9-4两个正态总体假设检验.

合集下载

正态总体均值的假设检验

正态总体均值的假设检验
t 检验 用 t 分布
2 用 分布
检验
下,若能求得检验统计量的 极限分布,依据它去决定临界值C.
例 1 (用例中数据,但未知)
n=10, =0.05, 0=10 t10-1(/2)=t9(0.025)=2.2622
X 10.05,S2 0.05, S 0.224 X 10 0.05 , 即未落入拒绝域为 S 10 2.262 0.160 S 10 2.262
抽取 样本
检验 假设
拒绝还是不能 拒绝H0
P(T W)=
类错误的概率, W为拒绝域
对差异进行定量的分析, 确定其性质(是随机误差 显著性 水平
还是系统误差. 为给出两 者界限,找一检验统计量T, 在H0成立下其分布已知.)
-----犯第一

一般说来,按照检验所用的统计量的分布, 分为 U 检验 用正态分布
以上检验法叫U检验法.
X ~tn 1 S/ n
0
于是当原假设 H0:μ =μ X 0 ~tn 1 S/ n
成立时,有:
X 0 P tn 1 2 S / n S 即P X 0 tn 1 n 2 S 拒绝域为 X 0 tn 1 n 2 以上检验法叫t检验法.
第八章 第二节
正态总体均值的假设检验
一、单个正态总体N(,2)均值的检验
(I) H0:μ = μ
0
H1:μ ≠ μ
0
设X1,X2, ,Xn为来自总体N(,2)的样本. 求:对以上假设的显著性水平=的假设检验. 方差2已知的情况
根据第一节例1,当原假设 H0:μ =μ , 有:

两个正态总体的假设检验

两个正态总体的假设检验

由样本观察值算出的 F 满足
F0.95 (9 , 9) 1 3.18 F 1.95 3.18 F0.05 (9 , 9) .
可见它不落入拒绝域,因此不能拒绝原假设 H0 :σ12 = σ22 ,
从而认为两个总体的方差无显著差异。
注意:在 μ1 与 μ2 已知时,要检验假设 H0 :σ12 = σ22 ,其
检验方法类同均值未知的情况,此时所采用的检验统计量是:
1 n1
2
(
X


)
i 1
n1 i 1
F
1 n2
2
(
Y


)
i 2
n2 i 1
其拒绝域参看表8-5。
( 2 )单边检验可作类似的讨论。
F0.05 (n1 , n2 ) .
8-5
概率学与数理统计
体的样本,且 μ1 与 μ2 未知。现在要检验假设 H0 : σ2 = σ02 ;
H1: σ2 ≠ σ02 。在原假设 H0 成立的条件下,两个样本方差的
比应该在1附近随机地摆动,所以这个比不能太大又不能太小。
于是我们选取统计量
S12
F 2.
S2
( 8.21 )
显然,只有当 F 接近1时,才认为有 σ12 = σ22 。
10 10 2
18
由( 8.20 )式计算得
2.063 2.059
t0
3.3 .
0.0000072 (2 10)
对于 α =0.01,查自由度为18的 t 分布表得 t 0.005( 18 )=2.878。
由于| t0|=3. 3 > t 0.005( 18 )=2.878 ,于是拒绝原假设 H0 :μ1 = μ2 。

第58讲 两个正态总体参数假设检验(比较两个正态总体均值的检验)

第58讲  两个正态总体参数假设检验(比较两个正态总体均值的检验)

第58讲:两个正态总体参数的假设检验(比较两个正态总体均值的检验)例1:通常认为男女的脉搏率是没有显著差异的. 现在随机地抽取年龄都是25岁的16位男子和13位女子, 测得他们的脉搏率如下:男: 61, 73, 58, 64, 70, 64, 72, 60, 65, 80, 55,72, 56, 56, 74, 65,女: 83, 58, 70, 56, 76, 64, 80, 68, 78, 108,76, 70, 97.问题:假设男女脉搏率都是服从正态分布, 这些数据能否认为男女脉搏率的均值相同?()()12221212122221,,,,,,,,,,,n n X X X N Y Y Y N X Y S S μσμσ∙∙∙ 12假设:是来自的样本是来自的样本,两样本相互独立.并记,分别为两样本的均值和方差.()012112.:,:,H H μμμαμ=≠检验假设显著水平22121.σσ当和已知时2212012,.~(0X Y X Y C H X Y N n n σσ∙--≥∙-+ 检验统计量拒绝域形式 当成立时,,).221212σσ-=+X YZ n n 记: 2α≥--Z z z 则检验拒绝域为:检验{}00002212122(1(),.σσ-=≥=-Φ-=+H P P Z z z x yz n n 其中:222122.σσσ当==但未知时2σ首先利用合样本给出参数的无偏估计量()()22112221211 .2wn S n SS n n -+-=+-1211-=+w X Y T S n n 可取检验统计量为:()21212211wX Y T t n n S n n α-=≥+-+检验拒绝域为:{}{}00120012||||2(2)||11--=≥=+-≥-=+H w P P T t P t n n t x yt P s n n 其中为::值——两样本精确t检验22123.σσ≠当且未知时221212.-=+X Y T S S n n 取检验统计量为:22221212.S S σσ以样本方差分,别代替,{}{}000||||2||,--=≥=≥H P P T t P Z P t 值为:(1)当两个样本量都很大时,利用中心极限定理{}/2||α≥T z 检验的拒绝域为:0221212~(01).-=+x y Z N t s sn n 其中: ,,12min(1,1),=--k n n (2)当两个样本为小样本时都很大时,统计量近似服从t 分布,自由度为22211222222112212(//)(/)(/)11+=+--S n S n k S n S n n n 或更精确的近似自由度{}/2||()α≥T t k 检验的拒绝域为: {}{}000||||2()||.--=≥=≥H P P T t P t k t P 值为: t ——两样本近似检验22112212221201,~(,),~(,),16,13,65.31,75.69,56.36,211.40,.X Y X N Y N n n x y s s H H μσμσμμμμ=======≠1212检验假设在例1中设分别表示男女的脉搏率,由已知数据计得:,::算221256.36,211.40,s s t ==注意到相差很大,采用不等方差的检验法,结论:拒绝原假设,认为男女脉搏率的均值不相同。

正态总体的假设检验

正态总体的假设检验
(Xi μ)2
n
(Xi μ)2
P { i1
σ
2 0
χ
2 1
α 2
(
n)}
P{
i 1
σ
2 0
χ
2
α
(
n)}
α
2
所以拒绝域为: W
{
χ2
χ
2 1
α 2
(
n)
,χ
2
χ
2
α
(n)
}
2
2. μ未知时,总体方差σ2的假设检验 χ2 检验法
类型 原假设 备择假设
H0
H1
检验统计量
双边 检验
σ2
σ
2 0
σ2
得s=0.007欧姆.设总体服从正态分布,参数均未知,
问在显著性水平α=0.05下,能否认为这批导线的
标准差显著地偏大?
解: s2 0.0072 0.0052
原假设 H 0 : σ 2 0.0052,备择假设 H1 : σ 2 0.0052
检验统计量: χ 2 (n 1)S 2
σ2
拒绝域:
第二节 正态总体的假设检验
一、单一正态总体均值μ的假设检验
二、单一正态总体方差σ2的假设检验 三、两个正态总体均值的假设检验 四、两个正态总体方差的假设检验
一、单一正态总体均值μ的假设检验
设总体X~N (, 2). X1 , X2 , … , Xn是取自X的样本,
样本均值 X样,本方差S2
1.已知
T t(α n 1)
例1. 设某次考试的考生的成绩服从正态分布,从中随
机地抽取36位考生的成绩,算得平均成绩为66.5分,标 准差为15分,问在显著性水平0.05下,是否可以认为在 这次考试中全体考生的平均成绩为70分?

双正态总体的假设检验

双正态总体的假设检验
1. 方差 , 已知情形
2 1 2 2
(1) 双侧检验 H 0 : 1 2 0 , H1 : 1 0 , 其中 0 为已知常数. 当 H 0 为真时,
x y 0 U ~ N (0,1), 2 2 1 专业课件讲义教材 / n1 2 / n文档 PPT 2
P{| U | k } 查标准正态分布表 k u / 2 u0.025 1.96, 从而拒绝域 为 | u | 1.96. 由于 x 1295, y 1230, 1 84, 2 96, 所以
u
x y

n1
2 1


n2
2 1
3.95 1.96,
x1 , x2 ,, xn1

专业课件讲义教材PPT文档
y1 , y2 ,, yn2 ,
3
计算出 U 的观察值 u,若 u u / 2 , 则拒绝原假设 H 0 , 若 u u / 2 , 则接受原假设 H 0 .
类似地,对单侧检验有: (2) 右侧检验 H 0 : 1 2 0 , H1 : 1 2 0 , 可得拒绝域为 其中 0 为已知常数,
H 0 : 1 2 2 , H1 : 1 2 2 ,
专业课件讲义教材PPT文档
8
解 检验假设 H 0 : 1 2 2 , 2 4 22 X 2Y ~ N 1 2 2 , . n1 n2
在 H 0 成立下
1
记其观察值为 u, 相应的检 选取 U 作为检验统计量, 验法称为 u 检验法. 由于 X 与 Y 是 1 与 2 的无偏估计量, 当 H 0 成立时,
u 不应太大, 当 H1 成立时, u 有偏大的趋势, 故拒绝

两个总体的假设检验

两个总体的假设检验
3
案例1——哪种安眠药旳疗效好?
为分析甲、乙两种安眠药旳效果,某医院将20个失 眠病人提成两组,每组10人,两组病人分别服用甲、 乙两种安眠药作对比试验。试验成果如下:
两种安眠药延长睡眠时间对比试验(小时)
病人
安眠药
1 2 3 4 5 6 7 8 9 10

1.9 0.8 1.1 0.1 –0.1 4.4 5.5 1.6 4.6 3.4
∵本例中“P(F<=f)单尾”旳值为 0.1503, 故其双边检验所到达旳明显性水平为
2×0.1503 = 0.3006 > 0.20
故在在水平 = 0.20下,12 与 22 间无明显差别。
23
§8.5 大样本两个总体百分比旳检验
设 P1, P2 分别是两个独立总体旳总体百分比,
原假设为
H0: P1 = P2
两种安眠药延长睡眠时间对比试验(小时)
病人 安眠药
1
2
34
5678
9 10

1.9 0.8 1.1 0.1 –0.1 4.4 5.5 1.6 4.6 3.4

0.7 –1.6 –0.2 –1.2 –0.1 3.4 3.7 0.8 0.0 2.0
(1)两种安眠药旳疗效有无明显差别?
(2)假如将试验措施改为对同一组10个病人,每人分别 服用甲、乙两种安眠药作对比试验,试验成果仍如 上表,此时两种安眠药旳疗效间有无差别?
~ t ( n1+n2-2 )
其中:
S
2 w
(n1
1)S12 (n2 1)S22 n1 n2 2
,
称为合并方差。
完全类似地,能够得到如下检验措施:
统计量
备择假设

正态总体参数的假设检验

正态总体参数的假设检验

578, 572, 570, 568, 572, 570, 570, 572, 596, 584 试判断新生产的铜丝的折断力有无提高(取α=0.05)?

H0 : 0 570 H1 : 0
用U检验法,这时拒绝条件为U u , 计算知 X 575.2,
U X 0 575.2 570 2.05 u u0.05 1.645
N (0,1) U u
| T | t / 2 T t T t
2法
2


2 0

2

2


2 0
2


2 0


2 0
2
(n 1)S 2


2 0
2


2 0
2


2 0
0
2

2 1
/
2

提出检验假设 H0 : p p 0 0.17 H1 : p 0
用大样本U 检验法,这时拒绝条件为|U| u / 2 将 n 400, x 56 / 400 0.14, p(1 p) 0.17(1 0.17) 0.376代入,得
| u |
U法
( 2已知)
0
0 0
0
T法
( 2未知)
0
0
假设H1
0 0 0
0 0 0
检验统计量
U X 0 / n
T X 0
S/ n
抽样分布 拒绝条件 A (P( A) )
9.2 正态总体参数的假设检验
一、一个正态总体参数的假设检验 二、非正态总体均值的假设检验 三、两个正态总体参数的假设检验 四、两个非正态总体均值的假设检验

两个正态总体方差比的假设检验

两个正态总体方差比的假设检验
市场管理部门可以断定该种大瓶碳酸饮料包装重量不足,可 以对其提出投诉.
三、总体为非正态分布
非正态总体时,大样本情况(n≥30)
近似地,
~ ( ,
2 );
n
如果已知,近似地 ~ (,1);
如果未知,近似地 ~ (,1).
例4、某房地产经纪人宣称某邻近地区房屋的平均 价值低于480000元。从40间房屋组成的一个随机样本 得出的平均价值为450000元,标准差为120000元。在 0.05的置信水平下,是否支持这位经纪人的说法?
犯两错误的概率:在假设检验中, 犯第一类错误的概率记为α,α也称为显著性水 平。
犯二类错误的概率记为β。
两类错误有相反的关系(如下图所示),减小α会引起β 增大,减少β会引起α增大。
可能带来的后果越严重,危害越大的哪一类错误,在假设 检验中作为首要的控制目标!它是谁呢?
假设检验中,遵守首先控制犯α错误原则大家都在执行这 样一个原则。 原因是:原假设是什么常常是明确的,而替换假设是什么 常常是模糊的。所以,人们常把我们最关心的问题作为原 假设提出,将较严重的错误放到了α,这就能够在假设检 验中对α错误实施有效控制。
一、单个总体比率的检验
二、2个总体比率之差的检验
(一)检验2个总体比率是否相等的假设
(二)检验2个总体比率之差为某一个不为0的常数的假设
第五节 总体方差的假设检验
一、单个正态总体方差的假设检验
二、2个正态总体方差比的假设检验

如果你指挥不了自己,也就指挥不了 别人。 。22.3.2 222.3.2 2Tuesday, March 22, 2022
用寿命在1000小时以上,该机构当然不会拒绝这批货。因
为灯泡寿命增加,不会给这个机构增加额外的费用。因此,

正态总体均值的假设检验

正态总体均值的假设检验

假设检验
正态总体均值的假设检验
1.1 单个正态总体均值的假设检验
3.大样本单个正态总体均值的检验
设总体为 X ,它的分布是任意的,方差 2 未知, X1 ,X2 , ,Xn 为 来自总体 X 的样本,H0 : 0( 0 已知).当样本容量 n 很大( n 30 )
时,无论总体是否服从正态分布,统计量 t X 0 都近似服从正态分 S/ n
解 依题意,建立假设 由于 2 未知,故选取统计量
H0 : 0 72,H1 : 72 . t X 0 , S/ n
已知 0.05 ,故此检验问题的拒绝域为
W t | | t |
x 0
s/ n
t
/
2
(n
1)

又知 n 26,x 74.2,s 6.2,查表得 t /2 (25) t0.025 (25) 2.06 ,则有 | t | x 0 74.2 72 1.81 2.06 , s/ n 6.2/ 26
解 依题意,建立假设 由于 2 未知,取检验统计量
H0 : 0.8,H1 : 0.8 .
t X 0 ~ t(n 1) , S/ n
已知 0.05 ,故此检验问题的拒绝域为
W t | t x 0 s/ n
t (n 1) .
又知 n 16 ,x 0.92,s 0.32 ,查表得 t0.05 (16 1) t0.05 (15) 1.75,则有 t x 0 0.92 0.8 1.50 1.75 , s/ n 0.32/ 16
假设检验 H0 : 0 ,H1 : 0 的拒绝域为 W {t | t t (n 1)}.
(7-8) (7-9)
假设检验
正态总体均值的假设检验
1.1 单个正态总体均值的假设检验

正态分布总体的区间估计与假设检验汇总表

正态分布总体的区间估计与假设检验汇总表

(单侧检验)
2
(n
1)S 2
2 0
~2n1
2
2 /2
n
1

2
2 1- / 2
n 1
2 2 n 1
2

2 0
2
<
2 0
(单侧检验)
2
2 1-
n
1
2. 两个正态总体均值及方差的假设检验表(显著性水平 α)
条件 原假设 H0 备择假设 H1
检验统计量
拒绝域
12

2 2
已知
1 =2 1 2 1 2
1 2
1 2
(单侧检验)
SW
(n1 1)S12 (n2 1)S22 n1 n2 2
T < - t (n1 n2 2)
1,2
未知
2 1
=
2 2
2 1

2 2
2 1

2 2
(双侧检验)
2 1
>
2 2
(单侧检验)
F
S12 S22

F ( n1 - 1, n2 - 1)
F ≥ F /2 n1 1, n2 1
已知
0 / n
X
0 n
u
/2,
X
0 n
u
/2
2 未知 T X 0 ~ t(n 1) S/ n
X
S n 1
t / 2
n
1 ,
X
S n
1
t
/
2
n
1
方差 2
未知
2
(n 1)S 2
2 0
~2n1
(n 2 /
1)S 2

正态总体参数的假设检验

正态总体参数的假设检验

正态总体参数的假设检验 正态总体中有两个参数:正态均值与正态⽅差。

有关这两个参数的假设检验问题经常出现,现逐⼀叙述如下。

(⼀) 正态均值的假设检验 ( 已知情形) 建⽴⼀个检验法则,关键在于前三步l,2,3。

5.判断(同前) 注:这个检验法称为u检验。

(⼆) 正态均值的假设检验 ( 未知情形) 在未知场合,可⽤样本标准差s去替代总体标准差,这样⼀来,u统计量变为t统计量,具体操作如下: 1.关于正态均值常⽤的三对假设为 5.判断 (同前) 注:这个检验法称为t检验。

(三)正态⽅差的假设检验 检验正态⽅差有关命题成⽴与否,⾸先想到要⽤样本⽅差。

在基础上依据抽样分布特点可构造统计量作为检验之⽤。

具体操作如下: 1.关于正态⽅差常⽤的三对假设为 5.判断(同前) 注:这个检验法称为检验。

注:关于正态标准差的假设与上述三对假设等价,不另作讨论。

(四) ⼩结与例⼦ 上述三组有关正态总体参数的假设检验可综合在表1.5-1上,以供⽐较和查阅。

续表 [例1.5-2] 某电⼯器材⼚⽣产⼀种云母带,其厚度在正常⽣产下服从N(0.13,0.0152)。

某⽇在⽣产的产品中抽查了10次,发现平均厚度为0.136,如果标准差不变,试问⽣产是否正常?(取 =0.05)来源:考试通 解:①⽴假设:②由于已知,故选⽤u检验。

③~④根据显著性⽔平 =0.05及备择假设可确定拒绝域为{ >1.96}。

⑤由样本观测值,求得检验统计量: 由于u未落在拒绝域中,所以不能拒绝原假设,可以认为该天⽣产正常。

[例1.5-3] 根据某地环境保护法规定,倾⼊河流的废⽔中⼀种有毒化学物质的平均含量不得超过3ppm。

已知废⽔中该有毒化学物质的含量X服从正态分布。

该地区环保组织对沿河的⼀个⼯⼚进⾏检查,测定每⽇倾⼊河流的废⽔中该物质的含量,15天的记录如下(单位:ppm)3.2,3.2,3.3,2.9,3.5,3.4,2.5,4.3,2.9,3.6,3.2,3.0,2.7,3.5,2.9 试在⽔平上判断该⼚是否符合环保规定? 解:①如果符合环保规定,那么应该不超过3ppm,不符合的话应该⼤于3ppm。

第九章 假设检验

第九章 假设检验
2 2 H 0:σ 2 = σ 0;H1:σ 2 ≠ σ 0。 iid
假定µ未知, 双边检验:对于假设 假定µ未知
H 0:σ = σ ;H1:σ ≠ σ
2、非参数假设检验 、
X1, ,X n ~ X , L 总体分布未知, 由观测值x1, …, xn 检验假设H0:F(x)=F0(x;θ); H1: F(x)≠F0(x;θ) θ θ
iid
i .i .d
任何一个有关随机变量未知分布的假设称 为统计假设或简称假设 假设。 假设 一个仅牵涉到随机变量中几个未知参数的 参数假设。 假设称为参数假设 参数假设 这里所说的假设只是一个设想,至于它是否成 立,在建立假设时并不知道,还需要进行考察。
X − µ0 U= σ0 n
(3)对于给定的检验水平α=0.05构造小概率事件 P{|U|>U }=α 确定拒绝区域为|U|>Uα 2
α 2
(4)根据样本观察值计算统计量U的值
解:
(1)提出待检假设H。:µ =800
X − µ0 (2)根据H0选取统计量 U= σ0 n 在H0成立的条件下U~N(0,1) (3)对于给定的检验水平α=0.05构造小概率事件 P{|U|>Uα 2 }=α 确 定 拒 绝 区 域 为 |U |> U α (4)根据样本观察值计算统计量U的值
下面将通过具体例子,给出检验规则
单正态总体的假设检验
iid
1、σ2已知的情形 、 已知的情形—U检验 检验
值 x1, ,xn检验假设H 0:µ = µ0;H1:µ ≠ µ0。 L
设X 1, ,X n ~N ( µ,σ 2 ), 给定检验水平α,由观测 L
根据假设H0:µ=µ0;H1:µ≠µ0, 构造统计量 µ

概率论与数理统计假设检验正态总体参数的假设检验(2)

概率论与数理统计假设检验正态总体参数的假设检验(2)

概率论与数理统计第7章假设检验第3讲正态总体参数的假设检验(2)01 两个正态总体参数的假设检验02单侧检验03 p 值检验法—简介本讲内容*21μμ-2221σσ检验目的本节将讨论两个相互独立的正态总体,211(,)X N μσ222(,)Y N μσ的参数检验问题.设是来自总体X 的简单随机样本;112,,,n X X X 是来自总体Y 的简单随机样本;212,,,n Y Y Y 样本均值.X Y 、为两为两样本方差. 显著性水平为α .2212S S 、(3) μ1 , μ2 未知,检验.2222012112::H H σσσσ=≠,(1)σ12,σ22已知,检验.012112::H H μμμμ=≠,这些假设检验可细分为许多种情形,这里只介绍3种最常见的类型:(2)σ12,σ22未知但σ12 =σ22,检验.012112::H H μμμμ=≠,两个正态总体的参数检验,主要有比较两个均值μ1与μ2的大小,比较两个方差σ12与σ22的大小.根据已知条件的不同,由样本观测值求出统计量的观测值u ,然后作判断.确定拒绝域2{}U u α>选取检验统计量221212~(0,1)X YU N n n σσ-=+U 检验法建立假设012112::.H H μμμμ=≠,借鉴上一章区间估计(1) 已知,检验.12μμ-2212,σσ1212~(2)11w X Y T t n n S n n -=+-+122{(2)}T t n n α>+-(2) 未知但σ12 =σ22,检验.2212,σσ12μμ-T 检验法建立假设012112::.H H μμμμ=≠,由样本观测值求出统计量的观测值t ,然后作判断.确定拒绝域选取检验统计量211222~(1,1)S F F n n S =--2212121{(1,1)(1,1) 或}F F n n F F n n αα-<-->--2222012112::H H σσσσ=≠,(3) μ1 , μ2 未知,检验.2212/σσF 检验法建立假设由样本观测值求出统计量的观测值,然后作判断.确定拒绝域选取检验统计量在某种制造过程中需要比较两种钢板的强度,一种是冷轧钢板,另一种双面镀锌钢板。

假设检验

假设检验
假设检验
第一节 假设检验的基本原理 第二节 单个正态总体的假设检验 第三节 两个正态总体的假设检验
第一节:假设检验的基本原理
一、基本概念 假设检验是统计推断的另一种重要形式,
其任务是通过样本对未知的总体分布特征作 出合理的推测。
先对总体分布中的某些参数或对总体分布类 型做某种假设,然后根据样本值做出接受还 是拒绝所做假设的结论。
例如 若H0 : m = m0, 则H1 有以下三种情况: (1) H0 : m = m0, H1: m m0 (2) H0 : m = m0, H1 : m > m0 (3) H0 : m = m 0, H1 : m < m0
其中(1)称为双边检验.
其中(2), (3)称为单边检验.
第二步:选取一个合适的检验统计量,并根据原假设 H0和备择假设 H1 确定H0的拒绝域.
0.05 6
因为4.9>1.96 ,即观测值落在拒绝域内
所以拒绝原假设。
二 当2未知时, 均值m的检验(t检验)
1 (双边检验) H0: m = m0 H1: m m0
此时2未知, 不能用
U

X
m0
n

T

X
m0
S
n
当H0成立时,
T

X m0
S
~ t(n 1)
n
因此, 对给定的, 查t分布表, 使
X


m0
~ N(0, 1)
n
当H0 成立时, u的值不应太大.
而当H1 成立时, u的值往往偏大.
因此, P{uu}=
于是得到H0的拒绝域为 (u, )
类似地, 若检验的假设是

两个正态总体期望假设检验的回归方法

两个正态总体期望假设检验的回归方法

2012年9月第25期科技视界SCIENCE &TECHNOLOGY VISION 科技视界※基金项目:浙江省教育厅科研计划一般项目(Y201119868)。

0引言设ξ,η是两个相互独立的随机变量,ξ~N (μ1,σ12),η~N(μ2,σ22),ξ1,ξ2,…,ξn 和η1,η2,…,ηn 分别是来自总体ξ和η的样本,它们的样本均值和方差分别记为ξ軃,S 12和η軍,S 22。

ξ軃=1n 1n i =1Σξi ,S 12=1n 1-1n i =1Σ(ξi -ξ軃)2,η軍=1n 2n i =1Σξi ,S 22=1n 2-1n i =1Σ(ηi-η軍)2。

考虑总体方差σ12与σ22未知但相等的情况,当原假设H 0:μ1=μ2成立时,采用的统计量[1]是T =ξ軃-η軍S w1n 1+1n 2姨(1),其中S w 2=(n 1-1)S 12+(n 2-1)S 22n 1+n 2-2,该统计量服从自由度为n -2的t 分布,其中n =n 1+n 2。

本文通过引进虚拟变量(dummy variable)[2],建立回归模型,给出两个正态总体的期望的假设检验的另种方法。

该回归的方法不仅能检验两个总体的期望是否相同,而且能估计期望之差及期望之差的置信区间。

1回归模型的建立定义虚拟变量d i =0,样本点来自总体η1,样本点来自总体,ξ,i =1,2,…,n 1+n 2。

n 1+n 2维列向量y =(ξ1,ξ2,…,ξn ,η1,η2,…,ηn )′,对应的n 1+n 2维列向量d =(0,0,…,0,1,1,…,1)′。

建立回归模型y =β0+β1d +ε,假设该模型满足经典的假定条件[2],其中E (ε|d )=0,E(ε′ε|d )=σ2I n 。

则有E (y |d =1)=β0+β1,E (y |d =0)=β0,β1=E (y |d =1)-E (y |d =0)表示两个总体ξ和η的期望的差。

两个正态总体均值差和方差的假设检验

两个正态总体均值差和方差的假设检验

方差齐性检验是检验 两个正态总体方差是 否相等的统计方法。
常用的方差齐性检验 方法有:Levene检验、 Bartlett检验和Welch 检验。
Levene检验基于方差 分析,通过比较不同 组间的方差来判断方 差是否齐性。
Bartlett检验基于 Kruskal-Wallis秩和 检验,通过比较不同 组间的中位数和四分 位距来判断方差是否 齐性。
独立样本的均值检验
1
独立样本的均值检验是用来比较两个独立正态总 体的均值是否存在显著差异的统计方法。
2
常用的独立样本均值检验方法包括t检验和z检验, 其中t检验适用于小样本和大样本,而z检验适用 于大样本。
3
在进行独立样本均值检验时,需要满足独立性、 正态性和方差齐性的假设,以确保检验结果的准 确性和可靠性。
根据研究目的和数据类型,选择合适的统计量 来描述样本数据。
确定临界值
根据统计量的分布和显著性水平,确定临界值。
计算样本统计量
根据样本数据计算所选统计量的值。
做出决策
将样本统计量的值与临界值进行比较,做出接受 或拒绝原假设的决策。
解读结果
根据决策结果解读研究问题,给出结论和建议。
Part
02
两个正态总体均值的假设检验
Part
05
结论与展望
假设检验的优缺点
理论基础坚实
假设检验基于概率论和统计学原理,具有坚实的理论基础。
操作简便
假设检验提供了清晰的步骤和标准,方便研究者进行操作。
假设检验的优缺点
• 实用性强:假设检验广泛应用于各个领域,为科学研究和实践提供了有效的工具。
假设检验的优缺点
01
对数据要求较高
假设检验对数据的分布、样本量 等有一定的要求,不符合条件的 样本可能导致检验结果不准确。

两个正态总体方差的假设检验

两个正态总体方差的假设检验

两个正态总体方差的假设检验1. 引言嘿,大家好!今天我们来聊聊一个在统计学中非常重要,但听起来可能有点儿复杂的话题——两个正态总体方差的假设检验。

别担心,我们会用通俗易懂的方式,把这个问题掰开了揉碎了讲清楚。

你可能会问,“这跟我有什么关系呢?”其实,这些统计方法不仅仅是数学家的专属,很多实际问题都可以通过这些方法得到解决。

好比你买衣服时,会比较不同品牌的裤子,看哪个更适合你,其实也是在做“检验”。

所以,搞懂这个概念,绝对会让你在数据分析的世界里如鱼得水。

我们从最基本的概念开始聊起,循序渐进,一步一步深入。

2. 正态总体和方差2.1 正态总体是什么?首先,让我们搞清楚什么是“正态总体”。

简单来说,正态总体就是数据分布呈现钟形曲线的情况。

在生活中,很多自然现象都符合这种分布,比如人的身高、体重、考试分数等等。

正态分布的特点就是数据集中在中间,向两边渐渐减少,就像一个标准的山峰。

想象一下你在玩飞盘,飞盘从空中下落时的轨迹,就是一个典型的钟形曲线。

2.2 方差的作用接下来,我们来谈谈方差。

方差是用来衡量数据的离散程度的,换句话说,就是数据离中间值的远近程度。

方差大的话,数据就会分布得比较散,方差小的话,数据就比较集中。

好比你家里那只爱乱跑的猫,方差大,它就到处跑;而如果它安安静静地待在一个角落,那就是方差小了。

3. 假设检验的基本概念3.1 什么是假设检验?好,接下来进入正题:假设检验。

假设检验就像是在做一个“真心话大冒险”,我们要通过数据来验证某个“假设”是否成立。

比如你和朋友讨论哪家餐馆的菜最好,你们就会提出一个假设,然后用实际的体验来检验这个假设。

统计学中的假设检验也是类似的,只不过我们用的是数字和公式来做这个验证。

3.2 两个正态总体方差的假设检验现在,我们要做的是两个正态总体方差的假设检验。

这就像是比较两个篮球队的实力,看看哪个队更强。

假设我们有两个正态分布的数据集,我们的任务就是判断这两个数据集的方差是否相同。

两个正态总体均值的检验.

两个正态总体均值的检验.

S
2 w
(n1
1)S1*2 (n2 1)S2*2 n1 n2 2
.
当H0为真时, 根据第六章§3定理2知,
T ~ t(n1 n2 2).
第八章 假设检验
§8.3 两个正态总体参数的假设检验
对给定的 , 由t分布的分位表可查得 t/ 2(n1 n2 2).
X Y
使得P{ Sw
1 1 t / 2 (n1 n2 2)}
,
2均为
2

知.
需要检验假设:
H0
:
2 1
22,
H1 :12 22 ,
第八章 假设检验
§8.3 两个正态总体参数的假设检验
当 H0 为真时,
E
(
S1*
2
)
2 1
2 2
E(S2*2 ),
当 H1 为真时,
E(
S1*2
)
2 1
22
E(S2*2 ),
当 H1 为真时,


值S1*
S
* 2
2 2
有 偏







故拒绝域的形式为 s1*2 s2* 2
k1或
s1* 2 s2* 2
k2,
此处 k1和k2 的值由下式确定:
第八章 假设检验
P
S1* S2*
2 2
k1
S1*2 S2*2
k2
§8.3
两个正态总体参数的假设检验
为了计算方便, 习惯上取
P
S1* S2*
2 2
k1
,
2
P
P{| ( X Y ) /
故拒绝域为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
得拒绝域为 F<F1/2(n11, n21) 或F>F/2(n11, n21)
,n2 1)=9.60 查表 Fb=F0.025 (n1 1
Fa=F0.975 (n1 1 ,n2 1)=
S12 2653.5 计算 F 2 0.23 S2 11784
1 1 = 0.10 F0.025 (n2 1,n1 1) 9.60
2
2 x =998 s1 =2653.5
S 在H 0成立的条件下, F ~ F (n1 1,n2 1) S
2 2
y =820 s 2 2 =11784
对于给定的检验水平α=0.05,构造小概率事件 p{F<F1/2(n11, n21)∪F>F/2(n11, n21)} =
§9.4两个正态的假设检验
在实际工作中还常常需要对两个正态进行比较。 §9.1 例3就属此种。假设 i N(i , i2 ), i=1,2 关于两个总体中的相应参数比较问题,本节介绍 下面三种: 2 (1) 未知 μ1,μ2,检验假设 H0:12 = 2 2 (2) 未知μ1,μ2, 检验假设 H0:12 2 2 (3) 未知 12, 22 但知道 12= 2 检验假设 H0:1=2
α/2
F1/2(n11, n21)=
1 Fa=F1- 2 (n1 1,n2 1)= F 2 (n2 1,n1 1)
2 S1 若F1- 2 (n1 1,n2 1)< 2 <F 2 (n1 1,n2 1) 接受假设H0 S2
否则,拒绝假设H0
二、两个正态总体方差的单边假设检验 2 2 H0:1 2 未知μ1,μ2, 检验假设
2 设X1, , X n1 ~N (1 , 12 ); Y1, , Yn2 ~N (2 , 2 ), iid iid
两样本独立, 给定检验水平 , 由观测值
选取统计量 F S12 / 12 S /
2 2 2 2
~F (n1 1,n2 1)
在H 0成立的条件下,
2 2 S12 S1 / 1 F 2 2 2 = F S2 S2 / 2
一、方差比的假设检验 假定1, 2未知
2 设X1, , X n1 ~N (1 , ); Y1, , Yn2 ~N (2 , 2 ), 2 1 iid iid
两样本独立, 给定检验水平 , 由观测值
x1, , xn1;
2 1 2 2
y1, , yn2
F S12 / 12
2 2 S2 /2
选取统计量
对于给定的检验水平α=0.05,构造小概率事件
p{T >t (2n 2)} , 即得拒绝域为 T >t (2n 2)
查表 t (2n 2)=t0.05 ( 8)=2.306
计算 t = 998 820 =3.313 2653.5 11784 5
t =3.313>2.306=t0.05 (8)
检验假设 H0: ; 选取统计量
S12 在H 0成立的条件下, F 2 ~ F (n1 1,n2 1) S2
对于给定的检验水平α,构造小概率事件 p{FF1/2(n11, n21)∪FF/2(n11, n21)} =
由p{FF1/2(n11, n21) 或FF/2(n11, n21)} = 得拒绝域 FF1/2(n11, n21) 或FF/2(n11, n21) Fb(n11, n21)可以直接查到 Fa Fb α/2 1-α
对于给定的检验水平α,构造小概率事件
p{F*>F(n11, n21)} =
得拒绝域为: F>F(n11, n21)
三、均值差的假设检验
iid
两样本独立,给定检验水平,由观测值x1, , xn1; y1, , yn2 检验假设 H 0:1 2;
2 设X1, , X n1 ~N (u1,12 ); Y1, , Yn2 ~N (u2, 2 ),
选取统计量 F 2 2 S2 / 2 S12 在H 0成立的条件下, F 2 ~ F (n1 1,n2 1) S2
S12 / 12
对于给定的检验水平α=0.05,构造小概率事件

2 首先建立待检假设 H0:12= 2
选取统计量
2 1 2 2
F
S /1 S /
2 1 2 2
iid
假定
2 1 2 2
2
在H 0成立的条件下, T
X Y
2 1 2 2
(n 1 1) S (n2 1) S n1 n 2 2
~ t (n1 n
p{ T t (n1 n2 2)} ,即得拒绝域为 T t (n1 n2 2)
Fa=0.10<0.23<9.60=Fb
2 接受H0,可以认为12= 2

然后建立待检假设 H' :1=2 0
T X Y X Y
2 S12 S 2 n
2 (n 1 1) S12 (n2 1) S2 1 n1 1 n2 n1 n 2 2 X Y 在H 0成立的条件下, T ~t (2n 2) 2 2 S1 S2 n
拒绝假设H'0:1 2
即认为两种 玉米产量有明显的差异。
关于两个正态总体期望值相等的假设检验,需要 用到(定理7.4推论2中)两个总体方差相等的条件。 这个条件的成立,往往是从已有的大量经验中 得到或者是事先进行了关于两个方差相等的检验, 并且得到了肯定的结论。
例1 在10个相同的地块上对甲,乙两种玉米进行 品比试验,得如下资料(单位:kg) 甲 951 966 1008 1082 983

730
864
742
774
990
给定检验水平α =0.05,则问题是检验两个总体的, 2 是否相等 期望值1与2是否相等 以及方差12与 2
2 2 H : = 解 首先建立待检假设 0 1 2
相关文档
最新文档