函数图象的平移,对称,翻折,伸缩变换.概要
函数的图象平移、对称变换
成都七中
数学组:郑严
1、对称变换
例1. 设f(x)=
y
1 x
(x>0),求函数y=-f(x)、y=f(-x)、y=-f(-x)
y y
的解析式及其定义域,并分别作出它们的图象。
y=f(x) y=f(-x) y=f(x) y=f(x)
o
1
x
o
1
x
o
y=-f(-x)
1
x
y=-f(x)
横坐标不变 纵坐标取相反数 图象关于x轴对称
3x 7 练习. 画出函数 y 的图象。 x2
解:
3x 7 y x2
1 3x 6 1 3 x2 x2
y
1 y x
平移变换
o
x
1 y 3 x2
1 的图象先沿x轴向左平移2个单位,再 x 1
x2
因此:我们可将函数 y
沿y轴向上平移3个单位得到函数 y 3
2.将函数y=f(x)图像去掉y轴左方的部 分,保留y轴右方的部分并且把它关于 y轴作对称就得到函数y=f(|x|)的图像
3.函数图象的变换
观察下列函数,画出下列函数的图像:
1 (1) y f ( x); x 1 (2) y f ( x 2)
x2
1 (3) y f ( x 2) x2
横坐标取相反数 纵坐标不变 图象关于y轴对称
横坐标、纵坐标 同时取相反数 图象关于原点对称
对 称 变 换
函数图象的对称变换 小结 (对称变换) : 1.函数y=f(-x)与函数y=f(x)的图像关于y轴对称 2.函数y=-f(x)与函数y=f(x)的图像关于x轴对称 3.函数y=-f(-x)与函数y=f(x)的图像关于原点对 称
高中趣味课——函数图象的变换
f(x)→-f(x):两函数图象关于x轴对称.
f(x)→f(|x|):两函数图象在x正半轴相同,f(|x|)为偶函数.
f(x)→|f(x)|:将f(x)中x轴下方的图象对称折向x轴上方,既得|f(x)|图象
就是要钻“牛角尖”,就是这么任性!!!
THANK YOU
所以,只需将y=x2的图象向左平移3个单位,再向下平移4
个单位即可! 方法二:向量
二、伸缩变换
y=f(ωx)(ω>0)的图象可将函数y=f(x)的图象上所有点的
1 横坐标变为原来的 ,纵坐标不变得到. w
y=kf(x)(k>0)的图象可将函数y=f(x)的图象上所有点 的纵坐标变为原来的 k 倍,横坐标不变而得到.
三、对称变换
y=f(x)与y=f(-x)的图象关于Leabharlann y轴 对称; x轴 对称;
y=f(x)与y=-f(x)的图象关于
y=f(x)与y=-f(-x)的图象关于
原点 对称;
y=|f(x)|的图象可将函数y=f(x)的图象在x轴下方的部分以
x轴 为对称轴翻折到 x轴 上方,其余部分不变;
一句话:左加右减,上加下减!
下面我们以f(x)=x2为例来说明平移变换:
例:函数y=x2+6x+5 的图象可由函数y=x2 的图象如何平移得到 ?
方法一:逆向思维--待定系数法:
令y=(x+k)2+b展开得:y=x2+2kx+k2+b,易得k=3,b=-4;
所以:y=x2+6x+5=(x+3)2-4
函数图像的变换
高中数学
函数图象的变换
函数图象的变换作者:黄健斌来源:《数理化学习·教育理论版》2012年第12期图形的变换包括平移、翻折、旋转等变换方式.我们就从这几方面来探究已经学过的函数的图象变换的规律.一、一次函数y=kx+b 图象的变换(一)沿坐标轴的平移1.当b=0 时,即y=kx ,其图象沿x轴向左(或右)平移m (m>0)个单位,函数图象变化后的表达式为y=k(x+m)(或 y=k(x-m));其图象沿y轴向上(或下)平移n(n>0)个单位,函数图象变化后的表达式为y=kx+n(或 y=kx-n).2.当b≠0 时,即y=kx+b,其图象沿x轴向左(或右)平移m (m>0)个单位,函数图象变化后的表达式为y=k(x+m)+b(或y=k(x-m)+b);其图象沿y轴向上(或下)平移n (n>0)个单位,函数图象变化后的表达式为y=kx+b+n(或y=kx+b-n).所以一次函数关于坐标轴的平移可用口诀“左加右减”、“上加下减”来记忆.(二)沿坐标轴的翻折1.当b=0时,即y=kx ,其图象沿x轴翻折,则新图象与原图象关于x轴对称.变化后的表达式为y=-kx ;沿y轴翻折,则新图象与原图象关于y轴对称.变化后的表达式为y=-kx.2.当b≠0 时,即y=kx+b,其图象沿x轴翻折,则新图象与原图象关于x轴对称.变化后的表达式为y=-kx-b ;沿y轴翻折,则新图象与原图象关于y轴对称.变化后的表达式为y=-kx+b .所以一次函数图象关于坐标轴对称时,其函数表达式的系数变为原表达式中各系数的相反数.(三)绕原点旋转180°根据图象易知,一次函数y=kx+b的图象绕原点旋转180°后与原图象重合.所以一次函数图象绕原点旋转180°后的表达式还是y=kx+b.二、反比例函数y=k/x的图象变换(一)反比例函数沿坐标轴的平移当沿x轴向左(或向右)平移m(m>0)个单位时,变化后的表达式为y=k1x+m(或y=k1x-m);当沿y轴向上(或向下)平移n(n>0)个单位时,变化后的表达式为y=k1x+n (或y=k1x-n)(二)反比例函数沿坐标轴翻折当沿x轴翻折时,横坐标不变,纵坐标变为其相反数.故变化后的表达式为y=-k1x.(三)绕原点旋转180°因为反比例函数的图象是关于原点对称的,所以当图象绕原点旋转180°后,与原图形重合.其变化后的函数表达式为y=k1x.(四)关于直线y=±x对称因为反比例函数y=k1x的图象关于直线y=±x对称,所以沿直线y=±x翻折后的表达式仍为y=k1x.三、二次函数y=ax2+bx+c的图象变换(一)二次函数的平移1.二次函数的上、下平移(1)二次函数y=ax2向上(或下)平移|m|(m﹥0)个单位,得到抛物线y=ax2+m(或y=ax2-m)(2)二次函数y=a(x-h)2+k向上(或下)平移|m|(m>0)个单位,得到抛物线y=a(x-h)2+k+m(或y=a(x-h)2+k-m)(3)二次函数y=ax2+bx+c向上(或下)平移(m﹥0)个单位,得到抛物线y=ax2+bx+c+m(或y=ax2+bx+c-m).故二次函数上、下平移时按“上加下减”规律进行平移.2.二次函数的左、右平移(1)函数y=ax2向左(或右)平移|m|(m﹥0)个单位,得到抛物线y=a(x+m)2 (或y=a(x-m)2)(2)二次函数y=a(x-h)2+k向左(或右)平移|m|(m﹥0)个单位,得到抛物线y=a (x-h+m)2+k(或y= a(x-h-m)2+k)(3)二次函数y=ax2+bx+c向左(或右)平移|m|(m﹥0)个单位,得到抛物线y=a(x+m)2+b(x+m)+c(或y=a(x-m)2+b(x-m)+c).故二次函数左、右平移时按“左加右减”规律进行平移.(二)二次函数关于坐标轴的对称(1)二次函数y=ax2关于x轴对称的抛物线是y=-ax2;(2)二次函数y=ax2+h关于x轴对称的抛物线是y=-ax2-h;(3)二次函数y=ax2关于y轴对称的抛物线是y=ax2;(4)二次函数y=ax2+h关于y轴对称的抛物线是y=ax2+h;(5)二次函数y=a(x-h)2+k关于x轴对称的抛物线是y=-a(x-h)2-k;(6)二次函数y=a(x-h)2+k关于y轴对称的抛物线是y=a(x+h)2+k;(7)二次函数y=ax2+bx+c关于x轴对称的抛物线是y=-ax2-bx-c;(8)二次函数y=ax2+bx+c关于y轴对称的抛物线是y=ax2-bx+c.(三)二次函数关于原点的对称(1)二次函数y=ax2以原点为旋转中心旋转180°得抛物线y=-ax2;(2)二次函数y=ax2+k以原点为旋转中心旋转180°得抛物线y=-ax2-k;(3)二次函数y=a(x-h)2+k以原点为旋转中心旋转180°得抛物线y=-a(x+h)2-k;(4)二次函数y=ax2+bx+c以原点为旋转中心旋转180°得抛物线y=-ax2+bx-c;(5)二次函数y=ax2+k以顶点(0,k)为旋转中心旋转180°得抛物线y=-ax2+k(6)二次函数y=a(x-h)2+k以顶点(h,k)为旋转中心旋转180°得抛物线y=-a(x-h)2+k(7)二次函数y=ax2+bx+c以顶点(-b12a,4ac-b214a)为旋转中心旋转180°得抛物线y=-ax2-bx-c+4ac-b212a.1。
高中数学函数图象的4种简单变换知识点总结(平移、对称、翻折、伸缩)
高中数学函数图象的简单变换知识点总结高中阶段,函数图象的简单变换有:平移变换、对称变换、翻折变换、伸缩变换。
一、函数图象的平移变换①左右平移变换:()y f x =与()y f x a =+()()00a a a a y f x y f x a ><=−−−−−−−−−−−→=+时,向左平移个单位时,向右平移个单位如:1y x =+的图象可由y x =的图象向右平移一个单位得到;1y x =-的图象可由y x =的图象向下平移一个单位得到。
②上下平移变换()()00a a a a y f x y f x a ><=−−−−−−−−−−−→=+时,向上平移个单位时,向下平移个单位如:1y x =+的图象可由y x =的图象向上平移一个单位得到。
1y x =-的图象可由y x =的图象向下平移一个单位得到。
【注】变换的口诀为:“上加下减,左加右减”。
二、函数图象的对称变换①()()y y f x y f x =−−−−−−−−−→=-作关于轴对称的图象②()()x y f x y f x =−−−−−−−−−→=-作关于轴对称的图象③()()y f x y f x =−−−−−−−−−→=--作关于原点对称的图象如:(i)()sin sin y x y x ϕ=→=+①0ϕ>时,把sin y x =的图象向左平移ϕ个单位得到;②0ϕ<时,把sin y x =的图象向右平移ϕ个单位得到;(ii)已知()2f x x x =-,则()()2g x f x x x =-=+的图象可由()2f x x x =-的图象做关于y 轴对称的图象得到;函数()h x ()2f x x x =-=-+的图象可由()2f x x x =-的图象作关于x 轴对称后的图象得到;函数()()u x f x =--=2x x --的图象可由()2f x x x =-的图象做关于坐标系原点对称的图象得到。
函数图象的四大变换
你会利用图象的直观性来解决问题吗?
函数图象的四大变换
平移
翻折
对称 伸缩
一、知识点及基本方法
1、画函数图象的依据:⑴解析式及定义域;⑵图象变换
2、图象变换类型:常用变换方法有四种,即平移变换、 伸缩变换、对称变换 和翻折变换
(1)平移变换:分为水平平移与竖直平移
y=f(x)
x
x-h ( h > 0 )
练习2:
已知 f(x)=log2|x|, g(x)=-x2+2,则f(x)g(x)的图象
只能是下图中的( )
y
y
y
y
x
x
x
x
A
B
C
D
解析:由f(x)g(x)是偶函数否定A、D,
当x→±∞时,f(x)g(x) →-∞,故选C.
2、画函数图象,由图象求解析式
例2 已知函数y=f (x)是在R上以2为周期的奇函数,在区 间[0,1)上的图象如下图所示,并已知该区间上图象是 一个二次函数的图象的一部分,点(1,1)是其顶点.试作出 y=f (x)在区间[-2,2]上的图象,并求该区间上的解析式.
(3)伸缩变换:
y=f(x)
x
ωx (ω>1)
纵坐标不变,横坐标缩短为原来的 1 倍 ω
y=f(x)
x
ωx ( 0 < ω < 1)
纵坐标不变,横坐标伸长到原来的 1倍 ω
y=f(x)
纵坐标伸长(A>1)或缩短(0<A<1) 到原来的A倍,横坐标不变
y=f(ω x) y=f(ω x)
y= A f( x)
y
y
y
O
1x -1
-1 O
三种图象变换:平移变换、对称变换和伸缩变换
三种图象变换:平移变换、对称变换和伸缩变换①平移变换:(h>0)Ⅰ、水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左(0)a >或向右(0)a <平移||a 个单位即可得到;1)y=f(x)h 左移→y=f(x+h);2)y=f(x) h 右移→y=f(x -h);Ⅱ、竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到;1)y=f(x) h 上移→y=f(x)+h ;2)y=f(x) h下移→y=f(x)-h 。
②对称变换:Ⅰ、函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到; y=f(x) 轴y →y=f(-x)Ⅱ、函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到;y=f(x) 轴x →y= -f(x)Ⅲ、函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到;y=f(x) 原点→y= -f(-x)Ⅳ、函数)(y f x =的图像可以将函数()y f x =的图像关于直线y x =对称得到。
y=f(x) x y =→直线x=f(y)Ⅴ、函数)2(x a f y -=的图像可以将函数()y f x =的图像关于直线a x =对称即可得到;y=f(x) a x =→直线y=f(2a -x)。
③翻折变换:Ⅰ、函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到;Ⅱ、函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到④伸缩变换:Ⅰ、函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到;y=f(x)ay ⨯→y=af(x)Ⅱ、函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵坐标不变横坐标压缩(1)a >或伸长(01a <<)为原来的1a倍得到。
函数图像的三种变换平移变换
函数图像的三种变换一 、平移变换函数图象的平移变换,表现在函数图象的形状不变,只是函数图象的相对位置在变化,其平移方式可分为以下两种: 沿水平方向左右平行移动比如函数()y f x =与函数()(0)y f x a a =->,由于两函数的对应法则相同,x a -与x 取值范围一样,函数的值域一样。
以上三条决定了函数的形状相同,只是函数的图象在水平方向的相对位置不同,如何将函数()y f x =的图象水平移动才能得到函数()y f x =的图象呢?因为对于函数()y f x =上的任意一点(11,x y ),在()y f x a =-上对应的点为11(,)x a y +,因此若将()y f x =沿水平方向向右平移a 个单位即可得到()(0)y f x a a =->的图象。
同样,将()y f x =沿水平方向向左平移a 个单位即可得到()(0)y f x a a =+>的图象。
沿竖直方向上下平行移动比如函数()y f x =与函数()(0)y f x b b =+>,由于函数()y f x =函数()(0)y b f x b -=>中函数y 与y b -的对应法则相同,定义域和值域一样,因此两函数形状相同,如何将函数()y f x =的图象上下移动得到函数()y b f x -=的图象呢?因为对于函数()y f x =上的任意一点(11,x y ),在()(0)y b f x b -=>上对应的点为11(,)x y b +,因此若将()y f x =沿竖直方向向上平移a 个单位即可得到()(0)y b f x b -=>的图象。
同样,将()y f x =沿竖直方向向下平移a 个单位即可得到()(0)y b f x b +=>的图象。
据此,可以推断()y f x a b =±±(0,0)a b >>为水平方向移动a 个单位,“左加右减”,竖直方向移动b 个单位,“上加下减”。
函数图像的变换法则
( 0,1 )和( 0,1 ) ( 2,0 )和( 2, 2 )
三﹑对称变换
y
(-x,y) .
(-x,-y) .
(y,x) . .(x,y)
x
.(x,-y)
函数图象对称变换的规律:
1. y f ( x) y f ( x)
关于x轴对称
2. y f ( x) y f ( x)
函数图象变换的应用:
①作图﹑② 识图﹑ ③用图
(2)方程 f(x)-a=x 的根的个数等价于 y=f(x)与 y=x-a 的交点的个数,所以可以借助图像进行分析.
规范解答 解
2 x-2 -1, x∈-∞,1]∪[3,+∞ f(x)= 2 -x-2 +1, x∈1,3
作出图像如图所示.
[2 分]
(1)递增区间为[1,2],[3,+∞), 递减区间为(-∞,1],[2,3]. [4 分] (2)原方程变形为 |x2-4x+3|=x+a, 于是,设 y=x+a,在同一坐标系下再作出 y=x+a 的图 像.如图. 则当直线 y=x+a 过点(1,0)时,a=-1; [6 分]
a a
1 x
a
a ax a a a
x
ax a ax
1 y 1
a a a
x
a
x
x
a a
f (1 x)
所以,函数y=f(x)的图象关于点(1/2,1/2)对称
(2)由对称性知f(1-x)+f(x)=1,所以 f(-2)+ f(-1)+ f(0)+ f(1)+ f(2)+ f(3)=3。
对称变换是指两个函数图象之间的对称关系,而”满足 f(x)= f(2a-x)或f(a+x)= f(a-x)有y=f(x)关于直线x=a对称”是 指一个函数自身的性质属性,两者不可混为一谈.
高一数学函数图像知识点总结
高一数学函数图像知识点总结文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)高一数学函数图像知识点总结一、函数图像知识点汇总1.函数图象的变换(1)平移变换(2)对称变换由对称变换可利用y=f(x)的图象得到y=|f(x)|与y=f(|x|)的图象.①作出y=f(x)的图象,将图象位于x轴下方的部分以x轴为对称轴翻折到上方,其余部分不变,得到y=|f(x)|的图象;②作出y=f(x)在y轴上及y轴右边的图象部分,并作y轴右边的图象关于y轴对称的图象,即得y=f(|x|)的图象.(3)伸缩变换①y=af(x)(a>0)的图象,可将y=f(x)图象上每点的纵坐标伸(a>1时)或缩(a<1时)到原来的a倍,横坐标不变.②y=f(ax)(a>0)的图象,可将y=f(x)的图象上每点的横坐标伸(a<1时)或缩(a>1时)到原来的倍,纵坐标不变.(4)翻折变换①作为y=f(x)的图象,将图象位于x轴下方的部分以x轴为对称轴翻折到上方,其余部分不变,得到y=|f(x)|的图象;②作为y=f(x)在y轴上及y轴右边的图象部分,并作y轴右边的图象关于y轴对称的图象,即得y=f(|x|)的图象.2.等价变换可看出函数的图象为半圆.此过程可归纳为:(1)写出函数解析式的等价组;(2)化简等价组;(3)作图.3.描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象.注意:一条主线数形结合的思想方法是学习函数内容的一条主线,也是考查的热点.作函数图象首先要明确函数图象的形状和位置,而取值、列表、描点、连线只是作函数图象的辅助手段,不可本末倒置.两个区别(1)一个函数的图象关于原点对称与两个函数的图象关于原点对称不同,前者是自身对称,且为奇函数,后者是两个不同的函数对称.(2)一个函数的图象关于y轴对称与两个函数的图象关于y轴对称也不同,前者也是自身对称,且为偶函数,后者也是两个不同函数的对称关系.三种途径明确函数图象形状和位置的方法大致有以下三种途径.(1)图象变换:平移变换、伸缩变换、对称变换.(2)函数解析式的等价变换.(3)研究函数的性质.二、例题解析三、复习指导函数图象是研究函数性质、方程、不等式的重要工具,是数形结合的基础,是高考考查的热点,复习时,应重点掌握几种基本初等函数的图象,并在审题、识图上多下功夫,学会分析“数”与“形”的结合点,把几种常见题型的解法技巧理解透彻。
函数图象变换
y = 2|x|
0
x
例5.
先作出函数 y = 2|x| 的图象, 解: 2 x ••• x 0) x ( 2 •• x 0) ( | x| y 2 x 1 x 2 ( x 0) ( ) ( x 0) 2 又 y = 2|x| 是偶函数,
(1,-1)
x
例3.已知函数y=|2x-2| (1)作出函数的图象; (2)指出函数 的单调区间; (3)指出x取何值时,函数有最值。
y
y=2x
y=|2x-2|
y=2x-2
1
O
y=|2x-2|
1
23xFra bibliotek-1例3.已知函数y=|2x-2| (1)作出函数的图象; (2)指出函数 的单调区间; (3)指出x取何值时,函数有最值。
f(-x)的解析式及其定义域并分别作出它们的图象。
y
y=f(x) y=f(-x)
y
y=f(x)
y
y=f(x)
o
1
x
o
1
x
o
y=-f(-x)
1
x
y=-f(x)
对 称 变 换
图象关于 x轴对称
图象关于
图象关于
原点对称
y轴对称
例7.指数函数 y = 2x 的图象与函数 y = 2-x ,y=-2x ,y = -2-x 的图象的关系:
针 对 自 变 量 针 对 因 变 量
沿y轴向上平移k个单位 y y-k ( k > 0 )
沿y轴向下平移k个单位
(2)翻折变换:分为左折与上折
y=f(x)
去掉y轴左边图象,保留y轴右边 图象,再作其关于y轴对称图象
(整理版)第四讲函数图象的对称性与变换
第四讲:函数图象的对称性与变换一、 两个函数的图象的对称性:1、y=f 〔x 〕与y=-f 〔x 〕关于x 轴对称。
2、y=f 〔x 〕与y=f 〔-x 〕关于y 轴对称。
3、 y=f 〔x 〕与y=-f 〔-x 〕关于原点对称。
4、y=f 〔x 〕与y=f 1-〔x 〕关于直线y=x 对称,〔或y=f 〔x 〕与x=f 〔y 〕关于直线y=x 对称〕。
5、y=f 〔x 〕与y=f 〔2a -x 〕{注:y=f 〔a+x 〕与y=f 〔a -x 〕关于直线x=0对称}关于直线x=a 对称。
6、y=f 〔x 〕与y=-f 〔2a -x 〕+2b 关于点〔a,b 〕对称.二、 一个函数的图象的对称性:1、关于直线x=a 对称时,f 〔x 〕=f 〔2a -x 〕或f 〔a -x 〕=f 〔a+x 〕,特例:a=0时,关于y 轴对称,此时 f 〔x 〕=f 〔-x 〕为偶函数。
2、y=f 〔x 〕关于〔a,b 〕对称时,f 〔x 〕=2b -f 〔2a -x 〕,特别a=b=0时, f 〔x 〕=-f 〔-x 〕,即f 〔x 〕关于原点对称,f 〔x 〕为奇函数。
3、y=f 〔x 〕关于直线y=x+b 对称时,由上面知y=f 〔x 〕关于直线y=x+b 对称的函数的解析式是y=f 1-〔x+b 〕+b 。
它与y=f 〔x 〕应是同一函数,所以:f 〔x 〕=f1-〔x+b 〕+b 。
特别当b =0时,f 〔x 〕=f 1-〔x 〕,即一个函数关于直线y=x 对称时,它的反函数就是它本身。
4、类似4有y=f 〔x 〕关于直线y=-x+b 对称时, f 〔x 〕=b -f 1-〔b -x 〕。
特别当b =0时,f 〔x 〕=-f 1-〔-x 〕, f 〔x 〕关于直线y=-x 对称.5、假设f(a+x)=f(b-x),那么f(x)的图像关于直线2b a x +=对称, 三:图象平移与伸缩变换、翻折变换。
1、平移变换〔向量平移法那么〕:y=f 〔x 〕按a =〔h,k 〕平移得y=f 〔x -h 〕+k,即F 〔x,y 〕=0按a =〔h,k 〕平移得F 〔x -h,y -k 〕=0,当m>0时,向右平移,m<0时,向左平移。
高中物理图象问题分析
高中物理图象问题分析物理图象是物理学中重要的工具之一,它可以直观地表达物理规律和现象,帮助学生更好地理解物理概念和公式。
在高中物理中,图象问题也是学生必须面对的一个重要问题。
本文将从以下几个方面对高中物理图象问题进行深入分析。
一、掌握图象的基本要素要解决物理图象问题,首先需要掌握图象的基本要素。
物理图象通常包括横轴和纵轴,以及所描绘的曲线或数据点。
在分析图象时,要明确横轴和纵轴分别代表什么物理量,曲线的形状和趋势又代表了什么物理规律或现象。
还要注意图象中的标尺和单位,以及图象中的注释和说明。
二、识别常见的物理图象在高中物理中,常见的物理图象包括s-t图、v-t图、a-t图、b-q 图等。
每种图象都有其特定的物理意义和用途。
例如,s-t图可以用来表示物体在一段时间内的位移或路程,v-t图可以用来表示物体在一段时间内的速度变化等。
在解决图象问题时,要识别出对应的物理图象,并根据图象的特征和规律进行分析。
三、分析图象中的信息和规律物理图象中往往蕴含着大量的物理信息和规律。
在分析图象时,要通过观察和思考,发现图象中的信息,如曲线的形状、趋势、交点等,并尝试从中总结出物理规律。
例如,在v-t图中,可以通过观察曲线的形状和趋势,得出物体的运动状态和加速度等物理量;在a-t图中,可以通过观察曲线的形状和趋势,得出物体的加速度变化规律等。
四、运用图象解决问题运用物理图象可以解决一系列问题,例如求解物体的位移、速度、加速度等物理量,判断物体的运动状态和规律等。
在运用图象解决问题时,首先要根据问题的要求,选择合适的物理图象进行描绘;然后根据图象的特征和规律进行分析,得出问题的答案。
例如,在求解物体的位移时,可以通过s-t图的曲线面积来求解;在判断物体的运动状态时,可以通过v-t图的曲线形状来判断等。
高中物理图象问题需要学生掌握图象的基本要素,识别常见的物理图象,分析图象中的信息和规律,并运用图象解决问题。
通过这些步骤的分析和思考,学生可以更好地理解物理概念和公式,提高解题能力和思维水平。
函数图象平移与伸缩的通解
函数图象平移与伸缩的通解广东 柯厚宝对于函数图象的平移与伸缩问题,传统的处理手法过于繁杂,记忆量大,难于掌握.本文试图用代换的手法将其作一般性的探讨. 一、函数图象的平移事实上,设函数()y f x =的图象,向右平移a 个单位,得到的图象的解析式是''()y f x =, 令点00(,)x y 是()y f x =的图象上任一点,点00(,)x y 向右平移a 个单位得点''00(,)x y ,则点''00(,)x y 在''()y f x =的图象上,且'00'00x x a y y ⎧=+⎪⎨=⎪⎩,有'00'00x x ay y ⎧=-⎪⎨=⎪⎩, 于是,把函数()y f x =的图象,向右平移a 个单位,得到的图象的解析式是()y f x a =- (即以x a -代换x ).我们定义:当0a >时,表示向右平移;当0a <时,表示向左平移. 例1 函数(21)y f x =-是偶函数,则函数(2)y f x =的对称轴是 A ,0x = B ,1x =- C ,12x =D ,12x =- 分析:函数(21)y f x =-是偶函数,∴其对称轴为0x =, 以x a -代换x ,有[2()1]y f x a =--, 令2()12x a x --=,解得12a =-, 故函数(21)y f x =-的图象向左平移12个单位,得到函数(2)y f x =的图象,其对称轴 0x =也相应地向左平移了12个单位,故选D.例2 要得到函数cos(2)4y x π=-的图象,只需要将函数sin 2y x =的图象A ,向左平移8π个单位B ,向右平移8π个单位C ,向左平移4π个单位D ,向右平移4π个单位解1:∵cos(2)sin[(2)]sin(2)4244y x x x ππππ=-=+-=+,而在sin 2y x =中,以x a -代换x ,有sin 2()y x a =-.令22()4x x a π+=-,解得8a π=-.故选A.解2:sin 2cos(2)cos(2)22y x x x ππ==-=-. 在cos(2)2y x π=-中,以x a -代换x ,有cos[2()]2y x a π=--,令2()224x a x ππ--=-,解得8a π=-.故选A.同样地,把函数()()g y f x =的图象,向右平移a 个单位,再向上平移b 个单位,得到的图象的解析式是()()g y b f x a -=-(即以x a -,y b -分别代换x ,y ). 同样,我们定义:当0b >时,表示向上平移;当0b <时,表示向下平移. 例3 函数sin()6y x π=-的图象,经过怎样的平移变换得到函数sin()33y x π=++的图象?解:在sin()6y x π=-中,以x a -,y b -分别代换x ,y ,有sin[()]6y b x a π-=--. 即sin()6y x a b π=--+,经对比,有633x a x b ππ⎧--=+⎪⎨⎪=⎩,解得23a b π⎧=-⎪⎨⎪=⎩. 故把函数sin()6y x π=-的图象,向左平移2π个单位,再向上平移3个单位,便得函数 sin()33y x π=++的图象.二、函数图象的伸缩与平移事实上,设把函数()y f x =的图象的横坐标伸长到原来的(0)k k >倍(纵坐标不变), 得到的图象的解析式是''()y f x =,令点00(,)x y 是()y f x =的图象上任一点,点00(,)x y 的横坐标伸长到原来的k 倍,得点''00(,)x y ,则点''00(,)x y 在''()y f x =的图象上,且'00'00x kx y y ⎧=⎪⎨=⎪⎩,有'00'001x x ky y ⎧=⎪⎨⎪=⎩, 于是,设把函数()y f x =的图象的横坐标伸长到原来的(0)k k >倍(纵坐标不变),得到的图象的解析式是1()y f x k=(即以1x k代换x ). 我们定义:当1k >时,表示伸长;当01k <<时,表示缩短.例4 函数sin y x =的图象,经过怎样的平移和伸缩变换得到函数sin(2)46y x π=++的图象?解1:(先平移后伸缩)在sin y x =中,以x a -,y b -分别代换x ,y , 有sin()y b x a -=-,再以1x k 代换x ,有1sin()y b x a k -=-,即1sin()y x a b k=-+. 对比有1264x a x k b π⎧-=+⎪⎨⎪=⎩,得1,,462a k b π=-==.即把函数sin y x =的图象向左平移6π个单位,再向上平移4个单位,后将横坐标缩短到原来的12倍(纵坐标不变),可得函数sin(2)46y x π=++的图象.解2:(先伸缩后平移)在sin y x =中,以1x k 代换x ,有1sin y x k=,再以x a -,y b -分别代换x ,y ,得1sin ()y b x a k -=-,即1sin ()y x a b k=-+于是1()264x a x k b π⎧-=+⎪⎨⎪=⎩,得12,,46a b k k π=-==,∴1,,4212k a b π==-=.即把函数sin y x =的图象横坐标缩短到原来的12倍(纵坐标不变),再向左平移12π个单位,后向上平移4个单位,可得函数sin(2)46y x π=++的图象.把函数()()g y f x =的图象的横坐标与纵坐标分别伸长到原来的,(,0)k l k l >倍,得到的图象的解析式是11()()g y f x l k =(即分别以1x k ,1y l代换,x y ). 我们定义:当,1k l >时,表示伸长;当0,1k l <<时,表示缩短.例5 已知函数2()log (1)f x x =+,将()y f x =的图象向左平移1个单位,再将图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),得到函数()y g x =的图象. (I )求()y g x =的解析式及定义域;(II )求()()()F x f x g x =-的最大值. 解:(I )依题意,在2log (1)y x =+中,以(1)x --(即1x +)代换x ,得2log [(1)1]y x =++,即2log (2)y x =+,再以12y 代换y ,得21log (2)2y x =+. 故得2()2log (2)g x x =+…….下略.例6 函数3sin(5)3y x π=+的图象,经过怎样的变换得到函数sin()6y x π=-的图象? 解1:(先伸缩后平移)在3sin(5)3y x π=+中,分别以1x k ,1y l代换,x y ,有153sin()3y x l k π=+,再以x a -代换x ,得153sin[()]3y x a l k π=-+, 即53sin[()]3y l x a k π=-+,令315()36l x a x kππ=⎧⎪⎨-+=-⎪⎩,得15,,32k l a π===.故把函数3sin(5)3y x π=+的图象,横坐标伸长到原来的5倍(纵坐标不变),再将纵坐标缩短到原来的13倍(横坐标不变),后向右平移2π个单位,即得函数sin()6y x π=-的图象. 说明:本题也可“先平移后伸缩”行变换,这个留给读者完成.(柯正摘自《试题与研究》高考数学,2004/33)。
函数图象的平移,对称,翻折,伸缩变换..
- + , 0 ≤ x ≤ 1 即:y= 2 4 1 1 x- - ,x>1或x<0 即:y= 2 14 1 2
高考总复习·理科·数学
(2)作出y=log2x的图象,将此图象向左平移1个单位,得 到y=log2(x+1)的图象,再保留其y≥0部分,加上其y<0的部 分关于x轴的对称部分,即得y=|log(x+1)|的图象(如上图 右).
高考总复习·理科·数学
函数y=f(x)与y=g(x)的图象如下图:则函数y= f(x)· g(x)的图象可能是( )
高考总复习·理科·数学
解法二: (1)作出函数y=2x的图象关于y轴的对称图象,得到 y=2-x的图象; (2)把函数y=2-x的图象向左平移3个单位,得到y=2-x-3 的图象; (3)把函数y=2-x-3的图象向上平移1个单位,得到函数y =2-x-3+1的图象.
从而可以作出x>0时f(x)的图象,
又∵x>0时,f(x)≥2,
∴x=1时,f(x)的最小值为2,图象最低点为(1,2),
又∵f(x)在(0,1)上为减函数,在(1,+∞)上是增函数,
1 同时f(x)=x+ x (x>0)即以y=x为渐近线,
高考总复习·理科·数学
于是x>0时,函数f(x)的图象应为图①,进而得y=f(x)的 整个图象为图②.
高考总复习·理科·数学
变式探究 3.函数y = a| x | (a > 1)的图象是( B )
函数的图像及其变换
的图像可由y=f(x)的图像向上平移b个单位 而得到.总之, 对于平移变换,记忆口诀为:左加右减,上加下减.
(2)对称变换 y=f(-x)与y=f(x)的图像关于 y轴 y=-f(x)与y=f(x)的图像关于 x轴 对称; 对称; 对称;
y=-f(-x)与y=f(x)的图像关于 原点
y=|f(x)|的图像可将y=f(x)的图像在x轴下方的部分
AD,当点C落在X轴上时,h′=CF,显然AD=CF,即 当“中心点”M位于最高处时,“最高点”与X轴的距离 相等,选项B不符,故选A.
【答案】 A
·高中总复习(第1轮)·理科数学 ·全国版
立足教育 开创未来
► 探究点3 判断、证明函数的单调性 题型三:函数图象的应用及对称问题 3. 已知f(x)=| x2 -4x+3|. (1)求f(x)的单调区间; (2)求m的取值范围, 使方程f(x)=mx有4个不同实根.
方法二 y=f(x-1)与y=f(1-x)的图像分别由y=f(x) 与y=f(-x)的图像同时向右平移一个单位而得,又y=f(x) 与y=f(-x)的图像关于y轴对称. ∴y=f(x-1)与y=f(1-x)的图像关于直线x=1对 称.
【答案】 (1)g(x)=-ln(x-1) (2)D
变式
(1)已知函数 f(2x+1)是奇函数, 则函数 y=f(2x) )
【解析】 如图所示,不妨设正三角形ABC的边长 为a,记“中心点”M与X轴的距离为h,记“最高点”与 X轴的距离为h′.由图可知,当三段弧的中点落在X轴上 时,h最小,此时h=MD;当点A、B、C落在X轴上时, h最大,h=MC,故“中心点”M的位置先低后高,呈周 期性变化,排除选项C与D.当点D落在X轴上时,h′=
函数图象变换的四种方式
函数图象变换的四种方式一,平移变换。
(1)水平平移:要由函数y=f(x)的图象得到函数y=f(x+a)的图象,只要将f(x)的图象向左平移a个单位。
要由函数y=f(x)的图象得到函数y=f(x-a)的图象,只要将f(x)的图象向右平移a个单位。
(简记:左加右减,这里的a>0。
)(2)上下平移:要由函数y=f(x)的图象得到函数y=f(x)+a的图象,只要将f(x)的图象向上平移a个单位。
要由函数y=f(x)的图象得到函数y=f(x)-a的图象,只要将f(x)的图象向下平移a个单位。
(简记:上加下减,这里的a>0)二,对称变换。
(1)y=f(x)与y=f(-x)的图象关于y轴对称。
所以由f(x)的图象得到f(-x)的图象,只需将f(x)的图象以y轴为对称轴左右翻折就可得到f(-x)的图象。
(简记:左右翻折)(2)y=f(x)与y=-f(x)的图象关于x轴对称。
所以由f(x)的图象得到-f(x)的图象,只需将f(x)的图象以x轴为对称轴上下翻折就可得到-f(x)的图象。
(简记:上下翻折)(3)y=f(x)与y=-f(-x)的图象关于原点对称。
所以由f(x)的图象得到-f-(x)的图象,只需将f(x)的图象以原点为对称中心旋转180度就可得到-f(-x)的图象。
(简记:旋转180度)三,翻折变换。
(1)如何由y=f(x)的图象得到y=f(|x|)的图象?先画出函数y=f(x) y轴右侧的图象,再作出关于y轴对称的图形(简记:右不动,左对称)(2)如何由y=f(x)的图象得到y=|f(x)|的图象?先画出函数y=f(x)的图象,再将x轴下方的图象以x轴为对称轴翻折到x轴上方去。
(简记:上不动,下上翻)四,伸缩变换。
(1)如何由函数y=f(x)的图象得到函数y=af(x)的图象?(a>0)可将函数f(x)的图象上每个点的纵坐标变为原来的a倍,横坐标不改变,就可得到函数af(x)的图象。
(2)如何由函数y=f(x)的图象得到函数y=f(ax)的图象?(a>0)可将函数f(x)的图象上每个点的横坐标变为原来的1/a倍,纵坐标不改变,就可得到函数f(ax)的图象。
二次函数中的平移、翻折、对称、旋转、折叠问题
二次函数中的平移、翻折、对称、旋转、折叠问题目录题型01二次函数平移问题题型02二次函数翻折问题题型03二次函数对称问题题型04二次函数旋转问题题型05二次函数折叠问题题型01二次函数平移问题1. 二次函数的平移变换平移方式(n>0)一般式y=ax2+bx+c顶点式y=a(x-h)2+k平移口诀向左平移n个单位y=a(x+n)2+b(x+n)+c y=a(x-h+n)2+k左加向右平移n个单位y=a(x-n)2+b(x-n)+c y=a(x-h-n)2+k右减向上平移n个单位y=ax2+bx+c+n y=a(x-h)2+k+n上加向下平移n个单位y=ax2+bx+c-n y=a(x-h)2+k-n下减2.平移与增加性变化如果平移后对称轴不发生变化,则不影响增减性,但会改变函数最大(小)值.只对二次函数上下平移,不改变增减性,改变最值.只对二次函数左右平移,改变增减性,不改变最值.1(2023·上海杨浦·统考一模)已知在平面直角坐标系xOy中,抛物线y=ax2-2ax-3a≠0与x轴交于点A、点B(点A在点B的左侧),与y轴交于点C,抛物线的顶点为D,且AB=4.(1)求抛物线的表达式;(2)点P 是线段BC 上一点,如果∠PAC =45°,求点P 的坐标;(3)在第(2)小题的条件下,将该抛物线向左平移,点D 平移至点E 处,过点E 作EF ⊥直线AP ,垂足为点F ,如果tan ∠PEF =12,求平移后抛物线的表达式.【答案】(1)y =x 2-2x -3(2)P 53,-43(3)y =x +1792-4【分析】(1)设点A 的横坐标为x A ,点B 的横坐标为x B ,根据对称轴,AB =4,列式x A +x B2=1,x B -x A =4,利用根与系数关系计算确定a 值即可.(2)过点C 作AC ⊥MN 于点C ,交AC 右侧的AP 的延长线于点M ,交AC 左侧的AP 的延长线于点N ,利用三角形全等,确定坐标,后根据解析式交点确定所求坐标即可.(3)设抛物线向左平移了t 个单位,则点E 1-t ,-4 ,过点F 作x 轴的平行线交过点P 和y 轴的平行线于点H ,交过点E 和y 轴的平行线于点G ,证明Rt △FGE ∽Rt △PHF ,根据相似三角形的性质得出GEHF=GF HP =EF FP =1tan ∠PEF =2即可求解.【详解】(1)解:∵抛物线y =ax 2-2ax -3a ≠0 与x 轴交于点A 、点B (点A 在点B 的左侧),与y 轴交于点C ,抛物线的顶点为D ,且AB =4,∴x A +x B 2=1,x B -x A =4,解得x B =3,x A =-1,∴-3a=3×-1 ,解得a=1,故抛物线的解析式为y =x 2-2x -3.(2)过点C 作AC ⊥MN 于点C ,交AC 右侧的AP 的延长线于点M ,∵∠PAC =45°,∴AC =CM ,过点M 作MT ⊥y 轴于点T ,∴∠ACO =90°-∠ECM =∠CMT ∵∠ACO =∠CMT ∠AOC =∠CTM AC =CM,∴△AOC ≌△CTM AAS ,∴AO =CT ,OC =EM ,∵抛物线的解析式为y =x 2-2x -3,x B =3,x A =-1,∴AO =CT =1,OC =TM =3,A -1,0 ,C 0,-3 ,B 3,0 ,∴OE =2,TM =3∴M 3,-2 ,设AM 的解析式为y =kx +b ,BC 的解析式为y =px +q ∴-k +b =03k +b =-2 ,3p +q =0q =-3 ,解得k =-12b =-12,p =1q =-3 ∴AM 的解析式为y =-12x -12,BC 的解析式为y =x -3,∴y =x -3y =-12x -12 ,解得x =53y =-43,故P 53,-43;(3)∵y =x 2-2x -3=x -1 2-4,点D 1,-4 ,设抛物线向左平移了t 个单位,则点E 1-t ,-4 ,过点F 作x 轴的平行线交过点P 和y 轴的平行线于点H ,交过点E 和y 轴的平行线于点G ,由(2)知,直线AP 的表达式为:y =-12x -12,P 53,-43设F m ,-12m -12 ∵∠EFP =90°,∴∠GFE +∠HFP =90°,∵∠GFE +∠GEF =90°,∴∠GEF =∠HFP ,∴Rt △FGE ∽Rt △PHF ,∴GE HF =GF HP =EF FP =1tan ∠PEF=2,∵GE =y F -y E =-12m -12+4,HF =x P -x F =53-m ,GF =x F -x G =m -1-t ,HP=y F -y P =-12m-12+43,∴-12m -12+453-m =m -1-t -12m -12+43=2,解得:t =269,∴y =x -1+269 2-4=x +179 2-4.【点睛】本题为考查了二次函数综合运用,三角形全等和相似、解直角三角形、图象平移等,正确作辅助线是解题的关键.2(2023·广东湛江·校考一模)如图1,抛物线y =36x 2+433x +23与x 轴交于点A ,B (A 在B 左边),与y 轴交于点C ,连AC ,点D 与点C 关于抛物线的对称轴对称,过点D 作DE ∥AC 交抛物线于点E ,交y 轴于点P.(1)点F 是直线AC 下方抛物线上点一动点,连DF 交AC 于点G ,连EG ,当△EFG 的面积的最大值时,直线DE 上有一动点M ,直线AC 上有一动点N ,满足MN ⊥AC ,连GM ,NO ,求GM +MN +NO 的最小值;(2)如图2,在(1)的条件下,过点F 作FH ⊥x 轴于点H 交AC 于点L ,将△AHL 沿着射线AC 平移到点A 与点C 重合,从而得到△A H L (点A ,H ,L 分别对应点A ,H ,L ),再将△A H L 绕点H 逆时针旋转α(0°<α<180°),旋转过程中,边A L 所在直线交直线DE 于Q ,交y 轴于点R ,求当△PQR 为等腰三角形时,直接写出PR 的长.【答案】(1)4+23975(2)1733-3或833【分析】(1)作FH ∥y 轴交DE 于H .设F m ,36m 2+433m +23 ,求出直线DE 的解析式,联立方程得到x =-3时,FH 的值最大,求出答案;作点G 关于DE 的对称点T ,TG 交DE 于R ,连接OR 交AC 于N ,作NM ⊥DE 于M ,连接TM ,GM ,此时GM +MN +NO 的值最小,求出答案即可;(2)当△PQR 是等腰三角形时,易知∠QPR =120°,易知直线RQ 与x 轴的夹角为60°,得到直线RQ 的解析式为y =3x +3-3,进而求出答案,当△QPR 是等腰三角形,同理求出答案.【详解】(1)如图1中,作FH ∥y 轴交DE 于H .设F m ,36m 2+433m +23 .由题意可知A (-6,0),B (-2,0),C (0,23),∵抛物线的对称轴x =-4,C ,D 关于直线x =-4对称,∴D (-8,23),∴直线AC 的解析式为y =33x +23,∵DE ∥AC ,∴直线DE 的解析式为y =33x +1433,由y =33x +23y =33x +1433,解得x =8y=23 或x =2y =1633,∴E 2,1633 ,H m ,33m +1433,∵S △DEF =S △DEG +S △EFG ,△DEG 的面积为定值,∴△DEG 的面积最大时,△EFG 的面积最大,∵FH 的值最大时,△DEF 的面积最大,∵FH 的值最大时,△EFG 的面积最大,∵FH =-36m 2-3m +833,∵a <0.开口向下,∴x =-3时,FH 的值最大,此时F -3,-32.如图2中,作点G 关于DE 的对称点T ,TG 交DE 于R ,连接OR 交AC 于N ,作NM ⊥DE 于M ,连接TM ,GM ,此时GM +MN +NO 的值最小.∵直线DF 的解析式为:y =-32x -23,由y =-32x -23y =33x +23,解得x =-245y =235,∴G -245,232 ,∵TG ⊥AC ,∴直线GR 的解析式为y =-3x -2235,由y =33x +1433y =-3x -2235 ,解得x =-345y =1235,∴R -345,1235,∴RG =4,OR =23975,∵GM =TM =RN ,∴GM +MN +ON =RN +ON +RG =RG +ON =4+23975.∴GM +MN +NO 的最小值为4+23975.(2)如图3中,如图当△PQR 是等腰三角形时,易知∠QPR =120°,PQ =PR易知直线RQ 与x 轴的夹角为60°,L 3-32,23+32,直线RQ 的解析式为y =3x +3-3,∴R (0,3-3),∴PR =1433-(3-3)=1733-3.如图4中,当△QPR 是等腰三角形,∵∠QPR =60°,∴△QPR 是等边三角形,同法可得R (0,23),∴PR =OP -OC =1433-23=833综上所述,满足条件的PR 的值为1733-3或833.【点睛】本题属于二次函数证明题,考查了二次函数的性质,一次函数的应用,解题的关键是学会构建二次函数解决最值问题,学会分类讨论的思想思考问题.3(2023·广东潮州·校考一模)如图,在平面直角坐标系中,抛物线y =-12x 2+bx +c 与x 轴交于A (-2,0),B (4,0)两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC 、BC ,点P 为直线BC 上方抛物线上一动点,连接OP 交BC 于点Q .(1)求抛物线的函数表达式;(2)当PQ OQ 的值最大时,求点P 的坐标和PQ OQ的最大值;(3)把抛物线y =-12x 2+bx +c 沿射线AC 方向平移5个单位得新抛物线y ,M 是新抛物线上一点,N 是新抛物线对称轴上一点,当以M 、N 、B 、C 为顶点的四边形是平行四边形时,直接写出N 点的坐标,并把求其中一个N 点坐标的过程写出来.【答案】(1)抛物线的函数表达式为y =-12x 2+x +4(2)当m =2时,PQ OQ取得最大值12,此时,P (2,4)(3)N 点的坐标为N 12,52 ,N 22,-112 ,N 32,-52.其中一个N 点坐标的解答过程见解析【分析】(1)运用待定系数法即可求得答案;(2)运用待定系数法求得直线BC 的解析式为y =-x +4,如图1,过点P 作PD ∥y 轴交BC 于点D ,设P m ,-12m 2+m +4 ,则D (m ,-m +4),证明△PDQ ∽△OCQ ,得出:PQ OQ =PD OC=-12m 2+2m 4=-18(m -2)2+12,运用求二次函数最值方法即可得出答案;(3)设M t -12t 2+2t +92,N (2,s ),分三种情况:当BC 为▱BCN 1M 1的边时;当BC 为▱BCM 2N 2的边时;当BC 为▱BM 3CN 3的对角线时,运用平行四边形性质即可求得答案.【详解】(1)∵抛物线y =-12x 2+bx +c 与x 轴交于A (-2,0),B (4,0)两点(点A 在点B 的左侧),∴-12×(-2)2-2b +c =0-12×42+4b +c =0,解得:b =1c =4 ,∴抛物线的函数表达式为y =-12x 2+x +4;(2)∵抛物线y =-12x 2+x +4与y 轴交于点C ,∴C (0,4),∴OC =4,设直线BC 的解析式为y =kx +d ,把B (4,0),C (0,4)代入,得:4k +d =0,d =4 解得:k =-1d =4 ,∴直线BC 的解析式为y =-x +4,如图1,过点P 作PD ∥y 轴交BC 于点D ,设P m ,-12m 2+m +4 ,则D (m ,-m +4),∴PD =-12m 2+2m ,∵PD ∥OC ,∴△PDQ ∽△OCQ ,∴PQ OQ =PD OC=-12m 2+2m 4=-18(m -2)2+12,∴当m =2时,PQ OQ取得最大值12,此时,P (2,4).(3)如图2,沿射线AC 方向平移5个单位,即向右平移1个单位,向上平移2个单位,∴新的物线解析式为y =-12(x -2)2+132=-12x 2+2x +92,对称轴为直线x =2,设M t ,-12t 2+2t +92,N (2,s ),当BC 为▱BCN 1M 1的边时,则BC ∥MN ,BC =MN ,∴t -2=4s =-12t 2+2t +92+4解得:t =6s =52,∴N 12,52;当BC 为▱BCM 2N 2的边时,则BC ∥MN ,BC =MN ,∴t -2=-4s =-12t 2+2t +92-4 ,解得:t =-2s =-112,∴N 22,-112;当BC 为▱BM 3CN 3的对角线时,则t +2=4-12t 2+2t +92+s =4,解得:t =2s =-52,∴N 32,-52;综上所述,N 点的坐标为:N 12,52 ,N 22,-112 ,N 32,-52.【点睛】本题是二次函数综合题,考查了待定系数法,二次函数的图象和性质,抛物线的平移,平行四边形的性质,相似三角形的判定和性质,熟练掌握铅锤法、中点坐标公式,运用数形结合思想、分类讨论思想是解题关键.4(2023·湖北襄阳·校联考模拟预测)坐标综合:(1)平面直角坐标系中,抛物线C 1:y 1=x 2+bx +c 的对称轴为直线x =3,且经过点6,3 ,求抛物线C 1的解析式,并写出其顶点坐标;(2)将抛物线C 1在平面直角坐标系内作某种平移,得到一条新的抛物线C 2:y 2=x 2-2mx +m 2-1,①如图1,设自变量x 在1≤x ≤2的范围内取值时,函数y 2的最小值始终等于-1.此时,若y 2的最大值比最小值大12m ,求m 的值;②如图2,直线l :y =-12x +n n >0 与x 轴、y 轴分别交于A 、C 两点.过点A 、点C 分别作两坐标轴的平行线,两平行线在第一象限内交于点B .设抛物线C 2与x 轴交于E 、F 两点(点E 在左边).现将图中的△CBA 沿直线l 折叠,折叠后的BC 边与x 轴交于点M .当8≤n ≤12时,若要使点M 始终能够落在线段EF (包括两端点)上,请通过计算加以说明:抛物线C 1在向抛物线C 2平移时,沿x 轴的方向上需要向左还是向右平移?最少要平移几个单位?最多能平移几个单位?【答案】(1)抛物线C 1的解析式为y 1=x 2-6x +3,抛物线C 1的顶点坐标为3,-6(2)①m 的值为2或9-154;②抛物线C 1在向抛物线C 2平移时,沿x 轴的方向上需要向右平移,最少平移2个单位,最多平移7个单位【分析】(1)根据对称轴为直线x =3,可得b =-6,再把把6,3 代入,即可求解;(2)①根据配方可得当x =m 时,函数有最小值-1,再由自变量x 在1≤x ≤2的范围内取值时,函数y 2的最小值始终等于-1,可得1≤m ≤2,然后两种情况讨论,即可求解;②先求出点A ,C 的坐标,可得点B 的坐标,再根据图形折叠的性质可得CM =AM ,在Rt △COM 中,根据勾股定理可得CM =54n ,从而得到点M 的坐标,继而得到n 的取值范围,然后根据点M 始终能够落在线段EF (包括两端点)上,可得m 取值范围,即可求解.【详解】(1)解:∵y 1=x 2+bx +c 的对称轴为直线x =3,∴-b2=3,解得:b =-6,把6,3 代入y 1=x 2-6x +c ,得3=62-6×6+c ,解得:c =3,∴抛物线C 1的解析式为y 1=x 2-6x +3,当x =3时,y 1=32-6×3+3=-6,∴抛物线C 1的顶点坐标为3,-6 ;(2)解:①∵y 2=x 2-2mx +m 2-1=x -m 2-1,∴抛物线C 2的对称轴为直线x =m ,当x =m 时,函数有最小值-1,∵在1≤x ≤2的范围内取值时,函数y 2的最小值始终等于-1,∴1≤m ≤2,当1≤m ≤32时,x =2时y 2有最大值为m 2-4m +3,∴m 2-4m +3+1=12m ,解得m =9±154,∴m =9-154;当32≤m ≤2时,x =1时y 2有最大值为m 2-2m ,∴m 2-2m +1=12m ,解得m =2或m =12(舍),综上所述:m 的值为2或9-154;②直线l :y =-12x +n 与x 轴的交点A 2n ,0 ,与y 轴的交点C 0,n ,∴B 2n ,n ,∵△CBA 沿直线l 折叠,∴∠BCA =∠ACM ,∵∠BCA =∠CAM ,∴∠ACM =∠MAC ,∴CM =AM ,在Rt △COM 中,CM 2=CO 2+OM 2,即CM 2=n 2+2n -CM 2,解得CM =54n ,∴OM =34n ,∴M 34n ,0 ,∵8≤n ≤12,∴6≤34n ≤9,当x 2-2mx +m 2-1=0时,解得:x =m +1或x =m -1,∴E m -1,0 ,F m +1,0 ,∵点M 始终能够落在线段EF 上,∴m +1≥6,m -1≤9,∴5≤m ≤10,∵y 1=x 2-6x +3=x -3 2-6,y 2=x -m 2-1,当m =5时,抛物线C 1沿x 轴向右平移2个单位,向上平移5个单位,当m =10时,抛物线C 1沿x 轴向右平移7个单位,向上平移5个单位,∴抛物线C 1在向抛物线C 2平移时,沿x 轴的方向上需要向右平移,最少平移2个单位,最多平移7个单位.【点睛】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,轴对称图形的性质,勾股定理的应用是解题的关键.5(2023·浙江湖州·统考中考真题)如图1,在平面直角坐标系xOy 中,二次函数y =x 2-4x +c 的图象与y 轴的交点坐标为0,5 ,图象的顶点为M .矩形ABCD 的顶点D 与原点O 重合,顶点A ,C 分别在x 轴,y 轴上,顶点B 的坐标为1,5 .(1)求c 的值及顶点M 的坐标,(2)如图2,将矩形ABCD 沿x 轴正方向平移t 个单位0<t <3 得到对应的矩形A B C D .已知边C D ,A B 分别与函数y =x 2-4x +c 的图象交于点P ,Q ,连接PQ ,过点P 作PG ⊥A B 于点G .①当t =2时,求QG 的长;②当点G 与点Q 不重合时,是否存在这样的t ,使得△PGQ 的面积为1?若存在,求出此时t 的值;若不存在,请说明理由.【答案】(1)c =5,顶点M 的坐标是2,1(2)①1;②存在,t =12或52【分析】(1)把0,5 代入抛物线的解析式即可求出c ,把抛物线转化为顶点式即可求出顶点坐标;(2)①先判断当t =2时,D ,A 的坐标分别是2,0 ,3,0 ,再求出x =3,x =2时点Q 的纵坐标与点P 的纵坐标,进而求解;②先求出QG =2,易得P ,Q 的坐标分别是t ,t 2-4t +5 ,t +1,t 2-2t +2 ,然后分点G 在点Q 的上方与点G 在点Q 的下方两种情况,结合函数图象求解即可.【详解】(1)∵二次函数y =x 2-4x +c 的图象与y 轴的交点坐标为0,5 ,∴c =5, ∴y =x 2-4x +5=x -2 2+1,∴顶点M 的坐标是2,1 .(2)①∵A 在x 轴上,B 的坐标为1,5 ,∴点A 的坐标是1,0 .当t =2时,D ,A 的坐标分别是2,0 ,3,0 .当x =3时,y =3-2 2+1=2,即点Q 的纵坐标是2,当x =2时,y =2-2 2+1=1,即点P 的纵坐标是1.∵PG ⊥A B ,∴点G 的纵坐标是1, ∴QG =2-1=1. ②存在.理由如下:∵△PGQ 的面积为1,PG =1,∴QG =2.根据题意,得P ,Q 的坐标分别是t ,t 2-4t +5 ,t +1,t 2-2t +2 .如图1,当点G 在点Q 的上方时,QG =t 2-4t +5-t 2-2t +2 =3-2t =2,此时t =12(在0<t <3的范围内),如图2,当点G 在点Q 的下方时,QG =t 2-2t +2-t 2-4t +5 =2t -3=2,此时t =52(在0<t <3的范围内).∴t =12或52.【点睛】本题考查了二次函数图象上点的坐标特点、矩形的性质以及三角形的面积等知识,熟练掌握二次函数的图象与性质、灵活应用数形结合思想是解题的关键.6(2023·江苏·统考中考真题)如图,二次函数y =12x 2+bx -4的图像与x 轴相交于点A (-2,0)、B ,其顶点是C .(1)b =;(2)D 是第三象限抛物线上的一点,连接OD ,tan ∠AOD =52;将原抛物线向左平移,使得平移后的抛物线经过点D ,过点(k ,0)作x 轴的垂线l .已知在l 的左侧,平移前后的两条抛物线都下降,求k 的取值范围;(3)将原抛物线平移,平移后的抛物线与原抛物线的对称轴相交于点Q ,且其顶点P 落在原抛物线上,连接PC 、QC 、PQ .已知△PCQ 是直角三角形,求点P 的坐标.【答案】(1)-1;(2)k ≤-3;(3)3,-52 或-1,-52 .【分析】(1)把A (-2,0)代入y =12x 2+bx -4即可求解;(2)过点D 作DM ⊥OA 于点M ,设D m ,12m 2-m -4 ,由tan ∠AOD =DM OM=-12m 2+m +4-m =52,解得D -1,-52,进而求得平移后得抛物线,平移后得抛物线为y =12x +3 2-92,根据二次函数得性质即可得解;(3)先设出平移后顶点为P p ,12p 2-p -4 ,根据原抛物线y =12x -1 2-92,求得原抛物线的顶点C 1,-92 ,对称轴为x =1,进而得Q 1,p 2-2p -72,再根据勾股定理构造方程即可得解.【详解】(1)解:把A (-2,0)代入y =12x 2+bx -4得,0=12×-2 2+b ×-2 -4,解得b =-1,故答案为-1;(2)解:过点D 作DM ⊥OA 于点M ,∵b =-1,∴二次函数的解析式为y =12x 2-x -4设D m ,12m 2-m -4 ,∵D 是第三象限抛物线上的一点,连接OD ,tan ∠AOD =52,∴tan ∠AOD =DM OM=-12m 2+m +4-m =52,解得m =-1或m =8(舍去),当m =-1时,12m 2-m -4=12+1-4=-52,∴D -1,-52,∵y =12x 2-x -4=12x -1 2-92,∴设将原抛物线向左平移后的抛物线为y =12x +a 2-92,把D -1,-52 代入y =12x +a 2-92得-52=12-1+a 2-92,解得a =3或a =-1(舍去),∴平移后得抛物线为y =12x +3 2-92∵过点(k ,0)作x 轴的垂线l .已知在l 的左侧,平移前后的两条抛物线都下降,在y =12x +3 2-92的对称轴x =-3的左侧,y 随x 的增大而减小,此时原抛物线也是y 随x 的增大而减小,∴k ≤-3;(3)解:由y =12x -1 2-92,设平移后的抛物线为y =12x -p 2+q ,则顶点为P p ,q ,∵顶点为P p ,q 在y =12x -1 2-92上,∴q =12p -1 2-92=12p 2-p -4,∴平移后的抛物线为y =12x -p 2+12p 2-p -4,顶点为P p ,12p 2-p -4 ,∵原抛物线y =12x -1 2-92,∴原抛物线的顶点C 1,-92,对称轴为x =1,∵平移后的抛物线与原抛物线的对称轴相交于点Q ,∴Q 1,p 2-2p -72,∵点Q 、C 在直线x =1上,平移后的抛物线顶点P 在原抛物线顶点C 的上方,两抛物线的交点Q 在顶点P 的上方,∴∠PCQ 与∠CQP 都是锐角,∵△PCQ 是直角三角形,∴∠CPQ =90°,∴QC 2=PC 2+PQ 2,∴p 2-2p -72+92 2=p -1 2+12p 2-p -4+922+p -1 2+12p 2-p -4-p 2+2p +722化简得p -1 2p -3 p +1 =0,∴p =1(舍去),或p =3或p =-1,当p =3时,12p 2-p -4=12×32-3-4=-52,当p =-1时,12×-1 2+1-4=-52,∴点P 坐标为3,-52 或-1,-52.【点睛】本题考查了二次函数的图像及性质,勾股定理,解直角三角形以及待定系数法求二次函数的解析式,熟练掌握二次函数的图像及性质是解题的关键.7(2023·湖北宜昌·统考模拟预测)如图,过原点的抛物线y 1=ax (x -2n )(a ≠0,a ,n 为常数)与x 轴交于另一点A ,B 是线段OA 的中点,B -4,0 ,点M (-3,3)在抛物线y 1上.(1)点A 的坐标为;(2)C 为x 轴正半轴上一点,且CM =CB .①求线段BC 的长;②线段CM 与抛物线y 1相交于另一点D ,求点D 的坐标;(3)将抛物线y 1向右平移(4-t )个单位长度,再向下平移165个单位长度得到抛物线y 2,P ,Q 是抛物线y 2上两点,T 是抛物线y 2的顶点.对于每一个确定的t 值,求证:矩形TPNQ 的对角线PQ 必过一定点R ,并求出此时线段TR 的长.【答案】(1)-8,0(2)①BC =5;②D -54,2716 (3)证明见解析,RT =5【分析】(1)根据中点公式求C 点坐标即可;(2)①设C x ,0 ,根据CM =CB ,建立方程(x +3)2+9=x +4,求出C 点坐标即可求BC ;②求出直线CM 的解析式为y =-34x +34,将A -8,0 代入y 1=ax (x -2n ),求出n =-4,将M 点代入y 1=ax (x +8),求出a =-15,从而求出抛物线y 1=-15x (x +8),直线CM 与抛物线的交点即为点D -54,2716;(3)根据平移的性质可求y 2=-15(x +t )2,则T (-t ,0),设直线PQ 的解析式为y =kx +b ,P m ,-15(m +t )2 ,Q n ,15(n +t )2 当kx +b =-15(x +t )2时,整理得x 2+(2t +5k )x +5b +t 2=0,由根与系数的关系可得m +n =-2t -5k ,mn =5b +t 2,过点P 作PF ⊥x 轴交于F 点,过Q 点作QE ⊥x 轴交于E 点,证明△FPT ∽△ETQ ,则PF TE =FT EQ ,即15(m +t )2n +t =-t -m 15(n +t )2,整理得,(m +t )(n +t )=-25,求出b =kt -5,所以直线PQ 的解析式为y =kx +kt -5=k (x +t )-5,对于每一个确定的t 值,直线PQ 必经过定点R (-t ,-5),RT =5.【详解】(1)∵B 是线段OA 的中点,B -4,0 ,∴OA =8,∴A -8,0 ,故答案为:-8,0 ;(2)①设C x ,0 ,∵CM =CB ,∴(x +3)2+9=x +4,解得x =1,∴BC =5;②设直线CM 的解析式为y =k 'x +b ',∴k '+b '=0-3k '+b '=3 ,解得k '=-34b '=34,∴直线CM 的解析式为y =-34x +34,将A -8,0 代入y 1=ax (x -2n ),∴-8a (-8-2n )=0,∵a ≠0,∴-8-2n =0,解得n =-4,∴y 1=ax (x +8),将M 点代入y 1=ax (x +8),∴-3a (-3+8)=3,解得a =-15,∴抛物线y 1=-15x (x +8),当-34x +34=-15x (x +8)时,解得x =-3或x =-54,∴D -54,2716;(3)证明:∵y 1=-15x (x +8)=-15(x +4)2+165,∴y 2=-15(x +t )2,∴T (-t ,0),设直线PQ 的解析式为y =kx +b ,P m ,-15(m +t )2 ,Q n ,15(n +t )2 ,当kx +b =-15(x +t )2时,整理得x 2+(2t +5k )x +5b +t 2=0,∴m +n =-2t -5k ,mn =5b +t 2,过点P 作PF ⊥x 轴交于F 点,过Q 点作QE ⊥x 轴交于E 点,∵四边形TPNQ 是矩形,∴∠PTQ =90°,∴∠FTP +∠ETQ =90°,∵∠FTP +∠TPF =90°,∴∠ETQ =∠TPF ,∴△FPT ∽△ETQ ,∴PF TE =FTEQ,即15(m +t )2n +t=-t -m15(n +t )2,整理得,(m +t )(n +t )=-25,∴mn +t (m +n )+t 2=-25,∴b -kt =-5,即b =kt -5,∴直线PQ 的解析式为y =kx +kt -5=k (x +t )-5,∴对于每一个确定的t 值,直线PQ 必经过定点R (-t ,-5),∴RT =5.【点睛】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,三角形相似的判定及性质,一元二次方程根与系数的关系,题型02二次函数翻折问题二次函数的翻转问题的解题思路:①根据二次函数上特殊点的坐标值求得二次函数的表达式;②根据翻转后抛物线与原抛物线的图像关系,确定新抛物线的表达式;③在直角坐标系中画出原抛物线及翻转后抛物线的简易图,根据图像来判断题目中需要求解的量的各种可能性;④根据图像及相关函数表达式进行计算,求得题目中需要求解的值。
函数图像及其变换(完整版)
函数的图像及变换一、函数图像的变换对称变换(||)翻折翻折变换|()|翻折左右平移平移变换上下平移横坐标不变,纵坐标伸缩伸缩变换纵坐标不变,横坐标伸缩y f x y f x ⎧⎪⎧=⎪⎨⎪=⎩⎪⎪⎧⎨⎨⎪⎩⎪⎪⎧⎪⎨⎪⎩⎩关于x 轴对称:(,)(,)x y x y →- 关于y 轴对称:(,)(,)x y x y →- 关于原点对称:(,)(,)x y x y →-- 关于y x =对称:(,)(,)x y y x →关于y x =-对称:(,)(,)x y y x →-- 关于直线x a =对称:(,)(2,)x y a x y →-(轴对称) 关于y x b =+对称:(,)(,)x y y b x b →-+ 关于y x b =-+对称:(,)(,)x y b y x b →--+ 关于点(,)P a b 对称:(,)(2,2)x y a x b y →--(点对称)例1:已知2()2f x x x =-,且()g x 与()f x 关于点(1,2)对称,求()g x 的解析式.(相关点法)例2:已知函数()y f x =的图像关于直线1x =-对称,且当(0,)x ∈+∞时,有1()f x x=,则当 (,2)x ∈-∞-时,()f x 的解析式是( ).A. 1x -B. 12x +C.12x -+D. 12x- 例3:下列函数中,同时满足两个条件“①x R ∀∈,()()01212f x f x ππ++-=;②当6π-<x 3π<时,'()0f x >”的一个函数是( ) A.()sin(2)6f x x π=+B. ()cos(2)3f x x π=+C. ()sin(2)6f x x π=-D. ()cos(2)6f x x π=-①关于形如()y f x =的图像画法:当0x ≥时,()y f x =;当0x ≤时,()y f x =-()y f x =为偶函数,关于y 轴对称,即把0x ≥时()y f x =的图像画出,然后0x ≤时的图像与 0x ≥的图像关于y 轴对称即可得到所求图像.②关于形如()y f x =的图像画法当()0f x ≥时,()y f x =;当()0f x ≤时,()y f x =-先画出()y f x =的全部图像,然后把()y f x =的图像x 轴下方全部关于x 轴翻折上去,原x 轴上方的图像保持不变,x 轴下方的图像去掉不要即可得到所求图像.例3:画出下列函数的图像.(1)12log y x = (2)228y x x =--例4:设函数2()45f x x x =--.(1)在区间[2,6]-上,画出函数()f x 的图像;(2)设集合{}()5A x f x =≥,(,2][0,4][6,)B =-∞-+∞.试判断集合A B 、之间的关系,并给出证明;(3)当2k >时,求证:在区间[1,5]-上,3y kx k =+的图像位于函数()f x 图像的上方.①左右平移把函数()y f x =的全部图像沿x 轴方向向左(0a >)或向右(0a <)平移a 个单位即可得到函数()y f x a =+的图像②上下平移把函数()y f x =的全部图像沿y 轴方向向上(0a >)或向下(0a <)平移a 个单位即可得到函数()y f x a =+的图像例4:将函数lg(32)1y x =-+按向量(2,3)a =-平移后得到新的图象解析式为 例5:把一个函数的图象按向量(,2)8a π=-平移后得到的图象的解析式为sin(2)24y x π=+-,则原来函数的解析式 .Ⅰ.将函数()y f x =的全部图像中的每一点横坐标不变,纵坐标伸长(1)a >或缩短(01)a <<为原来的a 倍得到函数()(0)y af x a =>的图像.Ⅱ. 将函数()y f x =的全部图像中的每一点纵坐标不变,横坐标伸长(1)a >或缩短(01)a <<为原来的1a倍得到函数()(0)y f ax a =>的图像. 例6:已知函数21()2lg(2)-=++x f x x ,把函数()y f x =的图像关于y 轴对称,然后向右平移1个单位,最后纵坐标保持不变,横坐标变为原来的2倍得到()g x 的图像,求()g x 的解析式.例7:已知函数2()log (1)f x x =+,将()y f x =的图像向左平移1个单位,再将图像上所有点纵坐标伸长到原来的2倍,得到函数()y g x =的图像. (1)求()y g x =的解析式和定义域; (2)求函数()(1)()F x f x g x =--的最大值.【练习】1.为了得到函数321x y -=-的图像,只需要把函数2x y =的图像上所有的点( ).A.向右平移3个单位长度,再向下平移1个单位长度B.向左平移3个单位长度,再向下平移1个单位长度C.向右平移3个单位长度,再向上平移1个单位长度D.向左平移3个单位长度,再向上平移1个单位长度 2.下面四个图形中,与函数22log (1)yx x =+≥的图像关于y x =对称的是( ).3.若函数()()y f x x R =∈满足(2)()f x f x +=,且[1,1]x ∈-时,()f x x =,则函数()y f x =的图像与函数4log y x =的图像的交点的个数为( ).A.3B.4C.6D.84.将函数by a x a=++的图像向右平移2个单位长度后又向下平移2个单位,所得到的函数图像与原图像如果关于直线y x =对称,那么( ).A. 1,0a b =-≠B. 1,a b R =-∈C.1,0a b =≠D. 0,a b R =∈ 5.已知21()f x x x =+,且()g x 与()f x 关于点(1,0)-对称,求()g x 的解析式.6.画出下列函数的图像.(1)ln y x = (2)26y x x =--7. 函数()2xf x =和3()g x x =的图像的示意图如图所示,设两函数的图像交于点11(,)A x y ,22(,)B x y ,且12x x <.(1)请指出示意图中曲线12,C C 分别对应于哪一个函数;(2)若12[,1],[,1]x a a x b b ∈+∈+,且{},1,2,3,4,5,6,7,8,9,10,11,12a b ∈,指出,a b 的值,并说明理由;(3)结合函数图像的示意图,判断(6),(6),(2010),(2010)f g f g 的大小关系.8.已知函数()f x 和()g x 的图像关于原点对称,且2()2f x x x =+. (1)求函数()g x 的解析式; (2)解不等式()()1g x f x x ≥--;(3)若()()()1h x g x f x λ=-+在[1,1]-上是增函数,求实数λ的取值范围.6. 已知函数()y f x =,把函数()y f x =的图像向左平移1个单位,然后横坐标保持不变,纵坐标变为原来的3倍再向下平移3个单位得到()g x 的图像,求()g x 的解析式.补充:请把相应的幂函数图象代号填入表格.①32x y =;②2-=x y ;③21x y =;④1-=x y ;⑤31x y =;⑥23x y =;⑦34x y =; ⑧21-=x y ;⑨35x y =.常规函数图像有:函数代号 ①②③④⑤⑥⑦⑧⑨⑩图象代号HI指数函数:逆时针旋转,底数越来越大 .对数函数:逆时针旋转,底数越来越小幂函数:逆时针旋转,指数越来越大。
第8讲 函数图像的作法
第8讲 函数图像的做法【知识要点】一、函数图像的作法一般有三种:描点法、图像变换法和性质分析法.二、描点法作函数的图像的一般步骤是:列表→描点→连线 ,描点法一般是在知道函数的图像和性质的情况下使用,其使用对象一般是我们熟悉的初等函数,如2()23 1.f x x x =-+三、图像的变换法就是利用图像的平移变换、伸缩变换、对称变换、翻折变换等作出函数的图像,其解题对象一般是复合函数,如12()log ||f x x =.1、平移变换(左加右减,上加下减)① 把函数()f x 的图像向左平移(0)a a >个单位,得到函数()f x a +的图像;② 把函数()f x 的图像向右平移(0)a a >个单位,得到函数()f x a -的图像;③ 把函数()f x 的图像向上平移(0)a a >个单位,得到函数()f x a +的图像;④ 把函数()f x 的图像向下平移(0)a a >个单位,得到函数()f x a -的图像.2、伸缩变换① 把函数()y f x =图象的纵坐标不变,横坐标伸长到原来的ω倍得1()y f x ω= (1w >)② 把函数()y f x =图象的纵坐标不变,横坐标缩短到原来的ω倍得1()y f x ω=(0ω<<1)③ 把函数()y f x =图象的横坐标不变,纵坐标伸长到原来的w 倍得()y f x ω= ( ω>1)④ 把函数()y f x =图象的横坐标不变,纵坐标缩短到原来的w 倍得()y f x ω= (0<ω<1)3、对称变换① 函数()y f x =和函数()y f x =-的图像关于x 轴对称;函数()y f x =和函数()y f x =-的图像关于y 轴对称;函数()y f x =和函数()y f x =--的图像关于原点对称;函数()y f x =和函数1()y f x -=的图像关于直线x y =对称;② 对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是2b a x +=. ③()y f x =的图像关于直线x a =对称⇔()()f a x f a x +=-或()(2)f x f a x =- ;()y f x =的图像关于点(,)a b 对称⇔()()2f a x f a x b ++-=或()(2)2f x f a x b +-=;()y f x =与()y g x =的图像关于直线x a =对称⇔ ()(2)f x g a x =-或 ()()f a x g a x +=-;()y f x =与()y g x =的图像关于点(,)a b 对称⇔()()2f a x g a x b ++-=或()(2)2f x g a x b +-=.4、翻折变换① 把函数()y f x =图像上方部分保持不变,下方的图像对称翻折到x 轴上方,得到函数()y f x =的图像;② 保留y 轴右边的图像,擦去y 轴左边的图像,再把右边的图像对称翻折到y 轴左边,得到函数()y f x =的图像.四、性质分析法一般指通过对函数的定义域、值域、单调性、奇偶性和周期性的综合研究,再画出函数的图像.性质分析法一般是对那些较复杂的函数使用,如223ln 4y x x =--.五、作函数的图像,一般是首先化简解析式,然后作函数的图像.【方法讲评】【例1】用五点法作出函数3sin(2)6y x π=+在一个周期的图像.【反馈检测1】已知函数23[1,2]()3(2,5]x x f x x x ⎧-∈-=⎨-∈⎩【例2】 作出下列函数的图象(1)1||1y x =-; (2)|2|(1)y x x =-+; (3)2|log 1|y x =-; (4)1|2|x y -=【反馈检测2】关于x 的方程2|43|x x a x -+-=恰有三个不相等的实数根,求实数a 的值.【例3】已知函数2()8f x x x =-+,()6ln g x x m =+,是否存在实数m ,使得()y f x =的图象与()y g x =的图象有且只有三个不同的交点?若存在,求出m 的取值范围;若不存在,说明理由.【反馈检测3 】设函数)(x f =2ln x ax b x ++,曲线()y f x =过(1,0)P ,且在P 点处的切斜线率为2.(1)求a b 、的值;(2)证明:()22f x x ≤-.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考总复习·理科·数学
2.用图象变换法作图: (1)要准确记忆一次函数、二次函数、反比例函数、幂函 数、指数函数、 对数函数、三角函数等基本初等函数的图象 及性质. (2)识图:分布范围、变化趋势、对称性、周期性等等 方面.
(3)四种图象变换:___________________________等.
高考总复习·理科·数学
(4)函数y=f-1(x)的图象可以由函数y=f(x)的图象关于直线 y=x对称得到. (5)函数y=f(2a-x)的图象可以由函数y=f(x)的图象关于直 线____对称得到.即
答案:(5)x=a
高考总复习·理科·数学
3.翻折变换
(1)函数y=|f(x)|的图象可以由函数y=f(x)的图象(如图(1))的 ________部分沿x轴翻折到________,去掉原x轴下方部分,并 保留y=f(x)的____________得到(如图(2)); (2)函数y=f(|x|)的图象可以将函数y=f(x)的图象(如图(1))右 边沿y轴翻折到y轴左边,替代原y轴左边部分,并保留y=f(x) 在y轴右边部分得到(如图(3)).
2.对称变换 (1)函数y=-f(x)的图象可以由函数y=f(x)的图象关于____ 对称得到;
(2)函数y=f(-x)的图象可以由函数y=f(x)的图象关于____ 对称得到;
(3)函数y=-f(-x)的图象可以由函数y=f(x)的图象关于 ____对称得到; 答案:2.(1)x轴 (2)y轴 (3)原点
答案:3.(1)x轴下方 x轴上方 x轴上方部分
高考总复习·理科·数学
y=f(x)将x轴下方图象翻折上去 ― ― → y=|f(x)|. y=f(x)
保留y轴右边图象,并作关于y轴对称图象
保留x轴上方图象
― ― → 去掉y轴左边图象
y=f(|x|).
4.伸缩变换 (1)函数y=f(ax)(a>0)的图象可以由函数y=f(x)的图象中 的每一点纵坐标不变,横坐标____(a>1)或____(0<a<1)为原 来的____倍得到. 答案:4.(1)缩短 伸长
答案:2.(3)平移变换、对称变换、翻折变换和伸缩变换
高考总复习·理科·数学
二、函数图象的变换 1.平移变换 (1)水平平移:函数y=f(x+h)的图象可以由函数y=f(x)的 图象沿x轴方向______(h>0)或______(h<0)平移|h|个单位得到; y=f(x) h>0,左移 y=f(x+h),
4.(2010年广东实验中学月考)若函数y=f(x)(x∈R)满足f(x
+2)=f(x),且x∈(-1,1]时,f(x)=|x|,则函数y=f(x)的图象与
函数y=log3|x|的图象的交点的个数是________. 答案:3.a>1 4.4
高考总复习·理科·数学
高考总复习·理科·数学
(2010年北京海淀区检测)客车从甲地以60 km/h的速 度行驶1小时到达乙地,在乙地停留了半小时,然后以80 km/h 的速度行驶1小时到达丙地,下列描述客车从甲地出发,经过 乙地,最后到达丙地所经过的路程s与时间t之间的关系图象中, 正确的是( )
C.在t0时刻,两车的位置相同
D.t0时刻后,乙车在甲车前面
高考总复习·理科·数学
解析:由图象可知,曲线v甲比v乙在0~t0、0~t1、与x 轴所围成图形面积大,则在时刻t0、时刻t1,甲车均在乙车 前面,故选A. 答案:A
高考总复习·理科·数学
(1)作函数y=| x-x2|的图象;
高考总复习·理科·数学
(2)函数y=af(x)(a>0)的图象可以由函数y=f(x)的图象中 的每一点横坐标不变,纵坐标____(a>1)或____(0<a<1)为原 来的____倍得到;即
答案:(2)伸长 压缩
a
高考总复习·理科·数学
基础自测 1.(2010年浦东新区质量抽测)函数f=ln |x-1| 的图象大 致是( B )
高考总复习·理科·数学
第三章
函数
第十一课时
函数的图象
高考总复习·理科·数学
考纲要求 1.掌握图象变换的规律,如:平移变换、对称变换、翻折变 换、伸缩变换等. 2.会利用函数的图象来研究函数的性质.
高考总复习·理科·数学
高考总复习·理科·数学
知识梳理 一、函数图象的作法 函数图象的作图方法有两种:描点法和利用基本函数图 象变换作图; 1.用描点法作函数图象的步骤:①确定函数的 ________;②化简函数的________;③讨论函数的性质即 __________________________(甚至变化趋势);④描____连 ____,画出函数的图象 . 答案:一、1.定义域 解析式 单调性、奇偶性、 周期性、最值 点 线
高考总复习·理科·数学
2.(2010年大连模拟)已 知函数f(x)=(x-a)(x-b)(其 中a>b),若f(x)的图象如右图 所示,则函数g(x)=ax+b的 图象是( A )
高考总复习·理科·数学
3.(2010年厦门模拟)函数y=a2 |x| 与y=x+a的图象恰有
两个公共点,则实数a的取值范围是________.
― ―→ h<0,右移
(2)竖直平移:函数y=f(x)+k的图象可以由函数y=f(x)的 图象沿y轴方向______(k>0)或______(k<0)平移|k|个单位得 到.即 y=f(x) ――→ y=f(x)+k.
k<0,下移 k>0,上移
答案:二、1.(1)向左 向右 (2)向上 向下
高考总复习·理科·数学
高考总复习·理科·数学
高考总复习·理科·数学
解析:= 2 3 5 80t-60,2<t≤2
60t,0<t≤1
,故应选C.
答案:C 点评:要善于将函数的各种表示法进行互译.
高考总复习·理科·数学
变式探究 1.(2009年广东卷)已知甲、乙 两车由同一起点同时出发,并沿同 一路线(假定为直线)行驶.甲车、 乙车的速度曲线分别为v甲、v乙(如 图所示).那么对于图中给定t0和t1, 下列判断中一定正确的是( ) A.在t1时刻,甲车在乙车前面 B.t1时刻后,甲车在乙车后面