2017-2018学年湖北省华中师范大学第一附属中学高一新生入学起点考试数学试题

合集下载

精品解析:湖北省华中师范大学第一附属中学2018届高三上学期期中考试数学(文)试题(解析版)

精品解析:湖北省华中师范大学第一附属中学2018届高三上学期期中考试数学(文)试题(解析版)

华中师大一附中2017-2018学年度上学期高三期中检测数学试卷(文科)注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔在答题卡上填写自己的准考证号、姓名、试室号和座位号。

用2B型铅笔把答题卡上试室号、座位号对应的信息点涂黑。

2.选择题每小题选出答案后,用2B型铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卡整洁。

考试结束后,将试卷和答题卡一并交回。

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则()A. B. C. D.【答案】C【解析】由题意得,集合或,所以,所以C.2.已知i是虚数单位,a,b∈R,得“a=b=1”是“(a+bi)2=2i”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】试题分析:利用复数的运算性质,分别判断“a=b=1”⇒“(a+bi)2=2i”与“a=b=1”⇐“(a+bi)2=2i”的真假,进而根据充要条件的定义得到结论.解:当“a=b=1”时,“(a+bi)2=(1+i)2=2i”成立,故“a=b=1”是“(a+bi)2=2i”的充分条件;当“(a+bi)2=a2﹣b2+2abi=2i”时,“a=b=1”或“a=b=﹣1”,故“a=b=1”是“(a+bi )2=2i”的不必要条件;综上所述,“a=b=1”是“(a+bi )2=2i”的充分不必要条件;故选A点评:本题考查的知识点是充要条件的定义,复数的运算,难度不大,属于基础题. 【此处有视频,请去附件查看】 3.已知是两相异平面,是两相异直线,则下列错误的是( ) A. 若,则B . 若,则C. 若,则D. 若,则【答案】D 【解析】 在A 中,若,则由直线与平面垂直的判定定理得,所以是正确的; 在B 中,若,则由平面与平面平行的判定定理得,所以直正确的; 在C 中,若,则由平面与平面垂直的判定定理得,所以是正确的;在D 中,若,则与平行或异面,故是错误的,故选D.4.两次抛掷一枚骰子,则向上的点数之差的绝对值等于的概率是( )A.B.C.D. 【答案】B 【解析】连续两次抛掷一枚骰子,记录向上的点数,基本事件的总数为,向上的点数之差的绝对值为包含的基本事件有:共8个,所以向上的点数之差的绝对值为的概率为,故选B.5.等差数列的前项和为,已知.则等于( )A.B.C.D.【答案】C 【解析】 设等差数列的公差为,又,所以,解得,所以,故选C.6.已知P(x,y)为区域内的任意一点,当该区域的面积为4时,的最大值是( ) A. 6 B. 0C. 2D.【答案】A 【解析】 试题分析:由作出可行域,如图,由图可得,,由,解得,∴,∴目标函数为,∴当过A 点时,z 最大,. 考点:线性规划. 7.设,则的大小关系为( )A.B.C.D.【答案】A 【解析】由题意,所以,,所以,故选A.8.执行下面的程序框图,如果输入的,则输出的()A. B. C. D.【答案】C【解析】试题分析:执行第1次,t=0.01,S=1,n=0,m==0.5,S=S-m=0.5,=0.25,n=1,S=0.5>t=0.01,是,循环,执行第2次,S="S-m" =0.25,=0.125,n=2,S=0.25>t=0.01,是,循环,执行第3次,S="S-m" =0.125,=0.0625,n=3,S=0.125>t=0.01,是,循环,执行第4次,S=S-m=0.0625,=0.03125,n=4,S=0.0625>t=0.01,是,循环,执行第5次,S="S-m" =0.03125,=0.015625,n=5,S=0.03125>t=0.01,是,循环,执行第6次,S=S-m=0.015625,=0.0078125,n=6,S=0.015625>t=0.01,是,循环,执行第7次,S=S-m=0.0078125,=0.00390625,n=7,S=0.0078125>t=0.01,否,输出n=7,故选C.考点:程序框图【此处有视频,请去附件查看】9.如图所示是一个几何体的三视图,则这个几何体外接球的表面积为A. B. C. D.【答案】C【解析】试题分析:几何体为一个四棱锥,外接球球心为底面正方形(边长为4)中心,所以半径为,表面积为,选C.考点:三视图,外接球【方法点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解. 【此处有视频,请去附件查看】10.若向量满足,则在方向上投影的最大值是()A. B. C. D.【答案】B【解析】由题意,所以,设夹角为,则,所以,所以在方向上投影为,因为,所以,故选B.11.已知双曲线与函数的图像交于点.若函数在点处的切线过双曲线左焦点,则双曲线的离心率是A. B. C. D.【答案】A【解析】试题分析:设,∴切线的斜率为,又∵在点处的切线过双曲线左焦点,∴,解得,∴,因此,,故双曲线的离心率是,故选A.考点:双曲线离心率的计算.12.对于任意的正实数x ,y都有(2x)ln成立,则实数m的取值范围为A. B. C. D.【答案】D【解析】由,可得,设,则可设,则,所以,所以单调递减,又,所以在单调递增,在上单调递减,所以,所以,所以,故选D.点睛:本题主要考查了不等式的恒成立问题的求解,其中解答中涉及利用导数求解函数的单调性,利用导数研究函数的极值与最值等知识点的综合应用,解答中通过分离参数,构造新函数,利用函数的单调性和最值是解答的关键,着重考查了学生分析问题和解答问题的能力,试题有一定的难度,属于难题.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知,则的值为__________.【答案】【解析】由题意得.14.已知,点在内且.若,则__________.【答案】【解析】如图所示,过分别作,并分别交于,则,所以,为等腰直角三角形,所以,即,所以.15.已知函数,把的图象按向量平移后,所得图象恰好为函数的图象,则的最小值为__________.【答案】【解析】【分析】按照向量平移后的图象,推出函数表达式,求导数推出函数y=f′(x),利用两个函数表达式相同,即可求出m的最小值.【详解】解:图象按向量(m,0)(m>0)平移后,得到函数f(x)cos(x﹣m);函数y=f′(x)sin(x)cos(x),因为两个函数的图象相同,所以﹣m2kπ,k∈Z,所以m的最小值为:,故答案为:.【点睛】本题是基础题,考查三角函数的化简,两角和与差的余弦函数,向量的平移,导数的计算等知识.16.在锐角中,内角的对边分别为,已知,,则的面积取最小值时有__________.【答案】【解析】由正弦定理,即为,又,即,由于,即有,即有,由,即有,解得,当且仅当,取得等号,当取得最小值,又(为锐角),则,则.点睛:本题主要考查了解三角形问题的综合应用,其中解答中涉及解三角形的正弦定理和余弦定理的应用,以及基本不等式的运用等知识点的综合考查,着重考查了学生的运算能力和分析问题、解答问题的能力,熟记公式、合理运用是解答问题的关键,试题有一定的难度,属于中档试题.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.设数列的前项和为,且为等差数列,且.(1)求数列和的通项公式;(2)设,求数列的前项和.【答案】(1)(2)【解析】试题分析:(1)根据数量和的关系,即可求解数列的通项公式,再利用等差数列通项公式,即可求解数列的通项公式;(2)由(1)可知,利用乘公比错位相减法,即可求解数列的和.试题解析:(1)当时,,当时,,经验证当时,此时也成立,所以,从而,又因为为等差数列,所以公差,故数列和通项公式分别为:.(2)由(1)可知,所以①①得②①-②得:数列的前项和.18.近年来,我国许多省市雾霾天气频发,为增强市民的环境保护意识,某市面向全市征召名义务宣传志愿者,成立环境保护宣传组织,现把该组织的成员按年龄分成组第组,第组,第组,第组,第组,得到的频率分布直方图如图所示,已知第组有人.(1)求该组织的人数;(2)若在第组中用分层抽样的方法抽取名志愿者参加某社区的宣传活动,应从第组各抽取多少名志愿者?(3)在(2)的条件下,该组织决定在这名志愿者中随机抽取名志愿者介绍宣传经验,求第组至少有名志愿者被抽中的概率.【答案】(1)(2)应从第组中分别抽取人,人,人. (3)【解析】试题分析:(1)由题意第组的人数为,即可求解该组织人数.(2)根据频率分布直方图,求得第组,第组,,第组的人数,再根据分层抽样的方法,即可求解再第组所抽取的人数.(3)记第组的名志愿者为,第组的名志愿者为,第组的名志愿者为,列出所有基本事件的总数,得出事件所包含的基本事件的个数,利用古典概型,即可求解概率.试题解析:(1)由题意第组的人数为,得到,故该组织有人.(2)第组的人数为,第组的人数为,第组的人数为,所以第组共有名志愿者,所以利用分层抽样的方法在名志愿者中抽取名志愿者,每组抽取的人数分别为:第组;第组;第组.所以应从第组中分别抽取人,人,人.(3)记第组的名志愿者为,第组的名志愿者为,第组的名志愿者为,则从名志愿者中抽取名志愿者有,共有种.其中第组的名志愿者至少有一名志愿者被抽中的有,共有种.则第组至少有名志愿者被抽中的概率为.19.如图,四棱锥中,底面是菱形,其对角线的交点为,且.(1)求证:平面;(2)设是侧棱上的一点,且平面,求三棱锥的体积.【答案】(1)见解析(2)【解析】试题分析:(1)利用直线与平面垂直的判定定理,容易判断平面,而又是等腰三角形底边上的高,所以,从而证明平面;.(2)连,求出点到面的距离为,利用和椎体的体积公式,即可求解几何体的体积.试题解析:(1)证明:底面是棱形,对角线,又平面平面,又为中点,平面.(2)连平面平面,平面平面,,在三角形中,是的中点,是的中点,取的中点,连,则底面,且,在直角三角形中,,在直角三角形中,,,.点睛:本题主要考查了直线与平面的垂直的判定与证明和几何体的体积的计算问题,其中解答中涉及直线与平面垂直的判定定理、椎体的体积公式和直角三角形的性质等知识点的综合考查,其中熟记判定定理和直角三角形的性质的应用是解答的关键,同时着重考查了学生的空间想象能力和推理与运算能力,试题有一定的难度,属于中档试题.20.已知椭圆的离心率为,且以原点为圆心,椭圆的焦距为直径的圆与直线相切(为常数).(1)求椭圆的标准方程;(2)如图,若椭圆的左、右焦点分别为,过作直线与椭圆分别交于两点,求的取值范围.【答案】(1)(2)【解析】试题分析:(1)由椭圆离心率为,以原点为圆心,椭圆的焦距为直径与直线相切,列出方程组求出的值,由此能求出椭圆的方程;(2)当直线的斜率不存在时,推导出,当直线的斜率存在时,设直线的方程为,联立方程组,利用韦达定理、向量的知识,结合题意,即可求解的取值范围.试题解析:(1)由题意故椭圆.(2)①若直线斜率不存在,则可得轴,方程为,,故.②若直线斜率存在,设直线的方程为,由消去得,设,则.,则代入韦达定理可得由可得,结合当不存在时的情况,得.点睛:本题主要考查了椭圆标准方程的求解、直线与椭圆的位置关系的综合问题,其中解答中涉及椭圆的标准方程、椭圆的几何性质和直线与椭圆的位置关系的应用,同时考查了向量的数量积的运算,解答时要认真审题,注意韦达定理、向量知识和椭圆性质的合理应用,审题有一定的难度,属于中档试题.21.函数,,1若函数,求函数的极值.2若在恒成立,求实数m的取值范围.【答案】(1)极大值为,无极小值;(2).【解析】试题分析:(1)当时分析函数的单调性,确定函数的最大值;(2)在恒成立,通过变量分离转化为在恒成立,进而构造新函数求最值即可.试题解析:解:(1)当时,由得;由得,在递增,在递减所以,当时,的最大值为当时,的最大值为(2)在恒成立在恒成立设则当时,,且当时,设,则在递增又使得时,时,时,时,函数在递增,在递减,在递增由知,所以又又当时,,即的取值范围是.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,设曲线参数方程为(为参数),直线的极坐标方程为.(1)写出曲线的普通方程和直线的直角坐标方程;(2)求曲线上的点到直线的最大距离,并求出这个点的坐标.【答案】(1),(2),【解析】试题分析:(1)消去参数可得曲线的普通方程,利用极坐标与直角坐标的互化方法求直线的直角坐标方程;(2)在上任取一点,求得曲线上的点到直线的最大距离,即可并求出这个点的坐标.试题解析:(1)曲线的方程为,直线的方程为.(2)在上任取一点,则点到直线的距离为,当时,,此时这个点的坐标为.23.设函数.(1)当时,求不等式的解集;(2)若对恒成立,求的取值范围。

2017-2018学年湖北省华中师范大学第一附属中学高三上学期期中考试数学(理)(详细答案版)

2017-2018学年湖北省华中师范大学第一附属中学高三上学期期中考试数学(理)(详细答案版)

2017-2018学年湖北省华中师范大学第一附属中学高三上学期期中考试数学(理)一、选择题:共12题1.已知复数z =21−i,则下列命题中正确的个数为①|z|=√2 ②z̅=1−i ③z 的虚部为i ④z 在复平面上对应点在第一象限 A.1 B.2 C.3 D.4【答案】C【解析】本题考查复数的代数形式的运算.解答本题时要注意先对复数进行除法运算,然后对命题进行判断,确定真命题的个数.因为z =21−i =1+i ,所以|z|=√2,z̅=1−i,z 的虚部为1,z 在复平面上对应点(1,1)在第一象限.所以正确命题的序号为①②④,合计有3个.故选C.2.下列函数为偶函数且在(0,+∞)上为增函数的是A.f(x)=(∫costdt x0)2 B.f(x)=x 2+3x 2C.f(x)=12x +x 2 D.f(x)=x(e x −e −x ) 【答案】D【解析】本题考查函数的基本性质.解答本题时要注意根据所给的函数进行逐一判断,确定满足条件的函数解析式.由题可得,因为f (x )=(∫costdt x 0)2=(sinx)2是偶函数但在(0,+∞)上不单调,所以排除A;因为f(x)=x 2+3x 2是偶函数,但在(0,+∞)上不单调,所以排除B.因为f(x)=12x +x 2不是偶函数,所以排除C;故选D.3.已知集合A ={x|y =lg2−x x+2},集合B ={y|y =1−x 2},则集合{x|x ∈A ∪B 且x ∉A ∩B}为A.[−2,1]∪(2,+∞)B.(−2,1)∪(2,+∞)C.(−∞,−2)∪[1,2)D.(−∞,−2]∪(1,2)【答案】D【解析】本题考查集合的基本运算.解答本题时要注意先求得集合A,B,然后求得并集与交集,再求得结论.因为A ={x|y =lg 2−xx+2}={x |−2<x <2}, B ={y |y =1−x 2}={y|y ≤1}.所以A ∪B =(−∞,2),A ∩B =(−2,1].所以{x|x ∈A ∪B 且x ∉A ∩B}=(−∞,−2]∪(1,2).故选D.4.下列说法正确的是A.“∀x,y ∈R ,若x +y ≠0,则x ≠1且y ≠−1”是真命题B.在同一坐标系中,函数y =f(1+x)与y =f(1−x)的图象关于y 轴对称.C.命题“∃x ∈R ,使得x 2+2x +3<0”的否定是“∀x ∈R ,都有x 2+2x +3>0”D.a ∈R ,“1a <1 ”是“a >1”的充分不必要条件【答案】B【解析】本题考查常用逻辑用语.解答本题时要注意对选项进行逐一判断,排除错误说法,确定正确说法.对于选项A,取x =1,y =0,则x +y ≠0,但x ≠1且y ≠−1不成立,所以是假命题,故排除A;对于选项C,命题“∃x ∈R ,使得x 2+2x +3<0”的否定是“∀x ∈R ,都有x 2+2x +3≥0”,故排除C;对于选项D,当1a <1时有a <0或a >1,所以是必要不充分条件,故排除D.所以说法正确的是选项B.故选B.5.如图,在△ABC 中,AN ⃗⃗⃗⃗⃗⃗ =13NC ⃗⃗⃗⃗⃗ ,P 是BN 上的一点,若AP⃗⃗⃗⃗⃗ =mAB ⃗⃗⃗⃗⃗ +29AC ⃗⃗⃗⃗⃗ ,则实数m 的值为A.19B.13C.1D.3【答案】A【解析】本题考查平面向量的线性运算.解答本题时要注意利用平面向量的基本定理及其线性运算,表示向量,通过向量相等,求得实数的值.由题可得,AP⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BP ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +nBN ⃗⃗⃗⃗⃗⃗ =(1−n )AB ⃗⃗⃗⃗⃗ +nAN ⃗⃗⃗⃗⃗⃗ =(1−n )AB ⃗⃗⃗⃗⃗ +n 4AC ⃗⃗⃗⃗⃗ =mAB ⃗⃗⃗⃗⃗ +29AC ⃗⃗⃗⃗⃗ ,所以n 4=29,解得n =89,所以m =1−n =19.故选A.6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织七匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5尺,一月织了七匹三丈,问每天增加多少尺布?”若这一个月有31天,记该女子一个月中的第n 天所织布的尺数为a n ,则a 1+a 3+⋅⋅⋅+a 29+a 31a 2+a 4+⋅⋅⋅+a 28+a 30的值为 A.2930B.1615C.13D.15【答案】B【解析】本题考查等差数列求和问题解答本题时要注意根据《九章算术》题中意思,构造等差数列,然后求和比较.由题可得,该问题可转化为等差数列求和问题.已知首项为5,设公差为d ,则31×5+31×322d =310,解得d =516.所以a 1+a 3+⋅⋅⋅+a 29+a 31a2+a 4+⋅⋅⋅+a 28+a 30=16×5+2+302×15×515×5+1+292×15×5=1615.故选B.7.若tanα−1tanα=32,α∈(π4,π2),则sin(2α+π4)的值为 A.±√210B.√25C.√210D.±√25【答案】C【解析】本题考查三角函数恒等变换.解答本题时要注意先根据条件求得tanα,再转化计算得到sinα及cosα.最后计算得到结论.因为tanα−1tanα=32,α∈(π4,π2),所以tanα=−12.所以sinα=√55,cosα=−2√55.所以sin (2α+π4)=√22sin2α+√22cos2α=√2sinαcosα+√22(2cos 2α−1)=√2×√55×(−2√55)+√22(2×25−1)=√210.故选C.8.某食品的保鲜时间y (单位:小时)与储存温度x (单位:°C )满足函数关系y =e kx+b (e =2.718⋯为自然对数的底数,k,b 为常数),若该食品在0°C 的保鲜时间是192小时,在22°C 的保鲜时间是48小时,则该食品在33°C 的保鲜时间是( )小时. A.22 B.23 C.24 D.33【答案】C【解析】本题考查函数模型的实际应用.解答本题时要注意根据条件确定函数关系式,然后求值计算.由题可得,{192=e b 48=e22k+b ,解得e 11k =12,所以当x =33时,y =e 33k+b =(e 11k )3∙e b=(12)3×192=24.故选C.9.已知函数f(x)=sin(ωx +φ)(ω>0,|φ|<π2)的部分图象如所示,为了得到y =f(x)的图象需将y =cos2x 的图象A.向右平移π3个单位长度 B.向左平移π3个单位长度 C.向右平移π6个单位长度 D.向左平移π6个单位长度【答案】A【解析】本题考查三角函数的图象与性质.解答本题时要注意先根据给出的函数的部分图象确定函数的解析式,然后考查函数图象平移问题.由图可知,T4=7π12−π3=π4,解得T =π=2πω,解得ω=2.由五点法可知,当x =π3时,2π3+φ=π2,解得φ=−π6.所以f (x )=sin (2x −π6)=cos⁡(2x −π3).所以需将y =cos2x 的图象向右平移π3个单位长度即可得到y =f(x)的图象.故选A.10.已知定义在R 上的偶函数f(x),满足f (x +4)=f(x),且x ∈[0,2]时,f (x )=sin πx +2|sin πx |,则方程f (x )−|lg x |=0在区间[0,10]上根的个数是 A.18 B.19C.10D.9【答案】B【解析】本题考查函数与方程.解答本题时要注意利用函数的奇偶性及周期性,画出函数的图象,结合图象判断方程的根的情况.由题可得,因为f (x +4)=f(x),所以函数是周期为4的函数,因为当x ∈[0,2],f (x )=sin πx +2|sin πx |={3sinπx,0≤x ≤1−sinπx,1<x ≤2.因为函数是偶函数,所以可知函数的图象如图所示,在同一坐标系内画出函数y =|lg x |的图象.结合函数的图象可知,方程f (x )−|lg x |=0在区间[0,10]上根的个数是19个.故选B.11.在△ABC 和△AEF 中,B 是EF 的中点,AB =EF =1,BC =6,CA =√33,若AB ⃗⃗⃗⃗⃗ ⋅AE ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ⋅AF ⃗⃗⃗⃗⃗ =2,则EF⃗⃗⃗⃗⃗ 与BC ⃗⃗⃗⃗⃗ 的夹角的余弦值为A.12 B.23C.34D.−13【答案】B【解析】本题考查平面向量的数量积运算.解答本题时要注意利用已知的向量数量积,化简求值,再结合数量积的定义,求得向量的夹角.因为AB ⃗⃗⃗⃗⃗ ⋅AE ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ⋅AF ⃗⃗⃗⃗⃗ =2,所以AB ⃗⃗⃗⃗⃗ ∙(AB ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ )+AC ⃗⃗⃗⃗⃗ ⋅(AB ⃗⃗⃗⃗⃗ +BF ⃗⃗⃗⃗⃗ )=2,即AB ⃗⃗⃗⃗⃗ 2+AB ⃗⃗⃗⃗⃗ ∙BE⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ⋅BF ⃗⃗⃗⃗⃗ =2.因为AB =1,AC ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =√33×1×2×√33×1=−1,BE ⃗⃗⃗⃗⃗ =−BF ⃗⃗⃗⃗⃗ ,所以1+BF ⃗⃗⃗⃗⃗ ∙(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )−1=2,即BF ⃗⃗⃗⃗⃗ ∙BC ⃗⃗⃗⃗⃗ =2.设EF ⃗⃗⃗⃗⃗ 与BC ⃗⃗⃗⃗⃗ 的夹角为θ,则有BF ⃗⃗⃗⃗⃗ ∙BC ⃗⃗⃗⃗⃗ =|BF ⃗⃗⃗⃗⃗ ||BC ⃗⃗⃗⃗⃗ |cosθ=3cosθ=2.所以cosθ=23.故选B.12.设函数f(x)=e x (x −ae x )(其中e 为自然对数的底数)恰有两个极值点x 1,x 2(x 1<x 2),则下列说法中正确的是 A.0<a <13 B.0<x 2<1 C.−12<f(0)<0 D.f(x 1)+f(x 2)>0【答案】C【解析】本题考查导数及其应用.解答本题时要注意先对函数进行求导,然后利用函数恰有两个极值点,通过函数分解,考查函数图象的交点,判断选项的正确与否.由题可得,f ′(x )=e x (x −ae x )+e x (1−ae x )=e x (x +1−2ae x ).因为函数恰有两个极值点,所以f ′(x )=0有两个根,即x +1−2ae x =0有两个根x 1,x 2(x 1<x 2),所以函数y =x +1与y =2ae x 的图象有两个不同的交点.结合图形(图略)可知,要使满足条件,则0<2a <1,所以0<a <12.所以f (0)=−a ∈(−12,0).所以选项C 正确.故选C.二、填空题:共4题13.函数y =lg(−x 2−2x +3)的单调递增区间是________.【答案】(−3,−1]或(−3,−1)【解析】本题考查函数的单调性.解答本题时要注意根据复合函数的单调性的判断方式,求得函数的单调递增区间.由题可得,令−x 2−2x +3>0,解得−3<x <1.因为函数y =lgx 在定义域内单调递增,函数y =−x 2−2x +3在(-3,-1)上单调递增,在(-1,1)上单调递减,由复合函数的单调性判断方式可知,函数y =lg(−x 2−2x +3)的单调递增区间是(−3,−1)或(−3,−1].14.已知向量a =(6,−2),b =(1,m),且a ⊥b ,则|a −2b|= .【答案】4√5【解析】本题考查平面向量的数量积运算.解答本题时要注意先利用向量垂直,计算得到实数m的值,然后进行求模计算.因为向量a=(6,−2),b=(1,m),且a⊥b,所以6−2m= 0,解得m=3.所以a−2b=(4,-8),所以|a−2b|=√16+64=√80=4√5.15.已知数列{a n}的通项公式为a n=−n2+10n−194,当a1a2a3+a2a3a4+a3a4a5+⋯+a n a n+1a n+2取得最大值时,n的值为_________.【答案】9【解析】本题考查数列的求和.解答本题时要注意根据数列的通项公式,判断数列的项是正项的情况,然后判断使得结论取到最大值时的n的值.令a n=−n2+10n−194>0,由n∈N∗解得n≤9.且有a10<0,a11<0.因为a8a9a10+a9a10a11=−(16−194)(9−194)×19 4+(9−194)×194×(11+194)=(9−194)×194×(−5+192)>0,所以可知当n=9时,a1a2a3+a2a3a4+a3a4a5+⋯+a9a10a11取到最大值.16.若函数y=f(x)满足f(a+x)+f(a−x)=2b(其中a2+b2≠0),则称函数y=f(x)为“中心对称函数”,称点(a,b)为函数f(x)的“中心点”.现有如下命题:①函数f(x)=sinx+1是“中心对称函数”;②若“中心对称函数”y=f(x)在R上的“中心点”为(a,f(a)),则函数F(x)=f(x+a)−f(a)是R上的奇函数;③函数f(x)=x3−2x2+6x−2是“中心对称函数”,且它的“中心点”一定为(1,2);④函数f(x)=2x−cos x是“中心对称函数”,且它的“中心点”一定为(π2,π).其中正确的命题是___ _____.(写出所有正确命题的序号)【答案】①②③【解析】本题考查函数的性质.解答本题时要注意根据中心对称函数的定义对命题逐一验证,得到正确的命题.由题可得,因为y=sinx图象关于点(0,0)对称,所以f(x)=sinx+1,图象关于点(0,1)对称,所以是中心对称函数,所以①正确;因为函数是中心对称函数,所以有f(a+x)+f(a−x)=2f(a),所以F(−x)=f(−x+a)−f(a)=2f(a)−f(a+x)−f(a)=f(a)−f(a+x)=−[f(a+x)−f(a)]=−F(x),所以函数是奇函数,所以②正确;因为f(1−x)+f(1+x)=(1−x)3−2(1−x)2+6(1−x)−2+(1+x)3−2(1+x)2+6(1+x)−2=1−3x+3x2−x3−2+2x−2x2+6−6x−2+1+3x+3x2+x3−2−2x−2x2+6+6x−2=4=2×2.所以可知函数f(x)=x3−2x2+6x−2是“中心对称函数”,且它的“中心点”一定为(1,2),所以③正确;因为f(π2−x)+f(π2+x)=2(π2−x)−cos(π2−x)+2(π2+x)−cos(π2+x)=2π−2sinx≠2π,所以函数不是中心对称函数,所以④错误.所以正确的命题是①②③.三、解答题:共6题17.已知向量a=(sinx,cos(π−x)),b=(2cosx,2cosx),函数f(x)=a⋅b+1.(1)求f(x)的对称中心;(2)求函数f(x)在区间[0,π2]上的最大值和最小值,并求出相应x的值.【答案】(1)因为f(x)=a⋅b+1=2sin x cos x+cos(π−x)·2cos x+1=2sin x cos x−2cos2x+1=sin2x−cos2x=√2sin(2x−π4),所以f(x)的对称中心为(kπ2+π8,0)(k∈Z).(2)由(1)得,f(x)=sin2x−cos2x=√2sin(2x−π4),因为x∈[0,π2],所以2x−π4∈[−π4,3π4],所以当2x−π4=π2时,即x=3π8时,f(x)的最大值是√2;当2x−π4=π4时,即x=0时,f(x)的最小值是−1.【解析】本题考查三角函数的图象与性质.解答本题时要注意(1)利用平面向量数量积的坐标表示,结合三角恒等变换,化简函数的解析式,利用整体代换,求得函数的对称中心;(2)利用整体代换,结合函数y=sin x的图象与性质,求得函数在给定区间的最大值与最小值.18.已知函数f(x)=log4(4x+1)+kx(k∈R).(1)当k=−12时,若方程f(x)−m=0有解,求实数m的取值范围;(2)试讨论f(x)的奇偶性.【答案】(1)由m=f(x)=log4(4x+1)−12x,∴m=log44x+12x=log4(2x+12x).∵2x+12x ≥2,∴m≥12.(2)依题意得定义域为R,关于原点对称∵f(x)=log4(4x+1)+kx,f(−x)=log4(4−x+1)−kx,令f(x)=f(−x),得log44x+14−x+1=−2kx,即log44x=−2kx, ∴x=−2kx对一切k∈R恒成立.∴k=−12时f(x)=f(−x),此时函数f(x)是偶函数,∵f(0)=log 4(40+1)−k ×0=log 42=12,∴函数f(x)不是奇函数, 综上,当k =−12时,函数f(x)是偶函数; 当k ≠−12时,函数f(x)是非奇非偶函数.【解析】本题考查函数的性质及函数与方程.解答本题时要注意(1)利用方程有解,转化为函数值域问题,由此得到实数m 的取值范围;(2)根据实数k 的取值情况,利用函数奇偶性的定义,判断函数的奇偶性.19.已知数列{a n },{b n },S n 为数列{a n }的前n 项和,且满足a 2=4b 1,S n =2a n −2,nb n+1−(n +1)b n =n 2+n(n ∈N ∗). (1)求数列{a n }的通项公式;(2)试问{bn n}能否为等差数列,请说明理由;(3)若数列{c n }的通项公式为c n ={−a n bn 2,n 为奇数a nb n4,n 为偶数,令T n 为{c n }的前n 项的和,求T 2n .【答案】(1)当n =1时,S 1=2a 1−2⇒a 1=2,当n ≥2时,由{S n=2a n −2S n−1=2a n−1−2,得:a n =2a n −2a n−1,则a n =2a n−1, 综上,{a n }是公比为2,首项为2的等比数列,a n =2n ; (2){bn n}是等差数列,理由如下:∵a 2=4b 1,∴b 1=1,∵nb n+1−(n +1)b n =n 2+n ,∴bn+1n+1−b n n=1综上,{b nn}是公差为1,首项为1的等差数列,且bn n=1+n −1⇒b n =n 2; (3)令p n =c 2n−1+c 2n =−(2n−1)2⋅22n−12+(2n)2⋅22n4=(4n −1)⋅22n−2=(4n −1)⋅4n−1,{T 2n =3×40+7×41+11×42+⋯+(4n −1)×4n−14T 2n=3×41+7×42+11×43+⋯+(4n −5)×4n−1+(4n −1)×4n ①②①-②,得:−3T 2n =3⋅40+4⋅41+4⋅42+⋯+4⋅4n−1−(4n −1)⋅4n =3+16−4⋅4n 1−4−(4n −1)⋅4n ,所以T 2n =79+12n−79⋅4n .【解析】本题考查等比数列及其求和问题.解答本题时要注意(1)根据数列的前n 项和与通项之前的递推关系式,判断得到数列是等比数列,并由此表示得到通项公式;(2)根据递推关系式,判断得到数列{bnn}时等差数列,由此得到其通项公式;(3)通过化简得到数列的通项公式,结合错位相减法,求得数列的前n 项和.20.已知函数f(x)=e x −ax(a ∈R,e 为自然对数的底数).(1)讨论函数f(x)的单调性;(2)若a =1,函数g(x)=(x −m)f(x)−e x +x 2+x 在(2,+∞)上为增函数,求实数m 的取值范围.【答案】(1)函数f(x)的定义域为R,f ′(x)=e x −a . 当a ≤0时,f ′(x)>0,∴f(x)在R 上为增函数; 当a >0时,由f ′(x)=0得x =lna ,当x ∈(−∞,lna)时,f ′(x)<0,∴函数f(x)在(−∞,lna)上为减函数, 当x ∈(lna,+∞)时,f ′(x)>0,∴函数f(x)在(lna,+∞)上为增函数 (2)当a =1时,g(x)=(x −m)(e x −x)−e x +x 2+x , ∵g(x)在(2,+∞)上为增函数;∴g ′(x)=xe x −me x +m +1≥0在(2,+∞)上恒成立, 即m ≤xe x +1e x −1在(2,+∞)上恒成立, 令ℎ(x)=xe x +1e x −1,x ∈(2,+∞),则ℎ′(x)=(e x )2−xe x −2e x(e −1)=e x (e x −x−2)(e −1),令L(x)=e x −x −2,L ′(x)=e x −1>0在(2,+∞)上恒成立,即L(x)=e x −x −2在(2,+∞)上为增函数,即L(x)>L(2)=e 2−4>0, ∴ℎ′(x)>0,即ℎ(x)=xe x +1e x −1在(2,+∞)上为增函数,∴ℎ(x)>ℎ(2)=2e 2+1e 2−1,∴m ≤2e 2+1e 2−1,所以实数m 的取值范围是(−∞,2e 2+1e 2−1].【解析】本题考查函数与导数的应用.解答本题时要注意(1)对函数进行求导,利用实数a 的取值情况,结合导数的正负,判断函数的单调性,求得函数的单调区间;(2)先确定函数的解析式,利用函数在给定区间的单调性,结合导数大于0恒成立,构造不等式,并参变分离,构造新的函数,求导,利用导数判断函数的单调性,求得最小值,由此计算得到实数m 的取值范围.21.如图所示,某住宅小区一侧有一块三角形空地ABO ,其中OA =3km,OB =3√3km,∠AOB =90∘.物业管理拟在中间开挖一个三角形人工湖OMN ,其中M,N 都在边AB 上(M,N 不与A,B 重合,M 在A,N 之间),且∠MON =30∘.(1)若M 在距离A 点2km 处,求点M,N 之间的距离;(2)为节省投入资金,三角形人工湖OMN 的面积要尽可能小.试确定M 的位置,使△OMN 的面积最小,并求出最小面积.【答案】(1)在△ABO 中,因为OA =3,OB =3√3,∠AOB =90∘,所以∠OAB =60∘, 在△OAM 中,由余弦定理得:OM 2=AO 2+AM 2−2AO ⋅AMcosA =7, 所以OM =√7, 所以cos∠AOM =OA 2+OM 2−AM 22AO⋅AM=2√77,在△OAN 中,sin∠ONA =sin(∠A +∠AON)=sin(∠AOM +90∘)=cos∠AOM =2√77, 在△OMN 中,由MNsin30∘=OMsin∠ONA ,得MN =√72√77×12=74;(2)设∠AOM =θ,0∘<θ<60∘ ,在△OAM 中,由OMsin∠OAB =OAsin∠OMA ,得OM =3√32sin(θ+60∘), 在△OAN 中,由ONsin∠OAB =OAsin∠ONA ,得ON =3√32sin(θ+90∘)=3√32cosθ,所以S △OMN =12OM ⋅ONsin∠MON =12⋅3√32sin(θ+60∘)⋅3√32cosθ⋅12=2716sin(θ+60∘)cosθ=8sinθcosθ+8√3cos 2θ=4sin2θ+4√3cos2θ+4√3=8sin(2θ+60∘)+4√30<θ<60∘.当2θ+60∘=90∘,即θ=15∘时,S △OMN 的最小值为27(2−√3)4.所以应设计∠AOM =15∘,可使△OMN 的面积最小,最小面积是27(2−√3)4km 2【解析】本题考查解三角形的实际应用.解答本题时要注意(1)在三角形中利用余弦定理求得OM 及cos∠AOM 的值,再利用正弦定理求得MN 的值;(2)利用正弦定理分别求得OM 和ON 的值,然后表示三角形的面积,结合三角函数的有界性,求得面积的最小值.22.已知数列{a n }满足a n =n t+1(n,t ∈N ∗,t ≥3,t 为常数,n ≤t).(1)设S n =∑1a ini=1=1a 1+1a 2+⋯+1a n,n ∈N ∗,证明:S n >(t +1)ln(n +1);(2)证明:a n <e a n −1(e 为自然对数底数);(3)设T n =∑(a k )t nk=1=(a 1)t +(a 2)t +(a 3)t +⋯(a n )t ,n ∈N ∗,试比较与T n 与1的大小关系,并说明理由.【答案】(1)即证:1(t+1)a 1+1(t+1)a 2+⋯+1(t+1)a n>ln(n +1),即证:1+12+13+⋯+1n >ln(n +1),设g(x)=x −ln(x +1),g ′(x)=1−1x+1=xx+1,∵当x >0时,g ′(x)>0,g(x)在(0,+∞)上单调递增,当−1<x <0时,g ′(x)<0,g(x)在(−1,0)上单调递减,∴g(x)=x −ln(x +1)≥g(0)=0(当且仅当x =0时等号成立),即x >0时,有x >ln(x +1),∴1+12+13+⋯+1n >ln 2+ln 32+ln 43+⋯+lnn+1n =ln(n +1), ∴1a 1+1a 2+⋯+1a n >(t +1)ln(n +1), (2)由(1)知:当x >−1且x ≠0时,有x >ln(x +1),即当x >0且x ≠1时,有x −1>lnx ,因为0<a n =n t+1≤t t+1<1,所以a n −1>lna n ,即a n <e a n −1(3)T n =∑(a k )t n k=1=(a 1)t +(a 2)t +(a 3)t +⋯+(a n )t <1,理由如下:由(2)知:(a 1)t +(a 2)t +(a 3)t +⋯+(a n )t <(e a 1−1)t +(e a 2−1)t +(e a 3−1)t +⋯+(e a n −1)t =(e t )a 1−1+(e t )a 2−1+(e t )a 3−1+⋯+(e t )a n −1=e −t 2t+1(1−e tn t+1)1−e t t+1≤e −t 2t+1(1−e t 2t+1)1−e t t+1=e −t 2t+1−11−e t t+1, 设e t t+1=q ,因为q =e t t+1≥e 34>2,∴e −t 2t+1−11−e t t+1=q −t −11−q =1−q −t q−1<1q−1<1,所以T n =∑(a k )t n k=1=(a 1)t +(a 2)t +(a 3)t +⋯+(a n )t <1.【解析】本题考查数列与不等式.解答本题时要注意(1)通过将问题转化,构造新的函数,求导,利用导数判断函数的单调性,求得最小值,通过构造,证明不等式成立;(2)根据(1)的结论,构造不等式,通过证明a n −1>lna n ,得到结论成立;(3)利用(2)的结论,结合放缩法,构造等比数列,利用等比数列求和及放缩法,比较得到T n 与1的大小关系.。

华中师大一附中2017年自主招生考试数学试题(word版附答案)

华中师大一附中2017年自主招生考试数学试题(word版附答案)

华中师大一附中2017年高中招生考试数学试题考试时间:80分钟卷面满分:150分说明:所有答案一律书写在答题卡上,写在试卷上作答无效.一、选择题(本大题共6小题,每小题7分,共42分.在每小题给出的四个选项中,有且只有一项是正确的.)1.实数a,b,c在数轴上对应的点如右图所示,化简代数式√a2−2a+1+∣b−c∣-√a2−2ab+b2的结果为( )A.2b-c-1 B.-1 C.2a-c-1 D.b-c+12.已知点A,B分别是双曲线y=4x和直线y=-x上任意一点,则AB的最小值为( ) A.2 B.4√2C.4 D.2√23.如图,反比例函数y=kx(k为非零常数)的图象经过二次函数y=ax2+bx(a,b为常数,且a≠0)的图象的顶点(-12,m) (m>0)则( )A.a=b+2k B.a=b-2kC.k<b<0 D.a<k<04.若实数a,b满足a2+b2=4,则√a(b−4)3+√ab−3a+2b−6=( )A.-2 B.0 C.2 D.45.已知y=f(x)满足:(1)f(1)=1(f(1)表示x=1时对应的y的值,下同) ;(2)当0<x<1时f(x)>0;(3)对任意实数x,y有f(x+y)-f(x-y)=2 f(1-x) f(y),则f(13)=( )A.1 B.12C.√22D.√336.如图,矩形ABCD中,AB=4,AD=6,点E,F分别是AB,BC边上的两动点,且EF=2,点G为EF的中点,点H为AD边上一动点,连接CH,GH,则GH+CH的最小值为( )A.4√5B.9C.√83D.√85二、填空题(本大题共6小题,每小题7分,共42分)7.x=b−√b2−4122(b>21),则x2-bx+103=__________.8.已知关于x的方程x−1x−2−xx+1=ax+1x2−x−2无解,则a的值为__________.9.已知√x2−1+√x2+6=7,则√x2−9+√x2−6=__________.10.如图,折叠矩形ABCD的一边AD,使点D落在BC边上的点F处,若折痕AE=5√5,且tan∠EFC=34,连接DF.则点A到DF的距离为__________.第10题图第11题图11.如图,PA,PB分别切⊙O于点A、点B,AC是⊙O的直径,AC,PB的延长线交于点E,F为AP的中点,AB分别交OP、EF于点T、点S.若BEBP =23,则ATSB=__________.12.定义:使函数y=f(x)的函数值为零的x的值叫函数y=f(x)的幸运点(如:y=x2-2x+1 的幸运点为x=1;y=x2-2x-3的幸运点为x=3,x=-1;y=x+1的幸运点为x=-1).设f(x) ={(x+1)2−3(x≤1)1x(x>1),若g(x) =f(x)-b恰好有两个幸运点,则实数b的取值范围为__________.三、解答题(本大题共4小题,共66分.解答应写出文字说明、证明过程和演算步骤) 13.(本小题满分16分)如图,AB是⊙O的直径,点C为⊙O外一点,连接AC交⊙O于点E,连接BC交⊙O于点D,AD、BE交于点F,连接DE.(1)求证:点F在△ABC的AB边的高上;(2)若AB=√2DE,求∠AFB的度数.14.(本小题满分16分)(1)设k,t为常数,解关于x的方程kx2+(3-3k)x+2k-6=0…①(2)在(1)的条件下,若方程①只有整数根,且关于y的一元二次方程(k+3)y2-15y+t=0…②有两个正整数根y1,y2,则t为何值时,y21+y22有最小值?15.(本小题满分16分)已知ABCD 的对角线AC 、BD 相交于E 点,∠CAD=a ,∠BAC=β. (1)如图1,若a =2β,BD=10,AD=8,求AC 的长;(2)如图2,若a =β=45°,点M 为线段AB 上一动点,连接DM ,将DM 绕D 点逆时针旋转60°得线段DN ,连接BN .若点M 由A →E 匀速运动,点M 到达E 点后运动停止,在点M 运动的过程中,∠CBN 的度数是否变化?若变化,求其取值范围;若不变,求其值.16.(本小题满分18分)已知抛物线y =x 2的图象如图1所示,A (0,a )(a >0),直线l :y =−14,点B 为抛物线上的任意一点且恒满足点B 到A 点距离与点B 到l 的距离相等. (1)求a 的值;(2)如图2,若直线l 1:y =kx +14交抛物线于E ,D 两点,连接DO 、OE . ①过点E 作EC ⊥x 轴于点C ,过点D 作DF ⊥x 轴于点F ,求tan ∠OEC tan ∠DOF的值;②过点E 作EM ⊥l 于点M ,过点D 作DN ⊥l 于点N ,点G 为MN 的中点,若点G 到DE 的距离为√52,求k 值.ABCDE MA BDCEN 图1图2华中师大一附中2017年高中招生考试数学试题参考答案考试时间:80分钟 卷面满分:150分说明:所有答案一律书写在答题卡上,写在试卷上作答无效.一、选择题(本大题共6小题,每小题7分,共42分.在每小题给出的四个选项中,有且只有一项是正确的.)7.08.1,2,49.310.4√511.7412.-3<b ≤0或b =1三、解答题(本大题共4小题,共66分.解答应写出文字说明、证明过程和演算步骤) 13.(1)∵AB 为直径,∴∠ADB =90°,∠AEB =90° ∴AD 、BE 是△ABC 的两条高, ∴F 是△ABC 的AB 边上的高.(2)∵∠CDE =∠CAB ,∠C =∠C ,∴△CDE ∽△CAB , ∴CD AC=DE AB=√22=cosC ,∴∠C=45°,∵∠C +∠EFD =180°,∴∠AFB =∠EFD =135°. 14.(1)当k =0时,x =2符合题意;当k ≠0时,则(x -2)(kx +3-k )=0,∴x 1=2,x 2=k−3k(2)由(1)得,k =0时,x =2∴y 1+y 2=5,y 1·y 2=tk+3,∴(y 1,y 2,t )=(4,1,12)或(3,2,18)或(1,4,12)或(2,3,8) ∴y 21+y 22=17或13 当k ≠0时,x 1=2,x 2=k−3k∴k =31−x 2,则k +3=6−3x 21−x 2,y 1+y 2=5(1−x 2)2−x 2=5+5x 2−2≥2,∴x 2-2=-5,1,5,∴x 2=-3,3,7 ∴k =34,−32,12,∴y 1+y 2=4,10,6当y 1+y 2=4时,(y 1,y 2)=(3,1)或(2,2)或(1,3),y 21+y 22=8或10 当y 1+y 2=6时,y 21+y 22=(6-y 2)2+y 22=2(y 2-3)2+18≥18 当y 1+y 2=10时,y 21+y 22=(10-y 2)2+y 22=2(y 2-5)2+50≥50∴(y 21+y 22)min =8,∴y 1=y 2=2,k =34,又y 1·y 2=tk+3,∴t =(k +3)y 1·y 2=15 综上,当t =15时,y 21+y 22有最小值.15.(1)以B 为圆心,BC 为半径画弧交AC 于C ,F 两点,连接BF ,作BS ⊥AC 于S ∵a =2β,∠BCA =∠DAC =∠BFC ,∴∠ABF =∠BAF ∴BC =AD =BF =AF =8∴ES =CE -CS =12AC -12CF=12AF =4∴BS =√52−42=3,∴CS =√82−32=√55,∴CE =4+√55 ∴AC=8+2√55或延长EC 至T ,使CT =BC ,连接BT ,做法与上法类似. (2)法1:以AD 为边作等边△AFD ,以DE 为边作等边△DEG (如图所示),连NG ,FG ∵a =β=45°,易证四边形ABCD 为正方形, 易证△MDE ≌△NDG ,△ADE ≌△FDG , ∠FGD =∠AED =∠NGD =90°, ∴F ,N ,G 三点共线∠ABF =∠AFB =75°,∠DBF =30°延长BF 交直线DG 于G ′,∴∠BG ′D =90°, ∴BD =2DG ′=2DG ,∴G 与G ′重合,∴B 、F 、N 、G 四点共线,∴∠NBD =30°,∠CBN =15°不变. 法2:作等边△DEG ,连接NG ,易证△MDE ≌△NDG ,∴∠MED =∠NGD =90°,∠EDG =60°,延长GN 交直线BD 于B ′,则DB ′=2DG , 又∵BD =2DG ,∴BD =DB ′,∴B 与B ′重合,∴∠DBG =30°,∴∠CBN =15°. 16.(1)设B(x ,y ),∴y =x 2,∴x 2+(y -a )2=(y +14)2,∴(12-2a )y +a 2-116=0, ∴{12-2a =0a 2-116=0,∴a =14,或B 与O 重合,a =14,再证BA 与B 到直线l 的距离相等. (2)①作BC ⊥x 轴于C ,DF ⊥x 轴于F ,设ED 的解析式为y =kx +14,E(x 1,y 1),D(x 2,y 2),{y =x 2y =kx +14,∴x 2-kx -14=0,∴x 1+x 2=k ,x 1·x 2=-14,∴y 1=x 21,y 2=x 22 ∴tan ∠OEC =−x 1y 1,tan ∠DOF =y 2x 2,∴tan ∠OECtan ∠DOF=−x 1y 1·y 2x 2=4(3)∵EA =EM ,DN =DA ,∴∠EAM +∠DAN =12(180°-∠AEM +180°+∠ADM )=90°,∴∠MAN =90°∴GA =GM =GN ,∴△GME ≌△GAE ,∴∠GAE =∠GMA =90°,∴GA ⊥DE ,MN =∣x 1-x 2∣=√(x 1−x 2)2−4x 1x 2=√k 2+1=2GA =√5,∴k =±2.。

华中师大一附中2018年高一新生入学摸底测试数学卷(无答案)

华中师大一附中2018年高一新生入学摸底测试数学卷(无答案)

华中师大一附中2018年高一新生入学摸底测试数 学 试 题满分:150分 限时:120分钟 命题人:黄松生第I 卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案填在答题卡上. 1.在同一直角坐标系内,如果正比例函数y=mx 与反比例函数y=xp的图象没有交点,那么m 与p 的关系一定是A .m<0,p >0 B.m>0,p >0 C.m p <0 D.m p >02.在半径为5cm 的圆中,弦AB ∥CD ,AB=6cm,CD=8cm ,则AB 和CD 的距离是 A .7cm B.1cm C.5cm D.7cm 或1cm 3.若点P(-1-2a,2a-4)关于原点对称的点在第一象限内,则a 的整数解有 A .1个 B.2个 C.3个 D.4个4.已知两圆半径分别为R 和r(R>r),圆心距为d ,且d 2+R 2-r 2=2dR ,那么两圆位置关系为 A .外切 B.内切 C.外离 D.外切或内切 5.已知x 为实数,化简xx x 13---的结果为 A .x x --)1( B .x x ---)1(C .x x --)1(D .x x -+)1(6.已知关于x 的方程2x 2+x+m+41=0有两个不相等的负实根,则m 的取值范围是A .m 〈81-B.8141〈-〈-mC.81-〉mD.181〈〈-m7.若α为直角三角形的一个锐角,则2)cos sin 1(αα--等于A .1–sin α–cos α B.1+sin α+cos α C.0 D.sin α+cos α-18.已知点(-2,y 1)、(-531,y 2)、(151,y 3)在函数y=2x 2+8x+7的图象上,则y 1、y 2、y 3的大小关系是A .y 1>y 2>y 3 B.y 2>y 1>y 3 C.y 2>y 3>y 1D.y 3>y 2>y 19.已知sin α·cos α=81,且0°<α<45°,则cos α-sin α的值为 A .23B.23-C.43D.43-10.在直角坐标系中,已知点A(-2,0),B(0,4),C(0,3),过点C 作直线交x 轴于点D ,使得以D 、O 、C 为顶点的三角形与△AOB 相似,这样的直线至多可以作A .2条 B.3条 C.4条 D.6条 11.如图所示,已知扇形AOB 的半径为12,OA ⊥OB ,C 为OB 上一点, 以OA 为直径的半圆O 1和以BC 为直径的半圆O 2相切于D ,则图中阴影 部分的面积为A .6π B.10π C.12π D.20π12.已知一元二次方程ax 2+bx+c=0的两根之和为p ,两根平方和为q ,两根立方和为r ,则ar+bq+cp 的值是A.-1 B.0 C.1 D.2第I卷答题卡第II 卷(非选择题,共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.如图,AB 为⊙O 的直径,CD 是⊙O 的弦, AB 、CD 的延长线交于E 点,已知AB=2DE , ∠E=18°,则∠AOC 的度数为__________.14.如图,已知AB 是⊙O 的直径,BC 是和⊙O 相切于B 的切线,⊙O 的弦AD 平行于OC ,若OA=2且AD+OC=6, 则CD=___________.15.若规定两数a,b 通过运算得4ab ,即a*b=4ab ,若x*x+2*x-2*4=0,则x=__________. 16.某县位于沙漠边缘地带,治理沙漠,绿化家乡是全县人民的共同愿望.到2015年底,全县沙漠的绿化率已达30%,此后,政府计划在近几年内,每年将当年年初未被绿化的沙漠面积的m%栽上树进行绿化,到2017年底,全县的沙漠绿化率已达到43.3%,则m 的值等于_____________.三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)如图,已知AB 是⊙O 的直径,P 是AB 延长线上一点,PC 切⊙O 于C ,AD ⊥PC 于D ,CE ⊥AB 于E ,求证:(1)AD=AE(2)PC ·CE=PA ·BE18.(本小题满分12分)已知b a ,(a>b>0)是方程x 2-5x+2=0的两个实根,求2)5(5)()22(+-++-÷--+b a a bb a a b a b a b b a a 的值.19. (本小题满分12分)如图,△ABC 中,AB=5,BC=6,BD=31BC ,AD ⊥BC 于D ,E 为AB 延长线上的一点,且EC 交AD 的延长线于F.(1)设BE 为x ,DF 为y ,试用x 的式子表示y. (2)当∠ACE=90°时,求此时x 的值.20. (本小题满分12分)通过电脑拨号上“因特网”的费用是由电话费和上网费两部分组成.以前我市通过“武汉热线”上“因特网”的费用为电话费0.18元/3分钟,上网费为7.2元/小时,后根据信息产业部调整“因特网”资费的要求,自2017年3月1日起,我市上”因特网“的费用调整为电话费0.22元/3分钟.上网费为每月不超过60小时,按4元/小时计算;超过60小时部分,按8元/小时计算.(1)根据调整后的规定,将每月上“因特网”的费用y (元)表示为上网时间x (小时)的函数;(2)资费调整前,网民聪聪在其家庭经济预算中,一直有一笔每月70小时的上网费用支出.“因特网”资费调整后,聪聪要想不超过其家庭经济预算中的上网费用支出,他现在每月至多可上网多少小时?(3)从资费调整前后的角度分析,比较我市网民上网费用的支出情况.21. (本小题满分12分)在直角坐标系xoy 中,一次函数3223-=x y 的图像与x 轴、y 轴分别交于点B 和点A ,点C 的坐标是(0,1),点D 在y 轴上且满足∠BCD=∠ABD.求D 点的坐标.22. (本小题满分14分)如图,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B 左侧),与y轴交于点C,且当x=0和x=2时,y的值相等.直线y=3x-7与这条抛物线相交于两点,其中一点的横坐标是4,另一点是这条抛物线的顶点M.(1)求这条抛物线的解析式;(2)P为线段BM上一点,过点P向x轴引垂线,垂足为Q.若点P在线段BM上运动(点P不与点B、M重合),设OQ的长为t,四边形PQAC的面积为S.求S与t之间的函数关系式及自变量t的取值范围;(3)在线段BM上是否存在点N,使△NMC是等腰三角形?若存在,请求出点N的坐标;若不存在,请说明理由.。

2017-2018学年湖北省武汉华中师范大学第一附属中学高一下学期期中考试数学试题 PDF版

2017-2018学年湖北省武汉华中师范大学第一附属中学高一下学期期中考试数学试题 PDF版
sin b4 b6 的值是 1 a3 a7 1 2
A.
B.
1 2
C.
3 2
D.
3 2
10.在△ABC 中,角 A,B,C 所对的边分别为 a,b,c, b cos C a ,点 M 在线段 AB 上,且
ACM BCM .若 b 6CM 6 ,则 cos BCM
1 , S 4 20 ,则 S6 等于 2
C.36
D.48
3.某工厂在某年 12 月份的产值是这年 1 月份的产值的 m 倍,则该厂在本年度的产值的月平均增 长率为 A.
m 11
B.
m 12
C. 12 m 1
D. 11 m 1
4.如图,在正方体 ABCD—A1B1C1D1 中,P 为 BD1 的中点,则△PAC 在该正方体各个面上的正 投影(实线部分)可能是
1 4 的最小值为 m n
A.
5 3
B.
3 2
C.
9 4
D.
4 3
8.首项为 24 的等差数列从第 10 项起开始为正数,则公差 d 的取值范围是 A. d
8 3
B. d 3
C.
8 d 3 3
D.
8 d 3 3
9.已知数列 {an } 是等比数列,数列 {bn } 是等差数列,若 a1 a5 a9 8 , b2 b5 b8 6 ,则
Байду номын сангаас
C1 G
18. (本小题满分 12 分)如图,在正方体 ABCD A1B1C1D1 中, E、F、G、H 分别是棱 AB、BC、CC1、C1D1 的中点. (1)判断直线 EF 与 GH 的位置关系,并说明理由; (2)求异面直线 A1D 与 EF 所成的角的大小.

湖北省部分重点中学2018届高三数学起点考试试题理

湖北省部分重点中学2018届高三数学起点考试试题理

湖北省部分重点中学2017-2018学年度上学期新高三起点考试数学试卷(理科)、选择题(本大题共12小题,每小题5分,共60分.)1•已知集合A={x|x2 4x 3_0} , B={x|2x v1},则A B =A.(」:,-3] [-1,0)B •[-3,-1] C .(」:,;](-1,0] D .(-二,0)1 +i ||2. 已知复数z满足z=3,4i,则z =1 -iA.5B. , 7C. 5.2D. 2 .一63. 已知随机变量■服从正态分布N(」f2),若P(tc2)=P〈>6^0.15 则P(2Etv4)等于A. 0.3B. 0.35C. 0.5D. 0.74 .已知数列为等差数列,其前n项和为S n ,2a7 - a8 =5,则S n 为A. 110B. 55C. 50D.不能确定他们创造了优良的计数系统,其中开平方算法是最具有代表性的。

程序框图如图所示,若输入a,n, ■的值分别为8, 2, 0.5,(每次运算都精确到小数... 点后两位)则输出结果为()cm31 23A. 4 B 4 +—兀321 23C. 6D.6 -326.在ABC 中,“A :: B :: C ”“ cos2A cos2B cos2C ”的A.充分不必要条件B. 必要不充分条件C.充分必要条件D. 既不充分也不必要条件5.某几何体的三视图如图所示(单位:cm),则该几何体的体积等于()7.美索不达米亚平原是人类文明的发祥地之一。

美索不达米亚人善于计算,开始A. 2.81B. 2.82C. 2.83D. 2.8413 & 偶函数 f(x)在(0, +R )上递增,a 二 f(log 2—),b 二 f (),3 2c = f(log 32)则下列关系式中正确的是B . a v c v bC . c v a v bD . c v b v ax y -2 _ 09.若x, y 满足条件」x —2y+6^0,则目标函数z = x 2+y 2的最小值是x 兰2A . .2 B点,若AB =8,则抛物线的方程为fJI 、12.已知函数 f (x ) = 2sin (co x )! co >0, ® c J |的图象过点I 2丿_42X 1, X 2 (,),且 X 1 = X 233时,f X 1 = f x 2,则 f X 1 • X 2 =像大致是 l 10 . 若点P( x,的y 坐标满足1-=x_ n, y则点P 的轨迹图11.抛物线y 2=2px(p 0)的焦点为 F ,过焦点F 倾斜角为一的直线与抛物线相交于两点3A, B 两A . a v b v c682A . y =3x B2 2y 4xC . y = 6x Dy 2 = 8x一f it it )B(0,「3),且在萨上单调,同时f x 的图象A. -,3B. -1C. 1D. 3二、填空题(本大题共4小题,每小题5分,共20分)13. 已知向量a =(3,4) , b = (x,1),若(a -b) _ a,则实数x等于_________________ •2 5 2 -jo14. 设(x -3x 2) a0 - ax - a2x ____________ a10x ,则a!等于.15. 已知等腰梯形ABCD中AB〃CD , AB=2CD=4,. BAD =60,双曲线以A, B为焦点,且与线段CD(包括端点C、D)有两个交点,则该双曲线的离心率的取值范围是 __________________ .16. ________________________________________________________________________ 若函数f(x) =x(x—4) —a|x—2 j2a有四个零点,则实数a的取值范围是_______________________________ .三、解答题(本大题共6小题,70分)17. (本小题满分12分)等差数列{a n}的前n项和为S n,数列{b n}是等比数列,满足6=30=1 , b2 ' S2 =10,氏- 2d =83.(1)求数列{a n}和{b n}的通项公式;(2)令C n =a n l_b n ,设数列©}的前n项和为T n,求「.18. (本小题满分12分)在如图所示的多面体ABCDEF中,四边形ABCD为正方形,底面ABFE为直角梯形,.ABF1为直角,AE//BF ,AB BF =1,平面ABCD _ 平面ABFE .2 —(1) 求证:DB _ EC ;(2) 若AE二AB,求二面角C - EF - B的余弦值.19. (本小题12分)随着网络营销和电子商务的兴起,人们的购物方式更具多样化,某调查机构随机抽取10名购物者进行采访,5名男性购物者中有3名倾向于选择网购,2名倾向于选择实体店,5 名女性购物者中有2名倾向于选择网购,3名倾向于选择实体店.(1)若从10名购物者中随机抽取2名,其中男、女各一名,求至少1名倾向于选择实体店的概率;(2)若从这10名购物者中随机抽取3名,设X表示抽到倾向于选择网购的男性购物者的人数,求X的分布列和数学期望.2 2 :石20.(本小题满分12分)已知椭圆C:笃•爲=1(a .b ■ 0)的离心率为y,左焦点为F(_1,o),a b 2过点D(0,2)且斜率为k的直线I交椭圆于A, B两点.(1)求椭圆C的标准方程;(2)在y轴上,是否存在定点E,使AE BE恒为定值?若存在,求出E点的坐标和这个定值;若不存在,说明理由.21.(本小题满分12分)设函数f(x)=al n(x,1), g(x)=e x_1,其中a • R, e= 2.718…为自然对数的底数.(I)当x > 0时,f (x) w g(x)恒成立,求a的取值范围;(H)求证:1095::10e ::-2000 (参考数据:ln 1.1 :0.095).1000 179122.(本小题满分10 分)已知f (x) 2x • 3| — |2x —1| .(I)求不等式f (x) <2的解集;(n)若存在R,使得f(x) ・|3a-2|成立,求实数a的取值范围.a 5 -26 p,所以 a n =3 2(n 一1) =2n 1,b^2nJ⑵由(1)可知 C n =(2n 1) 2nJ ,.T n =3 20 5 217 22 • "I (2n -1) 2心 (2n 1) -2nl2T n =3 21 5 22 • 7 23 ||( (2n -1) 2n 」(2n 1) 2n①-②得:-T^3 2 212 2^|| 2 2nJ -(2n 1) 2n=1 2 22||「2n -(2n 1) 2n=2n 1 _1 _(2n 1) 2n =(1 _2n) 2n -1T n =(2n -1) 2n 1................... 12 分18.解:(1);底面 ABFE 为直角梯形, AE//BF,. EAB =90 1 AE _ AB, BF _ AB平面ABCD _平面ABFE,平面ABCD 平面ABFE = ABAE _ 平面 ABCD.BF _ 平面 ABCD BF — BC设AE 二t,以BA,BF,BC 所在的直线分别为x,y,z 轴建立如图坐标系则B 0,0,0 ,C(0,0,1),D(1,0,1),E(1,t,0) DB =(-1,0, -1), EC =(-1,弋1)DB *EC =0 DB _ EC ............................... 6 分⑵ 由(1)知BC= (0,0,1)是平面BEF 的一个法向量数学试卷(理科)参考答案及评分标准17.解析:⑴ 设数列{a n }的公差为d,数列{b n }的公比为q ,则得 q 6 "10,3 4d -2q =3 2d ,解得d ;‘lq =2,丄 b 2 S 2 =10, 由I设n = (x,y, z)是平面CEF的法向量AE ^AB T '. Ed 1,0), F (0,2,0) CE =(1,1,-1),CF =(0,2,-1)由CE = 0二 x y -z = 0‘ 由CF = 0= 2y-z = 0令z =2,得x =1, y =1,故齐=(1,1,2)是平面CEF 的一个法向量19 •解:(1 )设“至少1名倾向于选择实体店”为事件 A,则「表示事件“随机抽取 2名,(其中男、女各一名)都选择网购”,12^9「丄厂x 2所求的椭圆方程为2cos n, BCn * BC n ・B C、• 6—,即二面角C 一 EF 一 B 的余弦值为y[6 .................312分(2)设过点 D ( 0,2 )且斜率为k 的直线l 的方程为y=kx+2.由」2[1 X [ 则 P (A ) =1 - P 一 =14 ”[k [ 3~k(2) X 的取值为 0, 1, 2, 3 • P (X=k )=一 ,[311072171P (X=0)=——,P (X=1) =, P (X=2) =, P (X=3)=244040120721 719E (X ) =0X +1X 」丄 +2X +3X- 24 40 120 1012分20. ( 1)由已知可得_2 1解得 a 2 二 2, b 28k_6,B (X 2, y 2)贝V X 1 +X 2=-l+2k 21l+2k 222k? - 4又 y 1 y s = ( kx 1+2)( kx ?+2) =kX 1X 2+2k (X 1+X 2) +4=--------- ,2k 2+l2x——+kx=1消去y 整理得:(1 - 2k 2)X 2 -2 8kx 6 = 0设 A ( X 1,y 1)y i +y 2= (kx i +2) + (kx 2+2) =k (X 1+X 2) +4=.--I设存在点 E (0, nr ),则--…|,二- —I ,|:(2口2 -刃^‘+揺 - 4叶10要使得 ~P71 ( t 为常数),ng g只要 〔2m ~2)k +m - °血1° =t ,从而(2nf - 2 - 2t ) k 2+m -4m+10- t=0 2k 2+l即 J 2rn "' 2- 2t=0(l )由(i )得 t=m 2 - 1,代入(2)解得 ml ,从而 t=2亜WIO-1=0(2)4 15故存在定点 一:. 「二「,使恒为定值 一1 • ............................................ 12分a21 • ( I )令 H x =g x ;-f x =e x —1 —aln(x 1)x ^0,贝y H x =e xx 亠0 x +1① 若 a <1 ,^U 旦 _1 岂e x , H(x)_0, H (x)在 虬 匚 递增,H (x) _ H (0) =0 ,x +1 即f (x)乞g x 在〔0,;恒成立,满足,所以a _1;② 若 a 1 , H (x^e^— 在 0,二 递增,H (x) _H (0) =1 -a 且 1-a :::0x +1 且 X —• J 时,H(x)—」-',贝y X 0・(0, •::)使 H(Xo)=0 , 则H(x)在0, X0递减,在(x 0,::)递增,所以当 X ,0, X0 时 H (x) ::: H (0) = 0,即当 X ,0, X0 时,f(x) g x , 不满足题意,舍去; 综合①,②知a 的取值范围为 「:,1】.............. 5分(n )由(I )知,当a =1时,e x 1 ln(x 1)对x 0恒成立, 1 入 1 币1095 10L 1095 令 x=—,贝y e 10A 1+ln1.1 B.095>— 即 0e > ----------- ;............. 7 分10 1000 1000由(I )知,当a .1时,贝U H(x)在b, X0递减,在(X0,•::)递增,所以二'…」一「一「=_」「=」2k? - 4 2k 2+l3则 H(x )) :::H(0) =0,即 e x0 _1 _al n(x 0 1) :::0,又 H 仏)=0,即 e 二—(2x 3)(2x -1) 2 (2x 3) (2x-1)< 2X oa111 令3哈1°」,即x0 =秸,则e1°2000:1-1.11 n1.11791故有1095200010 ―1000 : e1791…12分22. (I)不等式f(x):::2等价于x ::或(2x 3) _(2x-1) ::2,解得所以不等式f(x):::2的解集是(-::,0);(n) f (x) q(2x 3) _(2x-1)|=4 , f(X)max =4 ,一2.|3a-2|:::4,解得实数a的取值范围是(-一,2). ..10 分3。

湖北省华中师范大学第一附属中学2018届高三上学期期中考试数学(理)试题Word版含答案

湖北省华中师范大学第一附属中学2018届高三上学期期中考试数学(理)试题Word版含答案

华中师大一附中2017-2018学年度上学期高三年级期中检测数学(理)试题第I 卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知复数2z1i,则下列命题中正确的个数为①2=z ②i z -=1 ③z 的虚部为i ④z 在复平面上对应点在第一象限 A .1 B .2 C .3 D .4 2.下列函数为偶函数且在(0,+∞)上为增函数的是A .20()(cos )x f x tdt B .223()f x x x C .21()2f x x x D .()()xx f x x e e3.已知集合2lg 2x A x y x ⎧-⎫==⎨⎬+⎩⎭,集合{}21B y y x ==-,则集合{x x A B 且}x A B 为A .[]()2,12,-+∞ B .()()2,12,-+∞C .()[),21,2-∞-D .(](),21,2-∞-4.下列说法正确的是 A .“,x yR ,若0xy,则1x且1y ”是真命题B .在同一坐标系中,函数(1)y f x =+与(1)y f x =-的图象关于y 轴对称.C .命题“x R ,使得2230x x ”的否定是“x R ,都有2230x x ”D .aR ,“11a”是“1a ”的充分不必要条件5.如图,在ABC 中,13AN NC ,P 是BN 上的一点, 若29AP mABAC ,则实数m 的值为 A .19 B .13C .1D .3 第5题图6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织七匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5尺,一月织了七匹三丈,问每天增加多少尺布?”若这一个月有31天,记该女子一个月中的第n 天所织布的尺数为n a ,则132931242830a a a a a a a a ++⋅⋅⋅++++⋅⋅⋅++的值为A .2930 B .1615 C .13D .15 7.若13tan ,(,)tan 242ππααα-=∈,则sin(2)4πα+的值为 A .210±B .25C .210D .25±8.某食品的保鲜时间y (单位:小时)与储存温度x (单位:C )满足函数关系bkx ey +=( 718.2=e 为自然对数的底数,,k b 为常数),若该食品在0C 的保鲜时间是192小时,在22C 的保鲜时间是48小时,则该食品在33C 的保鲜时间是( )小时.A .22B .23C .24D .33 9.已知函数()sin()(0,)2f x x πωϕωϕ=+><的部分图像如所示,为了得到()y f x 的图像需将cos 2yx 的图像A .向右平移3π个单位长度 B .向左平移3π个单位长度 C .向右平移6π个单位长度D .向左平移6π个单位长度 10.已知定义在R 上的偶函数)(x f ,满足)()4(x f x f =+,且]2,0[∈x 时,()sin 2sin f x x xππ=+,则方程0lg )(=-x x f 在区间[0,10]上根的个数是A .18B .19C .10D .9 11.在ABC 和AEF 中,B 是EF 的中点,1633AB EF BC CA ,,,若2AB AE AC AF ,则EF 与BC 的夹角的余弦值为第9题图A .12 B .23 C .34 D .1312.设函数()()x x f x e x ae (其中e 为自然对数的底数)恰有两个极值点12,x x 12()x x ,则下列说法中正确的是A .103aB .21x C .1(0)02f -<< D .12()()0f x f x第II 卷二、填空题(每题5分,共20分,将答案填在答题纸上) 13.函数2lg(23)y x x =--+的单调递增区间是________.14.已知向量(6,2)a =-,(1,)b m =,且a b ⊥,则2a b -= . 15.已知数列{}n a 的通项公式为219104na n n,当123234a a a a a a 345a a a12n n n a a a 取得最大值时,n 的值为_________.16.若函数()y f x =满足b x a f x a f 2)()(=-++(其中220ab ),则称函数)(x f y =为“中心对称函数”,称点),(b a 为函数()f x 的“中心点”.现有如下命题:①函数()sin 1f x x =+是“中心对称函数”;②若“中心对称函数”()y f x =在R 上的“中心点”为()(),a f a ,则函数()()()F x f x a f a =+-是R 上的奇函数;③函数()32362f x x x x =-+-是“中心对称函数”,且它的“中心点”一定为()1,2;④函数x x x f cos 2)(-=是“中心对称函数”,且它的“中心点”一定为(,)2ππ.其中正确的命题是___ _____.(写出所有正确命题的序号)三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分10分)已知向量(,cos())a sinx x π=-,(2cos ,2cos )b x x ,函数()1f x a b .(Ⅰ)求()f x 的对称中心; (Ⅱ)求函数()f x 在区间[0,]2π上的最大值和最小值,并求出相应x 的值.18.(本小题满分12分)已知函数()f x =4log (41)x++kx (k R ∈).(Ⅰ)当12k时,若方程()f x -m =0有解,求实数m 的取值范围; (Ⅱ)试讨论()f x 的奇偶性.19.(本小题满分12分)已知数列{}n a ,{}n b ,n S 为数列{}n a 的前n 项和,且满足214a b =,22n n S a =-,21(1)n n nb n b n n +-+=+(*n N ∈).(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)试问{}nb n能否为等差数列,请说明理由; (III )若数列{}n c 的通项公式为,24n n n n n a b n c a b n ⎧-⎪⎪=⎨⎪⎪⎩为奇数,为偶数,令n T 为{}n c 的前n 项的和,求2n T .20.(本小题满分12分)已知函数()-xf x e ax =(a R ∈,e 为自然对数的底数).(Ⅰ)讨论函数()f x 的单调性;(Ⅱ)若1a =,函数()()()2xg x x m f x e x x =--++在()2,+∞上为增函数,求实数m 的取值范围.21.(本小题满分12分)如图所示,某住宅小区一侧有一块三角形空地ABO ,其中3,OA km 33,OBkm90AOB .物业管理拟在中间开挖一个三角形人工湖OMN ,其中,M N 都在边AB 上(,M N 不与,A B 重合,M 在,A N 之间),且30MON .(Ⅰ)若M 在距离A 点2km 处,求点,M N 之间的距离;(Ⅱ)为节省投入资金,三角形人工湖OMN 的面积要尽可能小.试确定M 的位置,使OMN 的面积最小,并求出最小面积.22.(本小题满分12分)已知数列{}n a 满足1n na t =+(,,3,)n t N t t n t *∈≥≤,为常数. (Ⅰ)设1121111nni inS a a a a ,*n N ,证明:(1)ln(1)nS t n ;(Ⅱ)证明:1n a na e -<(e 为自然对数底数);(Ⅲ)设1231()=()()()()nttt t t n kn k T a a a a a ==+++∑ ,*nN ,试比较与n T 与1的大小关系,并说明理由.第21题图1. C 2. D 3. D 4. B 5. A 6. B 7. C 8. C 9. A 10. B 11. B 12. C第II 卷二、填空题:每题5分,满分20分,将答案填在答题纸上. 13. (3,1]或(3,1) 14. 45 15. 9n16.①②③三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.解:(I )因为()1f x a b =2sin cos cos(π)2cos 1x x x x +-⋅+22sin cos 2cos 1x x x =-+=sin 2cos2x x -=2sin(2)4x………4分所以()f x 的对称中心为(,0)()28k k Z ππ+∈ ……………5分 (II )由(I )得,()f x =sin 2cos2x x -=2sin(2)4x π-, …………7分因为π0,2x ⎡⎤∈⎢⎥⎣⎦,所以π3π2,444x π⎡⎤-∈-⎢⎥⎣⎦,所以当242x ππ-=时,即8x 3π=时,()f x; 当244x ππ-=-时,即0x =时,()f x 的最小值是1-. …………10分 18.(本小题满分12分)解:(Ⅰ)由m =()f x =4log (41)x+-12x ,∴m =441log 2x x +=41log (2)2xx+. ∵1222xx,∴m ≥12. ……………………………………6分 (Ⅱ)依题意得定义域为R ,关于原点对称∵()f x 4log (41)x ++kx ,()f x 4log (41)x -+-kx ,令()()f x f x ,得441log 41x x-++=2kx -,即4log 4x=2kx -, ∴2x kx 对一切k R ∈恒成立.∴12k时()()f x f x ,此时函数()f x 是偶函数……………………9分∵0441(0)log (41)0log 22f k =+-⨯==,∴函数()f x 不是奇函数, 综上,当12k时,函数()f x 是偶函数;当12k 时,函数()f x 是非奇非偶函数. …………12分 19、(本小题满分12分)解:(Ⅰ)当1n =时,111222S a a =-⇒=,当2n ≥时,由112222n n n n S a S a --=-⎧⎨=-⎩,得:122n n n a a a -=-,则12n n a a -=,综上,{}n a 是公比为2,首项为2的等比数列,2nn a =;………………3分(Ⅱ){}nb n是等差数列,理由如下: ∵214a b =,∴11b =,∵21(1)n n nb n b n n +-+=+,∴111n nb b n n+-=+ 综上,{}n b n 是公差为1,首项为1的等差数列,且211n n bn b n n=+-⇒=;…7分 (Ⅲ)令212n n n p c c -=+22122221(21)2(2)2(41)2(41)424n nn n n n n n ----⋅⋅=-+=-⋅=-⋅01212123123474114(41)443474114(45)4(41)4n n n nn T n T n n --⎧=⨯+⨯+⨯++-⨯⎪⎨=⨯+⨯+⨯++-⨯+-⨯⎪⎩ ①② ①-②,得:012121644334444444(41)43(41)414nn nnn T n n --⋅-=⋅+⋅+⋅++⋅--⋅=+--⋅- 所以27127499nn n T -=+⋅. ……………… ………12分20.(本小题满分12分)解:(Ⅰ)函数()f x 的定义域为R ,()xf x e a '=-.当0a ≤时,()0f x '>,∴()f x 在R 上为增函数; 当0a >时,由()0f x '=得ln x a =,当(),ln x a ∈-∞时,()0f x '<,∴函数()f x 在(),ln a -∞上为减函数, 当()ln ,x a ∈+∞时,()0f x '>,∴函数()f x 在()ln ,a +∞上为增函数……4分 (Ⅱ)当1a =时,()()()2x x g x x m e x e x x =---++,∵()g x 在()2,+∞上为增函数;∴()10xxg x xe me m '=-++≥在()2,+∞上恒成立,即11x x xe m e +≤-在()2,+∞上恒成立, …………………………6分令()11xx xe h x e +=-,()2,x ∈+∞,则()()()2221x x xxe xe e h x e --'==-()()221x x xe e x e---,令()2xL x e x =--,()10xL x e '=->在()2,+∞上恒成立,即()2xL x e x =--在()2,+∞上为增函数,即()()2240L x L e >=->,∴()0h x '>,即()11x x xe h x e +=-在()2,+∞上为增函数,∴()()222121e h x h e +>=-,∴22211e m e +≤-,所以实数m 的取值范围是2221,1e e ⎛⎤+-∞ ⎥-⎝⎦. ………………12分21.(本小题满分12分)解:(Ⅰ)在ABO 中,因为33390OAOBAOB ,,,所以60OAB , 在OAM 中,由余弦定理得:2222cos 7OM AO AM AO AM A,所以7OM,所以22227cos 27OA OM AM AOM AO AM, 在OAN 中,sin sin()sin(90)ONA A AON AOM 27cos 7AOM, 在OMN 中,由sin 30sin MN OMONA,得7172427MN;… ………6分 (Ⅱ)解法1:设,060AOM,在OAM 中,由sin sin OM OAOAB OMA ,得332sin(60)OM,在OAN 中,由sin sin ONOA OAB ONA ,得32sin(90)2cos ON θθ==+, 所以11sin 22OMNSOM ONMON 2sin(60)θ⋅+12=2716sin(60)cos θθ+6060)4θ<<+.当26090θ+=,即15θ=时,OMN S27(23)4.所以应设计15AOM ,可使△OMN 27(23)4km 2…12分解法2:设AM =x ,0<x <3.在△OAM 中,由余弦定理得OM 2=AO 2+AM 2-2AO ·AM ·cos A =x 2-3x +9,所以OM =x 2-3x +9,所以cos ∠AOM =OA 2+OM 2-AM 22OA ·OM =6-x2x 2-3x +9,在△OAN 中,sin ∠ONA =sin(∠A +∠AON )= sin(∠AOM +90°)=cos ∠AOM =6-x2x 2-3x +9, 由ON sin ∠OAB =OA sin ∠ONA,得ON =36-x2x 2-3x +9·32=33x 2-3x +96-x, 所以S △OMN =12OM ·ON ·sin ∠MON =12·x 2-3x +9·33x 2-3x +96-x ·12=33(x 2-3x +9)4(6-x ),0<x <3,令6-x =t ,则x =6-t ,3<t <6,则:S △OMN =33(t 2-9t +27)4t =334(t -9+27t )≥334·(2t ·27t -9)=27(2-3) 4.当且仅当t =27t ,即t =33,x =6-33时等号成立,S △OMN 的最小值为27(2-3) 4,所以M 的位置为距离A 点6-3 3 km 处,可使△OMN 的面积最小,最小面积是27(2-3) 4km 2.22.(本小题满分12分) 解:(Ⅰ)即证:12111ln(1)(1)(1)(1)nn t a t a t a +++>++++,即证:1111ln(1)23n n++++>+, 设()ln(1)g x x x =-+,1()111xg x x x '=-=++, ∵当0x >时,()0g x '>,()g x 在(0,)+∞上单调递增, 当10x -<<时,()0g x '<,()g x 在(1,0)-上单调递减, ∴()ln(1)(0)0g x x x g =-+≥=(当且仅当0x =时等号成立), 即0x >时,有ln(1)x x >+, ∴1113411ln 2ln ln lnln(1)2323n n n n+++++>++++=+, ∴12111(1)ln(1)n t n a a a +++>++ ……………………………4分(用数学归纳法给分)(Ⅱ)由(Ⅰ)知:当1x >-且0x ≠时,有ln(1)x x >+,即当0x >且1x ≠时,有1ln x x ->, 因为0111n n t a t t <=≤<++,所以 1ln n n a a ->, 即1n a na e -<………………………………………8分(Ⅲ)1231()=()()()()1nt t t t tnk n k T a a a a a ,理由如下:解法一:由(Ⅱ)知:123()()()()t t tt n a a a a ++++3121111()()()()n a a a a t t t t e e e e 3121111()()()()n a a a a t t t t e e e e2111(1)1t tn t t t t ee e-+++-=-22211111(1)111t t t t t t t t t t ee e e e--+++++--≤=--,设 1t t eq +=,因为3142t t q ee +=≥>,21111t t t t ee-++-∴=-1111111t t q q q q q ----=<<---, 所以1231()=()()()()1nttt t t n kn k T a a a a a ==++++<∑ ………………12分解法二:因为,*n t N ∈, 且n t ≤,所以1231231()=()()()()()()()()nt t t t t t t t t nk n t k T a a a a a a a a a12()()()111tt t t t t t下面用数学归纳法证明:*3,t tN 时,12()()()1111tt t t t t t,即12(1)tt t t t t ,①当3t时,左边333312336(13),即当3t 时不等式成立;②假设当(3)t k k时不等式成立,即12(1)kkkk k k ,则当1tk时,111112(1)k kkk k k 11122(1)k k k k k k k 1(1)(12)(1)k k k k k k k11(1)(1)(1)2(1)kkk kkkk,11111112111()(1)1()()1111k k k k k k k C C k kk k111121kC k,11(2)2(1)k k k k,11111112(1)2(1)(2)kkkkkk k kkk,所以当1t k时,不等式也成立;综合①②*3,t tN 时,12(1)tttt t t ,即12()()()1111tt t t tt t成立,所以1231()=()()()()1nt t t t t n kn k T a a a a a ==++++<∑.。

2017-2018年湖北高一新生入学考试

2017-2018年湖北高一新生入学考试

2017~2018学年高一入学考试卷数 学 试 卷考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共120分。

考试时间120分钟。

2.请将各题的答案填在试卷后面的答题卡上。

3.本试卷主要考试内容:中考内容,初高中衔接课程内容部分。

本试卷分第I 卷(选择题)、第II 卷(非选择题)两部分,满分120分第Ⅰ卷 (选择题,共30分)本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个正确选项1.计算(-π)0的结果为( )A .πB .-πC .0D .1 2. 已知集合{1,2,3}M =, {2,3,4}N =则( )A .M ⊆NB .N ⊆MC .M ∩N {1,2,3}=D .M ∪N {1,2,3,4}=3.点(3,2)A -关于原点对称的坐标为( )A.(3,2)-B.(3,2)C.(3,2)--D.(2,3,)-4.如图所示的几何体,上下部分均为圆柱体,其左视图是( )A .B .C .D .5.如图,已知AB ∥CD ∥EF ,FC 平分∠AFE ,∠C=30°,则∠A 的度数是( )A .30°B .40°C .50°D .60°6.已知关于x 的方程240x kx +-=的一个根是-2,则它的另一个根是( )A .-1B .1C .-2D .27.下列数据是某班六位同学定点投篮(每人投10个)的情况,投进篮筐的个数为: 6,9,8,4,0,3,则这组数据的平均数、中位数和极差分别是( )A .5,5,9B .6,5,9C .5,6,6D .6,6,98.已知13a a +=,则331a a+=( ) A .27 B .21 C .18 D .129.九一(1)班在参加学校4100m ⨯接力赛时,安排了甲,乙,丙,丁四位选手,他们的顺 序由抽签随机决定,已知丙跑第一棒,则甲跑第二棒的概率为( )A . 1B .12 C.13 D .1410.如图,P (m ,m )是反比例函数9y x =在第一象限内图象上的一点,以P 为顶点作等边△PAB ,使AB 落在x 轴上,则△POB 的面积为( )A .92B .C .92+ D .94+ 第Ⅱ卷 (非选择题,共90分)本大题共14小题(前面6题为填空题,每题3分,满分18分,将答案填在答题纸上;后面8题为简答题,共72分,解答应写出文字说明、证明过程或演算步骤.)11. 0.0006002 用科学记数法表示为12. 已知集合A ={x|x≥-1},B ={x|x≥m},且A∪B =A ,则实数m 的取值范围是________.13.不等式组3(2)x x--<4的解集为1213xx+-≤14.若关于x的方程221(32)560mm m x x m+-++-=是一元二次方程,则m=____ 15.已知x y==22256x xy yx xy--=+____16.如图,AB是⊙O的直径,且经过弦CD的中点H,已知cos∠CDB=45,BD=5,则OH的长度为17.(6分)化简(1)(2)2222532a b aa b a b+---.18.(7分)已知集合A={x|x-2>3},B={x|2x-3>3x-a},求A∪B.19.(8分)已知关于x的一元二次方程2(5)10x k x k+-+-=(其中k为常数).(1)求证:无论k 为何值,方程总有两个不相等实数根;(2)已知函数2(5)1y x k x k =+-+-的图象不经过第三象限,求k 的取值范围;20.(8分)为鼓励居民用电,某市电力公司规定了如下电费计算方法:每月用电不超过100度,按每度电0.5元计费;每月用电超过100度,超出部分按每度电0.4元计费。

华中师大一附中2018年自主招生考试数学试题(word版附答案)

华中师大一附中2018年自主招生考试数学试题(word版附答案)

华中师大一附中2018年高中招生考试数学试题考试时间:70分钟 卷面满分:120分说明:所有答案一律书写在答题卡上,写在试卷上作答无效.一、选择题 (本大题共5小题,每小题7分,共35分.在每小题给出的四个选项中,有且只有一项是正确的.)1.二次函数y =x 2+2x +c 的图象与x 轴的两个交点为A(x 1,0),B(x 2,0),且x 1<x 2,点P (m ,n )是图象上一点,那么下列判断正确的是( ) A .当n >0时,m <x 1 B .当n >0时,m >x 2 C .当n <0时,m <0D .当n <0时,x 1<m <x 22.已知实数a 、b 、c 满足a <b <c ,并目k =,则直线y =-kx +k 一定经过( )A .第一、三、四象限B .第一、二、四象限C .第一、二、三象限D .第二、三、四象限3.下边程序框图的算法思路源于我国古代数学名著《九章算术》中“更相减损术”.执行该程序框图,若输入的a 、b 分别为16、22,则输出的a =(a ←a -b 的含义:将a -b 的结果赋给a )( ) A .0 B .2 C .4D .144.直线l :kx -y -2k -1=0被以A(1,0)为圆心,2为半径的⊙A 所截得的最短弦长为( ) A . B .2 C .2D .45.如图,△ABC 中,AB=AC=8,BC=4,BF ⊥AC 于F ,D 是AB 的中点,E 为AC 上一点,且2EF=AC,则tan ∠DEF=( ) A .B .C .D .二、填空题(本大题共5小题,每小题7分,共35分). 6.若a +b -2=3c 5,则(b c )a 的值为__________.BA CDEF7.已知△ABC的一边长为4,另外两边长恰是方程2x212x+m+1=0的两实根,则实数m 的取值范围是__________.8.如图,D是△ABC的边AB上的一点,且AB=3AD,P是△ABC外接圆上一点,使得∠ADP=∠ACB,则=__________.9.有十张正面分别标有数字1,2,3,4,5,6,7,8,9,10的不透明卡片,它们除数字不同外其余全部相同,将它们背面朝上,洗匀后从中任取一张,以卡片上的数字作为关于x的不等式5x a≤5中的系数a,使得该不等式的正整数解只有1和2的概率为__________.10.若四个互不相等的正实数a,b,c,d满足(a2018c2018)(a2018d2018)=2018,(b 2018c2018)(b2018d2018)=2018,则(ab)2018(cd)2018的值为__________.三、解答题(本大题共3小题,共50分.解答应写出文字说明、证明过程和演算步骤)11.(本小题满分16分)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)在图1中,若G在AD上,且∠GCE=45°,则GE、BE、GD有什么数量关系?说明理由;(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=6,E是AB上一点,且∠DCE=45°,BE=2,求DE的长.12.(本小题满分16分)如图1,在平面直角坐标系xOy内,已知点A(1,0),B(1,1),C (1,0),D(1,1),记线段AB为L1,线段CD为L2,点P是坐标系内一点.给出如下定义:若存在过点P的直线l与L1,L2都有公共点,则称点P是L1L2相关点,例如,点P(0,1)是L1-L2相关点.(1)以下各点中,__________是L1-L2相关点(填出所有正确的序号);①(1,2);②(5,2);③(4,2).(2)直接在图1中画出所有L1-L2相关点所组成的区域,用阴影部分表示;(3)已知点M在y轴上,以M为圆心,r为半径画圆,若⊙M上有且只有一个点为L1L2相关点.①当r=1时,求点M的纵坐标;②求r的取值范围.13.(本小题满分18分)定义:点P(x,y)为平面直角坐标系中的点,若满足x=y时,则称该点为“平衡点",例如点(-1,-1),(0,0),(,)都是“平衡点".①当-1≤x≤3时,直线y=2x+m上存在“平衡点”,则实数m的取值范围是__________.(2)直线y=3mx+n-1上存在“平衡点”吗?若存在,请求出“平衡点”的坐标;若不存在,请说明理由;(3)若抛物线y=ax2+bx+1(a>0)上存在两个不同的“平衡点"A(x1,x1),B(x2,x2),且满足0<x1<2,=2,令t=b2-2b+,试求实数t的取值范围.华中师大一附中2018年高中招生考试数学试题参考答案考试时间:70分钟卷面满分:120分说明:所有答案一律书写在答题卡上,写在试卷上作答无效.一、选择题(本大题共5小题,每小题7分,共35分.在每小题给出的四个选项中,有且只有一项是正确的.)题号 1 2 3 4 5答案 D A B C A二、填空题(本大题共5小题,每小题7分,共35分).6.36 7.9〈m≤17 8.9.10.-2018 三、解答题(本大题共3小题,共50分.解答应写出文字说明、证明过程和演算步骤.)11.(1)证明:在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△ACBE≌△CDF.∴CE=CF.……………………………4分(2)GE=BE+GD.理由如下:∵△CBE≌△CDF,∴∠BCE=∠DCF.∴∠ECD+∠ECB=∠ECD+∠FCD.即∠ECF=∠BCD=90°.又∠GCE=45°,∴∠GCF=∠GCE=45°.∵CE=CF,∠GCF=∠GCE,GC=GC,∴△ECG≌△FCG.∴EG=EF.∴GE=DF+GD=BE+GC.……………………………10分(3)过C作CG⊥AD,交AD延长线于G,在直角梯形ABCD中,∵AD∥BC,∴∠A=∠B=90°,又∠CGA=90°,AB=BC,∴四边形ABCG为正方形.∴AG=BC=6.已知∠DCE=45°,根据(1)(2)可知,ED=BE+DG,设DE=x,则DG=x-2,∴AD=AG-DG=8-x,AE=AB-BE=6-2=4.在Rt△AED中∵DE2=AD2+AE2,即x2=(8-x)2+42解得x=5.∴DE=5……………………………16分12.(1)②,③是L1-L2相关点。

湖北省华中师范大学第一附属中学2018届高三上学期期中考试数学(文)试题(解析版)

湖北省华中师范大学第一附属中学2018届高三上学期期中考试数学(文)试题(解析版)

华中师大一附中2017-2018学年度上学期高三期中检测数学试卷(文科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.)A. B. D.【答案】C【解析】或,所以 C.2.已知i是虚数单位,a,b∈R,得“a=b=1”是“(a+bi)2=2i”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】试题分析:利用复数的运算性质,分别判断“a=b=1”⇒“(a+bi)2=2i”与“a=b=1”⇐“(a+bi)2=2i”的真假,进而根据充要条件的定义得到结论.解:当“a=b=1”时,“(a+bi)2=(1+i)2=2i”成立,故“a=b=1”是“(a+bi)2=2i”的充分条件;当“(a+bi)2=a2﹣b2+2abi=2i”时,“a=b=1”或“a=b=﹣1”,故“a=b=1”是“(a+bi)2=2i”的不必要条件;综上所述,“a=b=1”是“(a+bi)2=2i”的充分不必要条件;故选A点评:本题考查的知识点是充要条件的定义,复数的运算,难度不大,属于基础题.【此处有视频,请去附件查看】3.)A.B..D.【答案】D 【解析】在A在B在C在D的,故选D.4.)A.B.D. 【答案】B【解析】8个,B.5.)A. B. D. 【答案】C【解析】设等差数列,故选C.6.已知P(x,y)4)A. 6B. 0C. 2D.【答案】A【解析】,∴∴A点时,z最大,考点:线性规划.7.)A. B. D.【答案】A【解析】,所以,故选A.8.)A. B. D.【答案】C【解析】试题分析:执行第1次,>t=0.01,是,循环,执行第2次,=0.125,n=2,S=0.25>t=0.01,是,循环,执行第3次,S="S-m" =0.125,>t=0.01,是,循环,执行第4次,=0.03125,n=4,S=0.0625>t=0.01,是,循环,执行第5次,S="S-m" =0.03125,>t=0.01,是,循环,执行第6次,=0.0078125,n=6,S=0.015625>t=0.01,是,循环,执行第7次,S=S-m=0.0078125,>t=0.01,否,输出n=7,故选C.考点:程序框图【此处有视频,请去附件查看】9.A. B. D.【答案】C【解析】试题分析:几何体为一个四棱锥,外接球球心为底面正方形(边长为4C.考点:三视图,外接球【方法点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解. 【此处有视频,请去附件查看】10.)A.B.D.【答案】B 【解析】的,所以,故选B.11.,则双曲线的离心率是A. B. D.【答案】A【解析】试题分析:设,∴∵在点处的切线过双曲线左焦点,,故选A.考点:双曲线离心率的计算.12.对于任意的正实数x ,y都有(m的取值范围为A. B. D.【答案】D【解析】,则可设,,所以单调递增,在D.点睛:本题主要考查了不等式的恒成立问题的求解,其中解答中涉及利用导数求解函数的单调性,利用导数研究函数的极值与最值等知识点的综合应用,解答中通过分离参数,构造新函数,利用函数的单调性和最值是解答的关键,着重考查了学生分析问题和解答问题的能力,试题有一定的难度,属于难题.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.__________.【答案】【解析】14.__________.【解析】15.的图象,则的最小值为__________.【解析】【分析】按照向量平移后的图象,推出函数表达式,求导数推出函数y=f′(x),利用两个函数表达式相同,即可求出m的最小值.【详解】m,0)(m>0)平移后,得到函数f(x(x﹣;函数y=f′(x(x)(,因为两个函数的图象相同,所以﹣kπ,k∈Z,所以m故答案为:.【点睛】本题是基础题,考查三角函数的化简,两角和与差的余弦函数,向量的平移,导数的计算等知识.16..【解析】由正弦定理当且仅当,取得等号,,则点睛:本题主要考查了解三角形问题的综合应用,其中解答中涉及解三角形的正弦定理和余弦定理的应用,以及基本不等式的运用等知识点的综合考查,着重考查了学生的运算能力和分析问题、解答问题的能力,熟记公式、合理运用是解答问题的关键,试题有一定的难度,属于中档试题.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(1的通项公式;(2【答案】(1)2【解析】试题分析:(1(2)由(1. 试题解析:(1时,此时也成立,所以,又因为为等差数列,所以公差(2)由(1,①-数列的前项和.18.近年来,我国许多省市雾霾天气频发,为增强市民的环境保护意识,者,成立环境保护宣传组织,.(1)求该组织的人数;(2名志愿者?(3)在(2组至少有名志愿者被抽中的概率.【答案】(12. (3【解析】试题分析:(1组的人数为.(2)根据频率分布直方图,,再根据分层抽样的方法,组所抽取的人数.(3本事件的总数,得出事件所包含的基本事件的个数,利用古典概型,即可求解概率. 试题解析:(1.(2组的人数为人,人,人. (3).. 19.(1(2.【答案】(1)见解析(2【解析】试题分析:(1.(2解几何体的体积.试题解析:(1(2的中点,取.点睛:本题主要考查了直线与平面的垂直的判定与证明和几何体的体积的计算问题,其中解答中涉及直线与平面垂直的判定定理、椎体的体积公式和直角三角形的性质等知识点的综合考查,其中熟记判定定理和直角三角形的性质的应用是解答的关键,同时着重考查了学生的空间想象能力和推理与运算能力,试题有一定的难度,属于中档试题.20.的离心率为相切(为常数).(1(2取值范围.【答案】(12【解析】试题分析:(1(2),的方程为联立方程组,利用韦达定理、向量的知识,结合题意,即可求解.试题解析:(1.(2)①若直线斜率不存在,则可得轴,方程为②若直线斜率存在,设直线的方程为,则,结合当不存在时的情况,得点睛:本题主要考查了椭圆标准方程的求解、直线与椭圆的位置关系的综合问题,其中解答中涉及椭圆的标准方程、椭圆的几何性质和直线与椭圆的位置关系的应用,同时考查了向量的数量积的运算,解答时要认真审题,注意韦达定理、向量知识和椭圆性质的合理应用,审题有一定的难度,属于中档试题.21.m的取值范围.【答案】(1(2【解析】试题分析:(2)可.试题解析:解:(1由得;由得(2时,,且使得时,又当时,请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程(1)写出曲线的普通方程和直线的直角坐标方程;(2.【答案】(12【解析】试题分析:(1程;(2上任取一点点的坐标.试题解析:(1(2上任取一点时,,此时这个点的坐标为.23.(1(2【答案】(12【解析】试题分析:(1)取得绝对值,得到三个不等式组,即可求解不等式的解集;(2)由绝对值的三角不等式,即试题解析:(1(2)因,考点:绝对值不等式的求解及应用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017华师一 新生起点考试 数学试题
一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中, 只
有一项是符合题目要求的) 1.已知a 为实数,则2
,1,1a a a -+三个数的平均数与中位数之差为( )
2.
3
a a
A -
2.
13
a a
B -+ 2.
3
a a
C +
2.
13
a a
D --
2. 已知非零实数,a b 满足-++=2
|24|96a b b ,则+a b 的值为( )
.1A - .5B .1C .2D 3. 已知⊙O 的面积为2π,则其内接正三角形的面积为( )
A .
B .
C
D 4.设,,a b c 都是非零实数,则
||||||||
+++ab bc ca abc
ab bc ca abc 可能取的值为( ) .1,0,2,4A - .2,0,1,4B - .1,0,1,4C - .2,0,2,D - 5. 一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到几何体的形状图是( )
A .
B .
C .
D .
6. 观察下列各数:11
51329,,
,,,2481632
-- ,按你发现的规律,这列数的第8个数为( ) 253.
256A 253.256B - 125.128C - 125
.128
D 7. 已知二次函数2y ax bx c =++的图象如右图,且关于x 的一元二次方程
20a x b x c m ++-=没有实数根,有下列结论:
①2
40b ac ->;②0abc <;③2m > 其中,正确结论的个数是( ) A .0 B . 1
C . 2
D . 3
8.已知锐角ABC ∆的顶点A 到垂心H 的距离等于它的外接圆半径,则A ∠的度数为( )
0.30A 0.60B 0.45C 0.75D
9. 若1ab ≠,且25201790a a ++=及2
9201750b b ++=,则
a
b
的值为( ) 9.5
A
5.9B 2017.5C -
2017
.9
D - 10. 如图,在边长为1的正方形ABCD 中,,P Q 分别为,AD DC 上 的两点,若QPB ∆的面积为
1
4
,则AP CQ +的最小值为( )
.
2
A .1
B 3
.2C
D 11.一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6,掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率分别为0123,,,p p p p ,则0123,,,p p p p 中最小的是( )
0.A p 1.B p 2.C p 3.D p
12.如图,在直角坐标系中,正方形OABC 的顶点O 与原点重合,顶点A 、C 分别在x 轴、y 轴上,反比例函数(0,0)k
y k x x
=
≠>的图象与正方形的两边AB 、BC 分别交于点M 、N ,ND ⊥x 轴,垂足为D ,连接OM 、ON 、MN .给出下列结论:①△OCN ≌△OAM ;②ON=MN ;③四边形DAMN 与△MON 面积相等;④若∠MON=45°,MN=2,则点C 的坐标为(0
1+). 其中正确结论的个数是( )
A. 1
B.2
C.3
D.4
二、填空题(本大题共4小题,每小题5分,共20分。

把答案填在答题卡相应位置上。

) 13. 因式分解:3
32a a -+=
P
Q
14.定义符号max{,}a b 的含义为:当a b ≥时,max{,}a b a =;当a b <时,
m a x {,}a b b =.如:max{1,2}2y ==,则不等式1
max{1,}2x x
+≥的解为 15.如图,已知AC 是矩形ABCD 的对角线,AB=2,
BC=
E 、
F 分别是线段AB ,AD 上的点,连接CE ,CF ,当∠BCE=∠ACF , 且CE=CF 时,AE +AF=_____.
16. 几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他
们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知按顺序排成的一列数1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一个数是0
2,接下来的两个数是012,2,再接下来的三个数是012
2,2,2,依此类推.求满足如下条件的最小整数N :N>100且该列数的前N 个数的和为2的整数幂,那么该款软件的激活码是 (参考公式:
n (n+1)1232
n ++++=
;2
1122221n n +++++=-
,n 为正整数) 三、解答题(本大题共6小题,共70分。

解答应写出文字说明、证明过程或演算步骤。

) 17. (本题10分)
已知二次函数2()(5)f x a x x =-,不等式()0f x <的解集{|05}A x x =<<,且()f x 在 区间[1,4]-上的最大值为12.
(1)试求()f x 的解析式;
(2)设关于x 的不等式22(3)10x a x +-->的解集为B ,试求()()R R C A C B .
18. (本题12分)
某药品研究所开发一种抗菌新药,经多年动物实验,首次用
于临床人体实验.测得成人服药后血液中药物深度y (微克/毫升)与服药时间x 小时之间的函数关系如图所示(当
410x ≤≤时,y 与x 成反比).
(1) 根据图象分别求出血液中药物浓度上升和下降阶段
y 与x 之间的函数关系式;
B A
F
E
(2)问血液中药物浓度不低于4微克/毫升的持续时间为多少小时?
19. (本题12分)
如图,在平面直角坐标系中,P 经过x 轴上一点C ,与y 轴
分别相交于,A B 两点,连接AP 并延长分别交,P x 轴于点
,D E ,连接DC 并延长交y 轴于点F .若点F 的坐标为
(0,1),点D 的坐标为(6,1)-.
(1)求证:DC=FC ;(2)判断⊙P 与x 轴的位置关系,并说
明理由;(3)求直线AD 的解析式. 20.(本题12分)
求2
()43,[,2]f x x x x t t =-+∈+的最大值与最小值 21. (本题12分) 已知函数1()|1|=-
f x x
(1)当0a b <<,且()()f a f b =时,求
1
1
a
b
+
的值
(2)若存在实数,(1)<<a b a b ,使得当≤≤a x b 时, (),(0)≤≤≠ma f x mb m , 求实数m 的取值范围 22. (本题12分) 如图,已知抛物线2
1382
=-
++y x x 与坐标轴分别交于点A (0,8)、B (8,0)和 点E ,动点C 从原点O 开始沿OA 方向以每秒1个单位长度移动,动点D 从点B 开始
沿BO 方向以每秒1个单位长度移动,动点C 、D 同时出发,当动点D 到达原点O 时,点C 、D 停止运动.
(1)求△CED 的面积S 与D 点运动时间t 的函数解析式;当t 为何值时,
△CED 的面积最大?最大面积是多少?
(2)当△CED 的面积最大时,在抛物线上是否存在点P (点E 除外),使△PCD
的面积等于△CED 的最大面积?若存在,求出P 点的坐标;若不存在,请说明理由.。

相关文档
最新文档