数学理 答案卷 押题卷 第7套 2012年5月

合集下载

2012年五月--数学答案

2012年五月--数学答案

2011-2012学年度武汉市部分学校九年级五月供题数学参考答案一、选择题(本大题共12小题,每小题3分,共36分)二、填空题(本大题共4小题,每小题3分,共12分)13 14.8;8;8 15.8 16.0.6或2.6 三、解答下列各题(共9小题,共72分) 17.(本小题满分6分)解:方程两边同乘以2(x -2),去分母得,…………………………………………1分1+4(x -2)=2x . ……………………………………………………2分 去括号得,1+4x -8=2x . ……………………………………………………3分∴x =72. ……………………………………………………………4分经检验,x =72是原方程的解. ……………………………………………5分∴ 原方程的解是x =72. …………………………………………………6分18.(本小题满分6分)解:把(1,6)代入直线的函数关系式y =kx +4中,得,6=k +4, ……………………………………………………2分 解得:k =2. ……………………………………………………3分∴直线的函数关系式为24y x =+.∴240x +≤. ……………………………………………………5分 ∴x ≤-2. ……………………………………………………6分 19.(本小题满分6分)证明:在Rt △ABE 和Rt △CBF 中,∵⎩⎨⎧==CFAE CB AB ……………………………………………………3分∴Rt △ABE ≌Rt △CBF . ……………………………………………………4分 ∴∠AEB =∠CFB . ……………………………………………………6分20.(本小题满分7分)解:(1)根据题意,可以列出如下的表格:……………………………………………3分由表可知,随机抽取1张,不放回,接着再随机抽取1张的所有可能的结果有12种.…4分 它们出现的可能性相等; ……………………………………………5分 (2)由表可知,事件A 的结果有3种, ……………………………………………6分 ∴P (A )=14 . ……………………………………………7分21.(本小题满分7分) (1)、(2)问画图如图:……………………………………………5分(3)( 5 -1)π. ……………………………………………7分 22.(本小题满分8分)(1)证明:连接OE . ……………………………………………1分 ∵OB =OE ,∴∠OBE =∠OEB . ∵BC =EC ,∴∠CBE =∠CEB . ……………………………………………2分 ∴∠OBC =∠OEC . ∵BC 为⊙O 的切线,∴∠OEC =∠OBC =90°, ……………………………………………3分 ∵OE 为半径,∴CD 为⊙O 的切线.……………………………………………4分 (2)延长BE 交AM 于点G ,连接AE ,过点D 作DT ⊥BC 于点T .因为DA 、DC 、CB 为⊙O 的切线, ∴DA =DE ,CB =CE .在Rt △ABC 中,因为tan ∠BAC =2,令AB =2x ,则BC = 2 x . ∴CE =BC = 2 x . ……………………………………………5分 令AD =DE =a ,则在Rt △DTC 中,CT =CB -AD = 2 x -a ,DC =CE +DE = 2 x +a ,DT =AB =2x , ∵DT 2=DC 2-CT 2,∴(2x )2=( 2 x +a )2-( 2 x -a )2. ……………………………………………6分 解之得,x = 2 a . ……………………………………………7分 ∵AB 为直径, ∴∠AEG =90°. ∵AD =ED ,∴AD =ED =DG =a .∴AG =2a . ……………………………………………8分 因为AD 、BC 为⊙O 的切线,AB 为直径, ∴AG ∥BC .所以△AHG ∽△CHB . ∴AH CH =AG CB =2a 2 x . ……………………………………………9分 ∴AHCH=1. ……………………………………………10分 23.(本小题满分10分)(1)解:如图所示,在给定的平面直角坐标系中,设最高点为A ,入水点为B .∵A 点距水面2103米,跳台支柱10米, ∴A 点的纵坐标为23,由题意可得O (0,0),B (2,-10).……… 1分设该抛物线的关系式为c bx ax y ++=2,(c b a a ,,,0≠为常数) 过点O (0,0),B (2,-10),且函数的最大值为23,………………2分 则有: ⎩⎨⎧c =0,4a +2b +c =﹣10,4ac -b 24a =23.………………………………………………5分解得: ⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=0310625c b a ………………………………………………………6分∴所求抛物线的关系式为2251063y x x =-+.…………………………7分 (2)解:试跳会出现失误.∵当x =383255-=时,y =163-.………………………………………8分 此时,运动员距水面的高为10163-=143<5,…………………………9分∴试跳会出现失误.………………………………………………………10分24.(本小题满分10分)(1)EF =6;DF=…………………………………………………2分 (2)BF +2DG =2CD .理由如下:如图⑴,连接AE ,AC .∵△EPC 为等腰Rt △;四边形ABCD 为正方形, ∴2==CBCACP CE . ∠ECP =∠ACB =45°, ∴∠ECA =∠PCB .∴△EAC ∽△PCB . ……………………………………………………4分 ∴∠EAC =∠PBC =90°. ∵∠BAC =∠ABD =45°, ∴∠EAB +∠ABF =180°. ∴EA ∥BF . 又AB ∥EF ,∴四边形EABF 为平行四边形.…………………………………………5分 ∴EF =AB =CD . 又∵AB ∥CD , ∴EF ∥CD .∴△EFG ∽△CDG .∴1==DGGFCD EF .………………………………………………………6分 ∴DF =2GF =2DG .……………………………………………………7分 ∴BF +2DG =BD =2CD .……………………………………………8分 (3)tan ∠BPC =25或37.…………………………………………………10分P25.(本小题满分12分) 解:(1)当y =0时,x 2-2x -3=0,解之得x 1=﹣1,x 2=3, 所以A 、B 两点的坐标分别为(﹣1,0),(3,0).……………………………………………2分 当x =0时,y =﹣3,∴C 点的坐标为(0,﹣3).……………………………………………3分 (2)由题意可知,抛物线y =(x -t )2+h 沿射线CB 作平移变换,其顶点D (t ,h )在射线CB 上运动,易知直线CB 的函数关系式为y =x -3,∴h =t -3.………………………4分①选取△ADE .△ADE 与△ABE 共边AE ,当它们的面积相等时,点D 和点B 到AE 的距离相等,此时直线AE ∥BC ,∴直线AE 的函数关系式为y =x +1,∴点E 的坐标为(3,4).………………5分因为点E 在抛物线上,∴4=(3-t )2+h ,∴4=(3-t )2+(t -3), ………………6分解之得,t 1=5+172 ,t 2=5-172 . …………………………………7分②选取△ADB .△ADB 与△ABE 共边AB ,当它们的面积相等时,点D 和点E 到x 轴的距离相等, ∵点D 到x 轴的距离为| t -3|,点E 到x 轴的距离为|(3-t )2+(t -3)|,∴| t -3|=|(3-t )2+(t -3)| . ………………………5分 t -3=(3-t )2+(t -3),或3-t =(3-t )2+(t -3), ………………………6分 解之得t =3或t =1,其中t =3时,点D 、B 重合,舍去,∴t =1. …………7分 (3)(-3,-3),(-1,-1),(2,2),(32,32),(-32,-32). ……………………本小问5分,写对一个坐标给一分.。

2012年全国统一高考数学试卷(理科)(新课标)(含解析版)

2012年全国统一高考数学试卷(理科)(新课标)(含解析版)

2012年全国统一高考数学试卷(理科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为( )A.3B.6C.8D.102.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A.12种B.10种C.9种D.8种3.(5分)下面是关于复数z=的四个命题:其中的真命题为( ),p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p44.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为( )A.B.C.D.5.(5分)已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=( )A.7B.5C.﹣5D.﹣76.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则( )A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A.6B.9C.12D.188.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为( )A.B.C.4D.89.(5分)已知ω>0,函数f(x)=sin(ωx+)在区间[,π]上单调递减,则实数ω的取值范围是( )A.B.C.D.(0,2]10.(5分)已知函数f(x)=,则y=f(x)的图象大致为( )A.B.C.D.11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为( )A.B.C.D.12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为( )A.1﹣ln2B.C.1+ln2D.二.填空题:本大题共4小题,每小题5分.13.(5分)已知向量夹角为45°,且,则= .14.(5分)设x,y满足约束条件:;则z=x﹣2y的取值范围为 .15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为 .16.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为 . 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+ asinC﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为;求b,c.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:日需求量n14151617181920频数10201616151310以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC;(2)求二面角A1﹣BD﹣C1的大小.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21.(12分)已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.2012年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为( )A.3B.6C.8D.10【考点】12:元素与集合关系的判断.【专题】5J:集合.【分析】由题意,根据集合B中的元素属性对x,y进行赋值得出B中所有元素,即可得出B中所含有的元素个数,得出正确选项【解答】解:由题意,x=5时,y=1,2,3,4,x=4时,y=1,2,3,x=3时,y=1,2,x=2时,y=1综上知,B中的元素个数为10个故选:D.【点评】本题考查元素与集合的关系的判断,解题的关键是理解题意,领会集合B中元素的属性,用分类列举的方法得出集合B中的元素的个数.2.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A.12种B.10种C.9种D.8种【考点】D9:排列、组合及简单计数问题.【专题】11:计算题.【分析】将任务分三步完成,在每步中利用排列和组合的方法计数,最后利用分步计数原理,将各步结果相乘即可得结果【解答】解:第一步,为甲地选一名老师,有=2种选法;第二步,为甲地选两个学生,有=6种选法;第三步,为乙地选1名教师和2名学生,有1种选法故不同的安排方案共有2×6×1=12种故选:A.【点评】本题主要考查了分步计数原理的应用,排列组合计数的方法,理解题意,恰当分步是解决本题的关键,属基础题3.(5分)下面是关于复数z=的四个命题:其中的真命题为( ),p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p4【考点】2K:命题的真假判断与应用;A5:复数的运算.【专题】11:计算题.【分析】由z===﹣1﹣i,知,,p 3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,由此能求出结果.【解答】解:∵z===﹣1﹣i,∴,,p3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,故选:C.【点评】本题考查复数的基本概念,是基础题.解题时要认真审题,仔细解答. 4.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为( )A.B.C.D.【考点】K4:椭圆的性质.【专题】11:计算题.【分析】利用△F2PF1是底角为30°的等腰三角形,可得|PF2|=|F2F1|,根据P为直线x=上一点,可建立方程,由此可求椭圆的离心率.【解答】解:∵△F2PF1是底角为30°的等腰三角形,∴|PF2|=|F2F1|∵P为直线x=上一点∴∴故选:C.【点评】本题考查椭圆的几何性质,解题的关键是确定几何量之间的关系,属于基础题.5.(5分)已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=( )A.7B.5C.﹣5D.﹣7【考点】87:等比数列的性质;88:等比数列的通项公式.【专题】11:计算题.【分析】由a4+a7=2,及a5a6=a4a7=﹣8可求a4,a7,进而可求公比q,代入等比数列的通项可求a1,a10,即可【解答】解:∵a4+a7=2,由等比数列的性质可得,a5a6=a4a7=﹣8∴a4=4,a7=﹣2或a4=﹣2,a7=4当a4=4,a7=﹣2时,,∴a1=﹣8,a10=1,∴a1+a10=﹣7当a4=﹣2,a7=4时,q3=﹣2,则a10=﹣8,a1=1∴a1+a10=﹣7综上可得,a1+a10=﹣7故选:D.【点评】本题主要考查了等比数列的性质及通项公式的应用,考查了基本运算的能力.6.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则( )A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数【考点】E7:循环结构.【专题】5K:算法和程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出a1,a2,…,a n中最大的数和最小的数.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知,该程序的作用是:求出a1,a2,…,a n中最大的数和最小的数其中A为a1,a2,…,a n中最大的数,B为a1,a2,…,a n中最小的数故选:C.【点评】本题主要考查了循环结构,解题的关键是建立数学模型,根据每一步分析的结果,选择恰当的数学模型,属于中档题.7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A.6B.9C.12D.18【考点】L!:由三视图求面积、体积.【专题】11:计算题.【分析】通过三视图判断几何体的特征,利用三视图的数据求出几何体的体积即可.【解答】解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3;底面三角形斜边长为6,高为3的等腰直角三角形,此几何体的体积为V=×6×3×3=9.故选:B.【点评】本题考查三视图与几何体的关系,考查几何体的体积的求法,考查计算能力.8.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为( )A.B.C.4D.8【考点】KI:圆锥曲线的综合.【专题】11:计算题;16:压轴题.【分析】设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,由C与抛物线y2=16x的准线交于A,B两点,,能求出C的实轴长.【解答】解:设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,∵C与抛物线y2=16x的准线l:x=﹣4交于A,B两点,∴A(﹣4,2),B(﹣4,﹣2),将A点坐标代入双曲线方程得=4,∴a=2,2a=4.故选:C.【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.9.(5分)已知ω>0,函数f(x)=sin(ωx+)在区间[,π]上单调递减,则实数ω的取值范围是( )A.B.C.D.(0,2]【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】11:计算题;16:压轴题.【分析】法一:通过特殊值ω=2、ω=1,验证三角函数的角的范围,排除选项,得到结果.法二:可以通过角的范围,直接推导ω的范围即可.【解答】解:法一:令:不合题意排除(D)合题意排除(B)(C)法二:,得:.故选:A.【点评】本题考查三角函数的单调性的应用,函数的解析式的求法,考查计算能力.10.(5分)已知函数f(x)=,则y=f(x)的图象大致为( )A.B.C.D.【考点】4N:对数函数的图象与性质;4T:对数函数图象与性质的综合应用.【专题】11:计算题.【分析】考虑函数f(x)的分母的函数值恒小于零,即可排除A,C,由f(x)的定义域能排除D,这一性质可利用导数加以证明【解答】解:设则g′(x)=∴g(x)在(﹣1,0)上为增函数,在(0,+∞)上为减函数∴g(x)<g(0)=0∴f(x)=<0得:x>0或﹣1<x<0均有f(x)<0排除A,C,又f(x)=中,,能排除D.故选:B.【点评】本题主要考查了函数解析式与函数图象间的关系,利用导数研究函数性质的应用,排除法解图象选择题,属基础题11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为( )A.B.C.D.【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;5F:空间位置关系与距离.【分析】根据题意作出图形,利用截面圆的性质即可求出OO1,进而求出底面ABC 上的高SD,即可计算出三棱锥的体积.【解答】解:根据题意作出图形:设球心为O,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC.∵CO1==,∴OO1==,∴高SD=2OO1=,∵△ABC是边长为1的正三角形,∴S△ABC=,∴V三棱锥S﹣ABC==.故选:C.【点评】本题考查棱锥的体积,考查球内接多面体,解题的关键是确定点S到面ABC的距离.12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为( )A.1﹣ln2B.C.1+ln2D.【考点】4R:反函数;IT:点到直线的距离公式.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由于函数与函数y=ln(2x)互为反函数,图象关于y=x对称,要求|PQ|的最小值,只要求出函数上的点到直线y=x的距离为的最小值,设g(x)=,利用导数可求函数g(x)的单调性,进而可求g(x)的最小值,即可求.【解答】解:∵函数与函数y=ln(2x)互为反函数,图象关于y=x对称,函数上的点到直线y=x的距离为,设g(x)=(x>0),则,由≥0可得x≥ln2,由<0可得0<x<ln2,∴函数g(x)在(0,ln2)单调递减,在[ln2,+∞)单调递增,∴当x=ln2时,函数g(x)min=1﹣ln2,,由图象关于y=x对称得:|PQ|最小值为.故选:B.【点评】本题主要考查了点到直线的距离公式的应用,注意本题解法中的转化思想的应用,根据互为反函数的对称性把所求的点点距离转化为点线距离,构造很好二.填空题:本大题共4小题,每小题5分.13.(5分)已知向量夹角为45°,且,则= 3 .【考点】9O:平面向量数量积的性质及其运算;9S:数量积表示两个向量的夹角.【专题】11:计算题;16:压轴题.【分析】由已知可得,=,代入|2|====可求【解答】解:∵,=1∴=∴|2|====解得故答案为:3【点评】本题主要考查了向量的数量积定义的应用,向量的数量积性质||=是求解向量的模常用的方法14.(5分)设x,y满足约束条件:;则z=x﹣2y的取值范围为 .【考点】7C:简单线性规划.【专题】11:计算题.【分析】先作出不等式组表示的平面区域,由z=x﹣2y可得,y=,则﹣表示直线x﹣2y﹣z=0在y轴上的截距,截距越大,z越小,结合函数的图形可求z的最大与最小值,从而可求z的范围【解答】解:作出不等式组表示的平面区域由z=x﹣2y可得,y=,则﹣表示直线x﹣2y﹣z=0在y轴上的截距,截距越大,z越小结合函数的图形可知,当直线x﹣2y﹣z=0平移到B时,截距最大,z最小;当直线x﹣2y﹣z=0平移到A时,截距最小,z最大由可得B(1,2),由可得A(3,0)∴Z max=3,Z min=﹣3则z=x﹣2y∈[﹣3,3]故答案为:[﹣3,3]【点评】平面区域的范围问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为 .【考点】CP:正态分布曲线的特点及曲线所表示的意义.【专题】11:计算题;16:压轴题.【分析】先根据正态分布的意义,知三个电子元件的使用寿命超过1000小时的概率为,而所求事件“该部件的使用寿命超过1000小时”当且仅当“超过1000小时时,元件1、元件2至少有一个正常”和“超过1000小时时,元件3正常”同时发生,由于其为独立事件,故分别求其概率再相乘即可【解答】解:三个电子元件的使用寿命均服从正态分布N(1000,502)得:三个电子元件的使用寿命超过1000小时的概率为设A={超过1000小时时,元件1、元件2至少有一个正常},B={超过1000小时时,元件3正常}C={该部件的使用寿命超过1000小时}则P(A)=,P(B)=P(C)=P(AB)=P(A)P(B)=×=故答案为【点评】本题主要考查了正态分布的意义,独立事件同时发生的概率运算,对立事件的概率运算等基础知识,属基础题16.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为 1830 .【考点】8E:数列的求和;8H:数列递推式.【专题】11:计算题;35:转化思想;4M:构造法;54:等差数列与等比数列.【分析】由题意可得a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97,变形可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a7=2,a12+a10=40,a13+a15=2,a16+a14=56,…利用数列的结构特征,求出{a n}的前60项和【解答】解:∵a n+1+(﹣1)n a n=2n﹣1,故有a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97.从而可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a11=2,a12+a10=40,a13+a11=2,a16+a14=56,…从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.{a n}的前60项和为15×2+(15×8+)=1830【点评】本题考查数列递推式,训练了利用构造等差数列求数列的前n项和,属中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+ asinC﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为;求b,c.【考点】HP:正弦定理.【专题】33:函数思想;4R:转化法;58:解三角形.【分析】(1)已知等式利用正弦定理化简,整理后得到sin(A﹣30°)=.即可求出A的值;(2)若a=2,由△ABC的面积为,求得bc=4.①,再利用余弦定理可得b+c=4.②,结合①②求得b和c的值.【解答】解:(1)由正弦定理得:acosC+asinC﹣b﹣c=0,即sinAcosC+sinAsinC=sinB+sinC∴sinAcosC+sinAsinC=sin(A+C)+sinC,即sinA﹣cosA=1∴sin(A﹣30°)=.∴A﹣30°=30°∴A=60°;(2)若a=2,△ABC的面积=,∴bc=4.①再利用余弦定理可得:a2=b2+c2﹣2bc•cosA=(b+c)2﹣2bc﹣bc=(b+c)2﹣3×4=4,∴b+c=4.②结合①②求得b=c=2.【点评】本题考查了正弦定理及余弦定理的应用,考查了三角形面积公式的应用,是中档题.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:日需求量n14151617181920频数10201616151310以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.【考点】CH:离散型随机变量的期望与方差;CS:概率的应用.【专题】15:综合题.【分析】(1)根据卖出一枝可得利润5元,卖不出一枝可得赔本5元,即可建立分段函数;(2)(i)X可取60,70,80,计算相应的概率,即可得到X的分布列,数学期望及方差;(ii)求出进17枝时当天的利润,与购进16枝玫瑰花时当天的利润比较,即可得到结论.【解答】解:(1)当n≥16时,y=16×(10﹣5)=80;当n≤15时,y=5n﹣5(16﹣n)=10n﹣80,得:(2)(i)X可取60,70,80,当日需求量n=14时,X=60,n=15时,X=70,其他情况X=80,P(X=60)===0.1,P(X=70)=0.2,P(X=80)=1﹣0.1﹣0.2=0.7,X的分布列为X607080P0.10.20.7EX=60×0.1+70×0.2+80×0.7=76DX=162×0.1+62×0.2+42×0.7=44(ii)购进17枝时,当天的利润的期望为y=(14×5﹣3×5)×0.1+(15×5﹣2×5)×0.2+(16×5﹣1×5)×0.16+17×5×0.54=76.4∵76.4>76,∴应购进17枝【点评】本题考查分段函数模型的建立,考查离散型随机变量的期望与方差,考查学生利用数学知识解决实际问题的能力.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC;(2)求二面角A1﹣BD﹣C1的大小.【考点】LO:空间中直线与直线之间的位置关系;MJ:二面角的平面角及求法.【专题】15:综合题.【分析】(1)证明DC1⊥BC,只需证明DC1⊥面BCD,即证明DC1⊥DC,DC1⊥BD ;(2)证明BC⊥面ACC1A1,可得BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,C1H,可得点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角,由此可求二面角A1﹣BD﹣C1的大小.【解答】(1)证明:在Rt△DAC中,AD=AC,∴∠ADC=45°同理:∠A1DC1=45°,∴∠CDC1=90°∴DC1⊥DC,DC1⊥BD∵DC∩BD=D∴DC1⊥面BCD∵BC⊂面BCD∴DC1⊥BC(2)解:∵DC1⊥BC,CC1⊥BC,DC1∩CC1=C1,∴BC⊥面ACC1A1,∵AC⊂面ACC1A1,∴BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,OH∵A1C1=B1C1,∴C1O⊥A1B1,∵面A1B1C1⊥面A1BD,面A1B1C1∩面A1BD=A1B1,∴C1O⊥面A1BD而BD⊂面A1BD∴BD⊥C1O,∵OH⊥BD,C1O∩OH=O,∴BD⊥面C1OH∴C1H⊥BD,∴点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角设AC=a,则,,∴sin∠C1DO=∴∠C1DO=30°即二面角A1﹣BD﹣C1的大小为30°【点评】本题考查线面垂直,考查面面角,解题的关键是掌握线面垂直的判定,正确作出面面角,属于中档题.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.【考点】J1:圆的标准方程;K8:抛物线的性质;KI:圆锥曲线的综合.【专题】15:综合题;16:压轴题.【分析】(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,由△ABD的面积S△ABD=,知=,由此能求出圆F的方程.(2)由对称性设,则点A,B关于点F对称得:,得:,由此能求出坐标原点到m,n距离的比值.【解答】解:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,∵△ABD的面积S△ABD=,∴=,解得p=2,所以F坐标为(0,1),∴圆F的方程为x2+(y﹣1)2=8.(2)由题设,则,∵A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称.由点A,B关于点F对称得:得:,直线,切点直线坐标原点到m,n距离的比值为.【点评】本题考查抛物线与直线的位置关系的综合应用,具体涉及到抛物线的简单性质、圆的性质、导数的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.21.(12分)已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】15:综合题;16:压轴题;2A:探究型;35:转化思想.【分析】(1)对函数f(x)求导,再令自变量为1,求出f′(1)得到函数的解析式及导数,再由导数求函数的单调区间;(2)由题意,借助导数求出新函数的最小值,令其大于0即可得到参数a,b 所满足的关系式,再研究(a+1)b 的最大值【解答】解:(1)f(x)=f'(1)e x﹣1﹣f(0)x+⇒f'(x)=f'(1)e x﹣1﹣f(0)+x令x=1得:f(0)=1∴f(x)=f'(1)e x﹣1﹣x+令x=0,得f(0)=f'(1)e﹣1=1解得f'(1)=e故函数的解析式为f(x)=e x﹣x+令g(x)=f'(x)=e x﹣1+x∴g'(x)=e x+1>0,由此知y=g(x)在x∈R上单调递增当x>0时,f'(x)>f'(0)=0;当x<0时,有f'(x)<f'(0)=0得:函数f(x)=e x﹣x+的单调递增区间为(0,+∞),单调递减区间为(﹣∞,0)(2)f(x)≥﹣(a+1)x﹣b≥0得h′(x)=e x﹣(a+1)①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增,x→﹣∞时,h(x)→﹣∞与h(x)≥0矛盾②当a+1>0时,h′(x)>0⇔x>ln(a+1),h'(x)<0⇔x<ln(a+1)得:当x=ln(a+1)时,h(x)min=(a+1)﹣(a+1)ln(a+1)﹣b≥0,即(a+1)﹣(a+1)ln(a+1)≥b∴(a+1)b≤(a+1)2﹣(a+1)2ln(a+1),(a+1>0)令F(x)=x2﹣x2lnx(x>0),则F'(x)=x(1﹣2lnx)∴F'(x)>0⇔0<x<当x=时,F(x)max=即当a=时,(a+1)b的最大值为【点评】本题考查导数在最值问题中的应用及利用导数研究函数的单调性,解题的关键是第一题中要赋值求出f′(1),易因为没有将f′(1)看作常数而出错,第二题中将不等式恒成立研究参数关系的问题转化为最小值问题,本题考查了转化的思想,考查判断推理能力,是高考中的热点题型,计算量大,易马虎出错.四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.【考点】N4:相似三角形的判定.【专题】14:证明题.【分析】(1)根据D,E分别为△ABC边AB,AC的中点,可得DE∥BC,证明四边形ADCF是平行四边形,即可得到结论;(2)证明两组对应角相等,即可证得△BCD~△GBD.【解答】证明:(1)∵D,E分别为△ABC边AB,AC的中点∴DF∥BC,AD=DB∵AB∥CF,∴四边形BDFC是平行四边形∴CF∥BD,CF=BD∴CF∥AD,CF=AD∴四边形ADCF是平行四边形∴AF=CD∵,∴BC=AF,∴CD=BC.(2)由(1)知,所以.所以∠BGD=∠DBC.因为GF∥BC,所以∠BDG=∠ADF=∠DBC=∠BDC.所以△BCD~△GBD.【点评】本题考查几何证明选讲,考查平行四边形的证明,考查三角形的相似,属于基础题.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【考点】Q4:简单曲线的极坐标方程;Q8:点的极坐标和直角坐标的互化;QL:椭圆的参数方程.【专题】15:综合题;16:压轴题.【分析】(1)确定点A,B,C,D的极坐标,即可得点A,B,C,D的直角坐标;(2)利用参数方程设出P的坐标,借助于三角函数,即可求得|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【解答】解:(1)点A,B,C,D的极坐标为点A,B,C,D的直角坐标为(2)设P(x0,y0),则为参数)t=|PA|2+|PB|2+|PC|2+|PD|2=4x2+4y2+16=32+20sin2φ∵sin2φ∈[0,1]∴t∈[32,52]【点评】本题考查极坐标与直角坐标的互化,考查圆的参数方程的运用,属于中档题.24.已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】17:选作题;59:不等式的解法及应用;5T:不等式.【分析】①不等式等价于,或,或,求出每个不等式组的解集,再取并集即得所求.②原命题等价于﹣2﹣x≤a≤2﹣x在[1,2]上恒成立,由此求得求a的取值范围.【解答】解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即,可得x≤1;,可得x∈∅;,可得x≥4.取并集可得不等式的解集为{x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].【点评】本题主要考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解,体现了分类讨论的数学思想,属于中档题.。

2012年金太阳高考押题精粹(数学理)试题

2012年金太阳高考押题精粹(数学理)试题

泄——2012年金太阳高考押题精粹 (数学理课标版)(30道选择题+20道非选择题)一.选择题(30道)1.【浙江省名校名师新编“百校联盟”交流联考数学理】已知集合A={}(,)0x y x y +=,{}(,)x B x y y e ==,则A B 的子集个数是( )A .1B .2C .4D .82. 【湖南省岳阳市2011届高三教学质量检测试卷】若集合M={}21m,,集合N={}4,2,{}4,2,1=N M ,则实数m 的值的个数是( )A.1B.2C.3D.43.【广东省汕头市2011届高三上学期期末质检数学理】设全集U 是实数集R ,M={x|x 2>4},N ={x|31≤<x },则图中阴影部分表示的集合是( )CA .{x|-2≤x <1}B .{x|-2≤x ≤2}C .{x|1<x ≤2}D .{x|x <2}4. 【2011北京门头沟一模文】已知集合A = {}2|<x x , B = {}034|2<+-x x x ,则A B 等于( )A. {}12|<<-x xB. {}21|<<x xC. {}32|<<x xD. {}32|<<-x x5.【江西省师大附中等七校联考】下列说法中,正确的是( )A .命题“若22am bm <,则a b <”的逆命题是真命题B .命题“x R ∃∈,02>-x x ”的否定是:“x R ∀∈,02≤-x x ” C .命题“p 或q ”为真命题,则命题“p ”和命题“q ”均为真命题D .已知R x ∈,则“1x >”是“2x >”的充分不必要条件 6. 【广东省揭阳市2010-2011学年下学期高中毕业班第二次高考模拟考数学】已知命题p :x R ∃∈,5cos 4x =;命题q :2,10x R x x ∀∈-+>.则下列结论正确的是( ) A .命题p q ∧是真命题 B .命题p q ∧⌝是真命题 C .命题p q ⌝∧是真命题 D .命题p q ⌝∨⌝是假命题7. 【2011门头沟一模理】,a b 为非零向量,“函数2()()f x ax b =+ 为偶函数”是“a b ⊥ ”的( )(A ) 充分但不必要条件 (B ) 必要但不充分条件 (C ) 充要条件 (D ) 既不充分也不必要条件8.【浙江杭州市2011届高三第一次质检数学理】某程序框图如同所示,则该程序框图运行后输出的n 的值为( )A .2B . 3C .4D .109.【江西省赣州十一县市2010—2011学年第二学期高三年级期中联考】已知数列{}n a 中,n a a a n n +==+11,1,若利用如图所示的程序框图计算该数列的第10项,则判断框内的条件是( ) A .n ≤8 B .n ≤9 C .n ≤10D .n ≤1110.【辽宁沈阳二中2011届上学期高三第四次阶段测试数学理】已知复数512iz i+=,则它D的共轭复数z等于()A.2i-B.2i+C.2i-+D.2i--11.【江西省抚州一中等八校下学期联考】已知izi-=+⋅)1(,那么复数z z-对应的点位于复平面内的()A.第一象限B.第二象限C.第三象限 D.第四象限12.【2011丰台一模理】已知函数3,0,()ln(1),>0.x xf xx x⎧≤=⎨+⎩若f(2-x2)>f(x),则实数x的取值范围是( )(A) (,1)(2,)-∞-⋃+∞ (B) (,2)(1,)-∞-⋃+∞ (C) (1,2)- (D) (2,1)-13.【2011门头沟一模理】设函数1()ln(0)3f x x x x=->,则函数()f x()(A) 在区间(0,1)(1,)+∞, 内均有零点(B) 在区间(0,1)(1,)+∞, 内均无零点(C) 在区间(0,1)内有零点,在区间(1,)+∞内无零点(D) 在区间(0,1)内无零点,在区间(1,)+∞内有零点14.【广东省汕头市2011届高三一模数学理】图3中的阴影部分由底为1,高为1的等腰三角形及高为2和3的两矩形所构成.设函数()(0)S S a a=≥是图3中阴影部分介于平行线0y=及y a=之间的那一部分的面积,则函数()S a的图象大致为()15.【辽宁省东北育才学校2011届高三第六次模拟数学理】若)(xf是定义在R上的函数,D C BA 侧视图正视图对任意的实数x ,都有4)()4(+≤+x f x f 和)2011(,4)3(,2)()2(f f x f x f =+≥+且的值是( )A 、2010B 、2011C 、2012D 、201316.【浙江省名校名师新编“百校联盟”交流联考数学理】已知M 是曲线21ln (1)2y x x a x =++-上的任一点,若曲线在M 点处的切线的倾斜角均不小于4π的锐角,则实数a 的取值范围是( )A .(,2]-∞B .[2,)+∞C .(0,2] D.(,2-∞17.【安徽省巢湖六安淮南三校(一中)2011届高三联考】定义在R 上的函数)(x f 满足,0)()2(<'+x f x 又)3(log 21f a =, ),3(ln ),)31((3.0f c f b == 则( )A. c b a <<B. a c b <<C. b a c <<D.a b c <<18.【山西省山大附中2011届高三高考模拟题试题数学理】已知{}n a 是首项为1的等比数列,且1234,2,a a a 成等差数列,则数列1{}na 的前5项的和为( ) A .31 B .32 C .3116D .313219.【宁夏银川二中2011届一模数学理】等比数列{n a }的前n 项和为n S ,若2132112364(...),27,n n S a a a a a a a -=+++==则( ) (A)27 (B) 81 (C) 243 (D) 72920.【广东省揭阳市2011年一模数学理】 一个正方体截去两个角 后所得几何体的正(主)视图、侧(左)视图如右图所示,则 其俯视图为( )21.【黑龙江哈九中2011届高三期末理】已知三棱锥底面是边长为1的等边三角形,侧棱长均为2,则侧棱与底面所成角的余弦值为( )AB .12C .3D22. 【辽宁省东北育才学校2011届高三第六次模拟数学】双曲线22221x y a b -=的左焦点为1F ,顶点为1A 、2A ,P 是该双曲线右支上任意一点,则分别以线段1PF 、12A A 为直径的两圆的位置关系是( )A.相交B.内切C.外切D.相离23.【2011北京市海淀一模理】已知抛物线M :24y x =,圆N :222)1(r y x =+-(其中r 为常数,0>r ).过点(1,0)的直线l 交圆N 于C 、D 两点,交抛物线M 于A 、B 两点,且满足BD AC =的直线l 只有三条的必要条件是( )A .(0,1]r ∈B .(1,2]r ∈C .3[,4)2r ∈D .3(,)2r ∈+∞ 24.【2011年广州市一模试题数学理】将18个参加青少年科技创新大赛的名额分配给3所学校, 要求每校至少有一个名额且各校分配的名额互不相等, 则不同的分配方法种数为( )A .96B .114C .128D .13625.【2011石景山一模理】已知椭圆2214x y +=的焦点为1F ,2F ,在长轴12A A 上任取一点M ,过M 作垂直于12A A 的直线交椭圆于点P ,则使得120PF PF ⋅<的点M 的概率为( )A B . D .1226.【2011北京市东城一模理】已知(,)2απ∈π,1tan()47απ+=,那么ααcos sin +的值为( ) (A )51-(B )57 (C )57- (D )4327.【2011年河南省焦作市高三第一次质检数学文】已知函数f (x )=Acos (ωx +ϕ)(x ∈R )的图像的一部分如下图所示,其中A>0,ω>0,|ϕ|<2π,为了得到函数f (x )的图像,只要将函数g (x )=22cos sin 22x x -(x∈R )的图像上所有的点( )A .向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变B .向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C .向左平移3π个单位长度,再把得所各点的横坐标缩短到原来的12倍,纵坐标不变D .向左平移3π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变28.【唐山一中2011届高三第一次调研考试数学理】已知a 、b是非零向量且满足(3)a b a -⊥ ,(4)a b b -⊥,则a 与b 的夹角是( )A .56πB .23πC .3π D . 6π29.【黑龙江哈尔滨市第六中学2011届高三第一次模拟考试数学理】ABC ∆的外接圆的圆心为O ,半径为2,=++且||||AB OA =,则向量 在方向上的投影为 ( )(A )3 (B )3 (C )3- (D )3- 30.【广东湛江2011届高三一模文数】已知0,0x y >>,若2282y xm m x y+>+恒成立,则实数m 的取值范围是( )A .4m ≥或2m -≤B .2m ≥或4m -≤C .24m -<<D .42m -<<二.填空题(8道)31.【江西省师大附中等七校联考】若一个底面是正三角形40 50 60 70 80 90 体重(kg)频率的三棱柱的正视图如图所示,其顶点都在一个球面上,则该 球的表面积为_______.32.【安徽省宿州市2010-2011学年高三第三次教学质量检测】已知抛物线x y 82=的准线与双曲线)0,0(12222>>=-b a by a x 相交于A,B 两点,双曲线的一条渐近线方程是x y 22=,点F 是抛物线的焦点,,且△FAB 是直角三角形,则双曲线的标准方程是________________.33.【广东省广州六中2011届高三理科数学预测卷】双曲线221169x y -=上一点P 到右焦点的距离是实轴两端点到右焦点距离的等差中项,则P 点到左焦点的距离为 .34.【2011年江西省六校3月联考数学试卷(理科)】已知nx x ⎪⎭⎫ ⎝⎛+12的展开式的各项系数和为32,则展开式中x 的系数为______.35.【江西省抚州一中等八校下学期联考】已知△ABC 的面积是30,其内角A 、B 、C 所对边的长分别为,,a b c ,且满足12cos 13A =,1c b -=,则a = . 36.【2011年广州市一模试题数学理】某所学校计划招聘男教师x 名,女教师y 名, x 和y 须满足约束条件25,2,6.x y x y x -≥⎧⎪-≤⎨⎪<⎩则该校招聘的教师最多是 名.37.【2011东城一模理】从某地高中男生中随机 抽取100名同学,将他们的体重(单位:kg )数 据绘制成频率分布直方图(如图).由图中数据可 知体重的平均值为 kg ;若要从身高在 [ 60 , 70),[70 ,80) , [80 , 90]三组内的男 生中,用分层抽样的方法选取12人参加一项活动, 再从这12人选两人当正负队长,则这两人身高不 在同一组内的概率为 .38.【辽宁省东北育才学校2011届高三第六次模拟数学理】下表给出一个“直角三角形数阵”41 41,21163,83,43 ……满足每一列成等差数列,从第三行起,每一行的数成等比数列,且每一行的公比相等,记第i 行第j 列的数为83),,,(a N j i j i a ij 则+∈≥等于 .三.解答题(12道)39.【青岛市2011届高三3月质检】数列}{n a 的前n 项和记为n S ,t a =1,点1(,)n n S a +在直线21y x =+上,N n *∈.(Ⅰ)当实数t 为何值时,数列}{n a 是等比数列? (Ⅱ)在(Ⅰ)的结论下,设31log n n b a +=,n T 是数列11{}n n b b +⋅的前n 项和,求2011T 的值.40.【2011届广东惠州一模】已知()log m f x x =(m 为常数,0m >且1m ≠),设12(),(),,()()n f a f a f a n *∈N 是首项为4,公差为2的等差数列.(1)求证:数列{n a }是等比数列;(2)若()n n n b a f a =,记数列{}n b 的前n 项和为n S,当m =时,求n S ; (3)若lg n n n c a a =,问是否存在实数m ,使得{}n c 中每一项恒小于它后面的项? 若存在,求出实数m 的取值范围.41.【黑龙江省哈九中2011届高三第二次模拟考试数学理】在ABC ∆中,c b a ,,分别是角C B A ,,的对边,向量)2,(c a b -=,)cos ,(cos C B =,且// .(1) 求角B 的大小;(2) 设)0(sin )2cos()(>+-=ωωωx Bx x f ,且)(x f 的最小正周期为π, 求)(x f 在区间]2,0[π上的最大值和最小值.42.【广东省揭阳市2011年一模数学理】如图,某人在塔的正东方向上的C 处在与塔垂直的水平面内沿南偏西60°的方向以每小时6千米的速度步行了1分钟以后,在点D 处 望见塔的底端B 在东北方向上,已知沿途塔的仰角AEB ∠=α,α的最大值为60.(1)求该人沿南偏西60°的方向走到仰角α最大时,走了几分钟; (2)求塔的高AB. 43.【深圳市2011届高三第一次调研数学理】第26届世界大学生夏季运动会将于2011年8月12日到23日在深圳举行 ,为了搞好接待 工作,组委会在某学院招募了12名男志愿者和18名女志愿者。

2012高考数学押题卷全国卷(一)

2012高考数学押题卷全国卷(一)

A. (3,5)
B.
⎛ ⎜⎝
1 2
,
+∞
⎞ ⎟⎠
C. (−1, 2)
D.
⎛ ⎜⎝
1 3
,1⎞⎟⎠
⎧1, x > 0
7. 已知符号函数 sgn(x) = ⎨⎪0, x = 0 ,则函数 f (x) = sgn (ln x) − ln2 x 的零点个数为( ).
⎪⎩−1, x < 0
A. 4
B. 3
C. 2
B. 2
3
C.
2
2
D.
3
班级

学校
《洞穿高考数学解答题核心考点》配套密押试卷 第 1 页,共 8 页
《洞穿高考数学解答题核心考点》配套密押试卷 第 2 页,共 8 页
密封线内不得答题
∫ 10.
设函数 f (x) = ax2 + c (a ≠ 0) ,若
1
f (x)dx =
0
f (x0 ) , 0 - x0 -1,则 x0 的值为(
24.(本小题满分 10 分)选修 4—5:不等式选讲
设函数 f (x) = x − a + 3x ,其中 a > 0 . (1)当 a = 1时,求不等式 f (x) . 3x + 2 的解集;
{ } (2)若不等式 f (x) - 0 的解集为 x x -�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

2012组合教育密押三套卷全国卷答案

2012组合教育密押三套卷全国卷答案
由 O , A , B , C 四点共面,则 OA = 2 ×
2 3 1 3 3 3 , (VS − ABC ) max = . 故选 D. × = ×1 = 3 3 3 3 2 12.A【解析】依题意,直线 ax + by = 1 与线段 AB 有一个公共点,
且此时 OH = 则 ( a − 1)( 2a + b − 1) - 0 , a , b 所满足的可行域如图所示,
1 1 AB ,因为 DC ∥ AB ,所以 MN ∥DC . 2 2 所以四边形 MNCD 是平行四边形,所以 DM ∥CN . ……………………(10 分) 因为 DM ⊄ 平面 PBC , CN ⊂ 平面 PBC ,所以 DM ∥ 平面 PBC , …………………(12 分) 所以,当 M 为 AP 的中点时, MD∥ 平面 PBC . 19.(理)【解析】(1)用 A, B, C 分别表示事件甲、乙、丙面试合格. 1 1 由题意知 A, B, C 相互独立, 且 P ( A ) = ,P( B) = P( C) = . ………………… (2 分) 2 3
(
) (
) (
)
所以 b = 1 . 椭圆 C 的方程为
2
x2 + y2 = 1 . 4
………………(4 分)
(
)
(2)由△ OEF 为直角三角形.
1 e
二、填空题
2
; 7. C【解析】当 ln x > 0 时,即 x > 1 , f ( x) = 1 − ln x ,令 f ( x ) = 0 得 x = e 或 x = (舍) 当 ln x = 0 时,即 x = 1 , f ( x) = − ln x ,令 f ( x ) = 0 ,得 x = 1 ;

2012年全国统一高考真题数学试卷(理科)(大纲版)(含答案及解析)

2012年全国统一高考真题数学试卷(理科)(大纲版)(含答案及解析)

2012年全国统一高考数学试卷(理科)(大纲版)一、选择题(共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)复数=()A.2+i B.2﹣i C.1+2i D.1﹣2i2.(5分)已知集合A={1,3,},B={1,m},A∪B=A,则m的值为()A.0或B.0或3C.1或D.1或33.(5分)椭圆的中心在原点,焦距为4,一条准线为x=﹣4,则该椭圆的方程为()A.B.C.D.4.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AB=2,CC1=2,E为CC1的中点,则直线AC1与平面BED的距离为()A.2B.C.D.15.(5分)已知等差数列{a n}的前n项和为S n,a5=5,S5=15,则数列的前100项和为()A.B.C.D.6.(5分)△ABC中,AB边的高为CD,若=,=,•=0,||=1,||=2,则=()A.B.C.D.7.(5分)已知α为第二象限角,,则cos2α=()A.﹣B.﹣C.D.8.(5分)已知F1、F2为双曲线C:x2﹣y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=()A.B.C.D.9.(5分)已知x=lnπ,y=log52,,则()A.x<y<z B.z<x<y C.z<y<x D.y<z<x 10.(5分)已知函数y=x3﹣3x+c的图象与x轴恰有两个公共点,则c=()A.﹣2或2B.﹣9或3C.﹣1或1D.﹣3或1 11.(5分)将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()A.12种B.18种C.24种D.36种12.(5分)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,,动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点P第一次碰到E时,P与正方形的边碰撞的次数为()A.16B.14C.12D.10二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.(注意:在试题卷上作答无效)13.(5分)若x,y满足约束条件则z=3x﹣y的最小值为.14.(5分)当函数y=sinx﹣cosx(0≤x<2π)取得最大值时,x=.15.(5分)若的展开式中第3项与第7项的二项式系数相等,则该展开式中的系数为.16.(5分)三棱柱ABC﹣A1B1C1中,底面边长和侧棱长都相等,∠BAA1=∠CAA1=60°,则异面直线AB1与BC1所成角的余弦值为.三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知cos(A﹣C)+cosB=1,a=2c,求C.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥底面ABCD,,PA=2,E是PC上的一点,PE=2EC.(Ⅰ)证明:PC⊥平面BED;(Ⅱ)设二面角A﹣PB﹣C为90°,求PD与平面PBC所成角的大小.19.(12分)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(Ⅰ)求开始第4次发球时,甲、乙的比分为1比2的概率;(Ⅱ)ξ表示开始第4次发球时乙的得分,求ξ的期望.20.(12分)设函数f(x)=ax+cosx,x∈[0,π].(Ⅰ)讨论f(x)的单调性;(Ⅱ)设f(x)≤1+sinx,求a的取值范围.21.(12分)已知抛物线C:y=(x+1)2与圆(r>0)有一个公共点A,且在A处两曲线的切线为同一直线l.(Ⅰ)求r;(Ⅱ)设m,n是异于l且与C及M都相切的两条直线,m,n的交点为D,求D到l的距离.22.(12分)函数f(x)=x2﹣2x﹣3,定义数列{ x n}如下:x1=2,x n+1是过两点P (4,5),Q n(x n,f(x n))的直线PQ n与x轴交点的横坐标.(Ⅰ)证明:2≤x n<x n+1<3;(Ⅱ)求数列{ x n}的通项公式.2012年全国统一高考数学试卷(理科)(大纲版)参考答案与试题解析一、选择题(共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)复数=()A.2+i B.2﹣i C.1+2i D.1﹣2i【考点】A5:复数的运算.【专题】11:计算题.【分析】把的分子分母都乘以分母的共轭复数,得,由此利用复数的代数形式的乘除运算,能求出结果.【解答】解:===1+2i.故选:C.【点评】本题考查复数的代数形式的乘除运算,是基础题.解题时要认真审题,仔细解答.2.(5分)已知集合A={1,3,},B={1,m},A∪B=A,则m的值为()A.0或B.0或3C.1或D.1或3【考点】1C:集合关系中的参数取值问题.【专题】5J:集合.【分析】由题设条件中本题可先由条件A∪B=A得出B⊆A,由此判断出参数m 可能的取值,再进行验证即可得出答案选出正确选项.【解答】解:由题意A∪B=A,即B⊆A,又,B={1,m},∴m=3或m=,解得m=3或m=0及m=1,验证知,m=1不满足集合的互异性,故m=0或m=3即为所求,故选:B.【点评】本题考查集合中参数取值问题,解题的关键是将条件A∪B=A转化为B⊆A,再由集合的包含关系得出参数所可能的取值.3.(5分)椭圆的中心在原点,焦距为4,一条准线为x=﹣4,则该椭圆的方程为()A.B.C.D.【考点】K3:椭圆的标准方程;K4:椭圆的性质.【专题】11:计算题.【分析】确定椭圆的焦点在x轴上,根据焦距为4,一条准线为x=﹣4,求出几何量,即可求得椭圆的方程.【解答】解:由题意,椭圆的焦点在x轴上,且∴c=2,a2=8∴b2=a2﹣c2=4∴椭圆的方程为故选:C.【点评】本题考查椭圆的标准方程,考查椭圆的几何性质,属于基础题.4.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AB=2,CC1=2,E为CC1的中点,则直线AC1与平面BED的距离为()A.2B.C.D.1【考点】MI:直线与平面所成的角.【专题】11:计算题.【分析】先利用线面平行的判定定理证明直线C1A∥平面BDE,再将线面距离转化为点面距离,最后利用等体积法求点面距离即可【解答】解:如图:连接AC,交BD于O,在三角形CC1A中,易证OE∥C1A,从而C1A∥平面BDE,∴直线AC1与平面BED的距离即为点A到平面BED的距离,设为h,=S△ABD×EC=××2×2×=在三棱锥E﹣ABD中,V E﹣ABD=×2×=2在三棱锥A﹣BDE中,BD=2,BE=,DE=,∴S△EBD∴V A=×S△EBD×h=×2×h=﹣BDE∴h=1故选:D.【点评】本题主要考查了线面平行的判定,线面距离与点面距离的转化,三棱锥的体积计算方法,等体积法求点面距离的技巧,属基础题5.(5分)已知等差数列{a n}的前n项和为S n,a5=5,S5=15,则数列的前100项和为()A.B.C.D.【考点】85:等差数列的前n项和;8E:数列的求和.【专题】11:计算题.【分析】由等差数列的通项公式及求和公式,结合已知可求a1,d,进而可求a n,代入可得==,裂项可求和【解答】解:设等差数列的公差为d由题意可得,解方程可得,d=1,a1=1由等差数列的通项公式可得,a n=a1+(n﹣1)d=1+(n﹣1)×1=n∴===1﹣=故选:A.【点评】本题主要考查了等差数列的通项公式及求和公式的应用,及数列求和的裂项求和方法的应用,属于基础试题6.(5分)△ABC中,AB边的高为CD,若=,=,•=0,||=1,||=2,则=()A.B.C.D.【考点】9Y:平面向量的综合题.【分析】由题意可得,CA⊥CB,CD⊥AB,由射影定理可得,AC2=AD•AB可求AD,进而可求,从而可求与的关系,进而可求【解答】解:∵•=0,∴CA⊥CB∵CD⊥AB∵||=1,||=2∴AB=由射影定理可得,AC2=AD•AB∴∴∴==故选:D.【点评】本题主要考查了直角三角形的射影定理的应用,向量的基本运算的应用,向量的数量积的性质的应用.7.(5分)已知α为第二象限角,,则cos2α=()A.﹣B.﹣C.D.【考点】GG:同角三角函数间的基本关系;GS:二倍角的三角函数.【专题】56:三角函数的求值.【分析】由α为第二象限角,可知sinα>0,cosα<0,从而可求得sinα﹣cosα=,利用cos2α=﹣(sinα﹣cosα)(sinα+cosα)可求得cos2α【解答】解:∵sinα+cosα=,两边平方得:1+sin2α=,∴sin2α=﹣,①∴(sinα﹣cosα)2=1﹣sin2α=,∵α为第二象限角,∴sinα>0,cosα<0,∴sinα﹣cosα=,②∴cos2α=﹣(sinα﹣cosα)(sinα+cosα)=(﹣)×=﹣.故选:A.【点评】本题考查同角三角函数间的基本关系,突出二倍角的正弦与余弦的应用,求得sinα﹣cosα=是关键,属于中档题.8.(5分)已知F1、F2为双曲线C:x2﹣y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=()A.B.C.D.【考点】KC:双曲线的性质.【专题】11:计算题.【分析】根据双曲线的定义,结合|PF1|=2|PF2|,利用余弦定理,即可求cos∠F1PF2的值.【解答】解:将双曲线方程x2﹣y2=2化为标准方程﹣=1,则a=,b=,c=2,设|PF1|=2|PF2|=2m,则根据双曲线的定义,|PF1|﹣|PF2|=2a可得m=2,∴|PF1|=4,|PF2|=2,∵|F1F2|=2c=4,∴cos∠F1PF2====.故选:C.【点评】本题考查双曲线的性质,考查双曲线的定义,考查余弦定理的运用,属于中档题.9.(5分)已知x=lnπ,y=log52,,则()A.x<y<z B.z<x<y C.z<y<x D.y<z<x【考点】72:不等式比较大小.【专题】11:计算题;16:压轴题.【分析】利用x=lnπ>1,0<y=log52<,1>z=>,即可得到答案.【解答】解:∵x=lnπ>lne=1,0<log52<log5=,即y∈(0,);1=e0>=>=,即z∈(,1),∴y<z<x.故选:D.【点评】本题考查不等式比较大小,掌握对数函数与指数函数的性质是解决问题的关键,属于基础题.10.(5分)已知函数y=x3﹣3x+c的图象与x轴恰有两个公共点,则c=()A.﹣2或2B.﹣9或3C.﹣1或1D.﹣3或1【考点】53:函数的零点与方程根的关系;6D:利用导数研究函数的极值.【专题】11:计算题.【分析】求导函数,确定函数的单调性,确定函数的极值点,利用函数y=x3﹣3x+c的图象与x轴恰有两个公共点,可得极大值等于0或极小值等于0,由此可求c的值.【解答】解:求导函数可得y′=3(x+1)(x﹣1),令y′>0,可得x>1或x<﹣1;令y′<0,可得﹣1<x<1;∴函数在(﹣∞,﹣1),(1,+∞)上单调增,(﹣1,1)上单调减,∴函数在x=﹣1处取得极大值,在x=1处取得极小值.∵函数y=x3﹣3x+c的图象与x轴恰有两个公共点,∴极大值等于0或极小值等于0.∴1﹣3+c=0或﹣1+3+c=0,∴c=﹣2或2.故选:A.【点评】本题考查导数知识的运用,考查函数的单调性与极值,解题的关键是利用极大值等于0或极小值等于0.11.(5分)将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()A.12种B.18种C.24种D.36种【考点】D9:排列、组合及简单计数问题.【专题】11:计算题;16:压轴题.【分析】由题意,可按分步原理计数,对列的情况进行讨论比对行讨论更简洁.【解答】解:由题意,可按分步原理计数,首先,对第一列进行排列,第一列为a,b,c的全排列,共有种,再分析第二列的情况,当第一列确定时,第二列第一行只能有2种情况,当第二列一行确定时,第二列第2,3行只能有1种情况;所以排列方法共有:×2×1×1=12种,故选:A.【点评】本题若讨论三行每一行的情况,讨论情况较繁琐,而对两列的情况进行分析会大大简化解答过程.12.(5分)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,,动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点P第一次碰到E时,P与正方形的边碰撞的次数为()A.16B.14C.12D.10【考点】IG:直线的一般式方程与直线的性质;IQ:与直线关于点、直线对称的直线方程.【专题】13:作图题;16:压轴题.【分析】通过相似三角形,来确定反射后的点的落的位置,结合图象分析反射的次数即可.【解答】解:根据已知中的点E,F的位置,可知第一次碰撞点为F,在反射的过程中,直线是平行的,利用平行关系及三角形的相似可得第二次碰撞点为G,且CG=,第二次碰撞点为H,且DH=,作图,可以得到回到E点时,需要碰撞14次即可.故选:B.【点评】本题主要考查了反射原理与三角形相似知识的运用.通过相似三角形,来确定反射后的点的落的位置,结合图象分析反射的次数即可,属于难题.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.(注意:在试题卷上作答无效)13.(5分)若x,y满足约束条件则z=3x﹣y的最小值为﹣1.【考点】7C:简单线性规划.【专题】11:计算题.【分析】作出不等式组表示的平面区域,由z=3x﹣y可得y=3x﹣z,则﹣z表示直线3x﹣y﹣z=0在y轴上的截距,截距越大z越小,结合图形可求【解答】解:作出不等式组表示的平面区域,如图所示由z=3x﹣y可得y=3x﹣z,则﹣z表示直线3x﹣y﹣z=0在y轴上的截距,截距越大z越小结合图形可知,当直线z=3x﹣y过点C时z最小由可得C(0,1),此时z=﹣1故答案为:﹣1【点评】本题主要考查了线性规划的简单应用,解题的关键是明确目标函数中z 的几何意义,属于基础试题14.(5分)当函数y=sinx﹣cosx(0≤x<2π)取得最大值时,x=.【考点】GP:两角和与差的三角函数;HW:三角函数的最值.【专题】11:计算题;16:压轴题.【分析】利用辅助角公式将y=sinx﹣cosx化为y=2sin(x﹣)(0≤x<2π),即可求得y=sinx﹣cosx(0≤x<2π)取得最大值时x的值.【解答】解:∵y=sinx﹣cosx=2(sinx﹣cosx)=2sin(x﹣).∵0≤x<2π,∴﹣≤x﹣<,∴y max=2,此时x﹣=,∴x=.故答案为:.【点评】本题考查三角函数的最值两与角和与差的正弦函数,着重考查辅助角公式的应用与正弦函数的性质,将y=sinx﹣cosx(0≤x<2π)化为y=2sin (x﹣)(0≤x<2π)是关键,属于中档题.15.(5分)若的展开式中第3项与第7项的二项式系数相等,则该展开式中的系数为56.【考点】DA:二项式定理.【专题】11:计算题;16:压轴题.【分析】根据第2项与第7项的系数相等建立等式,求出n的值,根据通项可求满足条件的系数【解答】解:由题意可得,∴n=8展开式的通项=令8﹣2r=﹣2可得r=5此时系数为=56故答案为:56【点评】本题主要考查了二项式系数的性质,以及系数的求解,解题的关键是根据二项式定理写出通项公式,同时考查了计算能力.16.(5分)三棱柱ABC﹣A1B1C1中,底面边长和侧棱长都相等,∠BAA1=∠CAA1=60°,则异面直线AB1与BC1所成角的余弦值为.【考点】LM:异面直线及其所成的角.【专题】11:计算题;16:压轴题.【分析】先选一组基底,再利用向量加法和减法的三角形法则和平行四边形法则将两条异面直线的方向向量用基底表示,最后利用夹角公式求异面直线AB1与BC1所成角的余弦值即可【解答】解:如图,设=,,,棱长均为1,则=,=,=∵,∴=()•()=﹣++﹣+=﹣++=﹣1++1=1||===||===∴cos<,>===∴异面直线AB1与BC1所成角的余弦值为【点评】本题主要考查了空间向量在解决立体几何问题中的应用,空间向量基本定理,向量数量积运算的性质及夹角公式的应用,有一定的运算量三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知cos(A﹣C)+cosB=1,a=2c,求C.【考点】GL:三角函数中的恒等变换应用;HP:正弦定理.【专题】11:计算题.【分析】由cos(A﹣C)+cosB=cos(A﹣C)﹣cos(A+C)=1,可得sinAsinC=,由a=2c及正弦定理可得sinA=2sinC,联立可求C【解答】解:由B=π﹣(A+C)可得cosB=﹣cos(A+C)∴cos(A﹣C)+cosB=cos(A﹣C)﹣cos(A+C)=2sinAsinC=1∴sinAsinC=①由a=2c及正弦定理可得sinA=2sinC②①②联立可得,∵0<C<π∴sinC=a=2c即a>c【点评】本题主要考查了两角和与差的余弦公式及正弦定理的应用,属于基础试题18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥底面ABCD,,PA=2,E是PC上的一点,PE=2EC.(Ⅰ)证明:PC⊥平面BED;(Ⅱ)设二面角A﹣PB﹣C为90°,求PD与平面PBC所成角的大小.【考点】LW:直线与平面垂直;MI:直线与平面所成的角;MM:向量语言表述线面的垂直、平行关系.【专题】11:计算题.【分析】(I)先由已知建立空间直角坐标系,设D(,b,0),从而写出相关点和相关向量的坐标,利用向量垂直的充要条件,证明PC⊥BE,PC⊥DE,从而利用线面垂直的判定定理证明结论即可;(II)先求平面PAB的法向量,再求平面PBC的法向量,利用两平面垂直的性质,即可求得b的值,最后利用空间向量夹角公式即可求得线面角的正弦值,进而求得线面角【解答】解:(I)以A为坐标原点,建立如图空间直角坐标系A﹣xyz,设D(,b,0),则C(2,0,0),P(0,0,2),E(,0,),B(,﹣b,0)∴=(2,0,﹣2),=(,b,),=(,﹣b,)∴•=﹣=0,•=0∴PC⊥BE,PC⊥DE,BE∩DE=E∴PC⊥平面BED(II)=(0,0,2),=(,﹣b,0)设平面PAB的法向量为=(x,y,z),则取=(b,,0)设平面PBC的法向量为=(p,q,r),则取=(1,﹣,)∵平面PAB⊥平面PBC,∴•=b﹣=0.故b=∴=(1,﹣1,),=(﹣,﹣,2)∴cos<,>==设PD与平面PBC所成角为θ,θ∈[0,],则sinθ=∴θ=30°∴PD与平面PBC所成角的大小为30°【点评】本题主要考查了利用空间直角坐标系和空间向量解决立体几何问题的一般方法,线面垂直的判定定理,空间线面角的求法,有一定的运算量,属中档题19.(12分)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(Ⅰ)求开始第4次发球时,甲、乙的比分为1比2的概率;(Ⅱ)ξ表示开始第4次发球时乙的得分,求ξ的期望.【考点】C8:相互独立事件和相互独立事件的概率乘法公式;CH:离散型随机变量的期望与方差.【专题】15:综合题.【分析】(Ⅰ)记A i表示事件:第1次和第2次这两次发球,甲共得i分,i=0,1,2;A表示事件:第3次发球,甲得1分;B表示事件:开始第4次发球,甲、乙的比分为1比2,则B=A0A+A1,根据P(A)=0.4,P(A0)=0.16,P (A1)=2×0.6×0.4=0.48,即可求得结论;(Ⅱ)P(A2)=0.62=0.36,ξ表示开始第4次发球时乙的得分,可取0,1,2,3,计算相应的概率,即可求得ξ的期望.【解答】解:(Ⅰ)记A i表示事件:第1次和第2次这两次发球,甲共得i分,i=0,1,2;A表示事件:第3次发球,甲得1分;B表示事件:开始第4次发球,甲、乙的比分为1比2,则B=A0A+A1∵P(A)=0.4,P(A0)=0.16,P(A1)=2×0.6×0.4=0.48∴P(B)=0.16×0.4+0.48×(1﹣0.4)=0.352;(Ⅱ)P(A2)=0.62=0.36,ξ表示开始第4次发球时乙的得分,可取0,1,2,3 P(ξ=0)=P(A2A)=0.36×0.4=0.144P(ξ=2)=P(B)=0.352P(ξ=3)=P(A0)=0.16×0.6=0.096P(ξ=1)=1﹣0.144﹣0.352﹣0.096=0.408∴ξ的期望Eξ=1×0.408+2×0.352+3×0.096=1.400.【点评】本题考查相互独立事件的概率,考查离散型随机变量的期望,确定变量的取值,计算相应的概率是关键.20.(12分)设函数f(x)=ax+cosx,x∈[0,π].(Ⅰ)讨论f(x)的单调性;(Ⅱ)设f(x)≤1+sinx,求a的取值范围.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】15:综合题.【分析】(Ⅰ)求导函数,可得f'(x)=a﹣sinx,x∈[0.π],sinx∈[0,1],对a进行分类讨论,即可确定函数的单调区间;(Ⅱ)由f(x)≤1+sinx得f(π)≤1,aπ﹣1≤1,可得a≤,构造函数g(x)=sinx﹣(0≤x),可得g(x)≥0(0≤x),再考虑:①0≤x;②,即可得到结论.【解答】解:(Ⅰ)求导函数,可得f'(x)=a﹣sinx,x∈[0,π],sinx∈[0,1];当a≤0时,f'(x)≤0恒成立,f(x)单调递减;当a≥1 时,f'(x)≥0恒成立,f(x)单调递增;当0<a<1时,由f'(x)=0得x1=arcsina,x2=π﹣arcsina当x∈[0,x1]时,sinx<a,f'(x)>0,f(x)单调递增当x∈[x1,x2]时,sinx>a,f'(x)<0,f(x)单调递减当x∈[x2,π]时,sinx<a,f'(x)>0,f(x)单调递增;(Ⅱ)由f(x)≤1+sinx得f(π)≤1,aπ﹣1≤1,∴a≤.令g(x)=sinx﹣(0≤x),则g′(x)=cosx﹣当x时,g′(x)>0,当时,g′(x)<0∵,∴g(x)≥0,即(0≤x),当a≤时,有①当0≤x时,,cosx≤1,所以f(x)≤1+sinx;②当时,=1+≤1+sinx综上,a≤.【点评】本题考查导数知识的运用,考查函数的单调性,考查函数的最值,解题的关键是正确求导,确定函数的单调性.21.(12分)已知抛物线C:y=(x+1)2与圆(r>0)有一个公共点A,且在A处两曲线的切线为同一直线l.(Ⅰ)求r;(Ⅱ)设m,n是异于l且与C及M都相切的两条直线,m,n的交点为D,求D到l的距离.【考点】IM:两条直线的交点坐标;IT:点到直线的距离公式;KJ:圆与圆锥曲线的综合.【专题】15:综合题;16:压轴题.【分析】(Ⅰ)设A(x0,(x0+1)2),根据y=(x+1)2,求出l的斜率,圆心M (1,),求得MA的斜率,利用l⊥MA建立方程,求得A的坐标,即可求得r的值;(Ⅱ)设(t,(t+1)2)为C上一点,则在该点处的切线方程为y﹣(t+1)2=2(t+1)(x﹣t),即y=2(t+1)x﹣t2+1,若该直线与圆M相切,则圆心M到该切线的距离为,建立方程,求得t的值,求出相应的切线方程,可得D 的坐标,从而可求D到l的距离.【解答】解:(Ⅰ)设A(x0,(x0+1)2),∵y=(x+1)2,y′=2(x+1)∴l的斜率为k=2(x0+1)当x0=1时,不合题意,所以x0≠1圆心M(1,),MA的斜率.∵l⊥MA,∴2(x0+1)×=﹣1∴x0=0,∴A(0,1),∴r=|MA|=;(Ⅱ)设(t,(t+1)2)为C上一点,则在该点处的切线方程为y﹣(t+1)2=2(t+1)(x﹣t),即y=2(t+1)x﹣t2+1若该直线与圆M相切,则圆心M到该切线的距离为∴∴t2(t2﹣4t﹣6)=0∴t0=0,或t1=2+,t2=2﹣抛物线C在点(t i,(t i+1)2)(i=0,1,2)处的切线分别为l,m,n,其方程分别为y=2x+1①,y=2(t1+1)x﹣②,y=2(t2+1)x﹣③②﹣③:x=代入②可得:y=﹣1∴D(2,﹣1),∴D到l的距离为【点评】本题考查圆与抛物线的综合,考查抛物线的切线方程,考查导数知识的运用,考查点到直线的距离公式的运用,关键是确定切线方程,求得交点坐标.22.(12分)函数f(x)=x2﹣2x﹣3,定义数列{ x n}如下:x1=2,x n+1是过两点P (4,5),Q n(x n,f(x n))的直线PQ n与x轴交点的横坐标.(Ⅰ)证明:2≤x n<x n+1<3;(Ⅱ)求数列{ x n}的通项公式.【考点】8H:数列递推式;8I:数列与函数的综合.【专题】15:综合题;16:压轴题.【分析】(Ⅰ)用数学归纳法证明:①n=1时,x1=2,直线PQ1的方程为,当y=0时,可得;②假设n=k时,结论成立,即2≤x k<x k+1<3,直线PQ k+1的方程为,当y=0时,可得,根据归纳假设2≤x k<x k+1<3,可以证明2≤x k+1<x k+2<3,从而结论成立.(Ⅱ)由(Ⅰ),可得,构造b n=x n﹣3,可得是以﹣为首项,5为公比的等比数列,由此可求数列{ x n}的通项公式.【解答】(Ⅰ)证明:①n=1时,x1=2,直线PQ1的方程为当y=0时,∴,∴2≤x1<x2<3;②假设n=k时,结论成立,即2≤x k<x k+1<3,直线PQ k+1的方程为当y=0时,∴∵2≤x k<x k+1<3,∴<x k+2∴x k+1<x k+2<3∴2≤x k+1即n=k+1时,结论成立由①②可知:2≤x n<x n+1<3;(Ⅱ)由(Ⅰ),可得设b n=x n﹣3,∴∴∴是以﹣为首项,5为公比的等比数列∴∴∴.【点评】本题考查数列的通项公式,考查数列与函数的综合,解题的关键是从函数入手,确定直线方程,求得交点坐标,再利用数列知识解决.。

2012新课标全国卷理科数学试题及详细解答

2012新课标全国卷理科数学试题及详细解答

2012年新课标全国卷理科数学试题详细解答第I 卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.每小题有且只有一个选项是符合题目要求的.1.已知集合A={1,2,3,4,5},B={(x ,y )|x A ∈,y A ∈,x y A -∈},则B 中包含元素的个数为( ) A .3 B .6 C .8 D .10 【解析】由集合B 可知,x y >,因此B={(2,1),(3,2),(4,3),(5,4),(3,1),(4,2), (5,3),(4,1),(5,2),(5,1)},B 的元素10个,所以选择D 。

【点评】本题主要考察复数的运算,属简单题。

2.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( ) A .12种B .10种C .9种D .8种【解析】先安排甲组,共有122412C C ⋅=种,再安排乙组,将剩余的1名教师和2名学生安排到乙组即可,共有1种,根据乘法原理得不同的安排方案共有12种,故选择A 。

【点评】本题主要考集合的基础知识,子集的含意。

3.下面是关于复数21z i=-+的四个命题:1p :||2z =;2p :22z i =;3p :z 的共轭复数为1i +;4p :z 的虚部为1-。

其中的真命题为( ) A .2p ,3p B .1p ,2p C .2p ,4pD .3p ,4p【解析】因为22(1)11(1)(1)i z i ii i --===---+-+--,所以||z =,22(1)2z i i =--=,z 的共轭复数为1i -+,z 的虚部为1-,所以2p ,4p 为真命题,故选择C 。

【点评】本题主要考察椭圆的简单几何性质,标准方程的求解。

4.设1F 、2F 是椭圆E :2222x y ab+(0a b >>)的左、右焦点,P 为直线32a x =上一点,21F P F ∆是底角为30°的等腰三角形,则E 的离心率为( )A .12B .23C .34D .45【解析】如图所示,21F P F ∆是等腰三角形,212130F F P F PF ∠=∠=︒,212||||2F P F F c ==, 260PF Q ∠=︒,230F PQ ∠=︒,2||F Q c =,又23||2a F Q c =-,所以32a c c -=,解得34c a =,因此34c e a==,故选择C 。

2012年高考理科数学(全国卷)含答案及解析

2012年高考理科数学(全国卷)含答案及解析

2012年普通高等学校招生全国统一考试理科数学(必修+选修II )一、 选择题(1)、复数131i i-++= A. 2 B. 2 C. 12 D. 12i i i i +-+- 【考点】复数的计算【难度】容易【答案】C 【解析】13(13)(1)24121(1)(1)2i i i i i i i i -+-+-+===+++-. 【点评】本题考查复数的计算。

在高二数学(理)强化提高班下学期,第四章《复数》中有详细讲解,其中第02节中有完全相同类型题目的计算。

在高考精品班数学(理)强化提高班中有对复数相关知识的总结讲解。

(2)、已知集合A ={1.3. m },B ={1,m } ,A B =A , 则m =A. 0或3B. 0或3C. 1或3D. 1或3【考点】集合【难度】容易【答案】B【解析】(1,3,),(1,)30,1()3A B A B A A m B m m A m m m m m m ⋃=∴⊆==∴∈∴==∴===或舍去.【点评】本题考查集合之间的运算关系,及集合元素的性质。

在高一数学强化提高班下学期课程讲座1,第一章《集合》中有详细讲解,其中第02讲中有完全相同类型题目的计算。

在高考精品班数学(理)强化提高班中有对集合相关知识及综合题目的总结讲解。

(3) 椭圆的中心在原点,焦距为4, 一条准线为x =﹣4 ,则该椭圆的方程为 A. 216x +212y =1 B. 212x +28y =1 C. 28x +24y =1 D. 212x +24y =1 【考点】椭圆的基本方程【难度】容易【答案】C【解析】椭圆的一条准线为x =﹣4,∴2a =4c 且焦点在x 轴上,∵2c =4∴c =2,a =22∴椭圆的方程为22=184x y + 【点评】本题考查椭圆的基本方程,根据准线方程及焦距推出椭圆的方程。

在高二数学(理)强化提高班,第六章《圆锥曲线与方程》中有详细讲解,其中在第02讲有相似题目的详细讲解。

浙江省2012届高考数学(理科)5月份押题密卷解析卷(每题都有解析)

浙江省2012届高考数学(理科)5月份押题密卷解析卷(每题都有解析)

浙江省2012届高考5月份押题密卷理 科 数 学本试题卷分选择题和非选择题两部分.满分150分,考试时间120分钟. 参考公式:如果事件A ,B 互斥,那么 棱柱的体积公式 ()()()P A B P A P B +=+ V Sh =如果事件A ,B 相互独立,那么 其中S 表示棱柱的底面积,h 表示棱柱的高 ()()()P A B P A P B ⋅=⋅ 棱锥的体积公式如果事件A 在一次试验中发生的概率是p ,那么 13V S h =n 次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示棱锥的底面积,h 表示棱锥的高()()()1,0,1,2,,n kk kn n P k C p k k n -=-= 棱台的体积公式球的表面积公式 24S R π= ()1213V h S S =球的体积公式 343V R π= 其中12,S S 分别表示棱台的上底、下底面积,其中R 表示球的半径 h 表示棱台的高选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上. 2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数⎩⎨⎧><=,,0,ln 0,)(x x x e x f x 则=)]1([e f fA .e 1B .eC .e1- D .e - 【解析】∵f (1e )=1ln e =—1< 0; ∴=)]1([e f f f (—1)=11e e-=【答案】A2.已知集合{}1,1M =-,11242x N x Z+⎧⎫=∈<<⎨⎬⎩⎭,则M N =( )A .{}1,1-B .{}1-C .{}0D .{}1,0- 【解析】略. 【答案】D3.已知直线l ,m 与平面αβγ,,满足//l l m βγαα=⊂,,,m γ⊥,则有A .αγ⊥且//m βB .αγ⊥且l m ⊥C .//m β且l m ⊥D .//αβ且αγ⊥ 【解析】m m αγαγ⊂⊥⇒⊥,,又l m l γ⊂⇒⊥. 【答案】B4.函数3sin (0)y x ωω=>在区间[0,]π恰有2个零点,则ω的取值范围为 A .1ω≥B .12ω≤<C .13ω≤<D .3ω<【解析】由题知:3sin 0y x ω==在区间[0,]π恰有2个解,即sin 0x ω=在区间[0,]π恰有2个解,亦即x k ωπ=,∴,()k x k Z πω=∈,由题将ω=1,2带入排除即可的ω=1满足,ω=2不满足.【答案】 B5.已知正三棱柱'''ABC A B C -的正视图和侧视图如图所示.设ABC ∆,'''A B C ∆的中心分别是O 、O ',现将此三棱柱绕直线OO '旋转(包括逆时针方向和顺时针方向),射线OA 旋转所成的角为x 弧度(x 可以取到任意一个实数),对应的俯视图的面积记为()S x ,则函数()S x 的最大值和最小正周期分别是A .3πB .6πC .8,3πD .8,23π【解析】由题意可知,要使得俯视图最大,需当三棱锥柱的一个侧面在水平平面内时,此时俯视图面积最大,如图所示,俯视图为矩形AA CC '',且4,BD A '==则AC =tan 3022⨯=,故面积最大为248⨯=.当棱柱在水平面内滚动时,因三角形ABC 为正三角形,当绕着OO '旋转60后 其中一个侧面恰好在水平面,其俯视图的面积也正好经历了一个周期, 所以函数()S x 的最小正周期为3π.【答案】C6.已知α为锐角,则“31sin >α且31cos >α”是“9242sin >α”的A .充分必要条件B .必要而不充分条件C .充分而不必要条件D .既不充分也不必要条件 【解析】由于α为锐角,注意到“31sin =α或31cos =α”时均有:“9242sin =α”,反之也成立.不妨设31sin =α的解为1αα=,设31cos =α的解为2αα=. 结合图像由单调性可知31sin >α且31cos >α的解为:21ααα<<(21,αα关于4π对称),故21222ααα<<(παα=+2122), 由于9242sin 2sin 21==αα,故9242sin >α成立,即充分性成立. 由于α为锐角,故以上过程可逆推,即必要性也成立. 综上得:“31sin >α且31cos >α”是“9242sin >α”的充分必要条件.【答案】A7.设向量a ,b ,c 满足|a|=|b|1=,a b 12=,( a —c )( b —c )0=,则|c|的最大值为A B C D .1 【解析】法一:(几何法)如下图:a OA =,b OB =,c OC =. 由题意有∠AOB 3π=,点C 在圆M 上.当点C 达到点D 时,maxmaxsincos66cODOM AM ππ==+=+.法二:(建系法或称坐标法)如下图建系,设点C 坐标为(x ,y ).设a OA ==⎝,12⎫⎪⎭,b OB ==⎝,12⎫-⎪⎭,c OC =(x =,)y .则:()()3a c b c x ⎛-⋅-=- ⎝,12y x ⎫-⋅⎪⎭⎝,12y ⎫--⎪⎭0=.化简得:2214x y ⎛+= ⎝⎭. 即图中圆M . 当点C 达到点D 时,maxmaxsincos66cODOM AM ππ==+=+.【答案】A8.如图的倒三角形数阵满足:(1)第1行的,n 个数,分别 是1,3,5,…,12-n ;(2)从第二行起,各行中的 每一个数都等于它肩上的两数之和;(3)数阵共有n 行. 问:当2012=n 时,第32行的第17个数是 A .372 B .3622012+C .362D .322 【解析】本题规律不易发现.规律一:(偶数行)第2m 行的第一个数是22mm ⨯.如2412=⨯,43222=⨯.规律二:(一行内)第n 行数的相邻两个数之间相差2n. 由以上规律得:第32行的第1个数是32361622⨯=,相邻两个数之间相差322,第32行的第17个数是36323721622+⨯=.【答案】A9.在高等数学中有如下定义:函数()y f x =的导数()f x '叫作函数()y f x =的一阶导数,类似地,把y =()f x '的导数叫作函数()y f x =的二阶导数.现若有函数()1s i n c o s 3s i n 33f x a x b x x =++在3x π=处取得极大值,则b 的范围为A.b <B .12b >C.12b << D.b <【解析】由题中提示知:二阶导数(记为()f x '')与极值有关. 由导数定义有:()()()limx f x x f x f x x∆→''+∆-''=∆.(0x ∆>)对于极值左右两边来说:当为极大值点时,()0f x x '+∆<,()0f x '>. 所以有()0f x ''<成立.()cos sin33cos3f x a x b x x '=-+,()sin 3cos 9sin3f x a x b x x ''=---. 令03f π⎛⎫'=⎪⎝⎭得:6a =.令303f b π⎛⎫''=+< ⎪⎝⎭得:b < 【答案】A10.点P 到图形C 上每一个点的距离的最小值称为点P 到图形C 的距离,那么平面内到定圆C 的距离与到定点A 的距离相等的点的轨迹不可能...是 A .圆 B .椭圆 C .双曲线的一支 D .直线 【解析】如图,A 点为定圆的圆心,动点M 为定圆半径AP 的中点,故AM=MP ,此时M 的轨迹为以A 圆心,半径为AM 的圆.如图,以F 1为定圆的圆心,F 1P 为其半径,在F 1P 截得|MP |=|MA |,1PF r =设,111MF PM MF MA r F A ∴+=+=>,由椭圆的定义可知,M 的轨迹是以F 1、A 为焦点,以|F 1A |为焦距,以r 为长轴 的椭圆.如图,以F 1为定圆的圆心,F 1P 为其半径,过P 点延长使得|MP |=|MA |,则有1MF PM r -=,1MF MA r FA ∴-=<.由双曲线的定义可知,M 的轨迹是以F 1、A 为焦点的双曲线的右支. 若M 落在以A 为端点在x 轴上的射线上,也满足条件, 此时轨迹为一条射线,不是直线.【答案】D非选择题部分(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上. 2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.二、填空题:本大题共7小题,每小题4分,共28分.11.已知i 是虚数单位,设复数113i z =-,232i z =-,则21z z 在复平面内对应的点为_______. 【解析】()()()()1213i 32i 13i 97i32i 32i 32i 11z z -+--===--+, 对应点为911⎛⎝,711⎫-⎪⎭.【答案】911⎛ ⎝,711⎫-⎪⎭12.在10)(y x -的展开式中,系数最小的项为第___________项. 【解析】∵101011010()(1)r r r r r r rr T C x y C xy --+=-=-, 当r =5时,显然10(1)r rC -最小,∴系数最小的项是第6项【答案】613.若某程序框图如图所示,则该程序运行后输出的i 值为__________.【解析】先列举几个如下:i =2,S =3,P =11312=+; i =3,S =6,P =11113612123+=++++;i =4,S =10,P =1111113610121231234++=++++++++;i =5,S =15,P = ……. 观察上面几式易得规律.考察一个数列求和:P =1111121231234123i+++⋅⋅⋅++++++++++⋅⋅⋅+. 可从通项着手:()()1121121123112n a i i i i i i i ⎛⎫====- ⎪++++⋅⋅⋅+++⎝⎭.故1111111122123344511P i i i ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+⋅⋅⋅+-=- ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 令291,19110P i i =->⇒<+.故当20i =时,跳出程序.【答案】2014.设袋中有8个形状、大小完全相同的小球,其中2个球上标有数字0,3个球上标有数字1,另3个球上标有数字2.现从中任取3个球,用随机变量ξ表示这3个球上数字的最大值与最小值之差.则ξ的数学期望=ξE . 【解析】由题知ξ=0,1,2.且5622)0(38===C P ξ,56272)1(382313131213=⋅⋅+⋅+==C C C C C C P ξ, 5627)1()0(1)2(==-=-==ξξξP P P . 故=ξE )0(0=⨯ξP +)1(1=⨯ξP +)2(2=⨯ξP =5681. 【答案】568115.过抛物线22(0)y px p =>焦点的直线与抛物线交于A 、B 两点,3AB =,且AB 中点的纵坐标为12,则p 的值为 . 【解析】设直线为:2p x my =+,代入抛物线得:2220y mpy p --=.221A B A B y y mp y y p+==⎧⎨=-⎩,又:AB ==,即:21343mp p =⎧±⇒== 【答案】3416.已知实数x 、y 满足205040x y x y y -≤⎧⎪+-≥⎨⎪-≤⎩,若不等式222()()a x y x y +≥+恒成立,则实数a的最小值为________________. 【解析】作出可行域如下所示:则()()2222222221xy xy x y a x y x yx yy x+++≥==++++.设yt x=(表斜率),则[2t ∈,]4,则152t t ⎡+∈⎢⎣,174⎤⎥⎦, 故max2915x y y x ⎛⎫⎪ ⎪+= ⎪+ ⎪⎝⎭,所以95a ≥. 即min 95a =. 【答案】9517.已知函数()()()2a xb f x x b c-=-+()0,,0a b R c ≠∈>,()()2g x m f x n =-⎡⎤⎣⎦()0mn >,给出下列三个命题:①函数()f x 的图像关于x 轴上某点成中心对称;②存在实数p 和q ,使得()p f x q ≤≤对于任意的实数x 恒成立; ③关于x 的方程()0g x =的解集可能为{}4,2,0,3--.则是真命题的有______________.(不选、漏选、选错均不给分)【解析】①知识储备:函数y =f (x )的图像关于x 轴上的点(b ,0)成中心对称的充要条件是f (b +x )+f (b —x )=0. 代入知①正确; ②()()()()()2a xb a f x cx b c x b x b -==-+-+-,由函数()kf t t t=+(0k >)的性质知()()f t orf t ≥≤- 故函数()()()a f x cx b x b =-+-为有界函数(即有上下界,亦即有最值).所以②正确;③方程()()20g x m f x n =-=⎡⎤⎣⎦中的m 、n 同号, 所以()0g x =有两个解(对与()f x 来说). 可设()f x A =±,(A 0>) 令()()()2a xb f x A x b c-==-+,则()()20A x b a x b Ac ---+=(ⅰ),对称轴为2a x A=,2214a A c ∆=-; 同理令()()()2a xb f x A x b c-==--+,则()()20A x b a x b A c -+-+=(ⅱ),对称轴为2a x A=-,2224a A c ∆=-. 由题要想有四个解,则221240a A c ∆=∆=->.方程(ⅰ)的两个解之和为aA,方程(ⅱ)的两个解之和为a A -.若解集为{}4,2,0,3--,则不满足上面条件. 所以③错.【答案】①②三、解答题:本大题共7小题,共80分.解答应写出文字说明,证明过程或演算步骤. 18.(本小题满分14分)已知A B C 、、是ABC △的三个内角,且满足2sin sin sin B A C =+,设B 的最大值为0B .(Ⅰ)求0B 的大小; (Ⅱ)当034B B =时,求cos cos AC -的值. 【解析】(Ⅰ)由题设及正弦定理知,2b a c =+,即2a cb +=. 由余弦定理知,2222222cos 22a c a c a c b B ac ac+⎛⎫+- ⎪+-⎝⎭==223()23(2)21882a c ac ac ac ac ac +--=≥=.因为cos y x =在(0,)π上单调递减,所以B 的最大值为03B π=. ……………7分(Ⅱ)设cos cos A C x -=, ①由(Ⅰ)及题设知sin sin A C +=②由①2+②2得,222cos()2A C x -+=+. 又因为4A CB πππ+=-=-,所以x =cos cos A C -=17分19.(本小题满分14分)设数列{}n a 的前n 项和为n S ,已知1(,n n S pS q p q +=+为常数,*n N ∈),1232,1,3a a a q p ===-.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)是否存在正整数,m n ,使1221m n mn S m S m +-<-+成立?若存在,求出所有符合条件的有序实数对(,)m n ;若不存在,说明理由.【解析】(Ⅰ)由题意,知2132,,S pa q S pS q =⎧⎨=⎩++ 即32,333,p q q p p q =⎧⎨-=⎩+++ 解之得1,22p q ⎧=⎪⎨⎪=⎩.…2分1122n n S S +∴=+,① 当2n ≥时,1122n n S S -=+,②①-②得,()1122n n a a n +=≥, ………………………………4分又2112a a =,所以()*112n n a a n +=∈N ,所以{}n a 是首项为2,公比为12的等比数列,所以212n n a -=. …………………………………………………7分 (Ⅱ)由②得,12(1)124(1)1212n n n S -==--,由1221mn m n S m S m +-<-+,得 114(1)221214(1)2m nmn mm --<+--+,即2(4)422(4)221n m n m m m --<--+, ……………………10分 即212(4)221n mm >--+,因为210m +>,所以2(4)2n m ->, 所以4m <,且122(4)24n m m <-<++,()*因为*m ∈N ,所以1m =或2或3. …………………………………… 12分 当1m =时,由()*得,2238n <⨯<,所以1n =; 当2m =时,由()*得,22212n <⨯<,所以1n =或2;当3m =时,由()*得,2220n <<,所以2n =或3或4, 综上可知,存在符合条件的所有有序实数对(,)m n 为:(1,1)、(2,1)、(2,2)、(3,2)、(3,3)、(3,4).…………………………14分20.(本小题满分15分)如图,底面为平行四边形的四棱柱ABCD —A ′B ′C ′D ′,DD ′⊥ 底面ABCD ,∠DAB =60°,AB =2AD ,DD ′=3AD ,E 、F 分 别是AB 、D ′E 的中点. (Ⅰ)求证:DF ⊥CE ;(Ⅱ)求二面角A —EF —C 的余弦值. 【解析】(Ⅰ),60AD AE DAE DAE =∠=∴△为等边三角形,设1AD =,则1,2,90DE CE CD DEC ===∴∠=, 即CE DE ⊥. ………………………………………3分DD '⊥底面ABCD , CE ⊂平面ABCD , 'CE DD ∴⊥.''''CE DECE DD E CE DD CE DF DF DD E DE DD D ⊥⎫⎫⊥⎪⎪⊥⇒⇒⊥⎬⎬⊆⎪⎭⎪=⎭平面平面. ……………………6分 (Ⅱ)取AE 中点H ,则12AD AE AB ==,又60DAE ∠=,所以△DAE 为等边三角形. 则DH AB ⊥,DH CD ⊥.分别以'DH DC DD 、、所在直线为x y z 、、轴建立空间直角坐标系,设1AD =,则1113(0,0,0),(,0),(,0),'(0,0,3),(,),(0,2,0)2222442D E A D F C -. 31333(,,),(0,1,0),(,,0)44222EF AE CE=--==-.设平面AEF 的法向量为1(,,)n x y z =,则1304420x y z y ⎧--+=⎪⎨⎪=⎩, 取1(23,0,1)n =. ……………10分 平面CEF 的法向量为2(,,)n x y z =,则13042302x y z x y ⎧-+=⎪⎪-=, 取2(33,3,2)n =. …………………………………12分13130401320,cos 21=⋅=>=<n n α. 所以二面角A EF C --的余弦值为13-. …………………………15分21.(本小题满分15分)如图,椭圆的中心在坐标原点,长轴端点为A 、B ,右焦点为F ,且1AF FB ⋅=,1OF =. (Ⅰ)求椭圆的标准方程;(Ⅱ)过椭圆的右焦点F 作直线l 1,l 2,直线l 1与椭圆分别交于点M 、N ,直线l 2与椭圆分别交于点P 、Q ,且2222MP NQ NP MQ +=+,求四边形MPNQ 的面积S 的最小值.【解析】(Ⅰ)设椭圆的方程为)0(12222>>=+b a by a x ,则由题意知1=c , 又∵,1=∙即.2,1))((222=∴-==-+a c a c a c a ∴1222=-=c a b ,故椭圆的方程为:1222=+y x . ………………………………………………4分 (Ⅱ)设),(),,(),,(),,(Q Q P P N N M M y x Q y x P y x N y x M .+=.即:22222222)()()()()()()()(Q M Q M P N P N Q N Q N P M P M y y x x y y x x y y x x y y x x -+-+-+-=-+-+-+-整理得:0=--++--+Q N P M Q M P N Q N P M Q M P N y y y y y y y y x x x x x x x x 即0))(())((=--+--Q P M N Q P M N y y y y x x x x . 所以21l l ⊥. (注:证明21l l ⊥,用几何法同样得分)①若直线21,l l 中有一条斜率不存在,不妨设2l 的斜率不存在,则可得x l ⊥2轴, ∴2,22==PQ MN ,故四边形MPNQ 的面积22222121=⨯⨯==MN PQ S . ②若直线21,l l 的斜率存在,设直线1l 的方程:)0)(1(≠-=k x k y ,则由⎪⎩⎪⎨⎧-==+)1(1222x k y y x 得:0224)12(2222=-+-+k x k x k . 设),(),,(2211y x N y x M ,则1222,12422212221+-=+=+k k x x k k x x .12)1(2212)22(4)124(14)(1122222222212212212++=+--++=-++=-+=k k k k k k kx x x x k x x k MN同理可求得,222)1(22k k PQ ++=.故四边形MPNQ 的面积:1916211242)1(2212)1(222121222222±=⇔≥+++=++⨯++⨯==k kk k k k k MN PQ S 取“=” .综上,四边形MPNQ 的面积S 的最小值为916. ……………………… 15分22.(本小题满分14分)已知函数d cx bx x x f +++=2331)(,设曲线)(x f y =在与x 轴交点处的切线为124-=x y ,()f x '为()f x 的导函数,满足)()2(x f x f '=-'.(Ⅰ)设()g x =,0m >,求函数()g x 在[0,]m 上的最大值;(Ⅱ)设()ln ()h x f x '=,若对一切[0,1]x ∈,不等式(1)(22)h x t h x +-<+恒成立,求实数t 的取值范围.【解析】(Ⅰ)2()2f x x bx c '=++,)()2(x f x f '=-',∴函数()y f x '=的图像关于直线1x =对称,则1b =-.直线124-=x y 与x 轴的交点为(3,0),∴(3)0f =,且(3)4f '=, 即9930b c d +++=,且964b c ++=,解得1c =,3d =-. 则321()33fx x x x =-+-. 故22()21(1)f x x x x '=-+=-,22,1,()1, 1.x x x g x xx x x x ⎧-≥⎪==-=⎨-<⎪ 其图像如图所示.当214x x -=时,x =(ⅰ)当102m <≤时,()g x 最大值为2m m-; (ⅱ)当12m <≤()g x 最大值为14;(ⅲ)当12m >时,()g x 最大值为2m m -.(Ⅱ)方法一:2()ln(1)2ln 1h x x x =-=-,则(1)2ln h x t x t +-=-, (22)2l n 21h x x +=+,当[0,1]x ∈时,2121x x +=+,∴不等式2ln 2ln 21x t x -<+恒成立等价于21x t x -<+且x t ≠恒成立,由21x t x -<+恒成立,得131x t x --<<+恒成立,当[0,1]x ∈时,31[1,4]x +∈,1[2,1]x --∈--,∴11t -<<, 又当[0,1]x ∈时,由x t ≠恒成立,得[0,1]t ∉,因此,实数t 的取值范围是10t -<<.……………………………………14分方法二:(数形结合法)作出函数]1,0[,12∈+=x x y 的图像,其图像为线段AB (如图),t x y -=的图像过点A 时,1-=t 或1=t , ∴要使不等式21x t x -<+对[0,1]x ∈恒成立,必须11t -<<, 又当函数)1(t x h -+有意义时,x t ≠,∴当[0,1]x ∈时,由x t ≠恒成立,得[0,1]t ∉,因此,实数t 的取值范围是10t -<<. …………………………………14分方法三:2()ln(1)h x x =-, ()h x 的定义域是{1}x x ≠,∴要使(1)h x t +-恒有意义,必须t x ≠恒成立,[0,1]x ∈,[0,1]t ∴∉,即0t <或1t >. ①由(1)(22)h x t h x +-<+得22()(21)x t x -<+, 即223(42)10x t x t +++->对[0,1]x ∈恒成立, 令22()3(42)1x x t x t ϕ=+++-,()x ϕ的对称轴为23tx +=-, 则有20,3(0)0t ϕ+⎧-<⎪⎨⎪>⎩或22201,3(42)43(1)0t t t +⎧≤-≤⎪⎨⎪∆=+-⨯⨯-<⎩或21,3(1)0t ϕ+⎧->⎪⎨⎪>⎩ 解得11t -<<. ②综合①、②,实数t 的取值范围是10t -<<. ………………………………14分。

2012年普通高等学校招生全国统一考试数学理试题(湖北卷,含答案)

2012年普通高等学校招生全国统一考试数学理试题(湖北卷,含答案)

y2 b2
1(a, b o) 的两顶点为 A1, A2,虚轴两端点为 B,B 2 ,,两焦
点为 F1, F2。若以 A1A2 为直径的圆内切于菱形 (Ⅰ)双曲线的离心率 e=______;
F1B1F2B2,切点分别为 A, B,C, D。则
(Ⅱ)菱形 F1B1F2B2 的面积 S1 与矩形 ABCD的面积 S2 的比值 S1 S2
b2 2

a1b1
+a2b2

(III )请将( II )中的命题推广到一般形式,并用数学归.纳.法... 证明你所推广的命题。注 : 当α 为正有理数时,有求道公式 (x α) r =α x α-1
有一项是符合题目要求的
1. 方程 x2 +6x +13 =0 的 一个根是
A -3+2i B 3+2i C -2 + 3i D 2 + 3i
2 命题“ x0∈ CRQ, x03 ∈ Q ”的否定是
A
x 0?CRQ, x03 ∈ Q B
x 0∈ CRQ , x03 ?Q
C
x 0?CRQ , x03 ∈ Q D
x
+∞)上的如下函数:① f ( x) =x2;② f ( x) =2 ;③
;④ f (x) =ln|x | 。
则其中是“保等比数列函数”的 f ( x)的序号为 A. ①② B. ③④ C. ①③ D. ②④ 8. 如图,在圆心角为直角的扇形 OAB中,分别以 OA,OB为直径作两个半圆。在扇形 随机取一点,则此点取自阴影部分的概率是

x0∈CRQ , x03 ?Q
3 已知二次函数 y =f(x) 的图像如图所示 ,则它与 X 轴所围图形的面积为

2012年高考理科数学试题参考答案新课标全国卷

2012年高考理科数学试题参考答案新课标全国卷

2012年普通高等学校招生全国统一考试(新课标全国卷)理科数学试题参考答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

1、已知集合{}43,2,1,=A ,(){}A y x A y A x y x B ∈-∈∈=,,,|,则B 中所含元素的个数为( )A 、3B 、6C 、8D 、10 解析:选D5=x ,1=y ,2,3,4;4=x ,1=y ,2,3;2=x ,1=y 共10个2、将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A 、12种B 、10种C 、9种D 、8种解析:选A甲地由1名教师和2名学生:122412=C C 种 3、下面是关于复数iz +-=12的四个命题:其中的真命题为( ) 2|:|1=z p ;i z p 2:22=;z p :3的共轭复数为i +1;z p :4的虚部为1-A 、2p ,3pB 、 1p ,2pC 、2p ,4pD 、3p ,4p 解析:选C ()()()i i i i i z --=--+---=+-=1111212 2|:|1=z p ;i z p 2:22=;z p :3的共轭复数为i +-1;z p :4的虚部为1-4、设F 1、F 2是椭圆()01:2222>>=+b a by a x E 的左、右焦点,P 为直线23ax =上一点,12PF F ∆是底角为︒30的等腰三角形,则E 的离心率为( )A 、21 B 、 32 C 、43D 、54解析:选C12PF F ∆是底角为︒30的等腰三角形432232122==⇔=⎪⎭⎫⎝⎛-==⇒a c e c c a F F PF5、已知{}n a 为等比数列,274=+a a ,865-=a a ,则=+101a a ( ) A 、7 B 、 5 C 、-5 D 、-7 解析:选D274=+a a ,4847465=⇒-==a a a a a ,27-=a 或24-=a ,47=a 44=a ,8217-=⇒-=a a ,7110110-=+⇒=a a a 24-=a ,1417=⇒=a a ,7810110-=+⇒-=a a a6、如果执行右边的程序框图,输入正整数()2≥N N 和实数1a ,2a ,…,n a ,输出A ,B ,则( )A 、B A +为1a ,2a ,…,n a 的和 B 、2BA +为1a ,2a ,…,n a 的算术平均数 C 、A 和B 分别是1a ,2a ,…,n aD 、A 和B 分别是1a ,2a ,…,n a 解析:选C7、如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A 、6B 、9C 、12D 、18 解析:选B该几何体是三棱锥,底面是俯视图,高为3 此几何体的体积为93362131=⨯⨯⨯⨯=V8、等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于A ,B 两点,34||=AB ,则C 的实轴长为( )A 、2B 、22C 、4D 、8 解析:选C设()0:222 a a y x C =-交x y 162=的准线4:-=x 于()324,-A ,()324--,B 得:42242=⇔=⇔=a a a9、已知0 ω,函数()⎪⎭⎫ ⎝⎛+=4sin πωx x f 在⎪⎭⎫⎝⎛ππ,2上单调递减,则ω的取值范围是( )A 、⎥⎦⎤⎢⎣⎡4521,B 、⎥⎦⎤⎢⎣⎡4321,C 、 ⎥⎦⎤⎝⎛210, D 、(]20,解析:选A⎥⎦⎤⎢⎣⎡∈⎪⎭⎫ ⎝⎛+⇒=494542πππωω,x 不合题意 排除D⎥⎦⎤⎢⎣⎡∈⎪⎭⎫ ⎝⎛+⇒=454341πππωω,x 合题意 排除B 、C另:22-≤⇔≤⎪⎭⎫ ⎝⎛ωπππω,⎥⎦⎤⎢⎣⎡⊂⎥⎦⎤⎢⎣⎡++∈⎪⎭⎫ ⎝⎛+2324424ππππωπωππω,,x得:242ππωπ≥+,4521234≤≤⇔≤+ωπππω10、 已知函数()()xx x f -+=1ln 1,则()x f y =的图像大致为( )ADCB解析:选B()()()xx x g x x x g +-='⇒-+=11ln ()010 x x g -⇔'⇒,()()()000=⇔'g x g x g得:0 x 或01 x -均有()0 x f ,排除A 、C 、D11、已知三棱锥ABC S -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2=SC ,则此棱锥的体积为( )A 、62 B 、63 C 、 32 D 、22 解析:选AABC ∆的外接圆的半径33=r ,点O 到面ABC 的距离3622=-=r R d SC 为球O 的直径⇒点S 到面ABC 的距离为3622=d 此棱锥的体积为623624331231=⨯⨯=⨯=∆d S V ABC 另:63231=⨯∆R S V ABC排除B 、C 、D 12、设点P 在曲线x e y 21=上,点Q 在曲线()x y 2ln =上,则||PQ 最小值为( )A 、2ln 1-B 、()2ln 12-C 、2ln 1+D 、()2ln 12+ 解析:选A 函数xe y 21=与函数()x y 2ln =互为反函数,图象关于x y =对称 函数x e y 21=上的点⎪⎭⎫⎝⎛x e x P 21,到直线x y =的距离为221x e d x-=设函数()()()22ln 12ln 112121min min -=⇒-=⇒-='⇒-=d x ge x g x e x g x x 由图象关于x y =对称得:||PQ 最小值为()2ln 122min -=d第Ⅱ卷本卷包括必考题和选考题两部分。

2012湖北重点中学新课标-高三5月压轴数学试卷与答案(理科)详解版

2012湖北重点中学新课标-高三5月压轴数学试卷与答案(理科)详解版

稳派理科新课改2012届高三高考压轴考试 湖北数学(理科)参考答案与评分细则1、【答案】B .【解析】因为22(1)|1|(1)(1)z z z z -=-=--,所以(1)()0z z z --=,求得1z =或z z =,即z 为实数.故选B .【命题立意】考查复数的代数式运算和对复数概念的理解. 2、【答案】C .【解析】对于②,当0m =时,其逆命题不成立,所以②错误;对于④,其概率为14π-,所以④错误的.故选C .【命题立意】考查命题的真假判断、全称量词与存在量词的否定形式、充要条件的理解以及几何概型的概率计算.3、【答案】C .【解析】函数sin()23y x πω=++的图象经过变换后,所得函数图象对应的解析式为4sin()233y x ωππω=-++,依题意,42333k πωπππ-+=+(k ∈Z ),解得32k ω=-(k ∈Z ),对照选择支,可知当1k =-时,ω的一个可能的取值为32.故选C .【命题立意】考查三角函数的图像变换.4、【答案】D .【解析】由三视图知,该几何体是一个底面为直角三角形的直棱柱,其表面积等于12(12)1222)2⨯⨯+⨯+⨯8=+D .【命题立意】考查几何体的三视图与几何体表面积的计算.5、【答案】A .【解析】由 0.70.35y x =+得2.54 4.534560.70.3544t ++++++=⨯+,所以11 3.54t +=,求得3t =. 故选A .【命题立意】考查线性回归方程的简单应用.6、【答案】B .【解析】作出满足条件的可行域(如图),因为|3||4|z x y =-+-|1|x y ≥+-,可知,当可行域内的点(,)x y 满足x y =时,z 取得最小值1.故选B .【命题立意】考查可行域的图形理解和求绝对值函数的最值问题.7、【答案】D .【解析】首先考虑个位,个位上的数字是相连续的三个数字之和,只需满足(1)(2)n n n ++++10<,所以个位仅能取0,1,2;再考虑百位和十位,由定义知,百位和十位分别是相同的数,且都满足310n <,所以百位和十位可以取0,1,2,3.于是小于1000的“良数”个数有443⨯⨯ 48=(种).故选D .【命题立意】考查对创新概念的理解和排列问题的计算. 8、【答案】B .【解析】因为22n S n n =-,所以11,123,2n nn S n a n S S n -=⎧==-⎨-≥⎩,所以123121232(23)2kS k =-⨯+⨯+⨯++-⨯ , ①23412121232(23)2k S k +=-⨯+⨯+⨯++-⨯ , ②所以①-②得34112(222)(23)2k k S k ++-=-++++--⋅,即110(25)2k S k +=+-⋅ (k *∈N ).由100S ≥得4k ≥,所以106S =.故选B .【命题立意】考查程序框图知识和数列的通项公式与求和公式的计算.9、【答案】C .【解析】依题意,当1x >时,ln 0x >,sgn(ln )1x =,则22()sgn(ln )ln 1ln f x x x x =-=-,令21ln 0x -=,得x e =或1x e=,结合1x >得x e =;当1x =时,ln 0x =,sgn(ln )0x =,2()ln f x x =-,令2ln 0x -=,得1x =,符合;当01x <<时,ln 0x <,sgn(ln )1x =-,()f x =21ln x --,令21l n 0x --=,得2l n 1x =-,此时无解.因此2()sgn(ln )ln f x x x =-的零点个数为2.故选C .【命题立意】考查创新概念理解和函数零点个数的判断. 10、【答案】D .【解析】不妨设12x x >,则左边可化为1212()()()()f a x f a x g x g x -≤-,即11()(2)g x a a-+⋅ 1221()(2)x g x a x a ≥-+恒成立.构造函数1()()(2)h x g x a x a=-+,结合选择支,若2()g x x =+ln 2x -,则11()(2)(2)h x x a x a'=+-+,由已知1()2f x x x =+在[],a b 上单调递增,所以11()(2)(2)0h x x a x a'=+-+≥成立,则1212()()()()f a x f a x g x g x -≤-成立.同理可证当2()ln 2g x x x =+-时对右边也成立.故选D .【命题立意】考查函数的性质,体现导数在研究函数问题中的应用价值.(一)必考题(11---14题)11、【答案】3.【解析】设等差数列{}n a 的首项为1a ,公差为d (0d ≠),则2214S S S =,即211(2)a d a +=⨯1(46)a d +,求得12d a =,则21113a a da a +==.故填3. 【命题立意】考查等差、等比数列通项公式、求和公式即性质的简单应用.12、【答案】80-.【解析】00sin )cos )|2a x x dx x x ππ=-=+=-⎰,所以252()x x-+展开式的通项是10315(2)rr r r T C x -+=-,当3r =时,得其x 的系数为80-.故填80-.【命题立意】考查定积分的计算和利用二项展开式通项公式的求展开式中的特征项. 13、【答案】3Vk. 【解析】因为平面四边形的面积112233441()2S a d a d a d a d =+++,由已知条件有412()i i Sih k==∑,类比到三棱锥,三棱锥的体积112233441()3V S d S d S d S d =+++,又因为1212S S =3434S S k ===,所以413()i i V k id ==∑,即413()i i V id k ==∑.故填3V k .【命题立意】考查从平面到空间的类比推理能力. 14、【答案】6;9.【解析】由100ab a b +--=可得911b a =--,9161a b a a +=+-≥-,当且仅当91a =- 1a -,即4a =时等号成立,所以6m =;满足不等式22326x y +≤的点在椭圆22123x y +=上及其内部,整点共有9个. 故填6;9.【命题立意】考查利用均值不等式求二元条件最值和闭区域几何图形中的整点问题. (二)选考题(考生注意:请在第15、16两题中任选一题作答,如果全选,则按第15题作答结果评分)15、【答案】【解析】因为圆O 的半径为3,圆心O 到BC所以4BC ==.又AB =2AC B C -=,所以212AD AB AC =⋅=,即AD =故填【命题立意】考查平面几何知识中切割线定理等在平面几何图形中的边角计算.16、【解析】将点P 转化为直角坐标系,得(1P ;激昂直线l 转化成直角坐标,得:6l x -0=.则点P 到直线l 的距离为1d ==.故填1.【命题立意】考查极坐标与参数方程与普通方程的转化即点到直线的距离公式的应用.17、【解析】(1)因为点C 的坐标为34(,)55,根据三角函数 的定义知,4sin 5COA ∠=,3cos 5COA ∠=; 2分 又因为△AOB 为正三角形,所以3AOB π∠=.于是,cos cos()cos cossin sin333BOC COA COA COA πππ∠=∠+=∠-∠=. 5分 (2)因为AOC θ∠=(02πθ<<),所以3BOC πθ∠=+.在△BOC 中,||||1OB OC ==,由余弦定理可得,222()||||||2||||cos f BC OC OB OC OB BOC θ==+-∠22cos()3πθ=-+,即函数()f θ的解析式为()22cos()3f πθθ=-+. 8分因为02πθ<<,所以5336πππθ<+<,所以1cos()32πθ<+<,于是,1()2f θ<<,即函数()f θ的值域是(1,2. 12分 【命题探究】第(1)问考查单位圆中的三角函数定义和余弦的和角公式在求角的应用;第(2)问考查余弦定理的应用和三角函数值域的求解.18、【解析】(1)依题意,研究室的两个课题组都需要完成一项或两项课题研究任务,则①完成一项课题研究任务的概率为112221112()()33229C C ⋅⋅⋅⋅⋅=;②完成两项课题研究任务的概率为22111()()33229⋅⋅⋅=.于是,该研究室在完成一次课题研究任务中荣获“先进和谐研究室”的概率为211993P =+=. 5分 (2)该研究室在一次课题任务中荣获“先进和谐研究室”的概率为11222222222212284()(1)()333399P C C P P P P P ⎡⎤=⋅⋅-+⋅=-⎣⎦, 而(6,)B P ξ ,所以6E P ξ=. 10分 由 2.5E ξ≥知,22284()6 2.599P P -⨯≥,求得23544P ≤≤. 又21P ≤,所以2314P ≤≤,即2P 的取值范围是3,14⎡⎤⎢⎥⎣⎦. 12分 【命题探究】本题考查概率的计算、随机变量的分布列性质和数学期望的计算.求解离散型随机变量的问题,必须注意两点:(1)理解分布列的基本性质:①非负性,即0(1,2,,)i p i n ≥= ;②11nii p==∑.(2)掌握计算数学期望的公式:1122n n E x p x p x p ξ=+++ .如果随机变量服从二项分布,则可直接利用公式计算其数学期望,即若(,)B n p ξ ,则E np ξ=. 19、【解析】(1)因为21n a -,2n a ,21n a +成等差数列,所以221212n n n a a a -+=+, 由11a =,22a =,可知33a =.又2n a ,21n a +,22n a +成等比数列,所以221222n n n a a a ++=⋅,由22a =,33a =,可知492a =. 同理,求得56a =,68a =. 4分(2)方法1:依题意,有221212212222n n n n n n a a a a a a -+++=+⎧⎨=⎩,由11a =,22a =和递推关系知,0n a >,所以22n a,即=所以2d ==的等差数列,1)(1)22n n +=-⋅=,即22(1)2n n a +=, 8分 代入递推关系式,得22221222(1)(2)22n n n n n aa a ++++==⋅,所以21(1)(2)2n n n a +++=.于是,当n 为偶数时,22(1)(2)228n nn a ++==; 当n 为奇数时,11(1)(2)(1)(3)2228n n n n n a --++++==. 12分 (注:通项公式也可以写成2117(1)8216n n a n n +-=++,n *∈N )方法2:根据(1)求出的特值,提出猜想:21(1)2n n n a -+=,22(1)2n n a +=(n *∈N ),6分用数学归纳法证明如下.①当1n =时,21111(11)12a a ⨯-⋅+===,2212222a a ⨯===,猜想成立. ②假设n k =(1k ≥,k *∈N )时,猜想成立,即21(1)2k k k a -+=,22(1)2k k a +=,那么[]22(1)121221(1)(1)1(1)(1)22222k k k k k k k k k a a a a +-+-+++++==-=⨯-=,[]22222212(1)222(1)1(1)(2)(1)(2)2222k k k k k a k k k k a a a +++++++++⎡⎤===÷==⎢⎥⎣⎦, 所以当1n k =+时,猜想也成立.根据①、②知,对任意的n *∈N ,猜想成立. 10分于是,当n 为奇数时,11(1)(1)(3)2228n n n n n a +++++==; 当n 为偶数时,22(1)(2)228n n n a ++==. 12分 (注:通项公式也可以写成2117(1)8216n n a n n +-=++,n *∈N )【命题探究】本题考查等比数列、等差数列的性质和通项公式求解.探究数列的通项公式一般有两种方法,一是利用递推式进行代数恒等变换,推到出通项公式;另一种是先通过特值计算然后提出猜想,最后利用数学归纳法证明.20、【解析】(1)折叠前,因为EF BC ∥,BC AB ⊥; 所以折叠后,有EF PE ⊥,EF BE ⊥, 且PE BE E = ,所以PE ⊥平面PBE .又PB ⊂平面PBE ,所以EF PB ⊥. 5分 (2)二面角P FC B --的平面角的余弦值为定值,证明如下:因为BC BE ⊥,所以以B 为坐标原点,BC 为x 轴,BE 为y 轴,垂直于平面BCFE 的直线为z 轴,建立如图所示的空间直角坐标系,设BE t =,则2AE t =-. 由题设条件得,(0,0,0)B ,(2,0,0)C ,(0,,0)E t ,(2,,0)F t t -,30,1,)22P t t ⎛⎫-- ⎪ ⎪⎝⎭,3(2,)2CP t =-- ,(,,0)CF t t =- .设平面PFC 的法向量为(,,)x y z =m ,则00CP CF ⎧⋅=⎪⎨⋅=⎪⎩ m m,即32(1))0220x t y z tx ty ⎧-+-+=⎪⎨⎪-+=⎩, 取1x =,得1y =,z =(1,1=m ,又平面BCF 的法向量为(0,0,1)=n ,所以cos ,||⋅<>===m n m n |m ||n |. 12分 【命题探究】本题以折叠问题为载体,体现立体几何中从平面到空间的动态过程.第(1)问证明空间的线面垂直,一般都需要从线面垂直过渡;第(2)问探求二面角的平面角的余弦值是定值,其中,向量法是计算二面角的平面角的常用方法.21、【解析】(1)设(,)Q x y ,则||34QF x ++=(3x >-),z34x +=(3x >-),化简得24y x =-((]3,0x ∈-).所以动点Q 的轨迹C 为抛物线24y x =-位于直线3x =-右侧的部分. 3分(2)因为1()2FP FA FB =+ ,所以P 为AB 的中点;又因为0EP AB ⋅= ,且(,0)E OE x =,所以点E 为线段AB 的垂直平分线与x 轴的交点.由题意可知,直线l 与x 轴不垂直,所以不妨设直线l 的方程为(1)y k x =-,由(]2(1)4(3,0)y k x y x x =-⎧⎨=-∈-⎩,得2222(42)0k x k x k +-+=(](3,0)x ∈-. (*) 设2222()(42)f x k x k x k =+-+,要使直线l 与曲线C 有两个不同的交点,只需22422(42)4042302(3)0(0)0k k k k f f ⎧=-->⎪-⎪⎪-<<⎨-⎪->⎪>⎪⎩△,解得2314k <<. 6分 设11(,)A x y ,22(,)B x y ,则由(*)式得,2122242k x x k-+=, 所以线段AB 中点P 的坐标为122212P x x x k +==-,2(1)P P y k x k=-=-, 则直线EP 的方程为2212(1)y x k k k+=--+.令0y =,得到点E 的横坐标为221E x k=--,因为2314k <<,所以1133E x -<<-,即E x 的取值范围是11(,3)3--. 10分 (3)不可能.证明如下:要使△PEF 能否成为以EF 为底的等腰三角形,只需2P E F x x x =+, 即22222(1)11k k -=---,解得212k =.另一方面,要使直线满足(2)的条件,需要23(,1)4k ∈, 而13(,1)24∉,所以不可能使△PEF 成为以EF 为底的等腰三角形. 13分 【命题探究】本题从探求圆锥曲线的轨迹问题提出命题,对于轨迹问题求解,要注意检验轨迹方程中隐含的限制条件.本题第(2)问以向量知识提出条件信息,既体现了向量的工具作用,也凸显高考解析几何命题的一种常见风格.本题第(3)问是一个研究性问题,当求出满足条件的参数后,要进行检验是否满足命题的大前提条件. 22、【解析】(1)由题意,211()0sin g x x xθ'=-+≥在[)1,+∞恒成立,即2sin 10sin x x θθ-≥在[)1,+∞恒成立.因为(0,)θπ∈,所以sin 0θ>,故sin 10x θ-≥在[)1,+∞恒成立,只需sin 110θ⋅-≥, 即sin 1θ≥,只有sin 1θ=,所以2πθ=. 3分(2)构造函数()()()()F x f x g x h x =--,则2()2ln m e F x mx x x x=---. 当0m ≤时,由[]1,x e ∈,得0m mx x -≤,22ln 0ex x--<,所以在[]1,e 上不存在一个0x ,使得000()()()f x g x h x ->成立;当0m >时,22222222()m e mx x m eF x m x x x x-++'=+-+=, 因为[]1,x e ∈,所以220e x -≥,20mx m +>,即()0F x '>在[]1,e 上恒成立,故()F x 在[]1,x e ∈上单调递增,max ()()40mF x F e me e==-->,解得241e m e >-.8分 (3)由(1)知,当2πθ=时,1()ln g x x x=+在[)1,+∞上为增函数, 所以()(1)1g x g ≥=,即1ln 1x x≥-(0x >). (*) 对(*)式令1x k =(k *∈N ),则1ln 1k k≥-,取1,2,,k n = ,并把这n 个不等式累加,得111ln ln ln (11)(12)(1)12n n+++≥-+-++- ,即1(1)(1)ln !22n n n n n n +-≥-=,即(1)ln(!)2n n n -≤,所以(1)2!n n n e -≤; 11分又对(*)式令(1)x k k =+(k *∈N ),则1ln (1)1(1)k k k k +≥-+,取1,2,,k n =,并把这n 个不等式累加,得[]111ln(12)ln(23)ln (1)(1)(1)11223(1)n n n n ⎡⎤⨯+⨯+++≥-+-++-⎢⎥⨯⨯+⎣⎦, 即22211111ln 123(1)(1)()()2231n n n nn ⎡⎤⎡⎤⨯⨯⨯⨯⨯+≥--+-++-⎣⎦⎢⎥+⎣⎦,即21ln (!)(1)111n n n n n ⎡⎤+≥-+>-⎣⎦+,所以12(!)1n e n n ->+,即12!n n ->.1(1)22!n n n en e --<≤(n *∈N )得证. 14分【命题探究】本题是一道利用导数知识研究函数性质的综合题,主要考查利用导数研究函数的单调性,探究参数的取值范围和证明不等式等知识.在利用导数探求参数的取值范围问题时,要注意体现分类讨论与整合思想.第(3)问是利用函数不等式的结论证明数列型不等式,对于这类不等式的证明,需要有预测性地理解命题的构成思想(这是问题求解的思维难点),即从前面研究的函数式中对参数a 确定一个符合不等式结构的定值,再利用单调性得到一个不等式模型,对其中的自变量赋值即可得到解题的基本思路和方向.。

2012年高考理科数学试卷及答案全国卷word版

2012年高考理科数学试卷及答案全国卷word版

2012年高考理科数学试卷及答案全国卷word版2012年高考理科数学试卷及答案全国卷word版第一部分:选择题1. 根据分式的定义,下列分式正确的是()A. 0/1B. -1/0C. 1/-1D. 0/0答案: A解析: 根据分式的定义,分母不能为0,所以选项B、C均不正确;0/0是不确定的数,所以选项D也不正确。

2. 在(1,2)处的切线方程是()A. y=x-1B. y=x+1C. y=2x-3D. y=2x-1答案: D解析: 函数y=x^2-1在点(1,0)处的切线斜率为2,因此在(1,2)处的切线斜率也为2,即y=2x+b。

同时,该点在函数图像上,所以代入函数方程可得b=0-1=-1,因此切线方程为y=2x-1。

3. 若x, y>0,且log3x-log3y=log9x-log9y,则x/y等于()A. 1/3B. 1/9C. 3D. 9答案: B解析: 按照对数的性质,log9x=log3( x^(1/2) ),所以原式可以变形为log3(x/y)=log3( x^(1/2)/y^(1/2) )。

然后两边取3的指数,得到x/y=(x/y)^(1/2),解得x/y=1/9。

4. 如图,在正方形ABCD中,点P在AC边上,$AP=\frac{1}{3}AC$,点Q在AD边上,$AQ=\frac{1}{4}AD$,则三角形CPQ的面积是正方形ABCD的面积的()A. 1/12B. 1/16C. 1/24D. 1/36答案: C解析: 因为AP:AC=1:3、AQ:AD=1:4,所以$$\frac{AP}{AC}=\frac{AQ}{AD}=\frac{1}{12}$$因此,三角形APQ与三角形ACD相似。

可以设正方形边长为a,则AC=AD=a√2,AP=1/3×a√2=√2/3a,AQ=1/4×a√2=√2/4a,因此PQ=AP+AQ=7√2/12a,h=AC×PQ/2=49/72a^2,所以三角形CPQ的面积为S=h×PQ/2=7/144a^2,也就是正方形ABCD面积的1/24。

2012高考数学押题卷全国卷(三)答案

2012高考数学押题卷全国卷(三)答案

3
3
又−
π 2
<
ϕ
<
π 2
,得 ϕ
=
π 3
.故
f
(x)
=
sin
⎛ ⎜⎝
2x
+
π 3
⎞ ⎟⎠

只需将
y
=
sin
⎛ ⎜⎝
2x
+
π 3
⎞ ⎟⎠
的图象上的点向右平移
4. D.【解析】排除法. 选项 A、B、C 种的命题均为真命题. 对于选项 D,向量 a ⋅ b < 0 ,
则 a 与 b 的夹角为钝角或平角. 故选 D.
( )3
2
= a2 + c2 − 2ac cos 60
= a2 + c2 − ac = (a + c)2 − 3ac ,
得 (a + c)2 = 9 , a + c = 3, CΔABC = 3 + 3 .
14.(理)【解析】由数列{an} 为等差数列,且各项均为正整数,则 d 为正整数.
an

a1
l2 8p
,即
l2 4
.
故选 D.
9. C【解析】过△ ABC 的外心 O 作 OD ⊥ AB 于点 D , OE ⊥ AC 于点 E ,
2
2
( ) AC AB
AO ⋅ BC = AO ⋅ AC − AB = AC ⋅ AO − AB ⋅ AO =

2
2
《洞穿高考数学解答题核心考点》配套密押试卷答案 1 / 7
两圆圆心的坐标分别为 C1 (−a, 0) , C2 (0,b) , r1 = 2 , r2 = 1,

特别推荐新课标押题卷 2012年河南省实验中学高考押题卷理数2

特别推荐新课标押题卷 2012年河南省实验中学高考押题卷理数2

(第5题图)2012河南省实验中学高考押题卷理科数学(2) 第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)若复数)(13R x i ix z ∈-+=是实数,则x 的值为( )A. 3-B. 3C. 0D.3(2)设集合}0103|{2<--∈=x x R x M ,}2|x ||Z x {N <∈=,则M N 为( )A.)2,2(-B.)2,1(C.{-1,0,1}D.}2,1,0,1,2{--(3)25242sin =a ,20πα<<,则)4cos(2a -π的值为( )A .51B .51-C .57D .51±(4)下列判断错误..的是( ) A .“22bm am <”是“a<b”的充分不必要条件B .命题“01,23≤--∈∀x xR x ”的否定是“01x x ,R x 20300>--∈∃”C .若p,q 均为假命题,则q p Λ为假命题D .若ξ~B (4,0.25)则1=ξD(5)在右图的算法中,如果输入A=138, B=22,则输出的结果是( )A. 2 B .4 C .128 D .0(6)若椭圆)0(12222>>=+b a b y a x 的离心率为23,则双曲线12222=-by a x 的渐近线方程为( )A .x y 2±=B .x y 21±= C .x y 4±= D .x y 41±= (7)已知等差数列n n S n S a a 项和则前项的和前中,357,11,}{71==中( ) A .前6项和最大 B .前7项和最大C .前6项和最小D .前7项和最小(8)已知dx )x sin x cos 3(a 0⎰-=π,则二项式25()a x x+展开式中x 的系数为( ) A .10 B .-10C .80D .-80(9)已知某个几何体的三视图如图(主视图中的弧线是半圆), 根据图中标出的尺寸,可得这个几何体的体积是 ( )A .8π+B .283π+C .12π+D .2123π+ (10)某五所大学进行自主招生,同时向一所重点中学的五位学习成绩优秀,并在某些方面有特长的学生发出提前录取通知单.若这五名学生都乐意进这五所大学中的任意一所就读,则仅有两名学生录取到同一所大学(其余三人在其他学校各选一所不同大学)的概率是( ) A.51 B.12524 C.12596 D.12548(11)如图,设平面ααβα⊥⊥=CD AB EF ,, ,垂足 分别为D B ,,若增加一个条件,就能推出EF BD ⊥.现有( ) ①;β⊥AC②AC 与βα,所成的角相等;③AC 与CD 在β内的射影在同一条直线上;④AC ∥EF . 那么上述几个条件中能成为增加条件的个数是( )1.A 个2.B 个3.C 个4.D 个(12)已知()x f 是定义在(-3,3)上的奇函数,当30<<x 时,()342-+-=x x x f 那么不等式()0cos <x x f 的解集是( ) A .(-3,-π2)∪(0,1)∪(π2,3)B .(-π2,-1)∪(0,1)∪(π2,3)C .(-3,-1)∪(0,1)∪(1,3)D .(-3,-π2)∪(0,1)∪(1,3)βαAEFB DC第11题第9题第Ⅱ卷本卷包括必考题和选考题两部分。

2012高考密码押题卷课标(数学理

2012高考密码押题卷课标(数学理

2012高考密码押题卷课标数学 理工类注意事项:1.本试题分为第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间为120分钟.2.答第Ⅰ卷前务必将自己的姓名、考号、考试科目涂写在答题卡上、考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD )涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案.第Ⅰ卷(选择题,共60分)参考公式:球的表面积公式:S =4πR 2,其中R 是球的半径. 如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率: P n (k )=C kn p k (1-p )n-k (k =0,1,2,…,n ). 如果事件 A .B 互斥,那么P (A +B )=P (A )+P (B ). 如果事件A .B 相互独立,那么P (AB )=P (A )·P (B ).一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}6,5,4=P ,{}3,2,1=Q ,定义{}Q q P p q p x x Q P ∈∈-==⊕,,|,则集合Q P ⊕的所有真子集的个数为( )A .32B .31C .30D .以上都不对 2.已知函数()cos2f x x π=+(x R ∈),则下列叙述错误的是( )A .()fx 的最大值与最小值之和等于πB .()fx 是偶函数C .()f x 在[]4,7上是增函数D .()fx 的图像关于点,22ππ⎛⎫⎪⎝⎭成中心对称 3.某公司甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点。

公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其收入和售后服务等情况,记这项调查为②则完成①、②这两项调查宜采用的抽样方法依次是 ( )A .分层抽样法,系统抽样法B .分层抽样法,简单随机抽样法C .系统抽样法,分层抽样法D .简单随机抽样法,分层抽样法4.在圆x y x 522=+内,过点)23,25(有n 条弦的长度成等差数列,最短弦长为数列的首项1a ,最长弦长为n a ,若公差]31,61(∈d ,那么n 的取值集合为( )A .}6,5,4{B .}9,8,7,6{C .}5,4,3{D .}6,5,4,3{5.已知两个不同的平面α、β和两条不重合的直线,m 、n ,有下列四个命题: ①若α⊥m n m ,//,则α⊥n②若βαβα//,,则⊥⊥m m ; ③若βαβα⊥⊂⊥则,,//,n n m m ; ④若n m n m //,,,//则=βαα 其中不正确的命题的个数是 ( )A .0个B .1个C .2个D .3个6.右图是一个空间几何体的三视图,根据图中尺寸(单位:cm ),可知几何体的表面积是( ) A.18+B.16+C.17+D.18+7.在ABC ∆中,c b a ,,分别为三个内角A 、B 、C 所对的边,设向量m (),,b c c a =--n (),b c a =+,若向量m ⊥n ,则角A 的大小为 ( )A .6πB .3πC .2πD .32π8.定义{}⎩⎨⎧<≥=),(),(,max b a b b a a b a 设实数x 、y 满足约束条件⎪⎩⎪⎨⎧≤≤,2,2y x 且{}y x y x z -+=3,4max ,则z 的取值范围为( )A .]0,6[-B .]10,7[-C .]8,6[-D .]8,7[-9.对任意x R ∈,2234x x a a -++≥-恒成立,则a 的取值范围是 ( )A .15a -≤≤B.15a -<≤C .15a -≤<D .15a -<<10.如右图所示的曲线是以锐角A B C ∆的顶点B 、C 为焦点,且经过点A 的双曲线,若A B C ∆的内角的对边分别为,,a b c ,且sin 4,6,2c A a b a===)A.2B2C.3- D.3+11.在113)23(x x -的展开式中任取一项,则所取项为有理项的概率为α,则=⎰-11αx( )A .61 B .712 C .98 D .51212.如图所示,为了测量该工件上面凹槽的圆弧半径R ,由于没有直接的测量工具,工人用三个 半径均为r (r 相对R 较小)的圆柱棒123,,O O O 放在如图与工件圆弧相切的位置上,通过深度卡 尺测出卡尺水平面到中间量棒2O 顶侧面的垂直 深度h ,若10,4r mm h mm ==时,则R 的值 为 ( ) A .25mmB .5mmC .50mmD .15mm第Ⅱ卷 (非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分,将答案填在题中的横线上。

2012年5月高考押题精粹(文数)

2012年5月高考押题精粹(文数)

2012年高考押题精粹数学(文)试题(30道选择题+20道非选择题)一.选择题(30道)1.集合}032|{2<--=x x x M ,{|220}N x x =->,则N M 等于A .(1,1)-B .(1,3) C .(0,1) D .(1,0)-2.知全集U=R ,集合}{|1A x y x==-,集合{|0B x =<x <2},则()U C A B ⋃=A .[1,)+∞B .()1+∞,C .[0)∞,+D .()0∞,+3.设a 是实数,且112a i i +++是实数,则a = A .1 B .12 C .32D .24. i 是虚数单位,复数1i z =-,则22z z+=A .1i --B .1i -+C .1i +D .1i -5. “a=-1”是“直线2a x y 60-+=和直线4x (a 3)y 90--+=互相垂直”的 A .充分不必要条件 B .必要不充分条件C .充要条件C .既不充分也不必要条件6.已知命题p :“βαsin sin =,且βαcos cos =”,命题q :“βα=”。

则命题p 是命题q 的 A .必要不充分条件 B .充分不必要条件C .充要条件D .既不充分和不必要条件7.已知a R ∈,则“2a >”是“22a a >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既非充分也非必要条件8.执行如图所示的程序框图,若输出的结果是9,则判断框内m 的取值范围是 (A )(42,56] (B )(56,72] (C )(72,90] (D )(42,90)9.如图所示的程序框图,若输出的S 是30,则①可以为 A .?2≤n B .?3≤n C .?4≤n D .?5≤n 10.在直角坐标平面内,已知函数()log (2)3(0a f x x a =++>且1)a ≠的图像恒过定点P ,若角θ的终边过点P ,则2cos sin 2θθ+的值等于( )A .12-B .12C .710 D .710- 11.已知点M ,N 是曲线x y πsin =和曲线x y πcos =的两个不同的交点,则|MN|的最小值为( )A .1B .2 C.3D .212.如图所示为函数()()2sin f x x ωϕ=+(0,0ωϕπ>≤≤)的部分图像,其中,A B 两点之间的距离为5,那么()1f -=( ) A .2 B .3C .3-D .2-13.设向量a 、b 满足:1=a ,2=b ,()0⋅-=a a b ,则a 和b 的夹角是( )A .30︒B .60︒C .90︒D .120︒14.如图,D 、E 、F 分别是ABC ∆的边AB 、BC 、CA 的中点,则AF DB -=( )D A .FD B .FCC .FED .BE15.一个体积为123的正三棱柱的三视图如图所示, 则该三棱柱的侧视图的面积为( ) (A )6 3 (B )8(C )8 3 (D )1216.,,,A B C D 是同一球面上的四个点,其中ABC ∆是正三角形,AD ⊥平面ABC ,26AD AB ==则该球的体积为( )A .323πB . 48πC . 643πD . 163π17. A a x a x xA ∉⎭⎬⎫⎩⎨⎧<+-=1,0若已知集合,则实数a 取值范围为( ) xy O22-ABA ),1[)1,(+∞⋃--∞B [-1,1]C ),1[]1,(+∞⋃--∞D (-1,1]18.设233yx M +=,()xyyx P N 3,3==+(其中y x <<0),则,,M N P 大小关系为( )A .P N M << B .M P N << C .N M P << D .M N P <<19.若a 是从集合{0,1,2,3}中随机抽取的一个数,b 是从集合{0,1,2}中随机抽取的一个数,则关于x 的方程2220x ax b ++=有实根的概率是 ( )A .56B .23C .712 D .3420.右图是1,2两组各7名同学体重(单位:kg )数据的茎叶图.设1,2两组数据的平均数依次为1x 和2x ,标准差依次为1s 和2s ,那么( ) (注:标准差222121[()()()]n s x x x x x x n=-+-++-,其中x 为12,,,n x x x 的平均数)(A )12x x >,12s s > (B )12x x >,12s s < (C )12x x <,12s s < (D )12x x <,12s s >21.设S n 是等差数列{}n a 的前n 项和,若 45710,15,21S S S ≥≤≥,则7a 的取值区间为( )A . ,7]-∞(B . [3,4]C . [4,7]D . [3,7]22.若等比数列}{n a 的前n 项和23-⋅=nn a S ,则=2aA .4B .12C .24D .3623.抛物线y 2=2px (p >0)的焦点为F ,点 A .B 在此抛物线上,且∠AFB =90°,弦AB 的中点M 在其准线上的射影为M ′,则|MM ′||AB |的最大值为( ) (A )22 (B )32(C )1 (D ) 3 24.已知双曲线1222=-y x 的焦点为21,F F ,点M 在双曲线上,且120MF MF ⋅=,则点M 到x 轴的距离为( )A .3B .332 C .34D .35x yO π- π 1。

2012年高考数学解答题临考押题训练数学理5

2012年高考数学解答题临考押题训练数学理5

2012届高考数学理科解答题临考押题训练(5)1.(本题满分14分)在ABC ∆中,角A 、B 、C 所对应的边分别为a ,b ,c,且满足sin cos b A B =.(I )求角B 的值; (II)若cosA 2sin C 的值. 2.(本题满分14分)盒子中装有大小相同的10只小球,其中2只红球,4只黑球,4只白球.规定:一次摸出3只球,如果这3只球是同色的,就奖励10元,否则罚款2元.(I )若某人摸一次球,求他获奖励的概率;(II )若有10人参加摸球游戏,每人摸一次,摸后放回,记随机变量ξ为获奖励的人数,(i )求(1)P ξ>(ii )求这10人所得钱数的期望.(结果用分数表示,参考数据:10141152⎛⎫≈ ⎪⎝⎭)3.(本题满分14分)如图,已知三角形ABC ∆与BCD ∆所在平面互相垂直,且090BAC BCD ∠=∠=,AB AC =,CB CD =,点P ,Q 分别在线段,BD CD 上,沿直线PQ 将∆PQD 向上翻折,使D 与A 重合. (Ⅰ)求证:AB CQ ⊥;(Ⅱ)求直线AP 与平面ACQ 所成的角.4.(2012年三明适应性测试)(本题满分15分)已知,A B 是椭圆C :()222210x y a b a b+=>>的左,右顶点,B (2,0),过椭圆C 的右焦点F 的直线交于其于点M , N , 交直线4x =于点P ,且直线PA ,PF ,PB 的斜率成等差数列.(Ⅰ)求椭圆C 的方程;(Ⅱ)若记,AMB ANB ∆∆的面积分别为12,S S 求12S S 的取值范围.5.(本题满分15分)已知函数()ln f x x =,若存在()g x 使得()()g x f x ≤恒成立,则称()g x是()f x 的一个“下界函数” . (I )如果函数()ln tg x x x=-(为实数)为()f x 的一个“下界函数”,求的取值范围; (II )设函数()()12x F x f x e ex=-+,试问函数()x F 是否存在零点,若存在,求出零点个数;若不存在,请说明理由.参考答案1.(本小题满分14分)解:(I )由正弦定理得:sin sin cos B A A B = ……………3分0sin A ≠,sin B B ∴=,tan B =0B <<π,3B π∴=.……………6分(II )cos =A 2,2212cos cos A A ∴=-=35……………8分0sin A >,sin A ∴==45, ……………10分1()=()=32sin sin sin sin C A B A A A π∴=+++= ……………14分2.(本小题满分14分)解:(I )342102115C p C == ……………4分(II )(i )由题意ξ服从1(10,)15N则101910141141(1)1(0)(1)1()()1515157P P P C ξξξ>=-=-==--⨯⨯= ………9分(ii )设η为在一局中的输赢,则114610215155E η=⨯-⨯=-6(10)1010()125E E ηη∴==⨯-=- …………14分3.(本小题满分14分) (I )证明面ABC ⊥面BCQ 又CQ BC ⊥ CQ ∴⊥面ABC CQ ∴⊥AB ……………5分(Ⅱ)解1:作AO BC ⊥,垂足为O ,则AO ⊥面BCQ ,连接OP设1AB =,则2BD =,设BP x= 由题意AP DP =则22222cos 45(2)x x x ︒+-+=- 解得1x = ……………9分 由(Ⅰ)知AB ⊥面ACQ∴直线AP 与平面ACQ 所成的角的正弦值sin α就是直线AP 与直线AB 所成角的余弦值cos BAP ∠, ……………12分即sin α=cos BAP ∠=12,6πα∴=, 即直线AP 与平面ACQ 所成的角为6π……………14分解2:取BC 的中点O ,BD 的中点E ,如图以OB 所在直线为x 轴,以OE 所在直线为y 轴,以OA 所在直线为z 轴,建立空间直角坐标系. ……………6分 不妨设2=BC ,则()()()0,1,,0,2,1,1,0,0x x P D A --,……………8分由DP AP =即()()()22221111+++=+-+x x x x ,解得0=x ,所以()0,1,0P , ……………10分 故()1,1,0-=AP设()z y x ,,=为平面ACQ 的一个法向量, 因为()()0,1,0,1,0,1λλ==--=OE CQ AC由⎪⎩⎪⎨⎧==⋅00n AC n 即⎩⎨⎧==--020y z x所以()1,0,1-= ……………12分 设直线AP 与平面ACQ 所成的角为,α则21221sin ===α 所以6πα=即直线AP 与平面ACQ 所成的角为6π……………14分 4.(本题满分15分)解:(Ⅰ)令),0,(),,4(0c F y P 由题意可得).0,2(),0,2(,2B A a -= ……………2分 ,242442,2000-++=-∴+=yy c y k k k PB PA PF ……………4分 .3.1222=-=∴=∴c a b c∴椭圆方程为.13422=+y x ……………6分 (Ⅱ)),,(),,(2211y x N y x M 令由方程组⎩⎨⎧+==+,1,124322my x y x 消x , 得,096)4322=-++my y m (,436221+-=+∴m my y ①y,439221+-=m y y ② ……………9分①2/②得,,434221221221y y t m m y y y y =+-=++令 …………11分 ,433163104381011222+-=++=+=+m m m t t t t 则 .331,31012<<<+≤∴t t t 即 …………… 13分 ,212121t y AB y AB S S ANBAMB ==∆∆)3,31(∈∴∆∆ANB AMB S S ……………15分 5.(本小题满分15分) 解:(Ⅰ)ln ln tx x x-≤恒成立,0x >,2ln t x x ≤, ……………2分令()2ln h x x x =,则'()2(1ln )h x x =+, ……………4分当1(0,)x e ∈时,'()0h x <,()h x ∴在1(0,)e 上是减函数,当1(,)x e ∈+∞时,'()0h x >,()h x ∴在1(,)e+∞上是增函数, ……………6分min 12()()h x h e e ∴==- 2t e∴≤- ……………7分(Ⅱ)由(I )知,22ln x x e ≥-1ln x ex ∴≥-()()ex e x f x F x 21+-=①,()121111ln ()x x x xF x x ex ex x e ee e ∴=-+≥-=-, (10)分令()1x xG x e e=-,则()()1-='-x e x G x , ……………12分则(0,1)x ∈时,()'0G x <, ()G x ∴上是减函数,(1,)x ∈+∞时,()'0G x >,()G x ∴上是增函数,()(1)0G x G ∴≥=②, ……………14分()121111ln ()0x x x xF x x ex ex x e ee e ∴=-+≥-=-≥,①②中等号取到的条件不同,()0F x ∴>,∴函数()F x 不存在零点. ………15分高≈考≒试ο题⌒库。

2012高考押题密卷:数学理(课标版).pdf

2012高考押题密卷:数学理(课标版).pdf

初中学习网,资料共分享!我们负责传递知识!
开始退潮,海水哗哗往下退。

我兴奋极了,追赶着远去的浪花。

这时,我无意中发现沙滩上有很多小洞洞。

我仔细观察,原来里面住着小螃蟹呢!我就用力地挖开小洞洞,没想到一只小螃蟹从我挖的沙子里钻了出来,它还不甘束手就擒,东逃西窜。

我赶紧追了过去,只见它被一小块石头绊倒了,翻了个底朝天。

我抓起它,甩了甩粘在它身上的沙子。

哈哈,它终于成了我的“俘虏”啦!
那边舅舅抓到一条跳跳鱼,舅妈也拣到了很多泥螺。

你看,小表弟正在玩水呢!
怎么样,我的课外生活有趣吧?请你也跟我一起来赶海吧!
指导老师:岑芳。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

理 科 数 学 押题卷第七套 新阳光教育 2012年5月答案卷一、选择题1.【答案】:B【解析】:{}{}22|4|22A x x y x x =+==-≤≤,{1|2,,|1i B x x i x x x i ⎧+⎫=+<∈=⎨⎬-⎩⎭R 为虚数单位,因为()()()21121112i i i i i i i ++===--+,以及221<4<3x i x x +=⇔+⇔。

故选B 。

【押题理由】:集合元素的确定性,不等式的解法,复数的运算。

【命中指数】:★★★★★ 2.【答案】:B【解析1】:17(17)(2)1325i i ii i +++==-+-,∴1,3,3a b ab =-==-,选B 。

【解析2】:变除法为乘法。

去分母,得到()()()()1722222i a bi i a ai bi b a b b a i +=+-=-++=++-,比较实部与虚部,得到12,72a b b a =+=-,得到1,3,3a b ab =-==-,选B 。

【押题理由】:复数的定义与运算。

【命中指数】:★★★★★ 3.【答案】:C【解析】:设Q (x ,y ),P (x 0,y 0),则由n OP m OQ +⊕=,得y y x x y x y x y x 2,621),21,32()0,3()21,2(),(000000=-=+=+=πππ,代入得)621sin(21π-=x y ,则y=f (x )的最大值A 及最小正周期T 分别为π4,21,故选C .【押题理由】:向量、三角函数与新定义的结合。

【命中指数】:★★★★★ 4.【答案】:C 【解析】:由题意可知,要使得俯视图最大,需当三棱锥柱的一个侧面在水平平面内时,此时俯视图面积最大,如图所示,俯视图为矩形AA CC '',且4,BD AA '==则AC=tan 3022⨯= ,故面积最大为248⨯=.当棱柱在水平面内滚动时,因三角形ABC 为正三角形,当绕着OO '旋转60后,其中一个侧面恰好在水平面,其俯视图的面积也正好经历了一个周期,所以函数()S x 的最小正周期为3π.【押题理由】:三视图与三角函数、立体几何相互结合。

考查空间想象能力。

【命中指数】:★★★★★ 【考场手记】:先画出直观图,然后进行运动分析。

5.【答案】:B【解析】:先列举几个如下:i =2,S =3,P =11312=+;i =3,S =6,P =11113612123+=++++;i =4,S =10,P =1111113610121231234++=++++++++;i =5,S =15,P = ……. 观察上面几式易得规律.考察一个数列求和:P =1111121231234123i+++⋅⋅⋅++++++++++⋅⋅⋅+. 可从通项着手:()()1121121123112n a i i i i i i i ⎛⎫====- ⎪++++⋅⋅⋅+++⎝⎭. 故1111111122123344511P i i i ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+⋅⋅⋅+-=- ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 令291,19110P i i =->⇒<+.故当20i =时,跳出程序.选B 。

【押题理由】:框图与数列求和相互结合。

一个典型的裂项公式。

【命中指数】:★★★★★ 【考场手记】:遇到循环题时,总是先列出前几个观察规律,而不是抽象的去思考,那样具有很大的盲目性。

第5题图 第6题图 第9题图6.【答案】:A 【解析】:法一:(几何法)如下图:a OA = ,b OB = ,c OC = .由题意有∠AOB 3π=,点C 在圆M 上.当点C 达到点D时,max max sin cos 66c OD OM AM ππ==+=+= A 。

法二:(建系法或称坐标法)如下图建系,设点C 坐标为(x ,y ).设a OA ==⎝,12⎫⎪⎭,b OB ==⎝,12⎫-⎪⎭,c OC =(x =,)y .则:()()a cbc x -⋅-=-⎝,12y x ⎫-⋅⎪⎭⎝,12y ⎫--⎪⎭0=.化简得:22124x y ⎛-+= ⎝⎭.即图中圆M .当点C 达到点D时,max max 1sin cos 662c OD OM AM ππ+==+=+= A . 【押题理由】:向量与平面几何、平面直角坐标系的结合。

【命中指数】:★★★★★ 【考场手记】:数形结合的思路可以简化计算量。

把代数转化成等价的几何问题。

7.【答案】:A 【解析】:由题中提示知:二阶导数(记为()f x '')与极值有关.由导数定义有:()()()limx f x x f x f x x∆→''+∆-''=∆.(0x ∆>)。

对于极值左右两边来说:当为极大值点时,()0f x x '+∆<,()0f x '>.所以有()0f x ''<成立.()cos sin 33cos3f x a x b x x '=-+,()sin 3cos 9sin 3f x a x b x x ''=---.令03f π⎛⎫'= ⎪⎝⎭得:6a =.令303f b π⎛⎫''=+< ⎪⎝⎭得:b <.所以选A 。

【押题理由】:三角函数的求导,导函数的正负值与原函数增减性的关系。

新概念的应用。

【命中指数】:★★★★★ 【考场手记】:如果不会用二阶导数,则可以用特值验证。

极大值,所以原函数是先增后减,导函数是先正后负。

也能得到目标不等式。

8.【答案】:D【解析1】:由题意,11434102545152a d a d ⨯⎧+≥⎪⎪⎨⨯⎪+≤⎪⎩,即11461051015a d a d +≥⎧⎨+≤⎩,1123523a d a d +≥⎧⎨+≤⎩,413a a d =+.建立平面直角坐标系1a od ,画出可行域1123523a d a d +≥⎧⎨+≤⎩,画出目标函数即直线413a a d =+,由图知,当直线413a a d =+过可行域内(1,1)点时截距最大,此时目标函数取最大值44a =.选D 。

【解析2】:前面同解法1。

设111213(23)(2)a d a d a d λλ+=+++,由121221323λλλλ+=⎧⎨+=⎩解得1213λλ=-⎧⎨=⎩,∴1113(23)3(2)a d a d a d +=-+++由不等式的性质得:1123523a d a d +≥⎧⎨+≤⎩ 11(23)53(2)9a d a d -+≤-⎧⇒⎨+≤⎩ 11(23)3(2)4a d a d ⇒-+++≤,即4134a a d =+≤,4a 的最大值是4.所以选D 。

【解析3】:解法3:前面同解法1, ⎪⎩⎪⎨⎧+-≤+=+-≥+=dd d a a d d d a a 3)23(3323531414 ∴d a d +≤≤+32354 ∴d d +≤+3235,即1≤d 。

∴41334=+≤+≤d a ,4a 的最大值是4.所以选D 。

【押题理由】:数列与不等式组的结合。

【命中指数】:★★★★★ 【考场手记】:数列与不等式的小题,主要是运用基本不等式、不等式的性质、线性规划等求范围或最值.本题明为数列,实为线性规划,着力考查了转化化归和数形结合思想.因约束条件只有两个,本题也可用不等式的方法求解.易错处为:一方面得出不等式组,之后不知如何运用;另一方面用线性规划求最值时,用错点的坐标. 9.【答案】:C【解析】:不等式组0220x y x y y x y a-≥⎧⎪+≤⎪⎨≥⎪⎪+≤⎩,,,,将前三个不等式所表示的平面区域,三个顶点分别为22(0,0),(1,0),,33⎛⎫⎪⎝⎭,第四个不等式x y a +≤,表示的是斜率为1-的直线的下方,如图,只有当直线x y a +=和直线22x y +=的交点介于点,A B 之间时,不等式组所表示的区域才是四边形,此时413a <<。

选C 。

【押题理由】:关于可行域与不等式组的关系。

【命中指数】:★★★★★ 【考场手记】:把图像画准确,要画准直线,画准横纵截距是关键点。

10.【答案】:C 【解析】:点P 在以1AC 为焦点的椭圆上,P 分别在AB 、AD 、1AA 、11C B 、11C D 、1C C 上.证明如下:若P 在AB 上,设AP x =,有112,2PA PC x x +==∴=.故AB 上有一点P (AB 的中点)满足条件.同理在AD 、1AA 、11C B 、11C D 、1C C 上各有一点满足条件.又若点P 在1BB上,则12PA PC +=>.故1BB 上不存在满足条件的点P ,同理1DD 上不存在满足条件的点P .其它的棱也是一样的。

所以有6个点满足条件,选C 。

【押题理由】:空间中立体几何与平面几何的结合。

降维法,画出截面图。

数形结合以及分类讨论的思想。

【命中指数】:★★★★★ 【考场手记】:画出降维图,把空间问题转化为平面问题。

第10题图 第11题图11.【答案】:D【解析】:如图所示。

由222y kx x py=-⎧⎨=-⎩,得2240x pkx p +-=.设11(,)A x y ,22(,)B x y ,则122x x pk +=-,21212()424y y k x x pk +=+-=--.∵21212(,)(2,24)(4,12)OA OB x x y y pk pk +=++=---=--,∴2242412pk pk -=-⎧⎨--=-⎩,解得12p k =⎧⎨=⎩,故直线l 的方程为22y x =-,抛物线C 的方程22x y =-. 【解法一】:由2222y x x y=-⎧⎨=-⎩,得2440x x +-=,∴||AB ===212(,)(22P t t t ---<-+,∵||AB 为定值,∴当点P 到直线l 的距离d 最大时,ABP ∆的面积最大.而22(11|22||2)4|22t t t d +-+-==又22t --<-+∴当2t=-时,max 5d =.∴当P 点坐标为(2,2)--时,ABP ∆面积的最大值为25=.【解法二】:设00(,)P x y ,依题意,抛物线在点P 处的切线与l 平行时,ABP ∆的面积最大.∵y x '=-, ∴02x =-,200122y x =-=-,(2,2)P --.此时点P 到直线l的距离|2(2)(2)2|45d ⋅----==.由2222y x x y =-⎧⎨=-⎩,得2440x x +-=,∴||AB ==,故ABP ∆面积的最大值为25=.【押题理由】:抛物线的性质与计算。

相关文档
最新文档