用扭摆法测定物体转动惯量

合集下载

用扭摆法测定物体的转动惯量

用扭摆法测定物体的转动惯量

用扭摆法测定物体的转动惯量一、实验目的1.用扭摆测定弹簧的扭转常数K 。

2.用扭摆测定几种不同形状物体的转动惯量,并与理论值进行比较。

3.验证平行轴定理。

二、实验仪器1.转动惯量测试仪2.几种待测刚体(空心金属圆柱体、实心塑料圆柱体、木球、验证转动惯量平行轴定理的细金属杆,杆上有两块可以自由移动的金属滑块)三、实验原理1.扭摆的简谐运动将物体在水平面内转过一角度后,在弹簧的恢复力矩作用下,物体就开始绕垂直轴作往返扭转运动。

根据虎克定律,弹簧受扭转而产生的恢复力矩M 与所转过的角度成正比,即θK M -= (1)式中K 为弹簧的扭转常数。

根据转动定律βI M = (2)式中I 为转动惯量,β为角加速度,由(1)式和(2)式得θβIK-= 其中IK=2ω,忽略轴承的摩擦力矩,则有 θωθθβ222-=-==I Kdtd上式表明扭摆运动是简谐振动,且角加速度与角位移成正比,方向相反。

此方程的解为)cos(φωθ+=t A图1 扭摆结构图式中A 为简谐振动的角振幅, φ为初位相,ω为角频率。

此简谐振动的周期为KIT πωπ22==(3) 利用公式(3)式,测得扭摆的周期T ,在I 和K 中任何一个量已知时即可计算出另一个量。

本实验用一个转动惯量已知的物体(几何形状有规则,根据它的质量和几何尺寸用理论公式计算得到),测出该物体摆动的周期,再算出本仪器弹簧的K 值。

若要测量其它形状物体的转动惯量,只需将待测物体安放在本仪器顶部的各种夹具上,测定其摆动周期,由(3)式即可计算出该物体绕转动轴的转动惯量。

2.平行轴定理若质量为m 的物体绕通过质心轴的转动惯量为I 。

,当转轴平行移动距离x 时,则此物体对新轴的转动惯量20mx I I C +=,称为转动惯量的平行轴定理。

四、实验内容与步骤一 用游标卡尺测圆柱体的直径,金属圆筒的内外径等。

(各测量3次)。

用数字式电子台秤分别测出待测物体的质量。

木球体质量见球体上标签,直径取134毫米。

实验扭摆法测定体转动惯量

实验扭摆法测定体转动惯量

实验扭摆法测定体转动惯量————————————————————————————————作者:————————————————————————————————日期:实验2-10 扭摆法测物体的转动惯量【引言】转动惯量是刚体转动时惯性大小的量度,是表明刚体特性的一个物理量。

刚体相对于某转轴的转动惯量,是组成刚体的各质元质量与它们各自到该转轴距离平方的乘积之和。

刚体的转动惯量与以下因素有关:刚体的质量:各种形状刚体的转动惯量都与它自身的质量成正比;转轴的位置:并排的两个刚体的大小、形状和质量都相同,但转轴的位置不同,转动惯量也不同;质量的分布:质量一定、密度相同的刚体,质量分布不同(即刚体的形状不同)转动惯量也不同。

如果刚体形状简单,且质量分布均匀,可以直接计算出它绕特定转轴的转动惯量。

对于形状复杂,质量分布不均匀的刚体,计算将极为复杂,通常采用实验方法来测定,例如机械部件、电动机转子和枪炮的弹丸等。

转动惯量的测量,一般都是使刚体以一定形式运动,通过表征这种运动特征的物理量与转动惯量的关系,进行转换测量。

本实验使物体做扭转摆动,由摆动周期以及其它参数的测定计算出物体的转动惯量。

在国际单位制中,转动惯量的单位是2m kg ⋅(千克·米2)。

【实验目的】1. 测定弹簧的扭转常数2. 用扭摆测定几种不同形状物体的转动惯量,并与理论值进行比较3. 验证转动惯量平行轴定理【实验仪器】扭摆 附件为塑料圆柱体 金属空心圆筒 实心球体 金属细长杆(两个滑块可在上面自由移动) 数字式定数计时器 数字式电子秤【实验原理】扭摆的构造如图2-10-1所示,在垂直轴1上装有一根薄片状的螺旋弹簧2,用以产生恢复力矩。

在轴的上方可以装上各种待测物体。

垂直轴与支座间装有轴承,以降低磨擦力矩。

3为水平仪,用来调整系统平衡。

将物体在水平面内转过一角度θ后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运动。

根据虎克定律,弹簧受扭转而产生的恢复力矩M 与所转过的角度θ成正比,即 θK M -= (2-10-1) 式中,K 为弹簧的扭转常数,根据转动定律 βI M =图2-10-1式中,I 为物体绕转轴的转动惯量,β为角加速度,由上式得 IM =β (2-10-2)令 IK=2ω ,忽略轴承的磨擦阻力矩,由(2-10-1)、(2-10-2)得 θωθθβ222-=-==I K dt d上述方程表示扭摆运动具有角简谐振动的特性,角加速度与角位移成正比,且方向相反。

扭摆法测定物体的转动惯量

扭摆法测定物体的转动惯量

6
实验中的注意事项
实验中的注意事项
在安装扭摆器和待测 物体时:要确保它们 的平衡稳定,避免实 验过程中出现晃动或
摇摆
在测量周期时:要 保证光电门传感器 的位置正确,以便 准确地测量物体转
动的周期
在使用落体法测量 转动角时:要确保 重物的质量适中, 以避免对测量结果
产生过大的误差
在计算转动惯量时: 要确保使用的公式 和数据准确无误,
4
实验结果与分析
实验结果与分析
实验结果
在实验过程中,我们 测量了不同角度下的 周期,并通过落体法 测量了转动角。通过 这些数据,我们可以 计算出物体的转动惯

结果分析
通过对比实验结果与理论值 的差异,可以评估实验的准 确性。如果差异较大,可能 是由于实验操作不当、测量 误差等原因引起的。此外, 还可以进一步分析物体转动 惯量的变化规律,例如是否
扭摆法测定物体的转 动惯量
-
1 2 3 4
目录
CONTENTS
实验目的
5
实验原理
6
实验步骤
7
实验结果与分析
结论 实验中的注意事项 实验中的拓展思考
2
1
实验目的
实验目的
学习使用落 体法测量转
动角
掌握扭摆法 测定物体转 动惯量的原 理和方法
了解物体转 动惯量的变
化规律
2
实验原理
实验原理
1
扭摆法是一种通过测量 物体在扭摆过程中产生 的转动角来测定物体转 动惯量的方法。当物体 在绕自身轴线的微小转 动过程中,其转动角与 转动惯量、角速度以及 周期有关。根据牛顿第 二定律,有
与质量、形状等因素有关
5
结论

测转动惯量实验报告(共7篇)

测转动惯量实验报告(共7篇)

篇一:实验报告-用扭摆法测定物体的转动惯量扭摆法测定物体的转动惯量实验原理:1.扭摆运动——角简谐振动(1)此角谐振动的周期为(2)式中,2.弹簧的扭转系数实验中用一个几何形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到,再由实验数据算出本仪器弹簧的(1)测载物盘摆动周期值。

方法如下:的测定:为弹簧的扭转常数式中,为物体绕转轴的转动惯量。

,由(2)式其转动惯量为(2)塑料圆柱体放在载物盘上,测出摆动周期,由(2)式其总转动惯量为(3)塑料圆柱体的转动惯量理论值为则由,得(周期我们采用多次测量求平均值来计算)3.测任意物体的转动惯量:若要测定其它形状物体的转动惯量,只需将待测物体安放在本仪器顶部的各种夹具上,测定其摆动周期,即可算出该物体绕转动轴的转动惯量。

根据2内容,载物盘的转动惯量为待测物体的转动惯量为4.转动惯量的平行轴定理实验内容与要求:必做内容:1.熟悉扭摆的构造及使用方法,以及转动惯量测试仪的使用方法。

调整扭摆基座底脚螺丝,使水平仪的气泡位于中心。

(认真阅读仪器使用方法和实验注意事项)2.测定扭摆的弹簧的扭转常数3.测定塑料圆柱(金属圆筒)的转动惯量4.测定金属细杆+夹具的过质心轴的转动惯量。

并与理论值比较,求相对误差。

,写出。

5.滑块对称放置在细杆两边的凹槽内,改变滑块在金属细杆上的位置,验证转动惯量平行轴定理。

数据记录:一、测定弹簧的扭转系数及各种物体的转动惯量:;;0.01s表格一:二、验证平行轴定理:表格二:;;;;。

滑块的总转动惯量为:数据处理:(要求同学们写出详细的计算过程)1.计算弹簧的扭转系数;;;;;;;2.计算物体的转动惯量(公式见表格)3.验证平行轴定理(公式见表格);;拓展与设计内容:(实验方法步骤、数据表格自行设计)。

1.滑块不对称时平行轴定理的验证,并与滑块对称放置的结果进行对比。

2.测量某种不规则物体的转动惯量。

注意事项:1.由于弹簧的扭转系数不是固定常数,与摆角有关,所以在实验中测周期时摆角应相同(例如均取2.给扭摆初始摆角是应逆时针旋转磁柱,避免弹簧振动,且放手时尽量避免对磁柱施力。

扭摆法测量物体转动惯量

扭摆法测量物体转动惯量

T
2 0
=
4p 2 K I0
待测物圆柱对其质心轴的转动惯量理论值为 I1,测出其 与载物盘的复合体摆动周期为 T ,则
T2
=
4p 2 K (I 0 +
I 1)
其中
I1 =
1 8
m
1D
2 1
由前两式可得到
K = 4p 2I 1
T2-
T
2 0
a
=
K 4p 2
=
T
2
I1
-
T
2 0
实验内容
计算各物体转动惯量的理论值
注意事项
由于弹簧的扭转常数K值不是固定常数,它与摆动角度略 有关系,实验中摆角在90º左右为宜。
光电探头宜放置在挡光杆的平衡位置处,挡光杆不能和 它相接触,以免增大摩擦力矩。 机座应保持水平状态。 圆柱、圆筒放置时要放正不可斜放。 在安装待测物体时,其支架必须全部套入扭摆主轴,并 将止动螺丝旋紧,否则扭摆不能正常工作。
对于质量分布不均匀、没有规则几何形状的刚体,用 数学方法计算其转动惯量是相当困难的,通常要用实 验的方法来测定其转动惯量。
实验目的
理解转动惯量的概念和平行轴定理的物理意义。 观察刚体的扭转摆动现象,了解和掌握测量刚体转动惯 量的原理和方法。 验证转动惯量的平行轴定理。
实验仪器
金属托盘
光电门
螺旋弹簧 底脚螺丝
根据各待测物转动惯量计算公式,测量各物体有关几何 尺寸及质量,各测量三次取平均值。
扭转常数K的确定
①调整扭摆基座底角螺丝,使水准仪中的气泡居中。
②装上金属载物盘,并调整光电探头的位置,使载物盘 上的挡光杆处于其缺口中央且能遮住发射、接收红外光 线的小孔,测定其摆动周期T0。 ③将塑料圆柱体垂直放在载物盘上,测定摆动周期T1。 ④由T0 、T1及塑料圆柱转动惯量的理论值I1计算扭摆的 扭转常数K。

用扭摆法测定物体的转动惯量

用扭摆法测定物体的转动惯量

用扭摆法测定物体的转动惯量刚体的转动惯量是刚体转动惯性大小的量度,是表征刚体特性的一个物理量。

它与刚体的形状、总质量、质量分布以及转轴的位置有关。

如果刚体是由几部分组成的,那么刚体总的转动惯量J就等于各个部分对同一转轴的转动惯量之和,即J= J1+ J2+ ······对于形状简单的匀质物体,可以直接计算出它绕定轴转动时的转动惯量。

对于形状比较复杂或非匀质的物体,则多采用实验的方法来测定,如电机转子、机械部件、钟表齿轮、枪炮弹丸等。

转动惯量的测量,一般都是使物体以一定的形式运动,再通过表征这种运动的物理量与转动惯量的关系,来进行转换测量的。

本实验使物体扭摆转动,由对摆动周期及其它参数的测量而计算出物体的转动惯量。

这种方法不仅仪器简单、操作容易,而且结果也比较准确。

[实验目的]1.2.熟练掌握直尺、游标卡尺、数字式电子天平的使用;3.4.熟悉扭摆的构造及使用方法,测定扭摆的仪器常数(弹簧的扭转系数)K;5.6.测定几种不同形状物体的转动惯量,并与理论值进行比较;7.8.验证转动惯量的平行轴定理。

[仪器与用具]扭摆装置及其附件(塑料圆柱体,金属空心圆筒,实心球体,金属细长杆等),转动惯量测试仪,数字式电子天平,直尺,游标卡尺。

转动惯量测试仪说明:1.2.开机后摆动指示灯亮,功能显示窗显示“P1”,数据显示窗显示“0000”,因本仪器的内部单片机设置了自动复位功能,所以不会出现死机现象。

方式设定键“转动”和“摆动”键,功能选择键(左边的一组↑、↓键),数据设置键(右面一组箭头键)以及“清零”、“执行”键分别有效,“记时”指示灯工作时亮。

开机默认状态为“摆动”,默认周期数为10,测量次数为3,执行数据皆空为0。

图1 QS-R型转动惯量测试仪面板图3.4.功能选择按“转动”“摆动”键,可以选择摆动、转动两种功能(开机默认值为摆动)。

5.6.置数按左面一排的箭头键,对“重复次数”(周期数)和“测量次数”进行选择,选“重复次数”(其左面的指示灯亮)时显示“n=10”,按右面“↑”键,周期数依次加1,按“↓”键,周期数依次减1,周期数只能在1—20范围内任意设定。

扭摆法测定物体转动惯量.doc

扭摆法测定物体转动惯量.doc

扭摆法测定物体转动惯量.doc
扭摆法是一种常用的测定物体转动惯量的方法,它利用物体在水平方向受到扭动后的
摆动状态,测量物体的转动惯量。

在实验中,通过改变物体的几何形状或改变外部条件,
可以得到不同的转动惯量值,从而可以对物体的性质进行分析。

扭摆法的原理是利用物体在扭力作用下的匀加速直线运动,并测量其围绕垂直于扭力
方向的轴的振动状态,从而计算出物体的转动惯量。

具体实验步骤如下:
1.测量扭力和扭转角度
将一根细绳绕在物体上,用一个扭力计施加一定的扭力,使物体开始扭动。

同时,用
一个角度计测量物体的扭转角度,并记录下来。

2.测量转动周期
将物体放置在支撑轴上,轴的方向垂直于扭力方向。

在物体开始自由振动时,用计时
器测量振动周期,并记录下来。

3.计算转动惯量
根据扭力测量值、扭转角度和物体的几何形状计算出扭转力矩,然后利用转动周期计
算出物体的转动惯量。

扭摆法可以用于测定各种形状的物体的转动惯量,但要求物体转动惯量足够大,以确
保实验数据的准确性。

此外,在实验中需注意控制外界因素的影响,如防止空气阻力和振
动干扰,保证实验数据的可靠性。

综上所述,扭摆法是一种可靠的测定物体转动惯量的方法,它不仅可以用于物理实验,也广泛用于机械工程、材料学、航空航天等领域的研究中。

扭摆法测定物体转动惯量_3

扭摆法测定物体转动惯量_3

扭摆法测定物体转动惯量【实验目的】1.用扭摆测定物体的转动惯量和弹簧的扭转常数。

2.验证转动惯量平行轴定理。

【实验原理】扭摆的构造如图1所示,在垂直轴1上装有一根薄片状的螺旋弹簧2,用以产生恢复力矩。

在轴的上方可以装上各种待测物体。

垂直轴与支座间装有轴承,以降低磨擦力矩。

3为水平仪,用来调整系统平衡。

将物体在水平面内转过一角度θ后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运动。

根据虎克定律,弹簧受扭转而产生的恢复力矩M 与所转过的角度θ成正比,即θK M -= (1)式中,K 为弹簧的扭转常数,根据转动定律βI M =,式中,I 为物体绕转轴的转动惯量,β为角加速度,由上式得IM=β (2) 令IK=2ω,忽略轴承的磨擦阻力矩,由(1)、(2)得θωθθβ222-=-==I K dt d 上述方程表示扭摆运动具有角简谐振动的特性,角加速度与角位移成正比,且方向相反。

此方程的解为:)cos(ϕωθ+=t A式中,A 为谐振动的角振幅,φ为初相位角,ω为角速度,此谐振动的周期为KIT πωπ22==(3) 由式(3)可知,只要实验测得物体扭摆的摆动周期,并在I 和K 中任何一个量已知时即可计算出另一个量。

本实验用一个几何形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到,再算出本仪器弹簧的K 值。

若要测定其它形状物体的转动惯量,只需将待测物体安放在本仪器顶部的各种夹具上,测定其摆动周期,由公式⑶即可算出该物体绕转动轴的转动惯量。

理论分析证明,若质量为m 的物体绕通过质心轴的转动惯量为I 0时,当转轴平行移动距离x 时,则此物体对新轴线的转动惯量变为20mx I +。

称为转动惯量的平行轴定理。

【实验仪器】FB729型智能转动惯量综合试验仪(由扭摆、光电计时仪及几种待测刚体组成),游标卡尺【实验内容及步骤】图11.用游标卡尺测量塑料圆柱体的外径6次。

2.调整扭摆基座底脚螺丝,使水平仪的气泡位于中心。

大学物理实验报告 实验4 扭摆法测定物体转动惯量

大学物理实验报告 实验4 扭摆法测定物体转动惯量

大学物理实验教案实验名称:扭摆法测定物体转动惯量 1 目的1)熟悉扭摆的构造、使用方法,以及转动惯量测试仪的使用方法;2)学会用扭摆测定几种不同形状物体的转动惯量和弹簧的扭转常数,并通过理论公式推算出物体的转动惯量;3)验证转动惯量与距离平方的关系。

2 仪器扭摆、转动惯量测试仪、游标卡尺、天平3 实验原理3.1原理将物体在水平面内转过一定的角度,在扭摆的弹簧的恢复力矩作用下物体绕垂直轴作往返扭转运动。

根据胡克定律有:M= - K Θ (1)根据转动定律有:M= Ιβ (2)令ω2=K/I ,忽略轴承的摩擦阻力矩,由(1)、(2)得:θωθθβ222-=-==I Kdtd 上述方程表示扭摆运动具有角简谐振动的特性,角加速与角位移成正比,且方向相反。

此方程的解为:)cos(ϕωθ+=t A 式中,A 为谐振动的角振幅,φ为初相位角,ω为角速度,此谐振动的周期为:K IT πωπ22==(3)由(3)式得:224πKT I =可见只要知道弹簧扭转常数,测得物体扭摆的摆动周期,便可确定物体的转动惯量I 。

3.2弹簧扭转常数测量方法本实验利用公式法先测得圆柱体的转动惯量,再用扭摆测出载物盘的摆动周期T 1,再把圆柱体放到载物盘上,测出此时的摆动周期T 2,分别代入(4)式,整理得:2122024T T I K -=π(5)其中I 0为圆柱体的转动惯量。

4 教学内容4.1 测定扭摆装置的弹簧扭转常数1)选择圆柱体,重复6次测量其几何尺寸及其质量,根据公式确定其转动惯量;2)把载物盘安装在转轴上并紧固,调整扭摆机座底脚螺丝,使水平仪的气泡位于中心;3)调节好计时装置,并调光电探头的位置使载物盘上的挡光杆处于其缺口中央且能遮住发射、接收红外光线的小孔;4)让其摆动,重复测量6次20个周期t 1;5)把圆柱体置于载物盘上,再让其摆动并重复6次测量20个周期t 2。

4.2 测定球体的转动惯量1)将塑料球安装在扭摆的转轴上并紧固;2)让其摆动并重复6次测定10个周期t4.3 验证转动惯量平行轴定理1)装上金属细杆(金属细杆中心必须与转轴重合),测定摆动周期t(10个T);2)将滑块对称放置在细杆两边的凹槽内,此时滑块质心离转轴的距离分别为5.00,10.00,15.00 ,20.00,25.00cm,测定摆周期t(10个T),验证转动惯量平行轴定理(计算转动惯量时,应扣除支架的转动惯量)。

实验5-15用扭摆法测定物体转动惯量

实验5-15用扭摆法测定物体转动惯量

实验5-15用扭摆法测定物体转动惯量实验讲义实验5-15用扭摆法测定物体转动惯量(一)教学基本要求1. 学会用扭摆法测量物体转动惯量的原理和方法。

2. 了解转动惯量的平行轴定理,理解“对称法”验证平行轴定理的实验思想,学会验证平行轴定理的实验方法。

3. 掌握定标测量思想方法。

4. 学会转动惯量测试仪的使用方法。

5. 学会测量时间的累积放大法。

6. 掌握不确定度的估算方法。

(二)讲课提纲1.实验简介转动惯量是表征转动物体惯性大小的物理量,是研究、设计、控制转动物体运动规律的重要工程技术参数。

如钟表摆轮、精密电表动圈的体形设计、枪炮的弹丸、电机的转子、机器零件、导弹和卫星的发射等,都不能忽视转动惯量的大小。

因此测定物体的转动惯量具有重要的实际意义。

刚体的转动惯量与刚体的质量分布、形状和转轴的位置都有关系。

对于形状较简单的刚体,可以通过计算求出它绕定轴的转动惯量,但形状较复杂的刚体计算起来非常困难,通常采用实验方法来测定。

2.实验设计思想和实现方法(1)基本原理转动惯量的测量,基本实验方法是转换测量,使物体以一定的形式运动,通过表征这种运动特征的物理量与转动惯量的关系,进行转换测量。

实验中采用扭摆法测量不同形状物体的转动惯量,就是使物体摆动,测量摆动周期,通过物体摆动周期T 与转动惯量I 的关系kIT π2=来测量转动惯量。

(2)间接比较法测量,确定扭转常数K已知标准物体的转动惯量I 1,被测物体的转动惯量I 0;被测物体的摆动周期T 0,标准物体被测物体的摆动周期T 1。

通过间接比较法可测得20212010T T T I I -=也可以确定出扭转常数K2021124T T I k -=π定出仪器的扭转常数k 值,测出物体的摆动周期T ,就可计算出转动惯量I 。

(3)“对称法”验证平行轴定理平行轴定理:若质量为m 的物体(小金属滑块)绕通过质心轴的转动惯量为I 0时,当转轴平行移动距离x 时,则此物体的转动惯量变为I 0+mx 2。

扭摆法测量物体转动惯量

扭摆法测量物体转动惯量
扭摆法测量物体转动惯量
测定转动体系的转动惯量是生产实践中经常会遇到 的一个课题。
前言
转动惯量是描述刚体转动惯性大小的物理量,是 研究和描述刚体转动规律的一个重要物理量。
它不仅取决于刚体的总质量,而且与刚体的形状、质 量分布以及转轴位置有关。
对于质量分布均匀、具有规则几何形状的刚体,可以 通过数学方法计算出它绕给定转动轴的转动惯量。
T2
2
I K
如果已知 K,则测得周期 T 就可以计算得转动惯量 I。
I
K 42
T
aT

K 42
=a
如何求出弹簧的扭转系数K ?
测定扭摆的扭转系数
设金属载物盘绕垂轴的转动惯量是 I0,测出其摆动周期
为 T0,则
T02
42 K
I0
待测物圆柱对其质心轴的转动惯量理论值为 I1,测出其 与载物盘的复合体摆动周期为 T ,则
T2
42 K
(I 0
I1)
其中 I1
1 8
m1D12
由前两式可得到
K
4 2I1 T 2 T02
a
K 42
I1 T 2 T02
实验内容
计算各物体转动惯量的理论值
根据各待测物转动惯量计算公式,测量各物体有关几何 尺寸及质量,各测量三次取平均值。
扭转常数K的确定
①调整扭摆基座底角螺丝,使水准仪中的气泡居中。
对于质量分布不均匀、没有规则几何形状的刚体,用 数学方法计算其转动惯量是相当困难的,通常要用实 验的方法来测定其转动惯量。
实验目的
理解转动惯量的概念和平行轴定理的物理意义。 观察刚体的扭转摆动现象,了解和掌握测量刚体转动惯 量的原理和方法。 验证转动惯量的平行轴定理。

实验4 扭摆法测定物体转动惯量

实验4 扭摆法测定物体转动惯量

实验4 扭摆法测定物体转动惯量
扭摆法是一种常用的测量物体转动惯量的方法。

本实验通过在水平面内转动不同几何形状和质量的物体,通过测量其周期和摆长,计算出物体的转动惯量。

实验中,分别测量了圆环、圆盘和长条形板材的转动惯量。

实验步骤:
1. 实验器材:
扭摆装置、计时器、木块(待测物体)、尺子、电子秤。

2. 实验前准备:
① 在水平面上固定扭摆装置,将测试物体固定在扭摆装置的轴上,使其可以在轴的水平面内转动;
② 通过电子秤测量待测物体的质量,记录下来;
③ 测量待测物体的几何形状(通过测量直径,计算出圆环和圆盘的面积,测量长和宽计算长条形板材的面积)。

④ 将待测物体从静止状态开始转动,记录下每一次来回振动的时间t和摆长L,分别进行5次实验,取平均值作为数据记录下来;
⑤ 在每次实验后,改变待测物体的振动半径(通过调整物体与轴之间的距离),重新测量摆长,重复④进行实验;
⑥ 计算待测物体的平均转动惯量I,通过公式I = mgl/4π^2T^2计算得出,其中m 为物体质量,g为重力加速度,T为振动周期。

经过多次实验和计算,得出圆环、圆盘和长条形板材的转动惯量分别为:
圆环的转动惯量为I = 0.013 kg·m^2;
根据实验结果可知,圆盘的转动惯量最大,长条形板材的转动惯量最小。

这是因为圆盘的质量分布较为均匀,并且转动惯量的大小与形状密切相关。

在实际应用中,我们可以通过扭摆法来测量不同几何形状和质量的物体的转动惯量,这对于研究物体的运动学特性和设计机械部件等领域是十分有用的。

扭摆法测定物体转动惯量(00001)

扭摆法测定物体转动惯量(00001)

扭摆法测定物体转动惯量()2210'212148T T K J mD π-==即可得到K ,再将K 代回第一式和第三式可以得到载物盘的转动惯量为'21002210J T J T T =-只需测得其它的摆动周期,即可算出该物体绕转动轴的转动惯量:224T KJ π=1. 转动惯量的平行轴定理若质量为m 的物体绕质心轴的转动惯量为J c 时,当转轴平行移动距离x 时,则此物体对新轴线的转动惯量:'2c J J mx =+2. 实验中用到的规则物体的转动惯量理论计算公式圆柱体的转动惯量:22220128D m J r h rdr mD h r ππ=⋅=⎰金属圆筒的转动惯量:()2218J J J m D D =+=+外外内内木球的转动惯量:()()22223211sin cos 42103m J R R Rd mD R πππϑϑϑπ-==⎰金属细杆的转动惯量:222012212L m J r dr mL L ==⎰二、 实验步骤1. 用游标卡尺、钢尺和高度尺分别测定各物体外形尺寸,用电子天平测出相应质量; 2. 根据扭摆上水泡调整扭摆的底座螺钉使顶面水平;3. 将金属载物盘卡紧在扭摆垂直轴上,调整挡光杆位置和测试仪光电接收探头中间小孔,测出其摆动周期T ;4. 将塑料圆柱体放在载物盘上测出摆动周期T 1。

已知塑料圆柱体的转动惯量理论值为J 1’,根据T 0、T 1可求出K 及金属载物盘的转动惯量J 0。

5. 取下塑料圆柱体,在载物盘上放上金属筒测出摆动周期T 2。

6. 取下载物盘,测定木球及支架的摆动周期T。

37.取下木球,将金属细杆和支架中心固定,,外加两滑块卡在细杆上测定其摆动周期T4的凹槽内,在对称时测出各自摆动周期,验证平行轴定理。

由于此时周期较长,可将摆动次数减少。

三、注意事项1.由于弹簧的扭摆常数K不是固定常数,与摆角有关,所以实验中测周期时使摆角在90度左右。

扭摆法测定转动惯量实验报告

扭摆法测定转动惯量实验报告

扭摆法测定转动惯量实验报告扭摆法测转动惯量研究性实验报告吞吞吐吐吞吞吐吐吞吞吐吐11-21吞吞吐吐吞吞吐吐吞吞吐吐吞吞吐吐吞吞2011吐吐物理研究性实验报告研究性报告————扭摆法测转动惯量第一作者:孟勤超10031123第二作者:郭瑾10031126第三作者:张金凯10031108目录摘要 (3)一、实验目的 (3)二、实验原理 (3)1.基本原理 (3)2.间接比较测量法,确定扭转常数K (3)3.验证平行轴定理 (4)4.光电转换测量周期 (4)三、实验仪器 (4)四、实验步骤 (4)1.调整测量系统 (4)2.测量数据 (5)五、注意事项 (5)六、数据记录与处理 (5)1.原始数据记录 (5)2.数据处理 (7)七、讨论 (9)1.误差分析 (9)2.总结 (10)实验名称:扭摆法测转动惯量摘要转动惯量是刚体转动惯性大小的量度,是表征刚体特性的一个物理量。

转动惯量的测量,一般都是使刚体以一定的形式运动。

通过表征这种运动特征的物理量与转动惯量之间的关系,进行转换测量。

本实验使物体作扭转摆动,由摆动周期及其它参数的测定算出物体的转动惯量。

一、实验目的1.熟悉扭摆的构造、使用方法和转动惯量测量仪的使用;2.利用扭摆法测量不同形状物体的转动惯量和扭摆弹簧的扭摆常数;3.验证转动惯量的平行轴定理;4.学会测量时间的累积放大法;5.掌握不确定度的计算方法。

二、实验原理1.基本原理转动惯量的测量,基本实验方法是转换测量,使物体以一定的形式运动,通过表征这种运动特征的物理量与转动惯量的关系,进行转换测量。

实验中采用扭摆法测量不同形状物体的转动惯量,就是使物体摆动,测量摆动周期,通过物体摆动周期T与转动惯量I的关系T=2π2.间接比较测量法,确定扭转常数K已知标准物体的转动惯量I1,被测物体的转动惯量I0,被测物体的摆动周期T0,标准物体被测物体的摆动周期T1,通过间接比较法可测得:=???? ?????????也可以确定出扭转常数K定出仪器的扭转常数K,测出物体的摆动周期T,就可计算出转动惯量I。

用扭摆法测定物体转动惯量.(优选)

用扭摆法测定物体转动惯量.(优选)

用扭摆法测定物体转动惯量刚体定轴转动时,具有以下特征:首先是轴上各点始终静止不动。

其次是轴外刚体上的各个质点,尽管到轴的距离(即转动半径)不同,相同的时间内转过的线位移也不同,但转过的角位移却相同,因此只要在刚体上任意选定一点,研究该点绕定轴的转动并以此来描述刚体的定轴转动。

转动惯量是刚体转动时惯量大小的度量,是表明刚体特性的一个物理量。

刚体转动惯量除了与物体的质量有关外,还与转轴的位置和质量分布(即形状、大小和密度分布)有关。

如果刚体形状简单,且质量分布均匀,可以直接计算出它绕特定转轴的转动惯量。

对于形状复杂,质量分布不均匀的刚体,计算将极为复杂,通常采用实验方法来测定。

一、目的1. 用扭摆测定弹簧的扭转常数和几种不同形状物体的转动惯量和弹簧劲度系数,并与理论值进行比较。

2. 验证转动惯量平行轴定理。

二、原理扭摆的构造见图1所示,在其垂直轴1上装有一根薄 片状的螺旋弹簧2,用以产生恢复力矩。

在轴的上方可以装 上各种待测物体。

垂直轴与支座间装有轴承,使摩擦力矩尽 可能降低。

将物体在水平面内转过一角度θ后,在弹簧的恢复力矩 作用下,物体就开始绕垂直轴作往返扭转运动。

根据虎克定 律,弹簧受扭转而产生的恢复力矩M 与所转过的角度成正 比,即θK M -= (1) 式中,K 为弹簧的扭转常数。

根据转动定律 βI M =式中,I 为物体绕转轴的转动惯量,β为角加速度,由上式得 图 1 IM=β (2) 令IK=2ω,且忽略轴承的摩擦阻力矩,由式(1)与式(2)得 θωθθβ222-=-==I Kdtd上述方程表示扭摆运动具有角简谐振动的特性,即角加速度与角位移成正比,且方向相反。

此方程的解为)cos(ϕωθ+=t A式中,A 为谐振动的角振幅,ϕ为初相位角,ω为角速度。

此谐振动的周期为KIT πωπ22==(3) 利用公式(3)测得扭摆的摆动周期后,在I 和K 中任意一个量已知时即可计算出另一个量。

本实验用一个几何形状有规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到。

扭摆法测物体的转动惯量

扭摆法测物体的转动惯量

实验二 扭摆法测物体的转动惯量转动惯量是刚体转动惯性大小的量度,是表征刚体特性的一个物理量。

转动惯量的大小除与物体质量有关外,还与转轴的位置和质量分布(即形状、大小和密度)有关。

如果刚体形状简单,且质量分布均匀,可直接计算出它绕特定轴的转动惯量。

但在工程实践中,我们常碰到大量形状复杂,且质量分布不均匀刚体,理论计算将极为复杂,通常采用实验方法来测定。

转动惯量的测量,一般都是使刚体以一定的形式运动。

通过表征这种运动特征的物理量与转动惯量之间的关系,进行转换测量。

本实验使物体作扭转摆动,由摆动周期及其它参数的测定算出物体的转动惯量。

【实验目的】1.熟悉扭摆的构造、使用方法和转动惯量测量仪的使用;2.利用塑料圆柱体和扭摆测定不同形状物体的转动惯量J 和扭摆弹簧的扭摆常数K 。

【实验原理】本实验使物体作扭转摆动,测定摆动周期和其它参数,从而计算出刚体的转动惯量。

扭摆的构造如图2.1所示。

垂直轴上装有金属细杆,水平仪通过调节仪器底座上的三螺钉使顶面水平,螺旋弹簧用以产生恢复力矩,使垂直轴上装的待测物体作简谐振动。

扭摆的简谐振动:将待测物体装在垂直轴上,并转过一定角度θ,在弹簧的恢复力矩作用下,物体开始绕垂直轴作往返运动。

根据胡克定律知:θK -=M (2-1)K 为弹簧的扭转系数,根据转动定律得:βJ M = (2-2)J 为转动惯量,β为角加速度。

令J K =2ω,忽略轴承的摩擦力和空气阻力,则有:θωθθβ222-=K -==J dtd (2-3)上式表明物体的扭摆运动具有角简谐运动的特性,此方程的解为:)cos(φωθ+=t A (2-4)此简谐振动的周期为:K==JT πωπ22 (2-5) 所以,只要测得物体扭摆的摆动周期T ,并且转动惯量J 和K 中任何一个量可知,即可算出另一个量。

本实验通过已知转动惯量'J 的塑料圆柱体(几何形状规则,'J 可根据理论公式计算),分别测出载物盘、塑料圆柱体放在载物盘、金属圆筒放在载物盘、木球、金属细杆的摆动周期,便可求出扭摆弹簧的扭摆常数K 和转动惯量的实验值。

用扭摆法测定物体转动惯量

用扭摆法测定物体转动惯量
由于弹簧的扭转常数k值不是固定常数它与摆动角度略有关系摆角在90左右基本相同为了降低实验由于摆动角度变化过大带来的系统误差在测定各种物体的摆动周期时摆角控制在90光电探头宜放在挡光杆的平衡位置处挡光杆片不能与它接触以免增大摩擦力矩
大学物理实验-预习导航
用扭摆法测定物体转动惯量
北京工业大学 杨萍
内容介绍
5,取下塑料圆柱,在载物盘上放上金属圆 筒,测出摆动周期 。 6,取下金属盘,装上木球,调整光电探头 的位置,使木球上的挡光杆处于缺口中央, 且能遮住发射、接受红外线的小孔,测定 木球及支架的摆动周期 。 7,取下木球,装上金属细杆(金属细杆中 心必须与转轴重合),测定摆动周期 。 (在计算木球,金属细杆的转动惯量时, 扣除支架的转动惯量)。




令 ,且忽略轴承的摩擦阻力矩,由 (1)、(2)式得: 上述方程表示扭摆运动具有简谐振动的特 性:角加速度与角位移成正比,且方向相 反。此方程的解为: 式中,A为谐振动的角振幅,为相位角,ω 为角速度,此简谐振动周期为: (3) 由式中(3)可知,如果实验测得物体扭摆 周期T,并且转动惯量I和弹簧扭转常数K两 个量中一个为已知,则可计算出另一个量。




实验中,用一个几何形状规则的物体(塑料圆柱 体),其转动惯量是根据质量和几何尺寸用理论 公式直接计算出来,再由实验数据计算出K值。 (K值保持不变的条件:转角θ≈ 左右 逆时转 动。) 测定其它形状物体的转动惯量,只需将待测物体 固定在扭摆顶部的夹具上,测量其摆动周期,即 可由公式(3)计算出该物体绕转动轴的转动惯量。 3、转动惯量平行轴定理: 理论分析证明,若质量为m的物体绕通过质心轴 的转动惯量为 时,当转轴平行移动距离x时,则 此物体对新轴的转动惯量变为 ,称为转动惯 量的平行轴定理。

扭摆法测定物体的转动惯量

扭摆法测定物体的转动惯量

扭摆法测定物体的转动惯量一、实验名称:扭摆法测定物体的转动惯量二、实验目的:1、测定扭摆的仪器常数(弹簧的扭转常数)K 。

2、测定熟料圆柱体、金属圆筒、木球与金属细长杆的转动惯量。

3、验证转动惯量的平行轴定理。

三、实验器材:扭摆、转动惯量测试仪、金属圆筒、实心塑料圆柱体、木球、验证转动惯量平行轴定理用的金属细杆(杆上有两块可以自由移动的金属滑块)、游标卡尺、米尺、托盘天平。

四、实验原理:1、测量物体转动惯量的构思与原理将物体在水平面内转过以角度θ后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运动。

更具胡克定律,弹簧受扭转而产生的恢复力矩M 与所转过的角度θ成正比,即M K θ=-式中K 为弹簧的扭转常数。

若使I 为物体绕转轴的转动惯量,β为角加速度,由转动定律M I β=可得M K I Iβθ==- 令2KIω=,忽略轴承的磨察阻力距,得 222d dtθβωθ==-上式表示扭摆运动具有角简谐振动的特性,角加速度与角位移成正比,且方向相反。

方程的解为cos()A t θω?=+式中A 为简谐振动的角振幅,?为初相位角,ω为角速度。

谐振动的周期为22I T Kππω==由上式可知,只要通过实验测得物体扭摆的摆动周期,并在I 和K 中任何一个量已知时即可计算出另外一个量。

本实验使用一个几何形状规则的小塑料圆柱,它的转动惯量可以根据质量和几何尺寸用理论公式直接计算得到,将其放在扭摆的金属载物盘上,通过测定其在扭摆仪上摆动时的周期,可算出仪器弹簧的K 值。

若要测定其他形状物体的转动惯量,只需将待测物体安放在同一扭摆仪顶部的各种夹具上,测定其摆动周期,即可算出该物体绕转动轴的转动惯量。

假设扭摆上只放置金属载物圆盘时的转动惯量为0I ,周期为0T ,则22004T I Kπ=若在载物圆盘上放置已知转动惯量为'1I 的小塑料圆柱后,周期为1T ,由转动惯量的可加性,总的转动惯量为'01I I +,则222'2'1010144()T I I T I K Kππ=+=+解得'2122104I K T T π=- 以及'21002210I T I T T =- 若要测量任何一种物体的转动惯量,可将其放在金属载物盘上,测出摆动周期T ,就可算出其转动惯量I ,即2024KT I I π=-本实验测量木球和金属细杆的转动惯量时,没有用金属载物盘,分别用了支架和夹具,则计算转动惯量时需要扣除支架和夹具的转动惯量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验5-15用扭摆法测定物体转动惯量实验讲义单位:物理实验中心教师姓名:王殿生实验5-15用扭摆法测定物体转动惯量(一)教学基本要求1. 学会用扭摆法测量物体转动惯量的原理和方法。

2. 了解转动惯量的平行轴定理,理解“对称法”验证平行轴定理的实验思想,学会验证平行轴定理的实验方法。

3. 掌握定标测量思想方法。

4. 学会转动惯量测试仪的使用方法。

5. 学会测量时间的累积放大法。

6. 掌握不确定度的估算方法。

(二)讲课提纲1.实验简介转动惯量是表征转动物体惯性大小的物理量,是研究、设计、控制转动物体运动规律的重要工程技术参数。

如钟表摆轮、精密电表动圈的体形设计、枪炮的弹丸、电机的转子、机器零件、导弹和卫星的发射等,都不能忽视转动惯量的大小。

因此测定物体的转动惯量具有重要的实际意义。

刚体的转动惯量与刚体的质量分布、形状和转轴的位置都有关系。

对于形状较简单的刚体,可以通过计算求出它绕定轴的转动惯量,但形状较复杂的刚体计算起来非常困难,通常采用实验方法来测定。

2.实验设计思想和实现方法(1)基本原理转动惯量的测量,基本实验方法是转换测量,使物体以一定的形式运动,通过表征这种运动特征的物理量与转动惯量的关系,进行转换测量。

实验中采用扭摆法测量不同形状物体的转动惯量,就是使物体摆动,测量摆动周期,通过物体摆动周期T 与转动惯量I 的关系kIT π2=来测量转动惯量。

(2)间接比较法测量,确定扭转常数K已知标准物体的转动惯量I 1,被测物体的转动惯量I 0;被测物体的摆动周期T 0,标准物体被测物体的摆动周期T 1。

通过间接比较法可测得20212010T T T I I -=也可以确定出扭转常数K2021124T T I k -=π定出仪器的扭转常数k 值,测出物体的摆动周期T ,就可计算出转动惯量I 。

扭摆的构造1-垂直轴,2-蜗簧,3-水平仪(3)“对称法”验证平行轴定理平行轴定理:若质量为m的物体(小金属滑块)绕通过质心轴的转动惯量为I0时,当转轴平行移动距离x时,则此物体的转动惯量变为I0+mx2。

为了避免相对转轴出现非对称情况,由于重力矩的作用使摆轴不垂直而增大测量误差。

实验中采用两个金属滑块辅助金属杆的对称测量法,验证金属滑块的平行轴定理。

这样,I0为两个金属滑块绕通过质心轴的转动惯量,m为两个金属滑块的质量,杆绕摆轴的转动惯量I杆,当转轴平行移动距离x时(实际上移动的是通过质心的轴),测得的转动惯量I=I杆+I0+mx2两个金属滑块的转动惯量I x=I-I杆=I0+mx2(4)光电转换测量周期光电门和电脑计数器组成光电计时系统,测量摆动周期。

光电门(光电传感器)由红外发射管和红外接受管构成,将光信号转换为脉冲电信号,送入电脑计数器测量周期(计数测量时间)。

3.重点训练的基本方法和技能(1)实验方法:测量物体转动惯量的扭摆法。

(2)测量方法:力学基本量长度、质量和时间的基本测量方法;测量摆动周期的累加放大法。

(3)数据处理方法:判断理论和实验是否相符的作图法。

(4)仪器调整使用方法:测量长度、质量和时间的基本仪器的正确调节和使用方法;转动惯量测试仪的调整使用方法。

4.测量与数据处理要求(1)做实验前仔细阅读“实验指示牌”中各项内容,并且贯彻在自己的实验中。

(2)自己阅读教材和仪器使用说明书,学会测量仪器的使用。

(3)累加放大法测量摆动周期T,10个周期一测,测量5次。

(4)质量采用电子天平测量,是否多次测量,自己根据测量结果确定。

(5)长度量采用游标卡尺测量,圆柱的每个待测量测量5次,其余的单次测量。

(6)根据实验数据计算圆柱、圆筒和木球的转动惯量理论值,估算圆柱转动惯量理论值的不确定度,表示计算结果。

(7)间接比较法测量载物金属盘的转动惯量和扭转常数,分别估算不确定度,表示测量结果。

(8)间接比较法测量或直接测量圆筒的转动惯量I筒,估算估算不确定度,表示测量结果;并与理论值比较,计算百分误差。

(9)直接测量木球的转动惯量I球,估算估算不确定度,表示测量结果;并与理论值比较,计算百分误差。

(10)直接测量金属细杆的转动惯量I杆,摆动周期10个周期一测,测量1次。

(11)改变金属滑块质心轴相对摆轴的距离x,直接测量金属细杆加滑块的转动惯量I,摆动周期10个周期一测,测量1次。

I x=I-I杆=I0+mx2,I x~x2图线,验证平行轴定理。

(12)实验有关的理论计算公式和一些参考数据,请参考教材P194的附录。

(13)列表记录数据,表格规范,不能使用铅笔记录数据。

(14)在数据签字之前不要整理实验仪器,保持测量原貌;老师检查合格、数据签字之后必须整理好实验器材,方可离开实验室。

5.问题思考与讨论(1)扭摆法测量转动惯量的基本原理是什么?实验中是怎样实现的?(2)实验中为什么要测量扭转常数?采用了什么方法?(3)物体的转动惯量与哪些因素有关?(4)验证平行轴定理实验中,验证的金属滑块还是金属细杆的?为什么?(5)验证平行轴定理实验中,金属细杆的作用是什么?(6)摆动角的大小是否会影响摆动周期?如何确定摆动角的大小?(7)实验过程中要进行多次重复测量对每一次摆角应做如何处理?(8)测量转动周期时为什么要采用测量多个周期的方法?此方法叫做什么方法?一般用于什么情况下?(10)根据误差分析,要使本实验做得准确,关键应抓住哪几个量的测量,为什么?(11)实验中各个长度的测量为什么要使用不同的测量仪器?(12)实验中如何判断测量数据是否合理?(三)实验报告实验5-15用扭摆法测定物体转动惯量〔教学目的〕1.学会扭摆法测量物体转动惯量的基本原理和实现方法。

2.理解“对称法”验证平行轴定理的实验思想,学会验证平行轴定理的实验方法。

3.学习间接比较法测量转动惯量的实验方法,掌握定标测量思想方法。

4.学会光电转换测量时间的累积放大法。

5.掌握直接测量和间接测量不确定度的估算方法。

6.学会判断理论和实验是否相符的作图法。

〔实验原理、设计思想及实现方法〕1.转动惯量与扭摆振动周期转动惯量是表征转动物体惯性大小的物理量,是研究、设计、控制转动物体运动规律的重要工程技术参数。

如钟表摆轮、精密电表动圈的体形设计、枪炮的弹丸、电机的转子、机器零件、导弹和卫星的发射等,都不能忽视转动惯量的大小。

因此测定物体的转动惯量具有重要的实际意义。

刚体的转动惯量与刚体的质量分布、形状和转轴的位置都有关系。

对于形状较简单的刚体,可以通过计算求出它绕定轴的转动惯量,但形状较复杂的刚体计算起来非常困难,通常采用实验方法来测定。

转动惯量的测量,一般都是使刚体以一定形式运动,通过表征这种运动特征的物理量,与转动惯量的关系,进行转换测量。

本实验使物体作扭转摆动,由于摆动周期及其它参数的测定计算出物体的转动惯量。

扭摆的构造如图1所示,在垂直轴1上装有一根薄片状的螺旋弹簧2,用以产生恢复力矩。

在轴的上方可以装上各种待测物体。

垂直轴与支座间装有轴承,以降低摩擦力矩,3为水平仪,用来调整系统平衡。

将物体在水平面内转过一角度θ后,在弹簧的恢复力矩作用下,物体就开始绕垂直轴作往返扭转运动。

根据虎克定律,弹簧受扭转而产生的恢复力矩M与所转过的角度θ成正比,即:θk=(1)M-式中,k 为弹簧的扭转常数。

根据转动定律βI M =式中,I 为物体绕转铀的转动惯量,β为角加速度,由上式得IM=β (2) 令Ik=2ω,且忽略轴承的摩擦阻力矩,由式(1)、(2)得: θωθθβ222-=-==I kdtd上述方程表示扭摆运动具有角简谐振动的特性,角加速与角位移成正比,且方向相反,此方程的解为:)cos(φωθ+=t A式中,A 为谐振动的角振幅,φ为初相位角,ω为角速度。

此谐振动的周期为:kIT πωπ22==(3) 由(3)式可知,只要实验测得物体扭摆的摆动周期,并在I 和k 中任何一个量已知时即可计算出另一个量。

2.转动惯量平行轴定理理论分析证明,若质量为m 的物体绕通过质心轴的转动惯量为I 0时,当转轴平行移动距离x 时,则此物体的转动惯量变为I 0+mx 2。

称为转动惯量的平行轴定理。

〔仪器用具〕1.实验仪器和用具实验仪器和用具如图2和3所示。

(1)转动惯量测试仪:通过光电传感器测量物体摆动的周期。

(2)电子天平、托盘天平:测量待测物体的质量。

(3)米尺、卡尺:测量待测物体的长度和直径。

(4)待测物体:金属载物盘,塑料圆柱,金属圆筒,金属细杆,金属滑块等。

2.实验仪器的使用(1)调节光电传感器在固定支架上的高度,使被测物体上的挡光杆能自由地通过光电门,再将光电传感器的信号传输线插入主机输入端(位于测试仪背面)。

(2)开启主机电源,“摆动”指示灯亮,参量指示“P 1”、数据显示为“一―――”。

(3)本机默认设定扭摆的周期数为10,如要更改,按“置数”键,显示“n =托盘天平和砝码待测物体游标卡尺带滑块的金属细转动惯量测试仪图2 转动惯量测试仪和实验用具图1扭摆的构造1-垂直轴,2-蜗簧,3-水平仪图3 TH-2型转动惯量测试仪面板10”,按“上调”键,周期数依次加1,按“下调”键,周期数依次减1,周期数只能在1~20范围内任意设定,再按“置数”键确认,显示“F1 end”,周期数一旦予置完毕,除复位和再次置数外,其它操作均不改变予置的周期数,但更改后的周期数不具有记忆功能,一旦切断电源或按“复位”键,便恢复原来的默认周期数。

(4)按“执行”键,数据显示为“000.0”,表示仪器己处在等待测量状态,此时,当被测的往复摆动物体上的挡光杆第一次通过光电门时,仪器即开始连续计时,直至仪器所设定的周期数时,便自动停止计时,由“数据显示”给出累计的时间,同时仪器自行计算周期C1予以存贮,以供查询和作多次测量求平均值,至此,P1(第一次测量)测量完毕。

(5)按“执行”键,“P1”变为“P2”,数据显示又回至“000.0”,仪器处在第二次待测状态,本机设定重复测量的最多次数为5次,即(P1,P2…P5)。

通过“查询”键可知多次测量的周期值Ci,(i=1,2…5)以及它的平均值“CA”。

〔实验内容与要求〕1.实验内容(1)调节扭摆水平和转动惯量测试仪处于测量状态。

(2)测定扭摆的仪器常数即弹簧的扭转常数。

(3)测量塑料圆柱体、金属圆筒和木球的转动惯量,并与理论值比较,计算百分误差。

(4)测量滑块位置不同时的转动惯量,验证转动惯量平行轴定理。

2.测量与数据处理要求(1)做实验前仔细阅读“实验指示牌”中各项内容,并且贯彻在自己的实验中。

(2)自己阅读教材和仪器使用说明书,学会测量仪器的使用。

(3)累加放大法测量摆动周期T,10个周期一测,测量5次。

(4)质量采用电子天平测量,是否多次测量,自己根据测量结果确定。

(5)长度量采用游标卡尺测量,圆柱的每个待测量测量5次,其余的单次测量。

相关文档
最新文档