CAE(ansys)汽车发动机连杆课程设计论文
基于ANSYS的发动机连杆分析设计
21 0 1年 1 1月
De eo me t& I n v t no c i ey& E e t c lP o u t v lp n n o ai f o Ma hn r lcr a r d cs i
机 电 产 品 开 发 与 新
VO.4, . I NO5 2
约 为 27 5 162N;② 活 塞组 的惯 性力 包 括 活塞 、活 塞环 、
活 塞 销 、活 塞 销 卡 环 ,其 总质 量 记 为 M ,以活 塞 加 速 度 i作 变 速 直 线 运 动 , 则 活 塞 组 的 惯 性 力 为 一
收 稿 日期 :2 1 — 9 2 0 10 — 0 作 者 简 介 :朱 同 波 (9 6 ) 男 , 高校 教 师 。 研 究 方 向 :机 18- , 械 设 计 制 造 ; 吴 传 富 (9 7 ,男 , 高校 教 师 。研 究 方 向 : 18 -)
通信工程 。
长期 使 用 中 。会 因活塞 的剧 烈推 力 和曲轴 的 高速运 转 等 因素 ,致 使 连杆 出现 弯 曲和 扭 曲等现 象 。为此 连杆 必 须 有足 够 的刚度 。
此 ,有 限 元 法 在 动 力 机 械 中得 到 了 越 来 越 广 泛 的 应 用 ,
模 型是 在 静力 分析 模 型的基 础上 ,通 过 考虑 其 体积 而对
载 荷重 新计 算 和模 型处 理后 得 到 的。 由于计 算模 型 与实
并 取 得 了实际 的效益 。
际 结 构 、工 作 情 况 比较 接 近 .计 算 应 力 值 比较 符 合 实
22 连杆 几何 实体模 型 的建 立 .
本 文所 研 究 的汽 车连杆 如 图 1 示 ,连 杆 的厚度 为 所 05n,图 中标 注尺 寸 的单位 均 为英制 。在 小 头孔 的 内测 .i 9 。 罔 内承 受 P 10 p i 面 载 荷 作 用 ,利 用 有 限 元 0范 = 00s 的 分 析 该连 杆 的 受 力状 态 。连 杆 的材料 属 性 为杨 氏模 量 . E干2 O Pa泊 松 比为 03 0G I。 由于 连杆 的 结 构 和 载 荷 均 对 称 . 因此 在 分 析 时 只 需 采用 一 半 进行 分 析 。在 A S S中采 用 由底 向 上 的建 NY 模 方式 .用 2 0节点 的 S LD 5单 元 划 分 网格 并 用 P G O I9 C 求 解 器求 解 。图 2用 A S S软 件 直接 建 立 的连 杆 实 体 NY
基于ANSYS的发动机连杆分析设计
·制造业信息化·收稿日期:2011-09-20作者简介:朱同波(1986-),男,高校教师。
研究方向:机械设计制造;吴传富(1987-),男,高校教师。
研究方向:通信工程。
0引言对连杆进行了三维准静态有限元分析研究,其计算模型是在静力分析模型的基础上,通过考虑其体积而对载荷重新计算和模型处理后得到的。
由于计算模型与实际结构、工作情况比较接近,计算应力值比较符合实际,基本上能较准确的分析出连杆的受力情况,且能实时知道连杆各个节点的受力状况,从而可以分析计算出连杆所能承受的最大载荷及其分布部位。
1概述1.1有限元分析的优点动力工程中的动力机械,由于要完成各自独特的功能,一般都有着比较复杂的结构形状,其中有相当大一部分结构,其所处的工作条件也十分复杂。
采用传统的力学方法只能近似地反映其受力状况以及变形清况,远不能满足进一步分析的需要。
有限元法的出现,给动力机械的结构分析提供了一种可靠的理论计算方法。
有限元分析是一种预测结构的偏移与其它应力影响的过程,由于有限元法的一个独特的优点是可以求解结构形状和边界条件都相当任意的力学问题。
因此,有限元法在动力机械中得到了越来越广泛的应用,并取得了实际的效益。
有限元分析具有模型修改方便,计算速度快的特点,而且能够模拟一些难以用实验模拟的工况,计算结果对力学因素的反应不受到试样材料缺陷和加工质量的影响,因而评估结果更清楚。
1.2连杆的工作条件连杆是内燃机组成的重要传动零件之一,其作用是连接活塞与曲轴,将作用在活塞上的力传给曲轴,并将活塞所受的气体爆发力传给曲轴,使活塞的往复运动转变为曲轴的旋转运动,对外输出作功。
连杆工作的小端作往复运动,大端作旋转运动,杆身作复杂的平面运动,因此连杆的受力情况十分复杂。
连杆是承受负荷最严重的零件之一,同时承受着活塞传来的气体压力、往复惯性力和它本身摆动时所产生的惯性力的作用,这些力的大小和方向周期性变化,易引起连杆疲劳破坏。
CAE(ansys)汽车发动机连杆课程设计论文
连杆简化模型的有限元分析一.个人任务1.连杆简化模型的静力学分析2.参数化研究与目标驱动优化设计二.分析所需数据见《汽车设计课程设计指导书》P6 明细三.连杆的实体模型和网络模型连杆简化实体模型连杆简化网络模型四.连杆原设计在各种接触条件下进行有限元分析后得到的变形图和应力图方案一:连杆小头里铜环壁施加均匀压强 P=52MPa载荷施加图小铜环与连杆小头在不同接触条件下的接触分析:1.bonded2. frictionless3.rough4. frictional_0.15 摩擦系数0.15最大值TotalDeformationEquivalentStressNormalStressTotalDeformation2TotalDeformation3均匀载荷0.084824mm 312.83MPa 246.05MPa 0.084447mm 0.080688mm轴承载荷0.083415 311.31 260.34在方案一的载荷情况下:在DS中进行拓扑优化方案二:连杆小头里铜环壁施加轴承载荷 X方向的力F=5*sqrt2*3*e-6*52*e6=1102.92N Bonded - Solid To Solid在方案二的载荷情况下:在DS中进行拓扑优化五.局部网格细化的研究方案一在施加均匀压力的条件下:方案二在施加轴承载荷的条件下:最大Total Equivalent Normal Total Total值Deformation Stress Stress Deformation2 Deformation3 均匀0.084824mm 312.83MPa 246.05MPa 0.084447mm 0.080688mm 载荷0.083415 311.31 260.34轴承载荷六.参数化研究和目标驱动的优化设计(在DS中进行优化设计)在DS仿真后建立DX模型进行测试,测试出在既定的形状下模型的最理想受载情况在进行目标驱动优化前,利用响应图查看整个系统的特性七.对设计结构进行修改取变量有铜环直径,连杆小头直径,连杆大头到连杆小头之间的距离优化后的受载情况:. ..八.具体分析操作中遇到的问题汇总1.建模过程中(DM 模型),要考虑在DS 模型中的成角度曲面的约束和施加载荷对连杆大头和小头进行扇形建模2.在建模的过程中为了构造用于施加约束和载荷的扇形曲面,在构造扇形的过程中要一个扇形一个扇形的建模,建模完一个扇形后,在准备建立下一个扇形以前,记得对已经建立的扇形模型进行冻结操作3.网格划分过程中,首先用的是整体自动网格划分,后来进行了局部细化网格分析,而细化网格的方法大致有两种,一个用的是Contact Sizing ,一个是Part Relevance ,自己对比分析两种方法4.在施加边界条件时发现,连杆小头里的铜环和连杆小头在不同的接触条件下仿真分析出来的结果很不相同,本人分别用了bounded, frictionless, rough, fritional (摩擦系数0.15)进行了对比分析5.对连杆小头里面铜环壁90°曲面的载荷施加,采取了两种对比分析,一是均匀压强载荷分析,一是轴承载荷分析,即在连杆轴线方向,离连杆小头轴心距离越远,受到的轴线方向的载荷越大,根据圆曲面的对称性求出了轴线方向,即X 方向的力F=1102.92N6.目标驱动优化分析(DOE )中八.课程设计总结CAE 技术在汽车的设计和改善技术中的应用越来越多,仿真的方法越来越接近汽车在实际使用中的运行工况,从而改善了汽车的设计和完善水平,减少了实车实验的成本,缩短了整车开发的周期,能更快,更好的解决汽车在实际使用中的问题。
机械毕业设计(论文)基于ansys的连杆机构的有限元分析【全套设计】
湘潭大学兴湘学院毕业设计论文题目:连杆机构的有限元分析全套设计,加153893706专业:机械设计制造及其自动化学号: 2010963028 姓名:指导教师:完成日期: 2014 年 5 月 25 日湘潭大学兴湘学院毕业论文(设计)任务书论文(设计)题目:连杆机构的有限元分析学号: 2010963028姓名:专业:机械设计制造及其自动化指导教师:系主任:一、主要内容及基本要求1、总结连杆机构设计方法研究和连杆机构研究的发展状况和发展趋势,在总结前人研究成果的基础上,结合当前的技术发展趋势,采用有限元方法来进行开展研究。
2、阐述学习理论基础,即瞬态动力学分析,简要论述瞬态参数,识别原理。
3、简要论述有限元方法和动力学分析的基本求解过程,建立连杆机构中的曲柄滑块机构的有限元模型,合理的确定曲柄长度及转速、连杆长度和转速,偏距,选定和创建单元类型,指点单元属性,创建铰链单元,采用瞬态动力学分析瞬态分析类型对其进行瞬态分析,与图解法进行比较,验证有限元瞬态求解功能。
4、联系工程实际,对受力连杆进行结构静力学学习。
二、重点研究的问题1、 ANSYS的线性静力分析2 、构建几何模型3、在三维铰链单元COMBIN7的创建4、单元类型选择和网络划分5、 ANSYS瞬态动力学分析和静力学分析三、进度安排四、应收集的资料及主要参考文献[1]高耀东,刘学杰.ANSYS机械工程应用精华50例(第三版).- 北京:电子工业出版社,2011.[2]孙波.毕业设计宝典.-西安:西安电子科技大学出版社,2008.[3]温正,张文电.ANSYS14.0有限元分析权威指南.-北京:机械工业出版社,2013.[4]欧阳周,汪振华,刘道德.毕业论文和毕业设计说明书写作指南.-长沙:中南工业大学出版社,1996.[5]华大年,华志宏.连杆机构设计与应用创新.-北京:机械工业出版社,2008.[6]胡仁喜,康士廷.机械与结构有限元分析从入门到精通.-北京:机械工业出版社,2012.[7]李红云,赵社戌,孙雁.ANSYS10.0基础及工程应用.北京:机械工业出版社,2008.[8]唐家玮,马喜川.平面连杆机构运动综合.-哈尔滨:哈尔滨工业大学出版社,1995.[9]潘存云,唐进元.机械原理.-长沙:中南大学出版社,2011.[10]李皓月,周田朋,刘相新.ANSYS工程计算应用教程.-北京:中国铁道出版社,2003湘潭大学兴湘学院毕业论文(设计)评阅表学号2010963028 姓名谭磁安专机械设计制造及其自动化毕业论文(设计)题目:连杆机构的有限元分析湘潭大学兴湘学院毕业论文(设计)鉴定意见学号2010963028 姓名谭磁安专业机械设计制造及其自动化毕业论文77 页图表30 张目录摘要............................................................................................ 错误!未定义书签。
ansys汽车连杆
姓名:学号:班级:一,分析目的:连杆链接活塞和曲轴,活塞上的力传送给曲轴以输出功率。
连杆在工作中,除承受燃烧室燃气产生的压力外,还承受纵向和横向的惯性力。
因此,连杆在一个很复杂的盈利状态下工作。
它即受交变的拉件要求连杆具有较高的强度和抗疲劳性能,又要求具有足够的刚性和韧性。
所以,在连杆外形、过度圆角等方面需严格要求,还应注意表面加工质量以提高疲劳强度。
二,材料参数:图中标注均为英寸作为单位,杨氏模量为E=30E6psi,泊松比为0.3。
连杆材料一般采用45钢、40Cr、20CrMnMo或者40MnB等调质刚。
三,结构参数:图1- 1汽车连杆的有限元分析,为骑车连杆几何模型,连杆的厚度为0.5in,中间部分轮廓为6个点形成的样条曲线,其他长度均在草图中有所表示。
图1- 1汽车连杆的有限元分析四,边界条件:力、位移高强度合金钢的应用并不能达到预期效果连杆是汽车发动机中的主要传动部件之一,它在柴油机中,把作用于活塞顶面的膨胀的压力传递给曲轴,又受曲轴的驱动而带动活塞压缩气缸中的气体。
连杆在工作中承受着急剧变化的动载荷。
连杆由连杆体及连杆盖两部分组成。
连杆体及连杆盖上的大头孔用螺栓和螺母与曲轴装在一起。
为了减少磨损和便于维修,连杆的大头孔内装有薄壁金属轴瓦。
轴瓦有钢质的底,底的内表面浇有一层耐磨巴氏合金轴瓦金属。
在连杆体大头和连杆盖之间有一组垫片,可以用来补偿轴瓦的磨损。
连杆小头用活塞销与活塞连接。
小头孔内压入青铜衬套,以减少小头孔与活塞销的磨损,同时便于在磨损后进行修理和更换。
五,具体流程:命令流:Finish $ /Clear/PREP7 !*入前处理器PCIRC,1.4,1,0,180, $ PCIRC,1.4,1,45,180, !*创建两个圆面/REPLOT,RESIZE/PNUM,KP,0 $/PNUM,LINE,0 $/PNUM,AREA,1 $/PNUM,VOLU,0 $/PNUM,NODE,0/PNUM,TABN,0 $ /PNUM,SV AL,0 $/NUMBER,0 $/PNUM,ELEM,0/REPLOTRECTNG,-0.3,0.3,1.2,1.8, $RECTNG,-1.8,-1.2,0,0.3, !* 创建两个矩形面FLST,2,1,8FITEM,2,6.5,0,0WPA VE,P51XCSYS,4PCIRC,0.7,0.4,0,180, $PCIRC,0.7,0.4,0,135, !*创建另两个圆面FLST,2,4,5,ORDE,2FITEM,2,1 $FITEM,2,-4AOVLAP,P51XFLST,2,2,5,ORDE,2FITEM,2,5 $FITEM,2,-6AOVLAP,P51XCSYS,0K, ,2.5,0.5,, $K, ,3.25,0.4,, $K, ,4,0.33,, $ K, ,4.75,0.28,, !*创建关键点CSYS,1FLST,3,6,3FITEM,3,5 $FITEM,3,6 $FITEM,3,7 $FITEM,3,21 $FITEM,3,24 $FITEM,3,22BSPLIN, ,P51X, , , , ,1,135,,1,45,, !*创建多义线LSTR,1,18 !*创建1和18之间的直线/PNUM,KP,0/PNUM,LINE,1 $/PNUM,AREA,1 $ /PNUM,VOLU,0 $ /PNUM,NODE,0/PNUM,TABN,0 $/PNUM,SV AL,0 $/NUMBER,0 $/PNUM,ELEM,0/REPLOT $LPLOTFLST,2,4,4FITEM,2,6 $FITEM,2,1 $FITEM,2,7 $FITEM,2,25AL,P51XLFILLT,36,40,0.25, , $LFILLT,40,31,0.25, , $LFILLT,30,39,0.25, , !*创建三个线倒角LPLOTFLST,2,3,4FITEM,2,10 $FITEM,2,12 $FITEM,2,13 !*由三个线倒角创建新的面AL,P51XFLST,2,3,4FITEM,2,15 $FITEM,2,17 $FITEM,2,19AL,P51XFLST,2,3,4FITEM,2,23 $FITEM,2,21 $FITEM,2,24AL,P51XAPLOTFLST,2,12,5,ORDE,2FITEM,2,1 $ FITEM,2,-12AADD,P51X/AUTO, 1/REP/PNUM,KP,0 $/PNUM,LINE,0 $/PNUM,AREA,0 $/PNUM,VOLU,0/PNUM,NODE,0 $/PNUM,TABN,0 $/PNUM,SV AL,0 $/PNUM,ELEM,0/REPLOTAPLOTCSYS,0FLST,3,1,5,ORDE,1FITEM,3,13ARSYM,Y,P51X, , , ,0,0FLST,2,2,5,ORDE,2FITEM,2,1 $FITEM,2,13AADD,P51XWPSTYLE,,,,,,,,0ET,1,SOLID45 !*材料MPTEMP,,,,,,,, $MPTEMP,1,0 $MPDA TA,DENS,1,,8000MPTEMP,,,,,,,, $MPTEMP,1,0MPDATA,EX,1,,2.1e11 $MPDATA,PRXY,1,,0.3 !*弹性模量FLST,2,1,5,ORDE,1 !*拉伸体VEXT,2, , ,0,0,0.5,,,,MSHAPE,1,3D $MSHKEY,0 $CM,_Y,VOLU $VSEL, , , ,1 !*网格CM,_Y1,VOLU $CHKMSH,'VOLU' $CMSEL,S,_Y $VMESH,_Y1CMDELE,_Y $ CMDELE,_Y1 $ CMDELE,_Y2 $ /UI,MESH,OFFFINISH $ /SOL $ FLST, 2,4,5,ORDE,2 $ FITEM,2,27 !*对大圆内孔施加全约束FITEM,2,-30 $DA,p51x,ALL,FLST,2,2,5,ORDE,2 $FITEM,2,31 $ FITEM,2,-32 $ SFA,P51X,1,PRES,1000 !*对小圆内孔施加均布荷载1000/STA TUS,SOLU $SOLVE !*求解六,查看结果:图1- 2变形七,用新的知识,建立一条路径,让力和变形都映射在路径上。
毕业论文参考-基于ANSYS的连杆应力有限元分析及结构优化
XXXXX毕业设计(论文)摘要众所周知,发动机是汽车一切非简单部件中最重要的部件之一。
而曲轴连杆作为发动机转换能源的重要零部件,承担着将燃料化学能转换为机械能的重点工作。
其主要作用是将来自于活塞的力传递给曲轴,使活塞的往返运动转化为曲轴的旋转运动。
在发动机运行时,连杆承受着复杂的载荷,其受力主要包含来自于活塞的压力、活塞及其自身往复运动的惯性力,而且对于这些力的大小和方向,其特征都是周期性变化的。
所以,这就要求强度及刚度对连杆都要满足。
故而需要对发动机连杆进行强度分析及结构优化。
由于计算机的快速发展,采用计算机辅助分析的方法来研究机械结构在工程领域中已广泛使用。
ANSYS是一款通用性很强且功用非常强大的有限元分析软件,故本文以ANSYS14.0为核心对发动机连杆进行了有限元应力分析。
本论文主要做了如下工作:(1)使用UG10.0软件建立了连杆的三维模型,导入ANSYS14.0软件划分网格,得到有限元分析模型。
(2)对发动机连杆进行静力学分析,得到了连杆拉压工况的的应力云图和位移云图。
(3)结合连杆受力情况,对连杆进行了结构优化设计,使其在满足相同强度条件的情况下减少重量,以达到减小惯性力及材料的目标。
本文借助于大型有限元分析软件ANSYS14.0对发动机连杆进行有限元应力分析,验证了连杆的性能及研究了连杆强度计算和优化设计方法,从静力学方面判断出连杆工作的可靠性。
关键词:曲轴连杆,有限元,强度分析,优化IXXXXX毕业设计(论文)ABSTRACTAs we all know, engine is one of the most important parts of all the complex parts of automobile. Crankshaft connecting rod, as an important part of engine power conversion, undertakes the core task of converting fuel chemical energy into mechanical energy.Its main function is to transfer the force from the piston to the crankshaft, so that the reciprocating motion of the piston can be transformed into the rotating motion of the crankshaft. When the engine works, the connecting rod bears harsh working conditions and complex loads. The force mainly comes from the gas force of the piston, the inertia force of the piston and its reciprocating motion, and the magnitude and direction of these forces show periodic changes. Therefore, it requires the connecting rod to have enough strength and stiffness. Therefore, it is necessary to analyze the strength and optimize the structure of the engine connecting rod.Because of the rapid development of computer, the method of computer aided analysis has been widely used in the field of engineering. ANSYS is a very versatile and powerful finite element analysis software, so this paper takes ANSYS14.0 as the core to carry out finite element stress analysis of engine connecting rod.The main work of this paper is as follows:(1) The three-dimensional model of the connecting rod is established by UG10.0 software, and meshed by ANSYS14.0 software, the finite element analysis model is obtained.(2) Static analysis of engine connecting rod is carried out to check the correctness of finite element model and boundary conditions, and stress nephogram which is in accordance with actual working conditions is obtained.(3) Optimized design of the connecting rod in combination with the force of the connecting rod, so that the weight of the connecting rod can be reduced under theIIXXXXX毕业设计(论文)same strength condition, in order to achieve the purpose of reducing inertial force and material.In this paper, the finite element stress analysis of engine connecting rod is carried out by means of the large-scale finite element analysis software ANSYS14.0. The performance of the connecting rod is verified, the strength calculation and the optimization design method of the connecting rod are studied, and the reliability of the connecting rod is judged from the static aspect.KEY WORDS:crankshaft connecting rod, finite element, strength analysis, optimizationIIIXXXXX毕业设计(论文)目录摘要 (I)ABSTRACT ......................................................................................................................I I 目录 . (IV)第一章绪论 (1)1.1论文研究背景和意义 (1)1.2有限元法研究现状 (1)1.3发动机连杆有限元分析研究现状 (2)1.4本章小结 (3)第二章有限元分析基础 (4)2.1有限元法介绍 (4)2.1.1有限元法发展历史 (4)2.1.2有限元法基本理论 (5)2.1.3有限元法分析步骤 (7)2.2ANSYS软件介绍 (9)2.3本章小结 (9)第三章连杆的受力分析 (10)3.1连杆受载情况及参数 (10)3.1.1连杆受力分析 (10)3.1.2已知参数 (11)3.2燃气压力计算 (11)3.3惯性力计算 (12)IVXXXXX毕业设计(论文)3.5连杆最大压应力工况受力分析 (15)3.6本章小结 (16)第四章连杆应力有限元分析与结构优化 (17)4.1连杆三维模型的建立 (17)4.1.1 UG10.0软件介绍 (17)4.1.2建立连杆三维模型 (18)4.1.3三维模型的简化 (19)4.2有限元模型前处理 (22)4.2.1三维模型的导入 (22)4.2.2材料参数的设定 (24)4.2.2单元类型的选择及网格划分 (25)4.3连杆载荷施加及边界条件 (28)4.3.1连杆载荷处理与分布 (28)4.3.1.1载荷处理 (28)4.3.1.2连杆大小端拉应力加载 (29)4.3.1.3连杆大小端压应力加载 (31)4.3.2连杆位移边界条件的确定 (34)4.4运算及结果分析 (35)4.5连杆结构优化分析 (37)4.6.1连杆优化概述 (37)4.6.2连杆优化分析 (38)4.6本章小结 (40)第五章总结与展望 (41)5.1工作总结 (41)5.2工作展望 (42)参考文献 (44)VXXXXX毕业设计(论文)致谢 (46)毕业设计小结 (47)VIXXXXX毕业设计(论文)第一章绪论1.1论文研究背景和意义以往对发动机的主要组成部件的受力分析,只能靠传统力学计算方法,大致反映这些零件受力状态,因为这些零件受力复杂且形状不规则,比如活塞、连杆、气缸、曲轴等。
基于ANSYS的汽车发动机连杆性能分析
基于ANSYS的汽车发动机连杆性能分析作者:王鹏飞来源:《山东工业技术》2019年第11期摘要:本文用ANSYS软件对汽车发动机连杆进行了静力学分析和模态分析,建立了发动机连杆性能分析模型。
通过静力学分析,建立了发动机连杆的力学性能模型,得出了连杆总变形、定向变形、等效应力以及等效弹性应变分布情况。
通过模态分析,得出了发动机连杆模型的模态分布情况以及每一模态下的模态振型。
最后,综合得出了连杆的易变形位置,并提出了相应的防治措施,为高性能连杆的设计提供改良依据。
关键词:发动机连杆;ANSYS;有限元;静力学分析;模态分析DOI:10.16640/ki.37-1222/t.2019.11.0030 引言汽车发动机连杆是发动机的重要零部件之一,它的性能影响着发动机整体结构的运动可靠性和工作稳定性。
发动机连杆的作用是把活塞与曲轴连接起来,把作用在活塞上的力传递给曲轴,使活塞的往复运动转变为曲轴的旋转运动[2],从而对外输出做功。
发动机连杆由大头、小头和杆身三部分构成。
与活塞销连接的部分称连杆小头,连杆小头与活塞一起做往复运动;与曲轴连接的部分称连杆大头,连杆大头与曲轴一起做旋转运动;连接小头与大头的杆部称连杆杆身。
发动机连杆的运动有上下运动以及左右摆动,从而形成复杂多变的平面运动。
因此,发动机连杆的受力情况也是复杂多变的,在工作过程中经常受到拉伸、压缩、弯曲和扭转等多种交变载荷的复杂应力的作用,工作环境恶劣。
如此复杂的应力作用容易造成发动机连杆的疲劳、磨损、弯曲甚至断裂,进而影响发动机正常工作[3]。
因此,对发动机连杆进行性能分析就显得尤为重要。
多数发动机连杆性能问题很难通过经典的弹性力学分析,进而求解微分方程而得到其解析解。
但基于ANSYS的有限元分析方法则可以避免求解微分方程。
基于此,本文用ANSYS软件对汽车发动机连杆进行了静力学分析和模态分析,建立了发动机连杆性能分析模型,为发动机连杆的改良设计提供一定思路。
ANSYS的发动机连杆的模态分析
活塞连杆组整体性能的好坏对发动机性能和寿命 有很大的影响 。而连杆作为传递交变力的部件,工
[1]
动力学微分方程可表示为:
&& + Cx & + Kx = F Mx
(1)
作条件极为恶劣。 传统的连杆设计基本上为静态设计, 式中: M——连杆质量,kg; x——连杆的振动位移,m; 对连杆的动态特性很少涉及,但是随着发动机高速化 和大功率化,静态设计越来越不能满足需要 [2]。模态 分析在评价发动机连杆动态特性时有巨大的优势,文 章基于 ANSYS 建立连杆的三维模型并进行模态分析, 计算分析连杆的动态特性,找出发动机连杆的设计缺 陷并加以改进,缩短研发周期,降低研发成本。 C——阻尼系数,N/(m/s); K——刚度系数,N/m; F——外部载荷,N。 若令 C=0 和 F=0,便得到结构的无阻尼自由振 动方程。对于连杆结构的模态计算来说,阻尼对结构 的固有频率和振型的影响很小,可以忽略不计,因此 式(1)变为:
1
ANSYS 模态分析理论
模态分析是动力学分析过程中必不可少的一个步
骤, 主要用于确定机械结构和部件的固有频率和振型, 是谐响应分析、瞬态动力分析和谱分析的起点。 ANSYS 模态分析利用有限元分析理论,先把模 型离散为 n 个小单元,然后利用振动理论求解出结构 的固有频率和振型。根据振动理论,连杆结构系统的
&& + Kx = F Mx (2) 这是一个二阶常系数线性齐次微分方程,由此可
导出连杆结构的固有频率与振型的特征方程:
K − ω 2Mφ = 0
(3)
- 25 -
Auto Engineer
技术聚焦 FOCUS
2010 年 4 月
基于ANSYS的汽车发动机连杆的有限元分析
基于ANSYS的汽车发动机连杆的有限元分析有限元分析(Finite Element Analysis,简称FEA)是一种应用数值计算方法的工程分析技术,可以用于解决各种工程问题。
在汽车发动机设计中,使用有限元分析可以帮助工程师了解和优化发动机组件的力学性能。
本文将基于ANSYS软件,介绍如何进行汽车发动机连杆的有限元分析。
一、建模和几何参数定义:在进行有限元分析之前,首先需要将连杆的几何形状转化为虚拟模型。
一般来说,使用CAD软件绘制连杆的草图,并根据设计要求对连杆进行几何尺寸和参数的定义。
对于汽车发动机连杆而言,常见的几何参数包括连杆长度、大端和小端直径、连杆的截面形状等。
在绘制草图时,应注意考虑到实际的工程要求和设计限制。
二、材料定义和材料力学参数:在有限元分析中,连杆的材料定义至关重要。
一般来说,连杆材料应具有优异的强度和刚度,以应对高速旋转和高温的工作环境。
一般常用的连杆材料包括铸铁、铝合金、钛合金等。
在模型中定义连杆的材料属性,常用的材料力学参数有弹性模量、泊松比、屈服强度和断裂韧性等。
这些参数将作为材料的基本力学性能指标,用于后续的有限元分析计算。
三、网格划分和单元选择:在进行有限元分析之前,需要将连杆的几何模型划分成一系列小的有限元网格。
这一步骤称之为网格划分。
在网格划分时,需要根据设计要求和实际需求选择适当的网格类型。
对于连杆而言,常用的网格类型有四面体网格、六面体网格和四边形网格等。
划分后的网格中的每个单元都将代表连杆的一个局部区域,通过对每个单元进行力学计算,可以得到连杆在整个工作过程中的承载能力和应力分布情况。
四、加载和边界条件定义:在有限元分析中,需要对模型施加适当的加载和边界条件来模拟实际工作情况。
对于汽车发动机连杆而言,常见的加载和边界条件有定常和动态载荷、热载荷和流体载荷等。
例如,在连杆的大端和小端分别施加适当的载荷,以模拟发动机工作时的受力情况。
同时,还需要定义边界条件,如固定轴承的位置,以模拟实际组装情况。
毕业设计(论文)-发动机曲轴连杆机构仿真及有限元分析设计-adams
全套图纸加扣 3012250582曲轴连杆活塞组件虚拟样机的建立学院名称:机械工程学院专业班级:机械设计制造及其自动化0501 班学生姓名:号:学指导教师:2009 年6 月摘要柴油机的气缸、活塞、连杆、曲轴以及主轴承组成一个曲柄连杆机构。
柴油机通过曲柄连杆机构,将活塞的往复运动转换为曲轴的回转运动,使气缸内燃油燃烧所产生的热能转变为曲轴输出的机械功。
可见,曲柄连杆机构是柴油机重要的传力机构。
对其运动和受力情况进行分析和研究,是十分必要的。
这种分析研究既是解决柴油机的平衡、振动和总体设计等课题的基础,也是对其主要零部件在强度、刚度、磨损等方面进行计算和校验时的依据。
本文在曲柄连杆机构理论分析的基础上,利用多体动力学理论,三维造型软件Pro/E 及动力学分析软件ADAMS对内燃机曲柄连杆机构的动力学问题进行了虚拟样机仿真分析。
并以CT484Q柴油机为研究对象,在Pro/E中建立CT484柴油机曲柄连杆机构的虚拟样机模型,导入ADAMS中进行动力学分析,绘制出虚拟样机模型中各连接位置处受力仿真结果曲线。
通过本文的研究,展示了一种简捷、高效的机械设计分析手段,对今后同类型的研究乃至更大规模的仿真分析积累了一些经验。
本文的研究也可以为今后内燃机机构的造型、优化设计提供参考依据。
关键词:内燃机,曲柄连杆机构,ADAMS,虚拟样机,仿真AbstractThe Cylinder, piston, connecting rod, crankshaft and main bearings of diesel engine Compose of a crank-connecting rod mechanism. Through the crank-connecting rod mechanism, Diesel engine convert the piston reciprocating motion to the rotary movement of the crankshaft, and make the cylinder generated by fuel combustion energy into mechanical work output of the crankshaft. This shows that diesel engine crank linkage is an important body for transmission force. It is necessary to analysis and research its movement and force. This analysis is the foundation to solve the balance of diesel engine, vibration and overall design, It is the basis for validate and calculate the strength, stiffness, wear, etc.In this paper, based on the theoretical analysis of crank-connecting rod mechanism, use of multi-body dynamics theory, and use the three-dimensional modeling software, Pro/ E and the dynamic analysis software ADAMS to carry out crank and connecting rod for internal combustion engine body dynamics simulation of a virtual prototype simulation. And study CT484Q Diesel Engine, established linkage of the virtual prototype of diesel engine model In Pro/ E, then do dynamic analysis in ADAMS and draw the connection position of the power curve for the simulation result.Through this paper, the study demonstrated a simple and efficient means of mechanical design and analysis for future research as well as the same type of simulation analysis and accumulate some experience. The study of this paper can provide reference for the modeling and optimal design.Key words: Internal Combustion Engine, Crank-connecting rod mechanism, ADAMS, Virtual Prototyping目录第一章绪论··················································1.1 研究的意义···············································1.2 内燃机曲柄连杆机构的工作特点以及难点·····························1.3 国内外研究及手段···········································1.3.1计算机辅助设计(CAD)·····································1.3.2 多体动力学分析(MBS)···································1.3.3 有限元分析···········································1.3.4优化设计理论··········································1.4 主要研究内容和方法··········································第二章曲柄连杆机构的动力学理论分析·······························2.1 内燃机工作过程分析··········································2.1.1压缩始点气体状态·········································2.1.2压缩终点气体状态········································2.1.3燃烧过程及燃烧终点气体状态·································2.1.4膨胀终点气体状态········································2.2 曲柄连杆机构的运动分析·······································2.3曲柄连杆机构的动力学分析······································2.3.1曲柄连杆机构的质量换算····································2.3.2曲柄连杆机构的惯性力和惯性力矩······························2.3.3曲柄连杆机构的动力学分析··································2.4 内燃机工作过程计算··········································第三章曲轴连杆活塞组件的虚拟样机································3.1Pro/E 系统的建模原理及其特点····································3.1.1参数化设计············································3.1.2 特征建模的基本思想······································3.1.3全相关的单一数据库······································3.2 曲柄、连杆、活塞组件几何模型的建立以及装配··························3.2.1活塞组件的建模·········································3.2.2 连杆组建的建模········································3.2.3曲轴组件的建模·········································3.2.4曲轴连杆活塞组件的总装配···································第四章曲柄连杆机构的运动学和动力学分析·····························4.1ADAMS简介及其基本原理·······································4.1.1 运动学和动力学基本概念···································4.1.2 ADAMS中多刚体动力写方程的建立······························4.2ADAMS 中的运动学和动力学分析···································4.2.1 曲柄连杆机构刚体模型的转化和输入·····························4.2.2 曲轴轴系多刚体动力学仿真分析·······························第五章结论与展望·············································5.1 总结····················································5.2 展望····················································致谢························································参考文献·····················································附录·························································第一章绪论1.1研究的意义内燃机是目前世界上应用最广泛的热动力装置,自1860年法国人设计出第一台煤气发动机以来,内燃机无论是在结构上还是在性能上都较以前有了很大的进步。
ansys课程设计实例
ANSYS课程设计实例一连杆的受力分析一、问题的描述汽车的连杆,厚度为0.5in,在小头孔内侧90度范围内承受P=1000psi的面载荷作用,用有限元分析该连杆的受力状态。
连杆的材料属性:杨氏模量E=30×106psi,泊松比为0.3。
由于连杆的结构对称,因此在分析时只采用一半进行即可,采用由底向上的建模方式,用20节点的SOLID95单元划分。
二、具体操作过程1.定义工作文件名和工作标题2.生成俩个圆环面⑴生成圆环面:Main Menu>Preprocessor>Model Creat>Areas Circle>By Dimension,其中RAD1=1.4,RAD2=1,THETA1=0,THETA2=180,单击Apply,输入THETA1=45,单击OK。
⑵打开面号控制,选择Areas Number为On,单击OK。
3.生成俩个矩形⑴生成矩形:Main Menu>Preprocessor>Model Creat>Areas Rectangle>By Dimension,输入X1=-0.3,X2=0.3,Y1=1.2,Y2=1.8,单击Apply,又分别输入X1=-1.8,X2=-1.2,Y1=0,Y2=0.3,单击OK。
⑵平移工作平面:Utility Menu>WorkPlane>Offset WP to>XYZ Location,在ANSYS输入窗口的魅力输入行中输入6.5,按Enter 确认,单击OK。
⑶将工作平面坐标系转换成激活坐标系:Utility Menu>WorkPlane>Change Active Cs to>Working Plane。
4.又生成圆环面并进行布尔操作⑴生成圆环面:Main Menu>Preprocessor>Model Creat>Areas Circle>ByDimension,其中RAD1=0.7,RAD2=0.4,THETA1=0,THETA2=180,单击Apply,输入THETA1=135,单击OK。
基于ANSYS的汽车发动机连杆性能有限元分析
基于ANSYS的汽车发动机连杆性能有限元分析摘要:连杆是汽车发动机的重要构件和主要运动件,功用是将活塞承受的力传给曲轴,并将活塞的往复运动转变为曲轴的旋转运动。
连杆工作过程中承受装配载荷和交变载荷的作用还有气缸内气体压力,惯性力、轴承摩擦和磨损等。
所以要求连杆具有足够的抗疲劳强度、抗冲击,足够的强度和刚度。
构件图如下图1.1所示。
通过有限元分析结果可知连杆存在的问题及结构的薄弱环节,为连杆优化设计、结构改进和表面热处理提供理论依据。
关键词:汽车连杆;有限元分析;优化设计;1、连杆有限元分析的理论基础图1.1 汽车发动机连杆1.1静力学分析理论当连杆加载和约束时,利用平衡条件和边界条件将各个单元按原来的结构重新连接起来,形成整体的有限元方程:{K}{q}={f}式中{K}—整体结构的刚度矩阵;{q}—节点位移列阵;{f}—载荷列阵.解该有限元方程就可以得到最后分析时所需的各单元应力及变形值。
1.2模态分析理论模态分析研究系统是在无阻尼自由振动情况下系统的自由振动,用于确定结构的振动特性,是谐响应分析的基础,固有频率和主振型是振动系统的自然属性。
系统的运动微分方程可表示为:[M]{X(t)}+[K]{x(t)}=0弹性体的自由振动可分解为一系列简谐振动的叠加,因此,解可设为:X(t)=φcosω(t-t0)式中:ω为简谐振动的频率;t为时间变量;t0为由初始条件确定的时间常数。
代入得到特征值和特征向量分别对应系统的固有频率和主振型。
2、基本分析过程2.1模型绘制并导入:利用solid works进行构件的仿真设计,画出连杆的模型。
并将得到的模型导入至ANSYS软件中,如图3.1所示:图3.1 导入至ANSYS软件的连杆模型2.2主要材料属性定义:如图所示连杆结构,连杆厚度1.5cm,过渡圆角0.25cm,材料属性为弹性模量E=3.0e7(Mpa),泊松比0.3,材料为40Cr,密度ρ=7800kg/m3;具体步骤如下:选择Main Menu>Preprocessor>Element Type>Add/Edit/Delete命令。
基于ANSYS的汽车发电机连接螺栓布局设计优化
16
优化方案II-2
加强筋
加强筋
II型发电机
螺栓1
II-2型发电机 螺栓4
经调整旋转角度,调整支架设计,得到方案II-2。避免了螺栓1、螺栓4与加强筋相连。
17
II-2型谐响应计算结果
II型发电机
II-2型发电机
同样的方法对II-2型发电机进行分析,结果如上图。 螺栓1的最大应力由261MPa下降到233MPa,可见本设计对降低螺栓1的应力效果明显。
激励:X方向5g加速度
X (crankshaft) Z (piston)
Z Y
X
150
100
50
0
0
100
200
300
400
500
600
700
800
900
1000
Hz
12
I型发电机谐响应分析
基于VDA 54h 10g标准,进行谐响应分析。通过分析仿真结果,最 大应力发生在Z向(即活塞方向),302HZ时。即二阶振型引起了 螺栓1的大应力。此时螺栓1上的最大应力为240MPa时。 所以后续采用同样的方法对II型发电机进行分析,可认为螺栓上的 应力低于240MPa时是安全的。
4
连接螺栓断裂案例
5
I型发电机与II型发电机设计对比图
I型发电机
II型发电机
6
发电机悬挂方式及连接螺栓
螺栓1
螺栓2 螺栓3 螺栓4
7Байду номын сангаас
疲劳强度的获得
• 汽车发电机前后盖连接螺栓一般采用8.8级的M5螺栓。按照等级规格该螺栓的抗拉 强度是800MPa,屈服强度是640MPa。承受拉压载荷的金属疲劳极限和屈服极限之 间存在约如下转换关系。
CAE-ANSYS在汽车设计中的应用
一、汽车整车及车身静动力学分析
利用ANSYS结构静力学和结构动力学分析功能,可以对汽车整车及车身进行结构力学方面的仿真 。这种仿真得益于ANSYS具有先进的模型建立技术以及完善的包括模态、单多点响应谱、随机振动 、瞬态等在内的线性和非线性静动力学分析功能。
南汽IVECO客车的国产化过程中,车身出 现了开裂现象,请国外专家会诊加强后仍 未解决问题,后经东南大学进行了整车车 架的静动力分析,找出了原因,并依据 ANSYS有限元计算结果进行了加强,最终 解决了困扰已久的质量问题,左图为车架 的振动模态。
2023年4月1日
ADAPCO公司用ANSYS分析V6 缸发动机,节点数343,252个,单元数215,114个 ,进行了热分析、结构分析/动力分析、热-结构耦合分析。
2023年4月1日
发动机总体结构分析
2023年4月1日
连接部位详细分析模型
2 曲柄连杆机构运动件 :活塞组、连杆组、曲轴组
曲柄连杆机构的运动件是发动机中的最主要部件,也是热负荷、机械 负荷最高的部件, 因而也是整个发动机中分析要求最高的部件。ANSYS热变形、 热应力、蠕变分析能力可计算出活塞、活塞环工作状态下的形状及应力,为活 塞形状设计、气缸与活塞间隙设计、热强度设计提供了准确的依据,从而可保 证气缸的密封性要求及活塞组工作可靠性的要求。活塞组的热分析同时又为冷 却系、润滑系的设计提供了设计依据。
万向联轴器整体模型
法兰接头
轴承座
十字轴、圆柱套及垫片
连接螺栓
辊端接头及衬板等
2023年4月1日
有限元模型
有限元分析结果 - 各部件上应力分布
主要接触面上的接触压力分布
2023年4月1日
十字轴上的应力分布及疲劳寿命分布
发动机曲柄连杆机构的CAE分析
发动机曲柄连杆机构的CAE分析CAE技术主管培训 郭 磊 杭州 09.7.10PDF 文件使用 "pdfFactory Pro" 试用版本创建 结构分析平台EXCITE中的软件工具 AST – 结构平台Structure Dynamics Hydraulics曲柄连杆机构设计分析 结构系统动力学, 耐久性与 振动声学分析配气阀系与正时传动系统的 动力学分析活塞与环组动力学 窜气与滑油消耗燃油喷射系统分析EXCITE PU软件是NVH特性和 耐久性计算的核心软件EXCITE Timing Drive, EXCITE Piston & Rings and HYDSIM计算得到的载荷 ,可以作为EXCITE PU整机分析中的附加载荷Drive Cycle Simulation车辆动力学: 驾驶操控, 燃油经济性, 尾气排放Figure No.2PDF 文件使用 "pdfFactory Pro" 试用版本创建 EXCITE的模块配气阀系运动学与动力学分析 正时传动系动力学计算 动力总成NVH (声学响应)弹性液力润滑EHD分析Durability & NVH曲柄连杆机构Combustion & Emissions Vehicle Thermal Management设计分析Platform ConceptAerodynamics & Aeroacoustics Driving Comfort & Calibration活塞体二阶运动,环组动力学 窜气量和润滑油消耗 部件瞬态强度和耐久性分析Figure No.3PDF 文件使用 "pdfFactory Pro" 试用版本创建 曲柄连杆机构动力学模型 如何建立反映实际条件的发动机动力学模型?曲柄连杆机构是主要的动力学系统Figure No. 4PDF 文件使用 "pdfFactory Pro" 试用版本创建 结构开发中的模型阶段曲轴系三维动力学分析 概念设计阶段结构件声学分析动力总成及整车传动系耦合分析Development Process曲轴系设计参数分析 概念设计阶段 曲柄连杆系运动件强度分析 发动机系统NVH分析 (包括动力总成悬置振动)建模过程中需要明确: 根据分析目标来选择合适的模型深度; 项目不同阶段可获得的数据限值Figure No. 5PDF 文件使用 "pdfFactory Pro" 试用版本创建 模型深度和复杂度部件级 – 子系统级 – 系统级产品概念设计阶段的应用模型详细分析、定型设计及产品优化阶段的应用模型Figure No. 6PDF 文件使用 "pdfFactory Pro" 试用版本创建 发动机核心运动系统-曲柄连杆机构Figure No.7PDF 文件使用 "pdfFactory Pro" 试用版本创建 曲柄连杆机构的设计分析-概念设计阶段 曲轴轴系在概念设计阶段的分 析任务AVL EXCITE Designer :lCS 3D Dynamic Analysis Concept PhaseNVH AnalysisDevelopment ProcessCS Design Analysis Concept Phase Component Strength Analysis Drive Train Dynamic Analysis一维液力轴承特性计算(主轴承、连 杆大小、头轴承) 曲轴轴系的扭转振动分析(1维模型) 由CAD模型形成振动当量模型(自动) 扭转振动固有频率计算 扭转振动响应计算 曲轴减振器设计和优化 飞轮组件概念设计(惯量、几何) 经典方法的曲轴强度及安全系数校核 曲轴系的平衡分析l l l l l l l lFigure No.8PDF 文件使用 "pdfFactory Pro" 试用版本创建 曲轴轴系概念阶段-建模Designer模型 Designer模型双击à 双击àShaftModeler模型 ShaftModeler模型Figure No.9PDF 文件使用 "pdfFactory Pro" 试用版本创建 分析过程 轴承负荷Bearing Loads曲柄负荷Web Loads静态扭矩Static Torques质量数据Mass Data扭转刚度Torsional Stiffness扭振计算Torsional Vibration Calculation液体动力轴承计算Hydrodynamic Bearing Calculation曲轴强度计算Crankshaft Strength Calculation曲拐优化 Crankthrow OptimizationFigure No. 10PDF 文件使用 "pdfFactory Pro" 试用版本创建 输入数据1维液动轴承分析载荷和轴承计算结果轴心轨迹轴承载荷1维液动轴承分析最小油膜厚度最大油膜压力最大单位载荷摩擦损失n A –最小油膜厚度,持续时间长,若小于完全润滑条件,会危险n B –轻负荷区,应在该处开油孔或油槽n C –因高速向心运动,使油楔中出现局部真空,形成,高速离心时气泡破裂,使瓦表面产生穴蚀n D –多次高速离心运动,油膜压力剧增,造成合金疲劳脱落ADC轴心轨迹Orbital Path 1维液动轴承分析NodeElementInline 4-Cylinder Engine轴系扭振当量系统扭振计算结果临界转速扭振系统模态和固有频率扭振计算结果扭振振幅-时域扭振振幅-各谐次随转速变化车用发动机曲轴轴系的扭振评价重点是发动机转速范围内的各谐次结果:其中,扭矩波动谐次的角振幅包涵了刚性体的运动。
汽车发动机的连杆机械部分设计毕业设计论文
摘要连杆是汽车发动机的主要传力构件之一,常处于高速运动状态,因此要求与其它零件间具有较高的配合精度。
因而连杆检测成了生产中频繁而又不可缺少的环节。
连杆平行度测量仪是专门为检测汽车连杆而设计的专用测量工具,其结构简单、测量精度高。
本设计是由机械系统设计和控制系统的设计所组成。
包括齿轮传动的设计及选择,滚珠丝杠的设计及选择,步进电机的选择和装置中机械系统的设计,有关测试系统的控制设计及选择。
我的设计内容主要是机械部分的设计。
关键词:连杆平行度检测AbstractThe connecting rod is one of motor car engine main power transmission components, often being at the high speed state of motion, therefore, which requests the higher grade of fit with other components. Thus the connecting rod is examined in the production to be frequent and the also essential link. The connecting rod parallelism measuring instrument is specially for examines for measuring tool which the automobile connecting rod design, its structure is simple, the measuring accuracy is high. This design is composed by the mechanical system design and the control system design, which includes the gear drive design and the choice, the ball bearing guide screw design and chooses, motor machine choice and installment mechanical system design, relating test system control design and choice. My design content mainly focuses on the machine part design.Key words:Connecting rod parallelism examination目录摘要 (I)Abstract (II)第1章绪论 (1)第2章机电一体化技术简介 (3)2.1 机电一体化技术简介 (3)2.2 机电一体化技术体系 (3)2.3 机电一体化的发展前景 (3)2.4 连杆平行度测量仪的简介 (4)2.5 Pro/ENGINEER产品介绍 (4)第3章连杆平行度测量仪机械部分的总体设计 (9)3.1 进给运动的要求 (9)3.2 滚珠丝杠的选择 (9)3.3 齿轮传动的设计计算 (14)3.4 步进电机的选择 (16)3.5 液压夹具的设计 (19)第4章连杆平行度测量仪中的微机应用及其接口技术 (23)4.1 测量仪中主控芯片8088介绍 (23)4.2 测量仪中的接口技术 (24)第5章传感器的选择及测量原理 (34)5.1 传感器的选择及测量方法 (34)5.2 连杆平行度的分析及计算 (35)第6章经济分析 (37)总结 (38)致谢 (39)参考文献 (40)附录1专题论文 (41)附录2外文译文 (49)附录3外文原文 (54)第1章绪论连杆是汽车发动机的主要传力构件之一,常处于高速运动状态,因此要求与其它零件间具有较高的配合精度。
基于ANSYS参数化语言的发动机连杆设计
基于ANSYS参数化语言的发动机连杆设计朱荣福;齐鹏;刘龙超【摘要】为了使发动机连杆在设计时质量轻、工作可靠,基于ANSYS的参数化设计语言建立发动机连杆的参数化模型,对连杆工作状况和受力情况做出合理简化;利用ANSYS的优化设计技术,在满足最大应力值约束条件下,使连杆设计参数合理组合,最终达到连杆轻量化的设计目标,同时优化后连杆的模态和谐响应分析满足设计要求.【期刊名称】《黑龙江工程学院学报(自然科学版)》【年(卷),期】2014(028)001【总页数】3页(P20-22)【关键词】连杆;APDL;有限元;优化设计【作者】朱荣福;齐鹏;刘龙超【作者单位】黑龙江工程学院汽车与交通工程学院,黑龙江哈尔滨150050;东北林业大学交通学院,黑龙江哈尔滨150040;北京亚新科天纬油泵油嘴股份有限公司研究所,北京100166【正文语种】中文【中图分类】TB47连杆是发动机的主要受力运动部件之一,工作中承受各种复杂的周期性外载荷,如果连杆的设计不合理,轻则使连杆杆身发生形变失效,重则导致发动机无法正常工作[1-2] 。
随着能源问题加剧,要求汽车向轻量化发展,因此,发动机连杆轻量化已成为发动机开发中一个不可忽视的问题[3-4]。
利用ANSYS的参数化设计语言APDL可以实现从实体建模、网格划分、加载到求解计算甚至后处理过程的全参数化,其应用已积累较多的轻量化设计经验[4-7]。
以某发动机连杆为原型,在静力学分析的基础上[8],通过APDL优化设计技术,在满足最大应力值约束条件下,研究连杆的轻量化设计。
考虑到ANSYS对复杂模型的参数化建模能力的限制,在建立连杆模型时,对连杆的油孔、定位槽等部位进行简化或忽略不计,且不考虑大头孔与轴瓦、小头孔与衬套等接触问题。
一般而言,轻量化优化设计的目标函数通常是减小连杆的体积,因此,在保证足够的强度、刚度、稳定性的前提下,确定优化设计目标,降低最大应力值。
以对发动机整体参数及其他零件主要尺寸无影响且工艺上实现相对容易为原则,设计变量选取为对连杆体积影响较大,在一定程度上相互独立的尺寸参数[9],并满足应力、设计变量、刚度变形等约束条件[10]。
车用发动机连杆有限元分析及结构设计
惯性力、连杆自身的摆动惯性力、小头上承受的燃 气压力、连杆小头衬套和大头轴瓦的径向装配应力 和连杆大头所承受的螺栓预紧力。 2.2 网格的划分
该连杆材料为中碳钢,密度为 7 850 kg/m3,杨氏 模量为 210 GPa,泊松比为 0.3。由于连杆形状复杂 且不规则,因此采用高阶四面体单元 Solid 92,进行 自由网格划分,共有 159 669 个单元,247 821 个节 点,图 3 为 1/2 连杆网格划分图。
力云图,如图 4 和图 5 所示。
技术
第 29 卷
致惯性力增加,下面对连杆的设计提出几点建议。 (1)连杆材料的选择要保证在结构轻巧的条件
下有足够的刚度和强度,一般可选中碳钢、中碳合 金钢、球墨铸铁、铸铝合金等[5]。
(2)连杆杆身应具有足够的断面积,因为连杆 在高速摆动时的横向惯性力会使连杆弯曲变形。一 般高速内燃机的连杆杆身断面是工字形的,考虑惯 性力依不同连杆截面的变化,从小头到大头截面逐 渐加大。
0 引言
就会影响到发动机的正常工作,甚至发生严重的事 故,因此对其强度提出了很高的要求。以往的连杆
连杆作为车用发动机的主要零件,在工作过程 设计是靠经验及参考资料,没有合理的设计依据,而 中承受着急剧变化的动载荷,若其强度和刚度不够, 有限元法作为一种有效的分析方法,在连杆设计中
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2.3.2 连杆载荷处理
(1)螺栓预紧力:螺栓作为承载体系的一部分,
作用是拉紧大端和大端盖,其预紧力可采用以下公
式计算:M=0.2P0dM×10- 2 式中 M———螺栓拧紧力矩;
P0— ——螺栓预紧力; dM— ——螺栓直径。 计算得螺栓预紧力约为 3 758.6 N。
汽车发动机连杆的有限元分析
汽车发动机连杆的有限元分析刘显玉(辽宁科技学院机械工程系,辽宁本溪 117022)摘要:采用基于ANSYS软件开发的有限元模拟系统,并利用网格重划技术,对汽车发动机连杆杆身截面进行了弹、塑性力的有限元模拟,得到了变形过程中的应力场、应变场的分布,为进行发动机连杆的结构分析建立了基础.关键词:汽车;发动机;连杆;有限元中图分类号:TK4 文献标识码:A 文章编号:1005-8354 (2005) 03-0009-03Finite Element Analysis of Automobile Engine Connecting RodsLIU Xian-yu(Mechanical Engineering Faculty, Liaoning Science and Technology Institute, Benxi 117022, China)Abstract:This article adopts the finite-element simulation system based on the ANSYS software. By means of technology of grid rewriting, the finite-element simulation of the stress of elasticity and plasticity for the body section of automobile engine’s connecting rod is made to gain distributing of the stress and strain’s field and build the base of structure analysis of automobile engine connecting rods. Key words:automobile;engine; connecting rod; finite-element1 引言连杆是发动机中传递动力的重要组件,它在工作中承受各种复杂的、周期性变化的拉、压及惯性力等外载荷,即使是同一类型的连杆,由于每根连杆的物理参数、几何形状也存在差异,在分析连杆的应力和应变时,要考虑这些不确定的因素,这样才能得到更符合实际的结果.目前,有限元法已成为工程技术领域中不可缺少的一个强有力的计算分析工具,是研究发动机连杆的应力、应变的应用中最常用的方法.该方法较用传统的材料力学公式计算的结果更为精确.鉴于此,本文应用有限元技术对6110柴油机连杆进行静力分析,研究其应力、应变状态及其危险部位.2 有限元的基本原理和特点有限元方法是近似求解一般连续域问题的数值方法.它最先应用于结构的应力分析,很快就广泛应用于求解热传导、电磁场、流体力学等连续问题.对于一个连续体的求解问题,有限单元法的实质就是将具有无限多个自由度的连续体,理想化为只有有限个自由度的单元集合体,单元之间仅在节点处相连接,从而使问题简化为适合于数值求解的结构型问题.工程设计人员使用这些系统,就可以高效而正确合理地确定最佳设计方案.概括而言,有限元法的几个主要特点有:(1)有限元法的基本思想是“离散化”.(2)有限元法的物理概念十分清晰,容易为工程技术人员所理解.(3)有限元法引入边界条件的办法简单.(4)有限元法不仅适用于复杂的几何边界条收稿日期:2005-03-11作者简介:刘显玉(1967-)男,硕士,研究方向:内燃机检测与故障诊断.机电设备 2005年第3期总第24卷— 9 —件,而且能够处理各种复杂的材料性质问题.(5)有限元法必须求解一个大型代数方程组,用人工求解几乎是不可能的.(6)有限元法的计算机软件是通用的.3 连杆的工作条件6110柴油机连杆为斜切口合金钢模锻件,然后经机械加工和热处理完成.连杆大端、连杆盖通过螺栓及其预紧力与连杆紧紧结合在一起;杆身的横截面呈“工”字形,且与连杆大、小端圆滑过渡,整个连杆呈上下对称及左右对称结构.在标定工况下,发动机连杆的运动是随活塞的平移和绕活塞销摆动两种运动的复合运动.连杆在运动的过程中,一般承受的载荷有气缸爆发压力、往复惯性力和螺栓预紧力等,连杆大端还承受旋转惯性力的作用.图1为6110柴油机曲柄连杆机构简图,其曲轴回转中心线和活塞销中心线均与气缸中心线相交.图1 连杆机构运动简图连杆在工作中主要受到以下四种力的作用:(1)作用于活塞的气体作用力;(2)活塞组件的惯性力—活塞组件中所有零件(包括活塞、活塞环、活塞销、活塞销卡环);(3)连杆惯性力;(4)预紧载荷—连杆螺栓装配预紧力和连杆衬套过盈装配产生的预紧力.在有限元分析时,根据力的作用效果,主要考虑以下三种载荷的作用:预紧载荷、最大惯性力、最大爆发压力.连杆工作时,承受的应力是周期性变化的.一般情况下,应选择连杆承受最大拉力和最大压力两情况进行分析,以便得到两情况下的应力和变形分布情况,同时利用此计算结果来近似地进行连杆疲劳强度的计算,为其改进和设计提供可靠的依据.最大拉伸情况发生在活塞运动到排气冲程终了的上止点位置,此时连杆主要承受其它零件及其本身的最大惯性力;最大压力情况发生在膨胀冲程开始的上止点位置附近,此时连杆主要承受缸内燃气的爆发压力以及零件运动的惯性力.在连杆的有限元计算中,处理作用于连杆上的载荷是一件极为重要的工作.由于作用于连杆上的载荷系统一般都比较复杂,特别是某些载荷沿边界的分布规律难以用理论或测量的方法来确定,而往往是采用一些假定的分布规律来模拟.因此如何正确地模拟这些载荷的分布规律,是有限元法计算中不容忽视的问题.4 发动机连杆的有限元计算由于连杆工作时的危险点常在连杆大、小端与杆身的过渡处,按二维平面问题进行建模,将其简化为平面应力问题来计算,则“工”字形梁的结构就会发生改变,其承受载荷的能力必然也要受到影响,最终导致分析的结果与实际结果有很大偏差,况且丢掉大端盖不利于对连杆整体进行应力应变的研究分析,也不利于后续研究工作的开展,从而进一步造成分析结果不周全的缺憾.相比较而言,若采用三维立体建模,可以显著改进二维平面有限元分析的不足,同时以均布面载荷模拟通过螺栓头和螺母分别作用于杆身和大端盖接触面上的力—螺栓预紧力,用多点约束处理杆身与大端盖的接触面来近似模拟其力学接触状态,以限制刚体某自由度上应力与位移,模拟更加真实,提高了分析结果的可信度.连杆结构的离散化可采用三角形单元.在连杆常发生破坏的小端过渡圆弧处,杆身与大、小端过渡处、大端盖两侧夹角处以及杆身的工艺凸台两则— 10 — V ol.24, No.3, 2005 Mechanical and Electrical Equipment应加密网格,把这些部位的单元划分得小一些,以提高应力集中区域的计算精度.由于连杆小端的铜质衬套和钢质连杆具有不同的弹性常数,小端和杆身的工字形截面又有不同的厚度,故把弹性常数和厚度的突变线划成了单元的边界线.在连杆大、小端轴孔处边界单元的大小,将影响到轴承负荷向边界节点移植结果的精度,采取沿轴孔按每10°或15°划分一个节点,可基本满足计算要求.图2、图3和图4分别是发动机连杆的有限元计算模型和拉应力、压应力分布图.图2 发动机连杆的有限元计算模型.图3 发动机连杆的拉应力分布图图4 发动机连杆的压应力分布图5 结论(1)有限元方法是工程设计、开发领域中一种实用、可靠的方法.(2)在有限元分析中,科学的力学模型、准确的边界条件约束决定着分析结果的准确度.(3)连杆应力计算中载荷施加的均匀性、对称性和准确性对杆身、大端和小端过渡区的应力计算结果有很大的影响.(4)连杆大、小端与杆身的过渡区是应力最严重的地方,为减少应力集中,在设计连杆时,小端孔不仅要有足够的壁厚外,还要使小端与杆身的过渡圆角在合理的范围内尽量大些.参考文献:[1] 刘涛,杨风鹏等.精通ANSYS[M].北京:清华大学出版社,2002.[2] 邓兆祥,胡玉梅等.N485柴油机连杆静强度有限元分析[J].内燃机,2001(2).[3] Hiroyuki Tsuzuku,Naoki Tsuchida. An experimentalstudy of connecting rod big ends [Z]. SAE Paper950202.日本科学家发明“机器人服”日本科学家最近发明了一种代号为HAL-5的“机器人服”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
连杆简化模型的有限元分析
一.个人任务
1.连杆简化模型的静力学分析
2.参数化研究与目标驱动优化设计
二.分析所需数据
见《汽车设计课程设计指导书》P6 明细
三.连杆的实体模型和网络模型
连杆简化实体模型
连杆简化网络模型
四.连杆原设计在各种接触条件下进行有限元分析后得到的变形图和应力图
方案一:连杆小头里铜环内壁施加均匀压强 P=52MPa
载荷施加图
小铜环与连杆小头在不同接触条件下的接触分析:1.bonded
2. frictionless
3.rough
4. frictional_0.15 摩擦系数0.15
最大值Total
Deformation
Equivalent
Stress
Normal
Stress
Total
Deformation2
Total
Deformation3
均匀
载荷
0.084824mm 312.83MPa 246.05MPa 0.084447mm 0.080688mm
轴承
载荷
0.083415 311.31 260.34
在方案一的载荷情况下:在DS中进行拓扑优化
方案二:连杆小头里铜环内壁施加轴承载荷 X方向的力F=5*sqrt2*3*e-6*52*e6=1102.92N Bonded - Solid To Solid
在方案二的载荷情况下:在DS中进行拓扑优化
五.局部网格细化的研究
方案一在施加均匀压力的条件下:
方案二在施加轴承载荷的条件下:
最大Total Equivalent Normal Total Total
值Deformation Stress Stress Deformation2 Deformation3 均匀
0.084824mm 312.83MPa 246.05MPa 0.084447mm 0.080688mm 载荷
0.083415 311.31 260.34
轴承
载荷
六.参数化研究和目标驱动的优化设计(在DS中进行优化设计)
在DS仿真后建立DX模型进行测试,测试出在既定的形状下模型的最理想受载情况
在进行目标驱动优化前,利用响应图查看整个系统的特性
七.对设计结构进行修改
取变量有铜环直径,连杆小头直径,连杆大头到连杆小头之间的距离
优化后的受载情况:
. .
.
八.具体分析操作中遇到的问题汇总
1.建模过程中(DM 模型),要考虑在DS 模型中的成角度曲面的约束和施加载荷对连杆大头和小头进行扇形建模
2.在建模的过程中为了构造用于施加约束和载荷的扇形曲面,在构造扇形的过程中要一个扇形一个扇形的建模,建模完一个扇形后,在准备建立下一个扇形以前,记得对已经建立的扇形模型进行冻结操作
3.网格划分过程中,首先用的是整体自动网格划分,后来进行了局部细化网格分析,而细化网格的方法大致有两种,一个用的是Contact Sizing ,一个是Part Relevance ,自己对比分析两种方法
4.在施加边界条件时发现,连杆小头里的铜环和连杆小头在不同的接触条件下仿真分析出来的结果很不相同,本人分别用了bounded, frictionless, rough, fritional (摩擦系数0.15)进行了对比分析
5.对连杆小头里面铜环内壁90°曲面的载荷施加,采取了两种对比分析,一是均匀压强载荷分析,一是轴承载荷分析,即在连杆轴线方向,离连杆小头轴心距离越远,受到的轴线方向的载荷越大,根据圆曲面的对称性求出了轴线方向,即X 方向的力F=1102.92N
6.目标驱动优化分析(DOE )中
八.课程设计总结
CAE 技术在汽车的设计和改善技术中的应用越来越多,仿真的方法越来越接近汽车在实际使用中的运行工况,从而改善了汽车的设计和完善水平,减少了实车实验的成本,缩短了整车开发的周期,能更快,更好的解决汽车在实际使用中的问题。
本学期学习了CAE 技术中的ANSYS Workbench ,对CAE 技术有了一个简单的认识,能基本掌握ANSYS Workbench 中的DM ,DS ,DX 等模块,但经过学习,感觉在建模和仿真的过程中,边界条件和实际工况载荷的施加是很重要的,而且往往是最影响分析结果的。
在DX 模块中,CAE 与CAD 的无缝链接技术很让人兴奋,但双向流动还是单向流动的数据链不得而知,不甚理解,没能掌握。
CAE 技术博大精深,现阶段学习的CAE 技术应该算是一个启蒙,入门的学习,在后面的学习和工作中,本着各种兴趣,可以对CAE 进行深入的学习,在QQ 技术群里和一些CAE 爱好者,进行更深入的交流和学习。
还有,这个CAE 软件很挑电脑,水一点的电脑算的超慢,一算几个小时。