山东省实验中学2015届高三上学期第二次诊断性(期中)考试数学(理)试题
山东省实验中学2015届高三上学期第二次诊断性考试英语解析卷
山东省实验中学2012级高三第二次诊断性测试英语试题2014.11 试卷总评:整套试卷突出了语言运用能力的考查。
阅读难度不高,且试题以细节理解题为主,阅读理解题阅读量不大。
完形填空内容比较简单、易懂,比较容易定位关键词,语法填空选择的材料也比较简单,所填空设计到了,名词、冠词、代词、从句、非谓语动词,可以说考查比较基础、全面。
改错部分所涉及的错误比较明显,学生比较容易确认、改正。
总的来说,整套试卷的难度小,属偏易范畴,比较有利于提升高三学子的自信心。
说明:本试卷分第I卷(选择题)、第II卷(非选择题)和答题纸三部分。
第I卷1至11页。
第II卷11至12页。
试题答案请用2B铅笔或0.5mm签字笔填涂到答题卡规定位置上,书写在试题上的答案无效。
满分150分,考试时间120分钟。
第I卷 (选择题 100分)第一部分听力(共两节,满分30分)第一节(共5个小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一道小题,从每题所给的A B C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.What will Dorothy do on the weekend?A.Go out with her friend.B.Work on her paper.C.Make some plans.2.What was the normal price of the T-shirt?A.$15 B.$30 C.$503.What has the woman decided to do on Sunday afternoon?A.To attend a wedding.B.To visit an exhibition.C.To meet a friend.4.When does the bank close on Saturday?A.At 1:00 pm.B.At 3:00pm.C.At 4:00pm.5.Where are the speakers?A.In a store.B.In a classroom C.At a hotel.第二节(共15小题:每小题1.5分,满分22.5分)听下面5段对话或对白,每段对话或对白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置,听每段对话或独白前,你将有时间阅读各个小题。
山东省实验中学2015级第二次模拟考试高三数学(理)试题(精编含解析)
山东省实验中学2015级第二次模拟考试高三数学试题(理科)2018.6第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若集合,则下列结论中正确的是()A. B. C. D.【答案】C【解析】分析:由题意首先求得集合B,然后逐一考查所给选项是否正确即可.详解:求解二次不等式可得:,则.据此可知:,选项A错误;,选项B错误;且集合A是集合B的子集,选项C正确,选项D错误.本题选择C选项.2. 已知是实数,是纯虚数,则等于()A. B. C. D.【答案】D【解析】分析:由题意结合复数的运算法则整理计算即可求得最终结果.详解:由题意可知:,为纯虚数,则:,据此可知.本题选择D选项.点睛:本题主要考查复数的运算法则及其应用,意在考查学生的转化能力和计算求解能力.3. 下列关于命题的说法正确的是()A. 命题“若,则”的否命题是“若,则”B. 命题“若,则互为相反数”的逆命题是真命题C. 命题“”的否定是“”D. 命题“若,则”的逆否命题是真命题【答案】B【解析】分析:由题意逐一分析所给的命题的真假即可.详解:逐一分析所给命题的真假:A. 命题“若,则”的否命题是“若,则”,题中说法错误;B. 命题“若,则互为相反数”是真命题,则其逆命题是真命题,题中说法正确;C. 命题“”的否定是“”,题中说法错误;D. 命题“若,则”是假命题,则其逆否命题是假命题,题中说法错误;本题选择B选项.点睛:本题主要考查四种命题的关系,命题真假的判断等知识,意在考查学生的转化能力和计算求解能力.4. 据统计,连续熬夜小时诱发心脏病的概率为,连续熬夜小时诱发心脏病的概率为 . 现有一人已连续熬夜小时未诱发心脏病,则他还能继续连续熬夜小时不诱发心脏病的概率为()A. B. C. D.【答案】A【解析】分析:首先设出题中的事件,然后由题意结合条件概率公式整理计算即可求得最终结果.详解:设事件A为48h发病,事件B为72h发病,由题意可知:,则,由条件概率公式可得:.本题选择A选项.点睛:本题主要考查条件概率公式及其应用等知识,意在考查学生的转化能力和计算求解能力.5. 已知平面向量,满足,则()A. B. C. D.【答案】B【解析】分析:由题意首先求得,然后求解向量的模即可.详解:由题意可得:,且:,即,,,由平面向量模的计算公式可得:.本题选择B选项.点睛:本题主要考查平面向量数量积的运算法则,平面向量模的求解等知识,意在考查学生的转化能力和计算求解能力.6. 某几何体的三视图如右图所示,则该几何体的体积为()A. B. C. D.【答案】C【解析】试题分析:由三视图可知,该几何体为如下图所示的多面体,它是由三棱柱截去三棱锥后所剩的几何体,所以其体积,故选D.考点:三视图.7. 下图的程序框图的算法思路源于我国古代数学名著《九章算术》中的“中国剩余定理”.已知正整数被除余,被除余,被除余,求的最小值.执行该程序框图,则输出的()A. B. C. D.【答案】C【解析】分析:根据正整数n被3除余2,被8除余5,被7除余4,求出n的最小值.详解:正整数n被3除余2,得n=3k+2,k∈N;被8除余5,得n=8l+5,l∈N;被7除余4,得n=7m+4,m∈N;求得n的最小值是53.故选:C点睛:本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.8. 将的图像向左平移个单位,再向下平移个单位,得到函数的图像,则下列关于函数的说法错误的是()A.函数的最小正周期是B. 函数的一条对称轴是C. 函数的一个零点是D. 函数在区间上单调递减【答案】D【解析】分析:首先求得函数的解析式,然后考查函数的性质即可.详解:由题意可知:,图像向左平移个单位,再向下平移个单位的函数解析式为:.则函数的最小正周期为,A选项说法正确;当时,,函数的一条对称轴是,B选项说法正确;当时,,函数的一个零点是,C选项说法正确;若,则,函数在区间上不单调,D选项说法错误;本题选择D选项.点睛:本题主要考查辅助角公式的应用,三角函数的平移变换,三角函数的性质等知识,意在考查学生的转化能力和计算求解能力.9. 函数的图象可能是()A. B.C. D.【答案】A【解析】分析:由题意结合函数的性质排除错误的函数图象即可求得最终结果.详解:当时,,则选项BC错误;函数的解析式为:可由函数向右平移两个单位得到,而,据此可知是函数的极值点,则是函数的极值点,据此可排除D选项.本题选择A选项.点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.10. 已知函数满足,且是偶函数,当时,,若在区间内,函数有 4 个零点,则实数的取值范围是()A. B. C. D.【答案】D【解析】分析:由题意确定函数的性质,然后将原问题转化为两个函数有4个交点的问题求解实数a的取值范围即可.详解:由题意可知函数是周期为的偶函数,结合当时,,绘制函数图象如图所示,函数有4个零点,则函数与函数的图象在区间内有4个交点,结合函数图象可得:当时:,求解对数不等式可得:,即实数的取值范围是.本题选择D选项.点睛:函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.11. 已知双曲线的左右焦点分别为,为双曲线的离心率,是双曲线右支上的点,的内切圆的圆心为,过作直线的垂线,垂足为,则()A. B. C. D.【答案】A【解析】试题分析:根据题意,利用切线长定理,再利用双曲线的定义,把,转化为,从而求得点H的横坐标.再在三角形PCF2中,由题意得,它是一个等腰三角形,从而在三角形中,利用中位线定理得出OB,从而解决问题.解:由题意知:(-c,0)、(c,0),内切圆与x轴的切点是点A,作图∵,及圆的切线长定理知,,设内切圆的圆心横坐标为x,则|(x+c)-(x-c)|=2a,∴x=a,在三角形中,由题意得,它是一个等腰三角形,PC=PF2,∴在三角形中,有:OB==(-PC)=(-)=×2a=a.故选A.考点:双曲线的定义、切线长定理点评:本题考查双曲线的定义、切线长定理.解答的关键是充分利用三角形内心的性质.属于基础题。
山东省实验中学高三上学期第二次诊断考试数学(理)试题 Word版含解析
山东省实验中学2015级高三第二次诊断性考试数学试题(理科)2017.11 说明:本试卷满分150分,分为第I卷(选择题)和第II卷(非选择题)两部分,第I卷为第1页至第3页,第II卷为第3页至第6页.试题答案请用2B铅笔或0.5mm签字笔填涂到答题卡规定位置上,书写在试题上的答案无效.考试时间120分钟.第I卷(共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知全集为R,集合A=,B=,则A B=( )A. B. C. D.【答案】C【解析】A=,B=,则A B=,故选C点晴:集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目2. 已知,命题“若则”的否命题是( )A. 若则B. 若则C. 若则D. 若则【答案】A【解析】试题分析:原命题为若则,那么否命题就是若则,所以否命题是若,则,故选A.考点:四种命题3. 已知函数,则的值为( )A. 4B.C. 3D.【答案】B【解析】由已知,故选B4. 空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的无量纲指数,空气质量按照AQI大小分为六级:0~50为优,51~100为良。
101~150为轻度污染,151~200为中度污染,201~250为重度污染,251~300为严重污染。
一环保人士记录去年某地某月10天的AQI的茎叶图。
利用该样本估计该地本月空气质量状况优良(AQI≤100)的天数( )(这个月按30计算)A. 15B. 18C. 20D. 24【答案】B【解析】从茎叶图中可以发现这样本中空气质量优的天数为2,空气质量良的天数为4,该样本中空气质量优良的频率为, 从而估计该月空气质量优良的天数为5. 曲线若和直线围成的图形面积为( )A. B. C. D.【答案】D【解析】试题分析:令,所以面积为.6. 已知函数,则是( )A. 奇函数,且在上单调递增B. 偶函数,且在上单调递增C. 奇函数,且在上单调递减D. 偶函数,且在上单调递减【答案】B【解析】,所以为偶函数,设,则在单调递增,在单调递增,所以在单调递增,故选B7. 函数的图像为( )A. B.C. D.【答案】D【解析】,所以为奇函数,又,所以D选项正确,故选D8. 奇函数定义域为R,当时,,且函数为偶函数,则的值为( )A. B. 2 C. D. 3【答案】A【解析】为R上的奇函数,为偶函数,;是周期为4的周期函数;;故选 A点睛:抽象函数的周期性:(1)若,则函数周期为T;(2)若,则函数周期为|a-b|(3)若,则函数的周期为2a;(4)若,则函数的周期为2a.9. 曲线上的点到直线的最短距离是( )A. B. C. D. 0【答案】C【解析】试题分析:直线的斜率为2。
山东省实验中学2015级高三第二次模拟考试__数学试题(文)及答案
山东省实验中学2015级高三第二次模拟考试数学试题(文)2015.6说明:试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。
试题答案请用2B 铅笔或0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效。
考试时间120分钟。
第Ⅰ卷 (共50分)1.复数z 满足i z i +=-7)21(,则复数=z (A)i 31+(B)i 31-(C) i +3(D) i -32.已知全集U R =,集合{}{}()3021,log 0,x U A x B x x A C B =<<=>⋂=则 (A){}1x x >(B){}0x x >(C){}01x x << (D){}0x x <3.命题“存在R x ∈,使a ax x 42-+≤0为假命题”是命题“016≤≤-a ”的(A)充要条件 (B)必要不充分条件 (C)充分不必要条件(D)既不充分也不必要条件4.若圆C 经过(1,0),(3,0)两点,且与y 轴相切,则圆C 的方程为 ( )(A) 22(2)(2)3x y -+±= (B) 22(2)(3x y -+±=(C)22(2)(2)4x y -+±= (D) 22(2)(4x y -+±= 5.在△ABC 中,角C B A ,,的对边分别为,,a b c ,若22241c b a +=,则cBa cos 的值为 (A)41 (B) 45 (C) 85 (D)836.已知βα,是两个不同的平面,n m ,是两条不同的直线,给出下列命题: ①若βαβα⊥⊂⊥,则m m ,; ②若βαββαα//,////,,则,n m n m ⊂⊂;③如果ααα与是异面直线,那么、n n m n m ,,⊄⊂相交; ④若.////,//,βαβαβαn n n n m n m 且,则,且⊄⊄=⋂ 其中正确的命题是 ( ) (A)①② (B)②③ (C)③④ (D)①④7.函数f (x )=(x 2-2x )e x 的图像大致是(A) (B) (C) (D)8.已知数列错误!未找到引用源。
【山东省实验中学二模 打靶题】山东省实验中学2015届高三最后第二次模拟考试(6月)理科数学 扫描版含答案
山东省实验中学2015届高三第二次模拟考试(6月)【山东省实验中学二模最后押题理科数学】山东省实验中学2015届高三第二次模拟考试(6月)山东省实验中学二模 最后押题(理科数学)一、选择: DDBDC AABCA 二、填空 11. 15;12. 20;13. -1;14. 8:27;15. 3 三、 解答题16解:(Ⅰ)由题意知:243ππω=,解得:32ω=, ……………………2分 CB C B B A A cos cos 2sin sin sin sin tan --+==∴ A C A B A A C A B sin cos -sin cos -sin 2cos sin cos sin =+∴A A C A C AB A B sin 2sin cos cos sin sin cos cos sin =+++∴A C AB A sin 2)(sin )(sin =+++∴……………………………………4分a cb A B C 2sin 2sin sin =+⇒∴=+∴…………………………………………………6分 (Ⅱ)因为2bc a b c +==,,所以a b c ==,所以ABC △为等边三角形 …………8分213sin 24OACB OAB ABC S S S OA OB AB θ∆∆=+=⋅+ ……………9分 435cos 3-sin +=θθ532sin (-)34πθ=+, ……………………10分 (0)θπ∈,,2--333πππθ∴∈(,), 当且仅当-32ππθ=,即56πθ=时取最大值,OACB S 的最大值为5324+………………12分 17.解:(Ⅰ)证:由已知DF ∥AB 且∠DAB 为直角,故ABFD 是矩形,从而AB ⊥BF . ……(1分)又P A ⊥底面ABCD , ∴平面P AD ⊥平面ABCD , ……(2分)∵AB ⊥AD ,故AB ⊥平面P AD ,∴AB ⊥PD , ……(3分)在ΔPCD 内,E 、F 分别是PC 、CD 的中点,EF //PD ,……(4分)∴ AB ⊥EF . ……(5分)由此得⊥AB 平面BEF .……(6分)(Ⅱ)以A 为原点,以AB ,AD ,AP 为x 轴,y 轴,z 轴正向建立空间直角坐标系, 则)21,0(),0,2,1(h BE BD =-=……(8分) 设平面CDB 的法向量为)1,0,0(1=n ,平面EDB 的法向量为),,(2z y x n =,zyxF E P D CB A 则 ⎪⎩⎪⎨⎧=⋅=⋅0022BE n BD n ⎪⎩⎪⎨⎧=+=+-0202hz y y x 可取⎪⎭⎫ ⎝⎛-=h n 2,1,22 ……(10分) 设二面角E -BD -C 的大小为θ,则|||||||,cos |cos 212121n n n n n n ⋅⋅=><=θ=224522<+h h , 化简得542>h ,所以552>h …(12分) 18解:(I )设“取出的3个球编号都不相同”为事件A ,则“取出的3个球中恰有两个球编号相同”为事件A ,则31)(391714==C C C A P 所以32)(1)(=-=A P A P ………………(4分)(II ) X 的取值为2,3,4,5211)2(3912222212=+==C C C C C X P ,214)3(3914222412=+==C C C C C X P 73)3(3916222612=+==C C C C C X P ,31)5(3928===C C X P…………………(8分) 所以X 的分布列为: X 23 4 5 P 211 214 73 31 的数学期望218531573421432112=⨯+⨯+⨯+⨯=EX ………..12分 19解:(Ⅰ)由n S a n n +=+1,得 )1(1-+=-n S a n n )2(≥n ,两式相减得1111+=+-=--+n n n n n a S S a a ,所以121+=+n n a a ---------------------------------2分所以)1(211+=++n n a a )2(≥n -------------------------------------3分 又,32=a 所以n n n a a 2)1(2122=+=+-,从而12-=n n a )2(≥n ----------------5分而21=a ,不符合上式,所以⎩⎨⎧≥-==2,121,2n n a n n -------------------------------------6分因为}{n b 为等差数列,且前三项的和93=T ,所以32=b ,--------7分可设d b d b +=-=3,331,由于7,3,2321===a a a ,于是d b a b a d b a -=+=+-=+10,6,5332211,因为332211,,b a b a b a +++成等比数列,所以36)10)(5(=+-d d ,2=d 或7-=d (舍)所以12)1(21)1(1-=-+=-+=n n d n b b n -----------------------------------9分 (Ⅱ)因为⎪⎭⎫ ⎝⎛--=-=--<-=k k k k k k b k 11141)22(211)12(1)12(11222 所以,当2≥n 时22222221)12(13111111-++=+++n b b b n⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+<n n 1113121211411 ⎥⎦⎤⎢⎣⎡-+=n 1141145411=+< ------- ----------------------------------------------------12分20.解(1)22222c a b a =∴= (1分) 又22b b =,得1b =22221:1,:12x C y x C y ∴=-+= (3分) (2)设直线1122:,(,),(,)AB y kx A x y B x y =则22101y kx x kx y x =⎧⇒--=⎨=-⎩ (4分) 211221212(,1)(,1)(1)()1MA MB x y x y k x x k x x ⋅=+⋅+=++++=0M A M B ∴⊥ (6分)(3)设直线1212:1;:1,1MA y k x MB y k x k k =-=-=-1121122110,(,1)111x k y k x x A k k y y k y x ==-⎧⎧=⎧⎪∴-⎨⎨⎨=-=-=-⎪⎩⎩⎩解得或,同理可得222(,1)B k k - 2211212111122S MA MB k k k k ==++ (8分) 1212111222221112141120421,(,)11212211212k x y k x k x k k D x y k k k y y k ⎧==-⎧⎪+=⎧-⎪⎪∴⎨⎨⎨=-++-+=⎩⎪⎪=⎩⎪+⎩解得或同理可得2222222421(,)1212k k E k k -++1222212221216111122(12)(12)k k S MD ME k k k k ∴==++++ (11分)2122211212152()(12)(12)9161616k S k k k S λ++++===≥ 所以λ的最小值为169 ,此时k =1或-1. (13分)21解:(Ⅰ))(x f 其定义域为),0(+∞. ……………1分当0=a 时,x x x f 1ln )(+= ,22111)(x x x x x f -=-='.令0)(='x f ,解得1=x ,当10<<x 时,0)(<'x f ;当1>x 时,0)(>'x f .所以)(x f 的单调递减区间是)1,0(,单调递增区间是),1(+∞;所以1=x 时, )(x f 有极小值为1)1(=f ,无极大值 ……………3分(Ⅱ) 222211(1)1(1)(1)()(0)a ax a x ax x f x a x x x x x ----+-'=--==> ………4分令0)(='x f ,得1=x 或a x 1-=当01<<-a 时,a 11-<,令0)(<'x f ,得10<<x 或a x 1->,令0)(>'x f ,得a x 11-<<;当1-=a 时,0)1()(22≤--='x x x f .当1-<a 时,110<-<a ,令0)(<'x f ,得a x 10-<<或1>x ,令0)(>'x f ,得11<<-x a ;综上所述:当01<<-a 时,)(x f 的单调递减区间是)1,0(,),1(+∞-a ,单调递增区间是)1,1(a -;当1-=a 时,)(x f 的单调递减区间是),0(+∞;当1-<a 时,)(x f 的单调递减区间是)1,0(a-,),1(+∞,单调递增区间是)1,1(a - (10)分(Ⅲ)0≥a 时)0()1)(1()(2>-+='x xx ax x f )0(0)(>='∴x x f 仅有1解,方程0)(=x f 至多有两个不同的解.(注:也可用01)1()(min >+==a f x f 说明.)由(Ⅱ)知01-<<a 时,极小值01)1(>+=a f , 方程0)(=x f 至多在区间),1(+∞-a 上有1个解.-1a =时)(x f 单调, 方程0)(=x f 至多有1个解.;1-<a 时, 01)1()1(<+=<-a f a f ,方程0)(=x f 仅在区间)1,0(a -内有1个解; 故方程0)(=x f 的根的个数不能达到3. …………………14分。
山东省实验中学高三第二次诊断性测试
山东省实验中学高三第二次诊断性测试standalone; self-contained; independent; self-governed;autocephalous; indie; absolute; unattached; substantive山东省实验中学高三第二次诊断性测试化学试题注意事项:1.本试卷分为第Ⅰ卷和第Ⅱ卷两部分。
第Ⅰ卷1~4页为选择题,第Ⅱ卷5~8页为非选择题。
考试时间90分钟,满分100分。
2.请将第Ⅰ卷选择题所选答案的标号(A、B、C、D)填涂在答题卡上可能用到的原子量: H 1 C 12 N 14 O 16 Na 23 P 31 Cu 64第Ⅰ卷(选择题共40分)一、选择题(本题包括17小题,每小题只有一个选项符合题意。
1-11题每小题2分,12-17题每小题3分,共40分。
)1.下列物质及用途正确的是A.碳酸钡、钡餐(X光透视)B. 苯甲酸钠、食品防腐剂C.甲醛、食品漂白 D. 苏丹红、食品色素2. 久置空气中会发生颜色变化,但颜色变化不是由于跟氧气反应引起的物质是A.过氧化钠固体B. 亚硫酸钠固体 C 硫酸亚铁晶体 D 苯酚晶体3.短周期元素A、B、C原子序数依次递增,它们原子的最外层电子数之和为10。
A与C在周期表中同主族,B原子最外层电子数等于A原子次外层电子数,下列叙述正确的是A. 原子半径A>B>CB. A的氢化物的稳定性大于C的氢化物C. A的氧化物的熔点比C的氧化物高D. A与C可形成离子化合物4. 同温同压下,等体积的两容器内分别充满由14N、13C、18O三种原子构成的一氧化氮和一氧化碳,下列说法正确的是A.所含分子数和质量均不相同 B.含有相同的分子数和电子数C.含有相同的质子数和中子数 D.含有相同数目的中子、原子和分子5. 用NA表示阿伏加德罗常数,下列说法中正确的是A.1L1mol/L的醋酸溶液中离子总数为2NA4中含有阳离子的数量为 NA晶体中含有右图所示的结构单元的数量为D. 标准状况下,22.4L CH3Cl和CHCl3的混合物所含有分子数目为NA6.将60℃的硫酸铜饱和溶液100克,冷却到20℃,下列说法正确的是A.溶液质量不变B.溶剂质量发生变化C.溶液为饱和溶液,浓度不变D.有晶体析出,溶剂质量不变7. 下列药品:① 氯水;② 氢氧化钠溶液;③ 银氨溶液;④ 氨水;⑤ 氢硫酸;⑥ 与乙醛发生反应的氢氧化铜;⑦ 由工业酒精制取无水酒精时所用的生石灰。
山东省实验中学2015届高三数学第二次诊断性考试试题 理(含解析)
数学【试卷综析】本试卷是高三理科试卷,考查学生解决实际问题的综合能力,是份较好的试卷. 以基础知识和基本技能为载体,以能力测试为主导,在注重考查学科核心知识的同时,突出考查考纲要求的基本能力,重视学生科学素养的考查.知识考查注重基础、注重常规、注重主干知识,兼顾覆盖面.试题重点考查:集合、不等式、导数函数的应用、三角函数的性质、三角恒等变换与解三角形、数列等;【题文】一、选择题(本题包括10小题,每小题5分,共50分.每小题只有一个选项符合题意)【题文】1.集合{}{}2,1,0,1x A y R y B =∈==-,则下列结论正确的是A.{}0,1A B ⋂=B.{}0,A B ⋃=+∞C.()(),0R C A B ⋃=-∞ D.(){}1,0R C A B ⋂=-【知识点】集合及其运算A1 【答案】D【解析】∵A={y ∈R|y=2x}={y ∈R|y >0},∴CRA={y ∈R|y ≤0}, 又B={-1,0,1},∴(CRA )∩B={-1,0}.【思路点拨】本题利用直接法,先利用指数函数的值域性质化简集合A ,再求CRA ,最后求出A 、B 的交、并及补集等即可.【题文】2.“22ab>”是“ln ln a b >”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 【知识点】充分条件、必要条件A2 【答案】B【解析】2a >2b ⇒a >b ,当a <0或b <0时,不能得到Ina >Inb ,反之由Ina >Inb 即:a >b >0可得2a >2b 成立,所以2a >2b”是“Ina>Inb”的必要不充分条件【思路点拨】分别解出2a >2b ,Ina >Inb 中a ,b 的关系,然后根据a ,b 的范围,确定充分条件,还是必要条件.【题文】3.已知()10,sin cos 2απαα∈+=,且,则cos2α的值为A.±B.C.D.34-【知识点】二倍角公式G6 【答案】B【解析】把sina+cosa=12,两边平方得:1+2sin αcos α=14,即1+sin2α= 14,解得sin2α=-34,又sin (α+ 4π)=12,解得:sin (α+4π)=<12,得到:0<α+4π<6π(舍去)或56π<α+4π<π, 解得712π<α<34π,所以2α∈(76π,32π), 则cos2α=-4. 【思路点拨】把已知的等式两边平方,利用二倍角的正弦函数公式即可求出sin2α的值,然,利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,根据正弦的值,判断得到α的范围,进而得到2α的范围,利用同角三角函数间的基本关系由sin2α的值和2α的范围即可求出cos2a 的值. 【题文】4.已知函数()f x 的定义域为()()32,11a a f x -++,且为偶函数,则实数a 的值可以是A. 23B.2C.4D.6【知识点】函数的奇偶性B4 【答案】B【解析】因为函数f (x+1)为偶函数,则其图象关于y 轴对称,而函数f (x )的图象是把函数f (x+1)的图象向右平移1个单位得到的,所以函数f (x )的图象关于直线x=1对称.又函数f (x )的定义域为(3-2a ,a+1),所以(3-2a )+(a+1)=2,解得:a=2.【思路点拨】函数f (x+1)为偶函数,说明其定义域关于“0”对称,函数f (x )的图象是把函数f (x+1)的图象向右平移1个单位得到的,说明f (x )的定义域(3-2a ,a+1)关于“1”对称,由中点坐标公式列式可求a 的值. 【题文】5.设函数()sin cos2f x x x=图象的一条对称轴方程是A.4x π=-B.0x =C.4x π=D.2x π=【知识点】三角函数的图象与性质C3 【答案】D【解析】∵f (x )=sinxcos2x ,∴f (-2π)=sin (-2π)cos2×(-2π)=1≠f(0)=0,∴函数f (x )=sinxcos2x 图象不关于x=-4π对称,排除A ;∵f (-x )=sin (-x )cos2(-x )=-sinxcos2x=-f (x ),∴f (x )=sinxcos2x 为奇函数,不是偶函数,故不关于直线x=0对称,排除B ;又f (2π)=sin 2πcos (2×2π)=-1≠f(0)=0,故函数f (x )=sinxcos2x 图象不关于x=4π对称,排除C ;又f (π-x )=sin (π-x )cos2(π-x )=sinxcos2x=f (x )∴f (x )关于直线x=2π对称,故D 正确.【思路点拨】利用函数的对称性对A 、B 、C 、D 四个选项逐一判断即可. 【题文】6.若方程24x x m+=有实数根,则所有实数根的和可能是A.246---、、B. 456---、、C. 345---、、D. 468---、、 【知识点】函数与方程B9 【答案】D【解析】函数y=|x2+4x|由函数y=x2+4x 的图象纵向对折变换所得: 如下图所示:由图可得:函数y=|x2+4x|的图象关于直线x=-2对称,则方程|x2+4x|=m 的实根也关于直线x=-2对称,当m <0时,方程|x2+4x|=m 无实根,当m=0或m >4时,方程|x2+4x|=m 有两个实根,它们的和为-4, 当0<m <4时,方程|x2+4x|=m 有四个实根,它们的和为-8, 当m=4时,方程|x2+4x|=m 有三个实根,它们的和为-6,【思路点拨】函数y=|x2+4x|由函数y=x2+4x 的图象纵向对折变换所得,画出函数图象可得函数y=|x2+4x|的图象关于直线x=-2对称,则方程|x2+4x|=m 的实根也关于直线x=-2对称,对m 的取值分类讨论,最后综合讨论结果,可得答案.【题文】7.要得到一个奇函数,只需将函数()sin 2f x x x=的图象A.向左平移6π个单位B.向右平移6π个单位 C.向右平移4π个单位D.向左平移3π个单位【知识点】三角函数的图象与性质C3 【答案】A【解析】f (x )cos2x=2sin (2x-3π).根据左加右减的原则,只要将f (x )的图象向左平移6π个单位即可得到函数y=2sin2x 的图象,显然函数y=2sin2x 为奇函数,故要得到一个奇函数,只需将函数f (x )cos2x 的图象向左平移6π个单位.【思路点拨】先根据两角和与差的公式将f (x )化简,再根据左加右减的原则进行平移从而可得到答案.【题文】8.定义在R 上的偶函数满足()()3311,0222f x f x f f ⎛⎫⎛⎫+=--==- ⎪ ⎪⎝⎭⎝⎭且,则()()()()1232014f f f f +++⋅⋅⋅+的值为A.2B.1C.0D.2-【知识点】函数的周期性B4【答案】B【解析】由f (x )满足33()()22f x f x +=-),即有f (x+3)=f (-x ),由f (x )是定义在R 上的偶函数,则f (-x )=f (x ),即有f (x+3)=f (x ),则f (x )是以3为周期的函数,由f (-1)=1,f (0)=-2,即f (2)=1,f (3)=-2, 由f (4)=f (-1)=1,即有f (1)=1.则f (1)+f (2)+f (3)+…+f(2014)=(1+1-2)+…+f (1)=0×671+1=1.【思路点拨】由f (x )满足33()()22f x f x +=-,即有f (x+3)=f (-x ),由f (x )是定义在R 上的偶函数,则f (-x )=f (x ),即有f (x+3)=f (x ),则f (x )是以3为周期的函数,求出一个周期内的和,即可得到所求的值. 【题文】9.在ABC ∆中,若()()()sin 12cos sin A B B C A C -=+++∆,则ABC的形状一定是A.等边三角形B.不含60的等腰三角形C.钝角三角形D.直角三角形【知识点】解三角形C8 【答案】D【解析】∵sin (A-B )=1+2cos (B+C )sin (A+C ),∴sin (A-B )=1-2cosAsinB , ∴sinAcosB-cosAsinB=1-2cosAsinB ,∴sinAcosB+cosAsinB=1, ∴sin (A+B )=1,∴A+B=90°,∴△ABC 是直角三角形.【思路点拨】利用三角形的内角和,结合差角的余弦公式,和角的正弦公式,即可得出结论. 【题文】10.函数()f x =的性质:①()f x 的图象是中心对称图形: ②()f x 的图象是轴对称图形;③函数()f x的值域为)+∞; ④方程()()1f f x =有两个解.上述关于函数()f x 的描述正确的是A.①③B.③④C.②③D.②④【知识点】单元综合B14 【答案】C【解析】∵函数f (x )的最小值为=,∴函数的值域显然③正确;由函数的值域知,函数图象不可能为中心对称图形,故①错误;又∵直线AB 与x 轴交点的横坐标为32,显然有f(32-x)=f(32+x),∴函数的图象关于直线x=32对称,故②正确;;令t=f (x ),由t=0或t=3,由函数的值域可知不成立,∴方程无解,故④错误,【思路点拨】由函数的几何意义可得函数的值域及单调性,结合函数的值域和单调性逐个选项验证即可作出判断.第II 卷(非选择题 共100分)【题文】二、填空题:本大题共5个小题,每小题5分,共25分.将答案填在题中横线上.【题文】11.定积分()12xx e dx +⎰____________.【知识点】定积分与微积分基本定理B13 【答案】e 【解析】10⎰(2x+ex)dx=(x2+ex )10=(12+e1)-(02+e0)=e【思路点拨】根据积分计算公式,求出被积函数2x+ex 的原函数,再根据微积分基本定理加以计算,即可得到本题答案. 【题文】12.如果()2tan sin 5sin cos f x x x x=-⋅,那么()2f =_________.【知识点】同角三角函数的基本关系式与诱导公式C2【答案】-65【解析】∵f (tanx )=sin2x-5sinx•cosx= 222sin 5sin cos sin cos x x x x x -+=22tan 5tan tan 1x xx -+, ∴f (x )= 2251x x x -+,则f (2)=-65.【思路点拨】把已知函数解析式的分母1化为sin2x+cos2x ,然后分子分母同时除以cos2x ,利用同角三角函数间的基本关系弦化切后,可确定出f (x )的解析式,把x=2代入即可求出f (2)的值. 【题文】13.函数()2sin cos f x x x x x =++,则不等式()()ln 1f x f <的解集为___________.【知识点】函数的单调性与最值B3【答案】(1e ,e)【解析】∵函数f (x )=xsinx+cosx+x2,满足f (-x )=-xsin (-x )+cos (-x )+(-x )2=xsinx+cosx+x2=f (x ), 故函数f (x )为偶函数.由于f ′(x )=sinx+xcosx-sinx+2x=x (2+cosx ),当x >0时,f ′(x )>0,故函数在(0,+∞)上是增函数, 当x <0时,f ′(x )<0,故函数在(-∞,0)上是减函数.不等式f (lnx )<f (1)等价于-1<lnx <1,∴1e <x <e ,【思路点拨】首先判断函数为偶函数,利用导数求得函数在(0,+∞)上是增函数,在(-∞,0)上是减函数,所给的不等式等价于-1<lnx <1,解对数不等式求得x 的范围,即为所求. 【题文】14.已知ABC ∆的一个内角为120,并且三边长构成公差为4的等差数列,则ABC ∆的面积为____________. 【知识点】解三角形C8 【答案】【解析】设三角形的三边分别为x-4,x ,x+4,则cos120°=222(4)(4)12(4)2x x x x x +--+=-, 化简得:x-16=4-x ,解得x=10,所以三角形的三边分别为:6,10,14则△ABC 的面积S=12.【思路点拨】因为三角形三边构成公差为4的等差数列,设中间的一条边为x ,则最大的边为x+4,最小的边为x-4,根据余弦定理表示出cos120°的式子,将各自设出的值代入即可得到关于x 的方程,求出方程的解即可得到三角形的边长,然后利用三角形的面积公式即可求出三角形ABC 的面积. 【题文】15.设函数()ln f x x=,有以下4个命题:①对任意的()()()1212120,22f x f x x x x x f ++⎛⎫∈+∞≤⎪⎝⎭、,有;②对任意的()()()121221211,x x x x f x f x x x ∈+∞<-<-、,且,有;③对任意的()()()12121221,x x e x x x f x x f x ∈+∞<<、,且,有;④对任意的120x x <<,总有()012,x x x ∈,使得()()()12012f x f x f x x x -≤-.其中正确的是______________________(填写序号). 【知识点】函数的单调性与最值B3 【答案】② 【解析】:∵f (x )=lnx 是(0,+∞)上的增函数,∴对于①由f(122x x +)=ln 122x x +,12()()2f x f x +,∵122x x +故f(122x x +)>12()()2f x f x + 故①错误.对于②③,不妨设x1<x2则有f (x1)<f (x2),故由增函数的定义得f (x1)-f (x2)<x2-x1 故②正确,由不等式的性质得x1f (x1)<x2f(x2),故③错误;对于④令e=x1<x2=e2,得1212()()f x f x x x --=21e e -<1,∵x0∈(x1,x2),∴f (x0)>f (x1)=1,不满足f(x0)≤1212()()f x f x x x --.故④错误.【思路点拨】利用对数函数的单调性性质求解即可. 【题文】三、解答题:本大题共6小题,共75分.【题文】16.(本小题满分12分)已知函数())22sin cos cos sin f x x x x x =-.(I )求6f π⎛⎫ ⎪⎝⎭及()f x 的单调递增区间;(II )求()f x 在闭区间,44ππ⎡⎤-⎢⎥⎣⎦的最值.【知识点】三角函数的图象与性质C3【答案】(I )32 ,[-512π+k π,12π+ k π],k Z ∈(II )最大值为1,最小值为-12 【解析】(I )f(x)= 12sin2x+32cos2x=sin(2x+3π),则f(6π)=32,22k ππ-+≤2x+3π22k ππ≤+,k Z ∈单调递增区间[-512π+k π,12π+ k π],k Z ∈.(II )由x ∈,44ππ⎡⎤-⎢⎥⎣⎦则2x+3π∈5[,]66ππ-,sin(2x+3π)∈[-12,1], 所以最大值为1,最小值为-12。
【山东省实验中学二模 理科数学压轴题】山东省实验中学2015届高三最后第二次模拟考试(6月)Word版含答案
【打靶题】山东省实验中学2015届高三最后第二次模拟考试(6月)山东省实验中学二模 数学试题(理)2015.6说明:试题分为第I 卷(选择题)和第I 卷(非选择题)两部分.试题答案请用2B 铅笔或0,5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效,考试时间120分钟.一、选择题(本题包括10小题,每小题5分,共50分,每小题只有一个选项符合题意)l-已知全集U=R ,集合 {}{}3|021,|log 0xA xB x x =<<=>,则A. {}|1x x > B . {}|0x x > C. {}|01x x << D. {}|0x x < 2.若 ,R αβ∈, 则90αβ+=是sin sin 1αβ+> 的A .充分而不必要条件 B.必要而不充分条件C .充耍条件D .既不充分也不必要条件 3.复数z 满足 (12)7i z i -=+,则复数 z ==( )A. 13i +B.13i -C.3i +D. 3i -4.执行下图所示的程序框图,若要使输入的x 值与输出的y 值相等,则这样的x 值的个数是A. 1B. 2C. 3D.4 5.下列四个命题:①样本方差反映的是所有样本数据与样本平均值的偏离程度; ②某只股票经历了l0个跌停(每次跌停,即下跌l0%)后需再经 过如个涨停(每次涨停,印上涨10%)就酉以回到原来的净值; ③某校高三一级部和二级部的人数分别是m 、n ,本次期末考试 两级部;学平均分分别是a 、b ,则这两个级部的数学平均分为na mb m n+ ④某中学采伯系统抽样方法,从该校高一年级全体800名学生中 抽50名学生做牙齿健康检查,现将800名学生从001到800进行编号,已知从497--512这16个数中取得的学生编号是503,则初始在第1小组00l ~016中随机抽到的学生编号是007. 其中真命题的个数是A.0个B.1个C.2个D.3个6.已知函数 ()sin()f x A x ωϕ=+ (其中A>0, 2πϕ<)的部分图象 如图所示,为了得到g(x)=sin 2x 的图象,则只需将f (x)的图象A.向右平移6π个长度单位 B.向右平移 12π个长度单位C .向左平移 6π个长度单位 D .向左平移 12π个长度单位7.已知数列 {}{}n n a b 满足 1111,2,n n a b a a n N *+==-==∈,则数列 {}n a b 的前10项和为 A.()101413- B. ()104413- C. ()91413- D. ()94413- 8.函数 2()(2)x f x x x e =-的图像大致是9.已知A 、B 是圆 22:1O x y +=上的两个点,P 是AB 线段上的动点,当∆AOB 的面积最大时,则 2AO AP AP ⋅-的最大值是 A. -1 B.0 C.18 D. 1210.已知a>0,b>0,c>0,且 2221,4ab a b c =++=,则ab+bc+ac 的最大值为 A. 122+ B.3 C. 3 D. 4第Ⅱ卷(非选择题,共100分)二.填空题(本题包括5小题,每小题5分,共25分)11.已知 ()24f x x x =++-的最小值是n ,则二颈式 1()nx x-展开式中2x 项的系数为__________.12.若双曲线 22:2(0)C x y m m -=>与抛物线 216y x =的准线交于A ,B 两点,且43AB =则m 的值是__________.13.若实数x,y 满足条件 20,0,3,x y x y x +-≥⎧⎪-≤⎨⎪≤⎩, 则z=3x-4y 的最大值是__________.14.一个球的内接圆锥的最大体积与这个球的体积之比为__________.15.用[x]表示不大于实数x 的最大整数, 方程 []2lg lg 20x x --=的实根个数是__________.三.解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤). 16.(本小题满分12分)已知函数 ()sin (0)f x x ωω=->在区间 0,3π⎡⎤⎢⎥⎣⎦上单调递减,在区间 2,33ππ⎡⎤⎢⎥⎣⎦上单调递增;如图,四边形OACB 中,a ,b ,c 为△ABC 的内角以B, C 的对边,且 满足 sin sin tan 4cos cos 3B c A BC ω+=-- .(I)证明:b+c =2a :(Ⅱ)若b=c ,设 AOB θ∠=.(0),22OB OB θπ<<==,求四边形OACB 面积的最大值.17. (本小题满分12分)如图, 在四棱锥P –ABCD 中,PA ⊥平面ABCD , ∠DAB 为直角, AB//CD ,AD=CD=2AB=2,E ,F 分别为PC ,CD 的中点. ( I)证明:AB ⊥平面BEF :(Ⅱ)设PA =h ,若二面角E-BD-C 大于45 ,求h 的取值范围.18.(本小题满分12分)一个袋子装有大小形状完全相同的9个球,其中5个红球编号分别为l ,2,3,4,5:4个白球编号分别为1,2,3,4,从袋中任意取出3个球. (I)求取出的3个球编号都不相同的概率;(II)记X 为取出的3个球中编号的最大值,求X 的分布列与数学期望, 19. (本小题满分12分)数列{}n a 的前n 项和记为 11,2,n n n S a a S n +==+,等差数列 {}n b 的各项为正,其前n 项和为 n T ,且 39T =,又 112233,,a b a b a b +++成等比数列. (I)求 {}n a ,{}n b 的通项公式} ( II)求证:当n ≥2时, 2221211145nb b b ++⋅⋅⋅+< 20. (本小题满分13分)如图,椭圆 22122:1(0)x y C a b a b +=>>的离心率为 22,x轴被曲线 22:C y x b =-截得的线段长等于1C 的短轴长, 2C 与y 轴的交点为M ,过坐标原点O 的直线 l 与2C 相交于点A 、B ,直线MA,MB 分别与 1C 相交于点D 、E.(I)求1C 、 2C 的方程; (Ⅱ)求证:MA ⊥MB :(Ⅲ)记∆MAB , ∆MDE 的面积分别为 12,S S ,若 12S S λ=,求 λ的最小值. 21.(本小题满分l4分)已知函数 1()(1)ln ,()f x ax a x a R x=+-+∈. (I)当a=0时,求 ()f x 的极值; (Ⅱ)当a<0时,求 ()f x 的单调区间;(Ⅲ)方程 ()0f x =的根的个数能否达到3,若能请求出此时a 的范围,若不能,请说明理由,【打靶题】山东省实验中学2015届高三最后第二次模拟考试(6月) 理科数学答案一、 选择: DDBDC AABCA二、 填空 11. 15;12. 20;13. -1;14. 8:27;15. 3 三、解答题16解:(Ⅰ)由题意知:243ππω=,解得:32ω=, ……………………2分CB CB B A A cos cos 2sin sin sin sin tan --+==∴ A C A B A A C A B sin cos -sin cos -sin 2cos sin cos sin =+∴ A A C A C A B A B sin 2sin cos cos sin sin cos cos sin =+++∴ A C A B A sin 2)(sin )(sin =+++∴……………………………………4分a cb A B C 2sin 2sin sin =+⇒∴=+∴…………………………………………………6分(Ⅱ)因为2b c a b c +==,,所以a b c ==,所以ABC △为等边三角形 …………8分z yxFEPDCBA213sin 24OACB OAB ABC S S S OA OB AB θ∆∆=+=⋅+ ……………9分435cos 3-sin +=θθ532sin (-)34πθ=+, ……………………10分 (0)θπ∈,,2--333πππθ∴∈(,),当且仅当-32ππθ=,即56πθ=时取最大值,OACB S 的最大值为5324+………………12分 17.解:(Ⅰ)证:由已知DF ∥AB 且∠DAB 为直角,故ABFD 是矩形,从而AB ⊥BF . ……(1分)又P A ⊥底面ABCD , ∴平面P AD ⊥平面ABCD , ……(2分) ∵AB ⊥AD ,故AB ⊥平面P AD ,∴AB ⊥PD , ……(3分) 在ΔPCD 内,E 、F 分别是PC 、CD 的中点,EF //PD ,……(4分) ∴ AB ⊥EF . ……(5分)由此得⊥AB 平面BEF .……(6分) (Ⅱ)以A 为原点,以AB ,AD ,AP 为x 轴,y 轴,z 轴正向建立空间直角坐标系,则)21,0(),0,2,1(hBE BD =-=……(8分)设平面CDB 的法向量为)1,0,0(1=n ,平面EDB 的法向量为),,(2z y x n =,则 ⎪⎩⎪⎨⎧=⋅=⋅0022BE n BD n⎪⎩⎪⎨⎧=+=+-0202hz y y x 可取⎪⎭⎫ ⎝⎛-=h n 2,1,22……(10分) 设二面角E -BD -C 的大小为θ,则|||||||,cos |cos 212121n n n n n n ⋅⋅=><=θ=224522<+hh, 化简得542>h ,所以552>h …(12分)18解:(I )设“取出的3个球编号都不相同”为事件A ,则“取出的3个球中恰有两个球编号相同”为事件A ,则31)(391714==C C C A P 所以32)(1)(=-=A P A P ………………(4分)(II ) X 的取值为2,3,4,5211)2(3912222212=+==C C C C C X P ,214)3(3914222412=+==C C C C C X P73)3(3916222612=+==C C C C C X P ,31)5(3928===C C X P…………………(8分) 所以X 的分布列为:X 23 4 5P211214 73 31的数学期望218531573421432112=⨯+⨯+⨯+⨯=EX ………..12分 19解:(Ⅰ)由n S a n n +=+1,得)1(1-+=-n S a n n )2(≥n ,两式相减得1111+=+-=--+n n n n n a S S a a ,所以121+=+n n a a ---------------------------------2分所以)1(211+=++n n a a )2(≥n -------------------------------------3分 又,32=a 所以n n n a a 2)1(2122=+=+-,从而12-=n n a )2(≥n ----------------5分 而21=a ,不符合上式,所以⎩⎨⎧≥-==2,121,2n n a nn -------------------------------------6分因为}{n b 为等差数列,且前三项的和93=T ,所以32=b ,--------7分可设db d b +=-=3,331,由于7,3,2321===a a a ,于是d b a b a d b a -=+=+-=+10,6,5332211,因为332211,,b a b a b a +++成等比数列, 所以36)10)(5(=+-d d ,2=d 或7-=d (舍)所以12)1(21)1(1-=-+=-+=n n d n b b n -----------------------------------9分 (Ⅱ)因为⎪⎭⎫⎝⎛--=-=--<-=k k k k k k b k11141)22(211)12(1)12(11222 所以,当2≥n 时22222221)12(13111111-++=+++n b b b n⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+<n n 1113121211411 ⎥⎦⎤⎢⎣⎡-+=n 1141145411=+< -----------------------------------------------------------12分20.解(1)22222c a b a =∴= (1分) 又22b b =,得1b =22221:1,:12x C y x C y ∴=-+= (3分)(2)设直线1122:,(,),(,)AB y kx A x y B x y =则22101y kxx kx y x =⎧⇒--=⎨=-⎩ (4分) 211221212(,1)(,1)(1)()1MA MB x y x y k x x k x x ⋅=+⋅+=++++=0M A M B ∴⊥ (6分) (3)设直线1212:1;:1,1MA y k x MB y k x k k =-=-=-1121122110,(,1)111x k y k x x A k k y y k y x ==-⎧⎧=⎧⎪∴-⎨⎨⎨=-=-=-⎪⎩⎩⎩解得或,同理可得222(,1)B k k - 2211212111122S MA MB k k k k ==++ (8分) 1212111222221112141120421,(,)11212211212k x y k x k x k k D x y k k k y y k ⎧==-⎧⎪+=⎧-⎪⎪∴⎨⎨⎨=-++-+=⎩⎪⎪=⎩⎪+⎩解得或 同理可得2222222421(,)1212k k E k k -++1222212221216111122(12)(12)k k S MD ME k k k k ∴==++++ (11分)2122211212152()(12)(12)9161616k S k k k S λ++++===≥所以λ的最小值为169,此时k =1或-1. (13分)21解:(Ⅰ))(x f 其定义域为),0(+∞. ……………1分当0=a 时,x x x f 1ln )(+= ,22111)(xx x x x f -=-='. 令0)(='x f ,解得1=x ,当10<<x 时,0)(<'x f ;当1>x 时,0)(>'x f .所以)(x f 的单调递减区间是)1,0(,单调递增区间是),1(+∞;所以1=x 时, )(x f 有极小值为1)1(=f ,无极大值 ……………3分(Ⅱ) 222211(1)1(1)(1)()(0)a ax a x ax x f x a x x x x x ----+-'=--==> ………4分令0)(='x f ,得1=x 或ax 1-= 当01<<-a 时,a11-<,令0)(<'x f ,得10<<x 或a x 1->,令0)(>'x f ,得ax 11-<<;当1-=a 时,0)1()(22≤--='xx x f . 当1-<a 时,110<-<a ,令0)(<'x f ,得ax 10-<<或1>x , 令0)(>'x f ,得11<<-x a;综上所述:当01<<-a 时,)(x f 的单调递减区间是)1,0(,),1(+∞-a, 单调递增区间是)1,1(a-;当1-=a 时,)(x f 的单调递减区间是),0(+∞;当1-<a 时,)(x f 的单调递减区间是)1,0(a-,),1(+∞,单调递增区间是)1,1(a - (10)分(Ⅲ)0≥a 时)0()1)(1()(2>-+='x x x ax x f)0(0)(>='∴x x f 仅有1解,方程0)(=x f 至多有两个不同的解.(注:也可用01)1()(min >+==a f x f 说明.)由(Ⅱ)知01-<<a 时,极小值 01)1(>+=a f , 方程0)(=x f 至多在区间),1(+∞-a 上有1个解.-1a =时)(x f 单调, 方程0)(=x f 至多有1个解.;1-<a 时, 01)1()1(<+=<-a f a f ,方程0)(=x f 仅在区间)1,0(a -内有1个解;故方程0)(=x f 的根的个数不能达到3. …………………14分。
山东省实验中学高三第二次诊断性测试 理科数学试题.pdf
【教学目标】 知识目标:读准字音,明确字义:愠、罔、殆、谓、哉、焉“仁”,反对残暴统治,同情人民疾苦。
他创办私学,开私人讲学之先河, 讲学之风主张“有教无类”“因材施教”,相传有弟子三千,贤弟子七十二人,是我国历史上致力于教育的第一人。
他的思想和学说,为中国文化乃至世界文明作出了不朽的贡献,联合国教科文组织把他列为世界十大名人之一。
《论(lún)语》属语录体散文,是孔子弟子及其再传弟子关于孔子及其弟子言行的记录,共20篇 。
内容有孔子谈话,答弟子问及弟子间的相互讨论。
它是研究孔子思想的主要依据。
南宋时,朱熹把它列为“四书” (《论语》《孟子》《大学》《中庸》)之一,成为儒家的重要经典。
由若干篇章组成,前后两章之间不一定有什么关联。
各章的体式也不尽相同,归纳起来,有以下几种: 一种是语录体,(也可称格言体)仅指的是孔子的话。
一种是对话体,记录孔子对弟子的问题所作的回答。
一种是叙事体,其中多少有一点情节,但也往往是以记录孔子的话为主。
第一则 子曰:“学而时习之,不亦说(yuè)乎?有朋自远方来,不亦乐乎?人不知而不愠,不亦君子乎(《学而》)学:孔子在这里所讲的“学”,主要是指学习西周的礼、乐、诗、书等传统文化典籍。
在周秦时代,“时”字用作副词,意为“在一定的时候”或者“在适当的时候”。
但朱熹在《》一书中把“时”解释为“时常”。
“习”,指演习礼、乐;复习诗、书。
也含有温习、实习、练习的意思。
名词,朋友。
这里指志同道合的人知,是了解的意思。
人不知,是说别人不了解自己。
而是连词,表顺接亦(yì):同样、也是。
乎:语气助词,表疑问语气,可译“吗”。
人不知而不愠而表转折,相当于可是、但是。
这一则语录中学而时习之讲的是学习方法;有朋自远方来 讲的是学习乐趣志同道合的人来访可以人不知而不愠讲的是个人修养的问题。
曾子曰:“吾日三省(xǐng)吾身:为人谋而不忠乎?与朋友交而不信乎?传不习乎?”(《学而》)古代在有动作性的动词前加上数字,表示动作频率多,不必认定为三次。
山东省实验中学2015届高三上学期第二次诊断性考试数学(理)试题
说明:试题分为第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷为第1页至第2页,第II 卷为第3页至第4页。
试题答案请用2B 铅笔或0. 5mm 签字笔填涂到答题卡规定位置上,书写在试题的答案无效。
考试时间120分钟.第I 卷(共50分)一、选择题(本题包括10小题,每小题5分,共50分.每小题只有一个选项......符合题意) 1. 集合{}{}2,1,0,1xA y R yB =∈==-,则下列结论正确的是( )A.{}0,1A B ⋂=B.{}0,A B ⋃=+∞C.()(),0R C A B ⋃=-∞D.(){}1,0R C A B ⋂=-【答案】D考点:1.集合的表示.2.集合的运算.2. “22ab>”是“ln ln a b >”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 【答案】B考点:1.函数的性质.2.充要条件.3. 已知()10,sin cos 2απαα∈+=,且,则cos 2α的值为( )A.±C.D.34-考点:1.三角函数的恒等变换.2.角度的区间的确定.4. 已知函数()f x 的定义域为()()32,11a a f x -++,且为偶函数,则实数a 的值可以是( ) A.23B.2C.4D.6【答案】B考点:1.函数的奇偶性.2.复合函数的性质.5. 设函数()sin cos2f x x x =图象的一条对称轴方程是( ) A. 4x π=-B.0x =C.4x π=D. 2x π=【答案】D 【解析】试题分析:由题意可知函数()sin cos2f x x x =,所以()0,()0,(0)0,()1442f f f f πππ-====-.又因为函数为奇函数,所以0x =不是对称轴,由此对称轴所对的函数值为函数的最大值或最小值,因此对称轴仅能是2x π=.故选D.考点:1.三角函数的性质.2.排除法的思想.6. 若方程24x x m +=有实数根,则所有实数根的和可能是( )A.246---、、B. 456---、、C. 345---、、D. 468---、、考点:1.函数的图象.2.函数与方程的关系.7. 要得到一个奇函数,只需将函数()sin 2f x x x =的图象( ) A.向左平移6π个单位 B.向右平移6π个单位 C.向右平移4π个单位 D.向左平移3π个单位 【答案】A考点:1.三角函数的角的和差的变换.2.三角函数的左右移动.8. 定义在R 上的偶函数满足()()3311,0222f x f x f f ⎛⎫⎛⎫+=--==-⎪ ⎪⎝⎭⎝⎭且,则()()()()1232014f f f f +++⋅⋅⋅+的值为( ) A.2B.1C.0D.2-【答案】B 【解析】试题分析:由函数为偶函数,所以()()f x f x -=.又33()()22f x f x +=-.所以函数关于32x =对称.即()(3)f x f x =-.所以()(3)f x f x -=-即()(3)f x f x =+.所以函数的周期为3.所以(1)(2)1f f -==.(0)(3)2f f ==-.又(1)(1)1f f -==.所以()()()()1232014f f f f +++⋅⋅⋅+=671((1)(2)(3))(1)(1)1f f f f f ⨯+++==.故选B.考点:1.函数的奇偶性.2.函数的周期性.3.递推的思想.9. 在ABC ∆中,若()()()sin 12cos sin A B B C A C -=+++∆,则ABC 的形状一定是( ) A.等边三角形B.不含60o的等腰三角形 C.钝角三角形D.直角三角形【答案】D考点:1.三角形的内角和.2.三角恒等变换.10. 函数()f x =①()f x 的图象是中心对称图形: ②()f x 的图象是轴对称图形;③函数()f x 的值域为)+∞; ④方程()()1f f x =.上述关于函数()f x 的描述正确的是( ) A.①③ B.③④C.②③D.②④【答案】C考点:1.函数的性质.2.两点间的距离公式的转化.3.函数的最值.第II 卷(非选择题 共100分)二、填空题:本大题共5个小题,每小题5分,共25分.将答案填在题中横线上. 11. 定积分()12xx e dx +⎰____________.【答案】e考点:定积分的运算.12. 如果()2tan sin 5sin cos f x x x x =-⋅,那么()2f =_________. 【答案】65-考点:1.三角函数的性质.2.函数的表示.13. 函数()2sin cos f x x x x x =++,则不等式()()ln 1f x f <的解集为___________.【答案】1(,)e e - 【解析】试题分析:由()()ln 1f x f <可知0x >.因为'()sin cos sin 2(cos 2)0f x x x x x x x x =+-+=+>.所以函数()f x 在0x >上单调递增,且为偶函数.由()()ln 1f x f <可得11ln 1,x e x e --<<∴<<.故填1(,)e e -. 考点:1.函数的单调性.2.函数的奇偶性.14. 已知ABC ∆的一个内角为120o,并且三边长构成公差为4的等差数列,则ABC ∆的面积为____________.【答案】【解析】考点:1.解三角形的知识.2.数列的知识.15. 设函数()ln f x x =,有以下4个命题: ①对任意的()()()1212120,22f x f x x x x x f ++⎛⎫∈+∞≤⎪⎝⎭、,有; ②对任意的()()()121221211,x x x x f x f x x x ∈+∞<-<-、,且,有; ③对任意的()()()12121221,x x e x x x f x x f x ∈+∞<<、,且,有; ④对任意的120x x <<,总有()012,x x x ∈,使得()()()12012f x f x f x x x -≤-.其中正确的是______________________(填写序号). 【答案】②③考点:1.函数的性质.2.函数的导数.三、解答题:本大题共6小题,共75分.16. (本小题满分12分)已知函数())22sin cos cos sin 2f x x x x x =+-.(I )求6f π⎛⎫⎪⎝⎭及()f x 的单调递增区间;(II )求()f x 在闭区间,44ππ⎡⎤-⎢⎥⎣⎦的最值.【答案】(I )()62f π=;5[,],1212k k k Z ππππ-++∈;(II )min max 1(),()12f x f x =-=.考点:1.三角函数的性质.2.三角函数的恒等变换.3.三角函数的最值.17. (本小题满分12分)设命题p :函数()31f x x ax =--在区间[]1,1-上单调递减;命题q :函数()2ln 1y x ax =++的值域是R.如果命题p q 或为真命题,p q 且为假命题,求a 的取值范围.【答案】(,2][2,3)-∞-考点:1.命题间的关系.2.函数的导数.3.函数的最值.4.对数函数的性质.18. (本小题满分12分)在ABC ∆中,内角A ,B ,C 对边的边长分别是,,a b c ,已知23c C π==,.(I )若ABC ∆,a b ; (II )若()sin sin 2sin2C B A A +-=,求,a b .【答案】(I )2,2a b ==;(II )33a b ==考点:1.解三角形知识.2.三角恒等变换.3.余弦定理.19. (本小题满分12分)已知数列{}n a 满足,()*143n n a a n n N ++=-∈.(I )若数列{}n a 是等差数列,求1a 的值; (II )当12a =时,求数列{}n a 的前n 项和n S ;【答案】(I )112a =-;(II )22235,2232n n n n S n n n ⎧-+⎪⎪=⎨-⎪⎪⎩为奇数,为偶数考点:1.数列的性质.2.数列的递推思想.3.数列的求和公式.20. (本小题满分13分)已知函数()432f x ax bx cx dx e =++++的图像关于y 轴对称,其图像过点()0,1A -,且在x =18.(I )求()f x 的解析式;(II )对任意的x R ∈,不等式()20f x tx t --≤恒成立,求t 的取值范围.【答案】(I )42()231f x x x =+-;(II )[7)-+∞再求函数的最值.即可得结论. 试题解析:所以t 的取值范围为[7)-+∞考点:1.函数的导数.2.函数的最值.3.分离变量的思想.21. (本小题满分14分)已知函数()()3221103f x x x ax =+++-在,上有两个极值点12x x ,且12x x <.(I )求实数a 的取值范围;(II )证明:()21112f x >. 【答案】(I )102a <<;(II )参考解析考点:1.函数的导数.2.函数的最值.3.消元化简的思想.。
度山东省实验中学高三第二次诊断性考试(理)
2007-2008学年度山东省实验中学高三第二次诊断性考试数学试题(理科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。
考试时间120分钟。
2.考生一律不准使用计算器。
第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合P={1,2,3,4,5},集合}52|{≤≤∈=x R x Q ,那么下列结论正确的是( )A .P Q P =B .Q Q P ⊇C .P Q P ⊆D .Q Q P = 2.“p 或q”为真命题,“p 且q 为真命题”的( )A .充分不必要条件B .必要非充分条件C .充要条件D .即不充分也不必要条件 3.下列不等式中解集为实数集R 的是( )A .012>+-x x B .02>xC .xx 111<- D .0442>++x x4.已知两点M (-2,0),N (2,0),点P 满足0=⋅PN PM ,则点P 的轨迹方程为( )A .11622=+y x B .422=+y xC .822=-x yD .822=+y x5.设,1,0=+>>b a a b 且则此四个数b b a ab ,,2,2122+中最大的是 ( )A .bB .22b a +C .2abD .216.已知圆中一段弧长正好等于该圆的外切正三角形的边长,则这段弧所对圆心角的度数为( )A .32B .33C .3D .23 7.设函数)(x f 是定义在R 上的奇函数,若134)2(,0)2(+-=>-a a f f ,则a 的取值范围是( )A .43<a B .43<a 且1≠a C .43>a 且1-<a D .-1<43<a 8.若函数)(x f 是定义在(0,+∞)上的增函数,且对一切x>0,y>0满足)()()(y f x f xy f +=,则不等式)4(2)()6(f x f x f <++的解集为( )A .(-8,2)B .(2,+∞)C .(0,2)D .(0,+∞)9.已知三个互不相等的实数a 、b 、c 成等差数列,那么关于x 的方程022=++c bx ax ( ) A .一定有两个不相等的实数根 B .一定有两个相等的实数根C .一定没有实数根D .一定有实数根10.已知函数)(x f 的导数a x x f a x x a x f =-+='在若)(),)(1()(处取到极大值,则a 的取值范围是( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(0,+∞)11.设O 是△ABC 内部一点,且AOC AOB OB OC OA ∆∆-=+与则,2的面积之比为( )A .2B .21 C .1 D .52 12.已知等差数列}{n a 的前n 项和为A n ,等差数列}{n b 的前n 项和为B n ,且*)(5393N n n n B A n n ∈++=,则使nn b a 为整数的所有n 的值的个数为 ( )A .1B .2C .3D .4第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分。
山东省实验中学高三上学期第二次诊断考试——数学理(
参考答案1-10 BCABC ADBDC11. 12.4313.14.1/2或1/16 15.①②③16.解:(Ⅰ)31cos1()sin22xf x xωω-=-+31sin cos2x xωω=+…4分因为最小正周期为,所以………………………………………6分所以.由222262k x kππππ-≤+≤π+, ,得.所以函数的单调递增区间为[], ……………………8分(Ⅱ)因为,所以,所以所以函数在上的取值范围是[] ………………………………………12分17.∴当命题为真命题时122aa a≤-≤∴≤1或. ………………………………………4分又“只有一个实数满足”,即抛物线与轴只有一个交点,∴,∴或.∴当命题为真命题时,或. ………………………………………8分∴命题“p∨q”为真命题时,.∵命题“p∨q”为假命题,∴或.即的取值范围为. ………………………………………12分18.(Ⅰ)();1,0)(,1,0,1ln)(''⎪⎭⎫⎝⎛∴<<<+=exfexxfxxf单调递减区间是解得令();,1)(,1,0'⎪⎭⎫⎝⎛+∞∴>>exfexxf单调递增区间是解得令………………………4分(Ⅱ)由题意:2123ln22+-+≤axxxx即123ln22++≤axxxx可得………………………6分设,则()()()22'213121231xxxxxxh+--=+-=………………………8分令,得(舍)当时,;当时,………………………10分当时,取得最大值, =-2 .的取值范围是. ………………………12分19 .(1)因为cos B=45,所以sin B=35.由正弦定理asin A=bsin B,可得asin 30°=103,所以a=53.………………………4分(2)因为△ABC的面积S=12ac·sin B,sin B=35,所以310ac=3,ac=10. ………………………7分由余弦定理得b2=a2+c2-2ac cos B,得4=a2+c2-85ac=a2+c2-16,即a2+c2=20. ………………………10分所以(a +c )2-2ac =20,(a +c )2=40.所以a +c =210. ………………………12分20.(1)由题意0,()x a f x e a '>=-, 由()0x f x e a '=-=得l n x a =.当(,l n)x a ∈-∞时, ()0f x '<;当(l n,)x a ∈+∞时,()0f x '>.∴()f x 在(,l n )a -∞单调递减,在(l n ,)a +∞单调递增.即()f x 在l n x a =处取得极小值,且为最小值,其最小值为l n (l n )l n 1l n 1.a f a e a a a a a =--=-- (6分)(2)()0f x ≥对任意的x ∈R 恒成立,即在x ∈R 上,m i n ()0f x ≥.由(1),设()l n 1.g a a aa =--,所以()0g a ≥.由()1l n 1l n 0g a a a '=--=-=得1a =.∴()g a 在区间(0,1)上单调递增,在区间(1,)+∞上单调递减,∴()g a 在1a =处取得极大值(1)0g =. 因此()0g a ≥的解为1a =,∴1a =. (13分)21.解:(Ⅰ)当时,14ln 21)(2++-=x x x f ,∴xx x x x f 21221)(2-=+-='. ∵的定义域为,∴由得. ---------------------------2分∴在区间上的最值只可能在取到, 而421)(,4123)1(,45)1(22e e f e e f f +=+==,45)1()(,421)()(min 2max ==+==f x f e e f x f .--4分 (Ⅱ)2(1)()(0,)a x a f x x x++'=∈+∞,. ①当,即时,在单调递减;-------------5分②当时,在单调递增; ----------------6分 ③当时,由得1,12+->∴+->a a x a a x 或(舍去) ∴在单调递增,在上单调递减; --------------------8分综上,当时,在单调递增;当时,在单调递增,在上单调递减.当时,在单调递减; -----------------------10分(Ⅲ)由(Ⅱ)知,当时,即原不等式等价于1ln()2a f a >+- ---------------------------12分即111ln()212a a a a a a +-⋅+>+-+整理得 ∴, ------13分 又∵,所以的取值范围为.-----14分。
全国百强校山东省实验中学高三上学期第二次诊断性(期中)考试数学(理)试题
一、选择题(本题包括10小题,每小题5分,共50分.每小题只有一个选项......符合题意) 1.集合{}{}2,1,0,1x A y R y B =∈==-,则下列结论正确的是A. B.C. D.2.“”是“”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知()10,sin cos 2απαα∈+=,且,则的值为 A. B. C. D. 4.已知函数的定义域为()()32,11a a f x -++,且为偶函数,则实数的值可以是A. B.2 C.4 D.65.设函数图象的一条对称轴方程是A. B. C. D.6.若方程有实数根,则所有实数根的和可能是A. B. C. D.7.要得到一个奇函数,只需将函数()sin 2f x x x =的图象A.向左平移个单位B.向右平移个单位C.向右平移个单位D.向左平移个单位 8.定义在R 上的偶函数满足()()3311,0222f x f x f f ⎛⎫⎛⎫+=--==- ⎪ ⎪⎝⎭⎝⎭且,则()()()()1232014f f f f +++⋅⋅⋅+的值为 A.2 B.1 C.0 D.9.在中,若()()()sin 12cos sin A B B C A C -=+++∆,则ABC 的形状一定是A.等边三角形B.不含的等腰三角形C.钝角三角形D.直角三角形10.函数()f x =①的图象是中心对称图形: ②的图象是轴对称图形;③函数的值域为; ④方程有两个解.上述关于函数的描述正确的是A.①③B.③④C.②③D.②④第II 卷(非选择题 共100分)二、填空题:本大题共5个小题,每小题5分,共25分.将答案填在题中横线上.11.定积分____________.12.如果()2tan sin 5sin cos f x x x x =-⋅,那么_________. 13.函数()2sin cos f x x x x x =++,则不等式的解集为___________. 14.已知的一个内角为,并且三边长构成公差为4的等差数列,则的面积为____________.15.设函数,有以下4个命题:①对任意的()()()1212120,22f x f x x x x x f ++⎛⎫∈+∞≤ ⎪⎝⎭、,有; ②对任意的()()()121221211,x x x x f x f x x x ∈+∞<-<-、,且,有;③对任意的()()()12121221,x x e x x x f x x f x ∈+∞<<、,且,有;④对任意的,总有,使得()()()12012f x f x f x x x -≤-. 其中正确的是______________________(填写序号).三、解答题:本大题共6小题,共75分.16.(本小题满分12分)已知函数())22sin cos cos sin f x x x x x =-. (I )求及的单调递增区间;(II )求在闭区间的最值.17.(本小题满分12分)设命题p :函数在区间上单调递减;命题q :函数的值域是R.如果命题为真命题,为假命题,求的取值范围.18.(本小题满分12分)在中,内角A ,B ,C 对边的边长分别是,已知.(I )若的面积等于,求;(II )若()sin sin 2sin 2C B A A +-=,求.19.(本小题满分12分)已知数列满足,()*143n n a a n n N ++=-∈.(I )若数列是等差数列,求的值;(II )当时,求数列的前n 项和;20.(本小题满分13分)已知函数()432f x ax bx cx dx e =++++的图像关于y 轴对称,其图像过点,且在处有极大值.(I )求的解析式;(II )对任意的,不等式恒成立,求t 的取值范围.21.(本小题满分14分)已知函数()()3221103f x x x ax =+++-在,上有两个极值点且.(I )求实数的取值范围;(II )证明:.。
山东省实验中学2015届高三数学上学期第二次诊断性(期中)试题 理
数学试题一、选择题〔此题包括10小题,每一小题5分,共50分.每一小题只有一个选项......符合题意〕 1.集合{}{}2,1,0,1xA y R yB =∈==-,如此如下结论正确的答案是A.{}0,1A B ⋂=B.{}0,A B ⋃=+∞C.()(),0R C A B ⋃=-∞D.(){}1,0R C A B ⋂=- 2.“22ab>〞是“ln ln a b >〞的 A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.()10,sin cos 2απαα∈+=,且,如此cos 2α的值为A. C. D.34-4.函数()f x 的定义域为()()32,11a a f x -++,且为偶函数,如此实数a 的值可以是 A.23B.2C.4D.65.设函数()sin cos 2f x x x =图象的一条对称轴方程是 A.4x π=-B.0x =C.4x π=D.2x π=6.假设方程24x x m +=有实数根,如此所有实数根的和可能是A.246---、、B.456---、、C.345---、、D.468---、、7.要得到一个奇函数,只需将函数()sin 22f x x x =-的图象 A.向左平移6π个单位 B.向右平移6π个单位 C.向右平移4π个单位D.向左平移3π个单位8.定义在R 上的偶函数满足()()3311,0222f x f x f f ⎛⎫⎛⎫+=--==-⎪ ⎪⎝⎭⎝⎭且,如此()()()()1232014f f f f +++⋅⋅⋅+的值为A.2B.1C.0D.2-9.在ABC ∆中,假设()()()sin 12cos sin A B B C A C -=+++∆,则ABC 的形状一定是 A.等边三角形B.不含60的等腰三角形C.钝角三角形D.直角三角形10.函数()f x =的性质:①()f x 的图象是中心对称图形: ②()f x 的图象是轴对称图形; ③函数()f x的值域为)+∞; ④方程()()1ff x =+有两个解.上述关于函数()f x 的描述正确的答案是A.①③B.③④C.②③D.②④第II 卷〔非选择题 共100分〕二、填空题:本大题共5个小题,每一小题5分,共25分.将答案填在题中横线上. 11.定积分()12xx e dx +⎰____________.12.如果()2tan sin 5sin cos f x x x x =-⋅,那么()2f =_________.13.函数()2sin cos f x x x x x =++,如此不等式()()ln 1f x f <的解集为___________.14.ABC ∆的一个内角为120,并且三边长构成公差为4的等差数列,如此ABC ∆的面积为____________.15.设函数()ln f x x =,有以下4个命题: ①对任意的()()()1212120,22f x f x x x x x f ++⎛⎫∈+∞≤⎪⎝⎭、,有; ②对任意的()()()121221211,x x x x f x f x x x ∈+∞<-<-、,且,有; ③对任意的()()()12121221,x x e x x x f x x f x ∈+∞<<、,且,有; ④对任意的120x x <<,总有()012,x x x ∈,使得()()()12012f x f x f x x x -≤-.其中正确的答案是______________________〔填写序号〕. 三、解答题:本大题共6小题,共75分.16.〔本小题总分为12分〕函数())22sin cos cos sin f x x x x x =+-. 〔I 〕求6f π⎛⎫ ⎪⎝⎭与()f x 的单调递增区间;〔II 〕求()f x 在闭区间,44ππ⎡⎤-⎢⎥⎣⎦的最值.17.〔本小题总分为12分〕设命题p :函数()31f x x ax =--在区间[]1,1-上单调递减;命题q :函数()2ln 1y x ax =++的值域是R.如果命题p q 或为真命题,p q 且为假命题,求a 的取值范围.18.〔本小题总分为12分〕在ABC ∆中,内角A ,B ,C 对边的边长分别是,,a b c ,23c C π==,.〔I 〕假设ABC ∆,a b ; 〔II 〕假设()sin sin 2sin 2C B A A +-=,求,a b .19.〔本小题总分为12分〕数列{}n a 满足,()*143n n a a n n N ++=-∈. 〔I 〕假设数列{}n a 是等差数列,求1a 的值; 〔II 〕当12a =时,求数列{}n a 的前n 项和n S ;20.〔本小题总分为13分〕函数()432f x ax bx cx dx e =++++的图像关于y 轴对称,其图像过点()0,1A -,且在x =18. 〔I 〕求()f x 的解析式;〔II 〕对任意的x R ∈,不等式()20f x tx t --≤恒成立,求t 的取值范围.21.〔本小题总分为14分〕函数()()3221103f x x x ax =+++-在,上有两个极值点12x x ,且12x x <.〔I 〕求实数a 的取值范围;〔II 〕证明:()21112f x >.。
山东省实验中学2015届高三数学第二次诊断性考试试题 文(含解析)
数学【试卷综析】本试卷是高三文科试卷,以基础知识和基本能力为载体,,在注重考查学科核心知识的同时,突出考查考纲要求的基本能力,试题重点考查:集合、不等式、向量、导数、简单的线性规划,数列、函数的性质及图象、三角函数的性质、等;考查学生解决实际问题的综合能力,是份较好的试卷【题文】一、选择题(本题包括10小题,每小题5分,共50分.每小题只有一个选项符合题意)【题文】1.设集合{}21212A x x B x x ⎧⎫=-<<=≤⎨⎬⎩⎭,,则A B ⋃=A.{}12x x -≤<B.112x x ⎧⎫-<≤⎨⎬⎩⎭ C.{}2x x <D.{}2x x 1≤<【知识点】集合及其运算A1【答案】A【解析】由题意得B={ x11x -≤≤}则A B ⋃={}12x x -≤<。
【思路点拨】先求出集合B ,再求并集。
【题文】2.已知34,cos tan 254παππαα⎛⎫⎛⎫∈=-- ⎪ ⎪⎝⎭⎝⎭,,则等于 A.7B.17C.17-D.7-【知识点】同角三角函数的基本关系式与诱导公式C2 【答案】B【解析】由4cos 5∂=-,3(,)2ππ∂∈,tan ∂=34,则tan()4π-∂=17【思路点拨】根据同角三角函数基本关系求出正切值,再求结果。
【题文】3.下列有关命题的叙述,①若p q ∨为真命题,则p q ∧为真命题; ②“5x >”是“2450x x -->”的充分不必要条件;③命题:p x R ∃∈,使得210x x +-<,则:p x R ⌝∀∈,使得210x x +-≥;④命题“若2320x x -+=,则12x x ==或”的逆否命题为“若12x x ≠≠或,则2320x x -+≠”。
其中错误的个数为A.1B.2C.3D.4【知识点】命题及其关系A2 【答案】B【解析】若p q 为真命题,则至少有有一个为真,所以不一定为真,所以①错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(本题包括10小题,每小题5分,共50分.每小题只有一个选项......符合题意) 1.集合{
}{}2,1,0,1x
A y R y
B =∈==-,则下列结论正确的是
A.{}0,1A B ⋂=
B.{}0,A B ⋃=+∞
C.()(),0R C A B ⋃=-∞
D.(){}1,0R C A B ⋂=-
2.“22a
b
>”是“ln ln a b >”的 A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
3.已知()1
0,sin cos 2
απαα∈+=,且,则cos 2α的值为
A. C.
D.34
-
4.已知函数()f x 的定义域为()()32,11a a f x -++,且为偶函数,则实数a 的值可以是 A.
23
B.2
C.4
D.6
5.设函数()sin cos 2f x x x =图象的一条对称轴方程是 A. 4
x π
=-
B.0x =
C.4
x π
=
D. 2
x π
=
6.若方程24x x m +=有实数根,
则所有实数根的和可能是
A.246---、
、
B. 456---、、
C. 345---、、
D. 468---、
、
7.要得到一个奇函数,只需将函数()sin 22f x x x =的图象 A.向左平移6
π
个单位 B.向右平移6
π
个单位 C.向右平移
4
π
个单位
D.向左平移
3
π
个单位
8.定义在R 上的偶函数满足()()3311,0222f x f x f f ⎛⎫⎛⎫
+=--==-
⎪ ⎪⎝⎭⎝⎭
且,则
()()()()1232014f f f f +++⋅⋅⋅+的值为
A.2
B.1
C.0
D.2-
9.在ABC ∆中,若()()()sin 12cos sin A B B C A C -=+++∆,则ABC 的形状一定是 A.等边三角形
B.不含60o 的等腰三角形
C.钝角三角形
D.直角三角形
10.函数(
)f x =
的性质:
①()f x 的图象是中心对称图形: ②()f x 的图象是轴对称图形; ③函数()f x
的值域为)
+∞; ④方程()(
)1f
f x =有两个解.上述关于函数
()f x 的描述正确的是
A.①③
B.③④
C.②③
D.②④
第II 卷(非选择题 共100分)
二、填空题:本大题共5个小题,每小题5分,共25分.将答案填在题中横线上. 11.定积分
()1
2x
x e dx +⎰____________.
12.如果()2
tan sin 5sin cos f x x x x =-⋅,那么()2f =_________.
13.函数()2
sin cos f x x x x x =++,则不等式()()ln 1f x f <的解集为___________.
14.已知ABC ∆的一个内角为120o ,并且三边长构成公差为4的等差数列,则ABC ∆的面积为____________.
15.设函数()ln f x x =,有以下4个命题: ①对任意的()()()1212120,22f x f x x x x x f ++⎛⎫∈+∞≤
⎪⎝⎭
、,有; ②对任意的()()()121221211,x x x x f x f x x x ∈+∞<-<-、,且,有; ③对任意的()()()12121221,x x e x x x f x x f x ∈+∞<<、,且,有; ④对任意的120x x <<,总有()012,x x x ∈,使得()()()
12012
f x f x f x x x -≤-.
其中正确的是______________________(填写序号).
三、解答题:本大题共6小题,共75分.
16.(本小题满分12分)已知函数(
))22sin cos cos sin f x x x x x =+
-.
(I )求6f π⎛⎫ ⎪⎝⎭及()f x 的单调递增区间;(II )求()f x 在闭区间,44ππ⎡⎤
-⎢⎥⎣⎦
的最值.
17.(本小题满分12分)设命题p :函数()3
1f x x ax =--在区间[]1,1-上单调递减;命题
q :函数()
2ln 1y x ax =++的值域是R.如果命题p q 或为真命题,p q 且为假命题,求a 的取值范围.
18.(本小题满分12分)在ABC ∆中,内角A ,B ,C 对边的边长分别是,,a b c ,已知
23
c C π
==
,.
(I )若ABC ∆,a b ; (II )若()sin sin 2sin 2C B A A +-=,求,a b .
19.(本小题满分12分)已知数列{}n a 满足,()
*143n n a a n n N ++=-∈. (I )若数列{}n a 是等差数列,求1a 的值; (II )当12a =时,求数列{}n a 的前n 项和n S ;
20.(本小题满分13分)已知函数()4
3
2
f x ax bx cx dx e =++++的图像关于y 轴对称,其
图像过点()0,1A -,且在x =处有极大值18
. (I )求()f x 的解析式;
(II )对任意的x R ∈,不等式()2
0f x tx t --≤恒成立,求t 的取值范围.
21.(本小题满分14分)已知函数()()3
221103
f x x x ax =+++-在,上有两个极值点12x x ,且12x x <.(I )求实数a 的取值范围;(II )证明:()211
12
f x >.。