=4,则∠F 1PF 2的大小为________.120° [由题意知a =3,c =7.因为|PF 1|=4,|PF 1|+|PF 2|=2a =6,所以|PF 2|=6-4=2.所以cos∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=42+22-722×4×2=-12,所以∠F 1PF 2=120°.]8.已知椭圆x 2a 2+y 2b2=1(a >b >0)的右顶点和上顶点分别为A 、B ,左焦点为F .以原点O 为圆心的圆与直线BF 相切,且该圆与y 轴的正半轴交于点C ,过点C 的直线交椭圆于M 、N 两点.若四边形FAMN 是平行四边形,则该椭圆的离心率为________.35 [∵圆O 与直线BF 相切,∴圆O 的半径为bc a ,即OC =bca,∵四边形FAMN 是平行四边形,∴点M 的坐标为⎝ ⎛⎭⎪⎫a +c 2,bc a ,代入椭圆方程得a +c 24a 2+c 2b 2a 2b2=1,∴5e 2+2e -3=0,又0<e <1,∴e =35.]三、解答题9.分别求出满足下列条件的椭圆的标准方程.(1)与椭圆x 24+y 23=1有相同的离心率且经过点(2,-3);(2)已知点P 在以坐标轴为对称轴的椭圆上,且P 到两焦点的距离分别为5,3,过P 且与长轴垂直的直线恰过椭圆的一个焦点.[解] (1)由题意,设所求椭圆的方程为x 24+y 23=t 1或y 24+x 23=t 2(t 1,t 2>0),因为椭圆过点(2,-3),所以t 1=224+-323=2,或t 2=-324+223=2512. 故所求椭圆的标准方程为x 28+y 26=1或y 2253+x 2254=1.(2)由于焦点的位置不确定,所以设所求的椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b2=1(a>b >0),由已知条件得⎩⎪⎨⎪⎧2a =5+3,c 2=52-32,解得a =4,c =2,所以b 2=12. 故椭圆方程为x 216+y 212=1或y 216+x 212=1. 10.设F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .[解] (1)根据c =a 2-b 2及题设知M ⎝ ⎛⎭⎪⎫c ,b 2a ,b 2a 2c =34,2b 2=3ac .将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12,ca=-2(舍去).故C 的离心率为12.(2)由题意,原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a=4,即b 2=4a . ①由|MN |=5|F 1N |得|DF 1|=2|F 1N |. 设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧-c -x 1=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b 2=1.②将①及c =a 2-b 2代入②得a 2-4a 4a 2+14a=1. 解得a =7,b 2=4a =28,故a =7,b =27.B 组 能力提升1.(2019·六盘水模拟)已知点F 1,F 2分别为椭圆C :x 24+y 23=1的左、右焦点,若点P 在椭圆C 上,且∠F 1PF 2=60°,则|PF 1|·|PF 2|=( )A .4B .6C .8D .12A [由|PF 1|+|PF 2|=4,|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos 60°=|F 1F 2|2,得3|PF 1|·|PF 2|=12,所以|PF 1|·|PF 2|=4,故选A .]2.(2018·中山一模)设椭圆:x 2a 2+y 2b2=1(a >b >0)的右顶点为A ,右焦点为F ,B 为椭圆在第二象限内的点,直线BO 交椭圆于点C ,O 为原点,若直线BF 平分线段AC ,则椭圆的离心率为( )A .12B .13C .14D .15B [如图,设点M 为AC 的中点,连接OM ,则OM 为△ABC 的中位线,于是△OFM ∽△AFB ,且|OF ||FA |=|OM ||AB |=12,即c a -c =12,解得e =c a =13.故选B.] 3.(2019·临沂模拟)已知F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,点A是椭圆C 的右顶点,椭圆C 的离心率为12,过点F 1的直线l 上存在点P ,使得PA ⊥x 轴,且△F 1F 2P是等腰三角形,则直线l 的斜率k (k >0)为________.33[法一:由题意知直线l 的方程为y =k (x +c )(k >0),则P (a ,k (a +c )).∵椭圆C的离心率e =c a =12,∴a =2c ,P (2c,3kc ),F 2(c,0).由题意知|F 1F 2|=|F 2P |,得(2c -c )2+(3kc )2=4c 2,得k 2=13.∵k >0,∴k =33.法二:根据题意不妨设椭圆C :x 24+y 23=1,P (2,t )(t >0),则F 1(-1,0),F 2(1,0).由题意知|F 1F 2|=|F 2P |,得(2-1)2+t 2=4,得t 2=3,∵t >0,∴t =3,∴P (2,3),∴k =3-02--=33.] 4.已知椭圆x 2a 2+y 2b2=1(a >b >0),F 1,F 2分别为椭圆的左,右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B .(1)若∠F 1AB =90°,求椭圆的离心率; (2)若AF 2→=2F 2B →,AF 1→·AB →=32,求椭圆的方程.[解] (1)∠F 1AB =90°,则△AOF 2为等腰直角三角形,所以有OA =OF 2,即b =c .所以a =2c ,所以e =c a =22. (2)由题知A (0,b ),F 1(-c,0),F 2(c,0),其中c =a 2-b 2,设B (x ,y ).由AF 2→=2F 2B →,得(c ,-b )=2(x -c ,y ),解得x =3c 2,y =-b 2,即B ⎝ ⎛⎭⎪⎫3c2,-b 2.将B 点坐标代入x 2a 2+y 2b 2=1,得94c 2a 2+b24b2=1,即9c 24a 2+14=1,解得a 2=3c 2,① 又由AF 1→·AB →=(-c ,-b )·⎝ ⎛⎭⎪⎫3c2,-3b 2=32,得b 2-c 2=1,即a 2-2c 2=1.②由①②解得c 2=1,a 2=3,从而有b 2=2. 所以椭圆的方程为x 23+y 22=1.。

2020年全国高考数学·第46讲 圆锥曲线综合

2020年全国高考数学·第46讲 圆锥曲线综合

2020年全国高考数学第46讲圆锥曲线综合考纲解读1.掌握与圆锥曲线有关的最值、定值和参数范围问题.2.会处理动曲线(含直线)过定点的问题.3.会证明与曲线上的动点有关的定值问题.4.会按条件建立目标函数,研究变量的最值及取值范围问题,注意运用数形结合法和几何法求某些量的最值.命题趋势研究从内容上看,高考主要考查两大类问题:一是根据条件,求出表示平面曲线的方程;二是通过方程,研究平面曲线的性质,其热点有:①以客观题的形式考查圆锥曲线的基本概念和性质;②求平面曲线的方程和轨迹;③圆锥曲线的有关元素计算、关系证明或范围确定;④涉及圆锥曲线对称变换、最值或位置关系的有关问题.从形式上看,以解答题为主,难度较大.从能力要求上看,要求学生具备一定的数形结合、分析问题和解决问题及运算能力.知识点精讲一、定值问题解析几何中定值问题的证明可运用函数的思想方法来解决.证明过程可总结为“变量—函数—定值”,具体操作程序如下:(1)变量----选择适当的量为变量.(2)函数----把要证明为定值的量表示成变量的函数.(3)定值----化简得到的函数解析式,消去变量得到定值.求定值问题常见的方法有两种:(1)从特殊情况入手,求出定值,再证明该定值与变量无关;(2)直接推理、计算,并在计算推理过程中消去变量,从而得到定值.二、求最值问题常用的两种方法(1)几何法:题中给出的条件有明显的几何特征,则考虑用几何图形性质来解决,这是几何法.(2)代数法:题中给出的条件和结论的几何特征不明显,则可以建立目标函数,再求该函数的最值.求函数的最值常见的方法有基本不等式法、单调性法、导数法和三角换元法等,这就是代数法.三、求定值、最值等圆锥曲线综合问题的“三重视”(1)重视定义在解题中的作用(把定义作为解题的着眼点).(2)重视曲线的几何特征特别是平面几何性质与方程的代数特征在解题中的作用.(3)重视根与系数的关系在解题中的作用(涉及弦长、中点要用根与系数的关系).四、求参数的取值范围据已知条件及题目要求等量或不等量关系,再求参数的范围.题型归纳及思路提示题型150 平面向量在解析几何中的应用思路提示解决平面向量在解析几何中的应用要把几何特征转化为向量关系,并把向量用坐标表示.常见的应用有如下两个方面.(1)用向量的数量积解决有关角的问题.直角⇔0a b =r r g ,钝角⇔0a b <r r g (且,a b r r 不反向), 锐角⇔0a b >r r g (且,a b r r不同向).(2)利用向量的坐标表示解决共线问题.一、利用向量的数量积解决有关夹角(锐角、直角、钝角)的问题 其步骤是:先写出向量坐标式,再用向量数量积的坐标公式121222221122cos ,a b x yx y<>=++r r例10.44 过抛物线22(0)x py p =>的焦点F 作直线交抛物线于A ,B 两点,O 为坐标原点.求证:△ABO 的是钝角三角形.变式1 如图10-34所示,设椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左右焦点分别为F 1,F 2,线段OF 1,OF 2的中点分别为B 1,B 2,且△AB 1B 2是面积为4的直角三角形. (1)求该椭圆的离心率和标准方程;(2)过B 1作直线l 交椭圆于P ,Q 两点,使PB 2⊥QB 2,求直线l 的方程.变式2 设A ,B 分别为椭圆22143x y +=的左右顶点,P 为直线4x =上不同于(4,0)的任意一点,若直线AP ,BP 分别与椭圆交于异于A ,B 的点M ,N ,证明:点B 在以MN 为直径的圆内.变式3已知1m >,直线2:02m l x my --=,椭圆222:1x C y m+=,F 1,F 2分别为椭圆C 的左右焦点. (1)当直线l 过右焦点F 2时,求直线l 的方程;(2)设直线l 与椭圆C 交于A ,B 两点,△AF 1F 2和△BF 1F 2和的重心分别是G ,H ;若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围.例10.45 在直角坐标系xOy 中,点P 到两点(0,3)-,(0,3)的距离之和等于4,设点P 的轨迹为C ,直线1y kx =+与C 交于A ,B 两点.(1)写出C 的方程; (2)若OA u u u r ⊥OB uuu r,求k 的值.变式1如图10-35所示,椭圆2222:1(0)x y C a b a b+=>>的顶点为A 1,A 2,B 1,B 2,焦点为F 1,F 2,117A B =,112211222B A B A B F B F S S =Y Y .(1)求椭圆C 的方程; (2)设n 为过原点的直线,l 是与n 垂直相交于P 点,与椭圆相交于A ,B 两点的直线,1OP =u u u r,是否存在上述直线l 使0OA OB =u u u r u u u rg成立?若存在求出直线l 的方程;若不存在,请说明理由.变式2如图10-36所示,椭圆2222:1(0)x y C a b a b+=>>的一个焦点是(1,0)F ,O 为坐标原点,设过点F 的直线l交椭圆于A ,B 两点.若直线l 绕点F 任意转动,恒有222OA OB AB +<,求a 的取值范围.二、利用向量的坐标表示解决共线问题向量,a b r r共线的条件是a b λ=r r 或1221x y x y =.例10.46在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与椭圆2212x y +=有两个不同的交点P ,Q . (1)求k 的取值范围;(2)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A ,B ,是否存在常数k ,使得向量OP uuu r +OQ uuu r 与AB u u u r共线?若存在,求k 的值;若不存在,请说明理由.变式1设椭圆22221(0)x y a b a b+=>>的左右焦点分别为F 1,F 2,离心率22e =,直线2:a l x c =,如图10-37所示,M ,N 是l 上的两个动点,120F M F N =u u u u r u u u u rg. (1)若1225F M F N ==u u u u r u u u u r,求,a b 的值;(2)证明:当MN u u u u r 取最小值时,12F M F N +u u u u r u u u u r 与12F F u u u u r共线.例10.47设A ,B 是椭圆2212x y +=上的两点,并且点(2,0)N -满足NA NB λ=u u u r u u u r ,当11[,]53λ∈时,求直线AB 斜率的取值范围.变式1已知F 1,F 2分别为椭圆22132x y +=的左右焦点,直线1l 过点F 1且垂直于椭圆的长轴,动直线2l 垂直于直线1l ,垂足为D ,线段DF 2的垂直平分线交2l 于点M . (1)求动点M 的轨迹C 的方程;(2)过点F 1作直线交曲线C 于两个不同的点P 和Q ,设11F P FQ λ=u u u r u u u r ,若[2,3]λ∈,求22F P F Q u u u u r u u u u rg的取值范围.变式2过点(1,0)F 的直线交抛物线24y x =于A ,B 两点,交直线:1l x =-于点M ,已知1MA AF λ=u u u r u u u r ,2MB BF λ=u u u r u u u r,求12λλ+的值.题型151 定点问题思路提示(1)直线过定点,由对称性知定点一般在坐标轴上,如直线y kx b =+,若b 为常量,则直线恒过(0,)b 点;若bk为常量,则直线恒过(,0)b k -.(2)一般曲线过定点,把曲线方程变为12(,)(,)0f x y f x y λ+=(λ为参数),解方程组12(,)0(,)0f x y f x y =⎧⎨=⎩即得定点.模型一:三大圆锥曲线(椭圆、双曲线、抛物线)中的顶点直角三角形的斜边所在的直线过定点.例10.48 已知椭圆22143x y +=,直线:l y kx m =+与椭圆交于A ,B 两点(A ,B 不是原点),且以AB 为直径的圆过椭圆的右顶点.求证:直线l 过定点,并求出该定点的坐标.变式1已知椭圆2214x y +=的左顶点为A ,不过点A 的直线:l y kx b =+与椭圆交于不同的两点P ,Q ,当0AP AQ =u u u r u u u rg ,求k 与b 的关系,并证明直线l 过定点.变式2 已知焦点在x 轴上的椭圆C 过点(0,1)Q 为椭圆C 的左顶点. (1)求椭圆C 的标准方程;(2)已知过点6(,0)5-的直线l 与椭圆C 交与A ,B 两点.(Ⅰ)若直线l 垂直于x 轴,求∠AQB 的大小;(Ⅱ)若直线l 与x 轴不垂直,是否存在直线l 使得△QAB 为等腰三角形?如果存在,求出直线l 的方程;如果不存在,请说明理由.例10.49已知抛物线22(0)y px p =>上异于顶点的两动点A ,B 满足以AB 为直径的圆过顶点. 求证:AB 所在的直线过定点,并求出该定点的坐标.变式1 如图10-39所示,已知定点00(,)P x y 在抛物线22y px = (0)p >上,过点P 作两直线12,l l 分别交抛物线于A,B ,且以AB 为直径的圆过点P ,证明:直线AB 过定点,并求出此定点的坐标.图10-39变式2 已知抛物线24y x =,过点(1,2)M 作两直线12,l l 分别与抛物线交于,A B 两点,且12,l l 的斜率12,k k 满足122k k =.求证:直线AB 过定点,并求出此定点的坐标.模型二:三大圆锥曲线(椭圆,双曲线,抛物线)中,若过焦点的弦为AB ,则焦点所在坐标轴上存在唯一定点N ,使得NA NB ⋅u u u r u u u r为定值.例10.50 已知椭圆2222:1(0)x y C ab a b+=>>的右焦点为(1,0)F ,且点(1,2-在椭圆C 上. (1)求椭圆C 的标准方程;(2)已知动直线l 过点F ,且与椭圆C 交于,A B 两点,试问x 轴上是否存在定点Q ,使得716QA QB ⋅=-u u u r u u u r 恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.变式1 已知双曲线222x y -=的左、右焦点分别为12,F F ,过点2F 的动直线与双曲线相交于,A B 两点.在x 轴上是否存在定点C ,使得CA CB ⋅u u u r u u u r为常数?若存在,求出点C 的坐标;若不存在,请说明理由。

2020版江苏高考数学一轮复习学案:第46课《椭圆的标准方程》(含解析)

2020版江苏高考数学一轮复习学案:第46课《椭圆的标准方程》(含解析)

第46课 椭圆的标准方程1. 熟练掌握椭圆的定义、几何性质.2. 会利用定义法、待定系数法求椭圆方程.3. 重视数学思想方法的应用,体会解析几何的本质——用代数方法求解几何问题.1. 阅读:选修11第25~26页,选修11第28~29页(理科阅读选修21相应内容).2. 解悟:①椭圆是一个平面斜截圆锥面(与母线不平行、与轴不垂直)而形成的,并理解椭圆上的点到两个定点的距离之和是常数;②椭圆的一般定义以及椭圆的焦点、焦距的含义是什么?③理解化简过程中设a 2-c 2=b 2的合理性与必要性.3. 践习:①将选修11第28页,化简椭圆方程的过程亲手做一遍;②在教材空白处,完成选修11第30页练习第2、3、4题(理科完成选修21相应任务).基础诊断1. 已知下列方程:①x 24+y 23=1;②4x 2+3y 2=12;③2x 2+2y 2=5;④x 212+y 232 =1.其中表示焦点为F(0,1)的椭圆的有 ②④ .(填序号)解析:①的方程表示焦点在x 轴上的椭圆;将②的方程4x 2+3y 2=12化为x 23+y 24=1,它表示焦点为F(0,1)的椭圆;③是圆;④表示焦点为F(0,1)的椭圆.2. 已知M(1,0),N(0,1),动点P 满足PM +PN =2,则点P 的轨迹是 椭圆 .3. 已知椭圆x 212+y 23=1,其焦点为F 1,F 2,点P 在椭圆上,若线段PF 1的中点在y 轴上,则PF 1=732 ,PF 2= 32. 解析:由题意得c =a 2-b 2=3,所以F 2(3,0).设PF 1的中点为Q ,则OQ ∥PF 2,所以PF 2垂直于x 轴,故可设P(3,y 0),所以912+y 203=1,所以y 0=±32,所以PF 2=32.又因为PF 1+PF 2=43,所以PF 1=732. 4. 已知方程x 22-k +y 22k -1=1表示焦点在y 轴上的椭圆,则实数k 的取值范围是 (1,2) .解析:由题意得2k -1>2-k>0,所以1<k<2.范例导航考向❶ 求椭圆的标准方程例1 求适合下列条件的椭圆的标准方程:(1) 两个焦点的坐标分别是(-4,0)、(4,0),椭圆上一点P 到两焦点距离的和等于10;(2) 两个焦点的坐标分别是(0,-2)、(0,2),并且椭圆经过点⎝⎛⎭⎫-32,52.解析:(1) 因为椭圆的焦点在x 轴上, 故设椭圆方程为x 2a 2+y 2b 2=1(a>b>0).由题意知2a =10,c =4,所以a =5, 所以b 2=a 2-c 2=9,所以椭圆的标准方程为x 225+y 29=1.(2) 因为椭圆的焦点在y 轴上, 故设椭圆方程为y 2a 2+x 2b 2=1(a>b>0).由题意及椭圆定义知2a =⎝⎛⎭⎫-322+⎝⎛⎭⎫52+22+⎝⎛⎭⎫-322+⎝⎛⎭⎫52-22=210, 所以a =10.又因为c =2,所以b 2=a 2-c 2=6, 所以椭圆的标准方程为y 210+x 26=1.求满足下列条件椭圆的标准方程:(1) 长轴长是短轴长的3倍且经过点A(3,0); (2) 经过两点A(0,2)和B ⎝⎛⎭⎫12,3. 解析:(1) 若椭圆的焦点在x 轴上, 设方程为x 2a 2+y 2b2=1 (a>b>0).因为椭圆过点A(3,0),所以9a 2=1,所以a =3.又2a =3·2b ,所以b =1, 所以椭圆的标准方程为x 29+y 2=1.若椭圆的焦点在y 轴上,设方程为y 2a 2+x 2b 2=1 (a>b>0).因为椭圆过点A(3,0),所以9b 2=1,所以b =3.又2a =3·2b ,所以a =9,所以椭圆的标准方程为y 281+x 29=1.综上可知,椭圆的标准方程为x 29+y 2=1或y 281+x 29=1.(2) 设经过两点A(0,2),B ⎝⎛⎭⎫12,3的椭圆的方程为mx 2+ny 2=1, 将A ,B 两点的坐标代入方程得⎩⎪⎨⎪⎧4n =1,14m +3n =1,解得⎩⎪⎨⎪⎧m =1,n =14,所以椭圆的标准方程为x 2+y 24=1.考向❷ 椭圆的定义及应用例2 求过点A(2,0)且与圆x 2+4x +y 2-32=0内切的圆的圆心的轨迹方程.解析:将圆的方程化简为(x +2)2+y 2=62,圆心B(-2,0),r =6.设动圆圆心M 的坐标为(x ,y),动圆与已知圆的切点为C ,如图所示. 则BC -MC =BM ,而BC =6,所以BM +CM =6. 又CM =AM ,所以BM +AM =6>AB =4,所以点M 的轨迹是以点B(-2,0),A(2,0)为焦点、线段AB 的中点(0,0)为中心的椭圆,所以a =3,c =2,b =5, 所以所求轨迹方程为x 29+y 25=1.已知定圆M :(x +3)2+y 2=16,动圆N 过点F(3,0)且与圆M 相切,记圆心N 的轨迹为E.(1) 求轨迹E 的方程;(2) 设点A ,B ,C 在E 上运动,A 与B 关于原点对称,且AC =CB ,当△ABC 的面积最小时,求直线AB 的方程.解析:(1) 因为点F(3,0)在圆M :(x +3)2+y 2=16内,所以圆N 内切于圆M. 因为NM +NF =4>FM ,所以点N 的轨迹E 是以M(-3,0),F(3,0)为焦点的椭圆,且2a =4,c =3,所以b =1,所以轨迹E 的方程为x 24+y 2=1.(2) ①当AB 为长轴(或短轴)时,依题意知,点C 就是椭圆的上下顶点(或左右顶点), 此时S △ABC =12·OC·AB =2.②当直线AB 的斜率存在且不为0时, 设其斜率为k ,直线AB 的方程为y =kx ,联立方程⎩⎪⎨⎪⎧x 24+y 2=1,y =kx ,可得x 2A =41+4k 2,y 2A =4k 21+4k 2, 所以OA 2=x 2A +y 2A =4(1+k 2)1+4k 2.由AC =CB 知,△ABC 为等腰三角形,O 为AB 的中点,OC ⊥AB , 所以直线OC 的方程为y =-1kx ,由⎩⎨⎧x 24+y 2=1,y =-1k x ,得x 2C =4k 2k 2+4,y 2C =4k 2+4, 所以OC 2=4(1+k 2)k 2+4.S △ABC =2S △OAC =OA·OC =4(1+k 2)1+4k 2·4(1+k 2)k 2+4=4(1+k 2)(1+4k 2)(k 2+4).由于(1+4k 2)(k 2+4)≤⎣⎡⎦⎤(1+4k 2)+(k 2+4)22=5(1+k 2)2,所以S △ABC ≥85,当且仅当1+4k 2=k 2+4,即k =±1时等号成立, 此时△ABC 面积的最小值是85.因为2>85,所以△ABC 面积的最小值为85,此时直线AB 的方程为y =x 或y =-x.自测反馈1. 若椭圆5x 2+ky 2=5的一个焦点是(0,2),则k = 1 W. 解析:把椭圆方程化为标准方程得x 2+y 25k=1,因为焦点坐标为(0,2),所以长半轴在y 轴上,则c =5k-1=2,解得k =1. 2. 已知P 是椭圆x 225+y 216=1上的一点,F 1,F 2是它的两个焦点,若∠F 1PF 2=60°,则△PF 1F 2的面积为1633W. 解析:因为椭圆x 225+y 216=1,所以a =5,b =4,所以c =3.设PF 1=t 1,PF 2=t 2,则t 1+t 2=10,t 21+t 22-2t 1t 2cos 60°=36,即t 21+t 22-t 1t 2=36,所以t 1t 2=13[(t 1+t 2)2-(t 21+t 22-t 1t 2)]=643,所以S △PF 1F 2=12t 1t 2sin 60°=1633.3. 已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在边BC 上,则△ABC 的周长是 43 W.解析:由椭圆x 23+y 2=1,所以a 2=3,解得a = 3.设椭圆的另一个焦点为A 1,由椭圆的定义可得BA +BA 1=CA +CA 1=2a ,所以△ABC 的周长为4a =4 3.4. 过两点(2,-2),⎝⎛⎭⎫-1,142,中心在原点,焦点在坐标轴上椭圆的方程为 x 28+y 24=1 W. 解析:设椭圆的方程为mx 2+ny 2=1,将点(2,-2),⎝⎛⎭⎫-1,142代入,得⎩⎪⎨⎪⎧4m +2n =1,m +72n =1,解得⎩⎨⎧m =18,n =14,所以椭圆的方程为x 28+y24=1.1. 椭圆定义中的条件:2a>F 1F 2=2c ,否则其轨迹不是椭圆;当2a =2c 时,其轨迹是线段;当2a<2c 时,轨迹不存在.2. 求椭圆标准方程时,要先确定焦点的位置,再确定a ,b ,c ,由于有a 2-c 2=b 2,因此,只要能够确定a ,b ,c 中的两个即可.3. 你还有哪些体悟,写下来:。

第46讲高考数学填空题压轴题精选

第46讲高考数学填空题压轴题精选

第四十六讲 填空题压轴题优选A 组、定义在 R 上的 f (x) ,知足 f (m 2) f (m)2, m, n R, 且 f (1) 0 ,则 f (2012)1 n 2[ f (n)] 的值为 。

【答案】: 1006【分析】:①令 m n0 ,有 f 00;令 m0, n 1 ,有 f11;2②令 n 1,则有 f m 1 f m1 ,即 f (m 1) f (m) 1 ;22进而 f (m)m,故 f ( 2012) 1006 。

22、假如对定义在 R 上的函数 f (x) ,对随意两个不相等的实数 x 1 ,x 2 ,都有x 1 f ( x 1 ) x 2 f (x 2 ) x 1 f (x 2 ) x 2 f ( x 1 ) ,则称函数 f (x) 为“ H 函数”。

给出以下函数: ① y e xx ;② y x 2 ;③ y 3xsin x ;④ yln x , ( x 0) 。

0, (x 0)以上函数是“ H 函数”的全部序号为 ______。

【答案】:①③【分析】:由已知对于随意给定的不等实数x 1, x 2 ,不等式x 1 f ( x 1 ) x 2 f (x 2 ) x 1 f (x 2 ) x 2 f ( x 1 ) 恒成立,等价于不等式 x 1 x 2 f ( x 1) f ( x 2 ) 0 ,即函数 f ( x) 是定义在 R 上的增函数; ① y e x x 为增函数,知足条件; ②函数 yx 2 在定义域上不但一,不知足条件; ③y3xsin x ,y'3 cos x0 ,函数在 R 上单一递加,知足条件;④yln x , ( x0, ( x 0)0),当x>0 时,函数单一递加, 当x<0 时,函数单一递减, 不知足条件。

综上知足“ H 函数”的函数为①③。

3、如题( 15)图,图中的实线是由三段圆弧连结而成的一条 关闭曲线C ,各段弧所在的圆经过同一点P (点P不在C上)且半径相等。

2020江苏高考数学一轮配套精练:第46课基本不等式及其应用(二)

2020江苏高考数学一轮配套精练:第46课基本不等式及其应用(二)

第46课基本不等式及其应用(二)A.课时精练一、填空题1. 已知函数y = x—3+—^ (x> —1)若当x = a时,该函数取得最小值b,贝V a+ bx + 12. ______________________ 已知a, b均为正数,且直线ax+ by —6= 0与直线2x + (b —3) y+ 5= 0互相平行, 那么2a+ 3b的最小值为.3. 已知函数f (x)= e x在点(0, f (0))处的切线为I,动点(a, b)在直线I上,那么2a+ 2—b的最小值为__________ .a4. 已知常数a>0,函数f (x)= x + (x>1)的最小值为3,那么a的值为___________x —15. 如图,在三棱锥PABC中,已知PC丄平面ABC , AC丄CB,若AC = 2, PB= 2 6,则当PA+AB最大时,三棱锥PABC的体积为___________ W.6. 某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元•要使一年的总运费与总存储费用之和最小,则x的值是_________ .7. _________________________________________________________ 若函数y= tan + 警;]1 0< B<,则函数y的最小值为__________________________________________8. (2018江苏卷)在厶ABC中,已知角A , B , C所对的边分别为a, b, c,若/ ABC =120° / ABC的平分线交AC于点D,且BD = 1,贝U 4a+ c的最小值为 ____________________ .二、解答题 9.对任意的张@不等式希+CO 4肓|2x -1恒成立,求实数x 的取值范围10.已知不等式2x 2— axy + y 2> 0对于任意的x € [1 , 2]及y € [1 , 3]恒成立,求实数 a的取值范围•11.经测算,某型号汽车在匀速行驶过程中每小时耗油量y (单位:L )与速度x(单位:1 2 (x-130x 4900), x [50,80), km/h ) (50< x <120)的关系可近似表示为 y 二三75x 12—— ,x€[80,120].、 60(1) 该型号汽车速度为多少时,可使得每小时耗油量最低?(2)已知A , B 两地相距120 km ,假定该型号汽车匀速从 A 地驶向B 地,则汽车速 度为多少时总耗油量最少?B.滚动小练1. 已知函数f(x ) = |2x — 2|(x € (— 1,2)),那么函数y = f(x — 1)的值域为 ___________ W .2. 已知点 A( 3,0), B( 0,3), C( cos a sin a), £ 宁若 A C BC = — 1,则 J 才v 2 丿 2sin a+ Sin 2 a的值为 ________ W .3. 已知函数 f (x )= 2sin 2 才一x — 2,3cos 2x + ,3. (1) 求函数f (x )的最小正周期和单调减区间;(2) 若f (x ) <m + 2在x € 0,上恒成立,求实数 m 的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当 ∈( ,-2)∪( ,+∞)时, <0,
∴ 在(-∞, )单调递增,在( ,-2)单调递减,在(-2, )单调递增,在( ,+∞)单调递减,故当 = 和 = 时取极大值, = =16。
10、已知正数 满足: 则 的取值范围是。
【答案】:[e,7]
【解析】:由已知条件 可化为:

设 ,则题目转化为:
① 为增函数,满足条件;
②函数 在定义域上不单调,不满足条件;
③ , ,函数在R上单调递增,满足条件;
④ ,当x>0时,函数单调递增,当x<0时,函数单调递减,不满足条件。
综上满足“H函数”的函数为①③。
2、定义在R上的 ,满足 且 ,则 的值为。
【答案】:1006
【解析】:①令 ,有 ;令 ,有 ;
故x=e时,函数取得最大值 ,即 的最大值为 。
10、在平面直角坐标系 中,设定点 , 是函数 ( )图象上一动点,若点 之间的最短距离为 ,则满足条件的实数 的所有值为_______。
【答案】:-1或
【解析】:由题意设 则有
令 ,则 ,对称轴 ;
(1)当 时, ;
因为点 之间的最短距离为 ,则有 ;
与圆有两个交点,故 也应该与圆有两个交点,
由图可以知道,临界情况即是与圆相切的时候,经计算可得,
两种相切分别对应 ,由图可知,m的取值
范围应是 。
9、已知函数 ,存在 ,使得 ,则的 最大值为_________。
【答案】:
【解析】:由题意 ,则 ,
又 ,故令 y,则 ,
当 时, ,当 , ;
从而函数在 上单调递增,在 上单调递减,
由 , 可得 ;
由 , 可得 ;
……
由 , 可得 ;
从而
又 , , ,…, , ,
所以

从而 ;
因此 。
7、已知 点为圆 与圆 的公共点, , ,若 ,则点 与直线 : 上任意一点 之间的距离的最小值为。
【答案】:2
【解析】:设 则圆 ,
圆 , ;
故 是关于 的方程 的两根;
因此由韦达定理得 ,所以点 在圆 上,其到直线 距离就是点 与直线 上任意一点 之间的距离的最小值,为
解得: 或 (舍去);
(2)当 时, ,则有 ;
解得: 或 (舍去);
综上 或 。
B组
1、在锐角三角形ABC,A、B、C的对边分别为a,b,c, ,则 =_________。
【答案】:4
【解析】:方法一:考虑已知条件和所求结论对于角A、B和边a、b具有轮换性。
当A=B或a=b时满足题意,此时有: , , ,
(4)由(3) 得 = ,则 ,设 ,有 , 使其函数值相等,则 不恒为单调。
, , 恒成立, 单调递增且 , 。所以 先减后增,满足题意,所以正确。
10、设函数
(56)记集合 ,则 所对应的 的零点的取值集合为___________;
(2)若_ __________。(写出所有正确结论的序号)

【答案】:(1) (2)
【解析】:取x=1,y=0得
法一:通过计算 ,寻得周期为6。
法二:取x=n ,y=1,有 ,
同理
联立得:
故 。
6、已知 为圆 : 的两条相互垂直的弦,垂足为 ,则四边形 的面积的最大值为。
【答案】:5
【解析】:如图连接OA、OD作OE⊥AC,OF⊥BD垂足分别为E、F,
设圆心O到AC、BD的距离分别为 ,
已知 满足 ,求 的取值范围。
作出( )所在平面区域(如图)。求出 的切
线的斜率 ,设过切点 的切线为 ,
则 ,要使它最小,须 。
从而 的最小值在 处,为 。此时,点 在 上 之间。
当( )对应点 时, ,
则 的最大值在 处且
故 的取值范围为 ,即 的取值范围是 。
C组
1、设 , 为单位向量,非零向量 , , 。若 , 的夹角为 ,则 的最大值等于__________。
方法二:显然 ,所以 ;
令 ,则 ;
因为 ,所以 ;
结合图象可得 或 。
9、若函数 = 的图像关于直线 对称,则 的最大值是______。
【答案】:16
【解析】由 图像关于直线 =-2对称,则
0= = ,
0= = ,解得 =8, =15,
∴ = ,
∴ = =
=
当 ∈(-∞, )∪(-2, )时, >0,
因为AC⊥BD于M,则四边形OEMF为矩形;
又点 ,从而有 ;
则四边形ABCD的面积为 ,
当且仅当 时取等号;
故四边形 的面积的最大值为5。
7、(15年福建理科)已知
【答案】:13
【解析】:由题意建立如图所示的坐标系,可得A(0,0),B( ,0),C(0,t),
因为 ,则P(1,4);
从而 ;
则 ,
【答案】:
【解析】:如图所示,延长BA,CD交于点E,
则在△ADE中,∠DAE=105∘,∠ADE=45∘,∠E=30∘;
设 ,
因为BC=2,则 ;
从而 ;
则有 ,
又 ;
故 的取值范围是 。
6、数列 满足 ,则 的前 项和为

【答案】:1830
【解析】:因为 ,
所以 , , , , , ,
……, , , 。
(3) 对于任意的 ,存在不相等的实数 , ,使得 ;
(4) 对于任意的 ,存在不相等的实数 , ,使得 .
其中的真命题有_________________(写出所有真命题的序号)。
【答案】:(1) (4)
【解析】:(1)设 > ,函数 单调递增,所有 > , - >0,
则 = >0,所以正确;
(2)设 > ,则 - >0,则
, = 4。
(方法二) ,
由正弦定理,上式 。
2、过双曲线 的右焦点F作倾斜角为 的直线,交双曲线于P、Q两点,则 的值为___________。
【答案】:
【解析】:
代入 得:


3、已知 分别为 的三个内角 的对边, =2,且 ,则 面积的最大值为。
【答案】:
【解析】:因为在△ABC中,a=2,
则根据正弦定理可得 ,即 ;
当且仅当 ,即 时等号成立;
故 的最大值为13。
8、已知函数 , .若方程 恰有4个互异的实数根,则实数 的取值范围为__________。
【答案】: 或
【解析】:方法一:显然 .
(1)当 与 相切时, ,此时 恰有3个互异的实数根;
(2)当直线 与函数 相切时, ,此时 恰有2个互异的实数根;
结合图象可知 或 。
【解析】:(1)由题意知 ,所以方程 可化为 ,即 又 ,所以当 时 此时 ;当 时 ,无解.所以 的零点的取值集合为 。
(8)①令 ,
则 ,因为 所以 ,
即 ,所以 是单调递减函数,所以在 上 ,
又 ,
所以
②又因为 是单调递减函数,所以在 一定存在零点 ,即 ,此时 不能构成三角形的三边.
③ 由余弦定理易知 ,即 ,又 ,且 连续,所以 故 都正确。
,可令 =1, =2,
,则 ,所以错误;
(3)因为 ,由(2)得: ,分母乘到右边,右边即为 ,所以原等式即为 = ,
即为 = ,令 ,
则原题意转化为对于任意的 ,函数 存在不相等的实数 , 使得函数值相等, ,则 ,则 ,
令 ,且 ,可得 为极小值。若 ,则 ,即 , 单调递增,不满足题意,所以错误。
【答案】:2
【解析】:由已知 ;
则 ,当x=0时, ;
当x≠0时, ;
故 的最大值为2。
2、在面积为2的 中,E,F分别是AB,AC的中点,点P在直线EF上,则 的最小值是________。
【答案】:
【解析】:由题设知, 的面积为1,以B为原点,BC所在直线为 轴,过点B与直线BC垂直的直线为 轴建立平面直角坐标系,设 ,
【答案】:
【解析】:以A为原点,以AB所在的为x轴,建立平面直角坐标系,设正方形ABCD的边长为1,则E( ,0),C(1,1),D(0,1),A(0,0),
从而 , ,设 ,
因为
则有 ,解得 ;
从而 ;
又因为 ,则 ,
故当 取最大值1时, 。
5、(2015全国一卷16)在平面四边形ABCD中 则AB的取值范围是________。
【答案】:
【解析】:由 ,得 ,所以 .
由题设得 ,
所以 。
6、(2016全国一卷16)若直线 是曲线 的切线,也是曲线 的切线,则b=。
【答案】:
【解析】:设 与 和 的切点分别为 , ;
由导数的几何意义知 ,则有 ;
又切点在曲线上,可得 ;
联立解得
从而由 得出 。
7、已知椭圆 的左、右顶点分别是A,B,左、右焦点分别是 ,若 (0<λ<4),则离心率e的取值范围是。
则 ;
从而 ,
当且仅当 时取等号,故 的最小值是 。
3、已知双曲线 的左、右焦点分别为 ,若双曲线上存在一点 使 ,则该双曲线的离心率的取值范围是。
【答案】:(1, )
【解析】:方法一:因为在 中,由正弦定理得
则由已知,得 ,即 ,且知点P在双曲线的右支上;
设点 由焦点半径公式,得 ,
则有 ,解得 ;
由基本不等式可得 ,则 ,当且仅当b=c=2时取等号;
此时△ABC为等边三角形,它的面积为 。
4、设 是定义在 上的可导函数,且满足 ,则不等式 的解集为。
【答案】:
【分析】:令 ,则 ,则 为增函数,
不等式 可化为 ,
相关文档
最新文档