利用Eviews软件进行最小二乘法回归实例
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题中国居民人均消费支出与人均GDP(1978-2000),数据(例题1-2),预测,2001年人均GDP为4033.1元,求点预测、区间预测。(李子奈,p50)解答:
一、打开Eviews软件,点击主界面File按钮,从下拉菜单中选择Workfile。
在弹出的对话框中,先在工作文件结构类型栏(Workfile structure type)选择固定频率标注日期(Dated – regular frequency),然后在日期标注说明栏中(Date specification)将频率(Frequency)选为年度(Annual),再依次填入起止日期,如果希望给文件命名(可选项),可以在命名栏(Names - optional)的WF项填入自己选择的名称,然后点击确定。
此时建立好的工作文件如下图所示:
在主界面点击快捷方式(Quick)按钮,从下拉菜单中选空白数据组(Empty Group)选项。
此时空白数据组出现,可以在其中通过键盘输入数据或者将数据粘贴过来。
在Excel文件(例题1-2)中选定要粘贴的数据,然后在主界面中点击编辑(Edit)按钮,从下拉菜单中选择粘贴(Paste),数据将被导入Eviews软件。
将右侧的滚动条拖至最上方,可以在最上方的单元格中给变量命名。
二、估计参数
在主界面中点击快捷方式(Quick)按钮,从下拉菜单中选择估计方程(Estimate Equation)
在弹出的对话框中设定回归方程的形式。
在方程表示式栏中(Equation specification ),按照被解释变量(Consp )、常数项(c )、解释变量(Gdpp )的顺序填入变量名,在估计设置(Estimation settings )栏中选择估计方法(Method )为最小二乘法(LS – Least Squares ),样本(Sample )栏中选择全部样本(本例中即为1978-2000),然后点击确定,即可得到回归结果。
以上得到的回归结果可以表示为:
201.1190.3862(13.51)(53.47)
Consp GDPP =+⨯ 如果你试图关闭回归方程页面(或Eviews 主程序),这时将会弹出一个对话框,询问是否删除未命名的回归方程,如下图所示
此时如果同意删除,可以点击Yes,如果想把回归结果保存下来,可以点击命名(Name),这时就会弹出一个对话框,在其中填入为方程取的名字,点击OK即可。本例中方程自动命名为方程-1(eq01)。
点击确定之后,方程页面关闭,同时在工作文件页面内可以发现多了一个表示回归方程的对象(图中的eq01)。如果以后需要用到回归结果时,就不需要象前面那样逐步地去做,而只需要双击eq01图标即可。
如果试图关闭工作文件或Eviews主程序,将会弹出警示框询问是否对该工作文件进行保存,此时如果不计划对工作文件进行保存,直接点击No即可,如果点击取消(Cancel),将回到关闭前的状态。如果计划保存工作文件以备将来使用,则可以点击Yes。
随后弹出的对话框询问按照怎样的精确度保存数据,此时选择高精确度即可。即选择Double precision 。
注意!按照当前的设置,Eviews 默认的保存路径是“我的文档”。将来打开文件时可以从Eviews 主程序中按照文件(File )——打开(Open )——Eviews 工作文件(Eviews Workfile )的方式,也可以直接在“我的文档”中双击要打开的工作文件。
三、相关的检验
1. 拟合优度(可决系数)
从回归结果中可以看出,本例中20.9927R =,说明模型在整体上拟合得非常好。
2. 显著性检验
首先看截距项和斜率项的t 统计量取值情况。因为本例中使用的观察值个数为23,因此这些t 统计量应该服从自由度为(232)21-=的t 分布,查书后附录中给出的t 分布表,可以发现自由度为21、检验水平为0.1、0.05、0.01时相对应的临界值分别为1.721、2.080、2.831,而本例中的两个t 统计量的取值分别为13.51和53.47,说明在通常使用的检验水平下,本例中所选择的两个解释变量对被解释变量有很好的解释能力,或者说数据强烈支持将这两个解释变量纳入模型之中。
3. 置信区间
以下建立总体参数0β和1β置信度为95%的置信区间。
前面已经介绍过,当置信度为1α-时,置信区间为 2211ˆˆ11ˆˆ(2),(2)t t n s n s ααββββ⎡⎤--⨯+-⨯⎣⎦
而0.025(21) 2.080t =,从回归结果中还可以查到1ˆ0.007222s β=,因此1β的置信度为95%的置信区间为0.3862 2.0800.0072220.38620.0150±⨯=±。
或者表示为
[0.3712,0.4012]
同样的道理,0β的置信度为95%的置信区间为201.118930.9587±。
或者表示为
[170.1602,232.0776]
四、预测
以上是根据中国1978-2000年人均消费与人均GDP (按1990年价格表示)得到的回归结果,现在据此对2001年人均消费的情况进行预测。
1. 点预测
2001年,以1990年不变价格表示的中国人均GDP 约为4033.1元,根据前面得出的样本回归函数,可以计算出
2001201.1190.38624033.11758.7Consp =+⨯=
2001年人均消费的实际值为1782.2元,与预测的结果进行比较,发现相对误差为 1.32%-。
2. 区间预测
首先对2001()E Consp 进行区间预测。如果选择置信度为1α-,则置信区间为 222222()()11ˆˆˆˆ(2),(2)()()F F F F i i x x x x y t n y t n n x x n x x αασσ⎡⎤----⨯⨯++-⨯⨯+⎢⎥--⎢⎥⎣⎦
∑∑ 这里ˆ1758.7F y
=,2(2) 2.080t n α-=,ˆ33.2645σ=,23n =,4033.1F x =均为已知,下面介绍22()()/i F x x x x --∑的求法。
启动Eviews 程序,在主界面点击文件(File )按钮,在下拉菜单中选择打开(Open ),然后选择Eviews 工作文件(Eviews Workfile ),在上次保存文件的目录下找到Eviews 工作文件ex1-2,在工作文件页面中双击表示人均GDP 的变量gdpp ,即可打开这一数据序列。
此时在数据序列页面中点击查看(View )按钮,然后将光标移动到描述性统计量(Descriptive Statistics )上面,在右侧出现的选项中选择统计量表格(Stats Table ),这样关于数据序列人均GDP 的一些统计量就可以显示出来了。