浙江省衢州市中考数学试题分类解析 专题6 函数的图像与性质
中考数学试题分项版解析汇编第期专题函数的图像与性质含解析.doc
专题06 函数的图像与性质一、选择题1.(2017浙江衢州市第8题)如图,在直角坐标系中,点A 在函数)0(4>=x x y 的图象上,AB ⊥x 轴于点B ,AB 的垂直平分线与y 轴交于点C ,与函数)0(4>=x xy 的图象交于点D 。
连结AC ,CB ,BD ,DA ,则四边形ACBD 的面积等于( )A. 2B. 32C. 4D. 34【答案】C .考点:反比例函数系数k 的几何意义.2.(2017山东德州第7题)下列函数中,对于任意实数1x ,2x ,当1x >2x 时,满足1y <2y 的是( )A .y=-3x+2B .y=2x+1C .y=2x 2+1D .1=-xy 【答案】A【解析】试题分析:A .y=-3x+2 ,k=-3,y 与x 变化相反,正确;B .y=2x+1 ,k =2,y 与x 变化一致,错误;C .y=2x 2+1 ,在对称轴左边,y 与x 变化相反,在对称轴右边,y 与x 变化一致,错误;D .1=-x y ,在每个象限,y 与x 变化一致,错误; 故选A.考点:函数的增减性3. (2017山东德州第9题)公式KP L L +=0表示当重力为P 时的物体作用在弹簧上时弹簧的长度. 0L 表示弹簧的初始长度,用厘米(cm)表示,K 表示单位重力物体作用在弹簧上时弹簧的长度,用厘米(cm)表示。
下面给出的四个公式中,表明这是一个短而硬的弹簧的是( )A .L=10+0.5PB .L=10+5PC .L=80+0.5PD .L=80+5P【答案】A【解析】试题分析:A 和B 中,L 0=10,表示弹簧短;A 和C 中,K=0.5,表示弹簧硬;故选A考点:一次函数的应用4.(2017浙江宁波第10题)抛物线2222y x x m =-++(m 是常数)的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】试题解析:2222y x x m =-++=(x-1)2+m 2+1∴顶点坐标为(1,m 2+1)∵m 2≥0∴m 2+1≥1∴抛物线2222y x x m =-++(m 是常数)的顶点在第一象限.故选A.考点:二次函数的图象.5.(2017甘肃庆阳第7题)在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,观察图象可得( )A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【答案】A考点:一次函数图象与系数的关系.6. (2017甘肃庆阳第10题)如图①,在边长为4的正方形ABCD中,点P以每秒2cm的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动2.5秒时,PQ的长是()A.B.C.D.【答案】B.【解析】试题解析:点P运动2.5秒时P点运动了5cm,CP=8-5=3cm,由勾股定理,得,故选B .考点:动点函数图象问题.7.(2017广西贵港第10题)将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是( )A .()211y x =-+B .()211y x =++C.()2211y x =-+ D .()2211y x =++【答案】C【解析】试题解析:由图象,得y=2x 2﹣2,由平移规律,得y=2(x ﹣1)2+1,故选:C .考点:二次函数图象与几何变换.8.(2017贵州安顺第10题)二次函数y=ax 2+bx+c (≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②3b+2c <0;③4a+c <2b ;④m (am+b )+b <a (m ≠1),其中结论正确的个数是( )A .1B .2C .3D .4【答案】B .【解析】试题解析:∵图象与x 轴有两个交点,∴方程ax 2+bx+c=0有两个不相等的实数根,∴b 2﹣4ac >0,∴4ac ﹣b 2<0,①正确; ∵﹣2b a=﹣1, ∴b=2a ,∵a+b+c <0, ∴12b+b+c <0,3b+2c <0, ∴②是正确;∵当x=﹣2时,y >0,∴4a ﹣2b+c >0,∴4a+c >2b ,③错误;∵由图象可知x=﹣1时该二次函数取得最大值,∴a ﹣b+c >am 2+bm+c (m ≠﹣1).∴m (am+b )<a ﹣b .故④错误∴正确的有①②两个,故选B .考点:二次函数图象与系数的关系.9.(2017湖南怀化第8题)一次函数2y x m =-+的图象经过点()2,3P -,且与x 轴、y 轴分别交于点A 、B ,则AOB △的面积是( ) A.12 B.14 C.4 D.8【答案】B.【解析】试题解析:∵一次函数y=﹣2x+m 的图象经过点P (﹣2,3),∴3=4+m ,解得m=﹣1,∴y=﹣2x ﹣1,∵当x=0时,y=﹣1,∴与y 轴交点B (0,﹣1),∵当y=0时,x=﹣12, ∴与x 轴交点A (﹣12,0), ∴△AOB 的面积:V12×1×12=14. 故选B . 考点:一次函数图象上点的坐标特征.10.(2017湖南怀化第10题)如图,A ,B 两点在反比例函数1k y x =的图象上,C ,D 两点在反比例函数2k y x=的图象上,AC y ^轴于点E ,BD y ^轴于点F ,2AC =,1BD =,3EF =,则12k k -的值是( )A.6B.4C.3D.2【答案】D【解析】试题解析:连接OA 、OC 、OD 、OB ,如图:由反比例函数的性质可知S △AOE =S △BOF =12|k 1|=12k 1,S △COE =S △DOF =12|k 2|=﹣12k 2, ∵S △AOC =S △AOE +S △COE ,∴12AC•OE=12×2OE=OE=12(k 1﹣k 2)…①, ∵S △BOD =S △DOF +S △BOF , ∴12BD•OF=12×(EF ﹣OE )=12×(3﹣OE )=32﹣12OE=12(k 1﹣k 2)…②, 由①②两式解得OE=1,则k 1﹣k 2=2.故选D .考点:反比例函数图象上点的坐标特征.11.(2017江苏无锡第2题)函数=2-x y x中自变量x 的取值范围是( ) A .x≠2 B .x≥2 C .x≤2 D .x >2【答案】A .考点:函数自变量的取值范围.12.(2017江苏盐城第6题)如图,将函数y=12(x-2)2+1的图象沿y 轴向上平移得到一条新函数的图象,其中点A (1,m ),B (4,n )平移后的对应点分别为点A'、B'.若曲线段AB 扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( )A .y =12 (x −2)2−2B .y =12 (x −2)2+7C .y =12 (x −2)2−5D .y =12(x −2)2+4 【答案】D .【解析】试题解析:∵函数y=12(x-2)2+1的图象过点A (1,m ),B (4,n ), ∴m=12(1-2)2+1=112,n=12(4-2)2+1=3, ∴A (1,112),B (4,3), 过A 作AC ∥x 轴,交B′B 的延长线于点C ,则C (4,112), ∴AC=4-1=3,∵曲线段AB 扫过的面积为9(图中的阴影部分),∴AC•AA′=3AA′=9,∴AA′=3,即将函数y=12(x-2)2+1的图象沿y 轴向上平移3个单位长度得到一条新函数的图象, ∴新图象的函数表达式是y=12(x-2)2+4. 故选D .考点:二次函数图象与几何变换.13.(2017甘肃兰州第11题)如图,反比例函数()0k y x x =<与一次函数4y x =+的图像交于A 、B 两点的横坐标分别为3-、1-,则关于x 的不等式()40k x x x<+<的解集为( )A.3x <-B.31x -<<-C.10x -<<D.3x <-或10x -<<【答案】B【解析】 试题解析:∵反比例函数()0k y x x=<与一次函数y=x+4的图象交于A 点的横坐标为﹣3, ∴点A 的纵坐标y=﹣3+4=1,∴k=xy=﹣3,∴关于x 的不等式()40k x x x <+<的解集即不等式﹣3x<x+4(x <0)的解集, 观察图象可知,当﹣3<x <﹣1时,一次函数的图象在反比例函数图象的上方,∴关于x 的不等式()40k x x x <+<的解集为:﹣3<x <﹣1. 故选B .考点:反比例函数与一次函数的交点问题.14.(2017甘肃兰州第15题)如图1,在矩形ABCD 中,动点E 从A 出发,沿A B B C →方向运动,当点E 到达点C 时停止运动,过点E 做FE AE ^,交CD 于F 点,设点E 运动路程为x ,FC y =,如图2所表示的是y 与x 的函数关系的大致图象,当点E 在BC 上运动时,FC 的最大长度是25,则矩形ABCD 的面积是( )图1 图2 A.235 B.5 C.6 D.254【答案】B【解析】试题解析:若点E 在BC 上时,如图∵∠EFC+∠AEB=90°,∠FEC+∠EFC=90°,∴∠CFE=∠AEB ,∵在△CFE 和△BEA 中,CFE AEB C B ⎧∠=∠⎨∠=∠⎩, ∴△CFE ∽△BEA ,由二次函数图象对称性可得E 在BC 中点时,CF 有最大值,此时CF CE BE AB= BE=CE=x ﹣52 ,即525522x y x -=-,∴y=225(x )52-,当y=25时,代入方程式解得:x 1=32(舍去),x 2=72, ∴BE=CE=1,∴BC=2,AB=52, ∴矩形ABCD 的面积为2×52=5; 故选B .考点:动点问题的函数图象.15.(2017贵州黔东南州第9题)如图,抛物线y=ax 2+bx+c (a≠0)的对称轴为直线x=﹣1,给出下列结论: ①b 2=4ac ;②abc >0;③a >c ;④4a ﹣2b+c >0,其中正确的个数有( )A .1个B .2个C .3个D .4个【答案】C .【解析】试题解析:①∵抛物线与x 轴有2个交点,∴△=b 2﹣4ac >0,所以①错误;②∵抛物线开口向上,∴a >0,∵抛物线的对称轴在y 轴的右侧,∴a 、b 同号,∴b >0,∵抛物线与y 轴交点在x 轴上方,∴c >0,∴abc >0,所以②正确;③∵x=﹣1时,y <0,即a ﹣b+c <0,∵对称轴为直线x=﹣1, ∴﹣2ba =﹣1,∴b=2a ,∴a ﹣2a+c <0,即a >c ,所以③正确;④∵抛物线的对称轴为直线x=﹣1,∴x=﹣2和x=0时的函数值相等,即x=﹣2时,y >0,∴4a ﹣2b+c >0,所以④正确.所以本题正确的有:②③④,三个,故选C .考点:二次函数图象与系数的关系.16.(2017山东烟台第11题)二次函数)0(2≠++=a c bx ax y 的图象如图所示,对称轴是直线1=x ,下列结论:①0<ab ;②ac b 42>;③0<++c b a ;④03<+c a .其中正确的是( )A .①④B .②④ C. ①②③ D .①②③④【答案】C .【解析】试题解析:∵抛物线开口向上,∴a >0,∵抛物线的对称轴为直线x=﹣2b a =1, ∴b=﹣2a <0,∴ab <0,所以①正确;∵抛物线与x 轴有2个交点,∴△=b 2﹣4ac >0,所以②正确;∵x=1时,y <0,∴a+b+c <0,而c <0,∴a+b+2c <0,所以③正确;∵抛物线的对称轴为直线x=﹣2b a=1, ∴b=﹣2a ,而x=﹣1时,y >0,即a ﹣b+c >0,∴a+2a+c >0,所以④错误.故选C .考点:二次函数图象与系数的关系.17.(2017四川泸州第8题)下列曲线中不能表示y 与x 的函数的是( ) A .B .C .D .【答案】C.考点:函数的概念.18.(2017四川泸州第12题)已知抛物线y=x 2+1具有如下性质:该抛物线上任意一点到定点F (0,2)的距离与到x 轴的距离始终相等,如图,点M 的坐标为,3),P 是抛物线y=14x 2+1上一个动点,则△PMF 周长的最小值是( )A.3 B.4 C.5 D.6 【答案】C.【解析】试题解析:过点M作ME⊥x轴于点E,交抛物线y=14x2+1于点P,此时△PMF周长最小值,∵F(0,2)、M(3),∴ME=3,,∴△PMF周长的最小值=ME+FM=3+2=5.故选C.考点:1.二次函数的性质;2.三角形三边关系.19.(2017四川宜宾第8题)如图,抛物线y1=12(x+1)2+1与y2=a(x﹣4)2﹣3交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于B、C两点,且D、E分别为顶点.则下列结论:①a=23;②AC=AE;③△ABD是等腰直角三角形;④当x>1时,y1>y2其中正确结论的个数是()A.1个B.2个C.3个D.4个【答案】B.【解析】试题解析:∵抛物线y1=12(x+1)2+1与y2=a(x﹣4)2﹣3交于点A(1,3),∴3=a(1﹣4)2﹣3,解得:a=23,故①正确;∵E是抛物线的顶点,∴AE=EC,∴无法得出AC=AE,故②错误;当y=3时,3=12(x+1)2+1,解得:x1=1,x2=﹣3,故B(﹣3,3),D(﹣1,1),则AB=4,∴AD2+BD2=AB2,∴③△ABD是等腰直角三角形,正确;∵12(x+1)2+1=23(x﹣4)2﹣3时,解得:x1=1,x2=37,∴当37>x >1时,y 1>y 2,故④错误.故选B .考点:二次函数的图象与性质.20.(2017四川自贡第12题)一次函数y 1=k 1x+b 和反比例函数y 2=2k x(k 1•k 2≠0)的图象如图所示,若y 1>y 2,则x 的取值范围是( )A .﹣2<x <0或x >1B .﹣2<x <1C .x <﹣2或x >1D .x <﹣2或0<x <1 【答案】D.【解析】试题解析:如图所示:若y 1>y 2,则x 的取值范围是:x <﹣2或0<x <1.故选D .考点:反比例函数与一次函数的交点问题.21. (2017江苏徐州第7题)如图,在平面直角坐标系xOy 中,函数()0y kx b k =+≠与()0m y m x =≠的图象相交于点()()2,3,6,1A B --,则不等式m kx b x+>的解集为 ( )A .6x <-B .60x -<<或2x >C. 2x > D .6x <-或02x <<【答案】B .【解析】试题解析:不等式kx+b >m x的解集为:-6<x <0或x >2, 故选B . 考点:反比例函数与一次函数的交点问题.22. (2017江苏徐州第8题)若函数22y x x b =-+的图象与坐标轴有三个交点,则b 的取值范围是( )A .1b <且0b ≠B .1b > C.01b << D .1b <【答案】A .【解析】试题解析:∵函数y=x 2-2x+b 的图象与坐标轴有三个交点,∴()22400=b >b --≠⎧⎪⎨⎪⎩,解得b <1且b≠0.故选A .考点:抛物线与x 轴的交点.23.(2017浙江嘉兴第10题)下列关于函数2610y x x =-+的四个命题:①当0x =时,y 有最小值10;②n 为任意实数,3x n =+时的函数值大于3x n =-时的函数值;③若3n >,且n 是整数,当1n x n ≤≤+时,y 的整数值有(24)n -个;④若函数图象过点0(,)a y 和0(,1)b y +,其中0a >,0b >,则a b <.其中真命题的序号是( )A .①B .②C .③D .④【答案】C .【解析】试题解析:∵y=x 2-6x+10=(x-3)2+1,∴当x=3时,y 有最小值1,故①错误;当x=3+n 时,y=(3+n )2-6(3+n )+10,当x=3-n 时,y=(n-3)2-6(n-3)+10,∵(3+n )2-6(3+n )+10-[(n-3)2-6(n-3)+10]=0,∴n 为任意实数,x=3+n 时的函数值等于x=3-n 时的函数值,故②错误;∵抛物线y=x 2-6x+10的对称轴为x=3,a=1>0,∴当x >3时,y 随x 的增大而增大,当x=n+1时,y=(n+1)2-6(n+1)+10,当x=n 时,y=n 2-6n+10,(n+1)2-6(n+1)+10-[n 2-6n+10]=2n-4,∵n 是整数,∴2n -4是整数,故③正确;∵抛物线y=x 2-6x+10的对称轴为x=3,1>0,∴当x >3时,y 随x 的增大而增大,x <0时,y 随x 的增大而减小,∵y 0+1>y 0,∴当0<a <3,0<b <3时,a >b ,当a >3,b >3时,a <b ,当0<a <3,b >3时,a ,b 的大小不确定,故④错误;故选C .考点:二次函数的性质.二、填空题1.(2017浙江衢州第15题)如图,在直角坐标系中,⊙A 的圆心A 的坐标为(-1,0),半径为1,点P 为直线343+-=x y 上的动点,过点P 作⊙A 的切线,切点为Q ,则切线长PQ 的最小值是__________【答案】【解析】试题解析:连接AP ,PQ ,当AP 最小时,PQ 最小,∴当AP ⊥直线y=﹣34x+3时,PQ 最小, ∵A 的坐标为(﹣1,0),y=﹣34x+3可化为3x+4y ﹣12=0, ∴|3(1)4012|=3, ∴.考点:1.切线的性质;2.一次函数的性质.2.(2017浙江宁波第17题)已知ABC △的三个顶点为()1,1A -,()1,3B -,()3,3C --,将ABC △向右平移()0m m >个单位后,ABC △某一边的中点恰好落在反比例函数3y x =的图象上,则m 的值为 . 【答案】m=4或m=0.5.【解析】考点:1.反比例函数图象上点的坐标特征;2.坐标与图形变化-平移.3.(2017重庆A 卷第17题)A 、B 两地之间的路程为2380米,甲、乙两人分别从A 、B 两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A 、B 之间的C 地相遇,相遇后,甲立即返回A 地,乙继续向A 地前行.甲到达A 地时停止行走,乙到达A 地时也停止行走,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y (米)与甲出发的时间x (分钟)之间的关系如图所示,则乙到达A 地时,甲与A 地相距的路程是 米.【答案】180.【解析】试题解析:由题意可得,甲的速度为:(2380﹣2080)÷5=60米/分,乙的速度为:(2080﹣910)÷(14﹣5)﹣60=70米/分,则乙从B 到A 地用的时间为:2380÷70=34分钟,他们相遇的时间为:2080÷(60+70)=16分钟,∴甲从开始到停止用的时间为:(16+5)×2=42分钟,∴乙到达A 地时,甲与A 地相距的路程是:60×(42﹣34﹣5)=60×3=180米.考点:一次函数的应用.4.(2017广西贵港第18题)如图,过()2,1C 作AC x 轴,BC y 轴,点,A B 都在直线6y x =-+上,若双曲线()0k y x x=>与ABC ∆总有公共点,则k 的取值范围是 .【答案】2≤k ≤9【解析】试题解析:当反比例函数的图象过C 点时,把C 的坐标代入得:k=2×1=2;把y=﹣x+6代入y=k x 得:﹣x+6=k x, x 2﹣6x+k=0, △=(﹣6)2﹣4k=36﹣4k ,∵反比例函数y=k x的图象与△ABC 有公共点, ∴36﹣4k ≥0,k ≤9,即k 的范围是2≤k ≤9考点:反比例函数与一次函数的交点问题.5.(2017贵州安顺第12题)在函数y =x 的取值范围 . 【答案】x ≥1且x ≠2.【解析】 试题解析:根据题意得:x-1≥0且x-2≠0,解得:x ≥1且x ≠2.考点:函数自变量的取值范围.6.(2017湖北武汉第16题)已知关于x 的二次函数y=ax 2+(a 2-1)x-a 的图象与x 轴的一个交点的坐标为(m,0),若2<m<3,则a 的取值范围是 .【答案】-3<a<-2,13<a<12. 【解析】试题解析:把(m ,0)代入y=ax 2+(a 2-1)x-a 得,am 2+(a 2-1)m-a=0解得:m=222(--1)(--1)(+1)22a a a a a ±±= ∵2<m<3解得:-3<a<-2,13<a<12. 考点:二次函数的图象.7.(2017江苏无锡第15题)若反比例函数y=kx的图象经过点(﹣1,﹣2),则k的值为.【答案】2.【解析】试题解析:把点(﹣1,﹣2)代入解析式可得k=2.考点:待定系数法求反比例函数解析式.8.(2017江苏盐城第16题)如图,曲线l是由函数y=6x在第一象限内的图象绕坐标原点O逆时针旋转45°得到的,过点A(,B(的直线与曲线l相交于点M、N,则△OMN的面积为.【答案】8.【解析】试题解析:∵A(B(),∴OA⊥OB,建立如图新的坐标系(OB为x′轴,OA为y′轴.在新的坐标系中,A(0,8),B(4,0),∴直线AB解析式为y′=-2x′+8,由286y =x y =x '-'+''⎧⎪⎨⎪⎩,解得 16x =y =''⎧⎨⎩或32x =y =''⎧⎨⎩, ∴M (1.6),N (3,2),∴S △OMN =S △OBM -S △OBN =12•4•6-12•4•2=8 考点:坐标与图形变化-旋转;反比例函数系数k 的几何意义.9.(2017甘肃兰州第16题)若反比例函数k y x=的图象过点()1,2-,则k = . 【答案】-2【解析】试题解析:∵图象经过点(﹣1,2),∴k=xy=﹣1×2=﹣2.考点:待定系数法求反比例函数解析式.10. (2017甘肃兰州第18题)如图,若抛物线2y ax bx c =++上的()4,0P ,Q 两点关于它的对称轴1x =对称,则Q 点的坐标为.【答案】(﹣2,0).【解析】试题解析:∵抛物线y=ax 2+bx+c 上的P (4,0),Q 两点关于它的对称轴x=1对称,∴P ,Q 两点到对称轴x=1的距离相等,∴Q 点的坐标为:(﹣2,0).考点:二次函数的性质. 11.(2017贵州黔东南州第15题)如图,已知点A ,B 分别在反比例函数y 1=-2x 和y 2=xk 的图象上,若点A是线段OB 的中点,则k 的值为 .【答案】-8【解析】试题解析:设A (a ,b ),则B (2a ,2b ),∵点A 在反比例函数y 1=﹣2x 的图象上, ∴ab=﹣2;∵B 点在反比例函数y 2=x k 的图象上, ∴k=2a•2b=4ab=﹣8.考点:反比例函数图象上点的坐标特征.12.(2017山东烟台第17题)如图,直线2+=x y 与反比例函数xk y =的图象在第一象限交于点P ,若10=OP ,则k 的值为 .【答案】3【解析】试题解析:设点P (m ,m+2),∵,=解得m 1=1,m 2=﹣3(不合题意舍去),∴点P (1,3),∴3=1k , 解得k=3.考点:反比例函数与一次函数的交点问题.13.(2017新疆建设兵团第11题)如图,它是反比例函数y=5m x-图象的一支,根据图象可知常数m 的取值范围是 .【答案】m >5【解析】试题解析:由图象可知,反比例函数y=5m x-图象在第一象限, ∴m ﹣5>0,得m >5考点:反比例函数的性质.14.(2017江苏徐州第12题)反比倒函数k y x =的图象经过点()2,1M -,则k = . 【答案】-2.【解析】试题解析:∵反比例函数y=k x的图象经过点M (-2,1),∴1=-2k ,解得k=-2. 考点:反比例函数图象上点的坐标特征.三、解答题1.(2017浙江衢州第21题)“五一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游。
2020年浙江省衢州市中考数学经典试题附解析
2020年浙江省衢州市中考数学经典试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知弧所在圆的直径是 8cm,弧所对的圆周角是10°,则弧长是()A.13πcm B.23πcm C.29πcm D.49πcm2.已知□ABCD的周长是8 cm,△ABC的周长是7 cm,则对角线AC的长是()A.1 cm B.2 cm C.3 cm D.4 cm3.不等式组2130xx≤⎧⎨+>⎩的解在数轴上可表示为()A.B.C.D.4.如图,两条垂直相交的道路上,一辆自行车和一辆摩托车相遇后又分别向北、向东驶去.如果自行车的速度为2.5 m/s,摩托车的速度为10 m/s,那么10 s后,两车大约相距()A.55 m B.l03 m C.125 m D.153 m5.使分式221a aa++的值为零的a 的值是()A.1 B.-1 C.0 D.0 或-1 6.观察下列“风车”的平面图案:其中轴对称图形有()A.1个B.2个C.3个D.4个7.要清楚地表明病人的体温变化情况,应选用的统计图是()A.扇形统计图B.折线统计图C.条形统计图D.以上都可以8.若(3)(2)0x x-+=,则x的值是()A . 3B . -2C .-3或2D .3或-2 9.两个不为零的有理数的和等于 0,那么它们的商是( )A . 正数B .-1C .0D .1±二、填空题10.在-9,-6,-3,-1,2,3,6,8,11这九个数中,任取一个作为a 值,能够使关于x 的一元二次方程290x ax ++=有两个不相等的实数根的概率是____________. 解答题11.一个正方体的每个面上都写一个汉字,这个正方体的平面展开图如图所示,则这个正方体中与“菏”字相对的面上的字为__________.12.如图,学校在周一举行升国旗仪式,一位同学站在离旗杆20米处,随着国歌响起,五星红旗冉冉升起.当这位同学目视国旗的仰角为37时(假设该同学的眼睛距离地面的高度为1.6米),国旗距离地面约 米.(结果精确到0.1米).13.在等腰△ABC 中,BC=8,AB 、AC 的长度是关于x 的方程x 2-10x+m=0的两个根,则m 的值是 .14.如图,在△ABC 中,AB =AC ,点D 在AC 边上,且BD =BC =AD ,则∠A 的度数= .15.将一个有80个数据的一组数分成四组,绘出频数分布直方图,已知各小长方形的高的比为2:4:3:1,则第一小组的频率为,第三小组的频数为 ..16.如果把一根l00cm 长的铁丝折成一个面积为525cm 2的长方形,那么长方形的长为 ,宽为 .17.一等腰三角形一腰上的中线把这个三角形的周长分成15cm 和18cm 两部分,则这个等腰三角形的底边长是 cm.18.如图所示,写出图中互相垂直的两条直线,用“⊥”符号表示,并分别指出它们的垂足 .该图中共有 个直角,C 到直线AB 的距离是线段 ,线段DE 的长表示 或 .19.若223P a ab b =++,223Q a ab b =-+,则代数式[2()]P Q P P Q -----= .20.为了了解某所初级中学学生对2008年6月1日起实施的“限塑令”是否知道,从该校全体学生1200名中,随机抽查了80名学生,结果显示有2名学生“不知道”.由此,估计该校全体学生中对“限塑令”约有 名学生“不知道”.三、解答题21.如图,在 Rt △ABC 中,CD ⊥AB ,D 为垂足,∠B=30°.求证:::AD AC CD BC =.22. 一个实验获得关于 x 、y 两个变量的一组对应值如下表. X 1 2 3 4 5 6 7 8 y842.721.61.31.11(1)求y 关于x 的函数解析式; (2)求当y=2. 5 时,x 的值.23.如图,△ACB ,△ECD 都是等腰直角三角形,且点C 在AD 上,AE 的延长线与BD 交于点F ,请你在图中找出一对全等三角形,并写出证明它们全等的过程.24. 已知关于x 的一次函数(22)1y m x m =-++的图象与y 轴的交点在x 轴的上方,且y 随x 的增大而减小,求整数m 的值.25.如图,点 D .E 是 AB 的三等分点.(1)过点D 作 DF ∥BC 交 AG 于 F ,过点EG ∥BC 交AC 于G ; (2)量出线段 AF 、FG 、GC 的长度(精确到0.1 cm),你有什么发现?(3)量出点 A 到 DF 的距离以及 DF 与GE ,GE 与 BC 之间的距离 (精确到0.1 cm),你有什么发现?26.如图,有4张卡片(形状、大小和质地都相同),正面分别写有字母A、B、C、D和一个算式.将这四张卡片背面向上洗匀,从中随机抽取一张,记录字母后放回,重新洗匀再从中随机抽取一张,记录字母.(1)用树状图或列表法表示两次抽取卡片可能出现的所有情况(卡片可用A、B、C、D表示);(2)分别求抽取的两张卡片上算式都正确的概率和只有一个算式正确的概率.27.已知235--的值.x xx x+-的值为 7,求220073928.计算下列各式,并用幂的形式表示结果:(1)84a a-⋅-;(3)311()()-⨯-;(2)10112(2)⨯+⨯;101010010⋅⋅;(4)32x x x(5)2a b a b+⋅+--⋅;(6)34()()()x x29.计算图中阴影部分的面积.22---=-a ab b b a a b(2)(2)2230.已知两个代数式2+与22a b()++a ab b2(1)填表:(a+b)2与 a2+2ab+b2的大小关系,并任取两个 a、b 值检验自己的判断.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.C3.A4.B5.D6.C7.B8.D9.B二、填空题10.111.312.16.713.25或1614.36°15.0.2,2416.35 cm ,15 cm17.9或1318.AC ⊥AB 垂足为A ,DE ⊥AB 垂足为E ,AD ⊥BC 垂足为D ;8;AC 的长;D 点到AB 的距离;D 与E 之间的距离19.12ab 20.30三、解答题 21.∵CD ⊥AB ,∠B=30°,∴:1:2CD BC =,∵∠B= 30°,∠ACB= 90°, ∴∠A = 60°,∠ACD= 30°,∴:1:2AD AC =,∴::AD AC CD BC =.22.(1)根据表中数据,可画出 y 关于x 的函数图象 (略),根据图象形状,选择反比例函数模型进行尝试,设k y x =,选点(1,8)代入得81k =,∴k=8,∴8y x=. 将点 (2,4), (3,2.7), (4,2), (5,1. 6), (6,1.3),(7,1.1),(8,1)的坐标一一代入8y x =验证:842=,,8 2.73≈,824=, 81615=⋅,86≈1.3,8 1.17≈,818=, 故y 关于x 的函数解析式为8y x =(2)当 y=2. 5 时,x 88 3.22.5x y ===.△ACE ≌△BCD24.由题意得10220m m +>⎧⎨-<⎩,解得11m m >-⎧⎨<⎩,∴11m -<<.∴所求的整数m 的值为0.25.(1)略;(2)AF=FG=0G ;(3)它们之间的距离相等26.(1)(2)正确的是A ,共有16种可能. ∴P(两张都正确)=161;P(一个算式正确)=83166=. 27.197128.(1)122-;(2)21a -;(3)15x ;(4)4210⨯;(5)3x -;(6)?()a b +29.22(2)(2)22a a b b b a a b ---=-30.(1)4,1,4,4;4,1,4,4 (2)相等。
2022年浙江省衢州市中考数学试题及答案解析
2022年浙江省衢州市中考数学试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1.下列图形是中心对称图形的是( )A. B. C. D.2.计算结果等于2的是( )A. |−2|B. −|2|C. 2−1D. (−2)03.在平面直角坐标系中,点A(−1,−2)落在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.如图是某品牌运动服的S号,M号,L号,XL号的销售情况统计图,则厂家应生产最多的型号为( )A. S号B. M号C. L号D. XL号5.线段a,b,c首尾顺次相接组成三角形,若a=1,b=3,则c的长度可以是( )A. 3B. 4C. 5D. 66.某班环保小组收集废旧电池,数据统计如下表.问1节5号电池和1节7号电池的质量分别是多少?设1节5号电池的质量为x克,1节7号电池的质量为y克,列方程组,由消元法可得x的值为( )5号电池(节)7号电池(节)总质量(克)第一天2272第二天3296A. 12B. 16C. 24D. 267.不等式组{3x−2<2(x+1)x−12>1的解集是( )A. x<3B. 无解C. 2<x<4D. 3<x<48.西周数学家商高总结了用“矩”(如图1)测量物高的方法:把矩的两边放置成如图2的位置,从矩的一端A(人眼)望点E,使视线通过点C,记人站立的位置为点B,量出BG 长,即可算得物高EG.令BG =x(m),EG =y(m),若a =30cm ,b =60cm ,AB =1.6m ,则y 关于x 的函数表达式为( )A. y =12x B. y =12x +1.6 C. y =2x +1.6D. y =1800x+1.69. 如图,在△ABC 中,AB =AC ,∠B =36°.分别以点A ,C 为圆心,大于12AC 的长为半径画弧,两弧相交于点D ,E ,作直线DE 分别交AC ,BC 于点F ,G.以G 为圆心,GC 长为半径画弧,交BC 于点H ,连结AG ,AH.则下列说法错误的是( )A. AG =CGB. ∠B =2∠HABC. △CAH≌△BAGD. BG 2=CG ⋅CB10. 已知二次函数y =a(x −1)2−a(a ≠0),当−1≤x ≤4时,y 的最小值为−4,则a 的值为( )A. 12或4B. 43或−12C. −43或4D. −12或4二、填空题(本大题共6小题,共24.0分) 11. 计算 (√2)2=______.12. 不透明袋子里装有仅颜色不同的4个白球和2个红球,从袋子中随机摸出一球,“摸出红球”的概率是______.13.如图,AB切⊙O于点B,AO的延长线交⊙O于点C,连结BC.若∠A=40°,则∠C的度数为______.14.将一个容积为360cm3的包装盒剪开铺平,纸样如图所示.利用容积列出图中x(cm)满足的一元二次方程:______(不必化简).15.如图,在△ABC中,边AB在x轴上,边AC交y轴于点E.反比例函数y=kx(x>0)的图象恰好经过点C,与边BC交于点D.若AE=CE,CD=2BD,S△ABC=6,则k=______.16.希腊数学家海伦给出了挖掘直线隧道的方法:如图,A,B是两侧山脚的入口,从B出发任作线段BC,过C作CD⊥BC,然后依次作垂线段DE,EF,FG,GH,直到接近A点,作AJ⊥GH于点J.每条线段可测量,长度如图所示.分别在BC,AJ上任选点M,N,作MQ⊥BC,NP⊥AJ,使得PNAN =QMBM=k,此时点P,A,B,Q共线.挖隧道时始终能看见P,Q处的标志即可.(1)CD−EF−GJ=______km.(2)k=______.三、解答题(本大题共8小题,共66.0分。
2023年浙江省衢州市中考数学试卷含答案解析
绝密★启用前2023年浙江省衢州市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、选择题(本大题共10小题,共30分。
在每小题列出的选项中,选出符合题目的一项)1.手机信号的强弱通常采用负数来表示,绝对值越小表示信号越强(单位:dBm),则下列信号最强的是( )A. −50B. −60C. −70D. −802.如图是国家级非物质文化遗产衢州莹白瓷的直口杯,它的主视图是( )A.B.C.D.3.下列运算,结果正确的是( )A. 3a+2a=5a2B. 3a−2a=1C. a2⋅a3=a5D. a÷a2=a4.某公司5名员工在一次义务募捐中的捐款额为(单位:元):30,50,50,60,60.若捐款最少的员工又多捐了20元,则分析这5名员工捐款额的数据时,不受影响的统计量是( )A. 平均数B. 中位数C. 众数D. 方差5.下列各组数满足方程2x+3y=8的是( )A. {x=1y=2 B.{x=2y=1 C.{x=−1y=2 D.{x=2y=46.如图是脊柱侧弯的检测示意图,在体检时为方便测出Cobb角∠O的大小,需将∠O转化为与它相等的角,则图中与∠O相等的角是( )A. ∠BEAB. ∠DEBC. ∠ECAD. ∠ADO7.如图,在△ABC中,以点A为圆心,适当长为半径画弧,分别交AB,AC于点D,E.分别以点D,E为圆心,大于12DE长为半径画弧,交于∠BAC内一点F.连结AF并延长,交BC于点G.连结DG,EG.添加下列条件,不能使BG=CG成立的是( )A. AB=ACB. AG⊥BCC. ∠DGB=∠EGCD. AG=AC8.某人患了流感,经过两轮传染后共有36人患了流感.设每一轮传染中平均每人传染了x人,则可得到方程( )A. x+(1+x)=36B. 2(1+x)=36C. 1+x+x(1+x)=36D. 1+x+x2=369.如图,一款可调节的笔记本电脑支架放置在水平桌面上,调节杆BC=√ 2a,AB=b,AB的最大仰角为α.当∠C=45°时,则点A到桌面的最大高度是( )A. a+bcosαB. a+bsinαC. a+bcosαD. a+bsinα10.已知二次函数y=ax2−4ax(a是常数,a<0)的图象上有A(m,y1)和B(2m,y2)两点.若点A,B都在直线y=−3a的上方,且y1>y2,则m的取值范围是( )A. 1<m<32B. 43<m<2 C. 43<m<32D. m>2第II卷(非选择题)二、填空题(本大题共6小题,共24分)11.计算:√ 4−1=______ .12.衢州飞往成都每天有2趟航班.小赵和小黄同一天从衢州飞往成都,如果他们可以选择其中任一航班,则他们选择同一航班的概率等于______ .13.在如图所示的方格纸上建立适当的平面直角坐标系,若点A的坐标为(0,1),点B的坐标为(2,2),则点C的坐标为______ .14.如图是一个圆形餐盘的正面及其固定支架的截面图,凹槽ABCD是矩形.当餐盘正立且紧靠支架于点A,D 时,恰好与BC边相切,则此餐盘的半径等于______ cm.(k>0) 15.如图,点A,B在x轴上,分别以OA,AB为边,在x轴上方作正方形OACD,ABEF,反比例函数y=kx的图象分别交边CD,BE于点P,Q.作PM⊥x轴于点M,QN⊥y轴于点N.若OA=2AB,Q为BE的中点,且阴影部分面积等于6,则k的值为______ .16.下面是勾股定理的一种证明方法:图1所示纸片中,∠ACB=90°(AC<BC),四边形ACDE,CBFG是正方形.过点C,B将纸片CBFG分别沿与AB平行、垂直两个方向剪裁成四部分,并与正方形ACDE,△ABC拼成图2.(1)若cos∠ABC=34,△ABC的面积为16,则纸片Ⅲ的面积为______ .(2)若PQBQ =1915,则BKAK=______ .三、解答题(本大题共8小题,共66分。
浙江省杭州市2001-2012年中考数学试题分类解析 专题6 函数的图像与性质
[中考12年]杭州市2001-2012年中考数学试题分类解析专题6:函数的图像与性质一、选择题1. (2001年浙江杭州3分)若所求的二次函数图像与抛物线2y 2x 4x 1=--有相同的顶点,井且在对称轴的左侧,y 随着x 的增大而增大,在对称轴的右侧,y 随着x 的增大而减小,则所求二次函数的解析式为【 】.A .2y x 2x 5=-+-B .()2y ax 2ax a 3a 0=-+->C .2y 2x 4x 5=---D .()2y ax 2ax a 3a 0=-+-< 【答案】D 。
【考点】二次函数的性质。
2. (2002年浙江杭州3分)已知正比例函数y (2m 1)x =-的图象上两点A 11(x ,y )、B 22(x ,y ),当12x x <时,有12y y >,那么m 的取值范围是【 】.(A)1m2<(B)1m2>(C)m2<(D)m0>【答案】A。
【考点】正比例函数图象与系数的关系。
3. (2003年浙江杭州3分)一次函数y x1=-的图象不经过【】(A)第一象限(B)第二象限(C)第三象限(D)第四象限【答案】B。
【考点】一次函数图象与系数的关系。
4. (2005年浙江杭州3分)已知一次函数y=kx-k,若y随着x的增大而减小,则该函数的图象经过【 】(A )第一、二、三象限 (B )第一、二、四象限 (C )第二、三、四象限 (D )第一、三、四象限 【答案】B 。
【考点】一次函数图象与系数的关系。
5. (2005年浙江杭州3分)用列表法画二次函数2y x bx c =++的图象时先列一个表,当表中对自变量x 的值以相等间隔的值增加时,函数y 所对应的值依次为:20,56,110,182,274,380,506,650,其中有一个值不正确,这个不正确的值是【 】(A )506 (B )380 (C )274 (D )182 【答案】C 。
浙江省衢州市2019年中考数学试题(含解析)和答案
浙江省衢州市2019年中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.在,0,1,-9四个数中,负数是()A. B. 0 C. 1 D. -9【答案】 D【考点】正数和负数的认识及应用【解析】【解答】解:∵-9<0<<1,∴负数是-9.故答案为:D.【分析】负数:任何正数前加上负号都等于负数;负数比零、正数小,在数轴线上,负数都在0的左侧.2.浙江省陆域面积为101800平方千米,其中数据101800用科学记数法表示为()A. 0.1018×105B. 1.018×105C. 0.1018×105D. 1.018×106 【答案】 B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:∵101800=1.018×105.故答案为:B.【分析】科学记数法:将一个数字表示成a×10的n次幂的形式,其中1≤|a|<10,n为整数,由此即可得出答案.3.如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图是()A B C D【答案】 A【考点】简单组合体的三视图【解析】【解答】解:从物体正面观察可得,左边第一列有2个小正方体,第二列有1个小正方体.故答案为:A.【分析】主视图:从物体正面观察所得到的图形,由此观察即可得出答案.4.下列计算正确的是()A. a6+a6=a12B. a6×a2=a8C. a6÷a2=a3D. (a6)2=a8【答案】 B【考点】同底数幂的乘法,同底数幂的除法,合并同类项法则及应用,幂的乘方【解析】【解答】解:A.∵a6+a6=2a6,故错误,A不符合题意;B.∵a6×a2=a6+2=a8,故正确,B符合题意;C.∵a6÷a2=a6-2=a4,故错误,C不符合题意;D.∵(a6)2=a2×6=a12,故错误,D不符合题意;故答案为:B.【分析】A.根据合并同类项法则计算即可判断错误;B.根据同底数幂的乘法:底数不变,指数相加,依此计算即可判断正确;C.根据同底数幂的除法:底数不变,指数相减,依此计算即可判断错误;D.根据幂的乘方:底数不变,指数相乘,依此计算即可判断错误.5.在一个箱子里放有1个自球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是()A. 1B.C.D.【答案】 C【考点】等可能事件的概率【解析】【解答】解:依题可得,箱子中一共有球:1+2=3(个),∴从箱子中任意摸出一个球,是白球的概率P= .故答案为:C.【分析】结合题意求得箱子中球的总个数,再根据概率公式即可求得答案.6.二次函数y=(x-1)2+3图象的顶点坐标是()A. (1,3)B. (1,-3)C. (-1,3)D. (-1,-3)【答案】 A【考点】二次函数y=a(x-h)^2+k的性质【解析】【解答】解:∵y=(x-1)2+3,∴二次函数图像顶点坐标为:(1,3).故答案为:A.【分析】根据二次函数顶点式即可得出顶点坐标.7.“三等分角”大约是在公元前五世纪由古希腊人提出来的。
2022年浙江省衢州市中考数学试题(解析版)
一、选择题(本小题有10小题,每题3分,共30分)3 1、〔2022·衢州〕 【答案】C考点:实数的大小比较 2、〔2022·衢州〕【答案】B 【解析】试题分析:科学计数法是指:a ×n10,且101 a ,n 为原数的整数位数减一,此题需要注意的就是要将319万化成3190000,然后再进行计算. 考点:科学计数法 3、〔2022·衢州〕 【答案】C 【解析】试题分析:画三视图的法那么为:主视图和俯视图的长与几何体的长相等,俯视图和左视图的宽与几何体的宽相等,左视图和主视图的高与几何体的高相等.根据画法可得:B 为主视图,C 为俯视图,D 为左视图. 考点:三视图 4、〔2022·衢州〕 【答案】D 【解析】试题分析:同类项是指字母完全相同,且相同字母的指数也完全相同的单项式,在做加减法时,将系数相加减,字母和字母的指数不变;同底数幂的乘法法那么:底数不变,指数相加;幂的乘方法那么:底数不变,指数相乘;积的乘方等于乘方的积. 考点:幂的计算 5、〔2022·衢州〕【答案】A 【解析】考点:平行四边形的性质 6、〔2022·衢州〕【答案】D考点:中位数的作用. 7、〔2022·衢州〕 【答案】B 【解析】试题分析:对于二次函数而言,当两点到对称轴的距离相等,那么两点所表示的函数值相等.根据表格可得:当x=-3和x=-1时函数值相等,那么函数的对称轴为直线x=2)1()3(-+-=-2.考点:二次函数的性质 8、〔2022·衢州〕【答案】D 【解析】试题分析:当△=2b -4ac 0时,方程有两个不相等的实数根;当△=2b -4ac=0时,方程有两个相等的实数根;当△=2b -4ac 0时,方程没有实数根.根据题意可得:△=4-4×1×(-k) 0,解得:k -1. 考点:一元二次方程根的判别式. 9、〔2022·衢州〕 【答案】A考点:(1)、切线的性质;(2)、三角函数 10、〔2022·衢州〕 【答案】B 【解析】试题分析:首先根据题意得出AD=30-x ,过点A 作AF ⊥BC ,根据等面积法和勾股定理求出AF 的长度,然后根据△BDE ∽△BAF 得出BE 和DE 与BD 的关系式,然后得出函数解析式,根据题意可得:300 BD ,然后画出图象,得出答案.考点:(1)、三角形相似的应用;(2)、函数的应用 二、填空题(本小题有6小题,每题4分,共24分) 11、〔2022·衢州〕 【答案】-1 【解析】试题分析:将x=6代入分式可得:原式=615-=-1 考点:求分式的值 12、〔2022·衢州〕 【答案】x ≥3 【解析】试题分析:要使二次根式有意义,那么必须满足二次根式的被开方数为非负数,即x-3≥0,那么x ≥3. 考点:二次根式的性质 13、〔2022·衢州〕 【答案】6.4考点:平均数的计算 14、〔2022·衢州〕 【答案】4或-2 【解析】试题分析:一组对边平行且相等的四边形是平行四边形,根据题意可得:OA ∥BC ,要使其成为平行四边形,那么必须慢OA=BC ,即3=1-x ,那么x=4或x=-2. 考点:平行四边形的性质 15、〔2022·衢州〕【答案】144 【解析】试题分析:首先设平行于墙的一面的长度为xm ,那么垂直与墙的一面的长度为448x-m ,然后根据长方形的面积计算法那么得出面积与x 的关系式,然后利用配方法得出最值,此题需要注意的就是x 的取值范围,它的长度必须小于墙的长度.考点:二次函数的应用【答案】(1)、2;(2)、1892≤≤k 【解析】试题分析:(1)、首先设出点A ′的坐标,然后根据三角形全等以及正方形的性质得出点B ′的坐标,然后根据两点都在反比例函数的图象上得出点坐标,从而得出正方形的边长;(2)、根据有重叠,那么需要找出两个临界值,那么当k 小于等于2时那么肯定有重叠局部,当点C 和点D 都在反比例函数y=x2上时那么是最大值,然后根据反比例函数的性质以及正方形的性质得出点C 和点D 的坐标,从而求出点A 和点B 的坐标,得出反比例函数的解析式. 考点:(1)、反比例函数的性质;(2)、三角形全等的性质三、解答题(本小题有8小题,第17-19小题每题6分,第20∽21小题每题8分,第22∽23小题每题10分,第24小题12分,共66分,请务必写出解答过程) 17、〔2022·衢州〕 【答案】6 【解析】试题分析:根据-1的偶数次幂为1,奇数次幂为-1;任何不为零的实数的0次幂为1以及绝对值和算术平方根的计算法那么得出各式的值,然后进行求和,得出答案. 试题解析:考点:实数的计算 18、〔2022·衢州〕【答案】(1)、答案见解析;(2)、菱形;证明过程见解析 【解析】试题分析:(1)、分别以点B 和点D 为圆心,大于BD 的一半为半径画弧,连接两个弧的交点就是BD 的中垂线;(2)、根据中垂线的性质得出BE=DE ,∠DEF=∠BEF ,根据AD ∥BC 得出∠DEF=∠BFE ,从而说明∠BEF=∠BFE ,然后得出BE=BF ,从而得出BE=DE=DF=BF ,从而说明菱形.试题解析:考点:(1)、作图;(2)、菱形的判定.【答案】(1)、16;(2)、9年 【解析】试题分析:(1)、首先设这个月晴天天数为x 天,然后根据总发电量列出一元一次方程,从而求出x 的值,得出答案;(2)、首先设需要z 年才能收回本钱,根据每月实际发电量×价格×12个月×z 年大于等于4万元列出不等式,从而求出不等式的解,得出答案.试题解析:考点:(1)、一元一次方程;(2)、不等式的应用 20、〔2022·衢州〕【答案】(1)、m=20;图形见解析;(2)、2011;(3)、10个班. 【解析】试题分析:(1)、根据C 的人数和百分比得出总人数,然后根据总人数求出A 的人数,从而得出A 的百分比;(2)、利用“体育特长类〞和“艺术特长类〞的总人数除以总人数得出百分比;(3)、首先根据“实践活动类〞的百分比得出人数,然后除以每个班的人数得出答案.试题解析:考点:(1)、统计图;(2)、概率的计算 21、〔2022·衢州〕【答案】(1)、证明过程见解析;(2)、334【解析】试题分析:(1)、根据∠AFB=∠ABC ,∠AB C=∠ADC 得出∠AFB=∠ADC ,从而得出CD ∥BF ,根据CD ⊥AB 得出BF ⊥AB ,得出切线;(2)、连接OD ,根据CD ⊥AB 以及CD 和OP 的长度,得出OD=2,然后根据△APD 和△ABF 相似得出相似比,从而得出BF 的长度.试题解析:考点:(1)、切线的判定;(2)、三角形相似的应用 22、〔2022·衢州〕【答案】(1)、6.11-≈x ,6.02≈x ;(2)、图象见解析;5.1- x 或1 x ;(3)、y=2x +2x+2;点P 在函数图象上,理由见解析. 【解析】试题分析:(1)、根据函数值为1时所对应的两个x 的值,得出答案;(2)、利用描点法画出函数图象,从而得出两个函数的交点坐标,然后根据图象得出答案;(3)、首先得出二次函数的顶点坐标,然后得出平移的方法;八点P 的坐标代入一次函数解析式,从而得出点在直线上.试题解析:考点:(1)、二次函数的性质;(2)、函数的交点坐标. 23、〔2022·衢州〕【答案】(1)、是垂美四边形;理由见解析;(2)、垂美四边形两组对边的平方和相等;理由见解析;(3)、73试题解析:考点:(1)、新定义型;(2)、勾股定理 24、〔2022·衢州〕【答案】(1)、C(2-3,1);(2)、332-π;(3)、k=-43,b=1.试题解析:考点:(1)、勾股定理;(2)、三角形相似;(3)、一次函数的性质;(4)、扇形的面积计算;(5)、等边三角形的性质.。
2020年浙江省衢州市中考数学会考试卷附解析
2020年浙江省衢州市中考数学会考试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图①表示正六棱柱形状的高大建筑物,图②中的阴影部分表示该建筑物的俯视图,P、Q、M、N表示小明在地面上的活动区域,小明想同时看到该建筑物的三个侧面,他应在()A.P 区域B.Q 区域C.区域D.区域2.若α是锐角,且sinα=34,则()A.60°<a<90°B. 45°<α<60°C. 30°<α<45°D.0°<a<30°3.两个相似三角形的相似比是 2:3,其中较大的三角形的面积为 36 cm2,则较小的三角形的面积是()A.16cm2B.18 cm2 C.2O cm2D.24 cm24.如图,四边形ABCD是正方形,延长 BC至点E,使CE=CA,连结AE交CD于点F,则∠AFC的度数是()A. 150°B. 135°C.125°D. 112.5°5.如图,在梯形ABCD中,AD∥BC,AB=AD=DC,∠C=60°.若这个梯形的周长为50,则AB的长为()A.8 B.9 C.10 D.126.等腰梯形ABCD中,AD∥BC,对角线AC=BC+AD,则∠DBC的度数是()A.30°B.45°C.60°D.90°。
7.以三角形的一条中位线和第三边上的中线为对角线的四边形是 ( ) A .梯形B .平行四边形C .四边形D .正方形8.某班有48位同学,在一次数学测验中,分数只取整数,统计其成绩,绘制出频率分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频率与组距的比值)如图所示,从左到右的小矩形的高度之比为1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是 ( ) A .6人B .9人C .12人D .18人二、填空题9.如果一个立体图形的主视图为矩形,则这个立体图形可能是 (•只需填上一个立体图形).10.下列函数中,y 随x 的增大而减小的有 .(填写序号) ①y=3x ②y=2x -1 ③y=-x+5 ④y=4-x 3 ⑤y=1x (x>0) ⑥y=3x (x<0) 11.如图,已知AB ∥CD ,∠B=80°,∠BMD=30°,则∠D= .12. 一元二次方程20ax bx c ++=(0a ≠)的求根公式是x = ,(24b ac - 0) 13.已知221y x x =-+-+,则yx= . 14.已知摄式温度(℃)与华式温度(℉)之间的转换关系是:华式温度=59×(华式温度-32).若华式温度是68℉,则摄式温度是 ℃. 15.按键的顺序是31.823.7.请列出算式: .16.200629的个位数是 ;200623的个位数是 .17.等腰梯形两底的差等于底边上高的2倍,则这个梯形较小的底角为 度.三、解答题18.某口袋中放有 5 个自球,4 个器球,先从中模出一球后,不放回口袋中,再模一次,问两次揍到的都是黑球的概率是多少?124123-1-2-3-1-2y xAOB C D19.小莉有红色、白色、蓝色上衣各一件,黄色、黑色长裤各一条. (1)用树状图分析小莉穿法的搭配情况; (2)小莉共有多少种不同的穿法?(3)小莉穿红色上衣、黑色长裤的机会是多少?20.小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:朝上的点数 1 2 3 4 5 6 出现的次数79682010(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据实验,一次实验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么? (3)小颖和小红各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.21.如图,二次函数的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点C 、D 是二次函数图象上的一对对称点,一次函数的图象过点B 、D . (1)求D 点的坐标. (2)求一次函数的解析式.(3)根据图象写出使一次函数值大于二次函数的值的x 的取值范围.22.图纸上画出的某个零件的长是a(mm),如果比例尺是 1:20,那么这个零件实际的长是多少?如果比例外尺是4: 1 呢?23.用反证法证明“已知a a<”,求证:a必为负数”.证明:假设a不是负数,那么a是或a是.(1)如果a是,那么a a=,这与题设矛盾,所以a不可能是零.(2)如果a是,那么a a=,这与矛盾,所以a不可能是.综合(1)和(2)可知a不可能是,也不可能是.所以a必为负数.24.在如图所示的 4×4 方格内画三角形,使它的顶点都在格点上,三条边长分别为11255,4,2232+.25.如图,写出将腰长为2的等腰直角三角形A08先向右平移1个单位长度,再向下平移2个单位长度后各顶点的坐标.26.“5·12”汶川大地震后,灾区急需大量帐篷,某服装厂原有 4条成衣生产线和 5条童装生产线,工厂决定转产,计划用了天时间赶制 1000顶帐篷支援灾区,若启用 1条成衣生产线和 2条童装生产线,一天可以生产帐篷105顶;若启用 2条成衣生产线和3条童装生产线,一天可以生产帐篷178顶.(1)每条成衣生产线和童装生产线平均每天生产帐篷各多少顶?(2)工厂满负荷全面转产,是否可以如期完成任务?如果你是厂长,你会怎样体现你的社会责任感?27.一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外其余均相同.(1)从箱子中任意摸出一个球是白球的概率是多少?(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出球的都是白球的概率,并画出树状图.28.如图,在△ABC和△DEF中,AC=DF,AE=BD,BC=EF,则∠C=∠F,请说明理由(填空).解:∵ AE=BD(已知)∴ =∴ =在△ABC和△DEF中===∴△ABC≌△DEF ( )∴∠C=∠F ( )29.有一种正方形模板如图所示,边长是 a(m),成本价为每平方米 10 元. 现根据客户需求,需将边长增加 0.5 m,问现在这块模板的成本价是多少?30.如图,D、B是线段AC上的两点,且D为AC的中点,BC=DB,DC= 3.5,求线段AB的长.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.A4.D5.C6.C7.B8.D二、填空题9.答案不唯一如:长方体、圆柱等10.③④⑤⑥11.50°12.13.2114. 2015.(-31.8)÷3.7=16.1,917.45º三、解答题 18.两次杯搂到黑球的概率为431986P =⨯=19.解:(1)略;(2)6种;(3)16. 20.解:(1)“3点朝上”出现的频率是616010=; “5点朝上”出现的频率是201603=; (2)小颖的说法是错误的.这是因为,“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的频率最大.只有当实验的次数足够大时,该事件发生的频率稳定在事件发生的概率附近.小红的判断是错误的,因为事件发生具有随机性,故“6点朝上”的次数不一定是100次. (3)列表如下:1 2 3 4 5 6 1 2 3 4 5 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 9 45678910小红投掷的点数 小颖投掷 的点数5 6 7 8 9 10 11 67 8 9 10 11 12∴121(3)363P ==点数之和为的倍数. 21.(1)由图可得C (0,3).∵抛物线是轴对称图形,且抛物线与x 轴的两个交点为A (-3,0)、B (1,0), ∴抛物线的对称轴为1x =-,D 点的坐标为(-2,3). (2)设一次函数的解析式为y kx b =+,将点D (-2,3)、B (1,0)代入解析式,可得230k b k b -+=⎧⎨+=⎩,解得1,1k b =-=. ∴一次函数的解析式为1y x =-+.(3)当21x x <->或时,一次函数的值大于二次函数的值.22.比例尺是 1:20 时,零件实际长为20a(mm).. 当比例尺为 4:1 时,零件实际长为4a(mm).. 23.零,正数 (1)零,a a <;(2)正数,a a < ,正数,零,正数24.如图所示25.A ′(1,O),B ′(3,-2),O ′(1,-2)26.(1)凌每条成衣生产线和童装生产线平均每天生产帐篷分别为x 顶、y 顶.210523178x y x y +=⎧⎨+=⎩,解这个方程组4132x y =⎧⎨=⎩,经检验,这个解是原方程组的解,且符合题意. 答:每条成衣生产线和童装生产线平均每天生产帐篷分别为 41顶、32顶.(2)由 3×(4×41+5×32)=972<1000,可知即使工厂满负荷全面转产也不可能如期完成任务. 作为厂长可以安排加班生产、改进技术等,进一步挖掘自已厂的生产潜力,或动员其他厂家支援,想办法尽早完成生产任务,为灾区人民多作贡献.27.(1)32;(2)31. 28.AE-BE ,BD-BE ,AB ,DE ,AC ,DF ,AB ,DE ,BC ,EF ,SSS ,全等三角形的角相等.29.面积为221(0.5)4a a a +=++,成本价为 (2510102a a ++)元 30.因为D 为 AC 的中点,∴CD=12AC. ∵CD =3.5,∴AC =7.又∵ BC=BD ,∴BC=12CD=12×3.5=1.75. ∴AB=AC-BC=7-1.75=5.25。
2024年浙江省衢州市中考一模数学试题(解析版)
2023学年度第二学期九年级质量检测试卷数.学・试・题·卷考生须知:1.全卷共三大题,24小题,满分为120分.考试时间为120分钟,本次考试采用闭卷形式.2.全卷分为卷Ⅰ(选择题)和卷Ⅱ(非选择题)两部分,全部在答题纸上作答.卷Ⅰ的答案必须用2B 铅笔填涂;卷Ⅱ的答案必须用黑色字迹钢笔或签字笔写在答题纸相应位置上.3.请用黑色字迹钢笔或签字笔在答题纸上先填写姓名和准考证号.4.本次考试不得使用计算器.卷Ⅰ说明:本卷共有1大题,10小题,共30分.请用2B 铅笔在答题纸上将你认为正确的选项对应的小方框涂黑、涂满.一、选择题(本题有10小题,每题3分,共30分)1. 家用冰箱冷冻室的温度需控制在到之间,则可将冷冻室的温度设为( )A. B. C. D. 【答案】C【解析】【分析】本题主要考查了有理数大小的比较,根据进行求解即可.【详解】解:∵,∴在到之间的是,故选:C .2. 下列四幅图形中,表示两棵小树在同一时刻同一地点阳光下的影子的图形可能是( )A. B.C. D.【答案】A4-℃24-℃0℃3-℃18-℃25-℃252418430-<-<-<-<-<252418430-<-<-<-<-<4-℃24-℃18-℃【解析】【分析】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.利用“在同一时刻同一地点阳光下的影子的方向应该一致,树高与影长的比相等”对各选项进行判断.【详解】解:两棵小树在同一时刻同一地点阳光下的影子的方向应该一致,树高与影长的比相等,所以A 选项满足条件.故选:A .3. 一个不透明的布袋里装有4个只有颜色不同的球,其中3个红球,1个白球.从中任意摸出1个球是红球的概率为( )A 1 B. C. D. 【答案】B【解析】【分析】本题主要考查概率公式,解题的关键是掌握随机事件的概率事件可能出现的结果数:所有可能出现的结果数.直接利用概率公式求解可得.【详解】解:从中任意摸出1个球共有4种结果,其中摸出的球是红球的有3种结果,∴从中任意摸出1个球是红球的概率为,故选:B .4. 下列运算正确的是( )A. B. C. D. 【答案】D【解析】【分析】此题考查了整式的计算,正确掌握同底数幂的乘法法则、合并同类项法则、积的乘方法则及同底数幂除法法则是解题的关键.根据同底数幂的乘法法则、合并同类项法则、积的乘方法则及同底数幂除法法则依次计算判断.【详解】解:A 、不是同类项不能合并,故该项不符合题意;B 、,故该项不符合题意;.341213A ()P A =A 34235a a a +=236a a a ⋅=()236ab ab =63322a a a ÷=23a a 、235a a a ⋅=C 、,故该项不符合题意;D 、,故该项符合题意;故选:D .5. 在平面直角坐标系中,将点向右平移3个单位得到点,则点的坐标为( )A. B. C. D. 【答案】B【解析】【分析】本题考查坐标与平移,关键是根据左右平移只改变点的横坐标,左减右加进行解答.让点的横坐标加3,纵坐标不变即可得到点的坐标.【详解】解:由题中的平移规律可知:点的横坐标为;纵坐标为3;∴点的坐标为.故选:B .6. 今有三人共车,二车空:二人共车,九人步.问人与车各几何?(选自《孙子算经》)现假设有辆车,则有方程( )A. B. C. D. 【答案】A【解析】【分析】本题考查一元一次方程的应用,读懂题意,根据两种方式的总人数相等列方程即可.【详解】解:设有辆车,根据题意,得,故选:A .7. 不等式组的解集是( )A. B. C. D. 【答案】D【解析】()2326ab a b =63322a a a ÷=()1,3A -B B ()1,6-()2,3()1,0-()4,3-A B B 132-+=B ()2,3x ()3229x x -=+3229x x -=+()3229x x -=+()()3229x x -=+x ()3229x x -=+()2115114x x x x ⎧->+⎪⎨-≤+⎪⎩3x >2x ≤25x <≤35x <≤【分析】本题考查解一元一次不等式组,解题关键是熟知解一元一次不等式的步骤:去分母,去括号,移项,合并同类项,系数化为1.分别解两个不等式,求出解集公共部分即可.【详解】解:由①得:;由②得:,解得:,∴原不等式组的解集为:,故选:D .8. 某款扫地机器人的俯视图是一个等宽曲边三角形(分别以正的三个顶点A ,,为圆心,长为半径画弧得到的图形).若已知,则曲边的长为( )A. B. C. D. 【答案】B【解析】【分析】本题考查的是正多边形和圆的知识,掌握弧长公式是解题的关键.根据正三角形的性质求出弧的半径和圆心角,根据弧长的计算公式求解即可.【详解】解:由题意得是正三角形,,的长为:.故选:B .9. 某水文局测得一组关于降雨强度和产汇流历时的对应数据如下表(注:产汇流历时是北由降雨到产生径流所经历的时间),根据表中数据,可得关于的函数表达式近似为()()2115114x x x x ⎧->+⎪⎨-≤+⎪⎩①②3x >5144x x -≤+5x ≤35x <≤ABC ABC B C AB 6AB = AB π2π6π12πABC 602BAC ABC ACB AB BC AC ∴∠=∠=∠=︒===,∴ AB 60π62π180⋅⨯=I t t I降雨强度468101214产汇流历时18.012.19.07.26.05.1A. B. C. D. 【答案】A【解析】【分析】本题考查函数的关系式,通过表格中两个变量的对应值的变化关系,发现它们的乘积相等是正确解答的关键.根据表格中两个变量的对应值,探索两个变量的乘积,进而得出两个变量的函数关系式.【详解】解:由表格中两个变量的对应值可得,,所以与成反比例关系,所以与的函数关系式为,故选:A .10. 已知二次函数,当时,函数的最小值是,则的取值范围是( )A. B. C. D. 【答案】C【解析】【分析】本题主要考查了二次函数的最值问题,把解析式化为顶点式求出抛物线开口向上,顶点坐标为,再根据当时,函数的最小值是可得,解之即可得到答案.【详解】解:∵抛物线解析式为,∴抛物线开口向上,顶点坐标为,∴y 的最小值即为,∵当时,函数的最小值是,∴,∴,()mm/h I ()h t 72t I =72It =3242t I =-+3154t I =-+418072612.189.0107.212 6.014 5.1⨯=≈⨯=⨯=⨯=⨯≈⨯.t I t I 72t I =2=23y x x --2m x m ≤≤+y 4-m m 1≥1m £11m -≤≤02m ≤≤()14-,2m x m ≤≤+y 4-12m m ≤≤+()222314y x x x =--=--()14-,4-2m x m ≤≤+y 4-12m m ≤≤+11m -≤≤故选:C .卷Ⅱ二、填空题(本题有6小题,每题3分,共18分)11. 已知三角形两边长为3,4,则第三条边的长可以是______(写出一种即可).【答案】2【解析】【分析】本题考查三角形三边关系.三角形三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边,由此得到,即可得到答案.【详解】解:设三角形第三条边的长是,,,第三条边的长可以是2.故答案为:2(答案不唯一).12. 国际上把及以上作为正常视力,下图是某校学生的视力情况统计图,已知该校视力正常的学生有人,则未达到正常视力的学生人数为______.【答案】【解析】【分析】解答本题的关键是明确题意,由扇形统计图某项数目所占百分比求总量,再用总量求某项数目,利用数形结合的思想解答.先利用500人的正常视力学生在所有学生中所占的25%的比例,从而得出所有学生有2000人,让所有学生人数减去正常视力学生人数,从而得出未达到正常视力的学生人数.【详解】解:由题可得及以上作为正常视力名学生占所有人的,全校共计人数为人,故未达到正常视力的学生人数为人 .13. 篮球比赛规则规定:赢一场得2分,输一场得1分.某次比赛甲球队赢了场,输了场,积20分.若用含的代数式表示,则有______.17x <<x 4343x ∴-<<+17x ∴<<∴ 5.050015005.050025%∴500200025%=20005001500-=x y x y y =【答案】【解析】【分析】根据题意列出方程,求出与的关系式;本题考查了列代数式,根据题意列出方程是解答本题的关键.【详解】由题意可得:,故答案为:.14. 在中,半径,弦,则弦所对的圆周角大小为______度.【答案】或【解析】【分析】本题考查了圆周角定理,垂径定理,解直角三角形,画出正确的图形是解题的关键.按要求画出图形,连接、,过点O 作,根据垂径定理,求出的长,再根据特殊角的三角函数值求出,再通过圆周角定理,即可解答.【详解】解:如图,连接、,过点O 作,交于点D ,,,,在中,,,,故答案为:或.202x-y x 220x y +=202y x∴=-202x -O 2OA =AB =AB 60120OA OB OD AB ⊥AD AOD ∠OA OB OD AB ⊥AB OD AB ⊥∴12AD AB == 2AO =∴Rt AOD sin AOD AD AO∠==∴60AOD ∠=︒∴2120AOB AOD ∠=∠=︒∴1602AMB AOB ∠=∠=︒∴180120ANB AMB ∠=︒-∠=︒6012015. 某校为了解学生在校午餐所需的时间,抽查了名同学在校午餐所花的时间,获得如下数据(单位:分):.若将这些数据分为6组,制作频数表,则频数最大的组是______.【答案】【解析】【分析】本题考查了频数分布表.熟练掌握频数分布表是解题的关键.将数据从小到大依次排序为,由题意知,最大值与最小值的差为,分6组,则组距为5,可分组为、、、、、,然后求各组的频数,最后作答即可.【详解】解:将数据从小到大依次排序为:,由题意知,最大值与最小值的差为,分6组,则组距为5,分组为、、、、、,频数分别为3、9、6、1、1,∴频数最大的组为,故答案为:.16. 如图,是由四个全等的直角三角形和中间一个小正方形拼成的赵爽弦图,连结并延长,交于点,交于点.记的面积为,的面积为.(1)若,则的值为______.(2)若,且,则的长度为______.【答案】① ②. 【解析】【分析】(1)过点作交于点,根据已知得出,证出,得.20912151016181918203822252018182015162116,,,,,,,,,,,,,,,,,,,13.518.5~38929-=8.513.5~13.518.5~18.523.5~23.528.5~28.533.5~33.538.5~910121515161616181818181920202021222538,,,,,,,,,,,,,,,,,,,38929-=8.513.5~13.518.5~18.523.5~23.528.5~28.533.5~33.538.5~13.518.5~13.518.5~EFGH CE BG M AB N NAE 1S CGM △2S NA NE =12S S 1213S S =9EF =AE 1292N N I A F ⊥I 51∠=∠A I N ∽CG M,由三线合一得到为中点,再结合即可求出;(2)根据已知证出,得到,根据得到,,令,列出等式计算出结果即可.【详解】(1)过点作交于点, ∵设在与中,由三线合一:为中点I N A I G M C G =I EA 1212⋅==⋅AE IN S IN S CG GM GM C G M ∽E FM C G G M E F FM =1213S S =3I N I N C G E I =293I N C G C G C G =+CG t =N N I A F ⊥I NA NE=56∴∠=∠46∠=∠ 54∴∠=∠∥FC H A 41∴∠=∠51∴∠=∠AE x=C G B F A E x D H ====∴A I N CGM △51,90A I N C G M ∠=∠∠=∠=︒ A I N ∽C G M ∴ I N A I G M C G=∴,N A N E A E I N=⊥ I EA 1122A E I N G M C G ==∴(2)在与中,,,令,则∴121122⋅===⋅AE IN S IN S CG GM GM CGM △EFM △14,23∠=∠∠=∠ C G M ∽E FM∴ C G G M E F FM∴=9E F G F == AE CG =99C GG MG M∴=- 1213S S =13I N G M ∴=3G M I N∴=146∠=∠=∠ ta n =ta n 16G M I N C G E I ∴∠=∠=3I N I NC G E I∴=13E I C G ∴=13A I C G =ta n 5I N B F A I A F∠==293I NC G C GC G ∴=+CG t =()2239t I N t =+即【点睛】本题主要考查正方形性质,相似三角形的判定和性质,三角形面积公式,列代数式等知识,熟练掌握以上知识并准确列出等式是解题关键.三、解答题(本题有8小题,共72分.第17~18题每题6分,第1920题每题8分,第21~22题每题10分,第23~24题每题12分,请务必写出解答过程)17. 计算:.【答案】【解析】【分析】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.原式第一项利用异号两数相乘的法则计算,第二项利用算术平方根定义化简,第三项利用绝对值的代数意义化简,最后一项利用零指数幂法则计算即可得到结果.【详解】解:..18.化简:.399933C GG M I N I N G M I N I N===--- ()39I N tI N -=()39t t I N=+39tI N t=+()2239t I N t=+ ()223939t t tt∴=++29t ∴=92t =92A E C G ==())0231π⨯--4-()()02331π⨯--+-+-6231=--++4=-22122a a a ---【答案】【解析】【分析】本题考查的是异分母分式的加减运算,先通分化为同分母分式,然后分子相减即可求解.【详解】解:.19. 如图,在的方格纸中,每个小正方形的边长都为1,点,位于格点处.(1)分别在图1,图2中画出两个不全等的格点,使其内部(不含边)均有2个格点.(2)任选一个你所画的格点,判断其是否为等腰三角形并说明理由.【答案】(1)见解析(2)为等腰三角形,见解析【解析】【分析】本题考查的是格点作图及勾股定理的应用,根据图中已知线段正确作图是解题关键,(1)按要求画出两个不全等的格点即可;(2)通过计算所作三角形边长判断即可;【小问1详解】解:如图,作,,三种三角形中的任意两个即可;【小问2详解】1a-22122a a a ---()()222a a a a a =---()22aa a -=-1a =-55⨯A B ABC ABC ABC ABC ()13ABC ABC ()24ABC ABC 5ABC解:分别计算和的长度,,;或者分别计算和的长度,;所以为等腰三角形.20. 某市组织九年级20000名学生参加“一路书香,去阿克苏”捐书活动,每人可捐书1~4本.为估计本次活动的捐书总数,随机抽查了400名学生的捐赠情况,绘制了如图所示的条形统计图(A :捐1本:B :捐2本;C :捐3本:D :捐4本).分析:根据“用样本估计总体”这一统计思想,既可以先求出被抽查的400名同学的人均捐书数,继而估算20000名同学的捐书总数;也可以……请根据分析,给出两种方法估计本次活动捐书总数,写出你的解答过程.【答案】本次活动的捐书总数约为50000本,见解析【解析】【分析】本题考查了用样本估计总体,条形统计图等知识,可以用样本的平均数估计总体的平均数进行求解,也可以用的总数估计总体的总数进行求解等.【详解】解:①利用平均数估计∴(本)估计本次活动的捐书总数约为52000本.②利用总数估计∴(本)估计本次活动的捐书总数约为52000本.或者利用中位数估计的AB ()315,AC BC BC AB ()315,AC BC BC =2AC 2BC 2AC =2BC =ABC 14021603120480 2.6400x ⨯+⨯+⨯+⨯==20000 2.652000⨯=400140216031204801040S =⨯+⨯+⨯+⨯=人捐书2000020000104052000400S =⨯=人捐书中位数为∴(本)估计本次活动的捐书总数约为50000本.21. 我市“一户一表、抄表到户”居民生活用水实行阶梯水价,三级收费标准如下表,每户每年应缴水费(元)与用水量关系如图.分类用水量单价(元/)第1级不超过300第2级超过300不超过480的部分第3级超过480的部分根据图表信息,解答下列问题:(1)小南家2022年用水量为,共缴水费1168元.求,及线段的函数表达式.(2)小南家2023年用水量增加,共缴水费元,求2023年小南家用水量.【答案】(1),(2)【解析】【分析】本题主要考查了一次函数实际应用,一元一次方程的实际应用:(1)根据函数图象即可求出a 的值,进而求出k 的值,再求出点B 的坐标,即可利用待定系数法求出对应的函数解析式;(2)先推出,进而根据共缴水费元列出方程求解即可.的23 2.52+=20000 2.550000⨯=y ()3m x ()3m x 3m a k 6.23400m a k AB 1516.42.7, 3.58a k ==()3.58264300480y x x =-≤≤3490m 480x >1516.4【小问1详解】解:由图表可知:,∴;∴当用水量为时,每年应缴水费为元∴设,把,代入,得,解得)∴线段的函数表达式为.【小问2详解】解:∵,∴,∴,解得.∴2023年小南家用水量为.22. 已知矩形纸片.第①步:将纸片沿折叠,使点与边上的点重合,展开纸片,连结,,与相交于点(如图1).第②步:将纸片继续沿折叠,点的对应点恰好落在上,展开纸片,连接,与交于点(如图2).(1)请猜想和的数量关系并证明你的结论.(2)已知,,求的值和的长.【答案】(1),见解析810300 2.7a =÷=()()1168810400300 3.58k =-÷-=3480m ()810 3.584803001454.4+⨯-=()480,1454.4B AB y k x b '=+()300,810A ()480,1454.4B 3008104801454.4k b k b +=⎧⎨+=''⎩,3.58264k b =-'=⎧⎨⎩,AB ()3.58264300480y x x =-≤≤1454.41516.4<480x >()()810480300 3.58 6.24801516.4x +-⨯+-=490x =3490m ABCD AE D BC F AF DF DF AE O DF C G AF DG AE H DE DH 5DE =4CE =tan CDF ∠AH DE DH =(2),.【解析】【分析】(1)由折叠的性质知,,,根据证明即可得到;(2)连接,利用勾股定理列式求得,正切函数的定义求得,利用等角的余角相等求得,据此求解即可.【小问1详解】解:,理由如下:由第①步折叠知:,,则有,由第②步折叠知:,即,又所以,∴;【小问2详解】解:连接,由折叠的性质得,∵,∴,∴,13AH =AE DF ⊥OF OD =EDO HDO ∠=∠ASA DEO DHO △≌△DE DH =EF 3CF ==DF ==1tan 3CF CDF CD ∠==1tan tan tan 3ODH DAE CDF ∠=∠=∠=DE DH =AE DF ⊥OF OD =90EOD HOD ∠=∠=︒CDF GDF ∠=∠EDO HDO ∠=∠DO DO =()ASA DEO DHO ≌DE DH =EF 5EF DE ==4CE =3CF ==31tan 543CF CDF CD ∠===+∵∴,∵,,∴,∴,∴,∴.【点睛】本题考查了矩形与折叠问题,解直角三角形的应用,全等三角形的判定和性质,勾股定理与折叠问题.解题的关键是灵活运用所学知识解决问题.23. 综合与实践矩形种植园最大面积探究情境实践基地有一长为12米的墙,研究小组想利用墙和长为40米的篱笆,在前面的空地围出一个面积最大的矩形种植园.假设矩形一边,矩形种植园的面积为.分析要探究面积的最大值,首先应将另一边用含的代数式表示,从而得到关于的函数表达式,同时求出自变量的取值范围,再结合函数性质求出最值.思考一:将墙的一部分用来替代篱笆按图1的方案围成矩形种植园(边为墙的一部分).探究思考二:将墙的全部用来替代篱笆按图2方案围成矩形种植园(墙为边的DF ==12OD DF ==90EAD DEA ∠+∠=︒90CDF DEA ∠+∠=︒DAE CDF ∠=∠1tan tan tan 3ODH DAE CDF ∠=∠=∠=13OH OD ==3OA OD ==AH OA OH =-=MN MN CD x =S S BC x S xMN AB MN MN MN的一部分).解决问题(1)根据分析,分别求出两种方案中的的最大值;比较并判断矩形种植园的面积最大值为多少.类比应用(2)若“情境”中篱笆长为20米,其余条件不变,请画出矩形种植园面积最大的方案示意图(标注边长).【答案】(1)方案1中,方案2中,矩形种植园面积最大为;(2)见解析【解析】【分析】题目主要考查二次函数的应用,根据题意,列出二次函数关系式,然后再求最值即可得出结果,理解题意是解题关键.(1)方案1:根据题意得出面积的函数关系式,然后利用其性质求解即可;方案2:设,然后确定相应函数关系式求解即可;(2)同(1)方法类似,确定函数关系式求解即可.【详解】(1)方案1:∵,则,∴,∵,∴当时,,方案2:设,则,∴,∵,当时,.∵,∴矩形种植园面积最大为;(2)图示如下:AB S max 168S =max 169S =2169m AB CD x ==CD x =402x AD BC -==()2240112020200222x S x x x x -=⋅=-+=--+012x <≤12x =max 168S =AB CD x ==40122262x AD BC x +-===-()()22262613169S x x x x x =⋅-=-+=--+1226x ≤<13x =max 169S =169168>2169m(同(1)过程,可分别求得:方案1:∵,则.∴().∴当时, .方案2:()∴当为12时,达到最大,最大值是48.可见矩形种植园面积最大为,此时.24. 在中,⊙O 是的外接圆,连结并延长,交于点,交⊙O 于点,.连结,.(1)求证:.(2)求证:.(3)已知,,是否能确定⊙O 的大小?若能,请求出⊙O 的直径;若不能,请说明理由.【答案】(1)见解析(2)见解析(3)能,【解析】【分析】本题主要考查了圆周角定理,相似三角形的判定以及性质,同弧所对的圆周角相等等知识掌握这些性质定理是解题的关键.(1)由圆周角定理可知,结合已知条件,可得出,由同弧所对的圆周角相等可知,等量代换可.AB x =202x AD BC -==()2201105022x S x x -=⋅=--+012x <≤10x =max 50S =2322162x S x x x -=⋅=-+1216x ≤<x S 250m 10CD =ABC ABC CO AB D E 2ACE BCE ∠=∠OB BE ABE EOB ∠=∠212BD ED EC =⋅2AC EB =11AB=7+2EOB BCE ∠=∠EOB ACE ∠=∠ACE ABE ∠=∠ABE EOB ∠=∠(2)证明,由相似的性质可得,,即可得.(3)先证明,可得出,令,,则有,,结合(2)可得出,化简可得,结合已知条件即可求出直径.【小问1详解】证明:∵,∴.又,∴.【小问2详解】∵,∴,∴,即.由相似知,又,∴,∴.【小问3详解】能确定的大小.∵,,∴,∴.已知,∴令,,则有,(如图).BED OEB △∽△BE ED OE EB =BE BD OE OB=21122BD ED OE ED EC ED EC =⋅=⋅=⋅EDB ADC ∽EB ED BD AC AD CD==EB BD x ==ED y =2AC DC x ==2=AD y ()2122x y y x =+)1y x =2EOB BCE ∠=∠2ACE BCE∠=∠EOB ACE ∠=∠ACE ABE ∠=∠ABE EOB ∠=∠ABE EOB ∠=∠BED OEB∠=∠BED OEB △∽△BE ED OE EB=2OE EDEB =⋅BE BD OE OB=OE OB =BE BD =21122BD ED OE ED EC ED EC =⋅=⋅=⋅O EDB ADC ∠=∠E A ∠=∠EDB ADC ∽EB ED BD AC AD CD==2AC EB =EB BD x ==ED y =2AC DC x ==2=AD y由(2)知,化简得到,解得,∴.又,∴.∴直径()2122x y y x =+22220y xy x +-=(1y x ==-)1y x =-()2111AB x y x =+==1x ==+))()21117EC x y x =+==+=+。
衢州市2019中考数学第一轮总复习讲义:函数及其图像.doc
函数及其图像典型考题考点一平面内点的坐标(2019·南京)在平面直角坐标系中,点A 的坐标是(2,-3),作点A 关于x 轴的对称点得到点A′,再作点A′关于y 轴的对称点,得到点A″,则点A″的坐标是变式1:(2019·天津)在平面直角坐标系中,把点P(-3,2)绕原点O顺时针旋转180°,所得到的对应点P′的坐标为( )A.(3,2) B.(2,-3) C.(-3,-2) D.(3,-2)变式2:如图,在平面直角坐标系中,一动点从原点O 出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么点A4n+1(n 是自然数)的坐标为.考点二函数自变量的取值范围(2019·内江)函数 y = 2-x + 1中自变量 x 的取值范围是( )x -1 A .x ≤2 B .x ≤2 且 x ≠1 C.x <2 且 x ≠1D .x ≠1变式: 在函数 y = x +2中,自变量 x 的取值范围是()x -1A .x >1B .x ≥1C .x >-2D .x ≥-2考点三函数的图象及应用(2019·济宁)匀速地向一个容器内注水,最后把容器注满,在注 水过程中,水面高度 h 随时间 t 的变化规律如图所示(图中 OABC 为一 折线),这个容器的形状是下图中的()变式:如图,在 Rt △ABC 中,∠C =90°,AC =1 cm ,BC =2 cm , 点 P 从点 A 出发,以 1 cm/s 的速度沿折线 AC →CB →BA 运动,最终回 到 A 点.设点 P 的运动时间为 x (s),线段 AP 的长度为 y (cm),则能反 映 y 与 x 之间函数关系的图象大致是()随堂巩固1.(2019·营口)函数y=x+3中自变量x 的取值范围是( ) x-5A.x≥-3 B.x≠5 C.x≥-3或x≠5 D.x≥-3 且x≠52.(2019·衢州实验中学调研)如图,在5×4 的方格纸中,每个小正方形边长为1,点O,A,B 在方格线的交点(格点)上.在第四象限内的格点上找点C,使△ABC 的面积为3,则这样的点C 共有( )A.2 个B.3 个C.4 个D.5 个 3.如图,在平面直角坐标系中,点A,B 的坐标分别为(-6,0),(0,8).以点A 为圆心,以AB 长为半径画弧交x 轴正半轴于点C,则点C的坐标为( )4.如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P 在运动过程中速度不变,则以点B 为圆心,线段BP 长为半径的圆的面积S 与点P 的运动时间t 的函数图象大致为( )5.小聪骑车从飞瀑出发前往宾馆,速度为 20 km/h ,途中遇见小慧 时,小慧恰好游完一景点后乘车前往下一景点,上午 10:00 小聪到达 宾馆.图②中的图象分别表示两人离宾馆的路程 s (km)与时间 t (h)的函 数关系.试结合图中信息回答:(1)小聪上午几点钟从飞瀑出发?(2)试求线段 AB ,GH 的交点 B 的坐标,并说明它的实际意义. (3)如果小聪到达宾馆后,立即以 30 km/h 的速度按原路返回,那么 返回途中他几点钟遇见小慧?2019-2020学年数学中考模拟试卷一、选择题1.﹣3的绝对值是( ) A .﹣3B .3C .-13D .132.函数y=|x-3|·(x+1)的图象为( )A. B. C. D.3.如图,AB 是⊙O 的直径,C ,D 两点在⊙O 上,若∠BCD=40°,则∠ABD 的度数为( )A.40°B.50°C.80°D.90°4.将抛物线y =2x 2﹣1沿直线y =2x 方向向右上方平移 )A.y =2(x+2)2+3 B.22(1y x =--C.221y x =+D.y =2(x ﹣2)2+35.数据1、10、6、4、7、4的中位数是( ).A.9B.6C.5D.46.-4的倒数是( ). A .4B .-4C .14D .-147.如图,点D 在半圆O 上,半径OB =,AD =10,点C 在弧BD 上移动,连接AC ,H 是AC 上一点,∠DHC =90°,连接BH ,点C 在移动的过程中,BH 的最小值是( )A .5B .6C .7D .88.已知抛物线2(0)y ax bx c a =++≠的对称轴为1x =-,与x 轴的一个交点在(3,0)-和(2,0)-之间,其部分图像如图所示,则下列结论:①点17(,)2y -,23(,)2y -,35(,)4y 是该抛物线上的点,则123y y y <<;②320b c +<;③()t at b a b +≤-(t 为任意实数).其中正确结论的个数是( )A .0B .1C .2D .3 9.下列四个点中,有三个点在同一条直线上,不在这条直线上的点是( )A .(﹣3,﹣1)B .(1,1)C .(3,2)D .(4,3)10.一幅美丽的图案是由四个边长相等的正多边形镶嵌而成,其中的三个分别为正三角形、正四边形、正六边形,那么另外一个为( ) A .正三角形 B .正四边形 C .正五边形D .正六边形 11.下列运算正确的是( ) A .x ﹣2x =﹣1 B .2x ﹣y =xyC .x 2+x 2=x 4D .(﹣2a 2b )3=﹣8a 6b 312.改革开放40年,中国教育呈现历史性变化.其中,全国高校年毕业生人数从16.5万增长到820万,40年间增加了近50倍.把数据“820万”用科学记数法可表示为( ) A .48210⨯ B .58210⨯C .58.210⨯D .68.210⨯二、填空题 13.若分式22xx +的值为正,则实数x 的取值范围是__________________. 14.已知:Rt △ABC 中,∠B=90°,AB=4,BC=3,点M 、N 分别在边AB 、AC 上,将△AMN 沿直线MN 折叠,点A 落在点P 处,且点P 在射线CB 上,当△PNC 为直角三角形时,PN 的长为_____.15.如图,在Rt △ABC 中,∠A=90°,AB=AC ,+1,点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠∠B ,使点B 的对应点B′始终落在边AC 上,若△MB′C 为直角三角形,则BM 的长为_____.16.已知反比例函数的图象经过点(m ,6)和(﹣2,3),则m 的值为________. 17.已知函数y =2x+1,当x >3时,y 的取值范围是_____.18.计算: 的结果是_____. 三、解答题19.如图,已知在Rt ABC ∆中,90ABC ∠=︒,在AB 上取点D ,使得AD CD =,若//CD BE . (1)求证:AB BE =;(2)若CD 平分ACB ∠,求ABE ∠的度数.20.如图是某景区每日利润y 1(元)与当天游客人数x (人)的函数图像.为了吸引游客,该景区决定改革,改革后每张票价减少20元,运营成本减少800元.设改革后该景区每日利润为y 2(元).(注:每日利润=票价收入-运营成本)(1)解释点A 的实际意义:______. (2)分别求出y 1、y 2关于x 的函数表达式;(3)当游客人数为多少人时,改革前的日利润与改革后的日利润相等?21.端午节是我国的传统节日,益民食品厂为了解市民对去年销量较好的花生粽子、水果粽子、豆沙粽子、红枣粽子(分别用A 、B 、C 、D 表示)这四种不同口味的粽子的喜爱情况,对某居民区的市民进行了抽样调查,并根据调查结果绘制了如下两幅不完整的统计图. (1)本次参加抽样调查的居民有多少人? (2)将两幅统计图补充完整;(3)小明喜欢吃花生粽子和红枣粽子,妈妈为他准备了四种粽子各一个,请用“列表法”或“画树形图”的方法,求出小明同时选中花生粽子和红枣粽子的概率.22.如图,BD 是▱ABCD 的对角线,AE ⊥BD ,CF ⊥BD ,垂足分别为E ,F ,AM 与CN 分别是∠BAE 与∠DCF 的平分线,AM 交BE 于点M ,CN 交DF 于点N ,连接AN ,CM .求证:四边形AMCN 是平行四边形.23.央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图1补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.24.为丰富学生的课余生活,陶冶学生的情趣和爱好,某小学开展了学生社团活动。
2022年浙江省衢州市中考数学试卷附解析
2022年浙江省衢州市中考数学试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,小芳和爸爸正在散步,爸爸身高1.8m ,他在地面上的影长为2.1m .若小芳比爸爸矮0.3m ,则她的影长为( ) A .1.3mB .1.65mC .1.75mD .1.8m2.己如图,已知正方形ABCD 的边长为2,如果将线段 BD 绕着点B 旋转后,点D 落在 CB 的延长线上的 D ′处,那么可知等于tan BAD '∠等于( ) A .1B .2C .22D .223.如图中的两个三角形是位似图形,它们的位似中心是( )A .点PB .点OC .点MD .点N4.如图,D 、E 、F 分别在△ABC 的三边上,DE ∥BC ,DF ∥AC ,下列比例式中一定成立的是( ) A .AD DBBC DF=B .AE BFEC FC=C .DF DEAC BC=D .EC BFAE BC=5.已知ABC △内接于⊙O ,OD AC ⊥于D ,如果32COD =∠,那么B ∠的度数为( ) A .16° B .32° C .16°或164° D .32°或148°6.如图,等腰梯形ABCD 中,AD BC BD DC ∥,⊥,点E 是BC 边的中点,ED AB ∥,则BCD ∠等于( )A .30B .70C .75D .607.下列各式是二次根式的是( )A 8-352x 2x x --8.下列各式计算:正确的是( ) A 2243431-=-=B .3(23)235=+=C .(26)(26)462+-=--D .2(13)13-=-9.下列各函数中,x 逐渐增大y 反而减少的函数是( ) A .13y x =-B .13y x =C .41y x =+D .41y x =-10. 一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的销售量如下表:尺码/厘米 22 22.5 23 23.5 24 24.5 25 销售量/双12512631如果鞋店要购进100双这种女鞋,那么购进24厘米、24.5厘米和25厘米三种女鞋数量之和最.合适..的是( ) A .20双 B .30双 C .50双D .80双11.一个三角形的两条边分别为1和2,若要使这个三角形成为直角三角形,则应满足下列各个条件中的( ) A .第三边长为3B .第三边的平方为3C .第三边的平方为5D .第三边的平方为3或512.与分式2xy的值相等的是( ) A .222x y ++B .63x yC .3(2x)yD .2x y- 13.下面的计算正确的是( ) A . 4312a a a ⋅=B .222()a b a b +=+ C .22(2)(2)4x y x y x y -+--=- D .3752a a a a ⋅÷= 14.如图,在长方体中,与棱AB 平行的棱有( )A .1条B .2条C .3条D .4条15.下列说法中正确的有( ) ①单项式212x y π-的系数是12- ②多项式3a b ab ++是一次多项式 ③多项式23342a b ab -+ 的第二项是4ab ④2123x x+-是多项式A .0 个B .1 个C .2 个D . 3 个二、填空题16.已知 Rt △ABC 与Rt △DEF 中,∠C=∠F=90°,若 AC=4,BC=5,EF=2. 5,DF=2,则 Rt △ABC 与Rt △DEF 的关系为 ,且相似比是 .17.如图,正方形ABCD 的边长为4,MN ∥BC 分别交AB ,CD 于点M ,N ,在MN 上任取两点P ,Q ,那么图中阴影部分的面积是 .18.如图,△ABC 是直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能与△ACP'重合,如AP =3,那么PP ′的长等于________.19.已知M ,N 在直线l 上,l ∥BC ,MN = 3,BC = 5,则:MBC CMN S S ∆∆= .20.已知甲以 5 km/h 的速度从A 地出发去B 地,经过 80 min ,乙骑自行车从A 地出发追甲,为保证在 30 min 内(包括 30 min )追上,乙骑车的速度至少要 km/h .21.某市体委从甲、乙两名射击运动员中选择一人参加全运会,每人各打靶5次,打中环数如下:甲:7,8,9,8,8; 乙:5,10,6,9,10.那么仅考虑发挥稳定性这一因素,应选 运动员参加全运会. 22. 在公式IRE Ir n=+中,已知E ,R ,r ,n ,且0n ≠,0R nr +≠,则I 的值是 . 23.已知a 、b 互为相反数,并且325a b -=,则222a b += .24.有一个密码系统,其原理由下面的框图所示: 输入x → x+6 → 输出 输出为10时,则输入的x=________.25.规定了 、 和 的直线叫做数轴.三、解答题26.一个物体的三视图如图所示,请描述该物体的形状.27.某地夏季中午,当太阳移到屋顶上方偏南时,光线与地面成600角,房屋向南的窗户AB高1.6米,现要在窗子外面的上方安装一个水平遮阳篷AC (如图所示). (l )当遮阳篷AC 的宽度在什么范围时,太阳光线直射入室内?(2)当遮阳篷AC 的宽度在什么范围时,太阳光线不能直射入室内?(结果精确到0.1米)28.某科技馆座落在山坡M 处,从山脚A 处到科技馆的路线如图所示.已知A 处海拔高度 为103.4m ,斜坡AB 的坡角为30,40m AB =,斜坡BM 的坡角为18,60m BM =,那么科技馆M 处的海拔高度是多少?(精确到0.1m )(参考数据:sin180.309= cos180.951= tan180.324=)29.如图所示,铁路路基横断面是一个等腰梯形,若腰的坡度为2:3i =,顶宽是3m ,路基高是 4m ,求路基的下底宽.30.如图,0A 为圆的半径,以0A 为角的一边,0为角的顶点画∠AOB=72°,0B 交圆周于点B ,然后依次画∠BOC=∠COD=∠DOE=72°,分别交圆周于点C 、D 、E ,每隔一点连结两点之间的线段,观察所成的图形是一个什么图案.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.A4.B5.D6.D7.C8.C9.A10.B11.D12.B13.C14.C15.A二、填空题16.相似,2:117.818.3 219.5:320.5521.3甲22.En23.R rn324.425.原点,单位长度,正方向三、解答题26.该物体是一个圆柱被左右两侧平面及水平面切片成缺口面形成的几何图形,它的形状如解图所示.27.(1)0<AC<0.9米;(2)AC≥0.9米.28.解:过B向水平线AC作垂线BC,垂足为C,过M向水平线BD作垂线MD,垂足为D,则11402022BC AB==⨯=.sin18MD BM=600.309=⨯18.54=.∴科技馆M处的海拔高度是:103.42018.54141.94141.9(m)++=≈.29.如图,作 AE⊥BC于E,DF⊥BC有于F.∵AD=3=EF,23AEBE=,AE=4,∴BE=6=CF,∴BG=BE+EF+CF=6+3+6= 15 m,∴路基下底宽为 15 m.30.五角星。
【中考12年】浙江省衢州市2001中考数学试题分类解析 专题06 函数的图像与性质
【中考12年】浙江省衢州市2001-2012年中考数学试题分类解析 专题06 函数的图像与性质一、选择题1. (2001年浙江金华、衢州5分)抛物线()2y x 23=-+的顶点坐标是【 】A .(-2,3)B .(2,3)C .(-2,-3)D .(2,-3) 【答案】B 。
【考点】二次函数的性质。
【分析】直接根据顶点式得出顶点坐标是(2,3)。
故选B 。
2. (2001年浙江金华、衢州5分)用长8m 的铝合金条制成如图形状的矩形窗框,使窗户的透光面积最大,那么这个窗户的最大透光面积是【 】A .6425 m 2 B .43 m 2 C .83m 2 D .4m 23. (2002年浙江金华、衢州4分)抛物线y =(x -5)2十4的对称轴是【 】 (A )直线x=4 (B )直线x=-4 (C )直线x=-5 (D )直线x=5 【答案】D 。
【考点】二次函数的性质。
【分析】根据二次函数的性质,抛物线y =(x -5)2十4的对称轴是直线x=5。
故选D 。
4. (2003年浙江金华、衢州4分)如图,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是【 】A .x >3B .x <3C .x >1D .x <15. (2005年浙江衢州4分)抛物线2y x 2x 3=+-与x 轴的交点的个数有【 】A 、0个B 、1个C 、2个D 、3个6. (2007年浙江衢州4分)下列各点中在反比例函数2y x-=的图像上的点是【 】 A. (—1,—2) B. (1,—2) C. (1,2) D.(2,1)7. (2009年浙江衢州3分)二次函数2y x 12=--()的图象上最低点的坐标是【 】A .(-1,-2)B .(1,-2)C .(-1,2)D .(1,2) 【答案】B 。
【考点】二次函数的性质。
【分析】根据二次函数的性质,二次函数2y x 12=--()的图象上最低点的坐标是(1,-2) 。
2020年浙江省衢州市中考数学总复习专题试卷附解析
2020年浙江省衢州市中考数学总复习专题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知两圆半径分别为1与5,圆心距为4,则这两圆的位置关系是()A.外离 B.外切 C.相交 D.内切2.如图,AB 是⊙O的弦,过点A作⊙O的切线 AC,如果∠BAC=55°,那么∠AOB 等于()A.55°B.90°C.110°D.1203.如图所示,一只蚂蚁在正方形纸片上爬行,正好停在质数上的概率是()A.14B.13C.49D.594.下列多边形一定相似的为()A.两个矩形B.两个菱形C.两个正方形D.两个平行四边形5.如图,过反比例函数3yx(x>0)图象上任意两点A、B分别作x铀的垂线,垂足分别为C.D,连结 QA、OB,设△AOC 与△BQD的面积分别为 S1与S2, 比较它们的大小可得()A.S1=S2 B.S1>S2 C.S1<S2 D.S1与S2大小关系不能确定6.解析式为下列函数:①3x y =-;32y x =-;③32y x =;④12y x =+;⑤21y x=. 其中y 与x 不成反比例有( ) A .1 个 B . 2 个 C .3 个 D .4 个7.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形.将纸片展开,得到的图形是( )A .B .C .D .8.下列结论:①平行四边形内角和为360°;②平行四边形对角线相等; ③平行四边形对角线互相平分;④平行四边形邻角互补.其中正确的个数是( )A .1B .2C .3D .49.如图,下列条件不能判定直线a b ∥的是( )A .12∠=∠B .13∠=∠C .14180∠+∠=D .24180∠+∠=10.如图,下列说法中错误的是( )A .∠l 与∠2是同位角B .∠4与∠5是同旁内角C .∠2与∠4是对顶角D .∠l 与∠2是同旁内角11.若(x-y )2+N=(x+y )2,则N 为( )A .2y 2B . -2y 2C .2xyD .4xy 12.在3223.14, 2, , , 0.31,8, 0.80800800087π-…(每两个8之间依次多1个0)这些数中,无理数的个数为 ( )A .1个B .2个C .3个D .4个二、填空题13.⊙O 是△ABC 的内切圆,与AB 、BC 、CA 分别切于点D 、E 、F ,且∠DOE=120°,∠EOF=150°,则∠A=_________.14. 若0a b +<,0ab <,a b <,,则a 、a -、b 、b -的大小关系用“<”连接起来是 . 15.在△ABC 中,∠A = 60°,若要使它为等边三角形,则需补充条件: (只需写出一个条件).16.请选择一组,a b 的值,写出一个关于x 的形如2a b x =-的分式方程,使它的解是0x =,这样的分式方程可以是____________.17.若x+y=5,xy=4,则x 2 +y 2 = ;若x+y=4, x -y=11,则x 2 -y 2 = .18. 计算机软件中,大部分都有“复制”、“粘贴”功能,如在“Word ”中,可以把一个图形复制后粘贴在同一个文件上,通过“复制”、“粘贴”得到的图形可以看作原图经过 变换得到的.19.积的乘方等于积中各个因式分别 ,再把所得的 . 三、解答题20.添线补全下列物体的三视图:21.一个人在公路上从东向西行走,在公路一旁顺次有两座建筑物A 、B ,请画出:(1)人在位置C 时,所能看到的建筑物B 的那部分;(2)行走的人最早看不见建筑物B 的位置E .主视图左视图俯视图22.某广告公司设计一幅周长为12m的矩形广告牌,广告设计费为每平方米1000元,设矩形-边长为x(m) ,面积为S(m2).请你设计一个方案,使获得的设计费最多,并求出这个费用.23.如图所示,G,H是□ABCD对角线AC上的点,且AG=CH,E,F分别是AB,CD的中点.求证:四边形EHFG是平行四边形.24.下面让我们来探究生活中有关粉刷墙壁时,刷具扫过面积的问题:(π≈3.14)(1)甲工人用的刷具形状是一根细长的棍子(如图(1),长度AB为20cm(宽度忽略不计),他把刷具绕A点旋转90度,则刷具扫过的面积是多少?(2)乙工人用的刷具形状是圆形(如图(2)),直径CD为20cm,点O、C、D在同一直线上,OC=30cm,他把刷具绕O点旋转90度,则刷具扫过的面积是多少?25.代数式1324x xx x++÷++有意义,求x的取值范围.26.完全平方公式计算:(1)2(3)a b +;(2)2(3)x y -+;(3)21(2)2x y -;(4)()()b c b c +--27.已知数轴上的点A 、B 、C ,它们所表示的数分别是+4,—6,x .(1)求线段AB 的长;(2)求线段AB 的中点D 所示的数;(3)若AC=5,求x 的值;(4)求线段OD (O 为原点)的长;28.下列各图中,有∠1和∠2是对顶角的图吗?若没有请画一对对顶角.29. 举一个实际应用题,要求用含 1 个字母的二次多项式表示结果.30.如图是某设计师设计图案的一部分,请你运用旋转变换的方法,在方格纸中将图形绕点0顺时针依次旋转90°,l80°,270°,依次画出旋转后所得到的图形,你会得到一个美丽的图案,但涂阴影时不要涂错了位置,否则不会出现理想的效果,你来试一试吧!(方格纸中的小正方形的边长为1个单位长度)【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.C3.C4.C5.A6.D7.C8.C9.C10.A11.D12.C二、填空题13.90°14.a b b a<-<<-15.答案不唯一,如∠B=60°16.如212x-=-(答案不唯一)17.17,4418.平移变换19.乘方,幂相乘三、解答题20.案:如图:21.(1)实线范围;(2)虚线所示.22.S=-x +6x,边长为3m的正方形面积最大,最大面积为9m2,最多设计费为9000元.23.证△AGE≌△CFH,再证EG=HF,EG∥HF24.(1)314cm2;(2)1570cm 2.25.2x≠-,3x≠-且4x≠-26.(1)2296a ab b ++;(2)2269x xy y -+;(3)221244x xy y -+;(4)222b bc c --- 27.(1)10;(2)-1;(3)9或-1;(4)128.没有,图略29.若一个长方形的面积比边长为x 的正方形的面积大 3,求这个长方形的面积. (23x +) 30.略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省衢州市2002-2013年中考数学试题分类解析 专题6 函数的图像与性质一、选择题1. (2002年浙江金华、衢州4分)抛物线y =(x -5)2十4的对称轴是【 】(A )直线x=4 (B )直线x=-4 (C )直线x=-5 (D )直线x=52. (2003年浙江金华、衢州4分)如图,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是【 】3. (2005年浙江衢州4分)抛物线2y x 2x 3=+-与x 轴的交点的个数有【 】A 、0个B 、1个C 、2个D 、3个4. (2007年浙江衢州4分)下列各点中在反比例函数2y x-=的图像上的点是【 】 A. (—1,—2) B. (1,—2) C. (1,2) D.(2,1)5. (2009年浙江衢州3分)二次函数2y x 12=--()的图象上最低点的坐标是【 】A .(-1,-2)B .(1,-2)C .(-1,2)D .(1,2)【答案】B 。
【考点】二次函数的性质。
【分析】根据二次函数的性质,二次函数2y x 12=--()的图象上最低点的坐标是(1,-2) 。
故选B 。
6. (2009年浙江衢州3分)P 1(x 1,y 1),P 2(x 2,y 2)是正比例函数y=-x 图象上的两点,则下列判断正确的 是【 】A .y 1>y 2B .y 1<y 2C .当x 1<x 2时,y 1>y 2D .当x 1<x 2时,y 1<y 27. (2012年浙江衢州3分)已知二次函数y=﹣x 2﹣7x+,若自变量x 分别取x 1,x 2,x 3,且0<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系正确的是【 】A .y 1>y 2>y 3B .y 1<y 2<y 3C .y 2>y 3>y 1D .y 2<y 3<y 18.(2013年浙江衢州3分)若函数m 2y x+=的图象在其所在的每一象限内,函数值y 随自变量x 的增大而增大,则m 的取值范围是【 】 A .m <﹣2 B .m <0 C .m >﹣2 D .m >0二、填空题1. (2002年浙江金华、衢州5分)函数2y ax ax 3x 1=-++的图象与x 轴有且只有一个交点,那么a 的值和交点坐标分别为 ▲ .若a=9,抛物线为2y 9x 6x 1=-+,图象与x 轴有且只有一个交点(13,0)。
综上所述,当a=0,交点坐标(13-,0);当a=1,交点坐标(-1,0);当a=9,交点坐标(13,0)。
2. (2010年浙江衢州、丽水4分)若点(4,m)在反比例函数8yx=(x≠0)的图象上,则m的值是▲.3. (2011年浙江衢州4分)在直角坐标系中,有如图所示的Rt△ABO,AB⊥x轴于点B,斜边AO=10,sin∠AOB=35,反比例函数()ky k0x>=的图象经过AO的中点C,且与AB交于点D,则点D的坐标为▲ .4. (2012年浙江衢州4分)试写出图象位于第二、四象限的一个反比例函数的解析式▲ .【答案】1y=x-(答案不唯一)。
【考点】反比例函数的性质。
【分析】位于二、四象限的反比例函数比例系数k<0,据此写出一个函数解析式即可,如1y=x-(答案不唯一)。
5. (2012年浙江衢州4分)如图,已知函数y=2x和函数ky=x的图象交于A、B两点,过点A作AE⊥x轴于点E,若△AOE的面积为4,P是坐标平面上的点,且以点B、O、E、P为顶点的四边形是平行四边形,则满足条件的P点坐标是▲ .6.(2013年浙江衢州4分)某果园有100棵橘子树,平均每一棵树结600个橘子.根据经验估计,每多种一颗树,平均每棵树就会少结5个橘子.设果园增种x棵橘子树,果园橘子总个数为y个,则果园里增种▲ 棵橘子树,橘子总个数最多.【答案】10。
【考点】二次函数的应用,由实际问题列函数关系式,二次函数的最值。
【分析】∵果园增种x棵橙子树,∴果园共有(x+100)棵橙子树。
∵每多种一棵树,平均每棵树就会少结5个橙子,∴这时平均每棵树就会少结5x个橙子,则平均每棵树结(600﹣5x)个橙子。
∵果园橙子的总产量为y,∴()()()22y x 1006005x 5x 100x 600005x 1059500=+-=-++=--+。
∴当x=10(棵)时,橘子总个数最多。
三、解答题1. (2002年浙江金华、衢州14分)如图,已知直线y 2x 12=-+分别与y 轴,x 轴交于A ,B 两点,点 M 在y 轴上,以点M 为圆心的⊙M 与直线AB 相切于点D ,连结MD .(1)求证:△ADM∽△AOB;(2)如果⊙M 的半径为M 的坐标,并写出以529(,)22-为顶点.且过点M 的抛物线的解析式;(3)在(2)的条件下,试问在此抛物线上是否存在点P ,使得以 P ,A ,M 三点为顶点的三角形与△AOB 相似?如果存在,请求出所有符合条件的点P 的坐标;如果不存在,请说明理由.2. (2003年浙江金华、衢州12分)某人采用药熏法进行室内消毒,已知药物燃烧时室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧后,y与x成反比例(如图所示),现测得药物10分钟燃完,此时室内空气中每立方米的含药量为8毫克,请根据题中所提供的信息,解答下列问题:(1)药物燃烧时,y 与x 的函数关系式为 ▲ ,自变量x 的取值范围是 ▲ ;药物燃烧后,y 与x 的函数关系式为 ▲ .(2)研究表明,当空气中每立方米的含药量低于2毫克时,人方可进入室内,那么从消毒开始,至少需要经过 ▲ 分钟后,人才可以回到室内.(3)当空气中每立方米的含药量不低于5毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效,为什么?(2)把题意中对应的变量的值代入对应的函数解析式中求出未知数的值:当y=2时,80x 402== ∴从消毒开始,至少需要经过40分钟后,人才可以回到室内。
(3)把y=5分别代入两个函数解析式,从而求得时间差与10比较即可得出结论。
3. (2003年浙江金华、衢州14分)已知二次函数2y ax bx c =++的图象与x 轴交于A ,B 两点(A 点在原点左侧,B 点在原点右侧),与y 轴交于C 点.若AB=4,OB >OA ,且OA 、OB 是方程2x kx 30++=的两根.(1)请求出A,B两点的坐标;,求此二次函数的解析式;(2)若点O到BC的距离为2(3)若点P的横坐标为2,且△PAB的外心为M(1,1),试判断点P是否在(2)中所求的二次函数图象上.4. (2004年浙江衢州9分)已知:在平面直角坐标系中,直线L经过点A(0,-1),且直线L与抛物线2y x x=-只有一个公共点,试求出这个公共点的坐标。
5. (2005年浙江衢州14分)如图,在矩形ABCD中,AB=3,BC=2,点A的坐标为(1,0),以CD为直径,在矩形ABCD内作半圆,点M为圆心.设过A、B两点抛物线的解析式为y=ax2+bx+c,顶点为点N.(1)求过A、C两点直线的解析式;(2)当点N在半圆M内时,求a的取值范围;(3)过点A作⊙M的切线交BC于点F,E为切点,当以点A、F,B为顶点的三角形与以C、N、M为顶点的三角形相似时,求点N的坐标.6. (2006年浙江衢州12分)某校课间操出操时楼梯口常出现拥挤现象,为详细了解情况,九(1)班数学课题学习小组在楼梯口对前10分钟出入人数进行了观察记录,并根据得到的数据绘制成下面两幅图:(1)在2至5分钟时,每分钟出楼梯口的人数p(人)与时间t(分)的关系可以看作一次函数,请你求出它的表达式。
(2)若把每分钟到达楼梯口的人数y(人)与时间t(分)(2≤t≤8)的关系近似的看作二次函数2=-++,问第几分钟时到达楼梯口的人数最多?最多人数是多少?y t12t49(3)调查发现,当楼梯口每分钟增加的滞留人数达到24人时,就会出现安全隐患。
请你根据以上有关部门信息分析是否存在安全隐患。
若存在,求出存在隐患的时间段。
若不存在,请说明理由。
(每分钟增加的滞留人数=每分钟到达楼梯口的人数 — 每分钟出楼梯楼的人数) (4)根据你分析的结果,对学校提一个合理化建议(字数在40个以内)。
(3)分t <2,2≤t≤5,5<t≤8, t >8结合不等式的性质讨论。
7. (2007年浙江衢州12分)如图,顶点为D 的抛物线2y x bx 3=+-与x 轴相交于A 、B 两点,与y 轴相交于点C ,连结BC ,已知tan∠ABC=1。
(1)求点B 的坐标及抛物线2y x bx 3=+-的解析式;(2)在x 轴上找一点P,使△CDP 的周长最小,并求出点P 的坐标;(3)若点E (x ,y )是抛物线上不同于A,B,C 的任意一点,设以A,B,C,E 为顶点的四边形的面积为S,求S 与x 之间的函数关系式。
令y=0,解得3x=7。
∴P(37,0)。
∴在x 轴上的点P (37,0),使△CDP 的周长最小。
(3)在2y x 2x 3=--中,令y=0,得x=-1或x=3。
∴A(-1,0),AB=4。
当x 3>时,点E 在第一象限,如图1,此时x 0y 0>>,()22ABE ABC 1S S S 4x 2x 332x 4x 2∆∆=+=⋅⋅--+=-。
当0x 3<<时,点E 在第四象限,如图2,此时x 0y 0><,()()()AOC OCEF BEF222S S S S 11139133x 2x 3x 3x x 2x 3x x 622222∆∆=++⎡⎤⎡⎤=⋅⋅+⋅---⋅+⋅-⋅---=-++⎣⎦⎣⎦。
当1x 0<<-时,点E 在第三象限,如图3,此时x 0y 0<<,()()()()AEF OCEF OBC222S S S S 11111x 1x 2x 3x 3x 2x 333x x 622222∆∆=++⎡⎤⎡⎤=⋅-⋅---+⋅-+⋅---+⋅⋅=--+⎣⎦⎣⎦。
当x 1<-时,点E 在第二象限,如图4,此时x 0y 0<>,()22ABE ABC 1S S S 4x 2x 332x 4x 2∆∆=+=⋅⋅--+=-。
综上所述,S 与x 之间的函数关系式为:()()()2222x 4x x 3x 139S x x 60x 32211x x 6x 122><<<<⎧--⎪⎪⎪=-++⎨⎪⎪--+-⎪⎩或。
8. (2009年浙江衢州8分)水产公司有一种海产品共2 104千克,为寻求合适的销售价格,进行了8天试 销,试销情况如下:第1天 第2天 第3天 第4天 第5天 第6天 第7天 第8天 售价x(元/千克) 400250240200150125120销售量y(千克)30 40 48 60 80 96 100观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y(千克)与销售价格x(元/千克) 之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?【答案】解:(1)函数解析式为12000y=x。