相似判定和性质补充(含解析)
相似三角形的性质与判定讲义)
相似三角形的性质与判定讲义)-CAL-FENGHAI.-(YICAI)-Company One1相似三角形的性质与判定讲义【知识点拨】一、相似三角形性质(1)相似三角形对应角相等,对应边成比例.(2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比. (3)相似三角形周长的比等于相似比.(4)相似三角形面积的比等于相似比的平方.(5)相似三角形性质可用来证明线段成比例、角相等,也可用来计算周长、边长等二、 相似三角形的等价关系(1)反身性:对于任一ABC ∆有ABC ∆∽ABC ∆.(2)对称性:若ABC ∆∽'''C B A ∆,则'''C B A ∆∽ABC ∆.(3)传递性:若ABC ∆∽C B A '∆'',且C B A '∆''∽C B A ''''''∆,则ABC ∆∽C B A ''''''∆. 三、三角形相似的判定方法1、定义法:对应角相等,对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.6、判定直角三角形相似的方法: (1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
自学初中数学资料-相似三角形的性质和判定综合-(资料附答案)
自学资料一、相似三角形的性质和判定综合【知识探索】1.(1)三角形相似的判定方法①定义法:对应角相等,对应边成比例的两个三角形相似②平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似③判定定理1:如果一个三角形的对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。
④判定定理2:如果一个三角形的对应成比例,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。
⑤判定定理3:如果一个三角形的对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似。
(2)直角三角形相似的判定方法①以上各种判定方法均适用②垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。
【错题精练】例1.如图,在矩形ABCD中,E、F分别是CD、BC上的点.若∠AEF=90°,则一第1页共23页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训定有()A. △ADE∽△ECFB. △ECF∽△AEFC. △ADE∽△AEFD. △AEF∽△ABF【解答】解:在矩形ABCD中,∵∠D=∠C=90°,∠AEF=90°,∴∠DEA+∠CEF=90°,∠DEA+∠DAE=90°,∴∠DAE=∠CEF,∴△ADE∽△ECF.故选:A.【答案】A例2.如图,已知AB、CD分别是半圆O的直径和弦,AD和BC相交于点E,若∠AEC=α,则S△CDE:S△ABE等于()A. sinαB. cosαC. sin2αD. cos2α【答案】D例3.折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F 处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=______.【解答】解:设AD=x,则AB=x+2,∵把△ADE翻折,点A落在DC边上的点F处,第2页共23页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训∴DF=AD,EA=EF,∠DFE=∠A=90°,∴四边形AEFD为正方形,∴AE=AD=x,∵把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,∴DH=DC=x+2,∵HE=1,∴AH=AE-HE=x-1,在Rt△ADH中,∵AD2+AH2=DH2,∴x2+(x-1)2=(x+2)2,整理得x2-6x-3=0,解得x1=3+2√3,x2=3-2√3(舍去),即AD的长为3+2√3.故答案为3+2√3.【答案】3+2√3例4.如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于______.【解答】解:∵四边形ABC是矩形,∴AB=CD,AD=BC,设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,∵△A′EP的面积为4,△D′PH的面积为1,∴A′E=4D′H,设D′H=a,则A′E=4a,∵△A′EP∽△D′PH,∴D′HPA′=PD′EA′,∴ax =x4a,∴x2=4a2,∴x=2a或-2a(舍弃),∴PA′=PD′=2a,∵12•a•2a=1,∴a=1,∴x=2,∴AB=CD=2,PE=√22+42=2√5,PH=√12+22=√5,第3页共23页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训∴AD=4+2√5+√5+1=5+3√5,∴矩形ABCD的面积=2(5+3√5)=10+6√5.故答案为10+6√5【答案】10+6√5例5.如图,在正方形ABCD中,AB=2,点E为AB的中点,AF⊥DE于点O,则AO=______.【解答】解:∵四边形ABCD是正方形,∴AD=BC=2,∠DAE=90°,∵AE=EB=1,∴DE=√22+12=√5,∵AO⊥DE,∴12×DE×AO=12×AE×AD,∴AO=2√55.故答案为2√55.【答案】2√55例6.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于BC的中点处.①如图甲,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;②如图乙,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N.求证:△ECN∽△MEN.第4页共23页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训【答案】证明:(1)∵△ABC是等腰直角三角形,∴∠B=45°,∴∠1+∠2=135°又∵△DEF是等腰直角三角形,∴∠3=45°∴∠1+∠4=135°∴∠2=∠4,∵∠B=∠C=45°,∴△BEM∽△CNE;(2)与(1)同理△BEM∽△CNE,∴BECN =EMNE,又∵BE=EC,∴ECCN =EMNE,∴ECEM =CNNE,又∵∠ECN=∠MEN=45°,∴△ECN∽△MEN.例7.如图,△ABC内接于⊙O,AD是边BC上的高,AE是⊙O的直径,连BE.(1)求证:△ABE与△ADC相似;(2)若AB=2BE=4DC=8,求△ADC的面积.【答案】第5页共23页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训例8.如图,AB是⊙O的直径,BE⊥CD于E.(1)求证:AB•BE=BC•BD;(2)若AB=26,CD=24,求sin∠CBD.【答案】(1)证明:连接AD,∵AB是直径,∴∠ADB=90°,∵BE⊥CD∴∠ADB=∠CEB∵∠A=∠C∴△CBE∽△ABD∴ABBC =BD BE∴AB•BE=BC•BD;(2)解:连接DO并延长交⊙O于点F,∵DF是直径,∴∠FCD=90°∴∠F=∠CBD AB=DF=26∴CD=24∴sin∠CBD=sin∠F=CDDF =2426=1213【举一反三】第6页共23页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训第7页 共23页 自学七招之智慧树神拳:知识内容体系化,思维导图来助力 非学科培训1.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,AE ⊥EF ,则S △ABE :S △ECF 等于( )A. 1:2B. 4:1C. 2:1D. 1:4【答案】B2.矩形ABCD 中,AD=2AB=2√2,E 是AD 的中点,Rt ∠FEG 顶点与点E 重合,将∠FEG 绕点E 旋转,角的两边分别交AB ,BC (或它们的延长线)于点M ,N ,设∠AME=α(0°<α<90°),有下列结论:①BM=CN ;②AM+CN=√2;③S △EMN =1sin 2α,其中正确的是( )A. ①B. ②③C. ①③D. ①②③【解答】解:在矩形ABCD 中,AD=2AB ,E 是AD 的中点, 作EF ⊥BC 于点F ,则有AB=AE=EF=FC ,∵∠AEM+∠DEN=90°,∠FEN+∠DEN=90°,∴∠AEM=∠FEN ,在Rt △AME 和Rt △FNE 中,{∠AEM =∠FENAE =EF ∠MAE =∠NFE,∴Rt △AME ≌Rt △FNE ,∴AM=FN ,∴MB=CN ,故①正确;∴CF=AM+CN=12BC=√2,当点M 在AB 的延长线上时,AM-CN=√2,故②错误;∵Rt△AME≌Rt△FNE,∴EM=EN,∴△EMN是等腰直角三角形,∵∠AME=α,∴sinα=AEEM,∴EM=√2sinα,∴S△EMN=12EM2=1sin2α,故③正确,故选:C.【答案】C3.如图,AB是⊙的直径,CD是∠ACB的平分线交⊙O于点D,过D作⊙O的切线交CB的延长线于点E.若AB=4,∠E=75°,则CD的长为.【答案】2√34.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE×CA.(1)求证:BC=CD(2)分别延长AB,DC交于点P,若PB=OB,CD=2√2,求⊙O的半径.【答案】(1)证明:∵DC2=CE•CA,∴DCCE =CADC,而∠ACD=∠DCE,第8页共23页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训∴△CAD∽△CDE,∴∠CAD=∠CDE,∵∠CAD=∠CBD,∴∠CDB=∠CBD,∴BC=DC;(2)解:连结OC,如图,设⊙O的半径为r,∵CD=CB,∴CD̂=CB̂,∴∠BOC=∠BAD,∴OC∥AD,∴PCCD =POOA=2rr=2,∴PC=2CD=4√2,∵∠PCB=∠PAD,∠CPB=∠APD,∴△PCB∽△PAD,∴PCPA =PBPD,即4√23r=r6√2,∴r=4,即⊙O的半径为4.5.如图,AB⊥BC,DC⊥BC,E是BC上一点,使得AE⊥DE;(1)求证:△ABE∽△ECD;(2)若AB=4,AE=BC=5,求CD的长;(3)当△AED∽△ECD时,请写出线段AD、AB、CD之间数量关系,并说明理由.第9页共23页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训【答案】(1)证明:∵AB⊥BC,DC⊥BC,∴∠B=∠C=90°,∠BAE+∠AEB=90°,∵AE⊥DE,∴∠AED=90°,∴∠AEB+∠DEC=90°,∴∠DEC=∠BAE,∴△ABE∽△ECD;(2)解:Rt△ABE中,∵AB=4,AE=5,∴BE=3,∵BC=5,∴EC=5-3=2,由(1)得:△ABE∽△ECD,∴ABBE =ECCD,∴43=2CD,∴CD=32;(3)解:线段AD、AB、CD之间数量关系:AD=AB+CD;理由是:过E作EF⊥AD于F,∵△AED∽△ECD,∴∠EAD=∠DEC,∵∠AED=∠C,∴∠ADE=∠EDC,∵DC⊥BC,∴EF=EC,∵DE=DE,∴Rt△DFE≌Rt△DCE(HL),∴DF=DC,同理可得:△ABE≌△AFE,∴AF=AB,∴AD=AF+DF=AB+CD.6.已知,正方形DEFG内接于△ABC中,且点E、F在BC上,点D,G分别在AB,AC上.第10页共23页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训(1)如图①,若△ABC是直角三角形,∠A=90°,AB=4,AC=3,求正方形的边长;(2)如图②,若S△ADG=1,S△BDE=3,S△FCG=1,求正方形的边长.【答案】解:(1)设正方形DEFG的边长是x,∵△ABC是直角三角形,∠A=90°,AB=4,AC=3,∴由勾股定理得:BC=5,过A作AM⊥BC于M,交DG于N,由三角形面积公式得:12AB×AC=12BC×AM,∵AB=4,AC=3,BC=5,∴AM=2.4,∵四边形DEFG是正方形,∴DG=GF=EF=DE=MN=x,DG∥BC,∴△ADG∽△ABC,∴DGBC =AN AM,∴x5=2.4−x2.4,x=6037,即正方形DEFG的边长是6037;(2)过A作AM⊥BC于M,交DG于N,设正方形DEFG的边长是a,AN=b,∵四边形DEFG是正方形,∴DG=GF=EF=DE=MN=a,DG∥BC,∵S△ADG=1,S△BDE=3,S△FCG=1,∴12ab=1,12BE•a=3,12CF•a=1,∴BE=3b,CF=b,∴S△ADG+S△BED+S CFG=12ab+32ab+12ab=1+3+1=5,∴ab=2,∴b=2a①,=1(BE+EF+CF)×(AN+MN)-(S△ADG+S△BDE+S△CFG)2(a+4b)(a+b)-5=a2,=12∴a=2b②,由①②得:a=2,即正方形的边长是2.7.如图,在长方形ABCD中,点E,F分别是BC,DC上的动点.沿EF折叠△CEF,使点C的对称点G落在AD上,若AB=3,BC=5,求CF的取值范围.【答案】解:∵四边形ABCD是矩形,∴∠C=90°,BC=AD=5,CD=AB=3,当点D与F重合时,CF最大值为3,如图1所示:当B与E重合时,CF最小,如图2所示:在Rt△ABG中,∵BG=BC=5,AB=3,∴AG=√BG2−AB2=4,∴DG=AD-AG=1,设CF=FG=x,在Rt△DFG中,∵DF2+DG2=FG2,∴(3-x)2+12=x2,,∴x=53∴5≤CF≤3.≤CF≤3.故答案为:538.如图,在⊙O中,直径AB垂直于弦CD,垂足为点E,点F在AC上从A点向C点运动(点A、C 除外),AF与DC的延长线相交于点M.(1)求证:△AFD∽△CFM;(2)点F在运动中是否存在一个位置使△FMD为等腰三角形?若存在,给予证明;若不存在,请说明理由.【答案】1.如图,正方形ABCD中,E为CD的中点,EF⊥AE,交BC于点F,则∠1与∠2的大小关系为()A. ∠1>∠2B. ∠1<∠2C. ∠1=∠2D. 无法确定【解答】解:∵∠AED+∠CEF=90°,∠DAE+∠ADE=90°,∴∠DAE=∠CEF,∵∠ADE=∠ECF=90°,又∵∠ADE=∠AEF,∴△ADE∽△AEF,∴∠1=∠2.【答案】C2.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交CD于点F,交AD的延长线于点E,若AB=4,BM=2,则△DEF的面积为()A. 9B. 8C. 15D. 14.5【答案】A3.如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是()A. S1=S2B. S1>S2C. S1<S2D. 3S1=2S2S矩形AEFC,即S1=S2,【解答】解:矩形ABCD的面积S=2S△ABC,而S△ABC=12故选:A.【答案】A4.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,且E为AD的中点,FC=3DF,连接EF并延长交BC的延长线于点G(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求△BEG的面积.=FCDF=3,∴CG=6,∴BG=BC+CG=10,∴△BEG的面积=12×BG×AB=20.5.如图,在正方形ABCD中,AB=4,点P、Q分别在直线CB与射线DC上(点P不与点C、点B重合),且保持∠APQ=90°,CQ=1,则线段BP的长为______.【解答】解:分三种情况:设BP=x,①当P在线段BC上时,如图1,∵四边形ABCD是正方形,∴∠B=∠C=90°,∴∠BAP+∠APB=90°,∵∠APQ=90°,∴∠APB+∠CPQ=90°,∴∠BAP=∠CPQ,∴△ABP∽△PCQ,∴ABBP=PCCQ,∴4x=4-x1,∴x1=x2=2,∴BP=2;②当P在CB的延长线上时,如图2,同瑆得:△ABP∽△PCQ,6.已知,如图,在圆O中,AB=CD。
相似三角形的判定+性质+经典例题分析
相似形(一)一、比例性质1.基本性质:(两外项的积等于两内项积)2.反比性质:(把比的前项、后项交换)3。
合比性质:(分子加(减)分母,分母不变).4.等比性质:(分子分母分别相加,比值不变.)如果,那么.谈重点:(1)此性质的证明运用了“设法”,这种方法是有关比例计算,变形中一种常用方法.(2)应用等比性质时,要考虑到分母是否为零.(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.5。
黄金分割:○,1内容○,2尺规作图作一条线段的黄金分割点经典例题回顾:例题1.已知a、b、c是非零实数,且,求k的值.例题2.已知,求的值.概念:谈重点:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关.⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况.⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.⑷若两个图形形状与大小都相同,这时是相似图形的一种特例—-全等形.①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l1∥l2∥l3.②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
○,4推论:如果一条直线平行于三角形的一条边,截其它两边(或其延长线),那么所截得的三角形与原三角形相似.推论错误!的基本图形有三种情况,如图其符号语言:∵DE∥BC,∴△ABC∽△ADE;判定定理1:两角对应相等,两三角形相似.符号语言:拓展延伸:(1)有一组锐角对应相等的两个直角三角形相似。
(2)顶角或底角对应相等的两个等腰三角形相似。
例题精讲【重难点高效突破】例题1.如图,直线DE分别与△ABC的边AB、AC的反向延长线相交于D、E,由ED∥BC可以推出吗?请说明理由.(用两种方法说明)例题2.(射影定理)已知:如图,在△ABC中,∠BAC=90°,AD⊥BC于D.求证:(1);(2);(3)例题3.如图,AD是RtΔABC斜边BC上的高,DE⊥DF,且DE和DF分别交AB、AC于E、F。
相似三角形的判定(解析版) (1)
4.4相似三角形的判定相似三角形的判定定理1.(一)相似三角形判定的预备定理平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。
2.判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.3.判定定理2:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.要点:此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必需是两边的夹角,否则,判断的结果可能是错误的.4.判定定理3:如果两个三角形的三组对应边的比相等,那么这两个三角形相似.一、单选题1.如图,AD ,BC 相交于点O ,由下列条件仍不能判定△AOB 与△DOC 相似的是( )A .AB ∥CD B .∠C =∠B C .OA OBOD OC= D .OA ABOD CD= 【解答】D【提示】本题中已知∠AOB =∠DOC 是对顶角,应用两三角形相似的判定定理,即可作出判断. 【详解】解:A 、由AB ∥CD 能判定△AOB ∽△DOC ,故本选项不符合题意. B 、由∠AOB =∠DOC 、∠C =∠B 能判定△AOB ∽△DOC ,故本选项不符合题意.C 、由OA OBOD OC = 、∠AOB =∠DOC 能判定△AOB ∽△DOC ,故本选项不符合题意. D 、已知两组对应边的比相等:OA ABOD CD = ,但其夹角不一定对应相等,不能判定△AOB 与△DOC 相似,故本选项符合题意. 故选:DAB CDED EACB【点睛】此题考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.2.如图,D 是ABC 的边BC 上的一点,那么下列四个条件中,不能够判定△ABC 与△DBA 相似的是( )A .C BAD ∠=∠B .BAC BDA ∠=∠ C .AC ADBC AB = D .2AB BD BC =⋅【解答】C【提示】由相似三角形的判定定理即可得到答案.【详解】解:C BAD ∠=∠,B B ∠=∠,ABC ∽DBA ,故选项A 不符合题意;BAC BDA ∠=∠,B B ∠=∠,ABC ∽DBA ,故选项B 不符合题意;AC ADBC AB =,但无法确定ACB ∠与BAD ∠是否相等,所以无法判定两三角形相似,故选项C 符合题意;2AB BD BC =⨯即AB BCBD AB =,B B ∠=∠,ABC ∽DBA ,故选项D 不符合题意.故选:C .【点睛】本题考查相似三角形的判定定理,熟练掌握相关定理是解题的关键. 3.下列各种图形中,有可能不相似的是( ) A .有一个角是45的两个等腰三角形 B .有一个角是60的两个等腰三角形 C .有一个角是110的两个等腰三角形 D .两个等腰直角三角形【解答】A【提示】本题每一个选项都跟等腰三角形相似有关,注意的是一个角是一个角是45°,这个角可能是顶角或者底角,有一个角是60,这个三角形就是等边三角形,一个角是110,这个角一定是顶角,若是底角则不满足三角形内角和等于180°.等腰直角三角形的的底角是45°顶角是90°为固定值. 【详解】A .各有一个角是45°的两个等腰三角形,有可能是一个为顶角,另一个为底角,此时不相似,故此选项符合题意;B .各有一个角是60°的两个等腰三角形是等边三角形,两个等边三角形相似,故此选项不合题意;C .各有一个角是110°的两个等腰三角形,此角必为顶角,则底角都为35°,则这两个三角形必相似,故此选项不合题意;D .两个等腰直角三角形,底角是45°顶角是90°,为固定值,此三角形必相似,故此选项不合题意; 故选A .【点睛】本题解题关键在于,找准一个角是45,60,110的等腰三角形有几种情况,再就是等腰直角三角形的每个角的角度是固定的.4.下列条件,能使ABC 和111A B C △相似的是( )A .1111112.5,2,3;3,4,6AB BC AC A B B C AC ======B .11111192,3,4;3,6,2AB BC AC A B B C AC ======C.11111110,8;AB BC AC A B BCAC =====D.1111111,3;AB BC AC A B BCAC ====【解答】B【提示】根据相似三角形的判定定理进行判断.【详解】解:A 、11112.55213642AB BC A B B C ==≠==,不能使ABC ∆和△111A B C 相似,错误; B 、11111123242933632AB BC AC A B A C B C =======,能使ABC ∆和△111A B C 相似,正确;C、1111AB BC A B B C ≠=,不能使ABC ∆和△111A B C 相似,错误; D、1111AB BC A C B C =≠=ABC ∆和△111A B C 相似,错误; 故选B.【点睛】本题考查了相似三角形的判定.识别三角形相似,除了要掌握定义外,还要注意正确找出三角形的对应边、对应角.5.下列能判定ABC DEF ∽△△的条件是( ) A .AB AC DE DF = B .AB ACDE DF =,A F ∠=∠ C .AB AC DE DF =,B E ∠=∠ D .AB ACDE DF =,A D ∠=∠ 【解答】D【提示】利用相似三角形的判定定理:两边对应成比例且夹角相等的三角形相似,逐项判断即可得出答案.【详解】解:A.AB ACDE DF =,A D ∠=∠,则ABC DEF ∽△△,故此选项错误; B. AB ACDE DF =,A D ∠=∠,则ABC DEF ∽△△,故此选项错误; C.AB ACDE DF =,A D ∠=∠,则ABC DEF ∽△△,故此选项错误; D.AB ACDE DF =,A D ∠=∠,则ABC DEF ∽△△,故此选项正确; 故选:D .【点睛】本题考查的知识点是相似三角形的判定定理,熟记定理内容是解此题的关键. 6.如图,要使ACD ABC △△∽,需要具备的条件是( )A .AC ABAD BC = B .CD BCAD AC = C .2AC AD AB =⋅D .2CD AD BD =⋅【解答】C【提示】题目中隐含条件∠A =∠A ,根据有两边对应成比例,且夹角相等的两三角形相似,得出添加的条件只能是AC ADAB AC =,根据比例性质即可推出答案. 【详解】解:∵在△ACD 和△ABC 中,∠A =∠A ,∴根据有两边对应成比例,且夹角相等的两三角形相似,得出添加的条件是:AC ADAB AC =, ∴2AC AD AB ⋅= . 故选:C .【点睛】本题考查了相似三角形的判定,注意:有两边对应成比例,且夹角相等的两三角形相似. 7.如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,下列条件不能满足△ADE ∽△ACB 的条件是( )A .∠AED=∠B B .AD AEAC AB = C .AD·BC= DE·AC D .DE//BC【解答】C【提示】根据相似三角形的判定定理去判断分析即可. 【详解】∵∠AED=∠B ,∠A=∠A , ∴△ADE ∽△ACB , 故A 不符合题意; ∵AD AEAC AB =,∠A=∠A , ∴△ADE ∽△ACB , 故B 不符合题意;∵AD·BC= DE·AC ,无夹角相等, ∴不能判定△ADE ∽△ACB , 故C 符合题意; ∵DE//BC , ∴△ADE ∽△ACB , 故D 不符合题意; 故选C .【点睛】本题考查了三角形相似的判定条件,熟练掌握判定三角形相似的基本方法是解题的关键. 8.如图,等边ABC 中,点E 是AB 的中点,点D 在AC 上,且2DC DA =,则( )A .AED BED ∽△△ B .AED CBD ∽△△ C .AED ABD ∽△△ D .BAD BCD ∽△△ 【解答】B【提示】由等边三角形的性质,中点的定义得到2BC AB AE ==,60A C ∠=∠=︒,结合2DC DA =,得到12AE AD CB CD ==,即可得到AED CBD ∽△△. 【详解】解:∵ABC 是等边三角形, ∴BC AB =,60A C ∠=∠=︒, ∵点E 是AB 的中点, ∴2BC AB AE ==, ∵2DC DA =, ∴12AE AD CB CD ==,∵60A C ∠=∠=︒,∴AED CBD ∽△△. 故选:B .【点睛】本题考查了相似三角形的判定,等边三角形的性质,解题的关键是掌握相似三角形的判定进行判断.9.如图,在ACB △中,90,ACB AF ∠=︒是BAC ∠的平分线,过点F 作FE AF ⊥,交AB 于点E ,交AC 的延长线于点D ,则下列说法正确的是( )A .CDF EBF ∽B .ADF ABF ∽C .ADF CFD ∽D .ACF AFE ∽【解答】D【提示】根据相似三角形的判定方法AA 解题. 【详解】解:EF AF ⊥90AFE ∴∠=︒90ACB AFE ∴∠=∠=︒AF 是BAC ∠的平分线,CAF FAE ∴∠=∠()ACFAFE AA ∴故选项D 符合题意,选项A 、B 、C 均不符合题意,故选:D .【点睛】本题考查相似三角形的判定方法,角平分线的性质等知识,是重要考点,掌握相关知识是解题关键.10.如图,四边形ABCD 的对角线,AC BD 相交于点O ,且将这个四边形分成四个三角形,若::OA OC OB OD =,则下列结论中正确的是( )A .△AOB ∽△AOD B .△AOD ∽△BOC C .△AOB ∽△BOCD .△AOB ∽△COD 【解答】D【提示】根据相似三角形的判定定理:两边对应成比例且夹角相等,即可判断△AOB ∽△COD . 【详解】解:∵四边形ABCD 的对角线,AC BD 相交于点O , ∴∠AOB=∠COD , 在△AOB 和△COD 中, =OA OBOC OD AOB COD ⎧⎪⎨⎪∠=∠⎩∴△AOB ∽△COD . 故选:D .【点睛】本题考查相似三角形的判定.熟练掌握两边对应成比例且夹角相等则这两个三角形相似是解题的关键.二、填空题11.如图,在ABC 中,点D 在AB 边上,点E 在AC 边上,请添加一个条件_________,使ADE ABC △△∽.【解答】∠ADE=∠B (答案不唯一).【提示】已知有一个公共角,则可以再添加一个角从而利用有两组角对应相等的两个三角形相似来判定或添加夹此角的两边对应成比例也可以判定. 【详解】解∶∵∠A=∠A ,∴根据两角相等的两个三角形相似,可添加条件∠ADE=∠B 或∠AED=∠C 证ADE ABC △△∽相似; 根据两边对应成比例且夹角相等,可添加条件AD AEAB AC =证ADE ABC △△∽相似. 故答案为∶∠ADE =∠B (答案不唯一).【点睛】此题考查了本题考查了相似三角形的判定,解题的关键是掌握相似三角形的判定方法. 12.图,在ABC 中,AB AC >,点D 在AB 上(点D 与A ,B 不重合),若再增加一个条件就能使ACD ABC △∽△,则这个条件是________(写出一个条件即可).【解答】ACD ABC ∠=∠(答案不唯一)【提示】两个三角形中如果有两组角对应相等,那么这两个三角形相似,据此添加条件即可. 【详解】解:添加ACD ABC ∠=∠,可以使两个三角形相似. ∵CAD BAC ∠=∠,ACD ABC ∠=∠, ∴ACD ABC △∽△.故答案为:ACD ABC ∠=∠(答案不唯一)【点睛】本题考查相似三角形的判定定理,两组角对应相等的两个三角形相似.理解和掌握三角形相似的判定是解题的关键.13.如图,∠1=∠2,请补充一个条件:________________,使△ABC ∽△ADE .【解答】∠C =∠E 或∠B =∠ADE(答案不唯一)【提示】再添加一组角可以利用有两组角对应相等的两个三角形相似来进行判定. 【详解】∵∠1=∠2 ∴∠1+∠DAC=∠DAC+∠2 ∴∠BAC =∠DAE又∵∠C =∠E (或∠B =∠ADE ) ∴△ABC ∽△ADE .故答案为:∠C =∠E 或∠B =∠ADE (答案不唯一).【点睛】本题考查了相似三角形的判定,熟悉相似三角形的几个判定定理是关键. 14.如图,在ABC 中,点D 为边AC 上的一点,选择下列条件:①2A ∠=∠;②1CBA ∠=∠;③BC CDAC AB =;④BC CD DB AC BC AB ==中的一个,不能得出ABC 和BCD △相似的是:__________(填序号).【解答】③【提示】根据相似三角形的判定定理可得结论.【详解】解:①2A ∠=∠,C C ∠=∠时,ABC BDC ∆∆∽,故①不符合题意; ②1CBA ∠=∠,C C ∠=∠时,ABC BDC ∆∆∽,故②不符合题意; ③BC CDAC AB =,C C ∠=∠时,不能推出ABC BDC ∆∆∽,故③符合题意; ④BC CD DBAC BC AB ==,C C ∠=∠时,ABC BDC ∆∆∽,故④不符合题意, 故答案为:③【点睛】本题考查了相似三角形的判定,解题的关键是掌握两组对应边对应成比例且夹角相等的两个三角形相似;有两角对应相等的两个三角形相似.15.如图,在ABC 中,DE BC ∥,DE 分别交AB 、AC 于点D 、E ,DC 、BE 交于点O ,则相似三角形有______.【解答】ADE∽ABC,DOE∽COB△【提示】根据DE BC∥,找出相等的角,进而得到相似三角形.【详解】解:∵DE BC∥,∴∠ADE=∠ABC,∠AED=∠ACB,∴ADE∽ABC,∵DE BC∥,∴∠EDO=∠BCO,∠DEO=∠CBO,∴DOE∽COB△,故答案为ADE∽ABC,DOE∽COB△.【点睛】本题考查了平行线的性质以及相似三角形的判定,解题的关键是掌握:一个三角形的两个角与另一个三角形的两个角对应相等,这两个三角形相似.16.如图,在△ABC中,AB=10,AC=5,AD是角平分线,CE是高,过点D作DF⊥AB,垂足为F,若DF=83,则线段CE的长是______.【解答】4【提示】延长AC,作DG⊥AC,根据根据角平分线的性质得到FD=GD,再根据三角形的面积公式即可求解.【详解】解:延长AC,作DG⊥AC,∵AD平方∠BAC,∴FD=DG,∴S△ABC= S△ABD+ S△ADC=12AB FD⨯⨯+12AC GD⨯⨯=12AB EC⨯⨯即111105883310222EC⨯⨯+⨯⨯=⨯⨯ 解得EC=4.【点睛】本题考查了角平分线的性质,角的平分线上的点到角的两边的距离相等与三角形的面积公式. 17.如图,在ABC 中,8AB cm =,16BC cm =,动点P 从点A 开始沿AB 边运动,速度为2/cm s ;动点Q 从点B 开始沿BC 边运动,速度为4/cm s ;如果P 、Q 两动点同时运动,那么经过______秒时QBP △与ABC 相似.【解答】0.8或2##2或0.8【提示】设经过t 秒时,QBP △与ABC 相似,则2AP tcm =,(82)BP t cm =-,4BQ tcm =,利用两组对应边的比相等且夹角对应相等的两个三角形相似进行分类讨论:BP BQBA BC =时,BPQ BAC ∽,即824816t t -=;当BP BQ BCBA =时,BPQ BCA △∽△,即824168t t -=,然后解方程即可求出答案. 【详解】解:设经过t 秒时,QBP △与ABC 相似, 则2AP tcm =,(82)BP t cm =-,4BQ tcm =, ∵PBQ ABC ∠=∠,∴当BP BQBA BC =时,BPQ BAC ∽, 即824816t t -=, 解得:2t =;当BP BQ BC BA =时,BPQ BCA △∽△,即824168t t-=, 解得:0.8t =;综上所述:经过0.8s 或2s 秒时,QBP △与ABC 相似,【点睛】本题考查了相似三角形的判定:两组对应边成比例且夹角相等的两个三角形相似,解题的关键是准确分析题意列出方程求解.18.如图,正方形ABCD 的边长为2,连接BD ,点P 是线段AD 延长线上的一个动点,45PBQ ∠=︒,点Q 是BQ 与线段CD 延长线的交点,当BD 平分PBQ ∠时,PD ______QD (填“>”“<”或“=”):当BD 不平分PBQ ∠时,PD QD ⋅=__________.【解答】 = 8【提示】①先证明△ABP ≌△CBQ,再证明△QBD ≌△PBD,即可得出PD=QD;②证明△BQD ∽△PBD,即可利用对应边成比例求得PD·QD. 【详解】解:①当BD 平分∠PBQ 时, ∠PBQ=45°,∴∠QBD=∠PBD=22.5°, ∵四边形ABCD 是正方形,∴AB=BC ,∠A=∠C=90°,∠ABD=∠CBD=45°, ∴∠ABP=∠CBQ=22.5°+45°=67.5°, 在△ABP 和△CBQ 中,A C AB BCABP CBQ ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABP ≌△CBQ (ASA ), ∴BP=BQ ,在△QBD 和△PBD 中,BQ BP QBD PBD BD BD =⎧⎪∠=∠⎨⎪=⎩∴△QBD ≌△PBD (SAS ), ∴PD=QD;②当BD 不平分∠PBQ 时, ∵AB ∥CQ , ∴∠ABQ=∠CQB ,∵∠QBD+∠DBP=∠QBD+∠ABQ=45°, ∴∠DBP=∠ABQ=∠CQB ,∵∠BDQ=∠ADQ+∠ADB=90°+45°=135°,∠BDP=∠CDP+∠BDC=90°+45°=135°, ∴∠BDQ=∠BDP, ∴△BQD ∽△PBD ,∴BD QDPD BD =,∴PD·QD=BD2=22+22=8, 故答案为:=,8.【点睛】本题考查三角形的全等和相似,关键在于熟悉基础知识,利用条件找到对应三角形.三、解答题19.已知:D 、E 是△ABC 的边AB 、AC 上的点,AB =8,AD =3,AC =6,AE =4,求证:△ABC ∽△AED .【解答】见解析【提示】根据已知线段长度求出AB ACAE AD =,再根据∠A=∠A 推出相似即可. 【详解】证明:在△ABC 和△AED 中, ∵824AB AE ==,623AC AD ==,∴AB ACAE AD =, 又∵∠A =∠A ,∴△ABC ∽△AED .【点睛】本题考查了相似三角形的判定定理的应用,注意:有两边的对应成比例,且夹角相等的两三角形相似.20.已知:在△ABC 和△A′B′C′中, AB BC ACA B B C A C '''='''=.求证:△ABC ∽△A′B′C′.【解答】证明见解析【提示】先在△ABC 的边AB ,AC (或它们的延长线)上截取AD=A′B′,AE=A′C′,然后证明△ABC ∽△ADE ,再△ADE ≌△A′B′C′即可.【详解】在△ABC 的边AB ,AC (或它们的延长线)上截取AD=A′B′,AE=A′C′,连接DE . ∵AB ACA B A C ='''',AD=A′B′,AE=A′C′, ∴AB ACAD AE = 而∠BAC=∠DAE ,∴△ABC ∽△ADE (两边成比例且夹角相等的两个三角形相似). ∴AB BCAD DE = 又AB BCA B B C ='''',AD= A′B′, ∴ AB BCAD B C ='' ∴BC BCDE B C =''∴DE=B′C′,∴△ADE ≌△A′B′C′, ∴△ABC ∽△A′B′C′.【点睛】本题考查了相似三角形的判定,三边对应成比例的两个三角形相似,灵活运用两边对应成比例且夹角相等的两个三角形相似,全等三角形的判定是解决本题的关键. 21.已知:如图,在ABC 和A B C '''中,,A A B B ∠=∠∠=∠''. 求证:ABC A B C '''∽△△.【解答】见解析【提示】在ABC 的边AB (或它的延长线)上截取AD A B ='',过点D 作BC 的平行线,交AC 于点E ,过点D 作AC 的平行线,交BC 于点F ,容易得到ADE ABC △△∽,然后证明ADE A B C '''≌,从而即可得到ABC A B C '''∽△△.【详解】证明:在ABC 的边AB (或它的延长线)上截取AD A B ='',过点D 作BC 的平行线,交AC 于点E ,则,ADE B AED C ∠=∠∠=∠,AD AEAB AC =(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例).过点D 作AC 的平行线,交BC 于点F ,则AD CFAB CB =(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例). ∴AE CFAC CB =. ∵//,//DE BC DF AC , ∴四边形DFCE 是平行四边形. ∴DE CF =.∴AEDEAC CB =. ∴ADAE DEAB AC BC ==.而,,ADE B DAE BAC AED C ∠=∠∠=∠∠=∠, ∴ADE ABC △△∽.∵,,A A ADE B B AD A B ∠=∠∠=∠=∠='''', ∴ADE A B C '''≌. ∴ABC A B C '''∽△△.【点睛】本题是教材上相似三角形的判定定理的证明,熟读教材是解题的关键. 22.如图,Rt ABC 中,CD 是斜边AB 上的高.求证:(1)ACD ABC △∽△; (2)CBD ABC ∽△△. 【解答】(1)见解析;(2)见解析【提示】(1)根据有两组角对应相等的两个三角形相似进行证明即可. (2)根据有两组角对应相等的两个三角形相似进行证明即可. 【详解】证明:(1)∵CD 是斜边AB 上的高, ∴∠ADC =90°,∴∠ADC =∠ACB =90°, ∵∠A =∠A , ∴△ACD ∽△ABC .(2)∵CD 是斜边AB 上的高, ∴∠BDC =90°,∴∠BDC =∠ACB =90°, ∵∠B =∠B , ∴△CBD ∽△ABC .【点睛】本题考查了相似三角形的判定定理;熟记有两组角对应相等的两个三角形相似是解决问题的关键.23.如图,D 为△ABC 内一点,E 为△ABC 外一点,且∠ABC =∠DBE ,∠3=∠4. 求证:(1)△ABD ∽△CBE ; (2)△ABC ∽△DBE .【解答】(1)证明见解析;(2)证明见解析;【提示】(1)根据有两组角对应相等的两个三角形相似可判断△ABD∽△CBE;(2)先利用得到∠1=∠2得到∠ABC=∠DBE,再利用△ABD∽△CBE得AB BDBC BE=, 根据比例的性质得到AB BCBD BE=, 然后根据两组对应边的比相等且夹角对应相等的两个三角形相似可判断△ABC与△DBE相似.【详解】(1)相似.理由如下:∵∠1=∠2,∠3=∠4.∴△ABD∽△CBE;(2)相似.理由如下:∵∠1=∠2,∴∠1+∠DBC=∠2+DBC,即∠ABC=∠DBE,∵△ABD∽△CBE,∴=,∴=,∴△ABC∽△DBE.【点睛】本题考查了三角形相似的判定,熟练掌握三角形相似的判定方法是解题关键.24.已知如图所示,AF⊥BC,CE⊥AB,垂足分别是F、E,试证明:(1)△BAF∽△BCE.(2)△BEF∽△BCA.【解答】(1)答案见解析;(2)答案见解析【提示】(1)根据两角相等,两个三角形相似即可得出结论;(2)根据(1)得到△BAF ∽△BCE ,再由相似三角形的对应边成比例,得到BF :BE=BA :BC ,由两边对应成比例,夹角相等两个三角形相似,即可得出结论. 【详解】(1)∵AF ⊥BC ,CE ⊥AB ,∴∠AFB=∠CEB=90°. ∵∠B=∠B ,∴△BAF ∽△BCE ;(2)∵△BAF ∽△BCE ,∴BF :BE=BA :BC . ∵∠B=∠B ,∴△BEF ∽△BCA .【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.25.如图,在△ABC 和△ADE 中,AB BC ACAD DE AE ==,点B 、D 、E 在一条直线上,求证:△ABD ∽△ACE .【解答】证明见解析;【提示】根据三边对应成比例的两个三角形相似可判定△ABC ∽△ADE ,根据相似三角形的性质可得∠BAC=∠DAE ,即可得∠BAD=∠CAE ,再由AB AC AD AE =可得AB ADAC AE =,根据两边对应成比例且夹角相等的两个三角形相似即可判定△ABD ∽△ACE .【详解】∵在△ABC 和△ADE 中,AB BC ACAD DE AE ==, ∴△ABC ∽△ADE , ∴∠BAC=∠DAE , ∴∠BAD=∠CAE , ∵AB ACAD AE =, ∴AB ADAC AE =, ∴△ABD ∽△ACE .【点睛】本题考查了相似三角形的判定与性质,熟知相似三角形的判定方法是解决本题的关键. 26.如图,△ABC 与 △ADE 中,∠ACB=∠AED=90°,连接BD 、CE ,∠EAC=∠DAB.(1)求证:△ABC ∽△ADE ; (2)求证:△BAD ∽△CAE ;(3)已知BC=4,AC=3,AE=32.将△AED 绕点A 旋转,当点E 落在线段CD 上时,求 BD 的长.【解答】(1)详见解析;(2)详见解析;(3)BD=53.【提示】(1)由已知可得∠CAB=∠EAD ,∠ACB=∠AED=90°,则结论得证; (2)由(1)知AC AEAB AD =,∠EAC=∠DAB ,则结论得证; (3)先证△ABC ∽△ADE ,求出AE 、AD 的长,则BD 可求. 【详解】证明:(1)∵∠EAC=∠DAB , ∴∠CAB=∠EAD , ∵∠ACB=∠AED=90°, ∴△ABC ∽△ADE ;(2)由(1)知△ABC ∽△ADE , ∴AC AEAB AD =, ∵∠EAC=∠BAD , ∴△BAD ∽△CAE ;(3)∵∠ACB=90°,BC=4,AC=3,∴2222=43BC AC ++,∵△ABC ∽△ADE , ∴AC AB AE AD =, ∴AD=5=•2AB AE AC , 如图,将△AED 绕点A 旋转,当点E 落在线段CD 上时,∠AEC=∠ADB=90°,∴222255=()=3225AB AD--【点睛】本题考查相似三角形的判定和性质、旋转的性质等知识,解题的关键是熟练掌握基本知识.。
相似三角形的判定与性质知识梳理及例题分析
相似三角形的判定与性质知识梳理及例题分析1.相似三角形的概念:在和中,如果,,,,我们就说和相似,记作∽,就是它们的相似比(注意:要把表示对应顶点的字母写在对应的位置上).思考:在中,点是边的中点,,交于点,与有什么关系?猜想:与相似. 证明:在与中,∴,.过点作,交于点在中,,,∴.又,∴∴,∴∽(对应角相等,对应边的比相等的两三角形相似),相似比为.改变点在上的位置,可以进一步猜想以上两个三角形依然相似.2.相似三角形的判定定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.小结:判定三角形相似的方法:(1)相似三角形的定义;(2)由平行线得相似.思考:对比三角形全等判定的简单方法(),看是否也有简便的方法?已知:在和中,.求证:∽.证明:在线段(或它的延长线)上截取,过点作,交于点,根据前面的结论可得∽.∴又,∴∴同理:∴≌∴∽相似三角形的判定定理:如果两个三角形的三组对应边的比相等,那么这两个三角形相似.可简单说成:三边对应成比例,两三角形相似.思考:若,,与是否相似呢?相似三角形的判定定理:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似可简单说成:两边对应成比例且夹角相等,两三角形相似.进一步引申:若,,与是否相似呢?不一定问:全等中的边边角不能用,那么边边角也不能证相似,反例同全等.例1.根据下列条件,判断与是否相似,并说明理由:(1),,;,,.(2),,;,,.解:(1),∴又∴∽问:这两个相似三角形的相似比是多少?(答:是)(2),,∴与的三组对应边的比不等,它们不相似.问:要使两三角形相似,不改变的长,的长应当改为多少?(答:) 例2.要做两个形状相同的三角形框架,其中一个三角形框架的三边的长分别为4、5、6,另一个三角形的一边长为2,怎样选料可使这两个三角形相似?注:此题没说2与哪条边是对应边,所以要进行分类讨论.可以是:,3;或,;或,.注:当两三角形相似而边不确定时,要注意分类讨论.相似三角形的判定定理:如果一个三角形的两个角与另一个三角形的两个角对应相等的,那么这两个三角形相似.简单说成:两角对应相等,两三角形相似.3.三角形相似的判定的应用例3.如图,弦和弦相交于内一点,求证:.证明:连接,.在∴∽∴.例4.已知:如图,在中,于点.(1)求证:∽∽;(2)求证:;;(此结论称之为射影定理)(3)若,求.(4)若,求.分析:(1)利用两角相等证相似;(2)把相似三角形的相似比的比例式改为乘积式即可;(3)利用射影定理和勾股定理直接求;(4)利用上面的定理和方程求.进一步引申:在中,于点,这个条件可以放在圆当中,是直径,是圆上任意一点,于点,则可得到双垂直图形.例.已知:∽,分别是两个三角形的角平分线.求证:.4.相似三角形的性质(1)相似三角形的对应角相等,对应边的比相等,都等于相似比.(2)相似三角形对应高的比,对应角的平分线的比,对应中线的比都等于相似比.(3)相似三角形周长的比等于相似比;相似多边形周长的比等于相似比.证明:如果∽,相似比为,那么.因此,,.从而,.同理可得相似多边形对应周长的比也等于相似比.如图,已知:∽,相似比为.分别作出与的高和和都是直角三角形,并且,∽相似多边形面积的比等于相似比的平方.对于两个相似多边形,可以把他们分成若干个相似三角形证明.例5.如图,在和中,,,,的周长是24,面积是48,求的周长和面积.解:在和中,,又∽,相似比为.的周长为,的面积是.例6.已知点P在线段AB上,点O在线段AB的延长线上.以点O为圆心,OP为半径作圆,点C是圆O上的一点.(1)如图,如果AP=2PB,PB=BO.求证:△CAO∽△BCO;(2)如果AP=m(m是常数,且),BP=1,OP是OA、OB的比例中项.当点C在圆O上运动时,求的值(结果用含m的式子表示);(3)在(2)的条件下,讨论以BC为半径的圆B和以CA为半径的圆C的位置关系,并写出相应m的取值范围.分析:此题第1问:利用两边的比相等,夹角相等证相似.即,第2问:设∵是的比例中项,∴是的比例中项即∴解得又∵第3问:∵,,即当时,两圆内切;当时,两圆内含;当时,两圆相交.例7.如图,已知中,,,,,点在上,(与点不重合),点在上.(1)当的面积与四边形的面积相等时,求的长.(2)当的周长与四边形的周长相等时,求的长.(3)在上是否存在点,使得为等腰直角三角形?要不存在,请说明理由;若存在,请求出的长.解:(1),∽(2)∵的周长与四边形的周长相等∽(3)在线段上存在点,使得为等腰直角三角形.过作于,则,设交于若,则.∵∽若,同理可求.若,∽∴在线段上存在点,使得为等腰直角三角形,此时,或.三、总结归纳:1、相似三角形的判定:(1)相似三角形的定义;(2)平行得相似;(3)三边的比相等;(4)两边的比相等,夹角相等;(5)两角对应相等.三角形相似判定的方法较多,要根据已知条件适当选择.23、相似三角形的常见图形及其变换:4、证明四条线段成比例的常用方法:(1)线段成比例的定义(2)三角形相似的预备定理(3)利用相似三角形的性质(4)利用中间比等量代换(5)利用面积关系证明题常用方法归纳:(1)通过“横找”“竖看”寻找三角形,即横向看或纵向寻找的时候一共各有三个不同的字母,并且这几个字母不在同一条直线上,能够组成三角形,并且有可能是相似的,则可证明这两个三角形相似,然后由相似三角形对应边成比例即可证的所需的结论.(2)若没有三角形(即横向看或纵向寻找的时候一共有四个字母或者三个字母,但这几个字母在同一条直线上),则需要进行“转移”(或“替换”),常用的“替换”方法有这样的三种:等线段代换、等比代换、等积代换.(3)若上述方法还不能奏效的话,可以考虑添加辅助线(通常是添加平行线)构成比例.以上步骤可以不断的重复使用,直到被证结论证出为止.。
相似三角形判定与性质(10.23)
专题1 相似三角形判定与性质(10.23)专题知识回顾1.相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。
相似多边形对应边的比叫做相似比。
2.三角形相似的判定方法:(1)定义法:对应角相等,对应边成比例的两个三角形相似。
(2)平行法:平行于三角形一边的直线和其他两边(或两边延长线)相交,构成的三角形与原三角形相似。
(3)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。
(4)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。
(5)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似。
3.直角三角形相似判定定理:①以上各种判定方法均适用②定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
③垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。
4.相似三角形的性质:(1)相似三角形的对应角相等,对应边成比例(2)相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比(3)相似三角形周长的比等于相似比(4)相似三角形面积的比等于相似比的平方。
专题典型训练题一、选择题1.(2019年广西玉林市)如图,AB∥EF∥DC,AD∥BC,EF与AC交于点G,则是相似三角形共有()A.3对B.5对C.6对D.8对2.(2019年内蒙古赤峰市)如图,D、E分别是△ABC边AB,AC上的点,∠ADE=∠ACB,若AD=2,AB =6,AC=4,则AE的长是()A.1B.2C.3D.43.(2019·广西贺州)如图,在△ABC中,D,E分别是AB,AC边上的点,DE△BC,若AD=2,AB=3,DE=4,则BC等于()A.5B.6C.7D.84.(2019•广西贵港)如图,在△ABC中,点D,E分别在AB,AC边上,DE∥BC,∠ACD=∠B,若AD =2BD,BC=6,则线段CD的长为()A.2B.3C.2D.55.(2019▪黑龙江哈尔滨)如图,在▱ABCD中,点E在对角线BD上,EM∥AD,交AB于点M,EN∥AB,交AD 于点N ,则下列式子一定正确的是( )A .= B .= C .= D .=6. (2019•江苏苏州)如图,在ABC 中,点D 为BC 边上的一点,且2AD AB ==,AD AB ⊥,过点D 作DE AD ⊥,DE 交AC 于点E ,若1DE =,则ABC 的面积为( )A .2B .4C .5D .87.(2019山东枣庄)如图,将△ABC 沿BC 边上的中线AD 平移到△A ′B ′C ′的位置.已知△ABC 的面积为16,阴影部分三角形的面积9.若AA ′=1,则A ′D 等于( )A .2B .3C .4D .8.(2019四川巴中)如图▱ABCD ,F 为BC 中点,延长AD 至E ,使DE :AD =1:3,连结EF 交DC 于点G ,则S △DEG :S △CFG =( )A .2:3B .3:2C .9:4D .4:9二、填空题EDABC9. 2019黑龙江省龙东地区)一张直角三角形纸片ABC,∠ACB=90°,AB=10,AC=6,点D为BC边上的任一点,沿过点D的直线折叠,使直角顶点C落在斜边AB上的点E处,当△BDE是直角三角形时,则CD的长为________.10.(2019四川泸州)如图,在等腰Rt△ABC中,∠C=90°,AC=15,点E在边CB上,CE=2EB,点D 在边AB上,CD⊥AE,垂足为F,则AD的长为.11.(2019•四川省凉山州)在△ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC 相交于F,则S△AEF:S△CBF是.三、解答题12.(2019年湖南省张家界市)如图,在平行四边形ABCD中,连接对角线AC,延长AB至点E,使BE=AB,连接DE,分别交BC,AC交于点F,G.(1)求证:BF=CF;(2)若BC=6,DG=4,求FG的长.。
相似的性质和判定
三角形相似的判定和性质1一、知识梳理:1、相似的判定:①如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
(两角对应相等,两个三角形相似。
)②如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似。
(两边对应成比例且夹角相等,两个三角形相似。
)③如果两个三角形的三组对应边成比例,那么这两个三角形相似。
(三边对应成比例,两个三角形相似。
)④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
(斜边与直角边对应成比例,两个直角三角形相似。
)⑤两个三角形三边对应平行,则两个三角形相似。
(三边对应平行,两个三角形相似。
)⑥如果两个三角形全等,那么这两个三角形相似(相似比为1:1)(全等三角形相似)。
2、相似的性质:①相似三角形的对应角相等;相似三角形的对应边成比例。
②相似三角形的周长比,对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
③相似三角形的面积比等于相似比的平方,相似比等于面积比的算术平方根。
3、推论:推论一:顶角或底角相等的两个等腰三角形相似。
推论二:腰和底对应成比例的两个等腰三角形相似。
推论三:有一个锐角相等的两个直角三角形相似。
推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。
推论五:如果一个三角形的两边和三角形任意一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
4、射影定理:射影定理:直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
①CD2=AD·BD;②AC2=AD·AB;③BC2=BD·AB二、相似的基本图形:(一)平行线型如图,若DE∥BC,则△ADE∽△ABC,形象地说图为“A”型或“X”型,故称之为平行线型的基本图形.例1、如图,在平行四边形ABCD中,E是AB延长线上一点,连结DE交AC于G,交BC于F,则图中相似三角形(不含全等三角形)共有 对. (二)相交线型若∠AED=∠B,则△ADE ∽△ABC,称之为相交线型的基本图形.例2、如图,D 、E 分别为△ABC 的边AC 、AB 上一点,BD,CE 交于点O,且CODOBO EO,试问△ADE 与△ABC 相似吗?如果是,请说明理由.(三)母子型如图,有△ACD ∽△ABC,称之为“子母”型的基本图形.特别地,令∠ACB=90,CD 则为斜边上高(如图9), 则有△ACD ∽△ABC ∽△CBD.DABCABCD例3 如图,在△ABC 中,P 为AB 上一点,要使△APC ∽△ACB,还需具备的一个条件是 或 或 或 ; (四)旋转型△ADE ∽△ABC,称之为旋转型的基本图形.AB例4、如图,D 为△ABC 内一点,E 为△ABC 外一点,且∠1=∠2,∠3=∠4. 证明:△ABC ∽△DBE .(五)三垂直型如右图,AB⊥BC, AD⊥DE, CE⊥BC,则△ABD∽△DCE,这种图形称之为三垂直型.AEBD C随堂练习一.选择题:1.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABC C.= D.=2.△ABC和△DEF满足下列条件,其中能使△ABC与△DEF相似的是()DE=EF=DF=,AC=BC=DE=△BDE△CDE△DOE△AOC 的值为()A. B. C. D.4.如图为两正方形ABCD、BEFG和矩形DGHI的位置图,其中G、F两点分别在BC、EH上.若AB=5,BG=3,则△GFH的面积为何?()A.10 B.11 C. D.二.填空题:5.如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=6,BD=4,则CD的长为.6.如图,四边形ABCD为矩形,,则∠MAN的度数为度.7.如图,小伟在打网球时,击球点距离球网的水平距离是8米,已知网高是0.8米,要使球恰好能打过网,且落在离网4米的位置,则球拍击球的高度h为米.8.△ABC中,AB:AC:BC=4:3:2,△A1B1C1中,A1B1:A1C1:B1C1=3:2:4,则△ABC与△A1B1C1(相似或不相似).9.如图,已知△ABC中,AE:EB=1:3,BD:DC=2,AD与CE相交于F,则= .10.如图,菱形ABCD的边长为1,直线l过点C,交AB的延长线于M,交AD的延长线于N,则+= .11.如图,矩形ABCD中,F是DC上一点,BF⊥AC,垂足为E,=,△CEF的面积为S1,△AEB的面积为S2,则的值等于.12.已知正方形ABC1D1的边长为1,延长C1D1到A1,以A1C1为边向右作正方形A1C1C2D2,延长C2D2到A2,以A2C2为边向右作正方形A2C2C3D3(如图所示),以此类推….若A1C1=2,且点A,D1,D2,D3,…,D10都在同一直线上,则正方形A9C9C10D10的边长是.三.解答题:13.如图,等边△ABC,点D、E分别在BC、AC上,且BD=CE,AD与BE相交于点F.(1)试求出∠AFE的度数.(2)△AEF与△ABE相似吗?说说你的理由.(3)BD2=AD•DF吗?请说明理由.14.已知:平行四边形ABCD,E是BA延长线上一点,CE与AD、BD交于G、F.求证:CF2=GF•EF.15.如图,过▱ABCD的顶点A的直线交BD于点P,交CD于点Q,交BC的延长线于点R.求证:.16.如图,四边形ABCD,DCFE,EFGH是三个正方形.求∠1+∠2+∠3的度数.17.如下图,在矩形ABCD中,AB=12cm,BC=6cm.点P沿AB边从点A开始向点B以2cm/s 的速度移动;点Q沿DA边从点D开始向点A以1 cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤6)那么:(1)当t为何值时,△QAP为等腰直角三角形?(2)求四边形QAPC的面积,提出一个与计算结果有关的结论;(3)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?九年级数学图形的相似2参考答案一.选择题(共4小题)1.D 2.C 3.D 4.D二.填空题(共8小题)5.5 6.90 7.2.4 8.相似 9.10.1 11.12.。
相似三角形的判定与性质
相似三角形的判定与性质相似三角形是指具有相同形状但不一定相同大小的两个三角形。
在几何学中,相似三角形是一种重要的概念,它帮助我们理解和解决很多与三角形相关的问题。
本文将介绍相似三角形的判定方法以及它们的性质。
一、相似三角形的判定方法1. AAA判定法:如果两个三角形的对应角度相等,则这两个三角形相似。
即如果两个三角形的各个内角对应相等(即对应角相等),那么它们是相似的。
2. AA判定法:如果两个三角形的两个内角分别相等,并且它们的对应边成比例,则这两个三角形相似。
即如果两个三角形的两个角对应相等,并且对应边成比例,那么它们是相似的。
3. SAS判定法:如果两个三角形的一组对边成比例,并且其中一组对边夹角相等,则这两个三角形相似。
即如果两个三角形的两组对边成比例,并且夹角对应相等,那么它们是相似的。
二、相似三角形的性质1. 边长比:在相似三角形中,任意两对对应边的比值相等。
换句话说,如果两个三角形相似,那么它们的三条边的比值是相等的。
2. 高度比:在相似三角形中,任意两对对应高度的比值相等。
两个相似三角形的高度比等于对应边长比的倒数。
3. 面积比:在相似三角形中,任意两对对应面积的比值等于边长比的平方。
4. 角度比:在相似三角形中,任意一对对应角的比值相等。
换句话说,如果两个三角形相似,那么它们的三个角的比值是相等的。
5. 相似三角形的角平分线三等分:在相似三角形中,若一个角的两边与另一个角的两边成比例,则这两个角的角平分线相互平行。
6. 重心的性质:在相似三角形中,两个相似三角形的重心在同一直线上。
7. 相似三角形的垂心:在相似三角形中,两个相似三角形的垂心在同一直线上。
8. 相似三角形的外心:在相似三角形中,两个相似三角形的外心在同一直线上。
三、应用举例1. 比例问题:利用相似三角形的性质可以解决很多比例问题。
例如,已知一座塔的阴影与杆子的阴影的比值等于塔的高度与杆子高度的比值,通过相似三角形的比例关系可以求解塔的高度。
相似三角形判定与性质专题
专题-相似三角形判定与性质专题典型训练题1.相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。
相似多边形对应边的比叫做相似比。
2.三角形相似的判定方法:(1)定义法:对应角相等,对应边成比例的两个三角形相似。
(2)平行法:平行于三角形一边的直线和其他两边(或两边延长线)相交,构成的三角形与原三角形相似。
(3)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。
(4)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。
(5)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似。
3.直角三角形相似判定定理:①以上各种判定方法均适用②定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
③垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。
4.相似三角形的性质:(1)相似三角形的对应角相等,对应边成比例(2)相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比(3)相似三角形周长的比等于相似比(4)相似三角形面积的比等于相似比的平方。
专题典型题考法及解析【例题1】如图,在Rt△ABC中,△C=90°,AB=5,BC=4.点P是边AC上一动点,过点P作PQ△AB 交BC于点Q,D为线段PQ的中点,当BD平分△ABC时,AP的长度为()B.C.D.A.【例题2】在△ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则S△AEF:S△CBF是.【例题3】如图,为了测量一栋楼的高度OE,小明同学先在操场上A处放一面镜子,向后退到B处,恰好在镜子中看到楼的顶部E;再将镜子放到C处,然后后退到D处,恰好再次在镜子中看到楼的顶部E(O,A,B,C,D在同一条直线上),测得AC=2m,BD=2.1m,如果小明眼睛距地面髙度BF,DG为1.6m,试确定楼的高度OE.【例题4】如图,在矩形ABCD中,AB=4,BC=3,AF平分∠DAC,分别交DC,BC的延长线于点E,F;连接DF,过点A作AH∥DF,分别交BD,BF于点G,H.(1)求DE的长;(2)求证:∠1=∠DFC.【例题5】如图,在平行四边形ABCD中,连接对角线AC,延长AB至点E,使BE=AB,连接DE,分别交BC,AC交于点F,G.(1)求证:BF=CF;(2)若BC=6,DG=4,求FG的长.专题典型训练题一、选择题1.如图,AB∥EF∥DC,AD∥BC,EF与AC交于点G,则是相似三角形共有()A.3对B.5对C.6对D.8对2.如图,D、E分别是△ABC边AB,AC上的点,∠ADE=∠ACB,若AD=2,AB=6,AC=4,则AE的长是()A.1B.2C.3D.43.如图,在△ABC 中,D ,E 分别是AB ,AC 边上的点,DE △BC ,若AD =2,AB =3,DE =4,则BC 等于( )A .5B .6C .7D .84.如图,在△ABC 中,点D ,E 分别在AB ,AC 边上,DE ∥BC ,∠ACD =∠B ,若AD =2BD ,BC =6,则线段CD 的长为( )A .2B .3C .2D .55.如图,在▱ABCD 中,点E 在对角线BD 上,EM ∥AD ,交AB 于点M ,EN ∥AB ,交AD 于点N ,则下列式子一定正确的是( )A .= B .= C .= D .=6. 如图,在ABC 中,点D 为BC 边上的一点,且2AD AB ==,AD AB ⊥,过点D 作DE AD ⊥,DE 交AC 于点E ,若1DE =,则ABC 的面积为( ) A.B .4 C. D .8D ABC7.如图,将△ABC沿BC边上的中线AD平移到△A′B′C′的位置.已知△ABC的面积为16,阴影部分三角形的面积9.若AA′=1,则A′D等于()A.2B.3C.4D.8.如图▱ABCD,F为BC中点,延长AD至E,使DE:AD=1:3,连结EF交DC于点G,则S△DEG:S△CFG =()A.2:3B.3:2C.9:4D.4:99.如图,四边形ABCD是边长为1的正方形,△BPC是等边三角形,连接DP并延长交CB的延长线于点H,连接BD交PC于点Q,下列结论:①∠BPD=135°;②△BDP∽△HDB;③DQ:BQ=1:2;④S△BDP=.其中正确的有()A.①②③B.②③④C.①③④D.①②④二、填空题10.如图所示,Rt△ABC中,△C=90°,AC=12,点D在边BC上,CD=5,BD=13.点P是线段AD上一动点,当半径为6的△P与△ABC的一边相切时,AP的长为.11. 一张直角三角形纸片ABC ,∠ACB =90°,AB =10,AC =6,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当△BDE 是直角三角形时,则CD 的长为________.12.如图,矩形ABCD 中,AB =3,BC =12,E 为AD 中点,F 为AB 上一点,将△AEF 沿EF 折叠后,点A 恰好落到CF 上的点G 处,则折痕EF的长是 .13.如图,在矩形ABCD 中,AD =3AB =310.点P 是AD 的中点,点E 在BC 上,CE =2BE ,点M 、N 在线段BD 上.若△PMN 是等腰三角形且底角与∠DEC 相等,则MN =__________.14.如图,▱ABCD 的对角线AC ,BD 交于点O ,CE 平分∠BCD 交AB 于点E ,交BD 于点F ,且∠ABC =60°,AB =2BC ,连接OE .下列结论:①EO ⊥AC ;②S △AOD =4S △OCF ;③AC :BD =:7;④FB 2=OF •DF .其中正确的结论有 (填写所有正确结论的序号)15.如图,在等腰Rt △ABC 中,∠C =90°,AC =15,点E 在边CB 上,CE =2EB ,点D 在边AB 上,CD ⊥AE ,垂足为F ,则AD 的长为 .P EDA三、解答题16.如图,△ABD=△BCD=90°,DB平分△ADC,过点B作BM△CD交AD于M.连接CM交DB于N.(1)求证:BD2=AD•CD;(2)若CD=6,AD=8,求MN的长.17.在矩形ABCD中,AE△BD于点E,点P是边AD上一点.(1)若BP平分△ABD,交AE于点G,PF△BD于点F,如图△,证明四边形AGFP是菱形;(2)若PE△EC,如图△,求证:AE•AB=DE•AP;(3)在(2)的条件下,若AB=1,BC=2,求AP的长.18.如图,Rt△ABC中,△ACB=90°,AC=BC,P为△ABC内部一点,且△APB=△BPC=135°.(1)求证:△P AB△△PBC;(2)求证:P A=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2•h3.19.如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC、BD的交点,连接CE、DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,AM=,求正方形OEFG 的边长.。
初中数学知识归纳三角形的相似性质与判定
初中数学知识归纳三角形的相似性质与判定三角形是初中数学中的基础概念,而相似三角形作为三角形的一种特殊性质,是数学中一个重要的知识点。
相似性质与判定在解决三角形问题、计算和证明中具有广泛的应用。
本文将就初中数学中三角形的相似性质与判定进行归纳总结。
一、相似性质的定义和判定方法相似性质是指两个或更多个三角形的对应角相等,对应边成比例的性质。
在数学中,我们可以通过以下方法来判定三角形的相似性质:1. AA相似判定法AA相似判定法是指如果两个三角形的两个对角分别相等,则这两个三角形相似。
其中的AA是指两个对角分别相等。
2. SAS相似判定法SAS相似判定法是指如果两个三角形的一个对边成比例,而这两个对边之间的夹角相等,则这两个三角形相似。
其中的SAS是指边对应成比例,而夹角相等。
3. SSS相似判定法SSS相似判定法是指如果两个三角形的三条边相互成比例,则这两个三角形相似。
其中的SSS是指三边对应成比例。
二、相似三角形的性质1. 对应角相等相似三角形中的相应角是对应相等的,即对应顶点间的角度相等。
这是相似三角形的基本性质之一。
2. 对应边成比例相似三角形中的对应边是成比例的,即对应边的比值相等。
这是相似三角形的另一个基本性质。
3. 相似三角形的比例尺在相似三角形中,对应边的比值等于两个三角形的相似比例尺。
根据这个比例尺,可以解决多种三角形相关的问题。
三、应用举例下面通过几个具体的例子,来说明相似性质与判定在初中数学中的应用。
例1:已知两个三角形的两个角分别相等,并且边长比值为3:4,求这两个三角形的周长比值。
解析:根据已知条件,可以判定这两个三角形相似。
而相似三角形的对应边成比例,所以这两个三角形的周长比值也等于3:4。
例2:已知三角形ABC和三角形DEF相似,且AB=8cm,BC=12cm,DE=10cm,求EF的长度。
解析:根据相似三角形的对应边成比例的性质,可以列出比例式:AB/DE = BC/EF。
三角形的相似性质与判定方法总结
三角形的相似性质与判定方法总结相似三角形是指两个三角形的对应角度相等,对应边比例相等的三角形。
在几何学中,相似性质是研究三角形形状和大小关系的重要基础。
本文将总结相似三角形的性质和判定方法,帮助读者更好地理解和应用相关概念。
一、相似三角形的性质:1. 对应角相等性质:如果两个三角形的内角分别相等,则这两个三角形是相似的。
2. 对应边比例相等性质:如果两个三角形的对应边的比例相等,则这两个三角形是相似的。
3. 侧角定理:如果两个三角形的两个内角和对应的两条边比例相等,则这两个三角形是相似的。
4. 相似三角形的比例性质:相似三角形的对应边比例相等,可以用一个等式表示:a/b = c/d = e/f。
二、相似三角形的判定方法:1. AA判定法:如果两个三角形的两个角分别相等,则这两个三角形是相似的。
证明方法:在两个相等的角旁边,做一条平行线,构成平行四边形。
通过平行线相交定理可证明对应边比例相等。
2. SAS判定法:如果两个三角形的两个边比例相等,并且夹角相等,则这两个三角形是相似的。
证明方法:通过侧角定理,可以证明这两个三角形的三个角相等,从而满足相似性质。
3. SSS判定法:如果两个三角形的三个边比例相等,则这两个三角形是相似的。
证明方法:通过使用数学定理证明较困难,一般通过构造平行线或使用其他的相似三角形进行证明。
4. 边角边(SAB)判定法:如果两个三角形的一个角相等,另外两边分别与另一个三角形的两边成比例,则这两个三角形是相似的。
证明方法:通过使用带线绘制、角分割和平行线等方法,可以将问题转化为其他简单的相似性质而得出结论。
在实际应用中,我们可以根据以上的相似性质和判定方法解决一些几何问题,例如计算简单的边长和角度,求解高度和面积等。
总结一下,相似三角形的性质及判定方法是解决几何问题重要的工具,通过对角度和边比例的分析与计算,我们可以得出两个三角形是否相似的结论。
了解和应用这些性质和方法,有助于我们更好地理解和解决几何学中的各种问题。
图形的相似判定和性质
应用场景:建筑设 计、机械制造、地 图绘制等
作用:保持图形的 形状和结构不变, 只改变大小
实例:建筑设计中 的比例模型、地图 绘制中的缩放比例 等
THANKS
汇报人:XX
比例
应用场景:常 用于三角形、 四边形等平面 图形的相似判
定
注意事项:平 行线段必须是 对应边的平行 线段,且比例 关系必须满足
角角判定法
定义:如果两个三角形的对应角相等,则这两个三角形相似 判定条件:两三角形中,对应的两个角相等,则这两个三角形相似 应用场景:在几何学中,角角判定法是常用的相似三角形判定方法之一 注意事项:判定过程中需注意对应关系,避免因错位而导致的错误判定
斜率判定法
定义:如果两个直线的斜率相等, 则它们是平行的
应用场景:在几何学中,斜率判定 法常用于判断两条直线是否平行
添加标题
添加标题
添加标题
添加标题
判定方法:比较两个直线的斜率是 否相等
注意事项:斜率不存在的情况也需 要考虑,例如垂直于x轴的直线
Part Two
相似图形的性质
对应角相等
性质定义:如果两个图形是相 似的,则它们的对应角相等。
证明方法:通过相似三角形的 性质证明,利用相似三角形的 性质,可以得到对应角相等。
应用实例:在几何学中,对应 角相等是判定两个图形是否相 似的重要依据。
推论:如果两个图形相似,则 它们的对应边成比例。
对应边成比例
相似图形的性质之一,即对应边之间的比例相等。 在相似三角形中,对应边的比例等于相似比。 对应边成比例的性质可用于判断两个图形是否相似。 对应边成比例的性质在几何学中具有广泛应用,如计算面积、周长等。
相似图形用于证明面积比例 关系
相似三角形的判定和性质
相似三角形的判定和性质知识讲解1. 比例线段:对于四条线段a ,b ,c ,d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即a cb d =(或a:b=c:d )那么这四条线段叫做成比例线段,简称比例线段.在两条线段的比a :b 中,a 叫做比的前项,b 叫做比的后项. 如果作为比例内项的是两条相同的线段,即或a :b=b :c ,那么线段b 叫做线段a ,c 的比例中项. 比例的性质(1)基本性质①a :b=c :d ad=bc②a :b=b :c(2)更比性质(交换比例的内项或外项) (交换内项) (交换外项) (同时交换内项和外项) (3)反比性质(交换比的前项、后项):(4)合比性质:(5)等比性质:ba n f db m ec a n fd b n m fe d c b a =++++++++⇒≠++++==== )0( 黄金分割把线段AB 分成两条线段AC ,BC (AC>BC ),并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC=AB 0.618AB cb b a =⇔ac b =⇔2db c a =⇒=d c b a ac bd =ab c d =cd a b d c b a =⇒=dd c b b a d c b a ±=±⇒=215-≈如图,若AB PB PA ⋅=2,则点P 为线段AB 的黄金分割点.2. 平行线分线段成比例定理: ① 定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3.AB BC =DE EF ;AB AC =DE DF ;BC AC =EF DF. ②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.3. 相似多边形的性质:相似多边形的对应角相等,对应边的比相等.4. 相似三角形的概念:对应角相等,对应边之比相等的三角形叫做相似三角形.5. 相似三角形的性质(1)对应角相等,对应边的比相等;(2)对应高的比,对应中线的比,对应角平分线的比都等于相似比;(3)相似三角形周长之比等于相似比;面积之比等于相似比的平方.6. 相似三角形的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似.7. 相似三角形的判定定理:(1)三角形相似的判定方法与全等的判定方法的联系列表如下:从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法.8.相似三角形的判定方法(1)三角形相似的判定方法①定义法:对应角相等,对应边成比例的两个三角形相似②平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似③判定定理1(AA):如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似.④判定定理2(SAS):如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似.⑤判定定理3(SSS):如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似(2)直角三角形相似的判定方法①以上各种判定方法均适用②定理(HL):如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似①垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.9. 相似三角形中的基本图形:(1) 平行型:(2)交错型:(3)旋转型:(4)子母型:(5)其他:10. 双垂直条件下的计算与证明问题:“双垂直”指:“Rt △ABC 中,∠BCA=90°,CD ⊥AB 于D”(如图),结论有:(1)△ADC ∽△CDB ∽△ACB(2)由△ADC ∽△CDB 得CD2=AD·BD(3)由△ADC ∽△ACB 得AC2=AD·AB(4)由△CDB ∽△ACB 得BC2=BD·AB(5)由面积得AC·BC=AB·CD(6)勾股定理AB C D EA B C D A B C D E DAB C ED A BC第一部分:比例线段例题精讲【例1】 下列各组线段(单位:㎝)中,成比例线段的是( )A .1、2、3、4B .1、2、2、4C .3、5、9、13D .1、2、2、3【例2】 若b m m a 2,3==,则_____:=b a .【例3】 已知c b a ,,是△ABC 的三条边,对应高分别为,,a b c h h h ,且6:5:4::=c b a ,那么,,a b c h h h 等于( )A .4:5:6B .6:5:4C .15:12:10D .10:12:15【例4】 已知754z y x ==,则下列等式成立的是( ) A .91=+-y x y x B .167=++z z y x C .38=-+++z y x z y x D .x z y 3=+【例5】 如图,已知DE ∥BC ,EF ∥AB ,则下列比例式中错误的是( )A .AD AE AB AC = B .CE EA CF FB =C .DE AD BC BD = D .EF CF AB CB =【例6】 已知:如图,F 是四边形ABCD 对角线AC 上一点,EF ∥BC ,FG ∥AD .求证:AB AE +CDCG =1.课堂练习1. 若a , x , b , y 是比例线段,则比例式为_________;若a=1,x= -2, b=-2.5, 则y=_______.2. 若ab=cd ,则有a ∶d=_______;若m ∶x=n ∶y , 则x ∶y=_______.3. 已知△ABC 中三边长分别为a ,b ,c ,对应边上的高分别为4,5,3ab c h h h ===.则a :b :c=____________. 4. 若0234x y z ==≠,则23______x y z+=. 5. 如图,△ABC 中,,且DE=12,BC=15,GH=4,求AH .6. 已知a 、b 、c 是△ABC 的三边,():():()(2):7:1,24a c a b c b a b c -+-=-++= .① 求a 、b 、c 的值.②判断△ABC 的形状.第二部分:相似三角形判定类型一(平行法、‘AA’)例题精讲【例7】 如图,已知△ADE ∽△ABC ,且∠ADE=∠B ,则对应角为______________________________________________,AG DE AH BC=对应边为________________________________________________.【例8】已知:如图,D、E是△ABC的边AC、AB上的点,且∠ADE=∠B.(1)求证:△ADE∽△ABC(2)求证:AD·AC=AE·AB【例9】已知:如图,在△ABC中,AD是△ABC的中线,E是AD上一点,且CE=CD,∠DAC=∠B.求证:△AEC∽△BDA【例10】已知:如图,ΔABC中,AD=DB,∠1=∠2.求证:ΔABC∽ΔEAD.【例11】如图,□ABCD中,E是CD的延长线上一点,BE与AD交于点F,12DE CD.(1)求证:△ABF∽△EDF (2)求证:△EFD∽△EBC;(3)若DF=4,求BC的长课堂练习7. 图,若∠ACD=∠B,则△_______∽△______,对应边的比例式为_____________,∠ADC=________8. 如图,在△ABC中,∠ABC=2∠C,BD平分∠ABC,试说明:2.AB AD AC9. 如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=4,AD=33,AE=3,求AF的长.10. 已知,如图,D为△ABC内一点连结ED、AD,以BC为边在△ABC外作∠CBE=∠ABD,∠BCE=∠BAD,求证:△DBE∽△ABC.11. 如图,平行四边形ABCD中,E是DC的中点,连接BE交对角线AC于F.(1)求证:△ABF∽△CEF;(2)若AC=9,求AF的长.第三部分:相似三角形判定类型二(‘SAS’、‘SSS’)例题精讲【例12】如图,在大小为4×4的正方形网格中,是相似三角形的是()A.①和②B.②和③C.①和③D.②和④【例13】已知:如图,在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点.求证:△ADQ∽△QCP.【例14】已知:如图,ΔABC中,CE⊥AB,BF⊥AC.求证:ΔAEF∽ΔACB.课堂练习12. 如图,在大小为4×4的正方形网格中,△ABC的顶点在格点上,请在图中画出一个与△ACB相似且相的三角形.13. 如图,O是△ABC内任一点,D、E、F分别是OA、OB、OC的中点,求证:△DEF∽△ABC.14. 如图,AD是△ABC的角平分线,BE⊥AD于E,CF⊥AD于F.求证:DFDEAC AB.第四部分:相似三角形判定类型三(直角三角形) 例题精讲【例15】 如图所示,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D 点,则图中相似三角形有( )A .1对B .2对C .3对D .4对 【例16】 已知:如图,在Rt △ABC 中,CD 是斜边上的高.求证:△ABC ∽△CBD ∽△ACD .课堂练习15. 如图,锐角△ABC的高BD,CE交于O点,则图中与△BOE相似的三角形的个数是( )A.1 B.2 C.3 D.416. 如图,已知Rt△ABC中,∠ACB=90°,CD⊥AB于D,根据下列各条件分别求出未知所有线段的长:(1)AC=3,BC=4;(2)AC=52,AD=2;(3)AD=5,DB=1445;(4)BD=4,AB=29.第五部分:相似三角形判定类型四(特殊三角形)例题精讲【例17】下列说法正确的个数是( )①有一个角相等的两个等腰三角形相似②有一个底角相等的两个等腰三角形相似③所有的等腰三角形相似④顶角相等的两个等腰三角形相似A.1 B.2 C.3 D.4【例18】已知△ABC中,AB=AC,∠A=36°,BD是角平分线,求证:△ABC∽△BCD.ADB C【例19】如图,△ABC和△DEF均为正三角形,D,E分别在AB,BC上,请找出一个与△DBE相似的三角形并证明.课堂练习17. 下列说法正确的个数是( )①所有的等腰三角形都相似②所有等边三角形都相似③所有直角三角形都相似④所有等腰直角三角形都相似A.1 B.2 C.3 D.418. 如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,DE=DF,∠EDF=∠A.(1)找出图中相似的三角形,并证明;(2)求证:BD AB CE BC.19. 如图,等腰直角三角形ABC中,顶点为C,∠MCN=45°,试说明△BCM∽△ANC.第六部分:解决实际问题例题精讲【例20】2012黔南州)如图,夏季的一天,身高为1.6m的小玲想测量一下屋前大树的高度,她沿着树影BA由B到A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2m,CA=0.8m,于是得出树的高度为()A.8m B.6.4m C.4.8m D.10m【例21】 如图,丁轩同学在晚上由路灯AC 走向路灯BD ,当他走到点P 时,发现身后他影子的顶部刚好接触到路灯AC 的底部,当他向前再步行20m 到达Q 点时,发现身前他影子的顶部刚好接触到路灯BD 的底部,已知丁轩同学的身高是1.5m ,两个路灯的高度都是9m ,则两路灯之间的距离是( )A .24mB .25mC .28mD .30m【例22】 如图,A ﹑B 两点分别位于一个池塘的两端,小明想用绳子测量A ﹑B 间的距离,但绳子不够,于是他想了一个办法:在地上取一点C ,使它可以直接到达A ﹑B 两点,在AC 的延长线上取一点D ,使CD=21CA ,在BC 的延长线上取一点E ,使CE=21CB ,测得DE 的长为5米,则AB 两点间的距离为( )A .6米B .8米C .10米D .12米【例23】 如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m 的竹竿的影长是0.8m ,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),他先测得留在墙壁上的影高为1.2m ,又测得地面的影长为2.6m ,请你帮她算一下,树高是( )A .3.25mB .4.25mC .4.45mD .4.75m【例24】 如图,有一所正方形的学校,北门(点A )和西门(点B )各开在北、西面围墙的正中间.在北门的正北方30米处(点C )有一颗大榕树.如果一个学生从西门出来,朝正西方走750米(点D ),恰好见到学校北面的大榕树,那么这所学校占地平方米.课堂练习20. 如图所示,一架投影机插入胶片后图象可投到屏幕上.已知胶片与屏幕平行,A点为光源,与胶片BC 的距离为0.1米,胶片的高BC为0.038米,若需要投影后的图象DE高1.9米,则投影机光源离屏幕大约为()A.6米B.5米C.4米D.3米21. 如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E 处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于()A.4.5米B.6米C.7.2米D.8米22. 如图是小孔成像原理的示意图,根据图中所标注的尺寸,这支蜡烛在暗盒中所成的像CD的长是()A .61cmB .31cmC .21cmD .1cm23. 一个油桶高0.8m ,桶内有油,一根长1m 的木棒从桶盖小口插入桶内,一端到达桶底,另一端恰好在小口处,抽出木棒量得浸油部分长0.8m ,则油桶内的油的高度是( )A .0.8mB .0.64mC .1mD .0.7m24. 汪老师要装修自己带阁楼的新居(下图为新居剖面图),在建造客厅到阁楼的楼梯AC 时,为避免上楼时墙角F 碰头,设计墙角F 到楼梯的竖直距离FG 为1.75m .他量得客厅高AB=2.8m ,楼梯洞口宽AF=2m .阁楼阳台宽EF=3m .请你帮助汪老师解决下列问题:(1)要使墙角F 到楼梯的竖直距离FG 为1.75m ,楼梯底端C 到墙角D 的距离CD 是多少米? (2)在(1)的条件下,为保证上楼时的舒适感,楼梯的每个台阶高小于20cm ,每个台阶宽要大于20cm ,问汪老师应该将楼梯建几个台阶?为什么?课堂练习诊断结果课后作业1.下列各组中的四条线段成比列的是( ) A .1cm 、2cm 、20cm 、30cm B .1cm 、2cm 、3cm 、4cm C .4cm 、2cm 、1cm 、3cmD .5cm 、10cm 、10cm 、20cm2.已知:32+a =4b =65+c ,且2a-b+3c=21,a 、b 、c 的值分别为________,________,_________.3. 如图,△ADE ∽△ACB ,其中∠1=∠B ,则AB BC AD)()()(==.4. 如图,画一个三角形,使它与已知△ABC 相似,且原三角形与所画三角形的相似比为2∶1.5. △ABC ∽△A 1B 1C 1,相似比为32,△A 1B 1C 1∽△A 2B 2C 2,相似比为45,则△ABC ∽△A 2B 2C 2,其相似比为____________.6. 分别根据下列已知条件,写出各组相似三角形的对应比例式.图1 图2 图3(1)如图1,△ABC ∽△ADE ,其中DE ∥BC ,则_________=_________=_________.(2)如图2,△AOB ∽△DOE ,其中DE ∥AB ,则_________=_________=_________.(3)如图3,△ABC ∽△ADE ,其中∠ADE=∠B ,则_________=_________=_________.7. 如图.从下面这些三角形中,选出相似的三角形____________________.8.画符合要求的相似三角形在大小为4×4的正方形方格中,△ABC的顶点A、B、C在单位正方形的顶点上,请在图中画出一个△A1B1C1,使得△A1B1C1∽△ABC(相似比不为1),且点A1、B1、C1都在单位正方形的顶点上.(1)(2)9.如图,已知⊿ABC中,AB=AC,AD⊥AB于点A,交BC边于点E,DC⊥BC于点C,与AD交于点D,(1)求证:⊿ACE ∽⊿ADC;(2)如果CE=1,CD=2,求AC的长.10.如图,△ABC中,∠BAC=90°,AD⊥BC于D,DE为AC的中线,延长线交AB的延长于F,求证:AB·AF=AC·DF.11.如图;已知梯形ABCD中,AD//BC,∠BAD=90°,对角线BD⊥DC.(1)△ABD 和△DCB 相似吗?说明理由.(2)BD2和AD·BC相等吗?说明理由.12.如图,小李打网球时,球恰好打过网,且落在离网4m的位置上,则球拍击球的高度h为()A.0.6m B.1.2m C.1.3m D.1.4m13.三角尺在灯泡O的照射下在墙上形成影子(如图所示).现测得OA=20cm,OA′=50cm,这个三角尺的周长与它在墙上形成的影子的周长的比是_________.14.如图,△ABC是一块锐角三角形的材料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是_______mm.15.如图,△ABC是一张直角三角形彩色纸,AC=30cm,BC=40cm.问题1:将斜边上的高CD五等分,然后裁出4张宽度相等的长方形纸条.则这4张纸条的面积和是________cm2.问题2:若将斜边上的高CD n等分,然后裁出(n-1)张宽度相等的长方形纸条.则这(n-1)张纸条的面积和是____________cm2.16.如图,点D、E分别是等边三角形ABC的BC、AC边上的点,且BD=CE,AD与BE相交于点F.(1)试说明△ABD≌△BCE;(2)BD2=AD•DF吗?为什么?17.如图,四边形ABCD、DEFG都是正方形,连接AE、CG,AE与CG相交于点M,CG与AD相交于点N.求证:(1)AE=CG;(2)AN•DN=CN•MN.课后作业诊断结果学习札记。
专题24 相似三角形判定与性质(解析版)2021年中考数学必考34个考点高分三部曲
∴
,
∴
,
∴DG= ,
,可得 EG∥BC,则∠1=∠AHC,根据 DF∥AH,可得
5
∵DE= ,
∴
=,
∴EG∥BC, ∴∠1=∠AHC, 又∵DF∥AH, ∴∠AHC=∠DFC, ∠1=∠DFC. 【例题 5】(2020 年湖南省张家界市)如图,在平行四边形 ABCD 中,连接对角线 AC,延长 AB 至点 E,使 BE=AB,连接 DE,分别交 BC,AC 交于点 F,G. (1)求证:BF=CF; (2)若 BC=6,DG=4,求 FG 的长.
比的平方是解题的关键.
分 AE:ED=2:3、AE:ED=3:2 两种情况,根据相似三角形的性质计算即可. ①当 AE:ED=2:3 时, ∵四边形 ABCD 是平行四边形, ∴AD∥BC,AE:BC=2:5, ∴△AEF∽△CBF, ∴S△AEF:S△CBF=( )2=4:25;
②当 AE:ED=3:2 时, 同理可得,S△AEF:S△CBF=( )2=9:25。
11
A.2:3
B.3:2
C.9:4
D.4:9
【答案】D.
【解析】先设出 DE=x,进而得出 AD=3x,再用平行四边形的性质得出 BC=3x,进而求出 CF,最后用相
似三角形的性质即可得出结论.
设 DE=x, ∵DE:AD=1:3, ∴AD=3x, ∵四边形 ABCD 是平行四边形, ∴AD∥BC,BC=AD=3x, ∵点 F 是 BC 的中点,
【答案】楼的高度 OE 为 32 米. 【解析】设 E 关于 O 的对称点为 M,由光的反射定律知,延长 GC、FA 相交于点 M, 连接 GF 并延长交 OE 于点 H, ∵GF∥AC,
3
∴△MAC∽△MFG,
相似三角形的判定总结+题型分析(带答案)
相似三角形定义:如果两个三角形中,三角对应相等,三边对应成比例,那么这两个三角形叫做相似三角形。
几种特殊三角形的相似关系:两个全等三角形一定相似。
两个等腰直角三角形一定相似。
两个等边三角形一定相似。
两个直角三角形和两个等腰三角形不一定相似。
补充:对于多边形而言,所有圆相似;所有正多边形相似(如正四边形、正五边形等等);性质:两个相似三角形中,对应角相等、对应边成比例。
相似比:两个相似三角形的对应边的比,叫做这两个三角形的相似比。
如△ABC与△DEF相似,记作△ABC∽△DEF。
相似比为k。
判定:①定义法:对应角相等,对应边成比例的两个三角形相似。
②相似的预备定理:平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似。
三角形相似的判定定理:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.(此定理用的最多)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.直角三角形相似判定定理:1)斜边与一条直角边对应成比例的两直角三角形相似。
2)直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。
补充一:直角三角形中的相似问题:斜边的高分直角三角形所成的两个直角三角形与原直角三角形相似.射影定理:CD²=AD·BD,AC²=AD·AB,BC²=BD·BA(在直角三角形的计算和证明中有广泛的应用).补充二:三角形相似的判定定理推论推论一:顶角或底角相等的两个等腰三角形相似。
ABCDDABCDABCEAB C D E推论二:腰和底对应成比例的两个等腰三角形相似。
相似三角形的判定与性质
相似三角形的判定与性质相似三角形是几何学中的一个重要概念,它们有着特殊的形状和性质。
在本文中,我们将探讨相似三角形的判定方法以及它们所具备的性质。
一、相似三角形的判定方法1. AA相似判定法AA相似判定法是通过两个三角形的角度对应相等来判断它们是否相似。
具体而言,如果两个三角形的两个角分别对应相等,那么它们就是相似的。
例如,在△ABC和△DEF中,∠A = ∠D,∠B = ∠E,那么可以得出△ABC∼△DEF,即它们是相似的。
2. SAS相似判定法SAS相似判定法是通过两个三角形的边与夹角的对应关系来判断它们是否相似。
具体而言,如果两个三角形的对应边成比例,并且夹角对应相等,那么它们就是相似的。
例如,在△ABC和△DEF中,AB/DE = BC/EF,∠A = ∠D,那么可以得出△ABC∼△DEF,即它们是相似的。
3. SSS相似判定法SSS相似判定法是通过两个三角形的对应边成比例来判断它们是否相似。
具体而言,如果两个三角形的对应边成比例,那么它们就是相似的。
例如,在△ABC和△DEF中,AB/DE = BC/EF = AC/DF,那么可以得出△ABC∼△DEF,即它们是相似的。
二、相似三角形的性质1. 对应角相等性质如果两个三角形相似,那么它们的对应角一定相等。
换句话说,相似三角形的三个对应角度是相等的。
2. 对应边成比例性质如果两个三角形相似,那么它们的对应边长度成比例。
换句话说,相似三角形的三个对应边长之比是相等的。
3. 高度成比例性质如果两个三角形相似,那么它们的高度也是成比例的。
具体而言,相似三角形的任意两条高的比值等于对应边长的比值。
4. 面积成比例性质如果两个三角形相似,那么它们的面积也是成比例的。
具体而言,相似三角形的面积比等于对应边长的比值的平方。
5. 勾股定理成立性质相似三角形中,如果它们的一个角是直角,那么其他两个角也分别是直角。
换句话说,如果一个直角三角形与另一个三角形相似,那么这两个三角形都是直角三角形。
相似三角形的判定、性质(含答案)
学生做题前请先回答以下问题问题1:相似三角形的判定定理:①________________________________________;②________________________________________;③________________________________________;④_________________________________________________________.问题2:①如果两个图形不仅________,而且__________________________________,那么这样的两个图形叫做位似图形,这个点叫做_________.位似图形上__________________________________等于相似比.②在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘同一个数k(k≠0),所对应的图形与原图形位似,位似中心是_______,它们的相似比为________.相似三角形的判定、性质一、单选题(共11道,每道9分)1.如图,下列条件不能判定△ADB∽△ABC的是( )A.∠ABD=∠ACBB.∠ADB=∠ABCC. D.答案:D解题思路:试题难度:三颗星知识点:相似三角形的判定2.如图,在△ABC中,DE∥BC,,则下列结论中正确的是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:相似三角形的判定与性质3.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC 相似的三角形所在的网格图形是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:相似三角形的判定4.如图,在△ABC中,∠BAC=90°,D是BC中点,AE⊥AD交CB的延长线于点E,则下列结论正确的是( )A.△AED∽△ACBB.△AEB∽△ACDC.△BAE∽△ACED.△AEC∽△DAC答案:C解题思路:试题难度:三颗星知识点:相似三角形的判定5.如图,在平行四边形ABCD中,点E在AD边上,连接CE并延长,交BA的延长线于点F,若,CD=3,则AF的长为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:相似三角形的判定与性质6.如图,已知AD为△ABC的角平分线,DE∥AB,交AC于点E,若,则的值为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:相似三角形的判定7.如图,四边形ABCD是矩形,点E和点F是矩形ABCD外两点,AE⊥CF于点H,AD=3,DC=4,,∠EDF=90°,则DF的长是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:相似三角形的性质和判定8.如图,以点O为位似中心,将△ABC扩大到△DEF,若AD=OA,则△ABC与△DEF的面积之比为( )A.1:2B.1:4C.1:5D.1:6答案:B解题思路:试题难度:三颗星知识点:相似三角形的性质和判定9.如图,在平面直角坐标系中,以原点O为位似中心,将△ABO扩大为原来的2倍,得到.若点A的坐标是(1,2),则点的坐标是( )A.(2,4)B.(-1,-2)C.(2,4)或(-2,-4)D.(2,4)或(-4,-2)答案:C解题思路:试题难度:三颗星知识点:相似三角形的性质和判定10.如图,在△ABC中,AB=6,AC=4,P是AC的中点,过点P的直线交AB于点Q,若以A,P,Q为顶点的三角形和以A,B,C为顶点的三角形相似,则AQ的长为( )A.3B.3或C.3或D.答案:B解题思路:试题难度:三颗星知识点:相似三角形的性质和判定11.如图,在Rt△ABO中,∠AOB=90°,∠ABO=60°,,D为BO的中点,若E是线段AB上的一动点,连接DE,当△BDE与△AOB相似时,点E的坐标为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:相似三角形的性质和判定。
相似三角形的性质及判定知识点总结+经典题型总结
板块 考试要求A 级要求B 级要求C 级要求相似三角形 了解相似三角形掌握相似三角形的概念,判定及性质,以及掌握相关的模型会运用相似三角形相关的知识解决有关问题一、相似的有关概念1.相似形具有相同形状的图形叫做相似形.相似形仅是形状相同,大小不一定相同.相似图形之间的互相变换称为相似变换. 2.相似图形的特性两个相似图形的对应边成比例,对应角相等. 3.相似比两个相似图形的对应角相等,对应边成比例.二、相似三角形的概念1.相似三角形的定义对应角相等,对应边成比例的三角形叫做相似三角形.如图,ABC △与A B C '''△相似,记作ABC A B C '''△∽△,符号∽读作“相似于”.A 'B 'C 'CB A2.相似比相似三角形对应边的比叫做相似比.全等三角形的相似比是1.“全等三角形”一定是“相似形”,“相似形”不一定是“全等形”.三、相似三角形的性质1.相似三角形的对应角相等如图,ABC △与A B C '''△相似,则有A A B B C C '''∠=∠∠=∠∠=∠,,.知识点睛 中考要求 相似三角形的性质及判定A 'B 'C 'CB A2.相似三角形的对应边成比例ABC △与A B C '''△相似,则有AB BC ACk A B B C A C===''''''(k 为相似比).3.相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比.如图1,ABC △与A B C '''△相似,AM 是ABC △中BC 边上的中线,A M ''是A B C '''△中B C ''边上的中线,则有AB BC AC AM k A B B C A C A M ====''''''''(k 为相似比). M 'MA 'B 'C 'C BA图1如图2,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AH k A B B C A C A H ====''''''''(k 为相似比). H 'H AB C C 'B 'A '图2如图3,ABC △与A B C '''△相似,AD 是ABC △中BAC ∠的角平分线,A D ''是A B C '''△中B A C '''∠的角平分线,则有AB BC AC ADk A B B C A C A D ====''''''''(k 为相似比).D 'D A 'B 'C B A图34.相似三角形周长的比等于相似比. 如图4,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C===''''''(k 为相似比).应用比例的等比性质有AB BC AC AB BC ACk A B B C A C A B B C A C ++====''''''''''''++.A 'B 'C 'CB A图45.相似三角形面积的比等于相似比的平方.如图5,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AH k A B B C A C A H ====''''''''(k 为相似比).进而可得21212ABC A B C BC AHS BC AH k S B C A H B C A H '''⋅⋅==⋅=''''''''⋅⋅△△.H 'H AB C C 'B 'A '图5四、相似三角形的判定1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.可简单说成:两角对应相等,两个三角形相似.3.如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似. 4.如果一个三角形的三条边与另一个三角形的你对应成比例,那么这两个三角形相似.可简单地说成:三边对应成比例,两个三角形相似.5.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.6.直角三角形被斜边上的高分成的两个直角三角形相似(常用但要证明)7.如果一个等腰三角形和另一个等腰三角形的顶角相等或一对底角相等,那么这两个等腰三角形相似;如果它们的腰和底对应成比例,那么这两个等腰三角形也相似.五、相似证明中的比例式或等积式、比例中项式、倒数式、复合式证明比例式或等积式的主要方法有“三点定形法”. 1.横向定型法欲证AB BCBE BF =,横向观察,比例式中的分子的两条线段是AB 和BC ,三个字母A B C ,,恰为ABC △的顶点;分母的两条线段是BE 和BF ,三个字母B E F ,,恰为BEF △的三个顶点.因此只需证ABC EBF △∽△.2.纵向定型法欲证AB DEBC EF=,纵向观察,比例式左边的比AB 和BC 中的三个字母A B C ,,恰为ABC △的顶点;右边的比两条线段是DE 和EF 中的三个字母D E F ,,恰为DEF △的三个顶点.因此只需证ABC DEF △∽△.3.中间比法由于运用三点定形法时常会碰到三点共线或四点中没有相同点的情况,此时可考虑运用等线,等比或等积进行变换后,再考虑运用三点定形法寻找相似三角形.这种方法就是等量代换法.在证明比例式时,常用到中间比.比例中项式的证明,通常涉及到与公共边有关的相似问题。
相似三角形的判定与性质综合
A BCD EN MA B CP Q相似三角形判定与性质综合知识梳理根据相似三角形的定义,得出相似三角形的性质: 两三角形相似,则对应角相等,对应边成比例.【例】在ABC ∆中,12AB =,15AC =,D 为AB 上一点,3ABBD=,在AC 上取一点E ,得到ADE ∆,若ADE ∆与ABC ∆相似,则AE =.【解析】相似三角形的性质,分类讨论若ADE ∆与ABC ∆相似,则分两种情况:ABC ADE ∆∆∽或ABC AED ∆∆∽, 得AD AE AB AC =或AD AE AC AB =,解得AE 的值为10或325;【例】如图,正方形ABCD 的边长为2,AE EB =,1MN =,线段MN 的两端在CB 、 CD 上滑动,当CM 为何值时,AED ∆与以M 、N 、C 为顶点的三角形相似. 【解析】动点问题,相似三角形的性质,分类讨论在RT AED ∆中,AD=2,AE=1,∴DE=5当AED CMN ∆∆时,AE EDCM MN =,得5CM =当AED CNM ∆∆时,AD EDCM MN=,得25CM =【例】如图,在ABC ∆中,90C ∠=︒,8BC cm =,6AC cm =,点P 从B 出发,沿BC 方向以2cm/s 的速度移动到C 点,点Q 从C 出发,沿CA 方向以1cm/s 的速度移动到A 点.若点P 、Q 分别同时从B 、C 出发,经过多少时间CPQ ∆与CBA ∆相似? 【解析】动点问题,相似三角形的性质,分类讨论 设经过t 秒CPQ ∆与CBA ∆相似,则 2BP t =,CQ t =,∴82CP t =-.要使CPQ ∆与CBA ∆相似,有两种情况:①当CPQ CBA ∆∆∽,∴CP CQCB CA=,即8286t t -=,∴125t =;ABCDE ABM②当CPQ CAB ∆∆∽,∴ CP CQCA CB=, 即8268t t -=。
∴3211t =.∴125t =或3211时,CPQ ∆与CBA ∆相似.【例】如图,在ABC ∆中,M 在AB 上,且8MB =,12AB =,16AC =,在AC 上,求作一点N ,使AMN ∆与原三角形相似,并求AN 的长. 【解析】相似三角形的性质,分类讨论如右图,要使AMN ∆与原三角形相似,有两种情况: 128AB BM ==,,∴4AM =.当//MN BC 时,AMN ABC ∆∆∽. ∴AM AN AB AC =,即41216AN =,∴163AN =. 当MN 与BC 不平行时,ANM ABC ∆∆∽. ∴AM AN AC AB =,即41612AN=,∴3AN =. ∴ 3AN =或163.【例】如图,90ACB CED ∠=∠=︒,CD AB ⊥于点D ,3AC =,4BC =,求ED 的长. 【解析】子母三角形,求直角三角形斜边上的高用面积法3AC =,4BC =,=90ACB ∠︒,225AB AC BC ∴=+=.根据面积法,知CD AB AC BC ⋅=⋅,得125CD =. 又CD AB ⊥,=90ACB ∠︒,可得ADC ∆∽ACB ∆. AD AC AC AB ∴=,代入可得:95AD =. 再根据面积法:AC ED AD CD ⋅=⋅ABCDF GABCD EF∴3625ED =【例】已知直角三角形斜边上的高为12,并且斜边上的高把斜边分成3:4两段,则斜边上的中线长是 .【解析】子母三角形,直角三角形斜边上的中线在Rt ABC ∆中,90ACB ∠=,CD AB ⊥于点D ,AE EB =. 设3AD x =,4BD x =,12CD =.易证Rt ADC Rt CDB ∆∆∽,得DC BDAD DC =,得2DC AD DB =•, 所以21234x x =•,解得23x =,7143AB x ==, 而12CE AB =,所以73CE =.【例】如图,在ABC ∆中,CD AB ⊥于D ,DF AC ⊥于F ,DG BC ⊥于G . 求证:CF CA CG CB =【解析】子母三角形,相似三角形的性质,射影定理CD AB ⊥,DF AC ⊥,∴90ADC CFD ∠=∠=.又DCF DCA ∠=∠, ∴DCF ACD ∆∆∽. ∴DC CFAC DC=,即2DC CA CF =•. 同理可得:2DC CG CB =•, ∴CF CA CG CB =.【例】如图,D 是ABC ∆的边BC 上的点,BAD C ∠=∠,BE 是ABC ∆的角平分线,交AD于点F ,1BD =,3CD =,求BF :BE .【解析】子母三角形,射影定理 BE 是ABC ∆的角平分线,∴ABF EBC ∠=∠又BAD C ∠=∠ ABF CBE ∴∆∆∽ AB BFBC BE∴=, 又BAD C ∠=∠,ABD ABC ∠=∠BAD BCA ∴∆∆∽,AB BDBC BA∴=, 即2AB BD BC =⋅2AB ∴=ABCDE FABCDEF12AB BC ∴=,12BF AB BE BC ∴==【例】如图,在ABC ∆中,CD AB ⊥于D ,DE AC ⊥于E ,DF BC ⊥于F , 求证:CEF ∆∽CBA ∆【解析】子母三角形,相似三角形的性质,射影定理CD AB ⊥,DE AC ⊥, ∴90ADC CED ∠=∠=.又DCE DCA ∠=∠, ∴DCE ACD ∆∆∽. ∴DC CFAC DC=,即2DC CA CE =•. 同理,可得:2DC CF CB =⋅.∴CA CE CF CB •=•, 即 CF CEAC CB =. 又FCE BCA ∠=∠, ∴CEF CBA ∆∆∽.【例】在Rt ABC ∆中,90ACB ∠=︒,CD AB ⊥于点D ,E 是AC 边上的一个动点(不与A 、C 重合),CF BE ⊥于点F ,连接DF . (1)求证:2CB BF BE =;(2)求证:BF AE FD BA =.【解析】子母三角形,相似三角形的性质,射影定理 (1)90ACB ∠=,CF BE ⊥,∴90ACB CFB ∠=∠=. 又CBF CBE ∠=∠,∴CBF EBC ∆∆∽. ∴CB BEBF CB=,∴2CB BF BE =•.(2)90ACB ∠=,CD BA ⊥,∴90ACB CDB ∠=∠=.又CBD CBA ∠=∠,∴CBD ABC ∆∆∽. ∴CB ABBD CB=,即2CB BD BA =•.∴BF BE BD BA •=•,ABCDEF∴FB BDBA BE= 又ABE FBD ∠=∠, ∴FBD ABE ∆∆∽.∴FB FDBA AE=. ∴BF AE FD BA •=•.【例】如图,在ABC ∆中,90ACB ∠=︒,CD AB ⊥于D ,E 为AC 上一点,CF BE ⊥ 于F ,联结DF .求证:BD DFBE AE=. 子母三角形,相似三角形的性质,射影定理90ACB ∠=,CF BE ⊥, ∴90ACB CFB ∠=∠=. 又CBF CBE ∠=∠, ∴CBF EBC ∆∆∽.∴CB BE BF CB=,即2CB BF BE =•. 同理2CB BD BA =•. ∴BF BE BD BA •=•,∴FB BDBA BE=. 又ABE FBD ∠=∠,∴FBD ABE ∆∆∽. ∴BD FD BE AE=.【例】如图,AB BD ⊥,ED BD ⊥,点C 在线段BD 上运动,1ED =,4BD =,4AB =,若ABC ∆与CDE ∆相似,求BC 的值.【解析】根据“ABC ∆与CDE ∆相似”,对应关系并未确定,需要分类讨论,若ABC CDE ∆∆,则对应关系确定(1)ABC ∆∽EDC ∆时,则应有4BC ABCD DE==. 由4BD =,可得:41655BC BD ==;(2)ABC ∆∽CDE ∆时,则应有BC ABDE CD=. 由4BD =,代入得:44BC BC=-,解得:2BC =.AB C DEABCDEABDCA【例】如图,ABC ∆是等边三角形,120DAE ∠=︒,求证AD AE AB DE =. 【解析】判定定理一,角度的等量代换找等角ABC ∆是等边三角形,60BAC ACB ∴∠=∠=︒.120DAE ∠=︒,60DAB CAE ∴∠+∠=︒.又60ACB E CAE ∠=∠+∠=︒,DAB E ∴∠=∠.D D ∠=∠,DAB ∴∆∽DEA ∆,AD ABDE AE ∴=, 即AD AE AB DE =.【例】如图,D 、E 分别是ABC ∆的边AB 、AC 上的点,且AED B ∠=∠. 求证:AE AC AD AB =.【解析】判定定理一,斜A 型相似AED B A A ∠=∠∠=∠,,AED ∴∆∽ABC ∆, AD AEAC AB∴=, 即AE AC AD AB =.【例】如图,Rt ABC ∆在中,90C ∠=︒,CD AB ⊥于点D ,且:9:4AD BD =, 求:AC BC 的值.【解析】字母三角形90ACB ∠=︒,即90ACD BCD ∠+∠=︒,又CD AB ⊥,可得90ACD A ∠+∠=︒. A BCD ∴∠=∠.又90ADC BDC ∠=∠=︒,ACD ∴∆∽CBD ∆, AD DC ACDC BD BC ∴==.:9:4AD BD =,设()90AD k k =>,则4BD k =,代入可得:6DC k =.::9:63:2AC BC AD DC k k ∴===.【例】已知,在ABC ∆中,BE 、CF 是ABC ∆的两条高,BE 、CF 交于点G . 求证:(1)AC CE CF GC =;(2)AFE ACB ∠=∠.ABCDEABCDEOA BC【解析】双高模型的应用 (1)90AFC BEC ∠=∠=︒,ACF GCE ∠=∠,GCE ∴∆∽ACF ∆,GC CEAC CF∴=,即AC CE CF GC =. (2)90AFC AEB ∠=∠=︒,A A ∠=∠,ABE ∴∆∽ACF ∆. AE AB AF AC ∴=,即AE AFAB AC=,又A A ∠=∠, AEF ∴∆∽ABC ∆,∴AFE ACB ∠=∠.【总结】双高模型中有8对相似三角形,其中有4个直角三角形两两相似,一个斜A 型相似,一个斜8型相似.GCEACF ABE GBF ∆∆∆∆,GEF GCB ∆∆,AEF ABC ∆∆【例】如图,点O 是ABC ∆的垂心(垂心即三角形三条高所在直线的交点),联结AO 交CB 的延长线于点D ,联结CO 交的AB 延长线于点E ,联结DE . 求证:ODE ∆∽OCA ∆. 【解析】钝角三角形中的双高模型O 是ABC ∆的垂心, 90AEO CDO ∴∠=∠=︒. O O ∠=∠, AOE ∴∆∽COD ∆, AO OECO OD ∴=, 即AO CO OE OD =. O O ∠=∠,∴ODE ∆∽OCA ∆.【例】如图,ABC ∆∽''AB C ∆,点'B 、'C 分别对应点B 、C .求证:'ABB ∆∽'ACC ∆ 【解析】旋转型相似,把A 字型中的小三角形绕着A 点旋转ABC ∆∽''AB C ∆, ''''AB AC BAC B AC AB AC ∴=∠=∠,, ''''AB AB BAB CAC AC AC ∴=∠=∠,, ∴'ABB ∆∽'ACC ∆.A B CDPQABCDE F【总结】根据相似的性质,得到比例关系和等角,再比例转化和角度的转化,证明新的相似.【例】如图,正方形ABCD 中,2AB =,P 是BC 边上与B 、C 不重合的任意点,DQ AP ⊥于Q .(1)求证:DQA ∆∽ABP ∆;(2)当点P 在BC 上变化时,线段DQ 也随之变化.设PA x =,DQ y =,求y 与x 之间的函数关系式,并写出x 的取值范围.【解析】正方形的性质,相似三角形判定性质与函数综合 正方形ABCD ,∴2AB AD ==, 90B BAD ∠=∠=︒ ∴90BAP DAQ ∠+∠=.DQ AP ⊥,∴90AQD ∠=,∴B AQD ∠=∠.90ADQ DAQ ∠+∠=, ∴BAP ADQ ∠=∠,∴DQA ABP ∆∆∽.(2)由DQA ABP ∆∆∽得:DQ AD AB AP =,即22y x = .∴4y x= . P 点的临界点是与B 、C 重合,对应x 的值分别为2和22,即定义域为222x << ∴()4222y x x=<<【例】已知,E 、F 分别是正方形ABCD 的边AB 和AD 上的点,且13EB AF AB AD ==,求证:AEF FBD ∠=∠.【解析】作高构造相似直角三角形,正方形的性质 相似三角形的判定和性质过点F 作FH BD ⊥于点H ,得90BHF ∠=.正方形ABCD ,∴AB AD =,45ADB ∠=,90A ∠=.A BCD EF HA BCD NM NEFMDCBA∴BHF A ∠=∠.又13EB AF AB AD == 设BE AF a ==,则2DF AE a ==,3AB AD a ==. 由勾股定理得:32BD a =,2FH DH a ==,2DH a , ∴22BH a =, ∴12FH FA BH AE ==. ∴AEF HBF ∆∆∽, ∴AEF FBD ∠=∠.【例】如图,在正方形ABCD 中,M 为AD 的中点,以M 为顶点作BMN MBC ∠=∠,MN交CD 于点N ,求证:2DNCN=.【解析】正方形和相似三角形的性质延长MN 、BC 相交于点E ,过点E 作EF BM ⊥交BM 于点F , 四边形ABCD 是正方形,90//AD BC AB ABC AD BC ∴==∠=︒,,.设AB a =,则152AM DM a BM ===,,BMN MBC ∠=∠,BE ME ∴=,152BF FM BM ∴==. 又90A BFE ∠=∠=︒,AM B M BE ∠=∠,ABM ∴∆∽MEB ∆,5BE BM BF AM∴= 554BE BF a ∴==,14CE BE BC a ∴=-=.又//AD BC , 2DN DM CN CE ∴==.【例】如图,在ABC ∆中,90BAC ∠=︒,AD 是边BC 上的高,点E 在线段DC 上,EF AB ⊥,EG AC ⊥,垂足分别为F 、G .A BCE F G H求证:(1)EG CGAD CD=;(2)FD DG ⊥. 【解析】相似三角形性质的综合运用 (1)EG AC ⊥,AD 是边BC 上的高,90ADC EGC ∴∠=∠=︒. C C ∠=∠,EGC ∴∆∽ADC ∆, ∴EG CGAD CD=. (2)90BAC ∠=︒,EF AB ⊥,EG AC ⊥,∴四边形是AFEG 矩形,AF EG ∴=. EG CG AD CD =, AF ADCG CD ∴=. EG AC ⊥,AD 是边BC 上的高,即有9090DAC DAF DAC C ∠+∠=︒∠+∠=︒,,DAF C ∴∠=∠, FAD ∴∆∽GCD ∆, FDA GDC ∴∠=∠, FDA GDA GDC GDA ∴∠+∠=∠+∠,即FDG ADC ∠=∠, ∴FD DG ⊥.【总结】证明垂直可以通过夹角是90°来说明,题中∠FDG 和直角ADE 有夹角,故而问题转化为证明∠ADE=∠GDC【例】如图,在ABC ∆中,正方形EFGH 内接于ABC ∆,点E 、F 在边AB 上,点G 、H 分别在BC 、AC 上,且2EF AE FB =求证:(1)90C ∠=︒;(2)AH CG AE FB =. 【解析】内接正方形(1)四边形EFGH 是正方形,90EF EH FG HEF EFG ∴==∠=∠=︒,.2EF AE FB =, EH FBAE FG ∴=, AEH ∴∆∽GFB ∆, AHE B ∴∠=∠,90A B A AHE ∴∠+∠=∠+∠=︒,90C ∴∠=︒.(2)∵A CHG ∠=∠,90AEH C ∠=∠=︒ ∴CHGEAH ∆∆∴AH HE HG CG =,即AH EFEF CG= ∴2AH CG EF = ∵2EF AE FB =ABCD E FGAB CDE ABCDE∴AH CG AE FB =【例】如图,在矩形ABCD 中,点E 是边BC 的中点,且DE AC ⊥,那么:CD AD =. 【解析】矩形中的十字架模型 四边形ABCD 是矩形,//90AD BC AD BC ADC BCD ∴=∠=∠=︒,,. DE AC ⊥,EDC DAC ∴∠=∠.ADC ∴∆∽DCE ∆,AD CDCD CE ∴=. 设AD a =,则1122CE BC a ==,由此可得:2CD a =,∴2::2:2CD AD a a ==.【例】如图,在ABC ∆中,点E 在中线BD 上,DAE ABD ∠=∠. 求证:(1)2AD DE DB =;(2)DEC ACB ∠=∠. 【解析】子母三角形的应用 (1)DAE ABD ∠=∠,ADE ADB ∠=∠,ADE ∴∆∽BDA ∆,AD DEDB AD∴=,即2AD DE DB =. (2)2AD DE DB =,AD CD =,2CD DE BD ∴=⋅, 即DE CD CD BD=. EDC BDC ∠=∠,CDE ∴∆∽BDC ∆∴DEC ACB ∠=∠.【例】如图,在Rt ABC ∆中,90ACB ∠=︒,4AC BC ==,M 是边AB 的中点,E 、G 分别是边AC 、BC 上的一点,45EMG ∠=︒,AC 与MG 的延长线相交于点F .(1)在不添加字母和线段的情况下,写出图中一定相似的三角形,并证明其中的一对; (2)联结EG ,当3AE =时,求EG 的长. 【解析】一线三等角模型(根据外角性质证明)(1)有两对相似三角形AMF ∆∽MEF ∆,AEM ∆∽BMG ∆; 例证AEM ∆∽BMG ∆,证明过程如下;C EFGAB CDEFA90ACB ∠=︒,AC BC =,45A B ∴∠=∠=︒. 45EMG ∠=︒,EMB EMG GMB AEM A ∴∠=∠+∠=∠+∠. GMB AEM ∴∠=∠,∴AEM ∆∽BMG ∆.(2)4AC BC ==,2242AB AC BC ∴=+=又M 为AB 中点, 1222AM BM AB ∴=== 由(1)得AEM ∆∽BMG ∆,AE AM BM BG ∴=2222=,解得:83BG =. 413CE CG ∴==,,根据勾股定理得:2253EG CE CG +=.【例】如图,ABC ∆中,BD 平分ABC ∠,交AC 于点D ,点E 在BD 的延长线上,BA BD BC BE =.(1)求证:AE AD =;(2)如果点F 在BD 上,CF CD =,求证:2BD BE BF =. 【解析】相似三角形性质综合运用,等比例转化 (1)BA BD BC BE =,BA BEBC BD∴=, 又BD 平分ABC ∠, ABE CBD ∴∠=∠,ABE ∴∆∽CBD ∆,AEB BDC ∴∠=∠. ADE BDC ∠=∠,ADE AEB ∴∠=∠,∴AE AD =.(2)CF CD =,FDC DFC ∴∠=∠, BFC ADB ∴∠=∠.又ABE CBD ∠=∠, ABD ∴∆∽CBF ∆, BA BDBC BF∴=. 又BA BD BC BE =, BA BE BC BD ∴=, BD BEBF BD∴=. 即2BD BE BF =.【例】如图,在Rt ABC ∆中,AB AC =,45DAE ∠=︒. 求证:(1)ABE ∆∽DCA ∆;(2)22BC BE CD =. 【解析】等积式中数字2的转化,根据222BC AB = (1)90AB AC BAC =∠=︒,,45B C ∴∠=∠=︒.AEACD EM45DAE ∠=︒,AED AEB ∠=∠,ABE ∴∆∽DAE ∆,同理可证DAE ∆∽DCA ∆,∴ABE ∆∽DCA ∆.(2)ABE ∆∽DCA ∆,AB BECD AC∴=,即2CD BE AB AC AB ⋅=⋅=. 90AB AC BAC =∠=︒,,2222BC AB CD BE ∴==⋅.【例】如图,EM AM ⊥,CE DE =.求证:2ED DM AD CD =. 【解析】对数字2的转化,等分CD 或倍长DE 两个思路 方法一:过点E 作EH CD ⊥于点H ,得90EHD ∠=.EC ED =,EH CD ⊥,∴12DH CD =.EM AM ⊥,∴90M ∠=. ∴EHD M ∠=∠.又EDH MDA ∠=∠, ∴EHD AMD ∆∆∽. ∴DM ADDH ED=, 即DM ED DA HD •=•. ∴12DM ED DA CD •=•,即2ED DM DA CD •=•.方法二:延长DE 至F ,使得EF=DE ,即DF=2DE ,连接CF ,因为CE=DE= 12DF 所以三角形CDF 是直角三角形,易证CDFMDA ∆∆,所以DF CDAD DM= 所以DF DM CD AD ⋅=⋅,即2ED DM AD CD =【例】如图,ABC ∆中,AB AC =,点D 是AB 上的动点,作EDC ∆∽ABC ∆. 求证:(1)ACE ∆∽BCD ∆;(2)AE //BC .【解析】相似的性质,等角转化,等比例转化,判定定理二AB CDE(1)EDC ∆∽ABC ∆, EC DCAC BC ∴=,DCE ACB ∠=∠, 即EC ACDC BC=,ACE ACD ACD BCD ∠+∠=∠+∠, ∴ACE BCD ∠=∠,∴ACE ∆∽BCD ∆.(2)AB AC =,B ACB ∴∠=∠.ACE ∆∽BCD ∆,CAE B ∴∠=∠. CAE ACB ∴∠=∠,∴AE //BC .【例】如图,在ABC ∆中,AB AC =,AD AB ⊥于点A ,交BC 边于点E ,DC BC ⊥于点C ,与AD 交于点D .(1)求证:ACE ∆∽ADC ∆;(2)如果1CE =,2CD =,求AC 的长 【解析】子母三角形,相似三角形性质的应用 (1)∵AB AC = ∴B ACB ∠=∠∵90AEC B ∠=︒+∠,90ACD ACB ∠=︒+∠ ∴AEC ACD ∠=∠ 又CAE CAD ∠=∠ ∴ACE ∆∽ADC ∆、(2)由(1)可知AEB ∆∽CED ∆,AE AB CE CD∴=. 1CE =,2CD =25AB AE AC DE ∴==, ACE ∆∽ADC ∆, AC CEAD CD ∴=.即11252AC AC =+解得:25AC .【例】已知AD 、11A D 分别是ABC ∆、111A B C ∆边BC 、11B C 上的中线,且111111AC AB ADAC A B A D ==.求证:ABC ∆∽111A B C ∆. 【解析】相似三角形的判定性质综合,倍长中线法 分别延长AD 、11A D 到点1E E 、.使得1111DE AD D E A D ==,.ABCDEFGH123AD 、11A D 分别是ABC ∆、111A B C ∆边BC 、11B C 上的中线,∴1111BD DC B D D C ==,.111111ADB ADC A D B A D C ∠=∠∠=∠, , ∴ADB EDC ∆≅∆,111111A D B E D C ∆≅∆ ∴1111BAD E B A D E ∠=∠∠=∠,.111111AC AB AD AC A B A D ==,∴111111AC CE AEAC C E A E ==. ∴111AEC A E C ∆∆∽,∴1111E E CAD C A D ∠=∠∠=∠, ∴111BAD B A D ∠=∠ ,∴111BAC B AC ∠=∠.又1111AB ACA B AC =, ∴111ABC A B C ∆∆∽. 【总结】通过全等和相似的性质,得到对应角相等,得出111BAC B AC ∠=∠,再根据SAS 判定相似.【例】如图,四边形ABDC 、CDFE 、EFGH 是三个正方形,则123∠+∠+∠的值是多少? 【解析】判定定理三,相似三角形的性质,角度转化 设正方形ABDC 、CDFE 、EFHG 的边长为1.则2AD =,5AF =,1DF =,2HD =,10AH . ∴2AD DH AH DF AD AF=== ∴ADH FDA ∆∆∽. ∴3DAF ∠=∠.四边形ABDC 是正方形, ∴AB BD =. ∴145∠=. 又21DAF ∠+∠=∠, ∴231∠+∠=∠. ∴12390∠+∠+∠=.【总结】正方形方格中的相似问题,表示出各边边长,根据三边比例关系找相似【例】如图,在ABC ∆中,3AB AC ==,2BC =,点D 、E 、F 分别在AC 、AB 、BC 边上,BEF ∆沿着直线EF 翻折后与DEF ∆重合,设CD x =,BF y =.试问DFC ∆是否有可能与ABC ∆相似,如有可能,求出CD 的长;如不可能,说明理由.AB CDEF ABCDEF【解析】相似三角形的性质判定综合,翻折变换,分类讨论 有可能相似,翻折后,BF DF =.分以下两种情况讨论 (1)当DFC ABC ∆∆∽时,DFC C B ∠=∠=∠. BF DF CD x ∴===,2CF x =-. CD CF CA CB ∴=,即232x x -=. 65x ∴=; (2)当DFC BAC ∆∆∽时,FDC C B ∠=∠=∠, BF DF CF y ∴===则22y BC ==∴1y =即1BF DF CF ∴=== CD CF CB CA ∴=,即123x =. 23x ∴=. 综上,有可能存在相似,65CD =或23.【例】如图,ABC ∆是等边三角形,D 是AC 上的一点,BD 的垂直平分线交AB 于E , 交BC 于F .(1)当点D 在边AC 上移动时,DEF ∆中哪一个角的大小始终保持不变?并求出它的度数; (2)当点D 在边AC 上移动时,ADE ∆与哪一个三角形始终相似?并写出证明过程. 又问:当点D 移动到什么位置时,这两个三角形的相似比为1? (3)若等边三角形ABC 的边长为6,2AD =,试求:BE BF 的值【解析】相似三角形的判定性质综合运用,一线三等角模型,线段的垂直平分线(1)∵EF 是BD 的垂直平分线,∴EDB EBD ∠=∠,DBF BDF ∠=∠ ∴60EDF EBF ∠=∠=︒(2)∵120AED ADE ∠+∠=︒,120ADE CDF ∠+∠=︒ ∴AED CDF ∠=∠ 又A C ∠=∠ ∴ADECFD ∆∆∵相似比为1,则ADE CFD ∆≅∆,∴DE DF =. 又DB EF ⊥,∴DB 垂直平分EF ∴BD 平分ABC ∠,∴D 为AC 的中点,(3)8AED C AD AE ED AD AE EB AD AB ∆=++=++=+=10CFD C DF DC CF CF DC BF DC BC ∆=++=++=+=A BCDEO∵ADE CFD ∆∆ ∴45AED CFD C DE DF C ∆∆== ∴:4:5BE BF =【例】如图,ABC ∆中,90C ∠=︒,2AC BC ==,O 是AB 的中点,将45°角的顶点置于点O ,并绕点O 旋转,使角的两边分别交边AC 、BC 于点D 、E ,连接点D 、E . (1)观察图形,在旋转过程中有无一定相似的三角形?若有,请找出,并证明; (2)设AD x =,BE y =,求y 关于x 的函数关系式,并写出它的定义域; (3)当x 为何值时,ODE ∆是等腰三角形?【解析】一线三等角模型,动点问题,等腰三角形的存在性问题 (1)存在相似,AOD BEO ∆∆∽90C ∠=︒,2AC BC ==,∴45A B ∠=∠=.又AOD DOE B BEO ∠+∠=∠+∠,而45DOE ∠=,∴AOD BEO ∠=∠, ∴AOD BEO ∆∆∽;(2)由AOD BEO ∆∆∽,得:AO ADBE OB=, 即22y =2y x =; 当E 点与C 重合时,x 取值最小值,1x =, 当D 点与C 重合时,x 取值最大值,2x = ∴()212y x x=≤≤(3)①当点E 与点C 重合时,ODE ∆是等腰直角三角形,即OD=ED ,此时1x =; ②当点D 与点C 重合时,ODE ∆是等腰直角三角形,即OE=ED ,此时2x =; ③ODE ∆是等腰三角形时,OD OE =,AOD BEO ∆≅∆,2AD OB ==2x =. 综上,当122x =,时,ODE ∆是等腰三角形.自主巩固【巩固】如图,AC BD ⊥,DE AB ⊥,AC 与ED 交于点F ,3BC =,1FC =,5BD =则____AC =ABCDEA BP Q R 12【解析】由ACB DCF ∆∆∽,得CF CDCB AC=.得AC=6【巩固】已知梯形ABCD 中,AB // CD ,90B ∠=︒,3AB =,6CD =,12BC =,点E 在BC 边上自B 点向C 点移动,求使得ABE ∆与ECD ∆相似的BE 的值. 【解析】由题知:90B C ∠=∠=. ABE ∆与ECD ∆相似,分两种情况:设BE x =.(1)ABE DCE ∆∆∽,得:AB BEDC CE=, 即3612x x=-,解得4x =; (2)ABE ECD ∆∆∽,得:AB BEEC DC=, 即3126x x =-,得212180x x -+=, 解得632x =± 综上:BE =4或632±【巩固】如图,A 是等边PQR ∆的边RQ 的延长线上的点,B 是QR 延长线上的点. (1)若1260∠+∠=︒,求证:2QR AQ BR =;(2)若12AQ QR =,当RB 与QR 满足什么条件时,BRP ∆∽PQA ∆?(3)BPQ ∆有可能与PQA ∆相似吗?若可能相似,说明应满足什么条件;若不可能相似,请说明理由.【解析】(1)证明:PQR ∆是等边三角形,∴PQ PR QR ==,60PQR PRQ ∠=∠=, ∴120AQP PRB ∠=∠=.1A PQR ∠+∠=∠,而1260∠+∠=, ∴2A ∠=∠, ∴AQP PRB ∆∆∽.∴PQ AQDR PR=,即QR AQ DR QR =, ∴2QR AQ BR =; (2)当2RB QR =时,BRP ∆∽PQA ∆;(3)BPQ ∆与PQA ∆不可能相似,因为AQP BPQ B ∠=∠+∠,所以AQP BPQ ∠>∠,所以不可能相似.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似判定和性质补充一、选择题1、如图,已知:△ABC、△DEA是两个全等的等腰直角三角形,∠BAC=∠D=90°,两条直角边AB、AD重合,把AD绕点A逆时针旋转α角(0°<α<90°),到如图所示的位置时,BC分别与AD、AE相交于点F、G,则图中共有()对相似三角形.A.1B.2C.3D.42、△ABC中,F是AC的中点,D、E三等分BC、BF与AD、AE分别交于P、Q,则BP:PQ:QF=()A.5:3:2B.3:2:1C.4:3:1D.4:3:23、如图,平行四边形ABCD中,F是CD上一点,BF交AD的延长线于G,则图中的相似三角形对数共有()A.8对;B.6对;C.4对;D.2对.4、如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③=;④=AD•AB.其中单独能够判定△ABC∽△ACD的个数为( )A .1B .2C .3D .45、在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),连结AD,作∠ADE=∠B=α,DE交AC于点E,且cosα=.有下列结论:①△ADE∽△ACD;②当BD=6时,△ABD与△DCE全等;③当△DCE为直角三角形时,BD=8;④3.6≤AE<10.其中正确的结论是( )A .①③B .①④C .①②④D .①②③6、如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE 的长等于()A.B.C.D.7、如图,已知AB≠AC,要使△AEF∽△ACB,且EF与BC不平行,还需补充的条件可以是()A.∠AEF=∠B B.∠AFE=∠C C.∠AFE=∠B D.∠A=∠A8、如图,△ABC中,P为AB上一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC与△ACB相似的条件是()A.①②③B.①③④C.②③④D.①②④9、如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是()A.B.C.D.10、如图,在△ABC中,D、E分别是AB、BC上的点,且D E∥AC,若S△BDE :S△CDE=1:4,则S△BDE :S△ACD=()A.1:16B.1:18C.1:20D.1:2411、如图,在△ABC中,D是边AC上一点,联结BD,给出下列条件:①∠ABD=∠ACB;②AB2=AD•AC;③AD•BC=AB•BD;④AB•BC=AC•BD.其中单独能够判定△ABD∽△ACB的个数是()A.1个B.2个C.3个D.4个12、如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则等于()A.B.C.D.13、下列判断正确的是()A.在△ABC和△DEF中,∠A=40°,∠B=70°;∠D=40°,∠F=80°;则可判定这两个三角形相似B.有一锐角对应相等的两个直角三角形相似C.所有的矩形都相似D.所有的菱形都相似14、下列四个三角形中,与图中的三角形相似的是()A.B.C.D.15、如图,△ABC中,D、E分别为AC、BC边上的点,AB∥DE,CF为AB边上的中线,若AD=5,CD=3,DE=4,则BF的长为()A.B.C.D.二、填空题16、如图,点D、E、F在△ABC三边上,EF、DG相交于点H,∠ABC=∠EFC=70°,∠ACB=60°,∠DGB=50°,图中与△GFH相似的三角形的个数是__________.三、解答题17、如图所示,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连接AE,F 为AE上一点,且∠BFE=∠C.(1)求证:△ABF∽△EAD;(2)若AB=4,∠BAE=30°,AD=3,求AE和BF的长.18、已知:O为四边形ABCD的对角线AC、BD的交点,将直角三角板的直角顶点与O点重合,转动三角板使两直角边始终与BC、AB相交,交点分别为M、N.(1)若ABCD为正方形,如图①,猜想:线段OM与ON间的大小关系,并证明你的结论;(2)若ABCD为矩形,如图②,且AB=4,AD=6,OM=x,ON=y,求y与x之间的函数关系式.19、如图,已知△ABC是等边三角形,AB=4,D是AC边上一动点(不与A、C点重合),EF垂直平分BD,分别交AB、BC于点E、F,设CD=x,AE=y.(1)求证:△AED∽△CDF;(2)求y关于x的函数解析式.并写出定义域;(3)过点D作DH⊥AB,垂足为点H,当EH=1时,求线段CD的长.20、定义:如图1,点C在线段AB上,若满足AC2=BC•AB,则称点C为线段AB的黄金分割点.如图2,△ABC中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于点D.(1)求证:点D是线段AC的黄金分割点;(2)求出线段AD的长.21、已知:如图,在△ABC中,∠BAC=90°,AH⊥BC于H,以AB和AC为边在Rt△ABC外作等边△ABD和△ACE,求证:DH⊥HE.22、如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE的长.23、如图,等腰三角形ABC中,AB=AC,D为CB延长线上一点,E为BC延长线上一点,且满足=DB•CE.(1)说明:△ADB∽△EAC;(2)若∠BAC=40°,求∠DAE的度数。
相似判定和性质补充的答案和解析一、选择题1、答案:D试题分析:根据已知及相似三角形的判定方法进行分析,从而得到答案.试题解析:∵△ABC与△DEA是两个全等的等腰直角三角形,∠BAC=∠EDA=90°,∴∠C=∠B=∠DAE=∠E=45°,∵∠CFA=∠B+∠FAB,∠GAB=∠FAG+∠FAB,∴∠CFA=∠BAG,∴△CAF∽△BGA,∴△BGA∽△AGF∽△CAF;还有△ABC≌△DEA,∴相似三角形共有4对.故选:D.2、答案:A试题分析:过F作FN∥BC,交AE于M,AD于N,根据相似三角形性质和判定求出FQ= BF,PQ=BF,BP=BF,代入求出即可.试题解析:过F作FN∥BC,交AE于M,AD于N,∵F为AC中点,∴FM是△AEC中位线,∴MF=CE,CE=2FM,∵BD=DE=CE,∴BE=2CE=4FM,∵FM∥BC,∴△FMQ∽△BEQ,∴==,∵FN是△ADC的中位线,∴FN=CD=CE=BD,∵FN∥BC,∴△FNP∽△BDP,∴==1,∴BP=PF,∵=,∴=,∴FQ=BF,∵BP=BF,FQ=BF,∴PQ=PF-QF=BF-BF=BF,∴BP:PQ:QF=(BF):(BF):(BF)=5:3:2.故选:A.3、答案:B试题分析:根据平行四边形的性质,得到平行四边形的对边平行,即AD∥BC,AB∥CD;再根据相似三角形的判定方法:平行于三角形一边的直线与三角形另两边或另两边的延长线所构成的三角形相似,进而得出答案.∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴△BEC∽△GEA,△ABE∽△CEF,△GDF∽△GAB,△DGF∽△BCF,∴△GAB∽△BCF,还有△ABC≌△CDA(是特殊相似),∴共有6对.故选:C.4、答案:D试题分析:本题考查了相似三角形的判定,根据条件可依次判定是否为相似三角形①∵∠B=∠ACD;∠A=∠A∴△ABC∽△ACD,故正确;②∵∠ADC=∠ACB;∠A=∠A∴△ABC∽△ACD,故正确;③∵=对应边成比例∴△ABC∽△ACD,故正确;④∵=AD•AB∴=对应边成比例,∴△ABC∽△ACD,故正确;故选:D.5、答案:C试题分析:①根据有两组对应角相等的三角形相似即可证明;②由BD=6,则DC=10,然后根据有两组对应角相等且夹边也相等的三角形全等,即可证得;③分两种情况讨论,通过三角形相似即可求得;④依据相似三角形对应边成比例即可求得。
解:①∵AB=AC,∴∠B=∠C,又∵∠ADE=∠B,∴∠ADE=∠C,∴△ADE∽△ACD;故①正确;②作AG⊥BC于G,∵AB=AC=10,∠ADE=∠B=α,cosα=,∴BG=ABcosB,∴BC=2BG=2ABcosB=2×10×=16,∵BD=6,∴DC=10,∴AB=DC.在△ABD与△DCE中,,∴△ABD≌△DCE(ASA).故②正确;③当∠AED=90°时,由①可知:△ADE∽△ACD,∴∠ADC=∠AED,∵∠AED=90°,∴∠ADC=90°,即AD⊥BC,∵AB=AC,∴BD=CD,∴∠ADE=∠B=α且cosα=,AB=10,∴BD=8.当∠CDE=90°时,易证△CDE∽△BAD,∵∠CDE=90°,∴∠BAD=90°,∵∠B=α且cosα=,AB=10,∴cosB==,∴BD=.即当△DCE为直角三角形时,BD=8或.故③错误;④易证得△CDE∽△BAD,由②可知BC=16,设BD=y,CE=x,∴=,∴=,整理得:-16y+64=64-10x,即=64-10x,∴0<x≤6.4,∵AE=AC-CE=10-x,∴3.6≤AE<10.故④正确.故正确的结论为:①②④.故选:C.6、答案:B试题分析:由∠ADC=∠BDE,∠C=∠E,可得△ADC∽△BDE,然后由相似三角形的对应边成比例,即可求得答案.试题解析:∵∠ADC=∠BDE,∠C=∠E,∴△ADC∽△BDE,∴,∵AD=4,BC=8,BD:DC=5:3,∴BD=5,DC=3,∴DE==.故选:B.7、答案:C试题分析:利用两角法可判断△AEF∽△ACB,首先∠A=∠A,再添加一个即可.试题解析:∵EF与BC不平行,∴∠AFE≠∠C,∠AEF≠∠B,可添加∠AFE=∠B.证明:∵∠A=∠A,∠AFE=∠C,∴△AEF∽△ACB.故选C.8、答案:A试题分析:根据相似三角形的判定方法对各个条件进行分析,从而得到最后答案.试题解析:∵∠A=∠A∴①∠ACP=∠B,②∠APC=∠ACB时都相似;∵AC2=AP•AB∴AC:AB=AP:AC∴③相似;④此两个对应边的夹角不是∠A,所以不相似.所以能满足△APC与△ACB相似的条件是①②③.故选A.9、答案:B试题分析:本题主要应用两三角形相似判定定理,三边对应成比例,分别对各选项进行分析即可得出答案.试题解析:已知给出的三角形的各边AB、CB、AC分别为、2、、只有选项B的各边为1、、与它的各边对应成比例.故选:B.10、答案:C试题分析:设△BDE的面积为a,表示出△CDE的面积为4a,根据等高的三角形的面积的比等于底边的比求出,然后求出△DBE和△ABC相似,根据相似三角形面积的比等于相似比的平方求出△ABC的面积,然后表示出△ACD的面积,再求出比值即可.试题解析:∵S △BDE :S △CDE =1:4,∴设△BDE 的面积为a ,则△CDE 的面积为4a ,∵△BDE 和△CDE 的点D 到BC 的距离相等,∴=, ∴=,∵DE∥AC,∴△DBE∽△ABC,∴S △DBE :S △ABC =1:25,∴S △ACD =25a-a-4a=20a ,∴S △BDE :S △ACD =a :20a=1:20.故选:C .11、答案:C试题分析:利用相似三角形的判定方法,①两角对应相等两三角形相似;②两边对应成比例,且夹角相等两三角形相似;③利用三角形三边对应比值相等两三角形相似,进而判断得出答案.试题解析:①∵∠ABD=∠ACB,∠A=∠A,∴△ABD∽△ACB;②∵AB 2=AD•AC∴=,∵∠A=∠A,∴△ABD∽△ACB;③过点B 作BE⊥AC,垂足为点E ,过点D 作DF⊥AB,垂足为点F .在Rt△AEB 和Rt△AFD 中,∵sin∠BAE=sin∠DAF,∴=,即=.又∵AD•BC=AB•BD∴=, 于是=.∴Rt△BDF∽Rt△CBE.∴∠ABD=∠C.∴△ABD∽△ACB.④∵AB•BC=AC•BD,∴=,∴无法得出△ABD∽△ACB;故选:C.12、答案:D试题分析:利用△DAO与△DEA相似,对应边成比例即可求解.试题解析:∠DOA=90°,∠DAE=90°,∠ADE是公共角,∠DAO=∠DEA∴△DAO∽△DEA∴即∵AE=AD∴故选D.13、答案:B试题分析:利用相似图形的定义进行判断后即可确定正确的选项.试题解析:A、不能得到两对对应角相等,不能判定相似,故错误;B、有一对锐角对应相等,加上直角对应相等,这样的两个直角三角形相似,故正确;C、所有的矩形的对应角相等,但对应边的比不一定相等,故错误;D、所有的菱形的对应边的比相等,但对应角不一定相等,故错误.故选B.14、答案:B试题分析:本题主要应用两三角形相似的判定定理,三边对应成比例,做题即可.试题解析:设单位正方形的边长为1,给出的三角形三边长分别为,2,.A、三角形三边2,,3,与给出的三角形的各边不成比例,故A选项错误;B、三角形三边2,4,2,与给出的三角形的各边成正比例,故B选项正确;C、三角形三边2,3,,与给出的三角形的各边不成比例,故C选项错误;D、三角形三边,4,,与给出的三角形的各边不成比例,故D选项错误.故选:B.15、答案:B试题分析:由AB∥DE可得△CDE∽△CAB,再由AD=5,CD=3,DE=4,可求AB的长.又CF为AB边上的中线,则F为AB的中点,问题可求.∵AB∥DE,∴△CDE∽△CAB,∵AD=5,CD=3,DE=4,∴AC=CD+AD=8,∴,∴AB=;又CF为AB边上的中线,∴F为AB的中点.∴BF==.故选B.二、填空题16、答案:试题分析:首先根据已知的条件,求出各三角形的内角度数,然后根据相等角去找对应的相似三角形.试题解析:①∵∠ABC=∠EFC=70°,∴HF∥DB;∴△GBD∽△△GFH;②∵在△BDG中,∠B=∠EFC=70°,∠DGB=50°,则∠GDB=60°;在△ABC中,∠B=70°,∠ACB=60°,则∠A=50°;∴△ABC∽△GFH.③∵△DGB=∠A=∠FEC=50°,∠EFC为公共角∴△EFC∽△GFH;综上所述,图中与△GFH相似的三角形的个数是3.故答案是:3.三、解答题17、答案:试题分析:(1)由平行的性质结合条件可得到∠AFB=∠EDA和∠BAE=∠AED,可证得结论;(2)由平行可知∠ABE=90°,在Rt△ABE中,由直角三角形的性质结合勾股定理可求得AE,然后根据相似三角形的性质即可得到结论.试题解析:(1)证明:∵AD∥BC,∴∠C+∠ADE=180°,∵∠BFE=∠C,∴∠AFB=∠EDA,∵AB∥DC,∴∠BAE=∠AED,∴△ABF∽△EAD;(2)∵AB∥CD,BE⊥CD,∴∠ABE=90°,∵AB=4,∠BAE=30°,∴AE=2BE,由勾股定理可求得AE=,∵△ABF∽△EAD,∴,即,∴BF=.18、答案:试题分析:(1)由四边形ABCD为正方形,易证得△AON≌△BOM,然后由全等三角形的性质,证得OM=ON;(2)首先过点O作OE⊥AB于点E,作OF⊥BC于点F,易证得△FOM∽△EON,然后由相似三角形的对应边成比例,求得y与x之间的函数关系式.试题解析:(1)OM=ON.证明:∵四边形ABCD是正方形,∴OA=OB,∠OAN=∠OBM=45°,∠AOB=90°,∴∠AON+∠BON=90°,∵∠BON+∠BOM=90°,∴∠AON=∠BOM,在△AON和△BOM中,∵,∴△AON≌△BOM(ASA),∴OM=ON;(2)过点O作OE⊥AB于点E,作OF⊥BC于点F,∵四边形ABCD为矩形,AB=4,AD=6,∴OE=AD=3,OF=AB=2,OE⊥OF,∴∠EOM+∠FOM=90°,∵∠EON+∠EOM=90°,∴∠EON=∠FOM,∵∠OEN=∠OFM=90°,∴△FOM∽△EON,∴OM:ON=OF:OE=2:3,∵OM=x,ON=y,∴y与x之间的函数关系式为:y=x.19、答案:试题分析:(1)易证△BEF≌△DEF,则有∠EDF=∠EBF=60°,由∠A=∠C=∠EDF=60°即可证到△AED∽△CDF;(2)由△AED∽△CDF可得DF=,CF=,然后利用DF+CF=BF+CF=BC=4就可解决问题;(3)在Rt△AHD中,AH=AE-EH=y-1,AD=4-x,∠A=60°,运用三角函数可求得y=3-x,从而有=3-x,解这个方程就可解决问题.试题解析:(1)证明:如图1,∵EF垂直平分BD,∴EB=ED,FB=FD.在△BEF和△DEF中,,∴△BEF≌△DEF(SSS),∴∠EBF=∠EDF.∵△ABC是等边三角形,∴∠A=∠ABC=∠C=60°,∴∠EDF=60°,∴∠ADE+∠FDC=180°-60°=120°.又∵∠AED+∠ADE=180°-60°=120°,∴∠AED=∠FDC,∴△AED∽△CDF;(2)∵△ABC是等边三角形,∴AC=BC=AB=4.∵CD=x,AE=y,∴AD=4-x,ED=EB=4-y.∵△AED∽△CDF,∴==,∴==,∴DF=,CF=.∵DF+CF=BF+CF=BC=4,∴+=4,整理得:y=(0<x<4);(3)如图2,在Rt△AHD中,∵AH=AE-EH=y-1,AD=4-x,∠A=60°,∴cosA===,∴y=3-x,∴=3-x,整理得:x2-14x+24=0,解得:x1=2,x2=12,∵0<x<4,∴x=2,即CD的长为2.20、答案:试题分析:(1)利用等腰三角形的性质和三角形内角和定理可计算出∠ABC=∠C=72°,∠ABD=∠CBD=36°,∠BDC=72°,则可得到AD=BD=BC,然后根据相似三角形的判定方法易得△BDC∽△ABC,利用相似比得到BC2=CD•AC,于是有AD2=CD•AC,则可根据线段黄金分割点的定义得到结论;(2)设AD=x,则CD=AC-AD=1-x,由(1)的结论得到x2=1-x,然后解方程即可得到AD 的长.试题解析:(1)证明:∵AB=AC=1,∴∠ABC=∠C=(180°-∠A)=(180°-36°)=72°,∵BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=∠ABC=36°,∴∠BDC=180°-36°-72°=72°,∴DA=DB,BD=BC,∴AD=BD=BC,易得△BDC∽△ABC,∴BC:AC=CD:BC,即BC2=CD•AC,∴AD2=CD•AC,∴点D是线段AC的黄金分割点;(2)设AD=x,则CD=AC-AD=1-x,∵AD2=CD•AC,∴x2=1-x,解得x1=,x2=,即AD的长为.21、答案:试题分析:首先根据∠BAC=90°,AH⊥BC于H,判断出∠ABH=∠CAH,进而判断出∠DBH=∠EAH;然后根据相似三角形的判定方法,判断出△ABH∽△CAH,即可判断出,再根据AB=BD,AH=AE,判断出,据此判断出△BDH∽△AEH,推得∠BHD=∠AHE;最后判断出∠DHE=90°,即可判断出DH⊥HE.试题解析:∵∠BAC=90°,∴∠BAH+∠CAH=90°,∵AH⊥BC,∴∠ABH+∠BAH=90°,∴∠ABH=∠CAH,又∵∠DBH=∠ABH+60°,∠EAH=∠CAH+60°,∴∠DBH=∠EAH,在△ABH和△CAH中,,∴△ABH∽△CAH,∴,又∵AB=BD,AH=AE,∴,在△BDH和△AEH中,∴△BDH∽△AEH,∴∠BHD=∠AHE,∵∠BHD+AHD=90°,∴∠AHE+AHD=90°,即∠DHE=90°,∴DH⊥HE.22、答案:试题分析:(1)利用对应两角相等,证明两个三角形相似△ADF∽△DEC;(2)利用△ADF∽△DEC,可以求出线段DE的长度;然后在在Rt△ADE中,利用勾股定理求出线段AE的长度.(1)证明:∵▱ABCD,∴AB∥CD,AD∥BC,∴∠C+∠B=180°,∠ADF=∠DEC.∵∠AFD+∠AFE=180°,∠AFE=∠B,∴∠AFD=∠C.在△ADF与△DEC中,∴△ADF∽△DEC.(2)∵▱ABCD,∴CD=AB=8.由(1)知△ADF∽△DEC,∴,∴DE===12.在Rt△ADE中,由勾股定理得:AE===6.23、答案:(1)证明过程见解析过程(2)110°试题分析:(1)根据AB=AC,求得∠ABD=∠ACE,再利用=DB•CE,即可得出对应边成比例,然后即可证明.(2)由△ADB∽△EAC,得出∠BAD=∠E,∠D=∠CAE,则∠DAE=∠BAD+∠BAC+∠CAE=∠D+∠BAD+∠BAC,很容易得出答案解:(1)证明:∵AB=AC,∴∠ABC=∠ACB,∴∠ABD=∠ACE,∵=DB•CE∴=∴=∴△ADB∽△EAC.(2)∵△ADB∽△EAC,∴∠BAD=∠E,∠D=∠CAE,∵∠DAE=∠BAD+∠BAC+∠CAE,∴∠DAE=∠D+∠BAD+∠BAC,∵∠BAC=40°,AB=AC,∴∠ABC=70°,∴∠D+∠BAD=70°,∴∠DAE=∠D+∠BAD+∠BAC=70°+40°=110°.。