专题1.2.2 同角三角函数的基本关系(测)(解析版)

合集下载

专题47 高中数学同角三角函数的基本关系(解析版)

专题47 高中数学同角三角函数的基本关系(解析版)

专题47 同角三角函数的基本关系1.平方关系(1)公式:sin 2α+cos 2α=1.(2)语言叙述:同一个角α的正弦、余弦的平方和等于1.2.商数关系(1)公式:sin αcos α=tan_α(α≠k π+π2,k ∈Z).(2)语言叙述:同一个角α的正弦、余弦的商等于角α的正切.3.同角三角函数的基本关系式的变形形式(1)平方关系变形:sin 2α=1-cos 2α,cos 2α=1-sin 2α. (2)商的变形:sin α=tan αcos α,cos α=sin αtan α.题型一 直接应用同角三角函数关系求值1.若cos α=35,且α为第四象限角,则tan α=________.[解析]因为α为第四象限角,且cos α=35,所以sin α=-1-cos 2α=-1-⎝⎛⎭⎫352=-45,所以tan α=sin αcos α=-43. 2.已知α是第四象限角,cos α=1213,则sin α等于[解析] ∵sin 2θ+cos 2θ=1,∴sin 2θ=1-cos 2θ=1-144169=25169,又∵α是第四象限角,∴sin α<0,即sin θ=-513.3.已知α∈⎝⎛⎭⎫π,3π2,tan α=2,则cos α=________. [解析]由已知得⎩⎪⎨⎪⎧sin αcos α=2,①sin 2α+cos 2α=1,②由①得sin α=2cos α代入②得4cos 2α+cos 2α=1,所以cos 2α=15,又α∈⎝⎛⎭⎫π,3π2,所以cos α<0,所以cos α=-55. 4.已知α是第二象限角,tan α=-12,则cos α=________.[解析]因为sin αcos α=-12,且sin 2α+cos 2α=1,又因为α是第二象限角,所以cos α<0,所以cos α=-255.5.若α是第四象限角,tan α=-512,则sin α等于[解析] 因为α是第四象限角,tan α=-512,所以sin αcos α=-512.又sin 2α+cos 2α=1.所以sin α=-513.6.已知α是第二象限角,且cos α=-1213,则tan α的值是[解析]因为α为第二象限角,所以sin α=1-cos 2α=1-⎝⎛⎭⎫-12132=513, 所以tan α=sin αcos α=513-1213=-512.7.已知α是第二象限角,且tan α=-724,则cos α=________.[解析]因为α是第二象限角,故sin α>0,cos α<0,又tan α=-724,所以sin αcos α=-724,又sin 2α+cos 2α=1,解得cos α=-2425.8.已知sin α=-13,且α∈⎝⎛⎭⎫π,3π2,则tan α= [解析]由α∈⎝⎛⎭⎫π,3π2,得cos α<0,又sin α=-13,所以cos α=-1-⎝⎛⎭⎫-132=-223, 所以tan α=sin αcos α=24.9.已知cos α=-45,求sin α和tan α.[解析] sin 2α=1-cos 2α=1-⎝⎛⎭⎫-452=⎝⎛⎭⎫352,因为cos α=-45<0,所以α是第二或第三象限角, 当α是第二象限角时,sin α=35,tan α=sin αcos α=-34;当α是第三象限角时,sin α=-35,tan α=sin αcos α=34.10.已知cos α=-817,求sin α,tan α的值.[解析] ∵cos α=-817<0,∴α是第二或第三象限的角.如果α是第二象限角,那么sin α=1-cos 2α=1-⎝⎛⎭⎫-8172=1517,tan α=sin αcos α=1517-817=-158. 如果α是第三象限角,同理可得sin α=-1-cos 2α=-1517,tan α=158.11.已知sin α=1213,并且α是第二象限角,求cos α和tan α.[解析]cos 2α=1-sin 2α=1-⎝⎛⎭⎫12132=⎝⎛⎭⎫5132,又α是第二象限角, 所以cos α<0,cos α=-513,tan α=sin αcos α=-125.12.若cos α=23,则tan αsin α=( )[解析] 由cos α=23得|sin α|=53,所以tan αsin α=sin 2αcos α=59×32=56.13.已知sin θ=1213,且sin θ-cos θ>1,则tan θ等于________.[解析]因为sin θ-cos θ>1,所以cos θ<0,所以cos θ=-1-sin 2θ=-513,所以tan θ=sin θcos θ=-125.14.已知sin θ=m -3m +5,cos θ=4-2mm +5,则m 的值为________.[解析]因为sin 2θ+cos 2θ=1,所以⎝ ⎛⎭⎪⎫m -3m +52+⎝ ⎛⎭⎪⎫4-2m m +52=1.整理得m 2-8m =0,解得m =0或8.15.已知sin α+3cos α=0,求sin α,cos α的值.[解析]∵sin α+3cos α=0,∴sin α=-3cos α.又sin 2α+cos 2α=1,∴(-3cos α)2+cos 2α=1, 即10cos 2α=1,∴cos α=±1010.又由sin α=-3cos α,可知sin α与cos α异号, ∴角α的终边在第二或第四象限. 当角α的终边在第二象限时,cos α=-1010,sin α=31010; 当角α的终边在第四象限时,cos α=1010,sin α=-31010. 16.已知α是第三象限角,且sin α=-13,则3cos α+4tan α=[解析]因为α是第三象限角,且sin α=-13,所以cos α=-1-sin 2α=-1-⎝⎛⎭⎫-132=-223,所以tan α=sin αcos α=122=24, 所以3cos α+4tan α=-22+2=- 2.17.若sin A =45,且A 是三角形的一个内角,则5sin A +815cos A -7=________.[解析]∵sin A =45>0,∴A 为锐角或钝角.当A 为锐角时,cos A =1-sin 2A =35,∴原式=6.当A 为钝角时,cos A =-1-sin 2A =-35,∴原式=5×45+815×⎝⎛⎭⎫-35-7=-34.18.在△ABC 中,2sin A =3cos A ,则角A =[解析]由题意知cos A >0,即A 为锐角.将2sin A =3cos A 两边平方得2sin 2A =3cos A , ∴2cos 2A +3cos A -2=0,解得cos A =12或cos A =-2(舍去).∴A =π3.19.已知sin x +cos x =3-12,x ∈(0,π),则tan x = [解析]∵sin x +cos x =3-12,且x ∈(0,π),∴1+2sin x cos x =1-32,∴2sin x cos x =-32<0,∴x 为钝角,∴sin x -cos x =(sin x -cos x )2=1+32,结合已知解得sin x =32,cos x =-12,则tan x =sin xcos x =- 3.20.若1+cos αsin α=3,则cos α-2sin α等于[解析] 若1+cos αsin α=3,则1+cos α=3sin α,又sin 2α+cos 2α=1,所以sin α=35,cos α=3sin α-1=45,所以cos α-2sin α=-25.21.已知cos ⎝⎛⎭⎫α+π4=13,0<α<π2,则sin ⎝⎛⎭⎫α+π4=________. [解析]∵0<α<π2,∴π4<α+π4<3π4,∴sin ⎝⎛⎭⎫α+π4>0,∴sin ⎝⎛⎭⎫α+π4= 1-⎝⎛⎭⎫132=223.题型二 灵活应用同角三角函数关系式求值(齐次式)1.已知sin α+cos αsin α-cos α=2,计算下列各式的值.①3sin α-cos α2sin α+3cos α;②sin 2α-2sin α·cos α-cos 2α4cos 2α-3sin 2α;③sin2α-2sin αcos α+1;④34sin 2α+12cos 2α. [解析] 由sin α+cos αsin α-cos α=2,化简,得sin α=3cos α,所以tan α=3.①法一(换元)原式=3×3cos α-cos α2×3cos α+3cos α=8cos α9cos α=89.法二(弦化切)原式=3tan α-12tan α+3=3×3-12×3+3=89.②原式=tan 2α-2tan α-14-3tan 2α=9-2×3-14-3×32=-223.③原式=sin 2α-2sin αcos αsin 2α+cos 2α+1=tan 2α-2tan αtan 2α+1+1=32-2×332+1+1=1310. ④原式=34sin 2α+12cos 2αsin 2α+cos 2α=34tan 2α+12tan 2α+1=34×9+129+1=2940.2.已知tan αtan α-1=-1,求下列各式的值:(1)sin α-3cos αsin α+cos α;(2)sin 2α+sin αcos α+2. [解析]因为tan αtan α-1=-1,所以tan α=12.(1)原式=tan α-3tan α+1=-53.(2)原式=sin 2α+sin αcos αsin 2α+cos 2α+2=tan 2α+tan αtan 2α+1+2=14+1214+1+2=135.3.已知tan α=-12,则2sin αcos αsin 2α-cos 2α的值是[解析]因为tan α=-12,所以2sin αcos αsin 2α-cos 2α=2tan αtan 2α-1=2×⎝⎛⎭⎫-12⎝⎛⎭⎫-122-1=43.4.若2sin α+cos α3sin α-2cos α=1,则tan α的值为________.[解析]2sin α+cos α3sin α-2cos α=1化为2tan α+13tan α-2=1,所以2tan α+1=3tan α-2,所以tan α=3.5.已知sin α-2cos α3sin α+5cos α=-5,那么tan α=________.[解析]易知cos α≠0,由sin α-2cos α3sin α+5cos α=-5,得tan α-23tan α+5=-5,解得tan α=-2316.6.已知sin α+2cos α5cos α-sin α=516,则tan α=____________.[解析]由sin α+2cos α5cos α-sin α=516,得tan α+25-tan α=516,解之得tan α=-13.7.已知sin α+cos αsin α-cos α=2,则3sin α-cos α2sin α+3cos α=________.[解析]由sin α+cos αsin α-cos α=2,化简得sin α=3cos α,所以tan α=3.原式=3tan α-12tan α+3=89.8.已知tan 2α1+2tan α=13,α∈⎝⎛⎭⎫π2,π,求sin α+2cos α5cos α-sin α的值. [解析]∵tan 2α1+2tan α=13,∴3tan 2α-2tan α-1=0.即(3tan α+1)(tan α-1)=0,∴tan α=-13或tan α=1.∵α∈⎝⎛⎭⎫π2,π,∴tan α<0,∴tan α=-13,∴sin α+2cos α5cos α-sin α=tan α+25-tan α=516. 9.若tan θ=-2,求sin θcos θ.[解析]∵sin θcos θ=sin θcos θsin 2θ+cos 2θ=sin θcos θcos 2θsin 2θ+cos 2θcos 2θ=tan θtan 2θ+1,而tan θ=-2,∴原式=-2(-2)2+1=-25.10.已知tan α=2,则4sin 2α-3sin αcos α-5cos 2α=________. [解析]4sin 2α-3sin αcos α-5cos 2α=4sin 2α-3sin αcos α-5cos 2αsin 2α+cos 2α=4tan 2α-3tan α-5tan 2α+1=4×4-3×2-54+1=55=1. 11.已知sin α+2cos α=0,求2sin αcos α-cos 2α的值. [解析]由sin α+2cos α=0,得tan α=-2.所以2sin αcos α-cos 2α=2sin αcos α-cos 2αsin 2α+cos 2α=2tan α-1tan 2α+1=-4-14+1=-1.12.如果tan θ=2,那么1+sin θcos θ=[解析]1+sin θcos θ=1+sin θcos θ1=sin 2θ+cos 2θ+sin θcos θsin 2θ+cos 2θ=tan 2θ+tan θ+1tan 2θ+1,又tan θ=2,所以1+sin θcos θ=22+2+122+1=75.13.若tan α+1tan α=3,则sin αcos α=________. [解析]因为tan α+1tan α=3,所以sin αcos α+cos αsin α=3,即sin 2α+cos 2αsin αcos α=3,所以sin αcos α=13.14.已知sin α+cos α=713,α∈(0,π),则tan α=________.[解析]法一:(构建方程组)因为sin α+cos α=713,①,所以sin 2α+cos 2α+2sin αcos α=49169,即2sin αcos α=-120169.因为α∈(0,π),所以sin α>0,cos α<0.所以sin α-cos α=(sin α-cos α)2=1-2sin αcos α=1713.②由①②解得sin α=1213,cos α=-513,所以tan α=sin αcos α=-125.法二:(弦化切)同法一求出sin αcos α=-60169,sin αcos αsin 2α+cos 2α=-60169,tan αtan 2α+1=-60169,整理得60tan 2α+169tan α+60=0,解得tan α=-512或tan α=-125.由sin α+cos α=713>0知|sin α|>|cos α|,故tan α=-125.15.已知sin α-cos α=-52,则tan α+1tan α的值为 [解析]tan α+1tan α=sin αcos α+cos αsin α=1sin αcos α.∵sin αcos α=1-(sin α-cos α)22=-18,∴tan α+1tan α=-8.16.已知cos α+2sin α=-5,则tan α=________.[解析]由⎩⎨⎧cos α+2sin α=-5,sin 2α+cos 2α=1,得(5sin α+2)2=0, ∴sin α=-255,cos α=-55,∴tan α=2.题型三 sin α±cos α与sin αcos α关系的应用1.已知sin α+cos α=15,α∈(0,π),求:(1)sin αcos α;(2)sin α-cos α;(3)sin 3α+cos 3α.[解析] (1)由sin α+cos α=15,平方得2sin αcos α=-2425,∴sin αcos α=-1225.(2)∵(sin α-cos α)2=1-2sin αcos α=1+2425=4925,∴sin α-cos α=±75.又由(1)知sin αcos α<0,∴α∈⎝⎛⎭⎫π2,π,∴sin α>0,cos α<0,∴sin α-cos α=75. (3)∵sin 3α+cos 3α=(sin α+cos α)(sin 2α-sin αcos α+cos 2α)=(sin α+cos α)(1-sin αcos α), 由(1)知sin αcos α=-1225,且sin α+cos α=15,∴sin 3α+cos 3α=15×⎝⎛⎭⎫1+1225=15×3725=37125.2.已知0<θ<π,且sin θ-cos θ=15,求sin θ+cos θ,tan θ的值.[解析]∵sin θ-cos θ=15,∴(sin θ-cos θ)2=125,解得sin θcos θ=1225.∵0<θ<π,且sin θcos θ=1225>0,∴sin θ>0,cos θ>0.∴sin θ+cos θ=(sin θ+cos θ)2=1+2sin θcos θ= 1+2425=75. 由⎩⎨⎧sin θ-cos θ=15,sin θ+cos θ=75,得⎩⎨⎧sin θ=45,cos θ=35,∴tan θ=sin θcos θ=43.3.已知sin α·cos α=18,且π4<α<π2,则cos α-sin α的值为[解析] (cos α-sin α)2=1-2sin αcos α=34,因为π4<α<π2,所以sin α>cos α,所以cos α-sin α=-32.4.若△ABC 的内角A 满足sin A cos A =13,则sin A +cos A 的值为[解析]因为A 为△ABC 的内角,且sin A cos A =13>0,所以A 为锐角,所以sin A +cos A >0.又1+2sin A cos A =1+23,即(sin A +cos A )2=53,所以sin A +cos A =153.5.已知sin θ+cos θ=43⎝⎛⎭⎫0<θ≤π4,则sin θ-cos θ= [解析]由(sin θ+cos θ)2=1+2sin θcos θ=169,得2sin θcos θ=79,则(sin θ-cos θ)2=1-2sin θcos θ=29,由0<θ≤π4,知sin θ-cos θ≤0,所以sin θ-cos θ=-23.6.已知在△ABC 中,sin A +cos A =15.(1)判断△ABC 是锐角三角形还是钝角三角形;(2)求tan A 的值.[解析] (1)由sin A +cos A =15两边平方,得1+2sin A ·cos A =125,所以sin A ·cos A =-1225<0.因为0<A <π,⎩⎨⎧sin A >0cos A <0,所以A 为钝角,所以△ABC 是钝角三角形.(2)因为sin A ·cos A =-1225,所以(sin A -cos A )2=1-2sin A ·cos A =1+2425=4925.又因为sin A >0,cos A <0,所以sin A -cos A >0,所以sin A -cos A =75.又因为sin A +cos A =15,所以sin A =45,cos A =-35,所以tan A =-43.7.已知sin θ+cos θ=-105,求: (1)1sin θ+1cos θ的值;(2)tan θ的值. [解析] (1)因为sin θ+cos θ=-105,所以1+2sin θcos θ=25,即sin θcos θ=-310, 所以1sin θ+1cos θ=cos θ+sin θsin θcos θ=2103.(2)由(1),得sin 2θ+cos 2θsin θcos θ=-103,所以tan 2θ+1tan θ=-103,即3tan 2θ+10tan θ+3=0,所以tan θ=-3或tan θ=-13.8.已知sin θ+cos θ=15,且0<θ<π.(1)求tan θ的值;(2)求sin 2 θcos 2 θ-2sin θcos θ的值.[解析] (1)因为sin θ+cos θ=15,①,所以(sin θ+cos θ)2=1+2sin θcos θ=125,所以2sin θcos θ=-2425<0,因为θ∈(0,π),所以sin θ>0,cos θ<0,所以sin θ-cos θ>0,所以(sin θ-cos θ)2=1-2sin θcos θ=4925,所以sin θ-cos θ=75,②由①②得,sin θ=45,cos θ=-35,所以tan θ=sin θcos θ=-43.(2)法一:由(1)知sin θ=45,cos θ=-35,所以sin 2θcos 2 θ-2sin θcos θ=⎝⎛⎭⎫452⎝⎛⎭⎫-352-2×45×⎝⎛⎭⎫-35=1633.法二:由(1)得tan θ=-43,所以原式=tan 2 θ1-2tan θ=⎝⎛⎭⎫-4321-2×⎝⎛⎭⎫-43=1633.9.设α是第三象限角,问是否存在实数m ,使得sin α,cos α是关于x 的方程8x 2+6mx +2m +1=0的两个根?若存在,求出实数m ;若不存在,请说明理由.[解析]假设存在实数m 满足条件,由题设得,Δ=36m 2-32(2m +1)≥0,① 因为sin α<0,cos α<0,所以sin α+cos α=-34m <0②,sin αcos α=2m +18>0③.又sin 2α+cos 2α=1,所以(sin α+cos α)2-2sin αcos α=1. 把②③代入上式得⎝⎛⎭⎫-34m 2-2×2m +18=1, 即9m 2-8m -20=0,解得m 1=2,m 2=-109.因为m 1=2不满足条件①,舍去;因为m 2=-109不满足条件③,舍去.故满足题意的实数m 不存在.题型四 应用同角三角函数关系式化简1.化简1-sin 23π5的结果是( )A .cos 3π5B .sin 3π5C .-cos 3π5D .-sin 3π5[解析]因为3π5是第二象限角,所以cos 3π5<0,所以1-sin 23π5=cos 23π5=⎪⎪⎪⎪cos 3π5=-cos 3π5. 2.如果α是第二象限的角,下列各式中成立的是( )A .tan α=-sin αcos α B .cos α=-1-sin 2 αC .sin α=-1-cos 2 αD .tan α=cos αsin α[解析]由商数关系可知A ,D 均不正确.当α为第二象限角时,cos α<0,s i n α>0,故B 正确. 3.化简2sin 2α-11-2cos 2α=________.[解析]原式=2sin 2α-11-2(1-sin 2α)=2sin 2α-12sin 2α-1=1.4.化简⎝⎛⎭⎫1sin α+1tan α(1-cos α)的结果是( )A .sin αB .cos αC .1+sin αD .1+cos α[解析]⎝⎛⎭⎫1sin α+1tan α(1-cos α)=⎝⎛⎭⎫1sin α+cos αsin α(1-cos α)=1-cos 2αsin α=sin 2αsin α=sin α.[答案] A5.化简sin 760°1-cos 2 40°;[解析]sin 760°1-cos 2 40°=sin (2×360°+40°)sin 2 40°=sin 40°|sin 40°|=sin 40°sin 40°=1. 6.化简:1-2sin130°cos130°sin130°+1-sin 2130°;[解析]原式=sin 2130°-2sin130°cos130°+cos 2130°sin130°+cos 2130°=|sin130°-cos130°|sin130°+|cos130°|=sin130°-cos130°sin130°-cos130°=1.7.若角α的终边在直线x +y =0上,则sin α1-cos 2α+1-sin 2αcos α=________.[解析]因为sin α1-cos 2α+1-sin 2αcos α=sin α|sin α|+|cos α|cos α,又角α的终边落在x +y =0上,故角α的终边在第二、四象限,当α在第二象限时,原式=sin αsin α+-cos αcos α=0,当α在第四象限时,原式=sin α-sin α+cos αcos α=0.综上所述,原式=0.8.化简sin 2α-sin 4α,其中α是第二象限角.[解析] 因为α是第二象限角,所以sin α>0,cos α<0,所以sin αcos α<0, 所以sin 2α-sin 4α=sin 2α(1-sin 2α)=sin 2αcos 2α=-sin αcos α. 9.化简sin 2α+cos 4α+sin 2αcos 2α的结果是 [解析] 原式=sin 2α+cos 2α(cos 2α+sin 2α)=sin 2α+cos 2α=1. 10.化简:sin 2α+sin 2β-sin 2αsin 2β+cos 2αcos 2β.[解析]原式=sin 2α(1-sin 2β)+sin 2β+cos 2αcos 2β=sin 2αcos 2β+cos 2αcos 2β+sin 2β=(sin 2α+cos 2α)cos 2β+sin 2β=1. 11.已知sin α=55,则sin 4α-cos 4α的值为 [解析]sin 4α-cos 4α=(sin 2α+cos 2α)(sin 2α-cos 2α)=sin 2α-cos 2α=2sin 2α-1=-35.12.若sin α+sin 2α=1,则cos 2α+cos 4α等于[解析]∵cos 2α+cos 4α=cos 2α(1+cos 2α)=(1-sin 2α)(1-sin 2α+1)∵sin α+sin 2α=1,∴1-sin 2α=sin α ∴原式=sin α·(sin α+1)=sin 2α+sin α=1. 13.化简1-2sin1cos1的结果为( )A .sin1-cos1B .cos1-sin1C .sin1+cos1D .-sin1-cos1[解析]易知sin1>cos1,所以1-2sin1cos1=(sin1-cos1)2=sin1-cos1.故选A.14.⎝⎛⎭⎫tan x +1tan x cos 2x 等于( ) A .tan xB .sin xC .cos xD.1tan x[解析]原式=⎝⎛⎭⎫sin x cos x +cos x sin x ·cos 2x =sin 2x +cos 2x sin x cos x ·cos 2x =1sin x cos x ·cos 2x =cos x sin x =1tan x . 15.化简:sin 2αtan α+cos 2αtan α+2sin αcos α.[解析]原式=sin 2α·sin αcos α+cos 2α·cos αsin α+2sin αcos α=sin 4α+cos 4α+2sin 2αcos 2αcos αsin α=(sin 2α+cos 2α)2sin αcos α=1sin αcos α.16.已知θ是第三象限角,且sin 4θ+cos 4θ=59,则sin θcos θ的值为[解析]由sin 4θ+cos 4θ=59,得(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=59,所以sin 2θcos 2θ=29.因为θ是第三象限角,所以sin θ<0,cos θ<0,所以sin θcos θ=23. 17.已知f (tan x )=1cos 2x,则f (-3)=________. [解析]因为f (tan x )=1cos 2x =sin 2x +cos 2x cos 2x =tan 2x +1,所以f (x )=x 2+1,所以f (-3)=4.18.若π2<α<π,化简cos α1-cos 2α+sin α1-sin 2α1-cos 2α.[解析]因为π2<α<π,所以cos α=-1-sin 2α,sin α=1-cos 2α,所以原式=cos αsin α+sin α(-cos α)1-cos 2α=cos αsin α-sin αcos αsin 2α=cos αsin α-cos αsin α=0.19.化简11+tan 220°的结果是________.[解析]11+tan 220°=11+sin 220°cos 220°=1cos 220°+sin 220°cos 220°=11cos 220°=|cos 20°|=cos 20°.] 20.化简:1cos 2α1+tan 2α-1+sin α1-sin α(α为第二象限角).[解析]∵α是第二象限角,∴cos α<0. 则原式=1cos 2α·1+sin2αcos 2α-(1+sin α)21-sin 2α=1cos 2α·cos 2αcos 2α+sin 2α-1+sin α|cos α|=-cos αcos 2α+1+sin αcos α=-1+1+sin αcos α=sin αcos α=tan α.21.化简sin α1-cos α·tan α-sin αtan α+sin α.(其中α是第三象限角)[解析]原式=sin α1-cos α·sin αcos α-sin αsin αcos α+sin α=sin α1-cos α·1-cos α1+cos α=sin α1-cos α·(1-cos α)21-cos 2α=sin α1-cos α·1-cos α|sin α|.又因为α是第三象限角,所以sin α<0.所以原式=sin α1-cos α·1-cos α-sin α=-1.22.1-2sin 10°cos 10°sin 10°-1-sin 210°的值为( )A .1B .-1C .sin 10°D .cos 10°[解析] [1-2sin 10°cos 10°sin 10°-1-sin 210°=(cos 10°-sin 10°)2sin 10°-cos 210°=|cos 10°-sin 10°|sin 10°-cos 10°=cos 10°-sin 10°sin 10°-cos 10°=-1.23.化简tan α1sin 2α-1,其中α是第二象限角. [解析]因为α是第二象限角,所以sin α>0,cos α<0. 故tan α1sin 2α-1=tan α1-sin 2αsin 2α=tan αcos 2αsin 2α=sin αcos α⎪⎪⎪⎪cos αsin α=sin αcos α·-cos αsin α=-1. 24.化简下列各式:(1)sin α1+sin α-sin α1-sin α;(2)⎝⎛⎭⎫1sin α+1tan α(1-cos α). [解析] (1)原式=sin α(1-sin α)-sin α(1+sin α)(1+sin α)(1-sin α)=-2sin 2α1-sin 2α=-2sin 2αcos 2α=-2tan 2α.(2)原式=⎝⎛⎭⎫1sin α+cos αsin α(1-cos α)=1+cos αsin α(1-cos α)=sin 2αsin α=sin α. 25.已知sin θ,cos θ是方程2x 2-mx +1=0的两根,则sin θ1-1tan θ+cos θ1-tan θ=________.[解析]sin θ1-1tan θ+cos θ1-tan θ=sin θ1-cos θsin θ+cos θ1-sin θcos θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ=sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ,又因为sin θ,cos θ是方程2x 2-mx +1=0的两根,所以由根与系数的关系得sin θcos θ=12,则(sin θ+cos θ)2=1+2sin θcos θ=2,所以sin θ+cos θ=±2.26.化简1-cos 4α-sin 4α1-cos 6α-sin 6α.[解析]解法一:原式=(cos 2α+sin 2α)2-cos 4α-sin 4α(cos 2α+sin 2α)3-cos 6α-sin 6α=2cos 2αsin 2α3cos 2αsin 2α(cos 2α+sin 2α)=23.解法二:原式=1-(cos 4α+sin 4α)1-(cos 6α+sin 6α)=1-[(cos 2α+sin 2α)2-2sin 2αcos 2α]1-(cos 2α+sin 2α)(cos 4α-cos 2αsin 2α+sin 4α)=1-1+2cos 2αsin 2α1-[(cos 2α+sin 2α)2-3cos 2αsin 2α]=2cos 2αsin 2α3cos 2αsin 2α=23. 解法三:原式=(1-cos 2α)(1+cos 2α)-sin 4α(1-cos 2α)(1+cos 2α+cos 4α)-sin 6α=sin 2α(1+cos 2α-sin 2α)sin 2α(1+cos 2α+cos 4α-sin 4α)=2cos 2α1+cos 2α+cos 2α-sin 2α=2cos 2α3cos 2α=23. 27.化简:(1)sin α1-cos α·tan α-sin αtan α+sin α;(2)(1-tan θ)cos 2θ+⎝⎛⎭⎫1+1tan θsin 2θ.[解析] (1)原式=sin α1-cos α·sin αcos α-sin αsin αcos α+sin α=sin α1-cos α·1-cos α1+cos α=sin α1-cos α·(1-cos α)21-cos 2α=sin α1-cos α·1-cos α|sin α|=sin α|sin α|,当sin α>0时,原式=1;当sin α<0时,原式=-1.(2)原式=cos θ-sin θcos θ·cos 2θ+sin θ+cos θsin θ·sin 2θ=cos 2θ-sin θcos θ+sin 2θ+sin θcos θ=cos 2θ+sin 2θ=1.28.已知α∈⎝⎛⎭⎫π4,3π4,且1+2sin αcos α+1-2sin αcos αcos α=4,则sin α-cos α2sin α+cos α=________. [解析]∵1+2sin αcos α=(sin α+cos α)2,1-2sin αcos α=(sin α-cos α)2,∴1+2sin αcos α=|sin α+cos α|, 1-2sin αcos α=|sin α-cos α|.又∵α∈⎝⎛⎭⎫π4,3π4,∴sin α+cos α>0,sin α-cos α>0. 由题意,得(sin α+cos α)+(sin α-cos α)cos α=4,∴sin α=2cos α.∴sin α-cos α2sin α+cos α=2cos α-cos α4cos α+cos α=15.29.化简: 1-2sin α2cos α2+1+2sin α2cos α2⎝⎛⎭⎫0<α<π2. [解析]原式=⎝⎛⎭⎫cos α2-sin α22+⎝⎛⎭⎫cos α2+sin α22=⎪⎪⎪⎪cos α2-sin α2+⎪⎪⎪⎪cos α2+sin α2.因为α∈⎝⎛⎭⎫0,π2,所以α2∈⎝⎛⎭⎫0,π4.所以cos α2-sin α2>0,sin α2+cos α2>0, 所以上式=cos α2-sin α2+cos α2+sin α2=2cos α2.30.若1+sin θ·sin 2θ+cos θ·cos 2θ=0成立,则角θ不可能是 ( )A .第二、三、四象限角B .第一、二、三象限角C .第一、二、四象限角D .第一、三、四象限角[解析] 由于1+sin θ·sin 2θ+cos θcos 2θ=0,且1-sin 2θ-cos 2θ=0,所以sin θ≤0,cos θ≤0,故选C. 31.若β∈[0,2π),且1-cos 2β+1-sin 2β=sin β-cos β,则β的取值范围是( )A.⎣⎡⎭⎫0,π2B.⎣⎡⎦⎤π2,πC.⎣⎡⎦⎤π,3π2D.⎣⎡⎭⎫3π2,2π [解析]∵1-cos 2β+1-sin 2β=|sin β|+|cos β|=sin β-cos β,∴sin β≥0且cos β≤0.又∵β∈[0,2π),∴β∈⎣⎡⎦⎤π2,π.故选B.32.已知sin α=13,求1-2sin αcos α(2cos 2α-1)(1-tan α)的值.[解析]1-2sin αcos α(2cos 2α-1)(1-tan α)=(sin α-cos α)2(2cos 2α-sin 2α-cos 2α)(1-tan α)=(cos α-sin α)2(cos α+sin α)(cos α-sin α)(1-tan α)=cos α-sin α(cos α+sin α)(1-tan α) =1-tan α(1+tan α)(1-tan α)=11+tan α,当角α是第一象限角时,cos α=223,tan α=sin αcos α=24,所以原式=11+24=8-227;当角α是第二象限角时,cos α=-223,tan α=sin αcos α=-24,所以原式=11-24=8+227.33.已知关于x 的方程2x 2-(3+1)x +m =0的两根为sin θ和cos θ,θ∈(0,2π),求:(1)sin θ1-1tan θ+cos θ1-tan θ的值;(2)m 的值;(3)方程的两根及θ的值.[解析] (1)由题意,得⎩⎪⎨⎪⎧sin θ+cos θ=3+12,sin θcos θ=m2,所以sin θ1-1tan θ+cos θ1-tan θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ=sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ=3+12.(2)由(1),知sin θ+cos θ=3+12,将上式两边平方,得1+2sin θcos θ=2+32,所以sin θcos θ=34,由(1),知m 2=34,所以m =32. (3)由(2)可知原方程为2x 2-(3+1)x +32=0,解得x 1=32,x 2=12. 所以⎩⎨⎧sin θ=32,cos θ=12或⎩⎨⎧sin θ=12,cos θ=32.又θ∈(0,2π),所以θ=π3或π6.题型五 应用同角三角函数关系式证明1.下列等式中恒成立的个数为( )①sin 21=1-cos 21;②sin 2α+cos 2α=sin 23+cos 23;③sin α=tan αcos α⎝⎛⎭⎫α≠π2+k π,k ∈Z . A .1 B .2 C .3D .0[解析]①②③都正确,故选C. 2.求证:sin α1-cos α·cos αtan α1+cos α=1.[解析]sin α1-cos α·cos αtan α1+cos α=sin α1-cos α·cos α·sin αcos α1+cos α=sin α1-cos α·sin α1+cos α=sin 2α1-cos 2α=sin 2αsin 2α=1. 3.求证:1+tan 2α=1cos 2α.[解析]1+tan 2α=1+sin 2αcos 2α=cos 2α+sin 2αcos 2α=1cos 2α. 4.求证:sin α(1+tan α)+cos α·⎝⎛⎭⎫1+1tan α=1sin α+1cos α. [解析]左边=sin α⎝⎛⎭⎫1+sin αcos α+cos α⎝⎛⎭⎫1+cos αsin α =sin α+sin 2αcos α+cos α+cos 2αsin α=sin 2α+cos 2αsin α+sin 2α+cos 2αcos α=1sin α+1cos α=右边.即原等式成立.5.求证:tan αsin αtan α-sin α=tan α+sin αtan αsin α.[解析]法一:(切化弦)左边=sin 2αsin α-sin αcos α=sin α1-cos α,右边=sin α+sin αcos αsin 2α=1+cos αsin α.因为sin 2α=1-cos 2α=(1+cos α)(1-cos α),所以sin α1-cos α=1+cos αsin α,所以左边=右边.所以原等式成立.法二:(由右至左)因为右边=tan 2α-sin 2α(tan α-sin α)tan αsin α=tan 2α-tan 2αcos 2α(tan α-sin α)tan αsin α=tan 2α(1-cos 2α)(tan α-sin α)tan αsin α=tan 2αsin 2α(tan α-sin α)tan αsin α=tan αsin αtan α-sin α=左边,所以原等式成立. 6.求证:2sin x cos x -1cos 2x -sin 2x =tan x -1tan x +1.[解析]证法一:∵左边=2sin x cos x -(sin 2x +cos 2x )cos 2x -sin 2x =-(sin 2x -2sin x cos x +cos 2x )cos 2x -sin 2x =(sin x -cos x )2sin 2x -cos 2x=(sin x -cos x )2(sin x -cos x )(sin x +cos x )=sin x -cos x sin x +cos x =tan x -1tan x +1=右边.∴原式成立.证法二:∵右边=sin xcos x-1sin x cos x+1=sin x -cos x sin x +cos x ;左边=1-2sin x cos x sin 2x -cos 2x =(sin x -cos x )2sin 2x -cos 2x =(sin x -cos x )2(sin x -cos x )·(sin x +cos x )=sin x -cos x sin x +cos x .∴左边=右边,原式成立.7.求证:(1)sin α-cos α+1sin α+cos α-1=1+sin αcos α;(2)2(sin 6 θ+cos 6 θ)-3(sin 4 θ+cos 4 θ)+1=0.[解析] (1)左边=(sin α-cos α+1)(sin α+cos α+1)(sin α+cos α-1)(sin α+cos α+1)=(sin α+1)2-cos 2 α(sin α+cos α)2-1=(sin 2 α+2sin α+1)-(1-sin 2 α)sin 2 α+cos 2 α+2sin αcos α-1=2sin 2 α+2sin α1+2sin αcos α-1=2sin α(sin α+1)2sin αcos α=1+sin α cos α=右边,∴原等式成立.(2)左边=2[(s i n 2 θ)3+(cos 2θ)3]-3(sin 4 θ+cos 4 θ)+1=2(sin 2 θ+cos 2 θ)(sin 4 θ-sin 2 θcos 2 θ+cos 4 θ)-3(sin 4 θ+cos 4 θ)+1=(2sin 4 θ-2sin 2 θcos 2 θ+2cos 4 θ)-(3sin 4 θ+3cos 4 θ)+1=-(sin 4 θ+2sin 2 θcos 2 θ+cos 4 θ)+1 =-(sin 2 θ+cos 2 θ)2+1=-1+1=0=右边, ∴原等式成立. 8.若3π2<α<2π,求证:1-cos α1+cos α+1+cos α1-cos α=-2sin α.[解析]∵3π2<α<2π,∴sin α<0.左边=(1-cos α)2(1+cos α)(1-cos α)+(1+cos α)2(1-cos α)(1+cos α)=(1-cos α)2sin 2α+(1+cos α)2sin 2α=|1-cos α||sin α|+|1+cos α||sin α|=-1-cos αsin α-1+cos αsin α=-2sin α=右边.∴原等式成立.9.求证:1-2sin 2x cos 2x cos 22x -sin 22x =1-tan (720°+2x )1+tan (360°+2x ).[解析] 法一:右边=1-tan 2x1+tan 2x=1-sin 2xcos 2x 1+sin 2x cos 2x=cos 2x -sin 2x cos 2x +sin 2x=(cos 2x -sin 2x )2(cos 2x +sin 2x )(cos 2x -sin 2x )=cos 22x +sin 22x -2cos 2x sin 2xcos 22x -sin 22x =1-2sin 2x cos 2xcos 22x -sin 22x=左边.所以原等式成立.法二:左边=sin 22x +cos 22x -2sin 2x cos 2x cos 22x -sin 22x =(cos 2x -sin 2x )2(cos 2x -sin 2x )(cos 2x +sin 2x )=cos 2x -sin 2xcos 2x +sin 2x .右边=1-tan 2x1+tan 2x=1-sin 2x cos 2x 1+sin 2x cos 2x =cos 2x -sin 2x cos 2x +sin 2x .所以原等式成立.10.求证:1+2sin αcos αsin 2α-cos 2α=1+tan αtan α-1.[解析]左边=sin 2α+cos 2α+2sin αcos αsin 2α-cos 2α=(sin α+cos α)2(sin α-cos α)(sin α+cos α)=sin α+cos αsin α-cos α=1+tan αtan α-1=右边.所以原式成立.11.已知tan 2α=2tan 2β+1,求证:sin 2β=2sin 2α-1. [解析]因为tan 2α=2tan 2β+1,所以tan 2α+1=2tan 2β+2,所以sin 2αcos 2α+1=2⎝⎛⎭⎫sin 2βcos 2β+1,所以1cos 2α=2cos 2β,所以1-sin 2β=2(1-sin 2α),即sin 2β=2sin 2α-1.。

人教版高一数学必修四1.2.2同角三角函数的基本关系(课件)

人教版高一数学必修四1.2.2同角三角函数的基本关系(课件)

知识探究(一):基本关系
思考1:如图,设α是一个任意角,它
的终边与单位圆交于点P,那么,正弦
线MP和余弦线OM的长度有什么内在联
系?由此能得到什么结论?
y P
1
MO
x
思考2:上述关系反应了角α的正弦和 余弦之间的内在联系,根据等式的特点, 将它称为平方关系.那么当角α的终边 在坐标轴上时,上述关系成立吗?
y P
P Ox
思考3:设角α的终边与单位圆交于点
P(x,y),根据三角函数定义,有



由此可得sinα,cosα,tanα满足什
么关系?
思考4:上述关系称为商数关系,那么商 数关系成立的条件是多么?
思考5:平方关系和商数关系是反应同一 个角的三角函数之间的两个基本关系, 它们都是恒等式,如何用文字语言描述 这两个关系?
同一个角的正弦、余弦的平方和等于1, 商等于这个角的正切.
知识探究(二):基本变形 思考1:对于平方关系 可作哪些变形?
sin2 cos2 1
思考2:对于商数关系 哪些变形?
可作
思考3:结合平方关系和商数关系, 可得到哪些新的恒等式?
思考4:若已知sinα的值,如何求cosα 和tanα的值?
思考5:若已知tanα的值,如何求sinα 和cosα的值?
理论迁移
例1 求证:
例2 已知
,求
若α是第三象限角,则
若α是第四象限角,则
, 的值.

.

.
例3 已知tanα=2,求下列各式的值.
(1)
;(2)
5 2
例4 已知 求
, 的值.
小结作业
1.同角三角函数的两个基本关系是对同一个 角而言的,由此可以派生出许多变形公式, 应用中具有灵活、多变的特点.

三角恒等变换——二倍角及半倍角、积化和差及和差化积(解析版)

三角恒等变换——二倍角及半倍角、积化和差及和差化积(解析版)

专题2.20三角恒等变换——二倍角及半倍角、积化和差及和差化积重难点知识讲解一.同角三角函数间的基本关系【基础知识】1.同角三角函数的基本关系(1)平方关系:sin2α+cos2α=1.(2)商数关系:=tanα.2.诱导公式公式一:sin(α+2kπ)=sinα,cos(α+2kπ)=cos_α,其中k∈Z.公式二:sin(π+α)=﹣sin_α,cos(π+α)=﹣cos_α,tan(π+α)=tanα.公式三:sin(﹣α)=﹣sin_α,cos(﹣α)=cos_α.公式四:sin(π﹣α)=sinα,cos(π﹣α)=﹣cos_α.公式五:sin(﹣α)=cosα,cos(﹣α)=sinα.公式六:sin(+α)=cosα,cos(+α)=﹣sinα3.两角和与差的正弦、余弦、正切公式(1)cos(α﹣β)=cosαcosβ+sinαsinβ;(2)cos(α+β)=cosαcosβ﹣sinαsinβ;(3)sin(α+β)=sinαcosβ+cosαsinβ;(4)sin(α﹣β)=sinαcosβ﹣cosαsinβ;(5)tan(α+β)=.(6)tan(α﹣β)=.4.二倍角的正弦、余弦、正切公式(1)sin2α=2sin_αcos_α;(2)cos2α=cos2α﹣sin2α=2cos2α﹣1=1﹣2sin2α;(3)tan2α=.【技巧方法】诱导公式记忆口诀:对于角“±α”(k∈Z)的三角函数记忆口诀“奇变偶不变,符号看象限”,“奇变偶不变”是指“当k为奇数时,正弦变余弦,余弦变正弦;当k为偶数时,函数名不变”.“符号看象限”是指“在α的三角函数值前面加上当α为锐角时,原函数值的符号”.二.两角和与差的三角函数【基础知识】(1)cos(α﹣β)=cosαcosβ+sinαsinβ;(2)cos(α+β)=cosαcosβ﹣sinαsinβ;(3)sin(α+β)=sinαcosβ+cosαsinβ;(4)sin(α﹣β)=sinαcosβ﹣cosαsinβ;(5)tan(α+β)=.(6)tan(α﹣β)=.三.二倍角的三角函数【基础知识】二倍角的正弦其实属于正弦函数和差化积里面的一个特例,即α=β的一种特例,其公式为:sin2α=2sinα•cosα;其可拓展为1+sin2α=(sinα+cosα)2.二倍角的余弦其实属于余弦函数和差化积里面的一个特例,即α=β的一种特例,其公式为:cos2α=cos2α﹣sin2α=2cos2α﹣1=1﹣2sin2α.二倍角的正切其实属于正切函数和差化积里面的一个特例,即α=β的一种特例,其公式为:tan2α=.对于这个公式要求是能够正确的运用其求值化简即可.四.半角的三角函数【基础知识】半角的三角函数关系主要是指正切函数与正余弦函数之间的关系(正余弦的半角关系其实就是二倍角关系),其公式为:①tan===;②tan===.五.三角函数的积化和差公式【基础知识】三角函数的积化和差公式:(1)sinαsinβ=[cos(α﹣β)﹣cos(α+β)]cosαcosβ=[cos(α﹣β)+cos(α+β)](2)sinαcosβ=[sin(α+β)+sin(α﹣β)]cosαsinβ=[sin(α+β)﹣sin(α﹣β)](3)tanαtanβ=tanαcotβ=.六.三角函数的和差化积公式【基础知识】三角函数的和差化积公式:(1)sinα+sinβ=2sin cossinα﹣sinβ=2cos sin(2)cosα+cosβ=2cos coscosα﹣cosβ=﹣2sin sin(3)cosα+sinα=sin (+α)=cos ()cosα﹣sinα=cos (+α)=sin (﹣α)真题解析一.选择题(共10小题)1.(2020·榆树市第一高级中学校期末)已知(0,)απ∈,3cos()65πα+=,则sin α的值为()A .43-310B .33-410C .710D .235【答案】A 【解析】由(0,)απ∈,3cos()65πα+=得in(4s 65πα+=所以sin sin sin cos cos sin 666666ππππππαααα⎛⎫⎛⎫⎛⎫=+-=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭4331433525210-=⨯-⨯=故选:A2.(2020·山东日照期末)角α的终边过点()43P ,-,则sin 2α=()A .1225-B .1225C .2425-D .2425【答案】C 【解析】解:由三角函数的定义,得3sin 5α=,4cos 5α=-,所以3424sin 22sin cos 25525ααα⎛⎫==⨯⨯-=- ⎪⎝⎭.故选:C3.(2020·甘肃凉州武威十八中期末)已知函数31()2cos 222f x x x =-.则下列判断正确的是()A .关于直线4x π=对称B .关于直线6x π=对称C .关于点,012π⎛⎫⎪⎝⎭对称D .关于点,03π⎛⎫⎪⎝⎭对称【答案】C 【解析】31()sin 2cos 222f x x x=-πsin(26x =-,因为(sin(2)sin 144632f ππππ=⨯-==≠±,所以A 不正确;因为1(sin(2)sin 166662f ππππ=⨯-==≠±,所以B 不正确;因为()sin(2)sin 0012126f πππ=⨯-==,所以C 正确;因为(sin(2)sin 103362f ππππ=⨯-==≠,所以D 不正确;故选:C.4.(2020·安徽宣城月考(文))已知tan tan m αβ=,cos()n αβ-=,则cos()αβ+=()A .2(1)1n m m -+B .(1)1n m m -+C .6(1)1n m m -+D .(1)1n m m -+【答案】B 【解析】因为tan tan m αβ=,所以sin sin cos cos m αβαβ=,又cos()cos cos sin sin n αβαβαβ-=+=,所以cos cos 1nm αβ=+,sin sin 1mnm αβ=+,所以(1)cos()111n mn n m m m m αβ-+=-=+++.故选:B5.(2020·哈尔滨市第一中学校一模(理))若3tan 24α=-,则22sin 2cos 12sin ααα+=+()A .14-或14B .34或14C .34D .14【答案】D 【解析】由二倍角的正切公式得22tan 3tan 21tan 4ααα==--,整理得23tan 8tan 30αα--=,解得tan 3α=或13-,所以,2222222sin cos cos 2tan 13sin cos 3tan 1sin 2cos 12sin αααααααααα++=+=+++.当tan 3α=时,原式223113314⨯+==⨯+;当1tan 3α=-时,原式21211341313⎛⎫⨯-+ ⎪⎝⎭==⎛⎫⨯-+ ⎪⎝⎭.综上所述,22sin 2cos 112sin 4ααα+=+.故选:D.6.(2020·邵阳市第二中学(文))已知函数()sin (0)f x x x ωωω=>的图象关于直线8x π=对称,则ω的最小值为()A .13B .23C .43D .83【答案】C 【解析】()sin 2sin 3f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭Q ,由于该函数的图象关于直线8x π=对称,则()832k k Z πππωπ+=+∈,得()483k k Z ω=+∈,0ω> ,当0k =时,ω取得最小值43.故选:C.7.(2020·上海杨浦复旦附中期末)已知2sin 23α=,则2sin 4πα⎛⎫+= ⎪⎝⎭()A .16B .12C .13D .56【答案】D 【解析】由二倍角的降幂公式可得221cos 211sin 2523sin 42226παπαα⎛⎫-++⎪+⎛⎫⎝⎭+==== ⎪⎝⎭.故选:D.8.(2020·荣成市教育教学研究培训期中)设θ为第二象限角,若1tan()47θπ+=,则sin cos θθ+=()A .15-B .15C .75D .75-【答案】A 【解析】tan 11tan()41tan 7θθθπ++==-,即()7tan 11tan θθ+=-可得:8tan 6θ=-,解得:3tan 4θ=-由22sin 3tan cos 4sin cos 1θθθθθ⎧==-⎪⎨⎪+=⎩可得:3sin 54cos 5θθ⎧=⎪⎪⎨⎪=-⎪⎩所以1sin cos 5θθ+=-.故选:A9.(2020·江西景德镇一中月考(文))已知tan 3θ=,则3cos 22πθ⎛⎫+=⎪⎝⎭()A .45-B .35-C .35D .45【答案】C 【解析】3cos 2cos 2sin 222ππθθθ⎛⎫⎛⎫+=-+= ⎪ ⎪⎝⎭⎝⎭2222sin cos 2tan 2sin cos sin cos tan 1θθθθθθθθ===++,因为tan 3θ=,所以23233cos 22315πθ⨯⎛⎫+==⎪+⎝⎭,故选:C.10.(2020·全国)已知函数()()()()()2sin cos 02f x x x x ϕϕϕϕ=++++->的图象关于原点对称,则ϕ的最小值为()A .6πB .4πC .3πD .2π【答案】C 【解析】因为()()()()2sin cos 2f x x x x ϕϕϕ=++++-()()()()()2112cos 12sin cos sin 2cos 22222x x x x x ϕϕϕϕϕ⎡⎤=+-+⨯++=+++⎣⎦sin 223x πϕ⎛⎫=++ ⎪⎝⎭其图象关于原点对称,所以23k πϕπ+=,k ∈Z ,解得62k ππϕ=-+,由0ϕ>可得1k =时,ϕ取得最小值,最小值为3π.故选:C .二.填空题(共5小题)11.(2020·上海市行知中学期末)已知1tan 2α=,()5tan 2αβ-=,则tan β=_______【答案】89-【解析】1tan 2α=,()5tan 2αβ-=,因此,()()()15tan tan 822tan tan 151tan tan 9122ααββααβααβ---=--===-⎡⎤⎣⎦+-+⨯.故答案为:89-.12.(2020·河南新乡县一中期末)2cos802cos 501cos35cos 65cos55cos155︒︒︒︒︒︒-+=+______.【答案】2-【解析】原式()()2cos802cos 501cos80cos1002cos802sin 55cos 65cos55sin 65sin 5565sin 10︒-︒+︒-︒︒====-︒︒-︒︒︒-︒-︒.故答案为:2-.13.(2020·商丘市第一高级中学期末)函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_________.【答案】1【解析】由题意知:()()()sin 22sin cos f x x x ϕϕϕ=+-+=()()sin[]2sin cos x x ϕϕϕϕ++-+=()sin cos x ϕϕ++()cos sin x ϕϕ+-()2sin cos x ϕϕ+=()cos sin x ϕϕ+-()sin cos x ϕϕ+=()sin[]x ϕϕ+-=sin x ,即()sin f x x =,因为x R ∈,所以()f x 的最大值为1.14.(2020·江苏天宁常州高级中学)已知10,,cos 233ππαα⎛⎫⎛⎫∈+= ⎪ ⎪⎝⎭⎝⎭,则cos 26πα⎛⎫+ ⎪⎝⎭的值是_________.【答案】429【解析】10,,cos 233ππαα⎛⎫⎛⎫∈+= ⎪ ⎪⎝⎭⎝⎭,故5,336πππα⎛⎫+∈ ⎪⎝⎭,故sin 33πα⎛⎫+=⎪⎝⎭,22cos 2cos 2sin 22sin cos 633233ππππππααααα⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=+-=+=++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭9=.故答案为:9.15.(2020·江苏南通)已知()()sin 23sin 2a a ββ+=-,()tan αβ-=,则tan α的值是_____________.【答案】【解析】由()()sin 23sin 2αβαβ+=-得sin 2cos cos 2sin 3sin 2cos 3cos 2sin αβαβαβαβ+=-,则tan 22tan αβ=,所以21tan tan tan 221tan αβαα==-.而()232tan tan tan tan 1tan tan tan tan 1tan tan 1tan 1tan αααβααβαααβαα----===-++⋅-.所以,()3tan tan ααβ=--=-tan α=.故答案为:.三.解析题(共5小题)16.(2020·甘肃城关兰州一中期末)已知函数()22sin 2xf x x =-.(1)求函数()f x 的最小正周期;(2)求函数()f x 在[]0,2π内的所有零点.【答案】(1)2π;(2)0,23π,2π.【解析】解:(1)()()22sin 1cos 2sin 126x f x x x x x π⎛⎫=-=--=+- ⎪⎝⎭.221T ππ∴==,(2)令2sin 106x π⎛⎫+-= ⎪⎝⎭,即1sin 62x π⎛⎫+= ⎪⎝⎭.∴2,66x k k Z πππ+=+∈或52,66x k k Z πππ+=+∈.可得:函数()f x 在[]0,2π内的所有零点为:0,23π,2π.17.(2020·湖南省长沙县第九中学期末)已知函数2()cos cos )sin f x x x x x =+-.(1)求函数()f x 的最小正周期;(2)若当0,2x π⎡⎤∈⎢⎥⎣⎦时,不等式()f x m 有解,求实数m 的取值范围.【答案】(1)π;(2)2m ≤.【解析】(1)22()cos cos sin 2cos 2f x x x x x x x=+-=+122cos 222x x ⎛⎫=+ ⎪ ⎪⎝⎭2sin 26x π⎛⎫=+ ⎪⎝⎭所以函数()f x 的最小正周期T=π.(2)由题意可知,不等式()f x m 有解,即()max m f x ≤,因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以72,666x πππ⎡⎤+∈⎢⎥⎣⎦,故当262x ππ+=,即6x π=时()f x 取得最大值,且最大值26f π⎛⎫= ⎪⎝⎭.从而可得2m ≤.18.(2020·上海浦东新·华师大二附中期末)已知函数()()2sin 0,22f x x ππωϕωϕ⎛⎫=+>-<< ⎪⎝⎭的图象如图所示,直线38x π=、78x π=是其两条对称轴.(1)求函数()f x 的解析式;(2)已知()65f α=,且388ππα<<,求8f πα⎛⎫+ ⎪⎝⎭的值.【答案】(1)()2sin 24f x x π⎛⎫=-⎪⎝⎭;(2)7285f πα⎛⎫+= ⎪⎝⎭.【解析】(1)因为直线38x π=、78x π=是其两条对称轴,所以732,2288T T Tππππω=-∴===,因为77()2sin()184f ππϕ=-∴+=-73+2()+2()424k k Z k k Z πππϕπϕπ∴+=∈∴=-∈224πππϕϕ-<<∴=Q ,所以()2sin 24f x x π⎛⎫=- ⎪⎝⎭;(2)因为()65f α=,所以3sin 245πα⎛⎫-=⎪⎝⎭因为388ππα<<,所以0242ππα<-<∴4cos 245πα⎛⎫-=⎪⎝⎭2sin(2))cos(2)]844445f πππππαααα⎛⎫+=-+=-+-=⎪⎝⎭19.(2020·山东日照期末)已知函数2()cos 2cos 1()f x x x x x R =+-∈.(I )求函数()f x 的最小正周期及在区间[0,2π上的最大值和最小值;(II )若006(),[,]542f x x ππ=∈,求0cos2x 的值.【答案】函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值为2,最小值为-100003cos 2cos 2cos 2cos sin 2sin 66666610x x x x ππππππ⎡⎤-⎛⎫⎛⎫⎛⎫=+-=+++=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦【解析】(1)所以又所以由函数图像知.(2)解:由题意而所以所以所以=.20.(2020·湖北黄冈期末)已知函数()2sin cos f x x x =+.(1)求函数()f x 的值域;(2)当()0f x =时,求22sin sin 2cos 21x x x -+的值.【答案】(1)⎡⎣;(2)1-.【解析】(1)因为()()12sin cos tan 2f x x x x φφ=+=+=,,所以函数()f x 的值域为⎡⎣.(2)()2sin cos 0f x x x =+=,所以1tan 2x =-,所以2222sin 2sin sin tan 1sin 2cos 212sin cos 2sin cos sin 1tan x x x xx x x x x x x x====--++++.。

2022人教版高中数学必修四课时提升作业(五) 1.2.2 同角三角函数的基本关系

2022人教版高中数学必修四课时提升作业(五) 1.2.2 同角三角函数的基本关系

温馨提示:此套题为Word 版,请按住Ctrl,滑动鼠标滚轴,调整合适的观看比例,答案解析附后。

关闭Word 文档返回原板块。

课时提升作业(五)同角三角函数的基本关系(25分钟 60分)一、选择题(每小题5分,共25分)1.sin α=√55,则sin 2α-cos 2α的值为( )A.-15B.-35C.15D.35【解析】选B.由于sin α=√55,所以cos 2α=1-sin 2α=45,则原式=15-45=-35.【延长探究】本题条件下,求sin 4α-cos 4α的值. 【解析】由sin 4α-cos 4α=(sin 2α+cos 2α)(sin 2α-cos 2α)=sin 2α-cos 2α =-35.2.(2021·福建高考)若sin α=-513,且α为第四象限角,则tan α的值等于( )A.125B.-125C.512D.-512【解题指南】利用同角三角函数关系,“知一求二”.【解析】选D.由sin α=-513,且α为第四象限角可知cos α=1213,故tan α=sinαcosα=-512.3.(2021·葫芦岛高一检测)已知α是其次象限角,cos α=-13,则3sin α+tan α=( )A.-√2B.√2C.-1D.0 【解析】选D.由于cos α=-13,α是其次象限角,所以sin α=√1−cos 2α=√1−(−13)2=2√23. 所以tan α=sinαcosα=2√23−13=-2√2.所以3sin α+tan α=3×2√23-2√2=0. 4.(2021·重庆高一检测)已知角θ为第四象限角,且tan θ=-34,则sin θ- cos θ=( )A.15B.75C.-15D.-75【解析】选D.由已知得{sinθcosθ=−34,sin 2θ+cos 2θ=1,所以(−34cosθ)2+cos 2θ=1,cos 2θ=1625,又角θ为第四象限角,所以cos θ=45.所以sin θ=-34cos θ=-34×45=-35. 所以sin θ-cos θ=-35-45=-75.5.已知sin α-cos α=-√52,则tan α+1tanα的值为( )A.-4B.4C.-8D.8【解析】选C.tan α+1tanα=sinαcosα+cosαsinα=1sinαcosα.由于sin αcos α=1−(sinα−cosα)22=-18,所以tan α+1tanα=-8.二、填空题(每小题5分,共15分)6.(2021·北京高一检测)已知α是其次象限的角,且sin α=513,则cos α=________.【解析】由于α是其次象限的角,且sin α=513,所以cos α=-√1−sin 2α=-√1−(513)2=-1213.答案:-12137.若sin θ=k+1k−3,cos θ=k−1k−3,且θ的终边不落在坐标轴上,则tan θ的值为________.【解析】由于sin 2θ+cos 2θ=(k+1k−3)2+(k−1k−3)2=1,所以k 2+6k-7=0,所以k 1=1或k 2=-7.当k=1时,cos θ不符合,舍去. 当k=-7时,sin θ=35,cos θ=45,tan θ=34.答案:348.已知sinx=3cosx ,则sinxcosx 的值是________. 【解析】将sinx=3cosx 代入sin 2x+cos 2x=1中得9cos 2x+cos 2x=1,即cos 2x=110, 所以sin 2x=1-cos 2x=910, 由于sinx 与cosx 同号,所以sinxcosx>0, 则sinxcosx=√sin 2xcos 2x =310.答案:310三、解答题(每小题10分,共20分) 9.(2021·武汉高一检测)已知tan 2α1+2tanα=13,α∈(π2,π). (1)求tan α的值. (2)求sinα+2cosα5cosα−sinα的值.【解析】(1)由tan 2α1+2tanα=13,得3tan 2α-2tan α-1=0,即(3tan α+1)(tan α-1)=0,解得tan α=-13或tan α=1.由于α∈(π2,π),所以tan α<0,所以tan α=-13.(2)由(1),得tan α=-13,所以sinα+2cosα5cosα−sinα=tanα+25−tanα=−13+25−(−13)=516.【延长探究】本例条件下,计算sin 2α+sin αcos α的值.【解析】sin 2α+sin αcos α=sin 2α+sinαcosαsin 2α+cos 2α=tan 2α+tanαtan 2α+1=(−13)2+(−13)(−13)2+1=-15.10.求证:3-2cos 2α=3tan 2α+1tan 2α+1.【证明】右边=3(tan 2α+1)−2tan 2α+1=3-2tan 2α+1=3-2sin 2αcos 2α+1=3-2cos 2αsin 2α+cos 2α=3-2cos 2α=左边,所以原式得证. 【一题多解】左边=3(sin 2α+cos 2α)−2cos 2αsin 2α+cos 2α=3sin 2α+cos 2αsin 2α+cos 2α=3tan 2α+1tan 2α+1=右边,所以原式得证.(20分钟 40分)一、选择题(每小题5分,共10分)1.化简sin 2α+cos 4α+sin 2αcos 2α的结果是( ) A.14B.12C.1D.32【解析】选C.原式=sin 2α+cos 2α(cos 2α+sin 2α)=sin 2α+cos 2α=1.【补偿训练】若sin α+sin 2α=1,则cos 2α+cos 4α等于________.【解析】由于sin α+sin 2α=1,sin 2α+cos 2α=1,所以sin α=cos 2α,所以cos 2α+cos 4α=sin α+sin 2α=1. 答案:12.(2021·宣城高一检测)已知sin θ=2cos θ,则sin 2θ+sin θcos θ-2cos 2θ等于( )A.-43B.54C.-34D.45【解题指南】关于sin θ,cos θ的齐次式,可用1的代换、化弦为切求值. 【解析】选D.由于sin θ=2cos θ,所以tan θ=sinθcosθ=2, sin 2θ+sin θcos θ-2cos 2θ =sin 2θ+sinθcosθ−2cos 2θsin 2θ+cos 2θ=tan 2θ+tanθ−2tan 2θ+1=22+2−222+1=45.二、填空题(每小题5分,共10分)3.(2021·龙岩高一检测)化简:α为其次象限角,则cosα√1+tan 2α+√1+sinα1−sinα-√1−sinα1+sinα=__________.【解析】原式=cosα√1+2cos 2α+√(1+sinα)21−sin 2α-√(1−sinα)21−sin 2α=cosα·√1cos 2α+|1+sinαcosα|-|1−sinαcosα|.又由于α为其次象限角,所以cos α<0,1+sin α>0,1-sin α>0, 所以原式=1cosα·1−cosα-1+sinαcosα-(−1−sinαcosα)=-1-1+sinαcosα+1−sinαcosα=-1+−2sinαcosα=-1-2tan α.答案:-1-2tan α 【补偿训练】√1−2sin70°cos70°sin70°−√1−sin 270°=________.【解析】原式=√sin 270°+cos 270°−2sin70°cos70°sin70°−√cos 270°=√(sin70°−cos70°)2sin70°−|cos70°|=|sin70°−cos70°|sin70°−|cos70°|由于sin 70°>cos 70°>0, 所以原式=sin70°−cos70°sin70°−cos70°=1.答案:14.已知关于x 的方程4x 2-2(m+1)x+m=0的两个根恰好是一个直角三角形的一个锐角的正、余弦,则实数m 的值为________. 【解析】设直角三角形中的该锐角为β, 由于方程4x 2-2(m+1)x+m=0中, Δ=4(m+1)2-4·4m=4(m-1)2≥0, 所以当m ∈R 时,方程恒有两实根. 又由于sin β+cos β=m+12,sin βcos β=m4,所以由以上两式及sin 2β+cos 2β=1, 得1+2·m4=(m+12)2,解得m=±√3.当m=√3时,sin β+cos β=√3+12>0,sin β·cos β=√34>0,满足题意, 当m=-√3时,sin β+cos β=1−√32<0,这与β是锐角冲突,舍去. 综上,m=√3. 答案:√3三、解答题(每小题10分,共20分)5.(2021·盐城高一检测)已知sin α+cos α=12(0<α<π),(1)求sin αcos α.(2)求sin α-cos α.【解析】(1)平方得1+2sin αcos α=14,所以sin αcos α=-38.(2)由(1)式知sin αcos α<0,0<α<π,所以π2<α<π,所以sin α-cos α>0,由于(sin α-cos α)2=1-2sin αcos α=74,所以sin α-cos α=√72.【补偿训练】在△ABC 中,sinA+cosA=15,求(1)sinA ·cosA. (2)tanA. 【解析】(1)由于sinA+cosA=15,所以(sinA+cosA)2=125,即1+2sinAcosA=125,所以sinAcosA=-1225.(2)由于sinA+cosA=15,①A ∈(0,π),所以A ∈(π2,π),所以sinA-cosA>0,又由于(sinA-cosA)2=1-2sinAcosA =1-2×(−1225)=4925,所以sinA-cosA=75②联立①②解得,sinA=45,cosA=-35,所以tanA=sinAcosA=45−35=-43.6.已知sin θ=asin φ,tan θ=btan φ,其中θ为锐角,求证:cos θ=√a 2−1b 2−1.【证明】由sin θ=asin φ,tan θ=btan φ,得sinθtanθ=asinφbtanφ,即acos φ=bcos θ,而asin φ=sin θ,得a 2=b 2cos 2θ+sin 2θ,即a 2=b 2cos 2θ+1-cos 2θ, 得cos 2θ=a 2−1b 2−1,而θ为锐角,所以cos θ=√a 2−1b 2−1.关闭Word 文档返回原板块。

人教a版必修4学案:1.2.2同角三角函数的基本关系(含答案)

人教a版必修4学案:1.2.2同角三角函数的基本关系(含答案)

1.2.2 同角三角函数的基本关系自主学习知识梳理1.同角三角函数的基本关系式(1)平方关系:____________________.(2)商数关系:____________________.2.同角三角函数基本关系式的变形(1)sin 2α+cos 2α=1的变形公式:sin 2α=__________;cos 2α=__________;(sin α+cos α)2=__________;(sin α-cos α)2=____________;(sin α+cos α)2+(sin α-cos α)2=________;sin α·cos α=____________=____________.(2)tan α=sin αcos α的变形公式:sin α=____________; cos α=____________.自主探究1.利用任意角三角函数的定义推导平方关系.2.已知tan α=2,求下列代数式的值.(1)4sin α-2cos α5cos α+3sin α; (2)14sin 2α+13sin αcos α+12cos 2α.对点讲练知识点一 已知某一个三角函数值,求同角的其余三角函数值例1 已知cos α=-817,求sin α、tan α.回顾归纳 同角三角函数的基本关系式揭示了同角之间的三角函数关系,其最基本的应用是“知一求二”,要注意这个角所在的象限,由此来决定所求的是一解还是两解,同时应体会方程思想的应用.变式训练1 已知tan α=43,且α是第三象限角,求sin α,cos α的值.知识点二 利用同角的三角函数基本关系式化简例2 化简:1cos α1+tan 2α+1+sin α1-sin α-1-sin α1+sin α.回顾归纳 解答此类题目的关键在于公式的灵活运用,切实分析好同角三角函数间的关系.化简过程中常用的方法有:(1)化切为弦,即把非正弦、非余弦的函数都化成正弦、余弦函数,从而减少函数名称,达到化简的目的.(2)对于含有根号的,常把根号下化成完全平方式,然后去根号,达到化简的目的.(3)对于化简含高次的三角函数式,往往借助于因式分解.变式训练2 化简:1-cos 4α-sin 4α1-cos 6α-sin 6α.知识点三 利用同角的三角函数基本关系式证明恒等式例3 求证:cos α1+sin α-sin α1+cos α=2(cos α-sin α)1+sin α+cos α.回顾归纳 证明三角恒等式的实质是清除等式两端的差异,有目的地进行化简.证明三角恒等式的基本原则:由繁到简.常用方法:从左向右证;从右向左证;左、右同时证.常用技巧:切化弦、整体代换.变式训练3 求证:1-2sin 2x cos 2x cos 22x -sin 22x =1-tan 2x 1+tan 2x.1.同角三角函数的基本关系式揭示了“同角不同名”的三角函数的运算规律,它的精髓在“同角”二字上,如sin 22α+cos 22α=1,sin 8αcos 8α=tan 8α等都成立,理由是式子中的角为“同角”.2.已知角α的某一种三角函数值,求角α的其余三角函数值时,要注意公式的合理选择.一般是先选用平方关系,再用商数关系.在应用平方关系求sin α或cos α时,其正负号是由角α所在象限来决定,切不可不加分析,凭想象乱写公式.3.在进行三角函数式的求值时,细心观察题目的特征,灵活、恰当的选用公式,统一角、统一函数、降低次数是三角函数关系式变形的出发点.课时作业一、选择题1.化简sin 2β+cos 4β+sin 2βcos 2β的结果是( )A.14B.12 C .1 D.322.若α为第三象限角,则cos α1-sin 2α+2sin α1-cos 2α的值为( ) A .3 B .-3 C .1 D .-13.若sin α=45,且α是第二象限角,则tan α的值等于( ) A .-43 B.34 C .±34 D .±434.已知tan α=-12,则1+2sin αcos αsin 2α-cos 2α的值是( ) A.13 B .3 C .-13D .-3 5.已知sin α-cos α=-52,则tan α+1tan α的值为( ) A .-4 B .4 C .-8 D .8二、填空题6.已知α是第二象限角,tan α=-12,则cos α=________. 7.已知sin αcos α=18且π4<α<π2,则cos α-sin α= ______________________________________________________________________.8.若sin θ=k +1k -3,cos θ=k -1k -3,且θ的终边不落在坐标轴上,则tan θ的值为________.三、解答题9.证明:(1)1-cos 2αsin α-cos α-sin α+cos αtan 2α-1=sin α+cos α; (2)(2-cos 2α)(2+tan 2α)=(1+2tan 2α)(2-sin 2α).10.已知关于x 的方程2x 2-(3+1)x +m =0的两根为sin θ和cos θ,θ∈(0,2π) 求:(1)m 的值;(2)方程的两根及此时θ的值.1.2.2 同角三角函数的基本关系答案知识梳理1.(1)sin 2α+cos 2α=1 (2)tan α=sin αcos α (α≠k π+π2,k ∈Z ) 2.(1)1-cos 2α 1-sin 2α 1+2sin αcos α1-2sin αcos α 2 (sin α+cos α)2-121-(sin α-cos α)22(2)cos αtan α sin αtan α自主探究1.解 ∵sin α=y r ,cos α=x r ,tan α=y x,x 2+y 2=r 2, ∴sin 2α+cos 2α=y 2r 2+x 2r 2=x 2+y 2r 2=1 (α∈R ). sin αcos α=y r x r=y x =tan α (α≠k π+π2,k ∈Z ). 2.解 关于sin α、cos α的齐次式,可以通过分子、分母同除以cos α或cos 2α转化为关于tan α的式子后再求值.(1)原式=4tan α-23tan α+5=611. (2)原式=14sin 2α+13sin αcos α+12cos 2αsin 2α+cos 2α=14tan 2α+13tan α+12tan 2α+1=14×4+13×2+125=1330. 对点讲练例1 解 ∵cos α=-817<0且cos α≠-1, ∴α是第二或第三象限的角.(1)如果α是第二象限的角,可以得到sin α=1-cos 2α= 1-⎝⎛⎭⎫-8172=1517. tan α=sin αcos α=1517-817=-158. (2)如果α是第三象限的角,可得到:sin α=-1517,tan α=158. 变式训练1 解 由tan α=sin αcos α=43, 得sin α=43cos α. ① 又sin 2 α+cos 2α=1, ②由①②得169cos 2α+cos 2α=1,即cos 2α=925. 又α是第三象限角,∴cos α=-35,sin α=43cos α=-45. 例2 解 原式=1cos α 1+sin 2αcos 2α+(1+sin α)21-sin 2α -(1-sin α)21-sin 2α =|cos α|cos α+1+sin α|cos α|-1-sin α|cos α|=⎩⎪⎨⎪⎧1+2tan α(α为第一或第四象限角),-1-2tan α(α为第二或第三象限角). 变式训练2 解 原式=(1-cos 4 α)-sin 4 α(1-cos 6 α)-sin 6 α=(1-cos 2α)(1+cos 2α)-sin 4 α(1-cos 2α)(1+cos 2α+cos 4 α)-sin 6 α=sin 2α(1+cos 2α)-sin 4 αsin 2α(1+cos 2α+cos 4 α)-sin 6 α=1+cos 2α-sin 2α1+cos 2α+cos 4 α-sin 4 α=2cos 2α1+cos 2α+(cos 2α+sin 2α)(cos 2α-sin 2α)=2cos 2α1+cos 2α+cos 2α-sin 2α=2cos 2α3cos 2α=23. 例3 证明 左边=cos α(1+cos α)-sin α(1+sin α)(1+sin α)(1+cos α)=cos 2α-sin 2α+cos α-sin α1+sin α+cos α+sin αcos α=(cos α-sin α)(cos α+sin α+1)12(cos α+sin α)2+sin α+cos α+12=2(cos α-sin α)(cos α+sin α+1)(sin α+cos α+1)2=2(cos α-sin α)1+sin α+cos α=右边. ∴原式成立.变式训练3 证明 左边=cos 22x +sin 22x -2sin 2x cos 2x cos 22x -sin 22x=(cos 2x -sin 2x )2(cos 2x -sin 2x )(cos 2x +sin 2x )=cos 2x -sin 2x cos 2x +sin 2x=1-tan 2x 1+tan 2x=右边.∴原等式成立.课时作业1.C [sin 2β+cos 4β+sin 2βcos 2β=sin 2β+cos 2β(cos 2β+sin 2β)=sin 2β+cos 2β=1.]2.B [∵α为第三象限角,cos α<0,sin α<0,∴原式=cos αcos 2α+2sin αsin 2α=cos α-cos α+2sin α-sin α=-3.] 3.A [α为第二象限角,sin α=45,cos α=-35, tan α=-43.] 4.C [1+2sin αcos αsin 2α-cos 2α=(sin α+cos α)·(sin α+cos α)(sin α+cos α)·(sin α-cos α)=sin α+cos αsin α-cos α=tan α+1tan α-1=-12+1-12-1=-13.] 5.C [tan α+1tan α=sin αcos α+cos αsin α=1sin αcos α. ∵sin αcos α=1-(sin α-cos α)22=-18, ∴tan α+1tan α=-8.] 6.-255 解析 由α是第二象限的角且tan α=-12,则⎩⎪⎨⎪⎧sin α=-12cos αsin 2α+cos 2α=1,则⎩⎨⎧ sin α=55cos α=-255.7.-32解析 (cos α-sin α)2=1-2sin αcos α=34,∵π4<α<π2,∴cos α<sin α.∴cos α-sin α=-32.8.34解析 ∵sin 2θ+cos 2θ=⎝ ⎛⎭⎪⎫k +1k -32+⎝ ⎛⎭⎪⎫k -1k -32=1,∴k 2+6k -7=0,∴k 1=1或k 2=-7. 当k =1时,cos θ不符合,舍去.当k =-7时,sin θ=35,cos θ=45,tan θ=34.9.证明 (1)左边=sin 2αsin α-cos α-sin α+cos αsin 2αcos 2α-1=sin 2αsin α-cos α-sin α+cos αsin 2α-cos 2αcos 2α=sin 2αsin α-cos α-cos 2α(sin α+cos α)sin 2α-cos 2α=sin 2αsin α-cos α-cos 2αsin α-cos α=sin 2α-cos 2αsin α-cos α=sin α+cos α=右边.∴原式成立.(2)∵左边=4+2tan 2α-2cos 2α-sin 2α =2+2tan 2α+2sin 2α-sin 2α=2+2tan 2α+sin 2α右边=(1+2tan 2α)(1+cos 2α)=1+2tan 2α+cos 2α+2sin 2α=2+2tan 2α+sin 2α∴左边=右边,原式成立.10.解 (1)由韦达定理知⎩⎨⎧ sin θ+cos θ=3+12①sin θ·cos θ=m2 ②由①式可知1+2sin θcos θ=1+32, ∴sin θcos θ=34,∴m2=34,∴m =32, (2)当m =32时,原方程2x 2-(3+1)x +32=0, ∴x 1=32,x 2=12. ∵θ∈(0,2π)∴⎩⎨⎧ sin θ=32cos θ=12或⎩⎨⎧ sin θ=12cos θ=32. ∴θ=π3或θ=π6.。

1.2.2同角的三角函数的基本关系(2课时)

1.2.2同角的三角函数的基本关系(2课时)

1.2.2同角的三角函数的基本关系(二课时)学习目标:⒈掌握同角三角函数的基本关系式,理解同角公式都是恒等式的特定意义;2 通过运用公式的训练过程,培养学生解决三角函数求值、化简、恒等式证明的解题技能,提高运用公式的灵活性; 学习重点:公式1cos sin 22=+αα及αααtan cos sin =的推导及运用:(1)已知某任意角的正弦、余弦、正切值中的一个,求其余两个;(2)化简三角函数式;(3)证明简单的三角恒等式. 学习难点:根据角α终边所在象限求出其三角函数值;选择适当的方法证明三角恒等式. 一、知识链接: 复习 :1.已知角α终边上一点p (x 、y ),r=22y x +,则角α的六个三角函数分别是什么?2.当角α分别在不同的象限时,sin α、cos α、tan α、cot α的符号分别是怎样的?二、新课导学自学教材P18-P20,并对相关概念进行勾画。

(思考1)三角函数是以单位圆上点的坐标来定义的,你能从圆的几何性质出发,讨论一下同一个角不同三角函数之间的关系吗?新知1:如图:以正弦线MP ,余弦线构成直角三角形,而且1OP =.221MP OM +=,因此221x y +=,根据三角函数的定义,当(2a k ππ≠+这就是说,同一个角α例题:学习课本19页—20页 例6 例7练习1:课本20页 练习1、4、5练习2:课本21-22 习题1.2A 组 第10、13题小结1:(1)同角三角函数的关系式的前提是“同角”,因此1cos sin 22≠+βα,γβαcos sin tan ≠. (2)利用平方关系时,往往要开方,因此要先根据角所在象限确定符号,即要就角所在象限进行分类讨论.思考1:由于α的三角函数都是由x 、y 、r 表示的,则角α的六个三角函数之间有什么关系?新知2:同角三角函数的基本关系式:1、由三角函数的定义,我们可以得到以下关系:(请把关系式的推导过程写在后面)(1)倒数关系:⎪⎩⎪⎨⎧=⋅=⋅=⋅1cot tan 1sec cos 1csc sin αααααα(2)商数关系:⎪⎩⎪⎨⎧==ααααααsin cos cot cos sin tan (3)平方关系:⎪⎩⎪⎨⎧=+=+=+αααααα222222csc cot 1sec tan 11cos sin2.给出右图,你能说明怎样利用它帮助我们记忆三角函数的基本关系吗? (1)在对角线上的两个三角函数值的乘积等于1,有倒数关系。

1.2.2《同角三角函数的基本关系》试题(新人教必修4)

1.2.2《同角三角函数的基本关系》试题(新人教必修4)

§1.2.2 同角三角函数的基本关系编者:梁军【学习目标、细解考纲】灵活运用同角三角函数的两个基本关系解决求值、化简、证明等问题。

【知识梳理、双基再现】1、同一个角α的正弦、余弦的平方和等于 ,商等于 。

即 ; 。

【小试身手、轻松过关】2、),0(,54cos παα∈=,则tan α的值等于( )A .34B .43C .34±D . 43± 3、若15tan =α,则=αcos;=αsin.4、化简sin 2α+sin 2β-sin 2αsin 2β+cos 2αcos 2β=.5、已知51sin =α,求ααtan ,cos 的值.【基础训练、锋芒初显】6、已知A 是三角形的一个内角,sin A +cos A = 23 ,则这个三角形是 ( )A .锐角三角形B .钝角三角形C .不等腰直角三角形D .等腰直角三角形 7、已知sin αcos α = 18,则cos α-sin α的值等于 ( )A .±34 B .±23 C .23 D .-238、已知θ是第三象限角,且95cos sin 44=+θθ,则=θθcos sin ( ) A .32 B . 32- C . 31 D . 31- 9、如果角θ满足2cos sin =+θθ,那么1tan tan θθ+的值是 ( ) A .1-B .2-C .1D .210、若ααααsin 1sin 1sin 1sin 1+---+ = -2 tan α,则角α的取值范围是 .11、已知21cos sin 1-=+x x ,则1sin cos -x x 的值是A . 21B . 21- C .2 D .-212、若θθcos ,sin 是方程0242=++m mx x 的两根,则m 的值为 A .51+B .51-C .51±D .51--13、若3tan =α,则αααα3333cos 2sin cos 2sin -+的值为________________. 14、已知2cos sin cos sin =-+αααα,则ααcos sin 的值为 .15、已知524cos ,53sin +-=+-=m mm m θθ,则m=_________;=αtan . 16、若θ为二象限角,且2cos 2sin212sin2cosθθθθ-=-,那么2θ是A .第一象限角B .第二象限角C .第三象限角D .第四象限角【举一反三、能力拓展】17、求证:1tan 1tan cos sin cos sin 2122-+=-+αααααα.练习、已知51cos sin =+ββ,且πβ<<0. (1)求ββcos sin 、ββcos sin -的值; (2)求βsin 、βcos 、βtan 的值. (3)求sin 3β – cos 3β的值 (4)33sin cos +ββ(5)44sin cos +ββ ,44sin cos -ββ (6)66sin cos +ββ ,66sin cos -ββ19、化简:tan α(cos α-sin α)+ααααcos 1)tan (sin sin ++【名师小结、感悟反思】1、 由已知一个三角函数值,根据基本关系式求其它三角函数值,首先要注意判定角所在的象限,进而判断所求的三角函数值的正负,以免出错。

同角三角函数基本关系式与诱导公式知识点讲解+例题讲解(含解析)

同角三角函数基本关系式与诱导公式知识点讲解+例题讲解(含解析)

同角三角函数基本关系式与诱导公式一、知识梳理1.同角三角函数的基本关系(1)平方关系:sin2α+cos2α=1.(2)商数关系:sin αcos α=tanα.2.三角函数的诱导公式总结:1.同角三角函数关系式的常用变形(sin α±cos α)2=1±2sin αcos α;sin α=tan α·cos α.2.诱导公式的记忆口诀“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化.3.在利用同角三角函数的平方关系时,若开方,要特别注意判断符号.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”)(1)sin(π+α)=-sin α成立的条件是α为锐角.()(2)六组诱导公式中的角α可以是任意角.()(3)若α∈R,则tan α=sin αcos α恒成立.()(4)若sin(k π-α)=13(k ∈Z ),则sin α=13.( ) 解析 (1)中对于任意α∈R ,恒有sin(π+α)=-sin α. (3)中当α的终边落在y 轴,商数关系不成立. (4)当k 为奇数时,sin α=13, 当k 为偶数时,sin α=-13. 答案 (1)× (2)√ (3)× (4)×2.已知tan α=-3,则cos 2α-sin 2α=( ) A.45B.-45C.35D.-35解析 由同角三角函数关系得cos 2α-sin 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α=1-91+9=-45.答案 B3.已知α为锐角,且sin α=45,则cos (π+α)=( ) A.-35B.35C.-45D.45解析 因为α为锐角,所以cos α=1-sin 2α=35, 故cos(π+α)=-cos α=-35. 答案 A4.(2017·全国Ⅲ卷)已知sin α-cos α=43,则sin 2α=( )A.-79B.-29C.29D.79 解析 ∵(sin α-cos α)2=1-2sin αcos α=1-sin 2α, ∴sin 2α=1-⎝ ⎛⎭⎪⎫432=-79.答案 A5.(2019·济南质检)若sin α=-513,且α为第四象限角,则tan α=( ) A.125B.-125C.512D.-512解析 ∵sin α=-513,α为第四象限角,∴cos α=1-sin 2α=1213,因此tan α=sin αcos α=-512. 答案 D6.(2018·上海嘉定区月考)化简:sin 2(α+π)·cos(π+α)·cos(-α-2π)tan(π+α)·sin 3⎝ ⎛⎭⎪⎫π2+α·sin(-α-2π)=________.解析 原式=sin 2α·(-cos α)·cos αtan α·cos 3α·(-sin α)=sin 2αcos 2αsin 2αcos 2α=1.答案 1考点一 同角三角函数基本关系式 角度1 公式的直接运用【例1-1】 (2018·延安模拟)已知α∈⎝⎛⎭⎪⎫-π,-π4,且sin α=-13,则cos α=( ) A.-223 B.223 C.±223 D.23解析 因为α∈⎝ ⎛⎭⎪⎫-π,-π4,且sin α=-13>-22=sin ⎝ ⎛⎭⎪⎫-π4,所以α为第三象限角,所以cos α=-1-sin 2α=-1-⎝ ⎛⎭⎪⎫-132=-223. 答案 A角度2 关于sin α,cos α的齐次式问题 【例1-2】 已知tan αtan α-1=-1,求下列各式的值.(1)sin α-3cos αsin α+cos α;(2)sin 2α+sin αcos α+2.解 由已知得tan α=12. (1)sin α-3cos αsin α+cos α=tan α-3tan α+1=-53. (2)sin 2α+sin αcos α+2=sin 2α+sin αcos αsin 2α+cos 2α+2=tan 2α+tan αtan 2α+1+2=⎝ ⎛⎭⎪⎫122+12⎝ ⎛⎭⎪⎫122+1+2=135.角度3 “sin α±cos α,sin αcos α”之间的关系 【例1-3】 已知x ∈(-π,0),sin x +cos x =15. (1)求sin x -cos x 的值; (2)求sin 2x +2sin 2x 1-tan x 的值.解 (1)由sin x +cos x =15,平方得sin 2x +2sin x cos x +cos 2x =125, 整理得2sin x cos x =-2425.所以(sin x -cos x )2=1-2sin x cos x =4925. 由x ∈(-π,0),知sin x <0,又sin x +cos x >0, 所以cos x >0,则sin x -cos x <0, 故sin x -cos x =-75.(2)sin 2x +2sin 2x 1-tan x=2sin x (cos x +sin x )1-sin x cos x=2sin x cos x (cos x +sin x )cos x -sin x=-2425×1575=-24175.【训练1】 (1)(2019·烟台测试)已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为( )A.-32B.32C.-34D.34(2)已知sin α+3cos α3cos α-sin α=5,则cos 2α+12sin 2α的值是( )A.35B.-35C.-3D.3解析 (1)∵5π4<α<3π2,∴cos α<0,sin α<0且cos α>sin α, ∴cos α-sin α>0.又(cos α-sin α)2=1-2sin αcos α=1-2×18=34, ∴cos α-sin α=32.(2)由sin α+3cos α3cos α-sin α=5得tan α+33-tan α=5,可得tan α=2,则cos 2α+12sin 2α=cos 2α+sin αcos α=cos 2α+sin αcos αcos 2α+sin 2α=1+tan α1+tan 2α=35.答案 (1)B (2)A考点二 诱导公式的应用【例2】 (1)设f (α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+cos ⎝ ⎛⎭⎪⎫3π2+α-sin 2⎝ ⎛⎭⎪⎫π2+α(1+2sin α≠0),则f ⎝ ⎛⎭⎪⎫76π=________. (2)已知cos ⎝ ⎛⎭⎪⎫π6-θ=a ,则cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ的值是________. 解析 (1)∵f (α)=(-2sin α)(-cos α)+cos α1+sin 2α+sin α-cos 2α=2sin αcos α+cos α2sin 2α+sin α=cos α(1+2sin α)sin α(1+2sin α)=1tan α,∴f ⎝ ⎛⎭⎪⎫76π=1tan 76π=1tan π6= 3. (2)∵cos ⎝ ⎛⎭⎪⎫5π6+θ=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-θ=-cos ⎝ ⎛⎭⎪⎫π6-θ=-a ,sin ⎝ ⎛⎭⎪⎫2π3-θ=sin ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫π6-θ=a , ∴cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ=-a +a =0.答案 (1)3 (2)0【训练2】 (1)(2019·衡水中学调研)若cos ⎝ ⎛⎭⎪⎫π2-α=23,则cos(π-2α)=( )A.29B.59C.-29D.-59 (2)(2017·北京卷)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则sin β=________. 解析 (1)由cos ⎝ ⎛⎭⎪⎫π2-α=23,得sin α=23.∴cos(π-2α)=-cos 2α=-(1-2sin 2α)=2sin 2α-1=2×29-1=-59. (2)α与β的终边关于y 轴对称,则α+β=π+2k π,k ∈Z ,∴β=π-α+2k π,k ∈Z .∴sin β=sin(π-α+2k π)=sin α=13. 答案 (1)D (2)13考点三 同角三角函数基本关系式与诱导公式的综合应用【例3】 (1)(2019·菏泽联考)已知α∈⎝ ⎛⎭⎪⎫3π2,2π,sin ⎝ ⎛⎭⎪⎫π2+α=13,则tan(π+2α)=( ) A.427B.±225C.±427D.225(2)(2019·福建四地六校联考)已知α为锐角,且2tan(π-α)-3cos ⎝ ⎛⎭⎪⎫π2+β+5=0,tan(π+α)+6sin(π+β)-1=0,则sin α的值是( ) A.355B.377C.31010D.13解析 (1)∵α∈⎝ ⎛⎭⎪⎫3π2,2π,sin ⎝ ⎛⎭⎪⎫π2+α=13,∴cos α=13,sin α=-223,tan α=sin αcos α=-2 2.∴tan(π+2α)=tan 2α=2tan α1-tan 2α=-421-(-22)2=427. (2)由已知得⎩⎨⎧3sin β-2tan α+5=0,tan α-6sin β-1=0.消去sin β,得tan α=3,∴sin α=3cos α,代入sin 2α+cos 2α=1,化简得sin 2α=910,则sin α=31010(α为锐角). 答案 (1)A (2)C(3)已知-π<x <0,sin(π+x )-cos x =-15. ①求sin x -cos x 的值; ②求sin 2x +2sin 2 x 1-tan x的值.解 ①由已知,得sin x +cos x =15, 两边平方得sin 2x +2sin x cos x +cos 2x =125,整理得2sin x cos x =-2425.∵(sin x -cos x )2=1-2sin x cos x =4925,由-π<x <0知,sin x <0, 又sin x cos x =-1225<0, ∴cos x >0,∴sin x -cos x <0, 故sin x -cos x =-75.②sin 2x +2sin 2x 1-tan x=2sin x (cos x +sin x )1-sin x cos x=2sin x cos x (cos x +sin x )cos x -sin x=-2425×1575=-24175.【训练3】 (1)(2019·湖北七州市联考)已知α∈(0,π),且cos α=-513,则sin ⎝ ⎛⎭⎪⎫π2-α·tan α=( ) A.-1213 B.-513C.1213D.513(2)已知θ是第四象限角,且sin ⎝ ⎛⎭⎪⎫θ+π4=35,则tan ⎝ ⎛⎭⎪⎫θ-π4=________.解析 (1)∵α∈(0,π),且cos α=-513,∴sin α=1213,因此sin ⎝ ⎛⎭⎪⎫π2-α·tan α=cos α·sin αcos α=sin α=1213.(2)由题意,得cos ⎝ ⎛⎭⎪⎫θ+π4=45,∴tan ⎝ ⎛⎭⎪⎫θ+π4=34.∴tan ⎝ ⎛⎭⎪⎫θ-π4=tan ⎝ ⎛⎭⎪⎫θ+π4-π2=-1tan ⎝ ⎛⎭⎪⎫θ+π4=-43. 答案 (1)C (2)-43三、课后练习1.若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为( ) A.1+ 5 B.1-5 C.1± 5D.-1-5解析 由题意知sin θ+cos θ=-m 2,sin θ·cos θ=m4.又()sin θ+cos θ2=1+2sin θcos θ,∴m 24=1+m2,解得m =1± 5.又Δ=4m 2-16m ≥0,∴m ≤0或m ≥4,∴m =1- 5. 答案 B2.已知sin ⎝ ⎛⎭⎪⎫-π2-αcos ⎝ ⎛⎭⎪⎫-7π2+α=1225,且0<α<π4,则sin α=________,cos α=________.解析 sin ⎝ ⎛⎭⎪⎫-π2-αcos ⎝ ⎛⎭⎪⎫-7π2+α=-cos α·(-sin α)=sin αcos α=1225.∵0<α<π4,∴0<sin α<cos α.又∵sin 2α+cos 2α=1,∴sin α=35,cos α=45. 答案 35 453.已知k ∈Z ,化简:sin (k π-α)cos[(k -1)π-α]sin[(k +1)π+α]cos (k π+α)=________.解析 当k =2n (n ∈Z )时,原式=sin (2n π-α)cos[(2n -1)π-α]sin[(2n +1)π+α]cos (2n π+α)=sin (-α)·cos (-π-α)sin (π+α)·cos α=-sin α(-cos α)-sin α·cos α=-1;当k =2n +1(n ∈Z )时,原式=sin[(2n +1)π-α]·cos[(2n +1-1)π-α]sin[(2n +1+1)π+α]·cos[(2n +1)π+α]=sin (π-α)·cos αsin α·cos (π+α)=sin α·cos αsin α(-cos α)=-1. 综上,原式=-1. 答案 -14.是否存在α∈⎝ ⎛⎭⎪⎫-π2,π2,β∈(0,π),使等式sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫π2-β,3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由. 解 假设存在角α,β满足条件,则由已知条件可得⎩⎨⎧sin α=2sin β, ①3cos α=2cos β,②由①2+②2,得sin 2α+3cos 2α=2. ∴sin 2α=12,∴sin α=±22.∵α∈⎝ ⎛⎭⎪⎫-π2,π2,∴α=±π4. 当α=π4时,由②式知cos β=32,又β∈(0,π),∴β=π6,此时①式成立; 当α=-π4时,由②式知cos β=32,又β∈(0,π),∴β=π6,此时①式不成立,故舍去.∴存在α=π4,β=π6满足条件.5.已知sin α=23,α∈⎝ ⎛⎭⎪⎫0,π2,则cos(π-α)=________,cos 2α=________.解析 cos(π-α)=-cos α=-1-sin 2α=-73,cos 2α=cos 2α-sin 2α=⎝ ⎛⎭⎪⎫-732-⎝ ⎛⎭⎪⎫232=59.答案 -73 59。

一年级【数学】1.2.2 同角三角函数的基本关系(人教A版必修4)2---第八版

一年级【数学】1.2.2 同角三角函数的基本关系(人教A版必修4)2---第八版
商数关系: sina = tana, cosa
倒数关系: tana cota =1,
cosa seca =1, sina csca =1,
学习数学公 式需要做好 哪几件事?
公式成立的条件
平方关系: sin2 a cos2 a =1, a R
商数关系: sina = tana, a k (k Z)
公式运用之一
已知一个角的一个三角函数值,求这个 角的其它几个三角函数值。
倒数
csca 关系 sina
cosa
倒数 关系
seca
tana
倒数关系
cota
公式运用之一
已知一个角的一个三角函数值,求这个 角的其它几个三角函数值。
sina
cosa
tana
公式运用之一
已知一个角的一个三角函数值,求这个 角的其它几个三角函数值。
上正下负
cosa、seca
右正左负
tana、cota
奇正偶负
还需重新证明!
已知:sina = 0.8,填空:cosa = _±__0_._6_
在初中,我们学过以下三个三角公式:
在初中, 公式中的角 为锐角!
sin2 a cos2 a =1
sina = tana cosa
对任意角 这些公式 是否成立?
tana = 1 m2
m
找不 出打 其草 中稿 的, 错你 误能 ?否
例题(二)
例3 已知:tana ≠0,用 tana 表示 sina.
解:sina = sina =
sin a
1
sin2 a cos2 a
tan a
=
正难则反! tan2 a 1
错在哪里?
tana = tan2 a 1

21-22版:1.2.2 同角三角函数的基本关系(步步高)

21-22版:1.2.2 同角三角函数的基本关系(步步高)

1.2.2 同角三角函数的基本关系 学习目标 1.能通过三角函数的定义推导出同角三角函数的基本关系式.2.理解同角三角函数的基本关系式.3.能运用同角三角函数的基本关系式进行三角函数式的化简、求值和证明.知识点 同角三角函数的基本关系式1.同角三角函数的基本关系式(1)平方关系:sin 2α+cos 2α=1.(2)商数关系:tan α=sin αcos α ⎝⎛⎭⎫α≠k π+π2,k ∈Z . 2.同角三角函数基本关系式的变形(1)sin 2α+cos 2α=1的变形公式sin 2α=1-cos 2α;cos 2α=1-sin 2α.(2)tan α=sin αcos α⎝⎛⎭⎫α≠k π+π2,k ∈Z 的变形公式 sin α=cos αtan α;cos α=sin αtan α.1.sin 2α+cos 2β=1.( × )提示 在同角三角函数的基本关系式中要注意是“同角”才成立,即sin 2α+cos 2α=1.2.sin 2θ2+cos 2θ2=1.( √ ) 提示 在sin 2α+cos 2α=1中,令α=θ2可得sin 2θ2+cos 2θ2=1. 3.对任意的角α,都有tan α=sin αcos α成立.( × ) 提示 当α=π2+k π,k ∈Z 时就不成立. 4.若cos α=0,则sin α=1.( × )题型一 利用同角三角函数的关系式求值命题角度1 已知角α的某一三角函数值及α所在象限,求角α的其余三角函数值例1 (1)若sin α=-513,且α为第四象限角,则tan α的值为( )A.125 B .-125 C.512 D .-512考点 运用基本关系式求三角函数值题点 运用基本关系式求三角函数值答案 D解析 ∵sin α=-513,且α为第四象限角,∴cos α=1213, ∴tan α=sin αcos α=-512,故选D. (2)已知sin α+cos α=713,α∈(0,π),则tan α= . 考点 运用基本关系式求三角函数值题点 运用基本关系式求三角函数值答案 -125解析 ∵sin α+cos α=713, ∴(sin α+cos α)2=49169, 即2sin αcos α=-120169<0, 又α∈(0,π),则sin α>0,cos α<0,∴α∈⎝⎛⎭⎫π2,π,故sin α-cos α=(sin α+cos α)2-4sin αcos α=1713, 可得sin α=1213,cos α=-513,tan α=-125. 反思感悟 (1)同角三角函数的关系揭示了同角三角函数之间的基本关系,其常用的用途是“知一求二”,即在sin α,cos α,tan α三个值之间,知道其中一个可以求其余两个.解题时要注意角α的象限,从而判断三角函数值的正负.(2)已知三角函数值之间的关系式求其它三角函数值的问题,我们可利用平方关系或商数关系求解,其关键在于运用方程的思想及(sin α±cos α)2=1±2sin αcos α的等价转化,找到解决问题的突破口.跟踪训练1 已知tan α=43,且α是第三象限角,求sin α,cos α的值. 考点 运用基本关系式求三角函数值题点 运用基本关系式求三角函数值解 由tan α=sin αcos α=43,得sin α=43cos α.①又sin 2α+cos 2α=1,②由①②得169cos 2α+cos 2α=1,即cos 2α=925. 又α是第三象限角,∴cos α=-35,sin α=43cos α=-45. 命题角度2 已知角α的某一三角函数值,未给出α所在象限,求角α的其余三角函数值例2 已知cos α=-817,求sin α,tan α的值. 考点 运用基本关系式求三角函数值题点 运用基本关系式求三角函数值解 ∵cos α=-817<0,且cos α≠-1, ∴α是第二或第三象限角.(1)当α是第二象限角时,则sin α=1-cos 2α=1-⎝⎛⎭⎫-8172=1517, tan α=sin αcos α=1517-817=-158. (2)当α是第三象限角时,则sin α=-1-cos 2α=-1517,tan α=158. 反思感悟 利用同角三角函数关系式求值时,若没有给出角α是第几象限角,则应分类讨论,先由已知三角函数的值推出α的终边可能在的象限,再分类求解.跟踪训练2 已知cos α=-45,求sin α和tan α. 考点 运用基本关系式求三角函数值题点 运用基本关系式求三角函数值解 sin 2α=1-cos 2α=1-⎝⎛⎭⎫-452=925, 因为cos α=-45<0, 所以α是第二或第三象限角,当α是第二象限角时,sin α=35, tan α=sin αcos α=-34;当α是第三象限角时,sin α=-35, tan α=sin αcos α=34. 题型二 齐次式求值问题例3 已知tan α=2,求下列代数式的值.(1)4sin α-2cos α5cos α+3sin α;(2)14sin 2α+13sin αcos α+12cos 2α. 考点 运用基本关系式化简和证明题点 运用基本关系式化简、求值解 (1)原式=4tan α-25+3tan α=611. (2)原式=14sin 2α+13sin αcos α+12cos 2αsin 2α+cos 2α=14tan 2α+13tan α+12tan 2α+1=14×4+13×2+125=1330. 反思感悟 (1)关于sin α,cos α的齐次式,可以通过分子、分母同除以cos α或cos 2α转化为关于tan α的式子后再求值.(2)假如代数式中不含分母,可以视分母为1,灵活地进行“1”的代换,由1=sin 2α+cos 2α代换后,再同除以cos 2α,构造出关于tan α的代数式.跟踪训练3 已知sin α+cos αsin α-cos α=2,计算下列各式的值. (1)3sin α-cos α2sin α+3cos α; (2)sin 2α-2sin αcos α+1.考点 运用基本关系式化简和证明题点 运用基本关系式化简、求三角函数值解 由sin α+cos αsin α-cos α=2,化简,得sin α=3cos α, 所以tan α=3.(1)原式=3×3cos α-cos α2×3cos α+3cos α=8cos α9cos α=89. (2)原式=sin 2α-2sin αcos αsin 2α+cos 2α+1=tan 2α-2tan αtan 2α+1+1=32-2×332+1+1=1310.三角函数式的化简与证明典例 (1)化简:sin 2αtan α+cos 2αtan α+2sin αcos α. 考点 运用基本关系式化简和证明题点 运用基本关系式化简解 原式=sin 2α·sin αcos α+cos 2α·cos αsin α+2sin αcos α =sin 4α+cos 4α+2sin 2αcos 2αsin αcos α=(sin 2α+cos 2α)2sin αcos α=1sin αcos α. (2)求证:tan αsin αtan α-sin α=tan α+sin αtan αsin α. 考点 运用基本关系式化简和证明题点 运用基本关系式证明证明 ∵右边=tan 2α-sin 2α(tan α-sin α)tan αsin α=tan 2α-tan 2αcos 2α(tan α-sin α)tan αsin α=tan 2α(1-cos 2α)(tan α-sin α)tan αsin α=tan 2αsin 2α(tan α-sin α)tan αsin α=tan αsin αtan α-sin α=左边, ∴原等式成立.[素养评析] (1)三角函数式的化简技巧①化切为弦,即把正切函数都化为正弦、余弦函数,从而减少函数名称,达到化繁为简的目的.②对于含有根号的,常把根号里面的部分化成完全平方式,然后去根号达到化简的目的. ③对于化简含高次的三角函数式,往往借助于因式分解,或构造sin 2α+cos 2α=1,以降低函数次数,达到化简的目的.(2)证明三角恒等式的过程,实质上是化异为同的过程,证明恒等式常用以下方法:①证明一边等于另一边,一般是由繁到简.②证明左、右两边等于同一个式子(左、右归一).③比较法:即证左边-右边=0或左边右边=1(右边≠0). ④证明与已知等式等价的另一个式子成立,从而推出原式成立.(3)掌握逻辑推理的基本形式,学会有逻辑地思考问题;形成重论据、有条理、合乎逻辑的思维品质,提升逻辑推理的数学核心素养.1.若sin α=45,且α是第二象限角,则tan α的值为( ) A .-43 B.34 C .±34 D .±43考点 运用基本关系式求三角函数值题点 运用基本关系式求三角函数值答案 A解析 ∵α为第二象限角,sin α=45, ∴cos α=-35,tan α=-43. 2.已知sin α=55,则sin 4α-cos 4α的值为( ) A .-35 B .-15 C.15 D.35考点 运用基本关系式求三角函数值题点 运用基本关系式化简、求三角函数值答案 A解析 sin 4α-cos 4α=(sin 2α+cos 2α)(sin 2α-cos 2α)=sin 2α-(1-sin 2α)=2sin 2α-1 =2×⎝⎛⎭⎫552-1=-35. 3.若α为第三象限角,则cos α1-sin 2α+2sin α1-cos 2α的值为( ) A .3 B .-3 C .1 D .-1考点 运用基本关系式化简和证明题点 运用基本关系式化简答案 B解析 ∵α为第三象限角,∴cos α<0,sin α<0,∴原式=-cos αcos α-2sin αsin α=-3. 4.已知tan x =-12,则sin 2x +3sin x cos x -1的值为( ) A.13B .2C .-2或2D .-2考点 运用基本关系式求三角函数值题点 运用基本关系式求三角函数值答案 D5.已知:tan αtan α-1=-1,则sin α-3cos αsin α+cos α= . 答案 -53解析 由已知得:tan α=12, ∴sin α-3cos αsin α+cos α=tan α-3tan α+1=-53.1.利用同角三角函数的基本关系式,可以由一个角的一个三角函数值,求出这个角的其他三角函数值.2.利用同角三角函数的关系式可以进行三角函数式的化简,结果要求:(1)项数尽量少;(2)次数尽量低;(3)分母、根式中尽量不含三角函数;(4)能求值的尽可能求值.3.在三角函数的变换求值中,已知sin α+cos α,sin αcos α,sin α-cos α中的一个,可以利用方程思想,求出另外两个的值.4.在进行三角函数式的化简或求值时,细心观察题目的特征,灵活、恰当地选用公式,统一角、统一函数、降低次数是三角函数关系式变形的出发点.利用同角三角函数的基本关系主要是统一函数,要掌握“切化弦”和“弦化切”的方法.5.在化简或恒等式证明时,注意方法的灵活运用,常用技巧:(1)“1”的代换;(2)减少三角函数名的个数(化切为弦、化弦为切等);(3)多项式运算技巧的应用(如因式分解、整体思想等);(4)对条件或结论的重新整理、变形,以便于应用同角三角函数关系来求解.。

§1.2.2 同角三角函数的基本关系(1)

§1.2.2 同角三角函数的基本关系(1)

汪清四中高一数学◆必修4◆导学案2012年月日班级:姓名:编写:王伟红§1.2.2 同角三角函数的基本关系(1)导学目标1. 掌握同角三角函数的三个基本关系式;2. 掌握已知一个角的某一个三角函数值,求这个角的其他三角函数值.学习过程一、课前准备(预习教材P18~ P20,找出疑惑之处)复习1:任意角的三个三角函数是怎样定义的?sinα=;cosα=;tanα=。

二、新课导学※学习探究探究任务一:同角三角函数的基本关系问题:从三个三角函数的定义,你能发现它们间有什么关系?新知:平方关系;商数关系.反思:①上述两个关系式,在一些什么情况下成立?②“sin2α+cos2β=1”对吗?③同角三角函数关系式可以解决哪些问题?※典型例题例1已知cosα=-35,并且它是第三象限的角,求sinα,tanα的值.变式:已知cosα=-35,求sinα,tanα的值.小结:①定义法;基本关系式法. 如果是填空、选择,还可以走捷径求解.②注意符号(象限确定)及同角三基本式的运用(分析联系);知一求二. 例2 化简21tan1sinαα-,且α在第二象限.※动手试试练1. (1)已知sinα=513,求cosα,tanα的值.(2)已知tanα=3,求sin α,cosα.练2. 化简:(1)cosθtanθ;(2)21cos1100-︒;(3)12sin40cos40- .学习评价1. 化简21sin40- 为().A. cos40︒B. sin40︒C. cos40-︒ D sin40-︒2. 若4cos5α=-,且α在第三象限,则tanα=().A. 34B. 34- C.43D. 43-3. 若tanα=3,且322παπ<<,则sinα=().A. 12- B.32- C. 12B. 324. 化简:tanαcosα=.5. 已知sin2cosαα=,则1tanα=.学始于疑:请将预习中自己解决不了的问题记下来,供上课解决。

1.2.2 同角三角函数的基本关系(一)

1.2.2 同角三角函数的基本关系(一)
鸡西市第十九中学高一数学组
鸡西市第十九中学学案
2014 年( )月( )日 班级 姓名
1.2.2 学习 目标 重点 难点
同角三角函数的基本关系(一)
1.能通过三角函数的定义推导出同角三角函数的基本关系式. 2.能运用同角三角函数的基本关系式进行三角函数式的求值和计算. 要注意公式 sin2α+cos2α=1 及 tan α= sin α 的直接使用, 公式逆用, 公式变形用. cos α
类型 2:如果已知三角函数值,但没有指定角在哪个象限,那么由已知三角函数值的正 负确定角可能在的象限,然后求解,这种情况一般有两组解. 例如:已知 tan θ=- 3,求 sin θ,cos θ.
类型 3:如果所给的三角函数值是由字母给出的,且没有确定角在哪个象限,|<1,求 sin α,tan α.
【已知一个角的三角函数值求其余两个三角函数值】 已知某角的一个三角函数值,再利用 sin2α+cos2α=1 求它的其余三角函数值时,要注意 角所在的象限,恰当选取开方后根号前面的正负号,一般有以下三种情况: 类型 1:如果已知三角函数值,且角的象限已知,那么只有一组解. 3 例如:已知 sin α= ,且 α 是第二象限角,则 cos α=_____,tan α=_____. 5
【任意角三角函数的定义】 如图所示,以任意角 α 的顶点 O 为坐标原 点,以角 α 的始边的方向作为 x 轴的正方 向,建立直角坐标系.设 P(x,y)是任意角 α 终边上不同于坐标原点的任意一点. 其中,r=OP= x2+y2 >0.
则 sin α=_
__,cos α=__
_,tan α=_
__.
例 2 已知 tan α=2,求下列代数式的值. 4sin α-2cos α 1 1 1 (1) ; (2) sin2α+ sin αcos α+ cos2α. 4 3 2 5cos α+3sin α

高中数学 人教A版必修4 第1章 1.2.2同角三角函数的基本关系式(二)

高中数学 人教A版必修4    第1章 1.2.2同角三角函数的基本关系式(二)
1+sin α cos α ∴ = cos α . 1-sin α
分析三 因为左边分母为 1-sin α,故可将右式分子、分母同 乘 1-sin α.
研一研·问题探究、课堂更高效
1+sin α1-sin α 方法三 右边= cos α1-sin α 1-sin2α cos2α cos α = = = =左边, cos α1-sin α cos α1-sin α 1-sin α
若设 sin α-cos α=t,则 sin α-cos α=
2
.
研一研·问题探究、课堂更高效
1.2.2(二)
探究点一
三角函数式的化简
三角函数式的化简是将三角函数式尽量化为最简单的形式,其
本 课 时 栏 目 开 关
基本要求:尽量减少角的种数,尽量减少三角函数的种数,尽 量化为同角且同名的三角函数等.三角函数式的化简实质上是 一种不指定答案的恒等变形,体现了由繁到简的最基本的数学 解题原则.它不仅要求熟悉和灵活运用所学的三角公式,还需 要熟悉和灵活运用这些公式的等价形式.同时,这类问题还具 有较强的综合性,对其他非三角知识的运用也具有较高的要 求,因此在平常学习时要注意经验的积累. 化简三角函数式时,在题设的要求下,应合理利用有关公式, 常见的化简方法:异次化同次、高次化低次、切化弦、特殊角 的三角函数与特殊值互化等.
研一研·问题探究、课堂更高效
1.2.2(二)
请按照上述标准化简下列三角函数式: 已知 α 是第三象限角,化简:
本 答 课 时 栏 目 = 开 关
1+sin α - 1-sin α
1-sin α . 1+sin α
原式=
1+sin α2 - 1-sin α1+sin α 1-sin α2 cos2α

21-22版:1.2.2 同角三角函数的基本关系(创新设计)

21-22版:1.2.2 同角三角函数的基本关系(创新设计)
1.2.2 同角三角函数的基本关系
课前预习
课堂互动
课堂反馈
学习目标 1.理解并掌握同角三角函数的基本关系(重点).2.会 用同角三角函数的基本关系进行三角函数式的求值、化简和证 明(难点).
课前预习
课堂互动
课堂反馈
知识点 同角三角函数的基本关系
1.同角三角函数的基本关系式 (1)平方关系:__s_in_2_α_+__c_o_s_2α__=__1___. (2)商数关系:_t_a_n_α_=__cs_oi_ns_αα___(α_≠__k_π_+__π2_,__k_∈__Z_)________.
答案 B
课前预习
课堂互动
课堂反馈
2.已知 sin α=13,tan α=- 42,则 cos α=( )
A.-2
2 3
B.2 3 2
C.-13
D.
2 4
解析 由 sin α=13>0,tan α=- 42<0,可知 α 是第二象限角, ∴cos α=- 1-sin2α=-232.
答案 A
课前预习
课堂互动
=tan
tan2αsin2α α-sin αtan
αsin
α=tatnanαα-sisninαα=左边,
∴原等式成立.
课前预习
课堂互动
课堂反馈
课堂达标
1.若 cos α=-45,且 α 是第二象限角,则 tan α 的值等于( )
A.34
B.-34
C.43
D.-43
解析 由题意可得 sin α= 1-cos2α=35, ∴tan α=csoins αα=-34.
课堂反馈
3.化简1+cocsoθs θ-1-cocsoθs θ的结果是________.

三角函数(解析版)-2023年新高考数学真题题源解密

三角函数(解析版)-2023年新高考数学真题题源解密

专题三角函数目录2023真题展现考向一 三角函数的图象与性质考向二 三角恒等变换真题考查解读近年真题对比考向一 三角函数的图象与性质考向二 三角恒等变换考向三 同角三角函数间的基本关系命题规律解密名校模拟探源易错易混速记/二级结论速记2023年真题展现考向一三角函数的图象与性质1(2023•新高考Ⅱ•第15题)已知函数f (x )=sin (ωx +φ),如图,A ,B 是直线y =12与曲线y =f (x )的两个交点,若|AB |=π6,则f (π)= .【答案】-32解:由题意:设A x 1,12 ,B x 2,12 ,则x 2-x 1=π6,由y =A sin (ωx +φ)的图象可知:ωx 2+φ-(ωx 1+φ)=5π6-π6=2π3,即ω(x 2-x 1)=2π3,∴ω=4,又f 2π3 =sin 8π3+φ =0,∴8π3+φ=k π,k ∈Z ,即φ=-8π3+k π,k ∈Z ,观察图象,可知当k =2时,φ=-2π3满足条件,∴f (π)=sin 4π-2π3 =-32.故答案为:-32.2(2023•新高考Ⅰ•第15题)已知函数f(x)=cosωx-1(ω>0)在区间[0,2π]有且仅有3个零点,则ω的取值范围是.【答案】[2,3)【解答】解:x∈[0,2π],函数的周期为2πω(ω>0),cosωx-1=0,可得cosωx=1,函数f(x)=cosωx-1(ω>0)在区间[0,2π]有且仅有3个零点,可得2⋅2πω≤2π<3⋅2πω,所以2≤ω<3.考向二三角恒等变换3(2023•新高考Ⅱ•第7题)已知α为锐角,cosα=1+54,则sinα2=()A.3-58B.-1+58C.3-54D.-1+54【答案】D解:cosα=1+5 4,则cosα=1-2sin2α2,故2sin2α2=1-cosα=3-54,即sin2α2=3-58=(5)2+12-2516=(5-1)216,∵α为锐角,∴sinα2>0,∴sinα2=-1+54.4(2023•新高考Ⅰ•第8题)已知sin(α-β)=13,cosαsinβ=16,则cos(2α+2β)=()A.79B.19C.-19D.-79【答案】B解:因为sin(α-β)=sinαcosβ-sinβcosα=13,cosαsinβ=16,所以sinαcosβ=1 2,所以sin(α+β)=sinαcosβ+sinβcosα=12+16=23,则cos(2α+2β)=1-2sin2(α+β)=1-2×49=19.真题考查解读【命题意图】考查同角三角函数的基本关系式、诱导公式、和角差角公式、三角函数的图象与性质、y=A sin(wx+φ)的图象与性质.应用三角公式进行化简、求值和恒等变形及恒等证明.【考查要点】三角函数高考必考.常考查和角差角公式、恒等变形化简求值、诱导公式、同角三角函数公式,辅助角公式等.常考查y=A sin(wx+φ)的图象与性质,涉及到增减性、周期性、对称性、图象平移、零点等.【得分要点】1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1.(2)商数关系:sin αcos α=tan α.2.诱导公式公式一:sin (α+2k π)=sin α,cos (α+2k π)=cos _α,其中k ∈Z .公式二:sin (π+α)=-sin _α,cos (π+α)=-cos _α,tan (π+α)=tan α.公式三:sin (-α)=-sin _α,cos (-α)=cos _α.公式四:sin (π-α)=sin α,cos (π-α)=-cos _α.公式五:sin π2-α =cos α,cos π2-α =sin α.公式六:sin π2+α =cos α,cos π2+α =-sin α.3.两角和与差的正弦、余弦、正切公式(1)C (α-β):cos (α-β)=cos αcos β+sin αsin β.(2)C (α+β):cos (α+β)=cos αcos β-sin αsin β.(3)S (α+β):sin (α+β)=sin αcos β+cos αsin β.(4)S (α-β):sin (α-β)=sin αcos β-cos αsin β.(5)T (α+β):tan (α+β)=tan α+tan β1-tan αtan β.(6)T (α-β):tan (α-β)=tan α-tan β1+tan αtan β.4.二倍角的正弦、余弦、正切公式(1)S 2α:sin 2α=2sin αcos α.(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.(3)T 2α:tan 2α=2tan α1-tan 2α.5.正弦函数、余弦函数、正切函数的图象和性质函数y =sin xy =cos xy =tan x图象定义域R R k ∈Z 值域[-1,1][-1,1]R单调性递增区间:2k π-π2,2k π+π2递增区间:(2k π-π,2k π)(k ∈Z );递增区间:k π-π2,k π+π2(k∈Z);递减区间:2kπ+π2,2kπ+3π2(k∈Z)递减区间:(2kπ,2kπ+π)(k∈Z)(k∈Z)最 值x=2kπ+π2(k∈Z)时,y max=1;x=2kπ-π2(k∈Z)时,y min=-1x=2kπ(k∈Z)时,y max=1;x=2kπ+π(k∈Z)时,y min=-1无最值奇偶性奇函数偶函数奇函数对称性对称中心:(kπ,0)(k∈Z)对称轴:x=kπ+π2,k∈Z对称中心:kπ+π2,0(k∈Z)对称轴:x=kπ,k∈Z对称中心:kπ2,0(k∈Z )无对称轴周期2π2ππ6.函数y=A sin(ωx+φ)的图象变换y=sin x的图象变换得到y=A sin(ωx+φ)(A>0,ω>0)的图象的步骤7.由y=A sin(ωx+φ)的部分图象确定其解析式在由图象求三角函数解析式时,若最大值为M,最小值为m,则A=M-m2,k=M+m2,ω由周期T确定,即由2πω=T求出,φ由特殊点确定.近年真题对比考向一三角函数的图象与性质8(2022•新高考Ⅰ)记函数f(x)=sin(ωx+π4)+b(ω>0)的最小正周期为T.若2π3<T<π,且y=f(x)的图像关于点(3π2,2)中心对称,则f(π2)=()A.1B.32C.52D.3【解答】解:函数f(x)=sin(ωx+π4)+b(ω>0)的最小正周期为T,则T =2πω,由2π3<T <π,得2π3<2πω<π,∴2<ω<3,∵y =f (x )的图像关于点(3π2,2)中心对称,∴b =2,且sin (3π2ω+π4)=0,则3π2ω+π4=k π,k ∈Z .∴ω=23k -14 ,k ∈Z ,取k =4,可得ω=52.∴f (x )=sin (52x +π4)+2,则f (π2)=sin (52×π2+π4)+2=-1+2=1.故选:A .9(多选)(2022•新高考Ⅱ)已知函数f (x )=sin (2x +φ)(0<φ<π)的图像关于点(2π3,0)中心对称,则()A.f (x )在区间(0,5π12)单调递减B.f (x )在区间(-π12,11π12)有两个极值点C.直线x =7π6是曲线y =f (x )的对称轴D.直线y =32-x 是曲线y =f (x )的切线【解答】解:因为f (x )=sin (2x +φ)(0<φ<π)的图象关于点(2π3,0)对称,所以2×2π3+φ=k π,k ∈Z ,所以φ=k π-4π3,因为0<φ<π,所以φ=2π3,故f (x )=sin (2x +2π3),令π2<2x +2π3<3π2,解得-π12<x <5π12,故f (x )在(0,5π12)单调递减,A 正确;x ∈(-π12,11π12),2x +2π3∈(π2,5π2),根据函数的单调性,故函数f (x )在区间(-π12,11π12)只有一个极值点,故B 错误;令2x +2π3=k π+π2,k ∈Z ,得x =k π2-π12,k ∈Z ,C 显然错误;f (x )=sin (2x +2π3),求导可得,f '(x )=22x +2π3 cos ,令f '(x )=-1,即2x +2π3 cos =-12,解得x =k π或x =π3+kπ(k ∈Z ),故函数y =f (x )在点(0,32)处的切线斜率为k =y x =0=22π3cos =-1,故切线方程为y -32=-x -0 ,即y =-x +32,故D 正确.故选:AD .10(2021•新高考Ⅰ)下列区间中,函数f (x )=7sin (x -π6)单调递增的区间是()A.(0,π2) B.(π2,π) C.(π,3π2) D.(3π2,2π)【解答】解:令-π2+2kπ≤x-π6≤π2+2kπ,k∈Z.则-π3+2kπ≤x≤2π3+2kπ,k∈Z.当k=0时,x∈[-π3,2π3],(0,π2)⊆[-π3,2π3],故选:A.考向二三角恒等变换11(2022•新高考Ⅱ)若sin(α+β)+cos(α+β)=22cos(α+π4)sinβ,则()A.tan(α-β)=1B.tan(α+β)=1C.tan(α-β)=-1D.tan(α+β)=-1【解答】解:解法一:因为sin(α+β)+cos(α+β)=22cos(α+π4)sinβ,所以2sin(α+β+π4)=22cos(α+π4)sinβ,即sin(α+β+π4)=2cos(α+π4)sinβ,所以sin(α+π4)cosβ+sinβcos(α+π4)=2cos(α+π4)sinβ,所以sin(α+π4)cosβ-sinβcos(α+π4)=0,所以sin(α+π4-β)=0,所以α+π4-β=kπ,k∈Z,所以α-β=kπ-π4,所以tan(α-β)=-1.解法二:由题意可得,sinαcosβ+cosαsinβ+cosαcosβ-sinαsinβ=2(cosα-sinα)sinβ,即sinαcosβ-cosαsinβ+cosαcosβ+sinαsinβ=0,所以sin(α-β)+cos(α-β)=0,故tan(α-β)=-1.故选:C.考向三同角三角函数间的基本关系1(2021•新高考Ⅰ)若tanθ=-2,则=()A.-B.-C.D.【解答】解:由题意可得:===.故选:C.命题规律解密结合近三年命题规律,命制三角函数恒等变换题目,诸如“给值求角”“给值求值”“给角求值”,给定函数部分图象,求解函数解析式。

第26讲 同角三角函数的基本关系及诱导公式(解析版)

第26讲 同角三角函数的基本关系及诱导公式(解析版)

第26讲 同角三角函数的基本关系及诱导公式【基础知识回顾】1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1;(2)商数关系:tan α=sin αcos α. 平方关系对任意角都成立,而商数关系中α≠k π+π2(k ∈Z ).2.诱导公式3. 诱导公式的作用是把任意角的三角函数转化为锐角三角函数,转化的一般步骤如下:即:去负—脱周—化锐的过程.上述过程体现了转化与化归的思想方法.4、三角形中的三角函数关系式 sin(A +B )=sin(π-C )=sin C ; cos(A +B )=cos(π-C )=-cos C ; tan(A +B )=tan(π-C )=-tan C ; sin ⎝⎛⎭⎫A 2+B 2=sin ⎝⎛⎭⎫π2-C 2=cos C 2;cos ⎝ ⎛⎭⎪⎫A 2+B 2=cos ⎝ ⎛⎭⎪⎫π2-C 2=sin C 2.1、α是第三象限角,且sin -2α=,则tan α=( )A .BC .-3D .3【答案】B【解析】因为α是第三象限角,且sin -2α=,所以1cos 2α=-,所以sin tan cos ααα==B 。

2、已知()()sin 22sin 3cos 5πααα-=+-,则tan α( ) A .6- B .6C .23-D .23【答案】B 【解析】化简()()sin sin 22sin 3cos 2sin 3cos 235tan tan παααααααα-===+-++所以t 6an α=,故选B 。

3、若cos 165°=a ,则tan 195°等于( ) A.1-a 2B.1-a 2aC .-1-a 2aD .-a1-a 2【答案】 C【解析】 若cos 165°=a , 则cos 15°=cos(180°-165°) =-cos 165°=-a , sin 15°=1-a 2,所以tan 195°=tan(180°+15°) =tan 15°=sin 15°cos 15°=-1-a 2a.4、若cos ⎝⎛⎭⎫α-π5=513,则sin ⎝⎛⎭⎫7π10-α等于( ) A .-513B .-1213C.1213D.513【答案】 D【解析】 因为7π10-α+⎝⎛⎭⎫α-π5=π2, 所以7π10-α=π2-⎝⎛⎭⎫α-π5, 所以sin ⎝⎛⎭⎫7π10-α=cos ⎝⎛⎭⎫α-π5=513.5、在△ABC 中,下列结论不正确的是( ) A .sin(A +B )=sin C B .sin B +C 2=cos A2C .tan(A +B )=-tan C ⎝⎛⎭⎫C ≠π2 D .cos(A +B )=cos C 【答案】 D【解析】在△ABC 中,有A +B +C =π, 则sin(A +B )=sin(π-C )=sin C ,A 正确. sinB +C 2=sin ⎝⎛⎭⎫π2-A 2=cos A2,B 正确. tan(A +B )=tan(π-C )=-tan C ⎝⎛⎭⎫C ≠π2,C 正确. cos(A +B )=cos(π-C )=-cos C ,D 错误.6、化简:tan(π-α)cos(2π-α)sin ⎝⎛⎭⎫-α+3π2cos(-α-π)sin(-π-α)的值为( )A.2-B. 1-C. 1D. 2【答案】:B【解析】:原式=-tan α·cos α·(-cos α)cos(π+α)·[-sin(π+α)]=tan α·cos α·cos α-cos α·sin α=sin αcos α·cos α-sin α=-1考向一 三角函数的诱导公式例1、已知α是第三象限角,且f (α)=sin(π-α) ·cos(2π-α) ·tan(α+π)tan(-α-π) ·sin(-α-π).(1)若cos ⎝⎛⎭⎫α-3π2=15,求f (α)的值; (2)若α=-1 860°,求f (α)的值.【解析】:f (α)=sin α·cos α·tan α(-tan α)·sin α=-cos α.(1) ∵ cos ⎝⎛⎭⎫α-3π2=-sinα=15,∴ sinα=-15. ∵ α是第三象限的角, ∴ cosα=-1-⎝⎛⎭⎫-152=-265.∴f (α)=-cosα=256.(2) f (α)=-cos(-1860°)=-cos(-60°)=-12.变式1、(1)化简cos (π+α)cos ⎝⎛⎭⎫π2+αcos ⎝⎛⎭⎫11π2-αcos (π-α)sin (-π-α)sin ⎝⎛⎭⎫9π2+α的结果是( )A.-1B.1C.tan αD.-tan α【答案】 C 【解析】 原式=-cos α·(-sin α)·cos ⎝⎛⎭⎫3π2-α-cos α·sin α·sin ⎝⎛⎭⎫π2+α=-sin 2α·cos α-sin α·cos 2α=tan α. .(2)设f (α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+cos ⎝⎛⎭⎫3π2+α-sin 2⎝⎛⎭⎫π2+α(1+2sin α≠0),则f ⎝⎛⎭⎫-23π6=________. 【答案】3【解析】 因为f (α)= (-2sin α)(-cos α)+cos α1+sin 2α+sin α-cos 2α=2sin αcos α+cos α2sin 2α+sin α=cos α(1+2sin α)sin α(1+2sin α)=1tan α, 所以f ⎝⎛⎭⎫-23π6=1tan ⎝⎛⎭⎫-23π6=1tan ⎝⎛⎭⎫-4π+π6=1tan π6= 3. 变式2、 已知sin (3π+θ)=13,则cos ()π+θcos θ[cos (π-θ)-1]+cos ()θ-2πsin ⎝⎛⎭⎫θ-3π2cos ()θ-π-sin ⎝⎛⎭⎫3π2+θ=__ __.【答案】18【解析】 ∵sin (3π+θ)=-sin θ=13,∴sin θ=-13,∴原式=-cos θcos θ()-cos θ-1+cos ()2π-θ-sin⎝⎛⎭⎫3π2-θcos()π-θ+cos θ=11+cos θ+cos θ-cos 2θ+cos θ=11+cos θ+11-cos θ=21-cos 2θ=2sin 2θ=2⎝⎛⎭⎫-132=18. 方法总结:1、熟知将角合理转化的流程也就是:“负化正,大化小,化到锐角就好了.” 2.明确三角函数式化简的原则和方向 (1)切化弦,统一名. (2)用诱导公式,统一角.(3)用因式分解将式子变形,化为最简.考向二 同角函数关系式的运用例2 (1)若α是三角形的内角,且tan α=-13,则sin α+cos α的值为_ __.(2)已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为__ __.【答案】(1)-105.(2)32.【解析】 (1)由tan α=-13,得sin α=-13cos α,将其代入sin 2α+cos 2α=1,得109cos 2α=1,∴cos 2α=910,易知cos α<0,∴cos α=-31010,sin α=1010,故sin α+cos α=-105.(2)∵5π4<α<3π2,∴cos α<0,sin α<0且cos α>sin α,∴cos α-sin α>0.又(cos α-sin α)2=1-2sin αcos α=1-2×18=34,∴cos α-sin α=32.变式1、若3sin α+cos α=0,则1cos 2α+2sin αcos α= ___.【答案】103.【解析】 (1)3sin α+cos α=0⇒cos α≠0⇒tan α=-13,1cos 2α+2sin αcos α=cos 2α+sin 2αcos 2α+2sin αcos α=1+tan 2α1+2tan α=1+⎝⎛⎭⎫1321-23=103.变式2、已知α是三角形的内角,且tan α=-13,则sin α+cos α的值为 .【答案】 -105【解析】 由tan α=-13,得sin α=-13cos α,将其代入sin 2α+cos 2α=1,得109cos 2α=1,所以cos 2α=910,易知cos α<0,所以cos α=-31010,sin α=1010,故sin α+cos α=-105. 方法总结:本题考查同角三角函数的关系式.利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化,如果没有给出角的范围,则要分类讨论.应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.所求式是关于sin α,cos α的齐次式时,分子分母同除以cos α,可化成tan α的函数式求值.本题考查运算求解能力,考查函数与方程思想.考向三 同角三角函数关系式、诱导公式的综合应用例3、已知cos(75°+α)=13,且α是第三象限角,求cos(15°-α)+sin(α-15°)的值. 【解析】:因为cos(15°-α)=cos[90°-(75°+α)]=sin(75°+α),由于α是第三象限角,所以sin(75°+α)<0, 所以sin(75°+α)= 因为sin(α-15°)=sin[-90°+(75°+α)]=-sin[90°- (75°+α)]= -cos(75°+α)=-, 所以cos(15°-α)+sin(α-15°)=变式1、已知cos(75°+α)=13,求cos(105°-α)+sin(15°-α)= .【答案】 0【解析】因为(105°-α)+(75°+α)=180°, (15°-α)+(α+75°)=90°,所以cos(105°-α)=cos[180°-(75°+α)] =-cos(75°+α) =-13,sin(15°-α)=sin[90°-(α+75°)] =cos(75°+α)=13.所以cos(105°-α)+sin(15°-α)=-13+13=0.变式2、已知cos ⎝⎛⎭⎫π6-θ=a (|a |≤1),则cos ⎝⎛⎭⎫5π6+θ+sin ⎝⎛⎭⎫2π3-θ的值是________. 【答案】 0【解析】∵cos ⎝⎛⎭⎫5π6+θ=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-θ=-cos ⎝⎛⎭⎫π6-θ=-a , 13sin ⎝⎛⎭⎫2π3-θ=sin ⎣⎡⎦⎤π2+⎝⎛⎭⎫π6-θ =cos ⎝⎛⎭⎫π6-θ=a ,∴cos ⎝⎛⎭⎫5π6+θ+sin ⎝⎛⎭⎫2π3-θ=0. 方法总结:1.利用同角三角函数关系式和诱导公式求值或化简时,关键是寻求条件、结论间的联系,灵活使用公式进行变形.2.注意角的范围对三角函数值符号的影响.1、若 ,则 (A)(B) (C) 1 (D) 【答案】A【解析】由,得或,所以 ,故选A .2、(2021·新高考全国Ⅰ)若tan θ=-2,则sin θ(1+sin 2θ)sin θ+cos θ等于( )A .-65B .-25 C.25 D.65【答案】 C【解析】 方法一 因为tan θ=-2, 所以角θ的终边在第二或第四象限,所以⎩⎨⎧sin θ=25,cos θ=-15或⎩⎨⎧sin θ=-25,cos θ=15,所以sin θ(1+sin 2θ)sin θ+cos θ=sin θ(sin θ+cos θ)2sin θ+cos θ=sin θ(sin θ+cos θ) =sin 2θ+sin θcos θ =45-25=25. 方法二 (弦化切法)因为tan θ=-2,3tan 4α=2cos 2sin 2αα+=6425482516253tan 4α=34sin ,cos 55αα==34sin ,cos 55αα=-=-2161264cos 2sin 24252525αα+=+⨯=所以sin θ(1+sin 2θ)sin θ+cos θ=sin θ(sin θ+cos θ)2sin θ+cos θ=sin θ(sin θ+cos θ) =sin 2θ+sin θcos θsin 2θ+cos 2θ=tan 2θ+tan θ1+tan 2θ=4-21+4=25.3、已知α为锐角,且2tan(π-α)-3cos ⎝⎛⎭⎫π2+β+5=0,tan(π+α)+6sin(π+β)-1=0,则sin α的值是( ) A.355 B.377 C.31010 D.13【答案】 C【解析】 由已知得⎩⎪⎨⎪⎧3sin β-2tan α+5=0,tan α-6sin β-1=0.消去sin β,得tan α=3,∴sin α=3cos α,代入sin 2α+cos 2α=1, 化简得sin 2α=910,则sin α=31010(α为锐角).4、已知-π<x <0,sin(π+x )-cos x =-15,则sin 2x +2sin 2x 1-tan x = .【答案】 -24175【解析】 由已知,得sin x +cos x =15,两边平方得sin 2x +2sin x cos x +cos 2x =125,整理得2sin x cos x =-2425.∴(sin x -cos x )2=1-2sin x cos x =4925,由-π<x <0知,sin x <0, 又sin x cos x =-1225<0,∴cos x >0,∴sin x -cos x <0, 故sin x -cos x =-75.∴sin 2x +2sin 2x 1-tan x=2sin x (cos x +sin x )1-sin x cos x=2sin x cos x (cos x +sin x )cos x -sin x=-2425×1575=-24175.5、已知α∈(0,π),且sin α+cos α=15,给出下列结论:①π2<α<π; ②sin αcos α=-1225;③cos α=35;④cos α-sin α=-75.其中所有正确结论的序号是( ) A .①②④ B .②③④ C .①②③ D .①③④【答案】 A【解析】 ∵sin α+cos α=15,等式两边平方得(sin α+cos α)2=1+2sin αcos α=125,解得sin αcos α=-1225,故②正确;∵α∈(0,π),sin αcos α=-1225<0,∴α∈⎝⎛⎭⎫π2,π,∴cos α<0,故①正确,③错误; cos α-sin α<0,且(cos α-sin α)2=1-2sin αcos α =1-2×⎝⎛⎭⎫-1225=4925, 解得cos α-sin α=-75,故④正确.6、设f (θ)=2cos 2θ+sin 2(2π-θ)+sin ⎝⎛⎭⎫π2+θ-32+2cos 2(π+θ)+cos (-θ),则f ⎝⎛⎭⎫17π3= . 【答案】-512【解析】∵f (θ)=2cos 2θ+sin 2θ+cos θ-32+2cos 2θ+cos θ=cos 2θ+cos θ-22cos 2θ+cos θ+2, 又cos 17π3=cos ⎝⎛⎭⎫6π-π3 =cos π3=12,∴f ⎝⎛⎭⎫17π3=14+12-212+12+2=-512. 7、(1)(2022·郑州模拟)已知sin θ=45,求sin (π-θ)cos ⎝⎛⎭⎫π2+θcos (π+θ)sin ⎝⎛⎭⎫π2-θ的值.【解析】∵sin θ=45,∴cos 2θ=1-sin 2θ=925,则sin (π-θ)cos ⎝⎛⎭⎫π2+θcos (π+θ)sin ⎝⎛⎭⎫π2-θ=sin θ(-sin θ)(-cos θ)cos θ=sin 2θcos 2θ=169. (2)已知sin x +cos x =-713(0<x <π),求cos x -2sin x 的值.【解析】∵sin x +cos x =-713(0<x <π), ∴cos x <0,sin x >0,即sin x -cos x >0, 把sin x +cos x =-713,两边平方得1+2sin x cos x =49169,即2sin x cos x =-120169,∴(sin x -cos x )2=1-2sin x cos x =289169,即sin x -cos x =1713,联立⎩⎨⎧sin x +cos x =-713,sin x -cos x =1713,解得sin x =513,cos x =-1213, ∴cos x -2sin x =-2213.。

同角三角函数的基本关系(基础知识+基本题型)(含解析)

同角三角函数的基本关系(基础知识+基本题型)(含解析)

5.2.2 同角三角函数的基本关系(基础知识+基本题型)知识点一 同角三角函数的基本关系式利用单位圆中的三角函数线以及勾股定理,我们可以得到同一个角的三个三角函数之间的两种关系:(1)根据三角函数的定义,当,2k k Z παπ=+∈时,sin tan cos ααα=不成立. (2)2sin α是()2sin α的简写,不能将2sin α写成2sin α,前者是α的正弦的平方,而后者是α平方的正弦.(3)利用平方关系,得sin α=,cos α=,“±”号由α的终边所在象限决定.(4)“同角”有两层含义,一是“角相同”,二是对“任意”一个角(在使函数有意义的前提下)关系式都成立,与角的表达形式无关,如22sin 3cos 31αα+=等.知识点二 同角三角函数关系式的应用同角三角函数的基本关系式主要用于:(1)已知某角的一个三角函数值,求它的其余各三角函数值;(2)化简三角函数式;(3)证明三角恒等式.常用的等价变形有:sin α=, cos α=,22sin 1cos αα=-,22cos 1sin αα=-,sin tan cos ααα=,sin cos tan ααα=. 【提示】 已知某角的一个三角函数值,在使用22sin cos 1αα+=求它的其余三角函数值时,要注意角的终边所在的象限.求解过程中一般有以下三种情况:①如果已知三角函数值,且角所在的象限已知,那么只有一组解;②如果已知三角函数值,但没有指定角在哪个象限,那么先由已知三角函数值的正负确定角可能在的象限,再求解,这种情况一般有两组解;③如果所给的三角函数值是由字母给出的,且没有指明角在哪个象限,那么就需要进行讨论.考点一应用同角三角函数关系式求值【例1】已知()1sin cos05αααπ+=<<,求tanα.解:方法1:由1sin cos5αα+=两边平方.得221sin2sin cos cos25αααα++=,即112sin cos25αα+=.所以12sin cos025αα=-<,又因为0απ<<,所以sin0α>,cos0α<,所以sin cos0αα->.所以7sin cos5αα-====.所以4sin5α=,3cos5α=-.所以sin4tancos3ααα==-.方法2:由221sin cos5sin cos1αααα⎧+=⎪⎨⎪+=⎩,联立消去cosα,得221sin sin15αα⎛⎫+-=⎪⎝⎭,即225sin5sin120αα--=,解得4sin5α=或3sin5α=-(舍去).所以3cos5α=-,所以sin4tancos3ααα==-.(1)在sin cosαα+,sin cosαα-,sin cosαα三个式子中,已知其中一个,可以求其他两个,即“知一求二”,它们之间的关系是()2sin cos12sin cosαααα±=±.(2)设sin cos tαα+=,由三角函数线,知当02πα<<时,1t>;当324ππα<<时,01t<<;当34παπ<<时,10t-<<;当32ππα<<时,1t <-; 当3724ππα<<时,10t -<<; 当724παπ<<时,01t <<. 依据以上结论,已知sin cos αα+的值时,可进一步得出α的范围.【例2】已知tan 2α=,则(1)2sin 3cos 4sin 9cos αααα-=-______; (2)224sin 3sin cos 5cos αααα--=______.解:(1):2sin 3cos 2tan 34sin 9cos 4tan 9αααααα--=-- 2231429⨯-==-⨯-. (2)2222224sin 3sin cos 5cos 4sin 3sin cos 5cos sin cos αααααααααα----=+. 224tan 3tan 5tan 1ααα--=+. 44325141⨯-⨯-==+. 答案:(1)-1 (2)1本题是一个在已知tan m α=的条件,求关于sin ,cos αα的齐次式的整体代入的问题.解决这类问题,需注意以下两点;(1)一定是关于sin ,cos αα的齐次式(或能化为齐次式,如第(2)问)的三角函数式;(2)cos 0α≠,这样分子、分母才能都除以()*cos n n N α∈.先将被求式化为关于tan α的表达式,再将tan m α=代入,从而使问题获得求解.考点二 三角函数式的化简【例3】 化简tan α是第二象限角. 分析:先由角α是第二象限角确定出sin ,cos αα的符号,利用22sin cos 1αα+=对含根号的式子化简,结合sin ,cos αα的符号去掉根号,再由sin tan cos ααα=把式子化简. 解:因为α是第二象限角,所以sin 0α>,cos 0α<.故tan tan tan ==sin cos sin cos cos sin cos sin αααααααα-=⋅=⋅. =1.化简三角函数式的一般要求:(1)函数种类最少;(2)项数最少;(3)函数次数最低;(4)能求值的求出值;(5)尽量使分母不含三角函数;(6)尽量使分母不含根式.考点三 三角恒等式的证明【例4】 求证:tan sin tan sin tan sin tan sin αααααααα⋅+=-⋅. 证明:左边=tan sin tan tan cos ααααα⋅-⋅. ()tan sin sin tan 1cos 1cos αααααα⋅==--. 右边=tan tan cos tan sin ααααα+⋅⋅ =()tan 1cos 1cos tan sin sin αααααα++=⋅=()21cos sin 1cos ααα-- =()2sin sin sin 1cos 1cos ααααα=-- 所以左边=右边,即原等式成立.(1)利用同角三角函数关系式证明时,要熟悉公式.方法有从左至右、从右至左或从两侧证明等于同一式,还可用比较法.(2)注意切化弦、弦化切及平方关系的应用.。

考点07 三角函数的图像与性质(核心考点讲与练)-2023年(新高考专用)(解析版)

考点07  三角函数的图像与性质(核心考点讲与练)-2023年(新高考专用)(解析版)

考点07 三角函数的图像与性质(核心考点讲与练)一、同角三角函数基本关系式与诱导公式 1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1. (2)商数关系:sin αcos α=tan__α.2.三角函数的诱导公式公式 一 二 三 四 五 六 角 2k π+α(k ∈Z )π+α -α π-α π2-α π2+α 正弦 sin α -sin__α -sin__αsin__αcos__αcos__α 余弦 cos α -cos__α cos__α -cos__α sin__α -sin__α正切 tan αtan__α-tan__α -tan__α口诀函数名不变,符号看象限函数名改变,符号看象限二、 三角函数的图象与性质1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )函数y =sin x y =cos x y =tan x图象定义域 R R {x |x ∈R ,且 x ≠k π+π2}值域 [-1,1] [-1,1] R 周期性 2π 2π π 奇偶性 奇函数偶函数奇函数递增区间 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2 [2k π-π,2k π] ⎝ ⎛⎭⎪⎫k π-π2,k π+π2递减区间 ⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2 [2k π,2k π+π] 无对称中心 (k π,0)⎝ ⎛⎭⎪⎫k π+π2,0⎝ ⎛⎭⎪⎫k π2,0对称轴方程x =k π+π2x =k π无三、 函数y =A sin(ωx +φ)的图象与性质1.用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个关键点,如下表所示.x -φω-φω+π2ωπ-φω3π2ω-φω 2π-φωωx +φ 0 π2π 3π2 2π y =A sin(ωx +φ)A-A2.函数y =A sin(ωx +φ)的有关概念y =A sin(ωx +φ)(A >0,ω>0),x ∈[0,+∞)表示一个振动量时振幅 周期 频率 相位 初相A T =2πω f =1T =ω2πωx +φ φ3.函数y =sin x 的图象经变换得到y =A sin(ωx +φ)的图象的两种途径4.三角函数应用(1)用正弦函数可以刻画三种周期变化的现象:简谐振动(单摆、弹簧等),声波(音叉发出的纯音),交变电流.(2)三角函数模型应用题的关键是求出函数解析式,可以根据给出的已知条件确定模型f(x)=A sin(ωx+φ)+k中的待定系数.(3)把实际问题翻译为函数f(x)的性质,得出函数性质后,再把函数性质翻译为实际问题的答案.1.求三角函数单调区间的两种方法(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角u(或t),利用复合函数的单调性列不等式求解.(2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间.2.确定y=A sin(ωx+φ)+B(A>0,ω>0)的解析式的步骤(1)求A,B,确定函数的最大值M和最小值m,则A=,B=.(2)求ω,确定函数的周期T,则ω=.(3)求φ,常用方法有:①代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入;②五点法:确定φ值时,往往以寻找“五点法”中的特殊点作为突破口.具体如下:“第一点”(即图象上升时与x轴的交点)为ωx+φ=0;“第二点”(即图象的“峰点”)为ωx+φ=;“第三点”(即图象下降时与x轴的交点)为ωx+φ=π;“第四点”(即图象的“谷点”)为ωx+φ=;“第五点”(即图象上升时与x轴的交点)为ωx+φ=2π. 3.识别函数图象的方法技巧函数图象的识别可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的周期性,判断图象的循环往复.(5)从函数的特殊点,排除不合要求的图象.4.(1)由y=sin ωx到y=sin(ωx+φ)的变换:向左平移(ω>0,φ>0)个单位长度而非φ个单位长度.(2)平移前后两个三角函数的名称如果不一致,应先利用诱导公式化为同名函数,ω为负时应先变成正值.三角函数图象性质1.(多选题)(2021湖北省新高考高三下2月质检)已知函数()cos sin f x x x =-在[]0,a 上是减函数,则下列表述正确的是( )A.()2min f x =﹣B.()f x 的单调递减区间为32,2()44k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,C.a 的最大值是34π, D.()f x 的最小正周期为2π 【答案】BCD【分析】由于函数()cos sin 2os 4)(f x x x x π=-=+在[]0,a 上是减函数,从而可得4a ππ+≤,进而可求出a 取值范围,函数的周期和最值,从而可判断ACD ,再利用余弦函数的性质求出单调区间,可判断B【详解】解:∵函数()cos sin 2os 4)(f x x x x π=-=+在[]0,a 上是减函数,,444[]x a πππ+∈+, ∴4a ππ+≤,∴304a π<≤, 故()f x 的最小值为2-,a 的最大值是34π,()f x 的最小正周期为2π,故A 错,C 、D 正确; 在32,2()44k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,[]2,2()4x x k k k Z ππππ++∈+∈,函数()f x 单调递减,所以B 正确故选:BCD.2. 已知函数()π3sin 23f x x ⎛⎫=-⎪⎝⎭,则下列结论正确的是( )A. 导函数为()π3cos 23f x x ⎛⎫=- ⎪⎝⎭' B. 函数()f x 的图象关于直线π2x =对称 C. 函数()f x 在区间π5π,1212⎛⎫-⎪⎝⎭上是增函数 D. 函数()f x 的图象可由函数3sin 2y x =的图象向右平移π3个单位长度得到 【答案】C【分析】利用复合函数的求导法则判定选项A 错误,利用π()2f 不是函数的最值判定选项B 错误,利用π5π1212x -<<得到πππ2232x -<-<,进而判定选项C 正确,利用图象平移判定选项D 错误. 【详解】对于A :因为π()3sin 23f x x ⎛⎫=-⎪⎝⎭, 所以()ππ3cos 226cos 233f x x x ⎛⎫⎛⎫=⨯-⨯=- ⎪' ⎪⎝⎭⎝⎭,即选项A 错误;对于B :因为πππ2π3sin 23sin 32233f ⎛⎫⎛⎫=⨯-==≠±⎪ ⎪⎝⎭⎝⎭, 所以函数()f x 的图象不关于直线π2x =对称, 即选项B 错误;对于C :当π5π1212x -<<时,πππ2232x -<-<, 故()f x 在π5π(,)1212-上是增函数,即选项C 正确;对于D :因为ππ()3sin 23sin[2()]36f x x x ⎛⎫=-=- ⎪⎝⎭, 所以()f x 的图象可由3sin 2y x =的图象向右平移π6个单位长度得到, 即选项D 错误. 故选:C .根据三角函数图象求解析式1.(2022年安徽省亳州市第一中学高三上学期9月检测)已知函数()()sin 0,010,2f x K x K πωϕωϕ⎛⎫=+><<< ⎪⎝⎭的部分图象如图所示,点370,,,1224A B π⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭,则将函数()f x 图象向左平移12π个单位长度,然后横坐标变为原来的2倍、纵坐标不变,得到的图象对应的函数解析式是( )A.5sin 212y x π⎛⎫=+ ⎪⎝⎭ B.5sin 812y x π⎛⎫=+ ⎪⎝⎭ C.2sin 23y x π⎛⎫=+ ⎪⎝⎭ D.2sin 83y x π⎛⎫=+⎪⎝⎭【答案】C【分析】首先根据三角函数的图象求得各个参数,由振幅求得1K =,由定点坐标代入函数解析式求得43ωπϕ=⎧⎪⎨=⎪⎩,所以()sin 43f x x π⎛⎫=+ ⎪⎝⎭,再通过平移伸缩变化,即可得解. 【详解】因为函数()f x 的部分图象经过点3A ⎛ ⎝⎭,7,124K π⎛⎫- ⎪⎝⎭, 所以()()130sin 077sin 1,2424010,,2K f f ωϕππωϕωπϕ=⎧⎪⎪=⨯+=⎪⎪⎪⎛⎫⎛⎫=⨯+=-⎨ ⎪ ⎪⎝⎭⎝⎭⎪⎪<<⎪⎪<⎪⎩解得43ωπϕ=⎧⎪⎨=⎪⎩,所以()sin 43f x x π⎛⎫=+ ⎪⎝⎭. 将函数()sin 43f x x π⎛⎫=+ ⎪⎝⎭的图象,然后横坐标变为原来的2倍、纵坐标不变, 得到2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象. 故选:C.2 (2020广东省潮州市高三第二次模拟)函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象如图所示.则函数()f x 的单调递增区间为( )A. ,63k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈B. ,33k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈C. ,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈D. ,66k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈ 【答案】C【分析】利用图象先求出周期,用周期公式求出ω,利用特殊点求出ϕ,然后根据正弦函数的单调性列不等式求解即可.【详解】根据函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象, 可得:332113441264T ππππω=⋅=-=, 解得:2ω=,由于点,26π⎛⎫ ⎪⎝⎭在函数图象上,可得:2sin 226πϕ⎛⎫⨯+= ⎪⎝⎭, 可得:2262k ππϕπ⨯+=+,k ∈Z ,解得:26k πϕπ=+,k ∈Z ,由于:0ϕπ<<, 可得:6π=ϕ,即2sin 26y x π⎛⎫=+ ⎪⎝⎭,令222262k x k πππππ-≤+≤+,k ∈Z 解得:36k x k ππππ-≤≤+,k ∈Z ,可得:则函数()f x 的单调递增区间为:,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈Z .故选C .三角函数图象判断1.(2020江西省靖安中学高三上学期第二次月考)已知函数()2cos f x x x =,则函数()f x 的部分图象可以为( )A. B. C. D.【答案】A【分析】由奇偶性可排除BD ,再取特殊值4f π⎛⎫ ⎪⎝⎭可判断AC ,从而得解 【详解】因为()f x 的定义域为R ,且()()()()2cos 2cos f x x x x x f x -=--=-=-,所以()f x 为奇函数, 故BD 错误;当0x >时,令()2cos 0f x x x ==,易得cos 0x =, 解得()2x k k Z ππ=+∈,故易知()f x 的图象在y 轴右侧的第一个交点为,02π⎛⎫ ⎪⎝⎭, 又22cos 04444f ππππ⎛⎫=⨯⨯=>⎪⎝⎭,故C 错误,A 正确; 故选:A2. . (2022广东省深圳市普通中学高三上学期质量评估)函数()4cos x xxf x e e-=+在[],ππ-上的图象大致为( )A. B.C. D.【答案】A【分析】由奇偶性可排除BC ,由x →+∞时,()0f x →可排除D ,由此得到结果.【详解】()()()()4cos 4cos x xx x x xf x f x e ee e------===++,()f x ∴为偶函数,图象关于y 轴对称,可排除BC ; 当x →+∞时,()0f x →,可排除D ,知A 正确. 故选:A.三角函数图象变换1.(2021浙江省金华十校高三模拟)已知奇函数()y g x =的图象由函数()sin(21)f x x =+的图象向左平移(0)m m >个单位后得到,则m 可以是( )A.12π- B.1π- C.12π+ D.1π+ 【答案】A【分析】逐项验证()g x 是否等于()g x --可得答案. 【详解】当12m π-=时,函数()sin(21)f x x =+的图象向左平移12π-个单位后得到()()g()sin 21sin 2sin 212x x x x g x ππ⎡⎤-=⎢⎥⎣⎛⎫=+++=-=-- ⎝⎦⎪⎭,故A 正确;当1m π=-时,函数()sin(21)f x x =+的图象向左平移1π-个单位后得到()()()()sin 21sin 121g x x x g x π⎡⎤-=++-≠⎦-=-⎣,故B 错误;当12m π+=时,函数()sin(21)f x x =+的图象向左平移12π+个单位后得到()()()122()sin 21sin 2sin 22g x x x x g x ππ⎡⎤⎛⎫=+++=-+≠-- ⎪⎝⎭+=+⎢⎥⎣⎦,故C 错误;当1m π=+时,函数()sin(21)f x x =+的图象向左平移1π+个单位后得到()()()()sin 21sin 123g x x x g x π⎡⎤+=+++≠⎦-=-⎣,故D 错误;故选:A.2. (2020安徽省合肥市高三第三次教学质量检测)为了得到函数sin y x =的图像,只需将函数sin 26y x π⎛⎫=+ ⎪⎝⎭的图像A. 横坐标伸长为原来的两倍,纵坐标不变,再向右平移6π个单位 B. 横坐标伸长为原来的两倍,纵坐标不变,再向左平移6π个单位 C. 横坐标缩短为原来的12,纵坐标不变,再向右平移6π个单位D. 横坐标缩短为原来的12,纵坐标不变,再向左平移6π个单位【答案】A【分析】由条件利用()sin y A x ωϕ=+ 的图像变换规律,得到结论. 【详解】把函数sin 26y x π⎛⎫=+⎪⎝⎭的图像上所有点的横坐标伸长为原来的两倍,纵坐标不变得到函数sin 6y x π⎛⎫=+ ⎪⎝⎭,再将函数sin 6y x π⎛⎫=+ ⎪⎝⎭的图像上所有点向右平移6π个单位得到函数sin y x =.故选A1. (2021年全国高考乙卷)函数()sin cos 33x xf x =+的最小正周期和最大值分别是( ) A. 3π2 B. 3π和2C. 6π2D. 6π和2【答案】C【分析】利用辅助角公式化简()f x,结合三角函数周期性和值域求得函数的最小正周期和最大值.【详解】由题,()sin cos3s3323234x x x xf xxπ=+=+⎛+⎫⎪⎝⎭,所以()f x的最小正周期为2613T.故选:C.2. (2021年全国高考乙卷)把函数()y f x=图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3π个单位长度,得到函数sin4y xπ⎛⎫=-⎪⎝⎭的图像,则()f x=()A.7sin212xπ⎛⎫-⎪⎝⎭B. sin212xπ⎛⎫+⎪⎝⎭C.7sin212xπ⎛⎫-⎪⎝⎭D. sin212xπ⎛⎫+⎪⎝⎭【答案】B【分析】解法一:从函数()y f x=的图象出发,按照已知的变换顺序,逐次变换,得到23y f xπ⎡⎤⎛⎫=-⎪⎢⎥⎝⎭⎣⎦,即得2sin34f x xππ⎡⎤⎛⎫⎛⎫-=-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再利用换元思想求得()y f x=的解析表达式;解法二:从函数sin4y xπ⎛⎫=-⎪⎝⎭出发,逆向实施各步变换,利用平移伸缩变换法则得到()y f x=的解析表达式.【详解】解法一:函数()y f x=图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,得到(2)y f x=的图象,再把所得曲线向右平移3π个单位长度,应当得到23y f xπ⎡⎤⎛⎫=-⎪⎢⎥⎝⎭⎣⎦的图象,根据已知得到了函数sin4y xπ⎛⎫=-⎪⎝⎭的图象,所以2sin34f x xππ⎡⎤⎛⎫⎛⎫-=-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令23t xπ⎛⎫=-⎪⎝⎭,则,234212t tx xπππ=+-=+,所以()sin 212t f t π⎛⎫=+⎪⎝⎭,所以()sin 212x f x π⎛⎫=+ ⎪⎝⎭; 解法二:由已知的函数sin 4y x π⎛⎫=-⎪⎝⎭逆向变换, 第一步:向左平移3π个单位长度,得到sin sin 3412y x x πππ⎛⎫⎛⎫=+-=+ ⎪ ⎪⎝⎭⎝⎭的图象,第二步:图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到sin 212x y π⎛⎫=+⎪⎝⎭的图象, 即为()y f x =的图象,所以()sin 212x f x π⎛⎫=+ ⎪⎝⎭.故选:B.3. (2021年全国新高考Ⅰ卷)下列区间中,函数()7sin 6f x x π⎛⎫=-⎪⎝⎭单调递增的区间是( ) A. 0,2π⎛⎫⎪⎝⎭B. ,2ππ⎛⎫⎪⎝⎭C. 3,2ππ⎛⎫ ⎪⎝⎭D. 3,22ππ⎛⎫ ⎪⎝⎭【答案】A【分析】解不等式()22262k x k k Z πππππ-<-<+∈,利用赋值法可得出结论.【详解】因为函数sin y x =的单调递增区间为()22,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, 对于函数()7sin 6f x x π⎛⎫=-⎪⎝⎭,由()22262k x k k Z πππππ-<-<+∈,解得()22233k x k k Z ππππ-<<+∈, 取0k =,可得函数()f x 的一个单调递增区间为2,33ππ⎛⎫-⎪⎝⎭, 则20,,233πππ⎛⎫⎛⎫⊆- ⎪ ⎪⎝⎭⎝⎭,2,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭,A 选项满足条件,B 不满足条件; 取1k =,可得函数()f x 的一个单调递增区间为58,33ππ⎛⎫⎪⎝⎭,32,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭且358,,233ππππ⎛⎫⎛⎫⊄ ⎪ ⎪⎝⎭⎝⎭,358,2,233ππππ⎛⎫⎛⎫⊄ ⎪⎪⎝⎭⎝⎭,CD 选项均不满足条件. 故选:A.4. (2021年全国高考甲卷)已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条件74()()043f x f f x f ππ⎛⎫⎛⎫⎛⎫⎛⎫---> ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的最小正整数x 为________.【答案】2【分析】先根据图象求出函数()f x 的解析式,再求出7(),()43f f π4π-的值,然后求解三角不等式可得最小正整数或验证数值可得. 【详解】由图可知313341234T πππ=-=,即2T ππω==,所以2ω=; 由五点法可得232ππϕ⨯+=,即6πϕ=-;所以()2cos 26f x x π⎛⎫=- ⎪⎝⎭.因为7()2cos 143f π11π⎛⎫-=-= ⎪⎝⎭,()2cos 032f 4π5π⎛⎫== ⎪⎝⎭; 所以由74(()())(()())043f x f f x f ππ--->可得()1f x >或()0f x <; 因为()12cos 22cos 1626f πππ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭,所以,方法一:结合图形可知,最小正整数应该满足()0f x <,即cos 206x π⎛⎫-< ⎪⎝⎭, 解得,36k x k k π5ππ+<<π+∈Z ,令0k =,可得536x <<ππ,可得x 的最小正整数为2.方法二:结合图形可知,最小正整数应该满足()0f x <,又(2)2cos 406f π⎛⎫=-< ⎪⎝⎭,符合题意,可得x 的最小正整数为2. 故答案为:2.一、单选题1.(2022·福建·模拟预测)已知α为锐角,且sin sin 36ππαα⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,则tan α=( )A 3B .23C 6D 63【答案】B【分析】运用两角和与差的正弦公式和同角的商数关系,计算即可得到所求值【详解】因为sin sin 36ππαα⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,所以1331sin cos 22αααα=-,所以)()31cos 31sin αα=,所以3tan 2331α==-故选:B2.(2022·辽宁锦州·一模)若()sin π1cos 3αα-=,则sin 2cos2αα+的值为( )A .15B .75C .120D .3120【答案】B【分析】先利用诱导公式得到tan α,再将弦化切,代入求解. 【详解】()sin πsin 1tan cos cos 3ααααα-===,从而2222222sin cos cos sin sin 2cos 22sin cos cos sin cos sin αααααααααααα+-+=+-=+222112tan 1tan 73911tan 519ααα+-+-===++ 故选:B3.(2022·江西九江·二模)已知函数()y f x =的部分图像如图所示,则()y f x =的解析式可能是( )A .()sin e e x xxf x -=+B .()sin e e x xxf x -=-C .()cos e e x xxf x -=-D .()cos e e x xxf x -=-【答案】D【分析】根据函数的定义域、奇偶性与函数值的正负即可得到结果 【详解】函数()f x 在0x =处无定义,排除选项A函数()f x 的图像关于原点对称,故()f x 为奇函数,排除选项B 当01x <<时,cos 0x >,e e x x ->,故cos 0e ex xx->-,排除选项C 故选:D.4.(2022·天津市宁河区芦台第一中学模拟预测)已知函数 ()()4cos 03f x x πωω⎛⎫=+> ⎪⎝⎭ 的最小正周期为π,将其图象沿 x 轴向右平移 ()0m m >个单位, 所得函数为奇函数, 则实数m 的最小值为( ) A .12πB .6πC .512π D .4π 【答案】C【分析】根据余弦型函数的最小正周期公式,结合余弦型函数图象的变换性质进行求解即可. 【详解】因为该函数的最小正周期为π,0>ω, 所以22ππωω=⇒=,即()4cos(2)3f x x π=+,将该函数图象沿x 轴向右平移 ()0m m >个单位得到函数的解析式为()()4cos(22)3g x f x m x m π=-=-+,因为函数()g x 为奇函数,所以有12()()32212m k k Z m k k Z πππππ-+=+∈⇒=--∈, 因为0m >,所以当1k =-时,实数m 有最小值512π, 故选:C5.(2022·浙江·模拟预测)已知E ,F 分别是矩形ABCD 边AD ,BC 的中点,沿EF 将矩形ABCD 翻折成大小为α的二面角.在动点P 从点E 沿线段EF 运动到点F 的过程中,记二面角B AP C --的大小为θ,则( ) A .当90α<︒时,sin θ先增大后减小 B .当90α<︒时,sin θ先减小后增大 C .当90α>时,sin θ先增大后减小 D .当90α>时,sin θ先减小后增大 【答案】C【分析】根据二面角的定义通过作辅助线, 找到二面角的平面角,在Rt △1C HC 中表示出tan θ的值,利用tan θ的值的变化来判断sin θ的变化即可.【详解】当90α<︒时,由已知条件得EF ⊥平面FBC ,过点C 作1CC FB ⊥,垂足为1C ,过点1C 作1C H AP ⊥,垂足为H , ∵ 1CC ⊂平面FBC ,∴1EF CC ⊥, ∴1CC ⊥平面ABFE ,又∵AP ⊂平面ABFE ,∴1CC AP ⊥, ∴AP ⊥平面1CC H , ∴AP CH ⊥, 则1C HC ∠为二面角B AP C --的平面角, 在Rt △1C HC 中,11tan CC C Hθ=, 动点P 从点E 沿线段EF 运动到点F 的过程中,1C H 不断减小,则tan θ不断增大,即sin θ不断增大,则A 、B 错误;当90α>时,由已知条件得EF ⊥平面FBC ,过点C 作1CC BF ⊥,垂足1C 在BF 的延长线上,过点1C 作CH AP ⊥,垂足在AP 延长线上, ∵ 1CC ⊂平面FBC ,∴1EF CC ⊥, ∴1CC ⊥平面ABFE ,又∵AP ⊂平面ABFE ,∴1CC AP ⊥, ∴AP ⊥平面1CC H , ∴AP CH ⊥, 则1C HC ∠为二面角B AP C --的平面角的补角β,即πθβ=-,在Rt △1C HC 中,11tan CC C Hβ=, 如下图所示,动点P 从点E 沿线段EF 运动到点F 的过程中,1C H 先变小后增大,则tan β先变大后变小,sin β先变大后变小,()sin sin πsin θββ=-=,则sin θ也是先变大,后变小, 则C 正确,D 错误; 故选:C .6.(2022·四川达州·二模(理))设()3sin 2cos 22cos 4x x f x x+=,则下列说法正确的是( )A .()f x 值域为33,,22⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭B .()f x 在0,16π⎛⎫⎪⎝⎭上单调递增C .()f x 在,08π⎛⎫- ⎪⎝⎭上单调递减D .()4f x f x π⎛⎫=+ ⎪⎝⎭【答案】B【分析】由题可得2cos 4sin 43y x x -=,()()22213y +-≥,可判断A ,利用三角函数的性质可判断B ,利用导函数可判断C ,由题可得sin 4342cos 4x f x x π-⎛⎫+= ⎪⎝⎭,可判断D.【详解】∵()3sin 2cos 2sin 432cos 42cos 4x x x f x xx++==,由sin 432cos 4x y x+=,可得2cos 4sin 43y x x -=,3,即y ≤y ≥∴函数的值域为(),∞∞-⋃+,故A 错误; ∵()sin 4313tan 42cos 422cos 4x f x x x x+==+,当0,,40,164x x ππ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭时,1tan 42y x =单调递增,2cos 4y x =单调递减,32cos 4y x =单调递增,故()f x 在0,16π⎛⎫⎪⎝⎭上单调递增,故B 正确;∵,0,4,082x x ππ⎛⎫⎛⎫∈-∈- ⎪ ⎪⎝⎭⎝⎭,()sin 432cos 4x f x x+=,令sin 3,,02cos 2t y t t π+⎛⎫=∈- ⎪⎝⎭,则()2222cos 2sin sin 313sin 4cos 2cos t t t ty t t+++'==, 由0y '=,可得1sin 3t =-,,02t π⎛⎫∈- ⎪⎝⎭,根据正弦函数在,02π⎛⎫- ⎪⎝⎭上单调递增,可知在,02π⎛⎫- ⎪⎝⎭上存在唯一的实数001,0,sin 23t t π⎛⎫∈-=- ⎪⎝⎭,当0,2t t π⎛⎫∈- ⎪⎝⎭时,0y '<,sin 32cos t y t +=单调递减,当()0,0t t ∈时,0y '>,sin 32cos t y t +=单调递增,所以()f x 在,08π⎛⎫- ⎪⎝⎭上有增有减,故C 错误;由()sin 432cos 4x f x x+=,可得()()()sin 43sin 43sin 4342cos 42cos 42cos 4x x x f x f x x x x πππ++-+-⎛⎫+===≠ ⎪+-⎝⎭,故D 错误.故选:B.7.(2022·宁夏·银川一中二模(理))下列四个函数中,在其定义域上既是奇函数又是增函数的是 ( ) A .x y e = B .tan y x = C .sin y x = D .y x x =【答案】D【分析】A.利用指数函数的性质判断;B.利用正切函数的性质判断;C.利用正弦函数的性质判断;D.利用函数的图象判断.【详解】A. ()()()(),,x xf x e f x e f x f x -=-=-≠-,不是奇函数,故错误;B. tan y x =在,,22k k k Z ππππ⎛⎫-++∈ ⎪⎝⎭上递增,但在定义域|,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭上不单调,故错误;C. sin y x =在2,2,22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦上递增,但在定义域R 上不单调,故错误;D. 2,0,0x x y x x x x ⎧≥==⎨-<⎩,其图象如图所示:由图象知:定义域上既是奇函数又是增函数,故正确, 故选:D8.(2022·山西长治·模拟预测(理))若函数()f x 满足(2)()f x f x +=,则()f x 可以是( ) A .2()(1)f x x =- B .()|2|f x x =-C .()sin 2f x x π⎫⎛=⎪⎝⎭D .()tan 2f x x π⎛⎫=⎪⎝⎭【答案】D【分析】根据周期函数的定义,结合特例法进行判断求解即可. 【详解】因为(2)()f x f x +=, 所以函数的周期为2. A :因为(1)0,(3)4f f ==,所以(1)(3)f f ≠,因此函数的周期不可能2,本选项不符合题意; B :因为(2)0,(4)2f f ==,所以(2)(4)f f ≠,因此函数的周期不可能2,本选项不符合题意;C :该函数的最小正周期为:242ππ=,因此函数的周期不可能2,本选项不符合题意;D :该函数的最小正周期为:22ππ=,因此本选项符合题意, 故选:D9.(2022·天津·一模)已知函数()2sin y x ωϕ=+(0>ω,0πϕ<<)的部分图象如图所示,则( )A .2ω=,5π6ϕ= B .12ω=,5π6ϕ=C .2ω=,6π=ϕ D .12ω=,6π=ϕ 【答案】A【分析】根据图象与y 轴的交点纵坐标与振幅的关系,结合所处的区间的单调性,以及后续的单调递增区间上的零点,列出方程组求解即得.【详解】由函数图象与y 轴的交点纵坐标为1,等于振幅2的一半,且此交点处于函数的单调减区间上,同时在同一周期内的后续单调区间上的零点的横坐标为7π12,并结合0>ω,0πϕ<<, 可知()2sin 01π3π0227π212ωϕωϕωϕπ⎧⎪⨯+=⎪⎪<⨯+<⎨⎪⎪⨯+=⎪⎩,解得2ω=,5π6ϕ=,故选:A10.(2022·新疆·模拟预测(理))我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来研究函数图象的特征.我们从这个商标中抽象出一个函数的图象如图,其对应的函数解析式可能是( )A .()11f x x =- B .()211f x x =- C .()11tan2f x xπ=-D .()11f x x =- 【答案】D【分析】由定义域判断A ;利用特殊函数值:(0)f 、2()3f 的符号判断B 、C ;利用奇偶性定义及区间单调性判断D.【详解】A :函数的定义域为{|1}x x ≠,不符合;B :由1(0)101f ==--,不符合; C :由2()0313f =<-,不符合; D :11()()|||1||||1|f x f x x x -===---且定义域为{|1}x x ≠±,()f x 为偶函数, 在(0,1)上1()1f x x=-单调递增,(1,)+∞上1()1f x x =-单调递减,结合偶函数的对称性知:(1,0)-上递减,(,1)-∞-上递增,符合. 故选:D11.(2022·江西·临川一中模拟预测(理))己知函数()sin()(0,)R f x x ωϕωϕ=+>∈在区间52,123ππ⎛⎫⎪⎝⎭上单调,且满足571212ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭f f .有下列结论:①02f ⎛⎫= ⎪⎝⎭π;②若4()3π⎛⎫-=⎪⎝⎭f x f x ,则函数()f x 的最小正周期为3π; ③关于x 的方程()1f x =在区间[0,2)π上最多有5个不相等的实数根; ④若函数()f x 在区间13,26ππ⎡⎫⎪⎢⎣⎭上恰有5个零点,则ω的取值范围为12,35⎛⎤ ⎥⎝⎦.其中正确的结论的个数为( ) A .1B .2C .3D .4【答案】B【分析】对于①:利用对称性直接求得; 对于②:直接求出函数的最小正周期,即可判断;对于③:先判断出周期234232T πππ⎛⎫= ⎪⎝≥-⎭,直接解出()1f x =在区间[0,2)π上最多有3个不相等的实数根,即可判断.对于④:由题意分析1352622T T ππ<-≤,建立关于ω的不等式组,求出ω的取值范围. 【详解】函数()()sin f x x ωϕ=+满足571212ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭f f .对于①:因为57121222πππ+=,所以02f ⎛⎫= ⎪⎝⎭π.故①正确;对于②:由于4()3π⎛⎫-= ⎪⎝⎭f x f x ,所以函数()f x 的一条对称轴方程为42323x ππ==.又,02π⎛⎫ ⎪⎝⎭为一个对称中心,由正弦图像和性质可知,所以函数的最小正周期为224323T πππ⎛⎫=-= ⎪⎝⎭.故②错误; 对于③:函数()()sin f x x ωϕ=+在区间52,123ππ⎛⎫ ⎪⎝⎭上单调,且满足571212ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭f f ,可得:02f ⎛⎫= ⎪⎝⎭π,所以周期234232T πππ⎛⎫=⎪⎝≥-⎭.周期越大,()1f x =的根的个数越少. 当23T π=时,()cos3f x x =,所以()1f x =在区间[0,2)π上有3个不相等的实数根:0x =,23x π=或43x π=.故③错误.对于④:函数()f x 在区间13,26ππ⎡⎫⎪⎢⎣⎭上恰有5个零点,所以1352622T T ππ<-≤, 所以213522622ππππωω⋅<-≤⋅,解得:1235ω<≤.且满足234232T πππ⎛⎫= ⎪⎝≥-⎭,即2224323ππππω⎛⎫≥-= ⎪⎝⎭,即3ω≤,故12,35ω⎛⎤∈ ⎥⎝⎦.故④正确.故选:B12.(2022·山西吕梁·模拟预测(文))将函数()cos 26f x x π⎛⎫=- ⎪⎝⎭图象上的所有点向左平移56π个单位长度,得到函数()g x 的图象,则( ) A .2()cos 23g x x π⎛⎫=+ ⎪⎝⎭B .()g x 在,63ππ⎡⎤-⎢⎥⎣⎦上单调递增C .()g x 在(0,)3π上的最小值为1-D .直线4x π=平是()g x 的一条对称轴【答案】D【分析】根据三角函数的图象变换,可判定A 错误;利用函数的图象与性质,可判定B ,C 错误;根据14g π⎛⎫= ⎪⎝⎭,可判定D 正确.【详解】由题意,函数()cos 26f x x π⎛⎫=- ⎪⎝⎭图象上的所有点向左平移56π个单位长度,可得53()cos 2cos 2sin 2662g x x x x πππ⎡⎤⎛⎫⎛⎫=+-=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故A 错误; 令222()22k x k k Z ππππ-+≤≤+∈,所以()44k x k k Z ππππ-+≤≤+∈,所以()g x 在,44ππ⎡⎤-⎢⎥⎣⎦上单调递增,所以B ,C 错误;因为14g π⎛⎫= ⎪⎝⎭,故直线4x π=为()g x 的一条对称轴,故D 正确.故选:D.13.(2022·内蒙古呼和浩特·一模(理))如图是一大观览车的示意图,已知观览车轮半径为80米,观览车中心O 到地面的距离为82米,观览车每30分钟沿逆时针方向转动1圈.若0P 是从距地面42米时开始计算时间时的初始位置,以观览车的圆心O 为坐标原点,过点O 的水平直线为x 轴建立平面直角坐标系xOy .设从点0P 运动到点P 时所经过的时间为t (单位:分钟),且此时点P 距离地面的高度为h (单位:米),则h 是关于t 的函数.当t R ∈时关于()h t 的图象,下列说法正确的是( )A .对称中心为515,0,2k k Z ⎛⎫+∈ ⎪⎝⎭B .对称中心为515,82,2k k Z ⎛⎫+∈ ⎪⎝⎭C .对称轴为155,t k k Z =+∈D .对称轴为515,2t k k Z =+∈【答案】B【分析】先由题意得到06xoP π∠=,进而得到min t 后,以ox 为始边,oP 为终边的角156t ππ-,从而得到点P 的纵坐标为80sin 156t ππ⎛⎫- ⎪⎝⎭,即P 距地面的高度函数求解.【详解】解:由题意得06xoP π∠=,而6π-是以ox 为始边, 0oP 为终边的角, 由OP 在min t 内转过的角为23015t t ππ=, 可知以ox 为始边,oP 为终边的角为156t ππ-,则点P 的纵坐标为80sin 156t ππ⎛⎫- ⎪⎝⎭,所以P 距地面的高度为80sin 82156h t ππ⎛⎫=-+ ⎪⎝⎭,令,156t k k Z πππ-=∈,得515,2t k k Z =+∈, 所以对称中心为515,82,2k k Z ⎛⎫+∈ ⎪⎝⎭,令,1562t k k Z ππππ-=+∈,得1015,t k k Z =+∈,所以对称轴为1015,t k k Z =+∈, 故选:B14.(2022·河南·模拟预测(理))密位制是度量角的一种方法,把一周角等分为6000份,每一份叫做1密位的角.在角的密位制中,单位可省去不写,采用四个数码表示角的大小,在百位数与十位数之间画一条短线,如7密位写成“0-07”,478密位写成“4-78”.如果一个半径为4的扇形,其圆心角用密位制表示为12-50,则该扇形的面积为( ) A .10π3B .2πC .5π3D .5π6【答案】A【分析】根据题意中给的定义可知该扇形的圆心角为75︒,结合扇形的面积公式计算即可. 【详解】依题意,该扇形的圆心角为1250360756000⨯︒=︒.又5π7512︒=,故所求扇形的面积为 22115π10π422123S r α==⨯⨯=.故选:A. 二、多选题15.(2022·河北·模拟预测)已知角α的终边经过点()8,3cos P α.则( ) A .1sin 3α=B .7cos 29α= C .2tan 4α=±D .22cos 3α=【答案】ABD【分析】根据同终边角的正弦和余弦可知223cos 8sin ,cos 649cos 649cos ααααα==++,然后解出方程并判断sin 0,cos 0αα>>,逐项代入即可.【详解】解:由题意得: 如图所示:()22283cos 649cos OP αα=+=+22sin 649cos 649cos PQ OQ OP OP αααα∴==++ 2sin 649cos 3cos αα∴+=,即()222sin 649cos 9cos ααα+= ()222sin 649(1sin )91sin ααα⎡⎤∴+-=-⎣⎦,即429sin 82sin 90αα-+= 解得:2sin 9α=(舍去)或21sin 9α=cos 0α>sin 0α∴>1sin 3α=,故A 正确; 22cos α∴D 正确;222217cos2cos sin39ααα⎛⎫∴=-=-=⎪⎝⎭⎝⎭,故B正确;1sintancosααα==C错误;故选:ABD16.(2022·重庆八中模拟预测)下列函数的图像中,与曲线sin23y xπ⎛⎫=-⎪⎝⎭有完全相同的对称中心的是()A.sin26y xπ⎛⎫=+⎪⎝⎭B.cos26y xπ⎛⎫=+⎪⎝⎭C.cos23y xπ⎛⎫=-⎪⎝⎭D.tan6y xπ⎛⎫=-⎪⎝⎭【答案】BD【分析】根据正弦、余弦、正切函数的图像,求出各个函数的对称中心,比较即可得出答案.【详解】设k∈Z,对于sin23y xπ⎛⎫=-⎪⎝⎭,由2362kx k xππππ-=⇒=+;对于A:由26122kx k xππππ+=⇒=-+;对于B:由26262kx k xπππππ+=+⇒=+;对于C:由5232122kx k xπππππ-=+⇒=+;对于D:由6262k kx xππππ-=⇒=+;则B和D的函数与题设函数有完全相同的对称中心.故选:BD.17.(2022·江苏·海安高级中学二模)已知0e sin e siny xx y x yπ<<<,=,则()A.sin sinx y<B.cos cosx y>-C.sin cosx y>D.cos sinx y>【答案】ABC【分析】将e sin e siny xx y=变为e sine sinyxyx=结合指数函数的性质,判断A;构造函数e(),(0,)sinxf x xxπ=∈,求导,利用其单调性结合图象判断x,y的范围,利用余弦函数单调性,判断B;利用正弦函数的单调性判断C,结合余弦函数的单调性,判断D.【详解】由题意,0e sin e siny xx y x yπ<<<,=,得0y x->,e sin e sin y x y x=,e 1y x->,∴sin 1sin y x >,∴sin sin y x >,A 对; e e sin sin y x y x =,令e (),(0,)sin xf x x xπ=∈,即有()()f x f y =, 令2e (sin cos )()0,sin 4x x x f x x x π=='-=, ()f x 在0,4π⎛⎫⎪⎝⎭上递减,在,4ππ⎛⎫ ⎪⎝⎭上递增, 因为()()f x f y = ,∴04x y ππ<<<<,作出函数e (),(0,)sin xf x x xπ=∈以及sin ,[0,]y x x π=∈ 大致图象如图:则30sin sin 4y y x ππ<-<>,,∴sin()sin y x π->,结合图象则y x π->, ∴cos()cos y x π-<,∴cos cos x y >-,B 对; 结合以上分析以及图象可得2x y π+>,∴2x y π>-,且,4224y y πππππ<<-<-<,∴sin sin cos 2x y y π⎛⎫>-= ⎪⎝⎭,C 对;由C 的分析可知,224y x πππ-<-<<,在区间[,]24ππ-上,函数cos y x = 不是单调函数,即cos()cos 2y x π-<不成立,即sin cos y x <不成立,故D 错误; 故选:ABC .【点睛】本题综合考查了有条件等式下三角函数值比较大小问题,设计指数函数性质,导数的应用以及三角函数的性质等,难度较大,解答时要注意构造函数,数形结合,综合分析,进行解答. 18.(2022·湖北·一模)已知函数()sincos 22x xf x ( )A .()f x 的图象关于2x π=对称B .()f x 的最小正周期为2π C .()f x 的最小值为1 D .()f x 的最大值为342【答案】ACD【分析】A :验证()f x π-与()f x 是否相等即可;B :验证()f x π+与()f x 相等,从而可知π为f (x )的一个周期,再验证f (x )在(0,π)的单调性即可判断π为最小正周期;C 、D :由B 选项即求f (x )最大值和最小值.【详解】()()f x f x π-==,故选项A 正确;∵()()f x f x π+, 故π为()f x 的一个周期. 当(0,)x π∈时,()f x =此时3322cossin()cos sin 22x x x x f x '⎡⎤⎛⎫⎛⎫⎥==- ⎪⎪⎥⎝⎭⎝⎭⎦,令()0f x '=,得cossin 22x x=,故,242x x ππ==.∵当0,2x π⎛⎫∈ ⎪⎝⎭时,()0f x '>;当,2x ππ⎛⎫∈ ⎪⎝⎭时,()0f x '<,故()f x 在0,2π⎛⎫ ⎪⎝⎭上单调递增,在,2ππ⎛⎫⎪⎝⎭上单调递减,故()f x 的最小正周期为π,选项B 错误;由上可知()f x 在[0,]x π∈上的最小值为()(0)1f f π==,最大值为3422f π⎛⎫= ⎪⎝⎭,由()f x 的周期性可知,选项CD 均正确. 故选:ACD. 三、解答题19.(2022·浙江宁波·二模)已知()πsin2cos 26f x x x ⎛=++⎫ ⎪⎝⎭()R x ∈.(1)求函数()y f x =的最小正周期及单调递增区间; (2)求函数()π4y f x f x ⎛⎫=⋅+ ⎪⎝⎭在π0,4x ⎡⎤∈⎢⎥⎣⎦的取值范围.【答案】(1)最小正周期π,单调递增区间为5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦,Z k ∈(2)12⎡-⎢⎣⎦【分析】(1)将()πsin2cos 26f x x x ⎛=++⎫ ⎪⎝⎭化为只含一个三角函数形式,根据正弦函数的性质即可求得答案;(2)将()π4y f x f x ⎛⎫=⋅+ ⎪⎝⎭展开化简为12πsin 423y x ⎛⎫=+ ⎪⎝⎭,结合π0,4x ⎡⎤∈⎢⎥⎣⎦,求出2π43x +的范围,即可求得答案.(1)()π1sin 2cos 2sin 22sin 262f x x x x x x ⎛⎫=++=- ⎪⎝⎭1sin 222πsin 23x x x ⎛⎫=+ ⎪⎝⎭=,所以2ππ2T ==; 因为πππ2π22π232k x k -+≤+≤+,Z k ∈,所以5ππππ1212k x k -+≤≤+,Z k ∈, 函数()y f x =的单调递增区间为5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦,Z k ∈; (2)()ππππsin 2sin 24323y f x f x x x ⎛⎫⎛⎫⎛⎫=⋅+=+⋅++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ππ12πsin 2cos 2sin 43323x x x ⎛⎫⎛⎫⎛⎫=+⋅+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为π04x ≤≤,所以2π2π5π4333x ≤+≤,12π1sin 4232y x ⎡⎛⎫=+∈-⎢ ⎪⎝⎭⎣⎦,因此函数()π4y f x f x ⎛⎫=⋅+ ⎪⎝⎭在π0,4x ⎡⎤∈⎢⎥⎣⎦的取值范围为12⎡-⎢⎣⎦.20.(2022·天津三中一模)已知()22sin cos 222f x x x x θθθ⎛⎫⎛⎫⎛⎫=++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(1)若0θπ≤≤,求θ使函数()f x 为偶函数;(2)在(1)成立的条件下,求满足()1f x =,[],x ππ∈-的x 的集合. 【答案】(1)6πθ=(2)55,,,6666ππππ⎧⎫--⎨⎬⎩⎭ 【分析】(1)由恒等变换得()2sin 23f x x πθ⎛⎫=++ ⎪⎝⎭,进而根据奇偶性求解即可;(2)由题知1cos 22x =,再根据[],x ππ∈-得23x π=-或523x π=-或23x π=或523x π=,进而解得答案.(1)解:()22sin cos 222f x x x x θθθ⎛⎫⎛⎫⎛⎫=++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()1cos 2sin 22x x θθ++=++()()sin 222sin 23x x x πθθθ⎛⎫=++=++ ⎪⎝⎭,因为函数()f x 为偶函数, 所以,32k k Z ππθπ+=+∈,即,6k k Z πθπ=+∈,因为0θπ≤≤,所以6πθ=(2)解:在(1)成立的条件下,()2sin 22cos 236f x x x ππ⎛⎫=++= ⎪⎝⎭,所以由()1f x =得1cos 22x =,因为[],x ππ∈-,所以[]22,2x ππ∈-, 所以23x π=-或523x π=-或23x π=或523x π=, 所以6x π=-或65x π=-或6x π=或56x π=, 所以,满足题意的x 的集合为55,,,6666ππππ⎧⎫--⎨⎬⎩⎭ 21.(2022·河北秦皇岛·二模)在锐角ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且()(sin sin )()sin a b A B c b C +-=-.(1)求A ;(2)求cos cos B C -的取值范围.【答案】(1)3π(2)⎛ ⎝⎭【分析】(1)利用正弦定理角化边,再根据余弦定理可求出1cos 2A =,进而求出A 的大小;(2)依题意可化简cos cos 6B C B π⎛⎫-=+ ⎪⎝⎭,根据B 的范围求出cos cos B C -的取值范围即可.(1)因为()()()sin sin sin a b A B c b C +-=-,所以()()()a b a b c b c +-=-,即222a b c bc =+-.因为2222cos a b c b A =+-,所以1cos 2A =.因为0,2A π⎛⎫∈ ⎪⎝⎭,所以3A π=.(2)由(1)知2cos cos cos cos 3B C B B π⎛⎫-=-- ⎪⎝⎭13cos cos cos 226B B B B B B π⎛⎫=+==+ ⎪⎝⎭. 因为203202B B πππ⎧<-<⎪⎪⎨⎪<<⎪⎩,所以62B ππ<<, 因为2363B πππ<+<,所以11cos ,622B π⎛⎫⎛⎫+∈- ⎪ ⎪⎝⎭⎝⎭,所以cos cos B C ⎛-∈ ⎝⎭,即cos cos B C -的取值范围是⎛ ⎝⎭. 22.(2022·浙江嘉兴·二模)设函数()sin cos f x x x =-(R)x ∈ .(1)求函数()()y f x f x =⋅-的最小正周期及其对称中心;(2)求函数22[()]4y f x f x π⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦在,44ππ⎡⎤-⎢⎥⎣⎦上的值域. 【答案】(1)周期π,对称中心为,0(Z)42k k ππ⎛⎫+∈ ⎪⎝⎭(2)[2 【分析】(1)利用二倍角公式将()()y f x f x =⋅-的表达式化简,即可求得函数的最小正周期,结合余弦函数的对称中心可求得函数()()y f x f x =⋅-的对称中心;(2)将函数22[()]4y f x f x π⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦的表达式展开,并化简,根据,44x ππ⎡⎤∈-⎢⎥⎣⎦的范围,结合正弦函数的性质可确定答案.(1)函数22()()cos sin cos 2y f x f x x x x =⋅-=-=,所以最小正周期22T ππ==; 令2(Z)2x k k ππ=+∈,解得(Z)42k x k ππ=+∈, 所以对称中心为,0(Z)42k k ππ⎛⎫+∈ ⎪⎝⎭; (2)函数2222[()]sin cos )[sin()cos()]44(4y f x f x x x x x πππ⎡⎤⎛⎫=++-++-+ ⎪⎢⎭⎣=⎥⎝⎦ 1sin 21sin(2)2x x π=-+-+ 2sin 2cos2x x =--224x π⎛⎫=+ ⎪⎝⎭, 因为,44x ππ⎡⎤∈-⎢⎥⎣⎦,所以32,444x πππ⎡⎤+∈-⎢⎥⎣⎦,故sin 2[4x π⎛⎫+∈ ⎪⎝⎭,故[2y ∈.23.(2022·山东枣庄·一模)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且sinsin 2B C b a B +=.求: (1)A ; (2)a c b-的取值范围. 【答案】(1)3π(2)1(,1)2- 【分析】(1)由正弦定理及正弦的2倍角公式可求解;(21cos 1sin 2B B --的范围,再利用2倍角公式化为122B -即可求解. (1)因为sin sin 2BC b a B +=, 所以sin cos sin sin 2A B A B =, 因为()0,,sin 0B B π∈∴≠,()1cos 2sin cos 0,cos 0,sin =222222A A A A A A π∴=∈∴≠∴,,, 因为0,,22263A A A πππ<<∴=∴=. (2)由正弦定理,2sin sin()sin sin 33sin sin B a c A C b B B ππ----==1sin 222sin B B B-=1cos 1sin 2B B -=-21(12sin )1122222sin cos 22B B B B ---=-, 因为203B π<<,所以023B π<<,所以0tan 2B <<。

1.2.2 同角三角函数的基本关系(公开课)ppt课件

1.2.2 同角三角函数的基本关系(公开课)ppt课件
3
同角三角函数的基本关系
如图,设α 是一个任意角,它的终边与单位圆交于点P,
那么,正弦线MP和余弦线OM的长度有什么内在联系?
由此能得到什么结论?
MP2 OM2 1
y P
1
sin2 cos2 1
MO
x
4
上述关系反映了角α 的正弦和余弦之间的内在联系,
根据等式的特点,将它称为平方关系.那么当角α 的终边
答案,这时一般有两组结果.
14
【合作探究】高考链接
15
16
17
18
19
五、【练习与展示】
A B
20
1.同角三角函数的两个基本关系是对同一个角而言的. 2.利用平方关系求值时要根据角所在的象限确定三角函
数值符号. 3.化简、求值、证明,是三角变换的三个基本问题.
21
1
2
三角函数的定义
α的终边 y P(x,y)
(1)y叫做的正弦,记作 sin , M O
即 sin y =MP
(2)x叫做的余弦,记作 cos ,即
cos x =OM
(3)y 叫做 的正切,记作 tan ,即
x
tan

y x
(x 0)
=AT
A(1,0) x
T
6
同角三角函数的基本关系: 同一个角的正弦、余弦的平方和等于1, 商等于这个角的正切. “同角”二层含义:一是“角相同”, 二是“任意”一个角.
7
平方关系变形公式
8
商数关系变形公式
9
基本公式
10
是否存在同时满足下列三个条件的角 ?
(1) sin 3
5 (2) cos 5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(时间:25分,满分55分)
班级 姓名 得分
1.(5分)已知4
sin 5
α=,并且α是第二象限的角,那么tan α的值等于( ) A .43- B .34- C .34 D .43
【答案】A 【解析】
试题分析:因为4sin 5α=
,并且α是第二象限的角,
所以
3sin 4
cos ,tan 5cos 3αααα==-==-
,选A.
考点:同角三角函数关系. 2.(5分)若
2cos sin 2cos sin =-+α
αα
α,则=αtan ( )
A .1
B .-1
C .43
D .3
4- 【答案】A
考点:同角三角函数基本关系. 3.(5
分)若[]sin cos 0,θθθπ+=∈,则tan θ=( ) A .12-
B.1
2
C .-2
D .2 【答案】C 【解析】
试题分析:因为[]sin cos 0,θθθπ+=∈,且22sin cos 1θθ+=
,所以sin θ=
,cos θ=,所以sin tan 2cos θ
θθ
=
=-,故选C. 考点:三角函数的基本关系式及其应用.
4.(5分)若[]sin cos 0,θθθπ+=∈,则tan θ=( ) A .12-
B.1
2
C .-2
D .2 【答案】C 【解析】
试题分析:因为[]sin cos 0,θθθπ+=∈,且22sin cos 1θθ+=,所以sin θ=,cos θ=,所以sin tan 2cos θ
θθ
=
=-,故选C. 考点:三角函数的基本关系式及其应用.
5.(5分)已知34tan =x ,且x 在第三象限,则=x cos ( )
A.
54 B. 5
4- C.53 D.53- 【答案】D
考点:三角函数定义;同角三角函数的基本关系式;象限三角函数的符号.
6.(51sin cos α
α
+=,则α的终边在( )
A .y 轴右侧
B .y 轴左侧
C .x 轴上方
D .x 轴下方 【答案】A 【解析】
1sin 1sin |cos |cos αα
αα
++===,所以0cos >α,即α的终边在y 轴右侧;故选A .
考点:1.同角三角函数基本关系式;2.三角函数的符号. 7.(5分)若sin θ=-
4
5
,tan θ>0,则cos θ=_______
5
【解析】
试题分析:3tan 0cos 0cos 5
θθθ>∴<∴==-
考点:同角间三角函数关系. 8.(5分)已知1sin cos ,(0,)2αααπ+=∈,求1tan 1tan αα
-=+ .
【答案】
试题解析:因为
113
sin cos 12sin cos 2sin cos 244αααααα+=
⇒+=⇒=-,所以
27
(sin cos )12sin cos 4
αααα-=-=
,又
(0,),sin cos 0
απαα∈<,所以
sin 0,cos 0,sin cos 0
αααα><->,从
而sin cos αα-=
,因

1tan cos sin 1tan cos sin ααα
ααα
--==
=++
考点:同角间三角函数关系式. 9.(5分)已知tan 3x =,则sin 3cos 2sin 3cos x x
x x
+=- .
【答案】2 【解析】 试题分析:3cos sin tan ==
x x x ,x x cos 3sin =∴代入得2cos 3cos 6cos 3cos 3cos 3sin 2cos 3sin =-+=-+x
x x
x x x x x . 考点:同角三角函数的基本关系. 10.(10
分)已知sin α=α为第四象限角,求cos sin cos sin αα
αα
+-的值.
3
考点:同角三角函数基本关系式.
:。

相关文档
最新文档