土力学地基设计
土力学与地基基础
知识创造未来
土力学与地基基础
土力学是力学的一个分支,研究土体的力学行为和力学性质。
它主要研究土体的强度、变形特性、流变性和孔隙特性等。
土力学的研究内容包括土体的力学性质试验、土体强度理论、土体变形特性、土体的流变性和孔隙特性等。
地基基础是建筑工程中的一个重要组成部分,它是为建筑物提供稳定支撑和传递荷载的基于地面以下部分。
地基基础承受建筑物和荷载产生的重力荷载、水平荷载和地震荷载等,同时还要满足土壤的承载力和变形要求。
地基基础的设计和施工需要考虑土壤的力学性质和承载力,通过合理的设计和施工保证建筑物的安全和稳定。
土力学与地基基础密切相关,土力学的理论和方法为地基基础的设计和分析提供了重要的依据和指导。
通过研究土体的力学性质和力学行为,可以确定地基基础的荷载传递机理和承载力计算方法,以及地基基础的变形控制和稳定性分析等。
在地基基础工程中,土力学的知识和方法被广泛应用于基坑支护、地基处理、地基改良和基础设计等方面,可以提高工程的安全性和经济性。
1。
《土力学与地基基础》实验
根据实验数据,分析地基承载力的变 化规律,研究地基承载力与土的性质 、基础形式等因素的关系。
土的压缩性数据记录与分析
土的压缩性数据记录
在实验过程中,记录不同压力、不同含水量条件下土的压缩 性数据。
土的压缩性分析
根据实验数据,分析土的压缩性变化规律,研究土的压缩性 与土的性质、压力和含水量等因素的关系。
团队协作能力
在实验过程中,学生之间能够相互协作,共同完 成实验任务,团队协作能力得到了锻炼。
实验建议与改进
增加实践环节
加强理论指导
为了更好地让学生理解和掌握土力学与地 基基础的知识,建议增加更多的实践环节 ,提高学生的动手能力。
在实验过程中,部分学生对于土力学与地 基基础的理论知识掌握不够扎实,建议在 实验前加强对相关理论的讲解和指导。
《土力学与地基基础》实验
目
CONTENCT
录
• 实验概述 • 实验设备与材料 • 实验操作过程 • 实验结果与分析 • 实验总结与建议
01
实验概述
实验目的
02
01
03
掌握土力学与地基基础的基本原理和实验技能。
了解土的物理性质、工程分类和工程性质。
掌握土的渗透性、压缩性和抗剪强度等基本实验方法 。
100%
加载设备
选择合适的加载设备,如砝码、 千斤顶等,对地基施加压力。
80%
沉降观测
观察地基的沉降情况,记录数据 ,分析地基的承载能力。
土的压缩性测试
压缩试验
在土样上施加压力,观察土样 的压缩变形情况。
数据记录
记录土样的压力和变形数据, 绘制压缩曲线。
结果分析
根据实验数据,分析土样的压 缩性特征和变形规律。
天然地基上的浅基础设计(土力学与地基基础教案)
天然地基上的浅基础设计一、教学目标:1. 让学生了解天然地基的性质和特点;2. 使学生掌握浅基础的设计原理和方法;3. 培养学生分析和解决实际工程问题的能力。
二、教学内容:1. 天然地基的概念及其分类;2. 天然地基的性质及影响因素;3. 浅基础的设计原理;4. 浅基础的设计方法;5. 设计实例分析。
三、教学重点与难点:1. 教学重点:天然地基的性质,浅基础的设计原理和方法。
2. 教学难点:天然地基的性质及其对基础设计的影响,浅基础设计的实际应用。
四、教学方法:1. 讲授法:讲解天然地基的概念、性质及分类,浅基础的设计原理和方法。
2. 案例分析法:分析设计实例,让学生更好地理解浅基础设计的过程和技巧。
3. 互动教学法:引导学生参与课堂讨论,提高学生的思考和分析能力。
五、教学准备:1. 教材:天然地基与浅基础设计相关教材;2. 课件:天然地基的性质、浅基础设计原理和方法的图片和动画;3. 设计案例:挑选具有代表性的设计案例供学生分析。
【导入】简要介绍天然地基的概念和重要性,引导学生关注天然地基对建筑基础的影响。
【新课内容】1. 天然地基的性质及影响因素讲解天然地基的分类,分析不同类型地基的性质及影响因素,如土层的分布、密度、含水率等。
2. 浅基础的设计原理介绍浅基础的设计原理,如静承载力、稳定性和沉降控制等,解释基础底面积、埋深和材料选择等设计参数的确定方法。
3. 浅基础的设计方法讲解浅基础的设计方法,包括初步设计、详细设计和施工图设计等阶段,介绍设计过程中应注意的问题,如地基处理、防水隔离等。
【案例分析】分析一个具有代表性的设计案例,让学生了解天然地基对基础设计的影响,以及如何根据地基条件进行合理的设计。
【课堂小结】总结本节课的主要内容,强调天然地基性质对浅基础设计的影响,以及设计过程中应注意的问题。
【作业布置】1. 复习本节课的内容,整理学习笔记;六、教学评估与反馈:1. 课堂问答:通过提问了解学生对天然地基性质和浅基础设计原理的掌握情况;2. 案例分析报告:评估学生对设计案例分析的能力,检查学生能否运用所学知识解决实际问题;3. 作业批改:检查学生对课堂内容的复习和理解,以及对设计案例的分析和处理能力。
土力学地基基础课程设计
1. 设计资料1.1上部结构资料某教学实验楼,上部结构为7层框架,其框架主梁、次梁均为现浇整体式,混凝土强度等级C30。
底层层高3.4m(局部10m,内有10t 桥式吊车,其余层高3.3m,底层柱网平面布置及柱底荷载如图2所示。
1.2建筑物场地资料(1)拟建建筑物场地位于市区内,地势平坦,建筑物平面位置如图1所示图1建筑物平面位置示意图(2)建筑场地位于非地震区,不考虑地震影响。
场地地下水类型为潜水,地下水位离地表2.1m,根据已有分析资料,该场地地下水对混凝土无腐蚀作用。
(3)建筑地基的土层分布情况及各土层物理、力学指标见表1。
表1 地基各土层物理、力学指标表1 地基各土层物理、力学指标土层编号土层名称层底埋深(m)层厚(m)天然重度(kN/m)预应力管桩承载力特征值钻孔灌注桩承载力特征值压缩模量(MPa)地基承载力(kPa)q sia(kPa)q pa(kPa)q sia(kPa)q pa(kPa)1 杂填土1.5 1.5 15.52 灰褐色粉质粘土9.8 8.3 17.3 13 12 5.4 1103 灰褐色淤泥质粘土21.8 12.0 16.2 8 7 3.2 504 黄褐色粉土夹粉质粘土27.1 5.3 18.3 30 1100 24 600 11.0 1485 灰-绿色粉质粘土>27.118.9 35 2500 32 2000 8.2 198柱号轴力(kN)弯矩(kNm)剪力(kN)2. 选择桩型、桩端持力层、承台埋深2.1选择桩型根据施工场地、地基条件以及场地周围环境条件,选择桩基础。
采用预应力高强混凝土薄壁管桩,这样可以较好的保证桩身质量,并在较短的施工工期完成沉桩任务。
桩截面尺寸选用:D=500mm ,壁厚18 2547 25 14t=50mm 。
混凝土强度C30。
考虑承台埋深1.5 m ,以4层黄褐色粉土夹粉质粘土为持力层,桩端进入持力层深度2倍桩径即0.6m ,桩顶嵌入承台0.1m 。
土力学与地基基础设计实例
《土力学与地基基础》课程设计第一部分 墙下条形基础课程设计一、墙下条形基础课程设计任务书(一)设计题目某教学楼采用毛石条形基础,教学楼建筑平面如图4-1所示,试设计该基础。
(二)设计资料⑴工程地质条件如图4-2所示。
杂填土 3K N /m 16=γ粉质粘土 3K N /m 18=γ3.0=b η a M P 10=s E6.1=d η 2KN/m 196=k f淤泥质土a 2M P =s E2KN/m 88=k f⑵室外设计地面-0.6m ,室外设计地面标高同天然地面标高。
图4-1平面图图4-2工程地质剖面图⑶由上部结构传至基础顶面的竖向力值分别为外纵墙∑F1K=558.57kN,山墙∑F2K=168.61kN,内横墙∑F3K=162.68kN,内纵墙∑F4K=1533.15kN。
⑷基础采用M5水泥砂浆砌毛石,标准冻深为1.2m。
(三)设计内容⑴荷载计算(包括选计算单元、确定其宽度)。
⑵确定基础埋置深度。
⑶确定地基承载力特征值。
⑷确定基础的宽度和剖面尺寸。
⑸软弱下卧层强度验算。
(四)设计要求⑴计算书要求书写工整、数字准确、图文并茂。
⑵制图要求所有图线、图例尺寸和标注方法均应符合新的制图标准,图纸上所有汉字和数字均应书写端正、排列整齐、笔画清晰,中文书写为仿宋字。
⑶设计时间五天。
二、墙下条形基础课程设计指导书(一)荷载计算 1.选定计算单元 对有门窗洞口的墙体,取洞口间墙体为计算单元;对无 门窗洞口的墙体,则可取1m 为计算单元(在计算书上应表示出来)。
2.荷载计算 计算每个计算单元上的竖向力值(已知竖向力值除以计算单元宽度)。
(二)确定基础埋置深度dGB50007-2002规定d min =Z d -h max 或经验确定d min =Z 0+(100~200)mm 。
式中 Z d ——设计冻深,Z d = Z 0·ψzs ·ψzw ·ψze ; Z 0——标准冻深;ψzs ——土的类别对冻深的影响系数,按规范中表5.1.7-1;ψzw ——土的冻胀性对冻深的影响系数,按规范中表5.1.7-2;ψze ——环境对冻深的影响系数,按规范中表5.1.7-3;(三)确定地基承载力特征值f a)5.0()3(m d b ak a -+-+=d b f f γηγη式中 f a ——修正后的地基承载力特征值(kPa ); f ak ——地基承载力特征值(已知)(kPa);ηb 、ηb ——基础宽度和埋深的地基承载力修正系数(已知);γ——基础底面以下土的重度,地下水位以下取浮重度(kN/m 3);γm ——基础底面以上土的加权平均重度,地下水位以下取浮重度(kN/m 3); b ——基础底面宽度(m ),当小于3m 按3m 取值,大于6m 按6m 取值;d ——基础埋置深度(m )。
土力学地基基础
【例题7.8】两个相同型式高20m的砖砌石灰窑,采用10m× 10m的钢筋混凝土基础,基础埋深为2.0m,两基础间的净距离 为2.0m,对应于荷载效应准永久组合时的基底压力为100kPa, 地基为均匀的淤泥质粉质粘土,重度为15kN/m3,压缩模量为 3.0MPa,沉降计算修正系数取1.37,试进行石灰窑的地基变形 验算
处,试验得到抗剪强度指标标准值k 25,
ck 15kPa,求地基承载力是否满足要求。
精品课件
精品课件
精品课件
【例】 柱截面300mm×400mm,作用在柱底的荷载标准 值:中心垂直荷载700kN,力矩80kN·m,水平荷载13kN。 其他参数见图,试根据持力层地基承载力确定基础底面尺 寸。
精品课件
即两端点M、N处的沉降量分别为: SM1.37125171mm SN 1.37176241mm
(3)基础的倾斜
tanSN bS M2 4 1 1 0 0 0 1 0 7 17 0/0 0
(4)由Hg=20m及Es=3.0MPa(高压缩性土)查表7.21可得石 灰窑的沉降允许值为400mm,倾斜允许值为8‰ 即:石灰窑的沉降与倾斜计算值均小于其允许值
软弱下卧层顶面处的附加应力
z
l
lbp01d 2ztanb2ztan
3.62.6149.613.52.0
36.27kPa
3.623tan23o 2.623tan23o
验算:cz z 5436.2790.27kPa fz 133.6kPa,满足
精品课件
地基变形验算
地基变形特征
沉降量 - 指基础某点的沉降值 沉降差 - 一般指相邻柱基中点的沉降量之差 倾斜 - 指基础倾斜方向两端点的沉降差与其
土力学与地基基础
一、名词解释1. 土力学:是研究土体在力的作用下的应力-应变或应力-应变-时间关系和强度的应用学科,是工程力学的一个分支。
为工程地质学研究土体中可能发生的地质作用提供定量研究的理论基础和方法。
主要用于土木、交通、水利等工程。
2.地基:地基是指建筑物下面支承基础的土体或岩体。
3.基础:是指建筑物地面以下的承重结构,如基坑、承台、框架柱、地梁等。
4.软弱下卧层:在持力层以下受力层范围内存在软土层,其承载力比持力层承载力小得多,该软土层称为软弱下卧层。
5. 土体:土体不是由单一而均匀的土组成的,而是由性质各异、厚薄不等的若干土层以特定的上下次序组合在一起。
因而土体不是简单的土层组合.而是与工程建筑的安全、经济和正常使用有关的土层组合体。
6.界限粒径:界限粒组的物理意义是划分粒组的分界尺寸7. 土的颗粒级配:又称(粒度)级配。
由不同粒度组成的散状物料中各级粒度所占的数量。
常以占总量的百分数来表示。
8.界限含水量:通常是指土的液限、塑限和缩限。
众所周知,液限和塑限是粘性土极为重要的指标,是粘性土工程分类的主要依据,和天然含水量一起,是估价土的工程特性的主要参数。
9. 土的灵敏度:是指原状土强度与扰动土强度之比ST=原状土强度/扰动土强度。
10.自重应力:是岩土体内由自身重量引起的应力。
11.基底压力:建筑物的荷载通过自身基础传给地基,在基础底面与地基之间便产生了荷载效应(接触应力)。
12.基底附加压力:是指建筑物建造后,基底接触压力与基底处土自重应力之差,一般将其作为作用于弹性半空间表面上的局部荷载,并根据弹性理论来求算地基中的附加应力。
13.地基附加应力:是指荷载在地基内引起的应力增量。
14. 土的压缩性:是指土受压时体积压缩变小的性质。
15. 土的固结:是指松散沉积物转变为固结岩石的过程。
16.压缩系数:是描述物体压缩性大小的物理量。
17.压缩模量Es:是指在侧限条件下受压时压应力6与相应应变qz之比值。
土力学课件(清华大学)-第七章__天然地基上浅基础的设计
3、对材料的要求
基础用材料必须有足够的强度和耐久性。
(1)砖:必须用黏土砖或蒸压灰砖.砖的强度等级不 低于MU10;严寒地区饱和地基砖的强度等级不 低于MU20。
(2) 石料:包括毛石、块石和经加工平整的料石, 应选用不易风化的硬岩石。石料厚度不宜小于15 ㎝,石料强度等级不小于MU25。
1、浅基础设计所需资料: (1)建筑场地的地形图; (2)岩土工程勘察报告; (3)建筑物平面图、立面图,荷载,特殊结构物
布置与标高;
(4)建筑场地环境,邻近建筑物基础类型与埋深, 地下管线分布;
(5)工程总投资与当地建筑材料供应情况; (6)施工队伍技术力量与工期要求。
2、浅基础的设计内容与类型
四、建筑场地的环境条件
1、邻近存在建筑物
建筑场地邻近已存在建筑物时,新建工程的基础 埋深不宜大于原有建筑物。当埋深大于原有的建 筑物时,两基础间应保持一定净距,其数值应根 据原有的建筑荷载大小、基础形式和土质情况确 定。当上述要求不能满足时,应采取分段施工, 设临时加固支撑,打板桩,地下连续墙等施工措 施,或加固原有的建筑物基础,
2、靠近土坡
建筑物靠近各种土坡,基础埋深应考虑邻近土坡 临空面的稳定性。
7.4 地基计算
一、基本规定
1.地基基础设计等级 根据地基复杂程度、建筑物规模和功能特征以及 由于地基问题可能造成建筑物破坏或影响正常使用 的程度,将地基基础设计分为甲级、乙级和丙级三 个设计等级(见下表)。
地基基础设计等级
3、当地经验参数法
4、地基承载力特征值的深宽修正
当基础宽度大于3米或埋深大于0.5米时,应对地基 承载力特征值加以修正:
f a f a kb( b 3 ) dm ( d 0 .5 )
土力学与地基基础
土力学与地基基础2篇1. 土力学土力学是研究土壤力学性质及其在土木工程中应用的学科。
它通过研究土壤力学特性,预测和分析土壤的力学行为,以便优化土木工程的设计和施工过程。
本文将进一步探讨土力学的重要性以及其在地基基础工程中的应用。
土力学对土壤的力学行为进行研究,其中关键的参数包括土壤的粒度分布、密实度、压缩性和剪切强度等。
通过对这些参数的分析,可以预测土壤的承载能力、变形特性和稳定性。
这些预测结果对于土木工程的设计和施工至关重要。
在土木工程项目中,地基基础是最重要的一环。
地基的良好设计和施工对建筑物的稳定性和安全性起着至关重要的作用。
通过土力学的研究,工程师可以确定土壤的承载能力,为建筑物提供足够的支撑。
此外,土力学还可以帮助工程师设计修筑地基的方法和材料选择,以保证工程的长期稳定性。
土力学在地基基础工程中的应用还包括土壤加固和地下结构设计。
当土地条件不理想或工程要求特殊时,土力学可以提供一系列的土壤加固方法,如挤密、灌浆和土体置换等。
这些方法可以增加土壤的承载能力,从而满足工程的需求。
另外,土力学也为地下结构的设计提供了重要的依据。
地下结构包括地下室、地下管道和隧道等。
这些结构在地下环境中承受着巨大的压力和荷载。
通过土力学的研究,工程师可以预测土壤对地下结构的影响,并采取相应的设计和施工措施,保证这些结构的安全性和持久性。
综上所述,土力学作为土木工程的重要学科,在地基基础工程中起着举足轻重的作用。
通过对土壤力学性质的研究,可以预测土壤的力学行为,为工程提供可靠的设计和施工方案。
因此,对土力学的深入了解和应用有助于确保土木工程的稳定性和长期可持续发展。
2. 地基基础地基基础是土木工程中的重要部分,它为建筑物提供了稳定的支撑和承重能力。
本文将介绍地基基础的定义、类型以及在建筑工程中的重要性。
地基基础是指建筑物或其他结构直接安放在土壤上的部分。
它的主要作用是将建筑物的重力通过合理的转移和分布,传递到地下土壤中,以保证建筑物的稳定性和安全性。
《土力学与地基基础》课程设计任务书(河南建筑职业技术学院)
《土力学与地基基础》课程设计任务书一、课程设计的教学目的通过课程设计,使学生掌握钢筋混凝土墙下条形基础和柱下独立基础的理论知识和应用条件,能够初步选择基础方案,进行基础设计;能够绘制和识读基础结构施工图,增强解决工程实际问题的能力。
二、课程设计的内容和要求(一)柱下独立基础1.设计题目某多层现浇钢筋混凝土框架结构,房屋高度H=30m,室外地坪标高同自然地面,室内外高差450mm。
柱网布置如图所示,试进行柱下独立基础的设计。
2.上部结构传下来的荷载柱截面尺寸为500mm×500mm,上部结构作用在柱底的最不利荷载标准值见表1,上部结构作用在柱底的最不利荷载效应基本组合设计值见表2:柱底荷载标准值表1Fk (KN) Mk (KN•m) Vk (KN) 题号1 2 3 1 2 3 1 2 3柱底荷载效应基本组合设计值表2(二)墙下条形基础(锥形截面)1.设计题目某多层砖混结构,房屋高度H=15m,室外地坪标高同自然地面,室内外高差450mm。
结构平面布置如图所示,试进行墙下条形基础的设计。
2.上部结构传下来的荷载内外墙墙厚均为240mm,上部结构作用在墙底的最不利荷载标准值见表3,上部结构作用在墙底的最不利荷载效应基本组合设计值见表4。
墙底荷载标准值表3墙底荷载设计值表3(三)工程及水文地质材料1.工程地质条件该地区地势平坦,无相邻建筑物,经地质勘察,工程地质资料自上而下依次为:①杂填土:厚约0.5m,含部分建筑垃圾;②粉质粘土:厚1.2m,承载力特征值fak=130KN/m2;③粘土:厚1.5m,承载力特征值fak=210KN/m2;④全风化砂质泥岩:厚2.7m,承载力特征值fak=230KN/m2;⑤强风化砂质泥岩:厚3.0m,承载力特征值fak=300KN/m2;⑥中风化砂质泥岩:厚4.0m,承载力特征值fak=620KN/m2;建议持力层选第③层粘土层。
地基岩土物理力学参数表表52.水文地质资料地下水对混凝土无侵蚀性,地下水位深度位于地表下3.5m,且属于不冻胀土。
天然地基上的浅基础设计(土力学与地基基础教案)
一、天然地基上的浅基础设计(土力学与地基基础教案)二、章节名称:第一章天然地基与基础概述三、教学目标:1. 了解天然地基的定义、分类及特性。
2. 掌握基础的概念、分类及功能。
3. 理解天然地基与基础的关系。
四、教学内容:1. 天然地基的定义、分类及特性。
2. 基础的分类、功能及设计原则。
3. 天然地基与基础的相互关系。
五、教学过程:1. 导入:通过展示天然地基与基础的实际案例,引发学生对天然地基与基础的兴趣。
2. 讲解:讲解天然地基的定义、分类及特性,基础的分类、功能及设计原则。
3. 互动:组织学生进行小组讨论,探讨天然地基与基础的相互关系。
4. 案例分析:分析典型天然地基与基础设计的案例,让学生更好地理解理论知识。
六、教学方法:1. 讲授法:讲解天然地基与基础的基本概念、分类及特性。
2. 互动法:组织学生进行小组讨论,提高学生的参与度。
3. 案例分析法:分析实际案例,让学生更好地理解理论知识。
七、教学评价:1. 课堂参与度:观察学生在小组讨论中的表现,评估学生的参与度。
2. 案例分析报告:评估学生在案例分析中的表现,包括分析的深度和广度。
3. 课后作业:检查学生对课堂内容的掌握程度。
八、教学资源:1. PPT课件:展示天然地基与基础的图片、案例等。
2. 案例资料:提供典型天然地基与基础设计案例,供学生分析。
九、教学建议:1. 建议学生在课前预习相关章节,了解天然地基与基础的基本概念。
2. 鼓励学生在课堂积极参与,提出自己的观点和疑问。
3. 学生在课后要认真完成作业,巩固课堂所学知识。
十、课后作业:2. 列举基础的分类和功能。
3. 描述天然地基与基础的相互关系。
六、天然地基上的浅基础设计(土力学与地基基础教案)七、章节名称:第二章地基承载力计算八、教学目标:1. 理解地基承载力的概念及其重要性。
2. 掌握地基承载力的计算方法。
3. 学会根据地基承载力确定基础尺寸。
九、教学内容:1. 地基承载力的概念及其影响因素。
天然地基上的浅基础设计(土力学与地基基础教案)
一、教案基本信息教案名称:天然地基上的浅基础设计适用课程:土力学与地基基础课时安排:2课时(90分钟)教学目标:1. 让学生了解天然地基的概念及其特点;2. 使学生掌握浅基础的设计原理和方法;3. 培养学生分析和解决实际工程问题的能力。
教学内容:1. 天然地基的概念及其特点;2. 浅基础的设计原理;3. 浅基础的设计方法;4. 设计实例分析;5. 常见问题及解决方法。
教学方法:1. 讲授法:讲解天然地基的概念、特点、设计原理和方法;2. 案例分析法:分析实际工程案例,让学生更好地理解设计方法;3. 互动讨论法:鼓励学生提问、发表观点,提高课堂氛围。
教学准备:1. 教案、教材;2. 相关工程案例图片或视频;3. 计算软件(如AutoCAD、理正等)供学生操作练习。
二、教学过程1. 导入(5分钟)利用图片或视频介绍天然地基的概念及其在实际工程中的应用,激发学生的兴趣。
2. 天然地基的概念及其特点(10分钟)讲解天然地基的定义,阐述其特点,如承载力、压缩性、不均匀性等。
3. 浅基础的设计原理(15分钟)介绍浅基础的设计原理,包括荷载传递、基础尺寸计算、地基承载力计算等。
4. 浅基础的设计方法(20分钟)讲解浅基础的设计方法,如常规设计方法、极限状态设计方法等,并通过示例进行讲解。
5. 设计实例分析(10分钟)分析一个实际工程案例,让学生了解天然地基上的浅基础设计过程,巩固所学知识。
6. 课堂互动(10分钟)学生提问、发表观点,教师解答疑问,提高学生的理解程度。
7. 课后作业(课后自主完成)要求学生运用所学知识,完成一个天然地基上的浅基础设计练习题。
三、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高教学效果。
关注学生在课后作业中的表现,及时给予指导和帮助。
四、课后作业2. 完成课后练习题:一个天然地基上的浅基础设计案例,包括基础尺寸计算、地基承载力计算等;3. 查阅相关资料,了解常见地基问题及解决方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 设计资料
kN V m kN M kN N 73,164,3194=⋅==。
2 选择桩型、桩端持力层、承台埋深
2.1 选择桩型
采用静压预制方桩
2.2 选择桩的几何尺寸及承台埋深
①第Ⅴ层粉质粘土作为桩端持力层;
②桩端全断面进入持力层m .01(2d >),工程桩入 土深度为m 0.02;
③承台埋深取m d 1=。
④桩截面尺寸选用400400mm mm ⨯
3 确定单桩极限承载力标准值
第Ⅰ层:为杂填土,桩身没有经过此土层。
第Ⅱ层:为淤泥质土,查规范得kPa q sk 26=; 第Ⅲ层:14
.182.384
.182.38=--=--=P L P L I ωωωω,查规范得kPa q sk 55=;
第Ⅳ层:6.020
6.3620
30=--=--=P L P L I ωωωω,查规范得kPa q kPa q pk sk 226061==,。
第Ⅴ层:6.017.7
-7.327
.177.26=-=--=
P L P L I ωωωω,查规范得kPa q kPa q pk sk 226061==,。
表1.极限桩侧、桩端阻力标准值
经 验 参 数
层 序
()sik q kPa
()pk q kPa
Ⅰ 杂填土 Ⅱ 淤泥质粘土 26
Ⅲ 灰色粘土 55 Ⅳ 亚粘土 61
Ⅴ
粉质粘土
61
2260
①按经验参数法确定单桩竖向极限承载力标准值
pk
sk k Q Q Q +=u
p pk i sik p A q l q u +=∑
20.422601612.7613.7551.6126.404⨯+⨯+⨯+⨯+⨯⨯⨯=)(
kN 1531=
②估算单桩竖向承载力设计值(2K =)
kN K Q R uk 7652
1531
===
4 初步确定桩数和承台尺寸
上部结构传来的荷载设计值:
kN V m kN M kN N 73,164,3194=⋅==
①初步估算桩数:64.1.1*765
3194
=≥
n ,暂取6=n ②桩中心距:m d s 6.14=≥,取m s 6.1= 。
③初选承台尺寸:
长边m a 46.124.02=⨯+⨯= 短边m b 4.26.14.02=+⨯=
承台埋深m d 1=,设承台高度m H 8.0=(等厚),桩顶伸入承台mm 50,钢筋保护层取mm 70,则承台有效高度为:mm m h 68068.0070.0050.08.00==--=。
5 桩顶作用效用验算
荷载取max N 组合:kN V m kN M kN N 73,164,3194=⋅==,荷载作用于承台顶面处,
取承台及其上土的平均重度3
/23m kN G =γ,则作用在承台底形心处的竖向力为:
26994.241233194=⨯⨯⨯+=+k k G F 作用在承台底形心处的弯矩:m kN M M k ⋅=∑=164 作用在柱底的剪力:kN V H k 73=∑= 桩顶平均竖向力:
kN n G F N k k k 45062699
==+=
kN x x h H M N N i k k k k 4724
.244
.2)8.056461(450)(2
2max max =⨯⨯⨯++=∑++
=, kN R kN N k 7654500=<=γ
kN R kN N k 9182.1472
max 0=<=,γ 基桩水平力设计值:kN n V H k 2.126/73/1===,其值远应远小于单桩水平承载力特征值。
6 桩基沉降验算
基底压力:kPa A G F P k k 2814
.20.42699=⨯=+= 基底附加压:
kPa d P P k 57-)16.197.27.187.39.181.176.11(2810=⨯+⨯+⨯+⨯-=-=γ,
并不会造成沉降。
所以基础沉降满足要求。
7 桩身结构设计计算
查《建筑桩基技术规范》,按式5.8.2-1
0.9c c ps y s N f A f A ψ''≤+计算,由于
kN kN N 8.19444.04.03.1485.0472max =⨯⨯⨯<=,故只需构造配筋。
(箍筋采用φ6@200,在桩顶和桩尖应适当加密。
桩尖长m 56.04.04.1b 4.1=⨯=,取
0.6m ,桩顶设置三层φ6@50钢筋网,层距50mm 。
)
8 承台设计计算
承台采用25C 混凝土,1270t f kPa =,11900c f kPa =,
8.1 承台受冲切承载力验算
柱边冲切
18.168.0/8.0/00x ===h a x λ 609.02
.084
.0x 0x 0=+=
λβ
51.068.0/35.0/0y 0y ===h a λ 1.182
.084
.0y 0y 0=+=
λβ
()()[]
()()KN
KN h f a h a b t hp ox c oy oy c ox 3194456368.012700.1]8.0118.135.05.0609.0[220>=⨯⨯⨯+⨯++⨯⨯=
+++βββ 角桩冲切
m C C 6.021==,m a x 8.01=,m a y 01= ,18.11=x λ,25.01=y λ 406.02.018.156.0x 1=+=
β,244.12.025.056
.0y 1=+=
β,
KN
N KN h f c c K t hp x y y x 2.63735.12.99568
.012700.1206.0244.128.06.0406.022max 0
121121=⨯>=⨯⨯⨯⎥⎦⎤⎢⎣
⎡⎪⎭⎫ ⎝⎛
++⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝
⎛+βαβαβ满足要求
8.2 承台受剪切承载力验算
剪跨比与以上冲垮比相同。
对Ⅰ-Ⅰ斜截面: 18.168.0/8.0/00x ===h a x λ, 故剪切系数:803
.0)118.1/(75.1=+=x α
mm h 800mm 6800,取= 0
.18004
10=⎪⎪⎭
⎫
⎝⎛=h hs β KN N KN h b f K t hs 127435.122774680427.1803.00.1max 00=⨯>=⨯⨯⨯⨯=αβ 对Ⅱ-Ⅱ斜截面:51
.068.0/35.0/0y 0y ===h a λ
故剪切系数:16
.1)151.0/(75.1y =+=α
KN N KN h b f K t hs 127435.1224046804.227.116.10.1max 00=⨯>=⨯⨯⨯⨯=αβ
8.3 承台受弯承载力验算
KN
y N M i i x 92.70055.035.14722=⨯⨯⨯=∑= 2
6
6.3817680
3009.010
92.7009.0mm h f M A o y x s =⨯⨯⨯==
选用16Φ18,24072mm A s =,沿平行y 轴方向均匀布置。
KN
x N M i i y 4.12740.135.14722=⨯⨯⨯=∑=
2
6
6941680
3009.0104.12749.0mm h f M A o y y
s =⨯⨯⨯==
选用23Φ20,27226mm A s =,沿平行x 轴方向均匀布置。