Anti-HIV efficacyreverse transcriptase inhibitors delivered as squalenoylated prodrug nanoassemblies
艾滋病的“后悔药”——阻断类药物
艾滋病的“后悔药”——阻断类药物“后悔药”是人们对一种特定药物的戏称,意指这种药物能够阻断艾滋病毒在人体内的传播,从而使得艾滋病患者不再患病或者减少病情的恶化。
这种药物被称为阻断类药物,是目前用于治疗艾滋病的主要药物之一。
本文将详细介绍阻断类药物在艾滋病治疗中的作用和应用。
阻断类药物,也称为抗逆转录病毒治疗(antiretroviral therapy,简称ART)药物,是目前艾滋病治疗的基石。
这类药物主要通过抑制病毒复制过程中的关键酶活性,从而阻断艾滋病毒在人体内的繁殖和传播。
常用的阻断类药物包括核苷类/核糖核苷酸逆转录酶抑制剂(Nucleoside/Nucleotide Reverse Transcriptase Inhibitors,简称NRTIs)、非核苷类逆转录酶抑制剂(Non-nucleoside Reverse Transcriptase Inhibitors,简称NNRTIs)、蛋白酶抑制剂(Protease Inhibitors,简称PIs)和整合酶抑制剂(Integrase Inhibitors,简称InSTIs)。
这些药物一般需要患者每天定时服用,以维持抗病毒效果。
阻断类药物主要的作用机制是通过抑制艾滋病毒的复制过程,从而减少病毒在人体内的数量。
核苷类/核糖核苷酸逆转录酶抑制剂可以抑制逆转录酶的活性,从而阻止病毒合成DNA。
然后,非核苷类逆转录酶抑制剂可以直接抑制逆转录酶的活性,从而使得病毒无法进行基因组转录。
接下来,蛋白酶抑制剂可以阻断病毒的后期成熟和释放过程,从而遏制病毒复制的最后几道关卡。
整合酶抑制剂可以阻断病毒DNA的整合过程,从而防止病毒的基因组稳固地嵌入宿主细胞DNA中。
阻断类药物的应用主要有两个目标。
对于已经感染艾滋病毒的人群,阻断类药物可以控制病毒复制,减少病毒在体内的数量,从而达到控制病情发展和延缓疾病进展的目的。
研究表明,早期接受ART治疗的患者,可以显著延长生存时间,减少并发症和死亡风险。
艾滋病的“后悔药”——阻断类药物
艾滋病的“后悔药”——阻断类药物阻断类药物是指用于治疗艾滋病的一类药物,主要作用是阻碍HIV病毒在人体内复制和扩散的过程。
这类药物可以有效地控制病情发展,减少HIV病毒对免疫系统的破坏,延缓疾病的进展,提高患者的生活质量。
阻断类药物主要有三种类型:核苷类逆转录酶抑制剂(NRTIs)、非核苷类逆转录酶抑制剂(NNRTIs)和蛋白酶抑制剂(PIs)。
这些药物通过不同的机制,干扰HIV病毒在人体内的复制过程,从而抑制病毒的传播和破坏作用。
核苷类逆转录酶抑制剂是一类模拟人体细胞内的DNA构建材料的药物,它们能够替代逆转录酶酶链在形成病毒基因组DNA链时所需的三磷酸核苷酸,从而抑制病毒的复制过程。
常见的核苷类逆转录酶抑制剂有拉米夫定、阿比卡韦等。
非核苷类逆转录酶抑制剂是一类能够特异性地抑制HIV逆转录酶活性的药物,从而阻止病毒基因组的复制。
这类药物作用速度较快,常见的药物有尼达韦仑、卡文地克等。
蛋白酶抑制剂是一类能够阻断HIV病毒释放成熟病毒颗粒的药物,从而阻止病毒扩散和感染新的细胞。
这类药物作用较为持久,常见的药物有洛匹那韦、卡尔巴韦吉等。
使用阻断类药物治疗艾滋病时,通常采用多种药物联合应用的方式,以增强疗效。
这种联合用药的方案被称为高效抗逆转录病毒治疗(ART)。
ART可以显著降低病毒载量,提高免疫功能,延缓疾病的进展,降低感染风险,同时减少艾滋病的传播。
使用阻断类药物治疗艾滋病也存在一些问题。
长期使用药物可能导致药物抗性的发展,使药物疗效降低。
阻断类药物的使用需要长期、稳定的治疗,对患者的依从性要求较高。
这类药物也有一些副作用,如恶心、呕吐、腹泻等。
患者在接受阻断类药物治疗时需要密切监测病情并应遵循医生的嘱咐。
阿泰特韦 化学结构
阿泰特韦化学结构
阿泰特韦(Atazanavir)是一种抗逆转录病毒药物,主要用于治疗艾滋病病毒(HIV)感染。
它属于蛋白酶抑制剂类药物,通过抑制HIV病毒复制的关键酶-蛋白酶,从而阻止病毒的复制和传播。
阿泰特韦的化学结构是一种白色结晶粉末,其化学名为[(3S,8S,9S,12S)-8,9,12-Trihydroxy-3-[(1-methyl-2-phenylethyl)amino]-1,2,3,4-tetrahydrochromeno[3,4-
c]pyrrole-5,7-dione]。
它的分子式为C38H52N6O7,相对分子质量为704.9。
阿泰特韦的化学结构包含一个四环核心,其中一个环上的羟基与另一个环上的羟基形成了内酯结构。
在这个结构的另一侧,与酮基相连的是一个取代基,即甲基苯乙基胺基团。
这个取代基的存在赋予了阿泰特韦独特的化学性质和抗病毒活性。
阿泰特韦的分子结构中还包含多个羟基基团,这些羟基基团使其具有良好的水溶性和药物代谢特性。
这些特性使阿泰特韦能够在体内有效地被吸收,达到稳定的药物浓度,并发挥抗病毒作用。
作为一种抗逆转录病毒药物,阿泰特韦在临床应用中已被广泛使用,并显示出良好的疗效和耐受性。
然而,使用阿泰特韦时需要密切监测患者的肝功能,因为它可能引起一些肝脏相关的不良反应。
总之,阿泰特韦是一种重要的抗逆转录病毒药物,其化学结构独特,并且通过抑制HIV病毒复制的蛋白酶来发挥治疗作用。
尽管在使用时需要谨慎,但阿泰特韦已被广泛应用于艾滋病治疗,并取得了积极的效果。
抗HIV药物非临床药效学研究的一般方法
抗HIV药物非临床药效学研究的一般方法HIV可用传代人T淋巴细胞或原代人外周血单个核细胞培养,T 嗜性的病毒株可导致人T淋巴细胞出现特征性细胞病变,如细胞融合、多核巨细胞等。
M嗜性的病毒株一般不导致细胞病变,可通过检测培养上清液的HIV p24抗原、病毒RNA或逆转录酶活性监测病毒复制的情况。
体外药效学试验一般应重复三次。
目前尚缺乏理想的HIV感染动物模型,常采用替代模型或经过改造的小动物模型来评价药物的体内抗HIV活性,如感染猴免疫缺陷病毒(Simian immunodeficiency virus,SIV)或嵌合病毒(Simian/human immunodeficiency virus ,SHIV)的猴模型和感染HIV的人淋巴组织重建的严重联合免疫缺陷小鼠模型(Sever combined immunodeficient-human,SCID-hu)。
本附录收入了目前较成熟和常用的抗HIV体外、体内药效学试验方法,供研发者参考。
今后可根据研究进展情况进一步修订。
一、体外药效学试验1、病毒和细胞(1)病毒:应尽可能选择多种生物学表型和基因型的病毒株,包括HIV实验室适应株和有代表性的HIV临床分离株。
在进行抗HIV 耐药性毒株的药效学研究时,应选用耐药性毒株;对于明确作用靶点的药物,应首先选择对该作用靶点药物耐药的毒株。
(2)细胞:应尽可能选择多种细胞。
常用的有传代人T淋巴细胞系(如CEM、MT4、MT2、C8166、H9等)、单核巨噬细胞系(如U937等)和活化的人原代外周血单个核细胞(PBMC)。
(3)病毒感染剂量的确定:测定HIV的感染剂量一般采用在96孔细胞培养板上微量培养滴定的方法,通过观察细胞病变或检测病毒标记物,如HIV p24抗原或逆转录酶等,计算出病毒的感染性滴度(半数组织培养感染剂量,50% Tissue culture infectious dose,TCID50)。
在不同的细胞系/病毒株培养系统,使用的病毒感染剂量不尽相同,一般选用100~1000TCID50。
齐多夫定作用机制
齐多夫定作用机制介绍齐多夫定(Zidovudine,AZT)是一种广泛用于治疗艾滋病的抗病毒药物。
它属于核苷类的逆转录酶抑制剂,通过抑制人免疫缺陷病毒(HIV)的逆转录酶活性,从而阻断病毒的复制与扩散。
本文将详细探讨齐多夫定的作用机制,以及它在艾滋病治疗中的应用。
齐多夫定的药理作用齐多夫定是一种核苷类逆转录酶抑制剂(Nucleoside Reverse Transcriptase Inhibitor,NRTI),其作用主要通过以下几个方面:1. 基本机制齐多夫定可被病毒的逆转录酶识别为核苷酸的假体,进入病毒内部并与病毒DNA链合成的需要的其他核苷酸互补配对。
但由于齐多夫定分子的氧原子与磷酸二酯链的位置不同,它无法与下一个核苷酸连接,并导致链的终止。
这使得病毒无法正常复制其遗传物质,从而起到抑制病毒复制的作用。
2. 选择性作用齐多夫定对病毒逆转录酶的抑制比对人体细胞内正常逆转录酶的抑制更强烈,在细胞内形成药物浓度梯度。
这种差异性选择性作用使齐多夫定更加有效地抑制病毒复制,减少对宿主细胞的不良影响。
3. 病毒耐药的机制尽管齐多夫定在抑制病毒复制方面非常有效,但长期使用或不规则用药可能导致病毒产生耐药性。
病毒逆转录酶发生变异,使其对齐多夫定的结合亲和力降低,从而减少了药物的疗效。
因此,在使用齐多夫定时,需要密切监测病毒载量和药物敏感性,及时调整治疗方案,以延缓病毒耐药的发展。
齐多夫定的临床应用齐多夫定作为抗艾滋病药物,广泛应用于艾滋病的治疗,主要用于以下方面:1. 抗病毒治疗齐多夫定被用作三联疗法的一部分,通常与其他抗逆转录病毒药物(包括其他核苷类逆转录酶抑制剂或非核苷类逆转录酶抑制剂)联合使用,形成联合抗病毒疗法,能够更有效地抑制HIV的复制与扩散。
这种治疗方案已经被广泛应用,并取得了良好的临床疗效。
2. 垂直传播的阻断齐多夫定还被用于防治妊娠期感染艾滋病母亲垂直传播给胎儿的情况。
妊娠期使用齐多夫定可以减少艾滋病母亲传给胎儿的风险,通过降低病毒载量来降低病毒传播的几率。
ezbioscience逆转录说明书
ezbioscience逆转录说明书全文共四篇示例,供您参考第一篇示例:引言逆转录酶(Reverse Transcriptase,简称RT)是一种能够将RNA 模板转录成相应的DNA的酶,是分子生物学领域中重要的工具。
ezbioscience作为生物技术公司,在逆转录领域有着丰富的经验和专业知识,推出了一系列高质量的逆转录试剂盒,提供给研究人员用于RNA分析和cDNA合成等领域的研究。
一、产品介绍ezbioscience的逆转录试剂盒是基于反转录酶的高效逆转录反应而设计的,具有以下几个特点:1. 高效性:采用高纯度反转录酶,能够在较短的时间内完成RNA 到cDNA的反转录反应。
2. 稳定性:试剂盒中的反转录酶具有较高的热稳定性,确保反应过程的可靠性和稳定性。
3. 专业性:组合了ezbioscience多年的技术积累和经验,能够适应各种不同的RNA模板,并且适用于多种不同类型的研究。
4. 灵敏度:能够在低浓度的RNA模板下进行高效的反转录反应,满足研究需要。
二、使用说明1. 样品处理:将待逆转录的RNA样品进行完整性检测和质量评估,确保样品的纯度和完整性。
2. 试剂配置:按照说明书中的配方准备反转录体系,将RNA模板与反转录酶和其它试剂按比例混合。
3. 反转录反应:将混合好的反转录体系进行反转录反应,根据实验要求设置反应时间和温度。
4. cDNA纯化:反应后的产物进行纯化处理,去除杂质和未反应的物质。
5. cDNA合成:根据实验需求,将反转录得到的cDNA进行进一步的合成和扩增。
三、应用领域ezbioscience的逆转录试剂盒适用于多种生物学研究领域,包括但不限于:1. 基因表达分析:用于将RNA转录成相应的cDNA,进一步进行基因表达分析、PCR扩增等实验。
2. miRNA研究:在miRNA研究中,可用于构建miRNA的cDNA 文库,用于miRNA的表达定量、功能研究等方面。
3. 转录组学:在RNA测序、差异基因表达分析等领域发挥着重要作用。
HIV逆转录酶抑制剂的研究新进展
HIV逆转录酶抑制剂的研究新进展摘要:HIV逆转录酶是HIV-1复制所必需的酶,但是正常的细胞复制不需要它参与,因而,HIV-1 RT成为抗艾滋病( Ds)药物设计的一个理想的靶点。
目前,有效的抗HIV-1 RT的药物根据它们的结构可以分为:核苷类、非核苷类和核苷酸类逆转录酶抑制剂。
关键词:HIV.1;逆转录酶抑制剂;;非核苷类;核苷酸类随着艾滋病(AII)s)的蔓延,它日益受到人们的关注。
目前全世界大约有六千万人感染了人类免疫缺陷病毒(humanimmunodeficiency virus,HIV),每天大约新增16 000名HIV感染者。
HIV是AIDS的病原体,属于逆转录病毒科、慢病毒属中的灵长类免疫缺陷病毒亚属。
H1V-1是引起全球性艾滋病蔓延的主要病原体。
HIV一1的病毒颗粒是一个直径大约为10nm的圆球体,其核心由二个单链RNA和病毒编码的逆转录酶,整合酶和蛋白酶组成。
截止到2003年8月,美国FDA批准上市的治疗艾滋病药物共有19个。
其中,HIV-1 RTIs(HIV一1 l~verse transcriptaseinhibitors,HIV-1逆转录酶抑制剂)有11个,可见逆转录酶抑制剂在目前治疗AIDS药物中占有重要的地位。
通过HIV.1动力学及AIDS致病机制的研究发现:HIV-1 RT是HIV.基因组在复制过程中的3个关键酶(另#b-个为:蛋白酶和整合酶)之一。
近10年来,HIV.1 RT一直是研究抗H1V/AIDS药物中的一个重要靶酶。
H1V-1 RT 是一个异二聚体,由p66和pSI二个亚单位组成。
p51的多肽序列与p66的前440个氨基酸序列相同,它们分别构成了二个亚单位的聚合酶结构域。
尽管p66和pSI有着相同的氨基酸序列,两者在空间构象上却有着显著的差异。
每个p66/pSI异二聚体只有一个有功能的聚合酶活性部位,它位于p66上。
H1V.1 RTIs 的主要设计原理分为两大类:通过进一步深入研究H1V.1 RT本身及其底物,借助计算机分子图形学的辅助药物设计以及晶体结构数据,充分利用QSAR(定量构效关系)和SAIl(构效关系),设计新的HIV.1RTIs,这是当今研究的热点和今后发展的方向。
抗艾滋病药物的正确使用指南
抗艾滋病药物的正确使用指南艾滋病是一种由人类免疫缺陷病毒(HIV)引起的严重感染性疾病。
目前,抗艾滋病药物的发展和应用已经取得了显著的成果,可以有效缓解病情、延缓疾病进展,并提高患者的生活质量。
然而,正确使用抗艾滋病药物对于疾病的控制和治疗至关重要。
本文将为您提供抗艾滋病药物的正确使用指南,帮助患者和医护人员做到科学合理使用药物。
一、了解抗艾滋病药物的作用和分类抗艾滋病药物主要包括抗逆转录病毒药物(Antiretroviral drugs,简称ARV)和抗病毒治疗药物。
抗逆转录病毒药物是目前治疗艾滋病最主要的药物,它们通过干扰病毒的复制过程,抑制病毒在人体内的繁殖活动,从而达到抑制病毒增殖和保护免疫系统的目的。
抗逆转录病毒药物包括核苷酸逆转录酶抑制剂(Nucleoside reverse transcriptase inhibitors,简称NRTIs)、非核苷酸逆转录酶抑制剂(Non-nucleoside reverse transcriptase inhibitors,简称NNRTIs)和蛋白酶抑制剂(Protease inhibitors,简称PIs)等。
二、了解抗艾滋病药物的使用原则1. 遵医嘱使用:患者应遵循医生的指导,按照正确定时、正确的剂量和正确的方式使用抗艾滋病药物。
不得自行调整药物的使用剂量和使用时间。
2. 精确计时:抗艾滋病药物需要按时服用,遵守固定的时间间隔。
一旦错过服药时间,请尽快补药,并继续遵守规定的时间间隔。
3. 定期检测:患者在使用抗艾滋病药物期间应定期进行病毒载量和CD4+T细胞计数等相关指标的监测,以了解药物疗效和病情变化。
4. 严格遵守疗程:使用抗艾滋病药物是一个长期过程,患者应严格按照规定疗程使用药物,并在医生建议下适时调整治疗方案。
三、正确使用抗艾滋病药物的常见问题与解决方法1. 药物副作用:抗艾滋病药物可能引起一些不良反应,例如恶心、呕吐、腹泻、头痛等。
第二代整合酶链转移抑制剂dolutegravir
第二代整合酶链转移抑制剂dolutegravir摘要dolutegravir是第二代整合酶链转移抑制剂。
与第一代整合酶链转移抑制剂相比,dolutegravir具有更高的耐药发展屏障,可一天1次给药。
对已产生对拉替拉韦和elvitegravir耐药的人免疫缺陷病毒感染患者,仍可使用dolutegravir,但用药频率调整为一天2次。
dolutegravir用于肝、肾功能损害患者时不需剂量调整。
在临床试验中,dolutegravir治疗的最常见不良反应是失眠和头痛,发生率均为2% ~3%。
作为一种新的整合酶链转移抑制剂,dolutegravir 具有疗效显著、耐受性好的特点。
关键词dolutegravir 整合酶链转移抑制剂不良反应The second-generation integrase strand transfer inhibitor dolutegravir*Sun Jianjun1**,Shen Yinzhong1,Lu Hongzhou1,2***(1. Department of Infectious Disease,Shanghai Public Health Clinical Center,Fudan University,Shanghai 201508,China;2. Department of Infectious Disease,Huashan Hospital,Fudan University,Shanghai 200040,China)Abstract Dolutegravir is the second-generation integrase strand transfer inhibitor,and it has higher barrier for resistance compared with raltegravir and elvitegravir and can be used once daily. Dolutegravir can be still administered to the patients who have HIV resistance to raltegravir and elvitegravir,however,its dosing frequency has to be changed to twice a day. This drug shares the mechanism of action with raltegravir and elvitegravir and dosage adjustments are not necessary for the patients with renal and hepatic impairment. The most common adverse reactions seen with dolutegravir in clinical trials are insomnia and headache,occurring in only 2% to 3% of patients. In conclusion,dolutegravir has characteristics of significant efficacy and good tolerance.Key words dolutegravir;integrase strand transfer inhibitor;adverse reactions在过去的30多年中,随着对人免疫缺陷病毒(human immunodeficiency virus,HIV)感染的基础研究及其治疗药物研发的不断进步,抗HIV治疗经历了从无药可治、单药治疗到多药联合治疗的巨大变革。
antihiv化学发光法
antihiv化学发光法1、抗HIV化学发光法(Chemiluminescence Assays for Anti-HIV)抗HIV化学发光法是一种用于检测抗体反应的应用了高灵敏度的分子生物学技术,主要用于检测艾滋病毒(HIV)及其衍生物的抗体,目的是检测出早期的HIV感染,进而控制HIV病毒的传播及辅助抗HIV治疗。
2、发光原理(Chemiluminescence Principle)抗HIV化学发光法是通过光化学反应,把化合物中的能量转化为可见光(紫外发光)来实现发光效果的。
所以在实验中,需要一种能随碱值变化而发光的有机发光化合物,一般使用双氰色块(dioxetane),作为化学发光的核心原料。
在发光过程中,利用酶在特定pH值下稳定,从而触发抗体反应,最终将酶促使的双氰色块发生氧化,引起抗体发光反应。
3、发光检测抗体信号(Detecting Antibody Signals of Luminescence)在抗HIV化学发光法中,用活性的酶将双氰色块分解,本身是不发光,但当双氰色块进入pH值发生变化后,会激活酶而触发发光反应,并可以检测到抗体反应的强度、信号和持续时间等,以此来测定抗体的存在量。
4、抗HIV化学发光的应用(Applications of Anti-HIV Chemiluminescence)抗HIV化学发光法可以用于检测HIV的抗体,使用这种技术可以快速准确地检测抗体,大大降低了依靠人工来检测抗体的时间和工作量。
而且,抗HIV化学发光检测在诊断环境污染等污染现象也有着一定的用途。
此外,抗HIV化学发光检测还可以检测免疫系统的复性,为人类健康及免疫机理的研究起到一定的重要作用。
非核苷类HIV-1逆转录酶抑制剂2-5-6-三取代S-DABO及6-萘甲基取代N-DABO类似物的分
非核苷类HIV-1逆转录酶抑制剂2,5,6-三取代S-DABO及6-萘甲基取代N-DABO类似物的分子设计、合成及构效关系研究艾滋病即获得性免疫缺陷综合症(Acquired immunodeficiency syndrome,AIDS)是由人类免疫缺陷病毒(Human immunodeficiency virus,HIV)引起的全球性流行疾病,严重威胁着人类的生命和健康,是当今最危险的流行病之一。
HIV逆转录酶(Reverse transcriptase,RT)是病毒特有的,感染宿主细胞必需的一种关键酶。
它主导着HIV的RNA被反转录为DNA的过程,是抗HIV/AIDS药物研发的重要靶标之一。
目前已上市的22个抗艾滋病药物中,HIV逆转录酶抑制剂多达14个。
二氢烷氧基苄基嘧啶酮(Dihydroalkoxybenzyloxopyrimidines,DABOs)类衍生物是非核苷类逆转录酶抑制剂(Non-nucleoside reverse transcriptase inhibitors,NNRTIs)中颇具代表性的一类化合物,因其具有较小的毒副作用和较高的抗HIVol活性而倍受关注。
本课题组在NNRTIs的研究与开发中,已成功设计并合成了一系列高活性的6-萘甲基、6-萘硫基取代的S-DABO类衍生物,为该系列NNRTIs的进一步研发奠定了坚实的基础。
构效关系研究表明,S-DABO类化合物是以其C-6位芳环干扰HIV-1 RT结合口袋(non-nucleoside binding pocket,NNBP)中的Tyr188和Tyr181等氨基酸残基的构象而起作用,干扰越强,活性越强;S-DABOs的C-2位取代基位于NNBP中的柔性部位,由于诱导契合,C-2位取代基可以是结构差异比较大的基团,如为烷基硫基、芳基烃基硫基或芳基羰基甲基硫基等,都能获得高活性的HIV-1抑制剂。
此外,C-5位取代基对S-DABO类似物的抗HIV-1活性也至关重要,但其影响复杂,须进一步深入研究。
艾滋病:抗逆转录病毒治疗
艾滋病:抗逆转录病毒治疗自从1981年艾滋病被发现以来,全球医学界对其进行了广泛的研究和探索。
经过几十年的努力,抗逆转录病毒治疗(Antiretroviral Therapy,简称ART)成为目前治疗艾滋病的主要手段。
我将在本文中从治疗原理、药物分类、治疗方案以及我国抗艾事业的发展等方面进行详细阐述。
一、治疗原理抗逆转录病毒治疗是利用逆转录病毒酶(Reverse Transcriptase,简称RT)的抑制剂,阻止病毒在人体细胞内复制和繁殖,从而达到控制艾滋病病毒(HIV)数量、延缓疾病进展的目的。
治疗艾滋病的关键在于长期、规律、联合用药,使病毒载量降低到检测不到的水平,同时提高免疫系统的功能。
二、药物分类1. 逆转录酶抑制剂(NRTIs):如拉米夫定、司他夫定等,通过抑制逆转录酶的活性,阻止病毒复制。
2. 非核苷类逆转录酶抑制剂(NNRTIs):如依非韦伦、奈韦拉平等,通过与逆转录酶的结合,降低其活性。
3. 整合酶抑制剂(INIs):如雷特格韦、多替拉韦等,阻止病毒整合到人体基因组中。
4. 融合抑制剂(FIs):如恩曲他滨、替诺福韦等,阻止病毒与人体免疫细胞表面的CD4受体结合。
5. 蛋白酶抑制剂(PIs):如洛匹那韦、达芦那韦等,抑制病毒复制过程中产生的蛋白质 maturation。
三、治疗方案抗逆转录病毒治疗方案根据患者的病情、病毒载量、 cd4+ 细胞计数等因素制定。
治疗初期,医生会根据患者的情况选择两种逆转录酶抑制剂和一种其他类药物(如整合酶抑制剂、融合抑制剂或蛋白酶抑制剂)联合使用。
随着治疗进程的推进,医生会根据患者的病毒载量、 cd4+ 细胞计数等指标调整药物组合。
治疗艾滋病的目标是让病毒载量降至检测不到的水平,同时提高cd4+ 细胞计数,恢复免疫系统的功能。
患者需长期、规律、联合用药,不能随意中断或更换药物,以免病毒产生耐药性,导致治疗效果下降。
四、我国抗艾事业的发展我国抗艾事业仍面临诸多挑战,如病毒耐药问题、患者依从性不高、药物供应不足等。
艾滋病治疗中的抗逆转录病药物
艾滋病治疗中的抗逆转录病药物艾滋病治疗中的抗逆转录病毒药物在艾滋病的治疗过程中,抗逆转录病毒药物(Antiretroviral therapy,简称ART)是目前最为常用和有效的治疗方法之一。
抗逆转录病毒药物可抑制艾滋病病毒(HIV)的复制,降低病毒负载,减缓疾病进程,延长患者的生命。
1. ART的分类及作用机制抗逆转录病毒药物主要可分为核苷类似物逆转录酶抑制剂(Nucleoside/nucleotide reverse transcriptase inhibitors,NRTIs)、非核苷类似物逆转录酶抑制剂(Non-nucleoside reverse transcriptase inhibitors,NNRTIs)、蛋白酶抑制剂(Protease inhibitors,PIs)和整合酶抑制剂(Integrase inhibitors,INSTIs)等四大类。
这些药物通过不同的机制干扰病毒的生命周期,起到抑制病毒复制的作用。
2. 不同药物的选择及应用在抗逆转录病毒药物的选择上需要根据患者的具体情况进行个体化的治疗方案。
一般情况下,治疗方案会选用3种或以上药物的联合应用,以最大程度地遏制病毒复制,并防止耐药性的发展。
核苷类似物逆转录酶抑制剂是最早被应用于艾滋病治疗的药物,也是治疗方案的基础。
常用的核苷类似物逆转录酶抑制剂有拉米夫定、司托他定等。
非核苷类似物逆转录酶抑制剂则通过与逆转录酶的结合来抑制病毒的复制,常用药物包括乙酰草酸泰诺福韦(TDF)和依非韦伦(EFV)等。
蛋白酶抑制剂是另一类重要的抗逆转录病毒药物,通过抑制病毒复制过程中的蛋白酶活性,阻断病毒粒子的成熟和释放。
常用的蛋白酶抑制剂有利托那韦、阿扎那韦等。
整合酶抑制剂是相对较新的治疗药物,通过干扰病毒整合到宿主DNA中的过程来阻止病毒复制。
目前常用的整合酶抑制剂有拉度那韦和达芦那韦等。
3. 药物的副作用及注意事项使用抗逆转录病毒药物的患者需要重视药物的副作用和注意事项。
艾滋病阻断药应用的原理
艾滋病阻断药应用的原理背景简介艾滋病是由人类免疫缺陷病毒(HIV)感染引起的一种病毒性传染病。
目前,艾滋病仍然是全球重大的公共卫生问题,许多国家和地区都在不断努力寻找有效的治疗方法和预防措施。
艾滋病阻断药是其中一种重要的治疗手段,通过不同的机制来阻断病毒在人体内的传播和复制。
艾滋病阻断药的分类•抗逆转录病毒药物(Antiretroviral drugs)•抗蛋白酶病毒药物(Protease inhibitors)•抗整合酶病毒药物(Integrase inhibitors)•核苷类似物(Nucleoside analog reverse transcriptase inhibitors)•非核苷类似物(Non-nucleoside reverse transcriptase inhibitors)艾滋病阻断药的作用机制艾滋病阻断药物的作用机制主要通过以下几种方式来抑制病毒的复制和传播:1.抑制病毒逆转录酶的活性:逆转录酶是HIV病毒复制过程中的重要酶类,阻断其活性可以有效抑制病毒的复制。
核苷类似物和非核苷类似物就是通过抑制逆转录酶的活性来发挥作用的。
2.抑制病毒整合酶的活性:整合酶是HIV病毒感染宿主细胞后将病毒基因组整合到宿主细胞基因组中的关键酶类。
抗整合酶病毒药物可以抑制整合酶的活性,防止病毒基因组的整合,从而阻断病毒在宿主细胞内的复制。
3.抑制病毒蛋白酶的活性:蛋白酶是HIV病毒在宿主细胞内产生新的病毒颗粒时所需的酶类,抗蛋白酶病毒药物可以抑制蛋白酶的活性,阻断新的病毒颗粒的生成。
4.增强免疫系统功能:艾滋病阻断药物可以增强宿主免疫系统的功能,提高免疫力,减少病毒对机体的侵袭。
艾滋病阻断药的适应症由于艾滋病阻断药物的作用机制多样,适应症也有所不同。
一般来说,以下情况适用于使用艾滋病阻断药:•已经确诊为HIV感染者;•免疫系统衰弱或病毒负荷较高的HIV感染者;•用于垂直传播预防,以防止HIV感染传染给新生儿;•用于职业暴露预防,以预防医护人员在处理可能感染HIV的生物样本时的暴露。
传染病学-艾滋病
艾滋病Acquired Immunodeficiency Syndrome,AIDS一、概述l病名:艾滋病(acquired immunodeficiency syndrome,AIDS)l病原:人免疫缺陷病毒(human immunodeficiencyvirus,HIV)l主要经性接触、血液及母婴传播l主要侵犯、破坏CD4+ T淋巴细胞(CD4+ Tlymphocytes),导致机体免疫细胞和/或功能受损乃至缺陷l传播迅速、发病缓慢、病死率高二、病原学l HIV为单链RNA病毒,属于反转录病毒科(Retroviridae),慢病毒(Lentivirus)属中的人类慢病毒组。
l HIV为直径约100~120nm的球型颗粒,由核心和包膜两部分组成,核心包括两条正链RNA(与核心蛋白P7结合在一起),病毒复制所需的酶类。
二、病原学l HIV-1基因组长9181bp,HIV-2基因组长10359bp 。
l HIV基因除包括两端长末端重复序列(LTR)外,中间有9个开放性读框(ORF)。
l根据HIV基因的差异将HIV分为HIV-1型和HIV -2型。
l全球流行的主要毒株是HIV-1。
HIV-2主要局限于西部非洲和西欧,其传染性和致病性均较低。
l HIV-1和HIV-2的氨基酸序列同源性约40%~60%。
l HIV变异性很强,尤以env基因变异率最高,根据env基因核酸序列差异性,HIV-1分为3个亚型组13个亚型,HIV-2至少有A、B、C、D、E、F 、G 7个亚型。
HIV基因与编码的病毒蛋白及其功能基因编码的蛋白及其功能组特异性抗原基因(gag)其编码的核心蛋白前体P55裂解后为成熟P24、P17、P9和P6;多聚酶基因(pol)编码RNA酶H、反转录酶和整合酶,即P66、P51、P32;包膜蛋白基因(env)编码分子量为88kD的蛋白质,糖基化后成为包膜蛋白前体gpl60,成熟裂解成gpl20和跨膜蛋白gp41;反式激活(tat)能反式激活HIV末端重复序列启动的基因表达,增强其他基因表达能力,对HIV复制有重要作用;病毒蛋白调节因子rev)能增加gag和env基因表达;病毒颗粒感染因子(vif)编码的蛋白质在其他细胞因子协同下促进HIV细胞内复制;负调节子(nrf)编码的蛋白质有抑制HIV增殖作用;病毒蛋白R基因(vpr)编码的R蛋白能使HIV在吞噬细胞中增殖;HIV-1病毒蛋白U(vpu)促进HIV-1从细胞膜上释放;HIV-2 病毒蛋白X(vpx)编码的X蛋白是HIV-2在淋巴细胞和吞噬细胞增殖、促进病毒颗粒形成的必须物质。
hiv逆转录过程所需的酶
hiv逆转录过程所需的酶HIV(人类免疫缺陷病毒)是一种致命的病毒,它通过攻击人体免疫系统,导致艾滋病的发生。
HIV的逆转录过程是其复制和感染的关键步骤之一。
在逆转录过程中,HIV需要一系列特定的酶来完成DNA的合成和整合。
这些酶的作用对于HIV的生命周期至关重要。
首先,HIV逆转录过程所需的酶之一是逆转录酶(reverse transcriptase)。
逆转录酶是一种特殊的酶,能够将病毒RNA转录成DNA。
在HIV感染人体细胞后,病毒的RNA进入细胞质,并与逆转录酶结合。
逆转录酶通过将RNA作为模板,合成出与之互补的DNA 链。
这个过程被称为逆转录,因为它与正常的DNA转录过程相反。
逆转录酶的活性使得HIV能够将其遗传信息转录成DNA,从而能够在宿主细胞中复制自身。
除了逆转录酶,HIV逆转录过程还需要另外两种酶:RNA酶H (RNAse H)和整合酶(integrase)。
RNA酶H的作用是在逆转录过程中降解RNA模板。
在逆转录酶合成DNA链的同时,RNA酶H会逐渐降解RNA模板,使得DNA链能够更好地与病毒基因组结合。
整合酶则负责将合成的DNA链整合到宿主细胞的基因组中。
整合酶能够识别宿主细胞的DNA,并将HIV的DNA链插入其中。
这个过程被称为整合,它使得HIV的遗传信息能够长期存在于宿主细胞中。
HIV逆转录过程所需的这些酶在病毒的生命周期中起着重要的作用。
逆转录酶的活性使得HIV能够将其RNA转录成DNA,从而能够在宿主细胞中复制自身。
RNA酶H的降解作用使得DNA链能够更好地与病毒基因组结合,从而确保复制的准确性。
整合酶的作用则使得HIV 的遗传信息能够长期存在于宿主细胞中,从而确保病毒的持续感染。
由于HIV逆转录过程所需的酶在病毒生命周期中起着重要的作用,它们成为了研究和开发抗HIV药物的重要靶点。
目前,已经开发出一些针对逆转录酶和整合酶的抗病毒药物,如逆转录酶抑制剂和整合酶抑制剂。
齐多拉米双夫定片说明书
For the use of a Registered Medical Practitioner or a Hospital or a Laboratory only仅供注册医生、医院、实验室使用Lamivudine, Zidovudine and Nevirapine Tablets IP拉米夫定,齐多夫定和奈韦拉平片(印度药典级)Duovir-N(商品名)Warning警告Duovir-N is not intended for use in patients who are just initiating therapy with nevirapine. Duovir-N should be administered only to patients who have received Zidovudine + Lamivudine (standard doses) + Nevirapine (200 mg OD) for 2 weeks and have demonstrated adequate tolerability to Nevirapine (see Indications, Dosage and Administration).Duovir- N不适合那些刚开始使用奈韦拉平治疗的患者,Duovir- N只应施用于那些已经接受齐多夫定+ 拉米夫定(标准剂量)+ 奈韦拉平(200毫克,每天一次)达2周,并证明对奈韦拉平具有足够耐受性的患者(见适应症、剂量和服用)。
Zidovudine has been associated with haematologic toxicity including Neutropenia and severe anaemia. Particularly in patients with advanced disease (see Warnings and Precautions) .Prolonged use of Zidovudine has been associated with symptomatic myopathy.齐多夫定与血液学毒性相关,包括中性粒细胞减少和严重贫血,特别是长期使用齐多夫定,一直伴随症状肌病的晚期患者(见警告和注意事项)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Anti-HIV efficacy and biodistribution of nucleoside reverse transcriptase inhibitors delivered as squalenoylated prodrug nanoassembliesHervéHillaireau a,b,1,Nathalie Dereuddre-Bosquet c,d,1,Rym Skanji a,b,Fawzia Bekkara-Aounallah a,b,e,Joachim Caron a,b,Sinda Lepêtre a,b,Sébastien Argote f, Laurent Bauduin g,Rahima Yousfic,Christine Rogez-Kreuz c,Didier Desmaële a,b, Bernard Rousseau f,Ruxandra Gref a,b,Karine Andrieux a,b,Pascal Clayette c,Patrick Couvreur a,b,*a Institut Galien Paris-Sud,UMR8612,UniversitéParis-Sud,Châtenay-Malabry F-92290,Franceb CNRS,Châtenay-Malabry F-92290,Francec Bertin Pharma,Neurovirology Department,CEA,Fontenay-aux-Roses F-92265,Franced Present address:CEA,Division of Immuno-Virology,iMETI,Fontenay-aux Roses F-92265,Francee UniversitéDjillali Liabès,LCOPM,BP89,Sidi Bel Abbès22000,Algeriaf CEA/Saclay,Department of Radiolabeled Molecules,Gif-sur-Yvette F-91191,Franceg Bertin Pharma,Bioanalysis Department,CEA,Gif-sur-Yvette F-91191,Francea r t i c l e i n f oArticle history:Received29December2012 Accepted9March2013 Available online2April2013Keywords:Squalenoylation NanoassembliesProdrugDidanosineZalcitabine a b s t r a c tDue to their hydrophilic nature,most nucleoside reverse transcriptase inhibitors(NRTIs)display a var-iable bioavailability after oral administration and a poor control over their biodistribution,thus hampering their access to HIV sanctuaries.The limited cellular uptake and activation in the triphosphate form of NRTIs further restrict their efficacy and favour the emergence of viral resistance.We have shown that the conjugation of squalene(sq)to the nucleoside analogues dideoxycytidine(ddC)and didanosine (ddI)leads to amphiphilic prodrugs(ddC-sq and ddI-sq)that spontaneously self-organize in water as stable nanoassemblies of100e300nm.These nanoassemblies can also be formulated with polyethylene glycol coupled to either cholesterol(Chol-PEG)or squalene(sq-PEG).When incubated with peripheral blood mononuclear cells(PBMCs)in vitro infected with HIV,the NRTI-sq prodrugs enhanced the antiviral efficacy of the parent NRTIs,with a2-to3-fold decrease of the50%effective doses and a nearly2-fold increase of the selectivity index.This was also the case with HIV-1strains resistant to ddC and/or ddI.The enhanced antiviral activity of ddI-sq was correlated with an up to5-fold increase in the intracellular concentration of the corresponding pharmacologically active metabolite ddA-TP.The ddI-sq prodrug was further investigated in vivo by the oral route,the preferred route of administration of NRTIs.Pharma-cokinetics studies performed on rats showed that the prodrug maintained low amounts of free ddI in the plasma.Administration of3H-ddI-sq led to radioactivity levels higher in the plasma and relevant organs in HIV infection as compared to administration of free3H-ddI.Taken together,these results show the potential of the squalenoylated prodrugs of NRTIs to enhance their absorption and improve their bio-distribution,but also to enhance their intracellular delivery and antiviral efficacy towards HIV-infected cells.Ó2013Elsevier Ltd.All rights reserved.1.IntroductionHighly active antiretroviral therapies(HAART)have significantlydecreased the mortality associated to HIV/AIDS since the late1990s.In2012,reference HAART treatments are based on a boostedprotease inhibitor regimen associated with several reverse*Corresponding author.Institut Galien Paris-Sud,UMR8612,Univ.Paris-Sud,5 rue J.-B.Clément,F-92290Châtenay-Malabry,France.Tel.:þ33146835396; fax:þ33146619334.E-mail address:patrick.couvreur@u-psud.fr(P.Couvreur).1Have equally participated to thisstudy.Contents lists available at SciVerse ScienceDirectBiomaterialsjournal homepage:w ww.elsevi/locate/biomaterials0142-9612/$e see front matterÓ2013Elsevier Ltd.All rights reserved./10.1016/j.biomaterials.2013.03.022Biomaterials34(2013)4831e4838transcriptase inhibitors,either nucleoside/nucleotide or non-nucleoside analogues.Nucleoside reverse transcriptase inhibitors (NRTIs)were thefirst molecules described for this purpose and remain today a cornerstone of the treatments.However,despite their efficacy and widespread use,these molecules still suffer from important limitations leading to an incomplete suppression of viral replication and a failure to eradicate HIV from the organism.Failure of antiretroviral therapy involves poor adherence,viral resistance and pharmacological issues[1],such as:(i)a short plasma half-life, (ii)a variable bioavailability after oral administration,(iii)a variable cell uptake due to their hydrophilic nature and(iv)a restricted intracellular activation into their active triphosphorylated form by cellular kinases[2].To overcome these limitations(and beside the synthesis of new NRTIs),two main strategies have been pursued.First,several NRTI prodrugs have been synthesized in an effort to increase plasma stability and cellular uptake[3,4].Second,NRTIs were loaded onto liposomes or biodegradable polymeric nanocarriers in order to modulate the drug biodistribution[5,6].To date,despite some successes,both strategies have faced important limitations:most prodrugs display a poor solubility,restricting their administration, while the clinical use of nanocarriers is limited by their low drug loading capacity,which requires the administration of excessive amounts of transporter material(ie.polymers or lipids).We have recently shown that the conjugation of nucleoside analogues to squalene(sq),a natural terpene,lead to amphiphilic prodrugs able to self-assemble spontaneously in water as nano-particles(nanoassemblies)[7].Such bioconjugates possess the advantages of both the prodrugs(high drug loading and ease of formulation)and the nanocarriers(high dispersibility in water and drug targeting potential).This concept,termed“squalenoylation”, has been applied to natural nucleosides such as thymidine,to anticancer nucleoside analogues such as gemcitabine and cytar-abine,as well as to the antiviral NRTIs azidothymidine(AZT,zido-vudine),didanosine(ddI)and dideoxycytidine(ddC,zalcitabine).At the pre-clinical stage,gemcitabine-squalene nanoassemblies were already found to dramatically improve the anticancer efficacy of the parent drug on experimental mice leukaemia[8]and on human pancreas cancer models[9].In this study,we investigated the antiviral efficacy of the squa-lenoylated ddI(ddI-sq)and ddC(ddC-sq)nanoassemblies on HIV by exploring(i)anti-HIV effects on human peripheral blood mono-nuclear cells(PBMCs)infected with sensitive and resistant HIV strains,(ii)the ability of ddI-sq nanoassemblies to intracellularly produce the active ddA-TP metabolite and(iii)the impact of the squalenoylation on the NRTI absorption and biodistribution after oral administration to rats.2.Materials and methods2.1.Chemical synthesis2.1.1.NRTI-sq synthesisSqualenoylated NRTI(NRTI-sq)were synthesized by addition of tris norsqualenic acid[7]onto the50NRTI hydroxyl group(ddI-sq)or onto the amino group of the NRTI heterocycle(ddC-sq).ddI-sq was obtained as follows.To a stirred solution of tris norsqualenoic acid (0.84g,2mmol)in anhydrous DMF(7mL),was added under nitrogen,the1-hydroxybenzotriazole hydrate(0.38g, 2.4mmol),O-(7-azabenzotriazol-1-yl)-N,N,N,N’-tetramethyluronium hexafluoroborate(0.95g, 2.4mmol),didanosine (0.50g,2.05mmol)and diisopropylethylamine(0.62g,4.6mmol).The reaction was stirred for84h at room temperature and the reaction mixture was then concentrated in vacuo.Aqueous sodium hydrogen carbonate was added and the mixture was extracted with ethyl acetate(3Â100mL).The combined extracts were washed with water,dried on MgSO4,and evaporated.The crude product was purified by chromatography on silica gel eluting with1e5%methanol in dichloromethane to give pure50-squalenoyl-didanosine as a colourless oil(0.82g, 63%)(Fig.1A).Tritiated ddI-sq(3H-ddI-sq)was synthesized similarly but using tritiated ddI (3H-ddI).3H-ddI(1.8m g,250m Ci,obtained from Hartmann Analytic)was mixed with cold ddI(10mg).The coupling reaction was then performed as described above, leading to pure3H-ddI-sq(8.35mCi/mmol).3H-ddI-sq was dissolved in ethanol (26m Ci/mL)and stored atÀ20 C.In the case of ddC-sq,to a stirred solution of tris norsqualenoic acid(0.50g, 1.2mmol)in anhydrous DMF(7ml),was added under nitrogen,1-hydroxybenzotriazole hydrate(0.23g, 1.4mmol),O-(7-azabenzotriazol-1-yl)-N,N,N,N’-tetramethyluronium hexafluoroborate(0.56g,1.4mmol),dideoxycytidine (0.29g,1.3mmol)and diisopropylethylamine(0.35g,2.6mmol).The reaction mixture was stirred for84h at room temperature and was then concentrated in vacuo.Aqueous sodium hydrogen carbonate was added and the mixture was extracted with ethyl acetate(3Â100mL).The combined extracts were washed with water,dried on MgSO4,and evaporated.The crude product was purified by chro-matography on silica gel eluting with1e5%methanol in dichloromethane to give pure4-N-squalenoyl-dideoxycytidine as a colourless oil(0.59g,50%)(Fig.1B).2.1.2.Thymidine-sq synthesisTo a stirred solution of tris norsqualenoic acid(0.10g,0.24mmol)in anhydrous DMF(3.2mL),was added under nitrogen1-hydroxybenzotriazole hydrate(0.044g, 0.29mmol),O-(7-azabenzotriazol-1-yl)-N,N,N,N’-tetramethyluronium hexa-fluoroborate(0.11g,0.29mmol),thymidine(0.117g,0.48mmol)and diisopropy-lethylamine(0.0944g,0.73mmol).The reaction mixture was stirred84h at room temperature and was then concentrated in vacuo.Aqueous sodium hydrogen car-bonate was added and the mixture was extracted with ethyl acetate(3Â100mL). The combined extracts were washed with water,dried on MgSO4,and evaporated. The crude product was purified by chromatography on silica gel eluting with1e5% methanol in dichloromethane to give pure50-squalenoyl-thymidine(T-sq)as a colourless oil(0.15g,50%)(Fig.1C).2.1.3.Sq-PEG synthesisThe sq-PEG was obtained by alkylation of the sodium alkoxide of MePEG by trisnorsqualenyl methanesulfonate as previously reported[10].Briefly,90mg of sodium hydride(60%dispersion in mineral oil,2.24mmol)was suspended in2mL of cyclohexane and stirred for2min.The cyclohexane was drawn off via syringe and the process was repeated.Anhydrous THF(2mL)was added and a solution of MePEG (weight-average molar mass M w¼2000g mol-1,Fluka)(1.49g,0.74mmol)in THF (2mL),was added drop-wise to the stirred suspension.After completed gas evo-lution,a solution of1,10,2-tris norsqualenyl methanesulfonate(695mg,1.49mmol) dissolved in THF(2mL)was added and the resulting mixture was stirred at room temperature for18h.Water was added and the mixture was extracted with CH2Cl2 (3Â20mL).The combined organic extracts were washed with brine,dried over MgSO4and concentrated in vacuo.The crude residue was triturated with Et2O,the solid wasfiltered over a sintered glass funnel,and washed with dried ether to give trisnorsqualene-PEG as a white amorphous solid(1.09g,62%)(Fig.1D).2.2.NRTI-sq nanoassemblies preparation and characterizationNRTI-sq nanoassemblies were prepared by nanoprecipitation.Briefly,NRTI-sq was dissolved in acetone(ddC-sq)or ethanol(ddI-sq)(1mL,2e10mg mL-1)and added drop-wise under stirring(500rpm)into2mL of MilliQÒwater.Precipitation of nanoassemblies occurred spontaneously.After thorough solvent evaporation,the final volume was adjusted to2mL,leading to a1e5mg mL-1aqueous NRTI-sq posite PEGylated nanoassemblies(noted NRTI-sq-PEG)at afinal concentration of1mg mL-1were prepared by co-nanoprecipitation of NRTI-sq with either Chol-PEG or sq-PEG using acetone as organic solvent with different NRTI-sq:Chol-PEG(sq-PEG)w/w ratios,ie.1:0;1:0.002;1:0.008;1:0.05;1:0.1;1:0.3; 1:0.5;1:0.7.Other squalenoylated nanoassemblies used as control formulations(T-sq,T-sq-PEG and sq-PEG)were prepared similarly.Radiolabeled3H-ddI-sq nano-assemblies were prepared similarly from an isotopic dilution of ddI-sq in ethanol, obtained by mixing ethanol solutions of3H-ddI-sq(0.2mL,5m Ci)and cold ddI-sq (0.5mL,52mg/mL).For all experiments,the nanoassemblies were freshly pre-pared and used within24h(conservation at4 C).The storage stability of the nanoassemblies was assessed at room temperature using a50m g mL-1 concentration.The mean particle size and polydispersity index were determined at20 C by quasi-elastic light scattering(QELS)(Nano ZS,Malvern Instruments Ltd.,UK).The selected angle was173 and the measurement was made using a50m g mL-1con-centration in MilliQÒwater or PBS.The zeta potential was determined with the same equipment using a50m g mL-1nanoassemblies concentration in a1mM NaCl so-lution.Measurements were performed in triplicate on at least three independent experiments.The morphology of the nanoassemblies and composite nanoassemblies was investigated using transmission electron microscopy(TEM),without or after freeze-fracture(FF).For TEM observations,10m L of aqueous nanoassemblies suspension (1mg mL-1)was deposited on a thin copper grid,allowed to evaporate for2min,and observed using a Philips EM208electron microscope operating at80kV.For FF-TEM observations,1mL of aqueous nanoassemblies suspension(1mg mL-1)was incu-bated with glycerol(30%v/v),used as a cryoprotectant.A drop of each sample wasH.Hillaireau et al./Biomaterials34(2013)4831e4838 4832placed on a copper support and immediately frozen in liquid propane and then kept in liquid nitrogen.Fracturing and shadowing were performed in a Balzers BAF 400freeze-etching unit.The replicas were washed in THF and distilled water and placed on copper grids.Observations were made under a transmission electron microscope JEOL 100SX.2.3.In vitro biological evaluation of NRTI-sq nanoassembliesNRTI-sq nanoassemblies were tested for their anti-HIV activity,comparatively to the parent NRTIs,using phytohemaglutinin (PHA)-P-activated PBMCs in vitro infected with the HIV-1-LAI strain,a methodology previously described [11e 13].Brie fly,PBMCs obtained from healthy donors were incubated with six concentra-tions of each treatment and infected with one hundred 50%tissue culture infectious doses (TCID50)of HIV-1-LAI per 100,000cells.Treatments were maintained throughout the culture,and cell supernatants were collected on day 7post-infection and stored at À20 C.Viral replication was measured by quantifying reverse tran-scriptase (RT)activity in cell culture supernatants using the RT RetroSys kit,ac-cording to the manufacturer ’s (Innovagen)instructions.In parallel,cytotoxicity of the nanoassemblies and their corresponding parent NRTI was evaluated in unin-fected PHA-P-activated PBMC by MTT assay on day 7.Experiments were performed in triplicate and 50%,70%and 90%effective doses (ED 50,ED 70and ED 90respectively)as well as 50%cytotoxic doses (TC 50)were calculated using SoftMaxPro software.Evaluation against resistant HIV-1strains was performed similarly using cells of the MT2lineage.HIV resistant viruses (HIV-1-144and HIV-1-146)were generously provided by NIH AIDS Reagent Program.The HIV-1-144strain is mutated in position74(mutation 74V)and is known to be resistant to ddI and ddC.The HIV-1-146strain is mutated in positions 41(L),74(V),106(A)and 215(Y)and is known to be resistant to ddI.Intracellular concentrations of ddA-TP,the active triphosphate metabolite of ddI,was assessed as previously described [14]in PBMCs after incubation with ddI-sq or ddI at 1,10and 20m M.Natural dA-TP was also quanti fied as a control.2.4.In vivo biological evaluation of NRTI-sq nanoassembliesThe animal experiments were carried out according to the principles of labo-ratory animal care and European legislation (recommendation 2007/526/EC)after the protocol ethics were institutionally approved.Wistar rats weighing around 220g were purchased from Charles River laboratory (Domaine des Oncins,l ’Arbresle,France).Animals had ad libitum access on water and food but were fasted 16h before treatment.For pharmacokinetics and biodistribution studies,two treatments were compared (ddI vs .ddI-sq)and untreated animals were used as a control group.ddI and ddI-sq were administered by oral gavage to rats as a 3e 4mL drug solution or prodrug suspension in a pH ¼8phosphate buffer,to administer a dose equivalent to 45mg/kg ddI.All animals were sacri ficed after anaesthesia with 50mg/kg pento-barbital by the intraperitoneal route.2.4.1.PharmacokineticsThe pharmacokinetics study was conducted on rats catheterized on the jugular vein.7rats per group were used.Blood samples (0.4mL)were collected at various times (0.25,0.5,1,2,4,8and 24h)in heparinized test tubes andimmediatelyFig.1.Chemical structures of (A)ddI-Sq,(B)ddC -Sq,(C)T-Sq and (D)Sq-PEG.The positions of tritium double radiolabeling are indicated for ddI-Sq.H.Hillaireau et al./Biomaterials 34(2013)4831e 48384833centrifuged at 4,000rpm at room temperature (20 C)using a microcentrifuge (Minispin,Eppendorf).Plasma was aspirated and frozen at À80 C until further analysis by liquid chromatography-mass spectrometry (LC-MS/MS).ddI plasmatic concentrations were determined as follows:brie fly,after defrost,plasma samples obtained from treated animals were completed to 500m L (validated dilution up to 1/10)with blank plasma and were centrifuged (18,000Âg ,at room temperature for 10min)and the internal standard (2-chloro-adenosine)was added to supernatant.The extraction of ddI and its internal standard was performed by a solid phase technique using cartridges ATH according to several steps:conditioning (methanol,water),sampling,washing (water)and elution (methanol).The fraction of interest was then rescued and the solvent was evaporated under nitrogen flux.The residue was then resuspended in water/methanol (95/5).After centrifugation (9000Âg for 20min),the supernatants were analysed by LC-MS/MS.Calibration and quality control samples were prepared and treated in the same way.80m L of the extracted samples were injected into the HPLC system Agilent HP100(Agilent technologies).The separation was performed using a Zorbax SB C18(150Â2.1)column at a flow rate of 300m L/min,with a gradient elution (methanol/acetonitrile/water).Detection was performed with a mass spectrometer API 3000(AB Sciex).ddI and chloro-adenosine were detected in negative mode using the transitions,m /z 234.8>135and m /z 284>168,respectively.The quanti fication process was performed using Analyst software 1.4(AB Sciex,Les Ulis,France).2.4.2.BiodistributionTritiated (3H-)versions of ddI or ddI-sq were used to study drugs absorption and biodistribution following oral administration.Practically,animals (3rats per group)were housed in individual metabolic cages up to the end of feces collection.5m Ci of either 3H-ddI-sq or 3H-ddI were administered by oral feeding to rats as a 3e 4mL drug solution or prodrug suspension in a pH ¼8phosphate buffer,to administer a dose equivalent of 45mg/kg ddI.After 24h,animals were sacri ficed by cardiac puncture under anaesthesia and the blood samples were collected.Blood samples were centrifuged at 2000Âg for 10min at room temperature,and the supernatant plasma was isolated.To 700m L of plasma,10mL of Ultima Gold scintillation liquid was added,vigorously vortexed for 1min and counted after 1h in a beta counter (Beckmann LS 6000TA,Beckman Coulter).Organs including liver,rate,kidneys,testis,heart,lungs,thymus,brain,intestine,muscle,bone marrow were dissected and weighed.2mL Solvable Òwas added into the vials containing the tissues and the feces and maintained overnight at 50 C to allow complete dissolution.200m L of hydrogen peroxide was then added to each vial and kept for 1h at 50 C to decol-orize solutions.After cooling,10mL Hionic-Fluor scintillation liquid was added to the vials and vigorously vortexed for 1min.Separately,the urine samples (1mL)were mixed with 10mL of Ultima Gold,vortexed for 1min,and set aside for 1h.The radioactivity in the samples was counted using a beta counter.The results were expressed as percentage of administered dose per gram of tissue.Urine and feces were interpreted as percentage of administered dose.The statistical comparisons were made using Student ’s test of an unequal variance.3.Results3.1.Preparation and characterization of NRTI-sq nanoassemblies When dissolved into ethanol or acetone and added dropwise to an aqueous phase,the squalenoylated NRTI prodrugs (NRTI-sq)self-assembled as nanoassemblies with a size in the range of 100e 250nm and a homogeneous distribution (polydispersity index around 0.2or lower)(Table 1).The squalenoylated bioconjugate based on the natural thymidine nucleoside (T-sq),used as a control for antiviral activity experiments,also leads to nanoassemblies,similarly to the NRTI-sq prodrugs.The addition of sq-PEG as well as Chol-PEG to the NRTI-sq formulations resulted in a signi ficant decrease of the size of the nanoassemblies.Noteworthy,the size of the NRTI-sq nanoassemblies was stable over at least 5weeks,which was also true for NRTI-sq-PEG,regardless of the PEGylation method (either sq-PEG or Chol-PEG)and the PEGylation ratio (Fig.2).Transmission electron microscopy (TEM)observations of ddI-sq aqueous suspensions con firmed the size range of the nano-assemblies displaying a spherical shape (Fig.3A).TEM observations of ddC-sq formulations performed after freeze-fracture revealed a solid and rather matrix type core (Fig.3B)and a smooth surface (Fig.3C)of the nanoassemblies.3.2.Antiviral activity of the NRTI-sq nanoassembliesWhen assessed on HIV-1-LAI-infected PBMCs,the two NRTI-sq prodrug nanoassemblies were found to improve signi ficantly the antiviral ef ficacy of the corresponding parent molecule,as shown by a 2-to 3-fold decrease of the ED 50values (Fig.4A).Noteworthy,since their cytotoxicities were similar to the corresponding parent molecules (supplementary data,table S1),the squalenoylated prodrugs had increased selectivity as compared to the NRTIs (by 1.9-fold for the ddI and 1.8-fold for the ddC;Fig.4B).In parallel to nucleoside derivatives,a squalenoylated natural nucleoside (thymidine-squalene,T-sq)was tested and displayed a cytotoxicity similar to ddI-sq,with no antiviral ef ficacy,as expected (selectivity index:1.5).The PEGylation of the NRTI-sq (NRTI:Chol-PEG ratio of 1:0.7)further increased their antiviral ef ficacy (Fig.4A)but also their cytotoxicity (supplementary data,table S1),resulting in only slightly increased (ddC)or even decreased (ddI)selectivity indexes (Fig.4B).The PEGylated T-sq (T-sq-PEG;selectivity index:1.6)also displayed an increased cytotoxicity compared to T-sq,suggesting a potential deleterious effect of the PEGylated moieties at theTable 1Size and polydispersity of the NRTI-Sq prodrug nanoassemblies as measured by dynamic light scattering.Mean diameter (nm)Polydispersity index ddI-Sq 217Æ470.220Æ0.079ddC-Sq 204Æ220.020Æ0.010T-Sq130Æ20.075Æ0.018250200150100500250200150100500d (n m )d (n m )1we ek 2we ek s3we ek s4we ek s5we ek s1we ek2we ek s3 we ek s4w e e k s 5 we e k sTime (weeks)Time (weeks)ABFig.2.Stability of the NRTI-Sq and NRTI-Sq-PEG nanoassemblies.The ddC-Sq:Chol-PEG (A)and ddC-Sq:Sq-PEG (B)nanoassemblies were prepared using different weight ratios of ddC-Sq and Chol-PEG,resp.Sq-PEG:1:0(black);1:0.1(dark grey);1:0.3(light grey)and 1:0.7(white).H.Hillaireau et al./Biomaterials 34(2013)4831e 48384834Fig.3.Morphology of the NRTI-Sq nanoassemblies.Transmission electron microscopy (TEM)images of (A)a ddI-Sq suspension without freeze-fracture,and (B,C)of a ddC-Sq suspension after freeze-fracture showing the inner (B)and outer (C)structures.NRTI NRTI-Sq NRTI-Sq-PEGNRTI NRTI-Sq NRTI-Sq-PEGNRTINRTI-SqABCFig.4.In vitro anti-HIV activity of the NRTI-Sq prodrug nanoassemblies towards HIV-1-LAI (A,B)and resistant HIV-1strains (C).Results are expressed as 50%or 90%effective dose (ED 50or ED 90)or selectivity index (TD 50/ED 90ratio)after 7-day incubation with NRTIs or NRTI prodrugs (*,<0.04m M).Results are representative of 3independent experiments (n ¼3).H.Hillaireau et al./Biomaterials 34(2013)4831e 48384835concentrations tested,which was likely due to their surfactant properties.3.3.Antiviral activity towards resistant HIV strainsIn our experimental conditions,we have con firmed the resis-tance of the 144-and 146-HIV-1strains towards ddI and/or ddC in MT-2cells.The HIV-1-144strain was found 34Æ18times more resistant to ddI and 11Æ4times more resistant to ddC as compared to the sensitive HIV-1-LAI strain;the HIV-1-146strain was 14Æ1times more resistant to ddI and 7Æ3more resistant to ddC than the sensitive HIV-1-LAI.When assessed towards the HIV-1-144strain (resistant to both ddI and ddC),the NRTI-sq nanoassemblies signi ficantly improved the antiviral ef ficacy of the parent molecules:the ED 90decreased by 2.7fold for ddI and by 2.8fold for ddC (Fig.4C).For the HIV-1-146strain (mainly resistant to ddI),the effect of the squalenoylation was even more pronounced for ddI (the ED 90dropped by 8-fold),whereas no change in ED 90was observed for ddC.3.4.Intracellular concentrations of the ddA-TP active metabolite The improved antiviral activity of ddI-sq nanoassemblies versus ddI,in both sensitive and resistant HIV-infected cells prompted us to quantify the intracellular levels of dideoxyadenosine triphos-phate (ddA-TP),the metabolite accounting for the anti-HIV activity of ddI.ddA-TP (as well as the natural nucleoside dA-TP)were intracellularly quanti fied after 2e 24h incubation with either ddI or ddI-sq at concentrations of 1(z ED 50),10and 20m M (z ED 90).In all cases,the maximal ddA-TP/dA-TP ratios increased with the ddI orddI-sq concentration,and were maximal 24h after treatment ini-tiaion.For each of the concentrations tested,the values of the ddA-TP/dA-TP ratios were found to be 3-to 5-times higher after 4e 24h incubation with ddI-sq vs.ddI (Fig.5).After 3days the ratio became similar for ddI-sq and ddI.3.5.Pharmacokinetics and biodistribution of ddI-sq nanoassemblies Plasma ddI concentrations were monitored by LC-MS/MS over 24h following oral administration to rats of ddI as a solution or as squalenanoylated prodrug nanoassemblies at equivalent dose in ddI.The pharmacokinetic parameters (Table 2)show that the treatment with ddI-sq prodrug decreased the plasma ddI concen-trations,comparatively to ddI free.However,ddI-sq nano-assemblies also decreased the elimination rate of ddI and doubled the t max ,as compared to the drug administered as a single solution,suggesting a reservoir-like behaviour of the prodrug nanoassemblies.In order to further investigate the biodistribution of ddI-sq vs.ddI,we have radiolabeled both ddI-sq and ddI using tritium iso-topic exchange (see materials and methods).After oral adminis-tration,3H-ddI-sq led to 4-times higher radioactivity concentrations in the plasma than 3H-ddI administered as a solu-tion,con firming that the ddI-sq prodrug acted as a reservoir in the blood circulation (Fig.6).Additionally,the biodistribution of the tritium into the tissues clearly showed that 3H-ddI-sq allowed (comparatively to 3H-ddI)a higher fraction of the administered dose to concentrate in all the investigated tissues,especially those of the mononuclear phagocyte system (up to 4.7-fold in the liver,spleen and bone marrow)and other tissues relevant for HIV infection (3-fold in thymus and 2.7-fold in brain)(Fig.6).Fig.5.In vitro intracellular ddA-TP levels in PHA-P-activated PBMCs treated with ddI or ddI-Sq at (A)1m M,(B)10m M and (C)20m M.Results are expressed as ddA-TP/dA-TP ratios.H.Hillaireau et al./Biomaterials 34(2013)4831e 48384836。